2020-2021学年浙教版九年级数学第一学期期末复习试卷(有答案)

合集下载

2020-2021学年浙教新版九年级上册数学期末复习试卷 (有答案)

2020-2021学年浙教新版九年级上册数学期末复习试卷 (有答案)

2020-2021学年浙教新版九年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.若,则的值为()A.1B.C.D.2.二次函数y=﹣2(x+1)2﹣4,下列说法正确的是()A.开口向上B.对称轴为直线x=1C.顶点坐标为(1,4)D.当x<﹣1时,y随x的增大而增大3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;③13个人中至少有两个人的生日是在同一个月份;④射击运动员射击一次,命中靶心;⑤水中捞月;⑥冬去春来.其中是必然事件的有()A.1个B.2个C.3个D.4个4.如图,在Rt△ABC中,AB⊥BC,AB=6,BC=4,P是平面内一动点,且∠APB=90°,取BC的中点E,连结PE,则线段PE的最大值为()A.2B.2C.2+D.3+5.如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的()A.甲B.乙C.丙D.丁6.把抛物线y=﹣2x2向右平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为()A.y=﹣2(x+1)2﹣3B.y=﹣2(x﹣1)2+3C.y=﹣2(x+1)2+3D.y=﹣2(x﹣1)2﹣37.小明在边长为a的正方形硬纸板上挖去一个最大的圆,则剩余部分的面积是()A.a2﹣πa2 B.a2﹣πa2 C.(a2﹣πa2)D.a2+πa28.半径为R的圆的内接正九边形的边长是()A.R sin20°B.R sin40°C.2R sin20°D.2R sin40°9.如图,在矩形ABCD中,AB=6,BC=10,点E、F在AD边上,BF和CE交于点G,若EF=AD,则图中阴影部分的面积为()A.25B.30C.35D.4010.如图,将大小不同的两块量角器的零度线对齐,且小量角器的中心O2,恰好在大量角器的圆周上,设图中两圆周的交点为P,且点P在小量角器上对应的刻度为63°,那么点P在大量角器上对应的刻度为(只考虑小于90°的角)()A.54°B.55°C.56°D.57°二.填空题(共6小题,满分24分,每小题4分)11.若tan(α﹣15°)=,则锐角α的度数是.12.抛物线y=﹣(x+1)2+3与y轴交点坐标为.13.在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为,则a=.14.如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,点F在圆上,且,BE=2,CD =8,CF交AB于点G,则弦CF的长为,AG的长为.16.当﹣1≤a≤时,则抛物线y=﹣x2+2ax+2﹣a的顶点到x轴距离的最小值.三.解答题(共7小题,满分66分)17.(6分)如图,在△ABC中,∠C=90°,∠A=30°,BC=1,点D在边AC上,且∠DBC=45°,求sin∠ABD的值.18.(8分)如图,有大小质地相同仅颜色不同的两双拖鞋(分左.右脚)共四只,放置于地板上.【可表示为(A1.A2),(B1.B2)】注:本题采用“长方形”表示拖鞋.(1)若先从两只左脚拖鞋中取一只,再从两只右脚拖鞋中随机取一只,求恰好匹配成一双相同颜色的拖鞋的概率.(2)若从这四只拖鞋中随机取出两只,利用“树形图”或“表格”列举出所有可能出现的情况,并求恰好匹配成一双相同颜色的拖鞋的概率.19.(8分)菱形的两条对角线的和为40cm.(1)如果菱形的面积为y(cm2),一条对角线的长为x(cm),写出y与x的表达式,并指出自变量x的取值范围;(2)当这两条对角线的长分别为多少时,菱形的面积最大?最大面积是多少?20.(10分)如图所示,AB是⊙O的直径,其半径为1,扇形AOC的面积为.(1)求∠AOC的度数;(2)求的长度.21.(10分)如图,AB是⊙O的直径,点C是弧AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交D的延长线于点F,AF交⊙O 于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求AH的长22.(12分)如图,抛物线y=ax2+2ax﹣3a(a≠0)与x轴交于A,B两点(A在B的左侧).(1)点A,B的坐标;(2)若该抛物线过C(﹣1,4)①请问C点是否是抛物线的顶点,请说明理由;②连接CO,并延长交抛物线于D点,连接BD,AD,求△ABD的面积.23.(12分)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.①求AE,DE的长;②AC,BD交于点O,求tan∠DBC的值.2020年12月15日宫老师的初中数学平行组卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵,∴=2=2﹣=;故选:B.2.解:∵二次函数y=﹣2(x+1)2﹣4,∴a=﹣2,该函数的图象开口向下,故选项A错误;对称轴是直线x=﹣1,故选项B错误;顶点坐标为(﹣1,﹣4),故选项C错误;当x<﹣1时,y随x的增大而增大,故选项D正确;故选:D.3.解:①掷一次骰子,向上一面的点数是3,是随机事件;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球,是不可能事件;③13个人中至少有两个人的生日是在同一个月份,是必然事件;④射击运动员射击一次,命中靶心,是随机事件;⑤水中捞月,是不可能事件;⑥冬去春来,是必然事件;故选:B.4.解:取AB的中点O,以O为圆心,AB为直径作圆,连接EO,EO的延长线与⊙O交于点P′,如图,此时EP′就是EP的最大值为:EP′=OE+OP′=+3,故选:D.5.解:∵△RPQ∽△ABC,∴,即,∴△RPQ的高为6.故点R应是甲、乙、丙、丁四点中的乙处.故选:B.6.解:把抛物线y=﹣2x2向右平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为:y=﹣2(x﹣1)2﹣3.故选:D.7.解:正方形的面积是a2;圆的面积是π()2=.则剩余部分的面积是a2﹣πa2.故选:B.8.解:如图所示,过O作OD⊥AB于点D,则AD=BD=AB,∵此多边形是正九边形,∴∠AOB==40°,∴∠AOD==20°,在Rt△AOD中,AD=OA sin∠AOD=R×sin20°,∴AB=2AD=2R sin20°.故选:C.9.解:过点G作GN⊥AD于N,延长NG交BC于M,∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∵EF =AD ,∴EF =BC ,∵AD ∥BC ,NG ⊥AD ,∴△EFG ∽△CBG ,GM ⊥BC ,∴GN :GM =EF :BC =1:2,又∵MN =AB =6,∴GN =2,GM =4,∴S △BCG =×10×4=20,∴S △EFG =×5×2=5,S 矩形ABCD =6×10=60,∴S 阴影=60﹣20﹣5=35.故选:C .10.解:连接O 1P ,O 2P ,如图,∵P 在小量角器上对应的刻度为63°,即∠O 1O 2P =63°,而O 1P =O 1O 2,∴∠O 1PO 2=∠O 1O 2P =63°,∴∠PO 1O 2=180°﹣63°﹣63°=54°,即点P 在大量角器上对应的刻度为54°(只考虑小于90°的角). 故选:A .二.填空题(共6小题,满分24分,每小题4分)11.解:∵tan(α﹣15°)=,∴α﹣15°=60°,∴α=75°.故答案为:75°.12.解:把x=0代入y=﹣(x+1)2+3得,y=﹣1+3=2,因此与y轴的交点坐标为(0,2),故答案为:(0,2)13.解:根据题意,得:=,解得a=8,经检验:a=8是分式方程的解,故答案为:8.14.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.15.解:连结BC,DF,OC,连结DO并延长交CF于点H,∵弦CD⊥AB于点E,CD=8,∴CE==4,设OC=x,则OE=x﹣2,∵OE2+CE2=OC2,∴(x﹣2)2+42=x2,解得x=5,∴OC=5,∴OE=5﹣2=3,∵,∴DF=CD,∠CFD=∠COB,DH⊥CF,∴∠FHD=∠OEC=90°,∴△DHF∽△CEO,∴=,∴,∴FH=,DH=,∴CF=2FH=,OH=DH﹣OD=,∵∠CFD=∠COB=∠BOD,∠BOD=∠GOH,∴∠GOH=∠DFH,∵∠GHO=∠OEC=90°,∴△GHO∽△CEO,∴,∴,∴OG=,∴AG=OA﹣OG=5﹣=.故答案为:,.16.解:∵抛物线y=﹣x2+2ax+2﹣a的顶点纵坐标==2﹣a+a2,当a=﹣1时,2﹣a+a2=2+1+1=4;当a=时,2﹣+=,∵4>,∴顶点到x轴距离的最小值是.故答案为:.三.解答题(共7小题,满分66分)17.解:如图,过点D作DM⊥AB于M,在BA上取一点H,使得BH=DH,连接DH.设DM=a.∵∠C=90°,∠A=30°,∴∠ABC=90°﹣30°=60°,∵∠DBC=45°,∴∠ABD=60°﹣45°=15°,∵HB=HD,∴∠HBD=∠HDB=15°,∴∠DHM=∠HBD+∠HDB=30°,∴DH=BH=2a,MH=a,BM=2a+a,∴BD===(+)a,∴sin∠ABD===.18.解:(1)用列表法表示所有可能的情况有:共4种情况,其中配成一双相同颜色的有2种,==;∴P配成一双相同颜色(2)用列表法表示所有可能的情况有:共12种情况,其中配成一双相同颜色的有4种,==.∴P配成一双相同颜色19.解:(1)根据题意得,y==,即y=+20x(0<x<40);(2)∵y=+20x=﹣,∴当x=20时,y有最大值为200,答:当这两条对角线的长分别为20cm时,菱形的面积最大,最大面积是200cm2.20.解:(1)由扇形面积公式S=得:,∴n=60,∴∠AOC=60°.(2)∵∠AOC=60°,∴∠BOC=120°,∴的长度为l=.21.(1)证明:连接OC,如图所示:∵AB是⊙O的直径,点C是弧AB的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD的中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∴BD是⊙O的切线;(2)解:由(1)得:OC∥BD,∴△OCE∽△BFE,∴==,∵OB=2,∴OC=OB=2,AB=4,∴=,∴BF=3,∵∠ABD=90°,∴∠ABF=90°,∴AF===5,∵△ABF的面积AF×BH=AB×BF,∴BH==,∴AH===.22.解:(1)当y=0时,ax2+2ax﹣3a=0,解得x1=﹣3,x2=1,所以点A的坐标为(﹣3,0),B点坐标为(1,0);(2)①C点是抛物线的顶点.理由如下:把C(﹣1,4)代入y=ax2+2ax﹣3a得a﹣2a﹣3a=4,解得a=﹣1,所以抛物线解析式为y=﹣x2﹣2x+3,因为y=﹣(x+1)2+4,所以抛物线的顶点坐标为(﹣1,4),即C点是抛物线的顶点.②设直线OC的解析式为y=kx,把C(﹣1,4)代入得﹣k=4,解得k=﹣4,即直线OC的解析式为y=﹣4x,解方程组得或,所以D点坐标为(3,﹣12),所以△ABD的面积=×(1+3)×12=24.23.解:(1)①正方形是自相似菱形,是真命题;理由如下:如图3所示:∵四边形ABCD是正方形,点E是BC的中点,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE与△EDC不能相似,同理△AED与△EDC也不能相似,∵四边形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,当∠AED=∠B时,△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED;(2)①∵菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点,∴BE=2,AB=AD=4,由(1)③得:△ABE∽△DEA,∴==,∴AE2=BE•AD=2×4=8,∴AE=2,DE===4,②过E作EM⊥AD于M,过D作DN⊥BC于N,如图2所示:则四边形DMEN是矩形,∴DN=EM,DM=EN,∠M=∠N=90°,设AM=x,则EN=DM=x+4,由勾股定理得:EM2=DE2﹣DM2=AE2﹣AM2,即(4)2﹣(x+4)2=(2)2﹣x2,解得:x=1,∴AM=1,EN=DM=5,∴DN=EM===,在Rt△BDN中,∵BN=BE+EN=2+5=7,∴tan∠DBC==.1、三人行,必有我师。

浙教版2020-2021学年度九年级数学第一学期期末综合复习能力提升训练题1(附答案详解)

浙教版2020-2021学年度九年级数学第一学期期末综合复习能力提升训练题1(附答案详解)

浙教版2020-2021学年度九年级数学第一学期期末综合复习能力提升训练题1(附答案详解)一、单选题1.有五张形状、大小、质地都相同的卡片,上面分别画有下列图形:①线段②正三角形③平行四边形④菱形⑤圆,将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是()A.15B.25C.35D.452.若要从二次函数y=3x2的图象得到二次函数y=3(x+2)2-1的图象,则二次函数y=3x2的图象必须()A.上移1个单位,右移2个单位B.下移1个单位,右移2个单位C.下移1个单位,左移2个单位D.上移2个单位,右移1个单位3.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象的顶点为A(-2,-2),且过点B(0,2),则y与x的函数关系式为( )A.y=x2+2 B.y=(x-2)2+2C.y=(x-2)2-2 D.y=(x+2)2-24.如图,Rt△ABC中,∠C=90°,D是AC边上一点,AB=5,AC=4,若△ABC∽△BDC,则CD=()A.2 B.32C.43D.945.y=x2-1可由下列()的图象向右平移1个单位,下平移2个单位得到A.y=(x-1)2+1 B.y=(x+1)2+1 C.y=(x-1)2-3 D.y=(x+1)2+36.下列事件中:①阴天会下雨;②随机掷一枚均匀的硬币,正面朝上;③12名同学中,有两人的出生月份相同;④2008年奥运会在北京举行.不确定事件有()个A.1 B.2 C.3 D.47.如图,矩形ABCD中,AD=2AB,E、F、G、H分别是AB,BC,CD,AD边上的点,EG⊥FH,FH=23,则四边形EFGH的面积为()A.63B.12 C.123D.248.由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积为().A.4π B.9π C.16π D.25π9.下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖10.已知抛物线y=ax2+bx+c的图象如图所示,则|a+b+c|+|a﹣b+c|+|2a+b|=()A.2a+3 b B.2c﹣b C.2a﹣b D.b-2c11.如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A.43B.32C.85D.127二、填空题12.如图,在等腰Rt△ABC中,∠C=90°,AC=2,以BC边的中点D为圆心,以CD的长为半径作弧,交AB于点E;以点A为圆心,以AC的长为半径作弧,交AB于点F,则阴影部分的面积为_____.13.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A .200只B .400只C .800只D .1000只14.如图,在⊙O 中,60A O B ∠=,3c m AB =,则劣弧A B 的长为________cm .15.如图,以点O 为位似中心,将△ABC 缩小得到△ABC ''',若'A A =2'O A ,则△ABC 与△ABC'''的周长比为_______. 16.如图,点A 、B 、C 为⊙O 上的三个点,∠BOC=2∠AOB ,∠BAC=40°,则∠ACB= 度.17.已知圆锥的侧面积等于60πcm 2,母线长10cm ,则圆锥的底面半径是______. 18.如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为_________________。

2020-2021学年浙教版九年级数学第一学期期末复习试题(有答案)

2020-2021学年浙教版九年级数学第一学期期末复习试题(有答案)

2020-2021学年浙教版九年级数学第一学期期末复习试题一.选择题(共10小题,满分30分,每小题3分)1.已知2x=3y,则下列比例式成立的是()A.=B.=C.=D.=2.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2D.y=﹣2(x+1)2﹣23.线段AB上点C是黄金分割点,AC>BC,若AB=2,则AC为()A.B.C.D.4.如图,已知圆锥的底面半径是2,母线长是6.如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,则这根绳子的长度可能是()A.8B.9C.10D.115.如图,重庆建川博物馆的主题雕塑“冒着敌人的炮火”矗立在鹅公岩长江大桥旁,为了测量雕塑AE的大致高度,小南同学在点C处测得雕塑顶部A的仰角为45°,雕塑底部E的仰角为37°,再沿着CB方向走8米到达点D,此时测得雕塑顶部A的仰角为54.5°,小南同学的身高忽略不计,已知A、B、C、D、E在同一平面内,则该雕塑AE的高度约为()米.(参考敷据:tan37°≈0.75,tan54.5°≈1.40)A.7B.8C.21D.286.从下列4个命题中任取一个①6的平方根是;②是方程x2﹣6=0的解;③如果两个图形是位似图形,则这两个图形一定相似.④在半径为4的圆中,15°的圆周角所对的弧长为π;是真命题的概率是()A.1B.C.D.7.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠0 8.如图,△ABC的中线AD、BE相交于点F,若△ABF的面积是4,则四边形FDCE的面积是()A.4B.4.5C.3.5D.59.对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②若a<0,函数在x>1时,y随x的增大而减小;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中所有正确的结论是()A.①②③B.①③④C.①②④D.①②③④10.如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是()A.B.C.2D.二.填空题(共6小题,满分24分,每小题4分)11.计算:cos60°+sin245°﹣tan30°•tan60°=.12.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.13.把二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,则y=ax2+bx+c图象顶点坐标是.14.在△ABC中,AB=6cm,AC=5cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△ADE :S四边形BCED=1:8,则AD=cm.15.如图所示,圆的半径为2,圆的两条弦AB,CD互相垂直,垂足为E.若圆心O到弦AB的距离OF=1,EF=1.则图中阴影部分的面积等于(π取3.14)16.如图,菱形ABCD的边长为2.∠ABC=60°.以点C为圆心的半圆与AB,AD相切于点E和点F.则图中阴影部分的面积为.三.解答题(共7小题)17.如图,AB、CD为两个建筑物,建筑物AB的高度为90米,从建筑物AB的顶部A点测得建筑物CD的顶部C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD 为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号)18.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.19.如图,四边形ABCD是⊙O的内接四边形,=,AC为直径,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.20.某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)写出该文具店每周销售这种纪念册所获得的利润为w元与销售单价x(元)的函数关系式;当销售单价x为何值时,利润最大?(3)试通过(2)中的函数关系式及其大致图象,帮助该文具店确定产品的销售单价范围,使利润不低于150元(请直接写出销售单价x的范围).21.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A 出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)22.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.23.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C.且直线y=x﹣6过点B,与y轴交于点D,点C与点D关于x轴对称,点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N.(1)求抛物线的函数解析式;(2)当△MDB的面积最大时,求点P的坐标;(3)在(2)的条件下,在y轴上是否存在点Q,使得以Q,M,N三点为顶点的三角形是直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A、变成等积式是:xy=6,故错误;B、变成等积式是:3x=2y,故错误;C、变成等积式是:2x=3y,故正确;D、变成等积式是:3x=2y,故错误.故选:C.2.解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x ﹣1)2﹣2.故选:B.3.解:∵C为线段AB=2的黄金分割点,且AC>BC,AC为较长线段,∴AC=AB=﹣1;故选:A.4.解:设圆锥的侧面展开图扇形的圆心角为n.底面圆的周长等于:2π×2=,解得:n=120°;连结AC,过B作BD⊥AC于D,则∠ABD=60°.由AB=6,可求得BD=3,∴AD═3,AC=2AD=6,即这根绳子的最短长度是6,故这根绳子的长度可能是11,故选:D.5.解:设BD=x米,则BC=BD+CD=(x+8)米,由题意得:∠ADB=54.5°,∠BCE=37°,∠ABC=90°,∠ACB=45°,∴△ABC是等腰直角三角形,∴AB=BC=(x+8)米,在Rt△ABD中,∠ABD=90°,∠ADB=54.5°,∵tan∠ADB==tan54.5°≈1.40,∴≈1.40,解得:x≈20,∴AB=BC=28(米),在Rt△BCE中,∠BCE=37°,∵tan∠BCE==tan37°≈0.75,∴BE≈0.75BC=0.75×28=21(米),∴AE=AB﹣BE=28﹣21=7(米),即该雕塑AE的高度约为7米,故选:A.6.解:∵①6的平方根是±,故是假命题;②是方程x2﹣6=0的解,是真命题;③如果两个图形是位似图形,则这两个图形一定相似,是真命题;④在半径为4的圆中,15°的圆周角所对的弧长为π;是真命题;∴是真命题的概率是:.故选:D.7.解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx 2﹣6x +3=0(k ≠0)有实数根,即△=36﹣12k ≥0,k ≤3,由于是二次函数,故k ≠0,则k 的取值范围是k ≤3且k ≠0.故选:D .8.解:∵△ABC 的中线AD 、BE 相交于点F ,∴BD =CD ,点F 为△ABC 的重心,∴BF =2EF ,AF =2FD ,∴S △BFD =S △ABF =×4=2,S △AEF =S △ABF =×4=2,∵S △ABD =S △ACD =4+2=6,∴四边形FDCE 的面积=6﹣2=4.故选:A .9.解:令y =0,则ax 2﹣(2a ﹣1)x +a ﹣1=0,即(x ﹣1)[ax ﹣(a ﹣1)]=0, 解得x 1=1,x 2=,所以,函数图象与x 轴的交点为(1,0),(,0),故①④正确; 当a <0时,>1,所以,函数在x >1时,y 先随x 的增大而增大,然后再减小,故②错误;∵x =﹣=﹣=1﹣, y ===﹣,∴y =x ﹣,即无论a 取何值,抛物线的顶点始终在直线y =x ﹣上,故③正确;综上所述,正确的结论是①③④.故选:B .10.解:如图,取点H (6,0),连接PH ,∵抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),∴解得:∴抛物线解析式为:y=﹣x2﹣x∴顶点C(﹣3,4),∴⊙C半径为3,∵AO=OH=6,AD=BD,∴OD=PH,∴PH最大时,OD有最大值,∴当点C在PH上时,PH有最大值,∴PH最大值为=3+=3+,∴OD的最大值为:,故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=+()2﹣×,=+﹣1,=0.故答案为:0.12.解:不透明的布袋中的球除颜色不同外,其余均相同,共有(n+4)个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.13.解:y=2(x﹣1)2的顶点坐标为(1,0),∵二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2∴二次函数y =ax 2+bx +c 的解析式为:y =2(x +1)2﹣3,∴二次函数y =ax 2+bx +c 的顶点坐标为(﹣1,﹣3),故答案为:(﹣1,﹣3).14.解:∵S △ADE :S 四边形BCED =1:8,∴S △ADE :S △ABC =1:9,∴△ADE 与△ABC 相似比为:1:3,①若∠AED 对应∠B 时, 则,∵AC =5cm ,∴AD =cm ;②当∠ADE 对应∠B 时,则,∵AB =6cm ,∴AD =2cm ; 故答案为:.15.解:如图,连接OB ,OC ,BC ,OA ,OD ,作OG ⊥CE 于G ,∴四边形EFOG 是矩形,∴OG =EF =1,∴∠OBF =30°,∵OB =2,OF =1,OF ⊥AB ,∴BF =, ∴AB =2,∵OG =OF =1,∴BE =CE =1,∵OA =OB ,OC =OD ,∴∠OAB =∠ODC =∠AOD =30°,∵HF =,AF =BF =, ∴AH =,∠BOC =120°,∴S 1=S 扇形AOD ﹣2S △AOE =﹣2וDE •OG =﹣(﹣1), S2=S 扇形BOC+2S △BOE =•BE •OF =π++1,∴图中阴影部分的面积=S1+S2=π+2≈7.23.故答案为:7.23.16.解:连接CE 、CF ,∴CE ⊥AB ,CF ⊥AD ,∵∠ABC =60°,∴∠BCE =30°,在直角△BCE 中,CE =BC =×2=,BE =1, ∴圆C 的半径为, ∴S △BCE =×1×=,在菱形ABCD 中,∠ABC =60°,则∠DCG =60°,∴S 阴影=2(S △BCE ﹣S 扇形)+S 扇形HCG =2×(﹣)+=. 故答案为:.三.解答题(共7小题)17.解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=90,∴两建筑物底部之间水平距离BD的长度为90米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=90,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=90×=30,又∵FD=90,∴CD=90﹣30,∴建筑物CD的高度为(90﹣30)米.18.解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.19.(1)证明:∵四边形ABCD是⊙O内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵=,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE;(2)解:∵AC为直径,∴∠ADC=90°,∵DE⊥BC,∴∠DEC=90°,∴∠DEC=∠ADC,∵∠DCE=∠ACD,∴△DCE∽△ACD,∴=,即=,∴CD=3.20.解:(1)设y=kx+b,将x=22、y=36和x=24、y=32代入,得:,解得:,∴y=﹣2x+80,故答案为:y=﹣2x+80;(2)根据题意知,w=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2x+80≥0,∴x≤40,∴当x=30时,w取得最大值200,答:当销售单价x=30时,利润最大;(3)当w=150时,﹣2(x﹣30)2+200=150,解得:x=35或x=25,如图,当y≥150时,25≤x≤35.21.解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB =S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sin A∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.22.(1)解:∵OE⊥AB,∠BAC=30°,OA=1,∴∠AOE=60°,OE=OA=,AE=EB=OE=,∵AC是直径,∴∠ABC=90°,∴∠C=60°,∵OC=OB,∴△OCB是等边三角形,∵OF=FC,∴BF⊥AC,∴∠AFB=90°,∵AE=EB,∴EF=AB=.(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.∵∠FGA=∠ABC=90°,∴FG∥BC,∴△OFH∽△OCB,∴==,同理=,∴FH=OE,∵OE⊥AB.FH⊥AB,∴OE∥FH,∴四边形OEHF是平行四边形,∴PE=PF.②∵OE∥FG∥BC,∴==1,∴EG=GB,∴EF=FB,∵DF=EF,∴DF=BF,∵DO=OB,∴FO⊥BD,∴∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴∠BAC=45°.23.解:(1)令y=0,得y=x﹣6=0,解得x=6,∴B(6,0),令x=0,得y=x﹣6=﹣6,∴D(0,﹣6),∵点C与点D关于x轴对称,∴C(0,6),把B、C点坐标代入y=﹣x2+bx+c中,得,解得,,∴抛物线的解析式为:y=﹣x2+5x+6;(2)设P(m,0),则M(m,﹣m2+5m+6),N(m,m﹣6),则MN=﹣m2+4m+12,∴△MDB的面积==﹣3m2+12m+36═﹣3(m﹣2)2+48,∵﹣3<0,∴当m=2时,△MDB的面积最大,此时,P点的坐标为(2,0);(3)由(2)知,M(2,12),N(2,﹣4),当∠QMN=90°时,QM∥x轴,则Q(0,12);当∠MNQ=90°时,NQ∥x轴,则Q(0,﹣4);当∠MQN=90°时,设Q(0,n),则QM2+QN2=MN2,即4+(12﹣n)2+4+(n+4)2=(12+4)2,解得,n=4±2,∴Q(0,4+2)或(0,4﹣2).综上,存在以Q,M,N三点为顶点的三角形是直角三角形.其Q点坐标为(0,12)或(0,﹣4)或(0,4+2)或(0,4﹣2).1、三人行,必有我师。

浙教版2020-2021学年初三数学上册期末测试题 含答案

浙教版2020-2021学年初三数学上册期末测试题  含答案

2020-2021学年初三数学上册期末测试题一、选择题(每小题3分,共30分)1.(3分)若,则=()A.B.C.D.2.(3分)下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是不可能事件B.“两直线被第三条直线所截,同位角相等”是必然事件C.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D.“篮球队员在罚球线上投篮一次,投中”为随机事件3.(3分)下列几何体中,左视图不是矩形的是()A.圆柱B.正四棱锥C.正方体D.直三棱柱4.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,连接AC、AD,若∠BAD=27°,则∠ACD 的大小为()A.73°B.63°C.54°D.53°5.(3分)下列对二次函数y=2x2+x的图象的描述,正确的是()A.开口向下B.对称轴是x=C.经过原点D.当x<0时,y随x值的增大而增大6.(3分)如图是某几何体的三视图,这个几何体的侧面积是()A.6πB.2πC.πD.3π7.(3分)如图,AD、AE和BC分别切⊙O于点D、E、F,如果AD=18,则△ABC的周长为()A.18 B.27 C.36 D.548.(3分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC 的长为()A.B.5 C.或D.2或59.(3分)已知对于抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,M=y2;②当x <0时,M随x值的增大而增大;③M<2;④使得M=1的x值是﹣或.其中正确的个数是()A.1个B.2个C.3个D.4个10.(3分)如图1,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点,三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:如图2,在等腰△DEF中,DF=EF,FG是△DEF的中线,若点Q为△DEF的布洛卡点,FQ=9,=,则DQ+EQ=()A.10 B.C.6+6D.7二、填空题(每小题3分,共24分)11.(3分)在△ABC中,BC=4,AC=3,AB=5,则tan A的值为.12.(3分)把抛物线y=﹣x2+x向下平移3个单位,则平移后抛物线的解析式为.13.(3分)从2019,﹣2019,0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是.14.(3分)如图,四边形ABCD∽四边形EFGH,∠A=∠D=100°,∠G=65°,则∠F=.15.(3分)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB (阴影部分)粘贴胶皮,则胶皮面积为.16.(3分)如图,在▱ABCD中,AF、BE分别平分∠DAB、∠ABC,点G是AF、BE的交点,AB =5,BC=3,则S△EFG:S△ABG=.17.(3分)如图,已知点A(3,3),点B(0,2),点A在二次函数y=x2+bx﹣9的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交二次函数图象于点C,则点C 的坐标为.18.(3分)如图,已知点C是以AB为直径的半圆的中点,D为弧AC上任意一点,过点C 作CE⊥BD于点E,连接AE,若AB=4,则AE的最小值为.三、解答题(共46分)19.(5分)计算:sin60°+cos245°﹣sin30°•tan60°.20.(6分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l,其间设有区间测速.数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=40米,∠APC=64°,∠BPC=25°.一汽车从点A到点B用时4秒,求这辆汽车在该路段的平均速度.(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin64°≈0.90,cos64°≈0.44,tan64°≈2.05).21.(6分)如图,网格中的每个小正方形的边长为1个单位长度,△ABC的顶点均在格点上.(1)将△ABC绕点A顺时针旋转90°得△ADE(B的对应点是D,C的对应点是E),请画出△ADE.(2)连接BE,在图中所给的网格中找一个格点F,使得△BEF∽△BCA.22.(6分)一个不透明的布袋里装有6个白球,2个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)小亮和小丽将布袋中的白球取出5个,利用剩下的球进行摸球游戏,他们约定:先摸出1个球后不放回,再摸出1个球,若两个球中有红球则小亮胜,否则小丽胜,你认为这个游戏公平吗?请用列表或画树状图说明理由.23.(6分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线;(2)若BC=6,CD=6,求弦AD的长.24.(8分)如图,在平面直角坐标系中,二次函数y=与x轴交A、B两点(点A在点B的左侧),经过点B的直线l与y轴交于点C,与抛物线的另一个交点为D,且CD=3BC.(1)求点B的坐标及直线l的函数表达式;(2)点E在y轴正半轴上,且ED=EC,求OE的长;(3)点F是抛物线上第一象限内的一点,以F为圆心的圆与直线l相切,切点为G,且以点D、F、G为顶点的三角形与△BOC相似,求点F的坐标.25.(9分)如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若=,求的值;(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)若,则=()A.B.C.D.【分析】利用合比性质解答.【解答】解:由,得==.故选:A.2.(3分)下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是不可能事件B.“两直线被第三条直线所截,同位角相等”是必然事件C.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D.“篮球队员在罚球线上投篮一次,投中”为随机事件【分析】直接利用概率的意义以及随机事件的概念分别分析得出答案.【解答】解:A.“打开电视机,正在播放《新闻联播》”是随机事件,不符合题意;B.“两直线被第三条直线所截,同位角相等”是随机事件,不符合题意;C.天气预报说“明天的降水概率为40%”,表示明天有40%的可能性都在降雨,不符合题意;D.“篮球队员在罚球线上投篮一次,投中”为随机事件,符合题意;故选:D.3.(3分)下列几何体中,左视图不是矩形的是()A.圆柱B.正四棱锥C.正方体D.直三棱柱【分析】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解【解答】解:A.左视图是矩形;B.左视图是三角形;C.左视图是正方形,属于矩形;D,左视图是矩形;故选:B.4.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,连接AC、AD,若∠BAD=27°,则∠ACD 的大小为()A.73°B.63°C.54°D.53°【分析】先利用圆周角定理得到∠ADB=90°,利用互余计算出∠ABD=63°,然后根据圆周角定理得到∠ACD的度数.【解答】解:连接BD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣27°=63°,∴∠ACD=∠ABD=63°.故选:B.5.(3分)下列对二次函数y=2x2+x的图象的描述,正确的是()A.开口向下B.对称轴是x=C.经过原点D.当x<0时,y随x值的增大而增大【分析】由二次函数的性质利用二次函数的性质可排除A,B,D选项,再利用二次函数图象上点的坐标特征可求出二次函数y=2x2+x的图象经过原点.【解答】解:∵a=2,b=1,c=0,∴二次函数y=2x2+x的图象开口向上;对称轴为直线x=﹣=﹣;在对称轴左侧,y随x值的增大而增大,在对称轴右侧,y随x值的增大而减小,∴选项A,B,D不正确;当x=0时,y=2x2+x=0,∴二次函数y=2x2+x的图象经过原点,选项C正确.故选:C.6.(3分)如图是某几何体的三视图,这个几何体的侧面积是()A.6πB.2πC.πD.3π【分析】根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为1,高为3,利用勾股定理求得圆锥的母线长为,代入公式求得即可.【解答】解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为1,高为3,∴圆锥的母线长为,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×1=2π,∴圆锥的侧面积=lr=×2π×=π,故选:C.7.(3分)如图,AD、AE和BC分别切⊙O于点D、E、F,如果AD=18,则△ABC的周长为()A.18 B.27 C.36 D.54【分析】根据切线长定理,将△ABC的周长转化为切线长求解.【解答】解:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=2AD=36故选:C.8.(3分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC 的长为()A.B.5 C.或D.2或5【分析】过D作DE⊥AC于E,设DE=x,先根据直角三角形30度角的性质和勾股定理得:x的值,分情况根据三角形相似列比例式计算可得BC的长.【解答】解:如图,过D作DE⊥AC于E,设DE=x,∵∠ACD=30°,∴CE=x,AE=﹣x,Rt△ADE中,由勾股定理得:AD2=DE2+AE2,∴,18x2﹣27x+10=0,(3x﹣2)(6x﹣5)=0,解得:,,①当x=时,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴BC=2,②当x=时,同理得:,BC=5,综上,BC的长为2或5;故选:D.9.(3分)已知对于抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,M=y2;②当x <0时,M随x值的增大而增大;③M<2;④使得M=1的x值是﹣或.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】当x>0时,一次函数图象位于二次函数上方,可对①做出判断;当x<0,两个函数的函数随着x的增大而增大,故可对②做出判断;当x=0时,M=y1=y2有最大值2,故可对③做出判断;分别令y1=1,y2=1结合图象可求得x的取值.【解答】解:当x>0时,一次函数图象位于二次函数上方,∴y2>y1,∴M=y1,故①错误;∵当x<0,两个函数的函数随着x的增大而增大,∴M随x值的增大而增大,故②正确;当x=0时,函数M=y1=y2=2,故③错误;令y1=1,即:﹣2x2+2=1.解得:x1=,x2=﹣(不合题意舍去)令y2=1,得:2x+2=1,解得:x=﹣.故④正确.故选:B.10.(3分)如图1,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点,三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:如图2,在等腰△DEF中,DF=EF,FG是△DEF的中线,若点Q为△DEF的布洛卡点,FQ=9,=,则DQ+EQ=()A.10 B.C.6+6D.7【分析】由等腰三角形的性质和勾股定理可求EF的长,通过证明△DQE∽△EQF,可得=,即可求解.【解答】解:∵DF=EF,FG是△DEF的中线,∴DG=GE,FG⊥DE,∠FDE=∠FED,∵=,∴设DE=x,则FG=x,∴DG=x∴EF=DF===x∵点Q为△DEF的布洛卡点,∴∠QDF=∠QED=∠QFE,且∠FDE=∠FED,∴∠QDE=∠QEF,且∠QED=∠QFE,∴△DQE∽△EQF∴=∴QE=6,DQ=4∴QE+DE=10故选:A.二、填空题(每小题3分,共24分)11.(3分)在△ABC中,BC=4,AC=3,AB=5,则tan A的值为.【分析】根据勾股定理的逆定理可以判断三角形是直角三角形;根据三角函数的定义求解.【解答】解:∵32+42=52∴△ABC是直角三角形.∴由正切的定义知,tan A===.12.(3分)把抛物线y=﹣x2+x向下平移3个单位,则平移后抛物线的解析式为y=﹣x2+x ﹣3 .【分析】直接利用二次函数图象平移规律进而得出答案.【解答】解:把抛物线y=﹣x2+x向下平移3个单位,则平移后抛物线的解析式为:y=﹣x2+x﹣3.故答案为:y=﹣x2+x﹣3.13.(3分)从2019,﹣2019,0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是.【分析】画出树状图得出所有等可能的情况数,找出刚好在坐标轴上的点的个数,即可求出所求的概率.【解答】解:根据题意画图如下:所有等可能的情况有6种,其中该点在坐标轴上的情况有4种,所以该点在坐标轴上的概率==;故答案为:.14.(3分)如图,四边形ABCD∽四边形EFGH,∠A=∠D=100°,∠G=65°,则∠F=95°.【分析】利用相似多边形的性质得到∠A=∠D=∠E=∠H=100°,然后根据四边形的内角和计算∠F的度数.【解答】解:∵四边形ABCD∽四边形EFGH,∴∠A=∠D=∠E=∠H=100°,∴∠F=360°﹣∠E﹣∠H﹣∠G=360°﹣100°﹣100°﹣65°=95°.故答案为95°.15.(3分)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB (阴影部分)粘贴胶皮,则胶皮面积为(32+48π)cm2.【分析】连接OA、OB,根据三角形的面积公式求出S△AOB,根据扇形面积公式求出扇形ACB的面积,计算即可.【解答】解:连接OA、OB,∵=90°,∴∠AOB=90°,∴S△AOB=×8×8=32,扇形ACB(阴影部分)==48π,则弓形ACB胶皮面积为(32+48π)cm2,故答案为:(32+48π)cm2.16.(3分)如图,在▱ABCD中,AF、BE分别平分∠DAB、∠ABC,点G是AF、BE的交点,AB =5,BC=3,则S△EFG:S△ABG=1:25 .【分析】要证S△EFG:S△ABG,只要证明△EFG∽△ABG,则有,即可求解.【解答】解:∵BE分别平分ABC∴∠ABE=∠EBC∵在▱ABCD中,DC∥AB∴∠ABE=∠EBC=∠BEC∴CE=BC=3同理可得∠DAF=∠DFA,AD=DF=3∵在▱ABCD中,AB=DC=5∴EF=1∵在△EFG和△ABG中,∴△EFG∽△ABG∴==故答案为:1:2517.(3分)如图,已知点A(3,3),点B(0,2),点A在二次函数y=x2+bx﹣9的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交二次函数图象于点C,则点C 的坐标为(﹣2,﹣7).【分析】根据待定系数法求得b,得到二次函数的解析式,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB,依据全等三角形的性质,即可得出F(2,1),进而得出直线AC的解析式,解方程组即可得到C点坐标.【解答】解:∵点A(3,3)在二次函数y=x2+bx﹣9的图象上,∴9+3b﹣9=3,解得b=1,∴二次函数为y=x2+x﹣9,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB(AAS),设BD=a,则EF=a,∵点A(3,3)和点B(0,2),∴DF=3﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴3﹣a+2﹣a=3,解得a=1,∴F(2,1),设直线AC的解析式为y=kx+b,则,解得,∴y=2x﹣3,解方程组,可得或,∴C(﹣2,﹣7),故答案为:(﹣2,﹣7).18.(3分)如图,已知点C是以AB为直径的半圆的中点,D为弧AC上任意一点,过点C 作CE⊥BD于点E,连接AE,若AB=4,则AE的最小值为﹣.【分析】连接OC、BC,P点为BC的中点,作PH⊥AB于H,如图,利用点C是以AB为直径的半圆的中点得到OC⊥OB,则可判断△BOC、△BPH为等腰直角三角形,再利用∠BEC =90°判断点E在⊙P上,连接AP交⊙P于E′,此时AE′的长为AE的最小值,然后利用勾股定理计算出AP,计算AP﹣PE′即可得到AE的最小值.【解答】解:连接OC、BC,P点为BC的中点,作PH⊥AB于H,如图,∵点C是以AB为直径的半圆的中点,∴OC⊥OB,∴△BOC、△BPH为等腰直角三角形,∴BC=OB=2,BP=,PH=1,∵CE⊥BD,∴∠BEC=90°,∴点E在⊙P上,连接AP交⊙P于E′,此时AE′的长为AE的最小值,在Rt△APH中,AH=3,PH=1,∴AP==,∴AE′=﹣,∴AE的最小值为﹣.故答案为﹣.三、解答题(共46分)19.(5分)计算:sin60°+cos245°﹣sin30°•tan60°.【分析】首先代入特殊角的三角函数值,再计算乘方,后算乘除,最后算加减即可.【解答】解:原式=+﹣×,=+﹣,=.20.(6分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l,其间设有区间测速.数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=40米,∠APC=64°,∠BPC=25°.一汽车从点A到点B用时4秒,求这辆汽车在该路段的平均速度.(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin64°≈0.90,cos64°≈0.44,tan64°≈2.05).【分析】直接利用锐角三角函数关系得出AC,BC的长,进而得出AB的长,即可得出答案.【解答】解:在Rt△APC中,AC=PC•tan∠APC≈40×0.47=18.8(m),在Rt△BPC中,BC=PC•tan∠BPC≈40×2.05=82(m),∴AB=AC﹣BC=82﹣18.8=63.2(m),∴汽车的速度为:63.2÷4=15.8(米/秒),答:这辆汽车在该路段的平均速度为15.8米/秒.21.(6分)如图,网格中的每个小正方形的边长为1个单位长度,△ABC的顶点均在格点上.(1)将△ABC绕点A顺时针旋转90°得△ADE(B的对应点是D,C的对应点是E),请画出△ADE.(2)连接BE,在图中所给的网格中找一个格点F,使得△BEF∽△BCA.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用相似三角形的判定方法分析得出答案.【解答】解:(1)如图所示:△ADE,即为所求;(2)如图所示:△BEF∽△BCA.22.(6分)一个不透明的布袋里装有6个白球,2个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)小亮和小丽将布袋中的白球取出5个,利用剩下的球进行摸球游戏,他们约定:先摸出1个球后不放回,再摸出1个球,若两个球中有红球则小亮胜,否则小丽胜,你认为这个游戏公平吗?请用列表或画树状图说明理由.【分析】(1)设布袋里红球有x个,根据“白球的概率为”可得关于x的分式方程,解之可得答案;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)设布袋里红球有x个,根据题意,得:=,解得:x=1,经检验:x=1是原分式方程的解,所以布袋里有1个红球;(2)列表如下:白黑黑红白(白,黑)(白,黑)(白,红)黑(黑,白)(黑,黑)(黑,红)黑(黑,白)(黑,黑)(黑,红)红(红,白)(红,黑)(红,黑)由表知,共有12种等可能结果,其中两个球中有红球的有6种情况,两个球中没有红球的有6种情况,∴P(小亮胜)=P(小丽胜)=,∴这个游戏公平.23.(6分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线;(2)若BC=6,CD=6,求弦AD的长.【分析】(1)连结OD,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;(2)由△CDB∽△CAD,可得,推出CD2=CB•CA,可得(6)2=3CA,推出CA=12,推出AB=CA﹣BC=6,,设BD=k,AD=2k,在Rt △ADB中,可得2k2+4k2=36,求出k即可解决问题.【解答】(1)证明:连接OD,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)解:连接BD.∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴,∴CD2=CB•CA,∴(6)2=3CA,∴CA=12,∴AB=CA﹣BC=6,,设BD=k,AD=2k,在Rt△ADB中,2k2+4k2=36,∴k=,∴AD=2.24.(8分)如图,在平面直角坐标系中,二次函数y=与x轴交A、B两点(点A在点B的左侧),经过点B的直线l与y轴交于点C,与抛物线的另一个交点为D,且CD=3BC.(1)求点B的坐标及直线l的函数表达式;(2)点E在y轴正半轴上,且ED=EC,求OE的长;(3)点F是抛物线上第一象限内的一点,以F为圆心的圆与直线l相切,切点为G,且以点D、F、G为顶点的三角形与△BOC相似,求点F的坐标.【分析】(1)把y=0代入解析式得出B的坐标,进而利用待定系数法得出直线的解析式即可;(2)过点D作DM⊥y轴,利用勾股定理解答即可;(3)(a)根据△FGD与△COB时,利用相似三角形的性质解答即可;(b)根据△DGF与△COB时,利用相似三角形的性质解答即可.【解答】解:(1)当y=0时,,∴x1=﹣2,x2=1,所以点B的坐标为(1,0),由CD=3BC可得:x D=﹣3,所以点D的坐标为(﹣3,2),设直线l:y=kx+b,把B,D代入得:,解得:,所以直线l的函数解析式为:y=﹣x+;(2)由(1)得:C(0,),设OE=m,则DE=EC=m﹣,过点D作DM⊥y轴,如图1,则DM=3,ME=m﹣2,由勾股定理,得,解得:m=,即OE=;(3)(a)如图2,当△FGD∽△COB时,∵∠FDG=∠CBO,∴DF∥x轴,∴y F=2,∴,解得:x1=2,x2=﹣3(舍去),∴F(2,2);(b)如图3,当△DGF∽△COB,∴∠FDG=∠ECO=∠BCO,∴ED=EC,由(2)得,F为直线DE与抛物线的另一个交点,设直线DE的解析式为:y=,把D(﹣3,2)代入,得:,解得:k=,所以y=,由,解得:,x2=﹣3(舍去),此时,所以点F的坐标为(,),综上所述,点F坐标为(2,2)或(,).25.(9分)如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若=,求的值;(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)【分析】(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE的度数;(2)根据题意,三角形相似、勾股定理可以求得的值;(3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k的式子表示出的值.【解答】解:(1)∵BC=OB=OC,∴∠COB=60°,∴∠CDB=∠COB=30°,∵OC=OD,点E为CD中点,∴OE⊥CD,∴∠GED=90°,∴∠DGE=60°;(2)过点F作FH⊥AB于点H设CF=1,则OF=2,OC=OB=3∵∠COB=60°∴OH==1,∴HF=OH=,HB=OB﹣OH=2,在Rt△BHF中,BF==,由OC=OB,∠COB=60°得:∠OCB=60°,又∵∠OGB=∠DGE=60°,∴∠OGB=∠OCB,∵∠OFG=∠CFB,∴△FGO∽△FCB,∴,∴GF=,∴;(3)过点F作FH⊥AB于点H,设OF=1,则CF=k,OB=OC=k+1,∵∠COB=60°,∴OH=,∴HF=,HB=OB﹣OH=k+,在Rt△BHF中,BF=,由(2)得:△FGO∽△FCB,∴,即,∴GO=,过点C作CP⊥BD于点P∵∠CDB=30°∴PC=CD,∵点E是CD中点,∴DE=CD,∴PC=DE,∵DE⊥OE,∴.1、三人行,必有我师。

2020-2021学年浙教版九年级数学第一学期期末测试题(附答案)

2020-2021学年浙教版九年级数学第一学期期末测试题(附答案)

2020-2021学年浙教版九年级数学第一学期期末测试题班级: _________ 姓名: _________ 成绩 _________一、选择题(每题3分,共30分)1.抛物线y = (x+1)2 + 2的顶点是()A.(1,2)B.( - 1,2)C.( - 1, - 2)D.(1, - 2)2.在一个布袋里装有6个白球、2个红球、4个黑球,它们除颜色外没有任何区别,从袋中随机取出1个球,取出的为红球的概率是()A.12B.14C.13D.163.如图所示,⊙O是△ABC的外接圆,若∠AOB = 110°,则∠ACB的度数为()A.55°B.70°C.125°D.110°(第3题)(第6题)(第7题)4.正五边形需要旋转一定角度后才能与自身重合,这个角度可以为()A.36°B.45°C.60°D.72°5.将抛物线y = x2 - 1向下平移8个单位后与x轴的两个交点之间的距离为()A.4B.6C.8D.106.如图所示,在△ABC中,点D,E分别在边AC,BC上,则下列条件中,不一定能判定△ABC∽△EDC的为()A.∠CDE = ∠BB.∠DEC = ∠AC.CDEC =CBAC D.CDBC =DEBE7.已知二次函数的图象(0≤x≤4)如图所示,下列关于该二次函数的说法,正确的是()A.有最大值2,有最小值 - 2.5B.有最大值2,有最小值1.5C.有最大值1.5,有最小值 - 2.5D.有最大值2,无最小值(第8题) (第9题) (第10题)8.如图所示,有一块直角三角形余料ABC ,∠BAC = 90°,D 是AC 的中点,现从中切出一条矩形纸条DEFG ,其中E ,F 在BC 上,点G 在AB 上,若BF = 4.5 cm ,CE = 2 cm ,则纸条GD 的长为( )A .3 cmB .213 cmC . 13 2 cmD . 13 3 cm9.如图所示,在平面直角坐标系中,直线AB (y = x + b )与x 轴交于点P (x ,0),若直线AB 与以原点O 为圆心,3为半径的半圆弧有公共点,则x 的取值范围是( )A . - 3≤x ≤32B . - 3≤x ≤3C . - 32≤x ≤3D .0≤x ≤3210.如图所示,点A ,B ,C 均在坐标轴上,AO = BO = CO = 1,过点A ,O ,C 作⊙D ,E 是⊙D 上任意一点,连结CE ,BE ,则CE 2 + BE 2 的最大值是( )A .4B .5C .6D .4 + 2二、填空题(每题4分,共24分)11.若2a = 3b ,则a :b = _________ .12.一个不透明的口袋里有大小、质地相同的红、绿、黄三种颜色的小球,其中有4个红球,5个绿球,若任意摸出一个球,是绿球的概率为 1 3 ,则口袋里有 _________ 个黄球.13.已知一个半径为4的扇形的面积为12π,则此扇形的圆心角度数为 _________ .14.如图所示,在△ABC 中,∠CAB = 65°,在同一平面内,将△ABC 绕点A 逆时针旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠B ′AB = _________ .15.如图所示,M ,N 分别是正五边形ABCDE 的边AB ,AE 的中点,四边形MNHG 是位于该正五边形内的正方形,则∠BMH 的度数是 _________ .16.已知关于x 的二次函数y = ax 2 + (a 2 - 1)x - a 的图象与x 轴的一个交点的坐标为(m ,0),若3 < m < 4,则a 的取值范围是 _________ .三、解答题(共66分)17.(6分)如图所示,在△ABC中,BC = 63 cm,AB = AC,∠BAC = 120°.(1)尺规作图:作△ABC的外接圆.(不写作法,保留作图痕迹)(2)求它的外接圆半径.18.(8分)如图所示,一个转盘被分成3等份,每一份上各写有一个数字,随机转动转盘2次第一次转到的数字为十位数字,第二次转到的数字为个位数字,2次转动后组成一个两位(若指针停在公共边上则重新转一次).(1)用画树状图的方法列出转动后所有可能出现的两位数.(2)甲、乙两人做游戏,约定得到的两位数是偶数时甲胜,否则乙胜.这个游戏公平吗?请说明理由.19.(8分)如图所示,在△ABC中,D,E分别是AB,AC上的点,AB = 4,AB = 6,AD:AC = 2:3,△ABC的角平分线AF交DE于点G,交BC于点F.(1)请写出图中所有的相似三角形.(2)求AG与GF的比.⌒的中点,CE⊥AB于点E,BD交CE于点F. 20.(10分)如图所示,AB是⊙O的直径,C是BD(1)求证:CF = BF.(2)若CD = 5,AC = 12,求⊙O的半径和CE的长.21.(10分)某商场代理销售某种空气净化器,其进价是500元/台,经过市场销售后发现,在一个月内,当售价是1000元/台时,可售出50台,且售价每降低20元,就可多售出5台.已知供货商规定这种空气净化器售价不能低于600元/台,代理销售商每月要完成不低于60台的销售任务.(1)试确定月销售量y(台)关于售价x(元/台)的函数表达式,并求出自变量x的取值范围.(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?22.(12分)如图所示,已知点A,B,C,M在同一条直线上,P为直线AB外一点,连结PA,PB,PC,PM,若PA2:PC2= AB:BC.则称PB为AC边上的“平方比线”.(1)当AB = 6,AC = 8,PA = 215,PC = 25时,试说明PB为AC边上的“平方比线”.(2)当AB = 6.AC = 8.CM = 4,PM = 43时.①若∠A = 25°.求∠CPM的度数.②求证:PB为AC边上的“平方比线”.23.(12分)在平面直角坐标系中,O为原点,已知抛物线y = 12x2 + bx + c经过点A(0, - 2)和点B(2, - 2),且点C,B关于原点对称.(1)求b,c的值,并判断点C是否在此抛物线上.(2)若P为此抛物线上一点,它关于x轴、y轴的对称点分别为点M,N,问是否存在这样的点P 使得M,N恰好都在直线BC上?若存在,求出点P的坐标;若不存在,请说明理由.(3)若点P与点Q关于原点对称,当点P在位于直线BC下方的抛物线上运动时,求四边形PBQC面积的最大值.1、三人行,必有我师。

浙教版2020-2021学年九年级上册数学期末复习试题1(含答案)

浙教版2020-2021学年九年级上册数学期末复习试题1(含答案)

浙教新版2020-2021学年九年级上册数学期末复习试题1 一.选择题(共10小题,满分40分,每小题4分)1.已知A(m,2020),B(m+n,2020)是抛物线y=﹣(x﹣h)2+2036上两点,则正数n=()A.2B.4C.8D.162.如图所示的是正十二角形体,因为其独特的对称美,所以2019年在英国举办的第60界国际数学奥林匹克的会标,就选用了正十二角形体,若将它绕自身中心旋转一定角度后能与原图重合,则这个角度不可能是()A.60°B.90°C.120°D.180°3.如图,AB是⊙O的直径,CD是弦,点C,D在直径AB的两侧.若∠AOC:∠AOD:∠DOB=2:7:11,CD=4,则的长为()A.2πB.4πC.D.π4.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣25.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.6.已知点(﹣1,y1),(,y2),(2,y3)在函数y=ax2﹣2ax+a﹣2(a>0)的图象上,则将y1、y2、y3按由大到小的顺序排列是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y2>y1 7.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①②B.②③C.①③D.②④8.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1B.=﹣1C.=+2D.=﹣29.如图,△ABC的三个顶点坐标分别为A(1,2),B(4,2),C(4,4),若反比例函数y=在第一象限内的图象与△ABC有交点,则实数k的取值范围是()A.2≤k≤16B.2≤k≤8C.1≤k≤4D.8≤k≤16 10.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.某学校食堂为了了解服务质量,随机调查了来食堂就餐的200名学生,调查的结果如图所示,根据图中给出的信息,这200名学生中对该食堂的服务质表示不满意的有人.12.若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为.13.某市民广场有一个直径16米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物OA的顶端A处汇合,水柱离中心3米处达最高5米,如图所示建立直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的他站立时必须在离水池中心O米以内.14.一面墙上有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图,若矩形的高为2m,宽为m,则要打掉墙体的面积为m2.15.如图是一株美丽的勾股树.所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为7cm,则正方形A、B、C、D的面积的和是.16.如图,平行四边形ABCD中,∠A=60°,.以A为圆心,AB为半径画弧,交AD于点E,以D为圆心,DE为半径画弧,交CD于点F.若用扇形ABE围成一个圆维的侧面,记这个圆锥的底面半径为r1;若用扇形DEF围成另一个圆锥的侧面,记这个圆锥的底面半径为r2与,则的值为.三.解答题(共8小题,满分80分,每小题10分)17.(1)解方程:(x﹣2)x=2x﹣1.(2)计算:|﹣|+×+()﹣1﹣(﹣)0.18.如图,在▱ABCD中,AE、CF分别平分∠BAD、∠BCD.求证:(1)AE=CF;(2)AE∥CF.19.目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度,在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2位家长来自相同班级的概率.温馨提示:初三(1)班两名家长用A1,A2表示;初三(2)班两名家长用B1,B2表示.20.如图,下列网格由小正方形组成,点A,B,C都在正方形网格的格点上.(1)在图1中画出一个以线段BC为边,且与△ABC面积相等但不全等的格点三角形;(2)在图2和图3中分别画出一个以线段AB为边,且与△ABC相似(但不全等)的格点三角形,并写出所画三角形与△ABC的相似比.(相同的相似比算一种)21.如图,Rt△ABC中,∠C=90°,AB=4,在BC上取一点D,连结AD,作△ACD 的外接圆⊙O,交A B于点E.张老师要求添加条件后,编制一道题目,并解答.(1)小明编制题目是:若AD=BD,求证:AE=BE.请你解答.(2)在小明添加条件的基础上请你再添加一条线段的长度,编制一个计算题(不标注新的字母),并直接给出答案.(根据编出的问题层次,给不同的得分)22.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.23.阿静家在新建的楼房旁围成一个矩形花圃,花圃的一边利用20米长的院墙,另三边用总长为32米的离笆恰好围成.如图,设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)当x为何值时,S有最大值?并求出最大值.24.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,垂足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵A(m,2020),B(m+n,2020)是抛物线y=﹣(x﹣h)2+2036上两点,∴2020=﹣(x﹣h)2+2036,解得x1=h﹣4,x2=h+4,∴A(h﹣4,2020),B(h+4,2020),∵m=h﹣4,m+n=h+4,∴n=8,故选:C.2.解:∵正十二角形体的中心角为30°,∴观察图象可知,旋转角是30°的偶数倍数时,可以与本身重合,故选:B.3.解:∵∠AOC:∠AOD:∠DOB=2:7:11,∠AOD+∠DOB=180°,∴∠AOD=×180°=70°,∠DOB=110°,∠COA=20°,∴∠COD=∠COA+∠AOD=90°,∵OD=OC,CD=4,∴2OD2=42,∴OD=2,∴的长是==,故选:D.4.解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,﹣2),所以所得抛物线解析式为:y=﹣(x+1)2﹣2.故选:B.5.解:由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:第一次选择,它有3种路径;第二次选择,每次又都有2种路径;两次共6种等可能结果,其中获得食物的有2种结果,∴获得食物的概率是=,故选:C.6.解:∵y=ax2﹣2ax+a﹣2=a(x﹣1)2﹣2(a>0),∴图象的开口向上,对称轴是直线x=1,∵点(﹣1,y1)到对称轴的距离最大,点(,y2)到对称轴的距离最小,∴y1>y3>y2,故选:B.7.解:∵①中的三角形的三边分别是:2,,,②中的三角形的三边分别是:3,,,③中的三角形的三边分别是:2,2,2,④中的三角形的三边分别是:3,,4,∵①与③中的三角形的三边的比为:1:,∴①与③相似.故选:C.8.解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:=+1.故选:A.9.解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选:A.10.解:如图,连接BF,取BF的中点O,连接OE,OC.∵四边形ABCD是矩形,EF⊥BE,∴∠BEF=∠BCF=90°,AB=CD=3,BC=AD=5,∵OB=OF,∴OE=OB=OF=OC,∴B,C,F,E四点共圆,∴∠EBF=∠ECF,∴tan∠EBF=tan∠ACD,∴==,故选:B.二.填空题(共6小题,满分30分,每小题5分)11.解:因为200名学生中对该食堂的服务质量表示不满意占总体的百分比为:1﹣46%﹣38%﹣9%=7%,所以200名学生中对该食堂的服务质量表示很满意有:200×7%=14(人).故答案为:14.12.解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.13.解:设OA右侧的抛物线的解析式为y=a(x﹣3)2+5,∵某市民广场有一个直径16米的圆形喷水池,∴该抛物线过点(8,0),∴0=a(8﹣3)2+5,得a=﹣,∴OA 右侧的抛物线的解析式为y =﹣(x ﹣3)2+5=x 2++,当y =1.8时,1.8=﹣(x ﹣3)2+5,得x 1=7,x 2=﹣1,∵各方向喷出的水柱恰好在喷水池中心的装饰物OA 的顶端A 处汇合,点A 的坐标为(0,),∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心O 7米以内, 故答案为:7.14.解:如图,连结AD 、BC 交于O ,∵∠BDC =90°,∴BC 是直径,∴BC ===, ∴OA =OB =AB =, ∴△AOB 是正三角形,∴∠AOB =60°,∠AOC =120°,∴S △AOB =,S △AOC =,∴S =2(S 扇形OAC ﹣S △AOC )+S 扇形OAB ﹣S △AOB=2[﹣]+[﹣]=π﹣,∴打掉墙体面积为(π﹣)平方米, 故答案为:(π﹣).15.解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故答案为49cm2.16.解:设AD=3k,AB=2k,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=60°,∴∠D=120°,∴的长===2πr1,可得r1=,∴的长===2πr2,可得r2=,∴=1,故答案为1.三.解答题(共8小题,满分80分,每小题10分)17.解:(1)(x﹣2)x=2x﹣1x2﹣2x﹣2x=﹣1,则x2﹣4x=﹣1,x2﹣4x+4=3,(x﹣2)2=3,则x﹣2=±,解得:x1=2+,x2=2﹣;(2)|﹣|+×+()﹣1﹣(﹣)0=+2+2﹣1=3+1.18.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAD=∠DCB,∴∠ADE=∠CBF,∵AE、CF分别平分∠BAD、∠BCD,∴∠DAE=∠DAB,∠BCF=∠DCB,∴∠DAE=∠BCF,∴△ADE≌△CBF(ASA),∴AE=CF.(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∴AE∥CF.19.解:画树状图如下:共有12种等可能结果,其中2人来自相同班级的共有4种,所以2人来自相同班级的概率为=.20.解:(1)如图所示,△BCD即为所求.(2)如图所示,△ABE和△ABF即为所求,相似比;相似比.21.(1)证明:连结DE,∵∠C=90°,∴AD为直径,∴DE⊥AB,∵AD=BD,∴AE=BE;(2)答案不唯一.①第一层次:若AC=4,求BC的长.答案:BC=8;②第二层次:若CD=3,求BD的长.答案:BD=5;③第三层次:若CD=3,求AC的长.设BD=x,∵∠B=∠B,∠C=∠DEB=90°,∴△ABC~△DBE,∴=,∴=,∴x=5,∴AD=BD=5,∴AC==4.22.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当A B是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).23.解:(1)由题意可得,S=x(32﹣2x)=﹣2x2+32x,∵,解得,6≤x<16,即S与x之间的函数关系式是S=﹣2x2+32x(6≤x<16);(2)∵S=﹣2x2+32x=﹣2(x﹣8)2+128,∴当x=8时,S有最大值,最大值是128平方米.24.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,=2,∴∠APB=90°,∠AOP=×180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=8×=4,在Rt △CFB 中,BF ====CF , ∵PB =PF +BF ,∴PB =CF +BF ,即:4=CF +CF ,解得:CF =6﹣2; (3)①∵AB 为⊙O 的直径,∴∠ACB =∠ADB =90°,∵CA =CB ,∴∠ADC =∠BDC ,同(1)得:四边形DEPF 是正方形,∴PE =PF ,∠APE +∠BPF =90°,∠PEA =∠PFB =90°,∴将△APE 绕点P 逆时针旋转90°,得到△A ′PF ,PA ′=PA ,如图3所示: 则A ′、F 、B 三点共线,∠APE =∠A ′PF ,∴∠A ′PF +∠BPF =90°,即∠A ′PB =90°,∴S △PAE +S △PBF =S △PA ′B =PA ′•PB =x (70﹣x ),在Rt △ACB 中,AC =BC =AB =×70=35, ∴S △ACB =AC 2=×(35)2=1225,∴y =S △PA ′B +S △ACB =x (70﹣x )+1225=﹣x 2+35x +1225;②当AP =30时,A ′P =30,PB =AB ﹣AP =70﹣30=40,在Rt △A ′PB 中,由勾股定理得:A ′B ===50,∵S △A ′PB =A ′B •PF =PB •A ′P ,∴×50×PF =×40×30,解得:PF =24,∴S 四边形PEDF =PF 2=242=576(m 2),∴当AP =30m 时.室内活动区(四边形PEDF )的面积为576m 2.。

2020-2021学年浙教版初三数学第一学期期末试卷(含答案)

2020-2021学年浙教版初三数学第一学期期末试卷(含答案)

2020-2021学年初三数学第一学期期末试卷考生须知:1.本试卷满分120分, 考试时间100分钟. 2.答题前, 在答题纸上写姓名和准考证号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效,答题方式详见答题纸上的说明,考试结束后,上交答题纸.一、选择题(本题有10个小题, 每小题3分, 共30分) 1.已知34(0)x y x =≠,则下列比例式成立的是( ) A.34x y= B.34y x = C.34x y = D. 34x y =2.抛物线223y x =-的顶点坐标是( )A.(0,3)-B.(3,0)-C.3(,0)4-D.3(0,)4-3. 小红抛掷一枚质地均匀的骰子,骰子六个面分别刻有1到6的点数,下列事件为必然事件的是( )A.骰子向上一面的点数为偶数B.骰子向上一面的点数为3C.骰子向上一面的点数小于7D.骰子向上一面的点数为64.如图,ABC ∆中,°90,5,4C AB AC ∠===,且点,D E 分别是,AC AB 的中点,若作半径为3的⊙C ,则下列选项中的点在⊙C 外的是( )A.点BB.点DC.点ED.点A5.如图,在正方形网格中,ABC ∆∽EDF ∆,则BAC ∠的度数是( )A.°105B.°115C.°125D.°135 6.把抛物线233y x =-向左移动3个单位得到抛物线表达式为( )A.23(3)3y x =+- B.23(3)3y x =-- C.23y x = D.236y x =- 7.若四边形ABCD 是⊙O 的内接四边形,且::1:3:8A B C ∠∠∠=,则D ∠=( ) A.°10 B.°30 C.°80 D.°1208.已知一个正多边形的一个外角为锐角,且其余弦值为22,那么它是正( )边形. A.六 B.八 C.十 D.十二9.如图,在ABC ∆中,8BC =,高6AD =,点,E F 分别在,AB AC 上,点,G H 在BC 上, 当四边形EFGH 是矩形,且2EF EH =时,则矩形EFGH 的周长为( ) A.245 B.365 C.725D.2882510.如图,半径为5的⊙A 中,弦,BC ED 所对的圆心角分别是,BAC EAD ∠∠,已知6DE = °180BAC EAD ∠+∠=,则ABC ∆的面积为( )A.12B.15C.18D.24 二、填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. °sin30= .12.二次函数2253y x kx =--的图象经过点(2,10)M -,则k = . 13. 不透明布袋里有5个红球,4个白球,往布袋里再放入x 个红球,y 个白球,若从布袋里摸出白球的概率为13,则y 与x 之间的关系式是 . 14.如图,在⊙O 内有折线DABC ,点,B C 在⊙O 上,DA 过圆心O ,其中8,12,OA AB ==,°60A B ∠=∠=则BC = .15.如图,AB 是⊙O 的直径,且6AB =,弦CD AB ⊥交AB 于点P ,直线,AC DB 交于点E ,若:1:2AC CE =,则OP = .16.当13x -≤≤时,二次函数22()1y x m m =--+-可取到的最大值为3,则m = . 三、解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本题满分6分)如图,在ABC ∆中,°,30AC BC ABC ⊥∠=,点D 是CB 延长线上一点,且BD BA =, 求tan ADC ∠的值.18.(本题满分8分)某校垃圾分类“督察部”从4名学生会干部(2男2女)随机选取2名学生会干部进行督查,请用枚举、列表或画树状图的方法求出恰好选中两名男生的概率. 19.(本题满分8分) 已知菱形的两条对角线长度之和为40厘米,面积S (单位:2cm )随其中一条对角线的长x (单位:cm )的变化而变化.(1)请直接写出S 与x 之间的函数关系式,并写出自变量x 的取值范围. (2)当x 取何值时,菱形的面积最大.最大面积是多少?20.(本题满分10分)如图,有一直径是20厘米的圆型纸片,现从中剪出一个圆心角是°90的扇形ABC . (1)求剪出的扇形ABC 的周长. (2)求被剪掉的阴影部分的面积.21.(本题满分10分)如图,在ABC ∆中,AB AC =,点D 为BC 的中点,经过,A D 两点的圆分别与,AB AC 交于点,E F ,连接,DE DF . (1)求证:DE DF =(2)求证:以线段,,BE CF BD DC +为边围成的三角形与ABC ∆相似.22.(本题满分12分)已知函数2(21)2(0)y mx m x m =-++≠,请判断下列结论是否正确,并说明理由. (1)当0m <时,函数2(21)2y mx m x =-++在1x >时,y 随x 的增大而减小. (2)当0m >时,函数2(21)2y mx m x =-++图象截x 轴上的线段长度小于2.23.(本题满分12分)如图,在矩形ABCD 中,3,4AB BC ==,点E 是线段AC 上的一个动点,且(01)AEk k AC=<<,点F 在线段BC 上,且DEFH 为矩形;过点E 作MN BC ⊥,分别交,AD BC 于点,M N .(1)求证:MED ∆∽NFE ∆ (2)当EF FC =时,求k 的值.(3)当矩形EFHD 的面积最小时,求k 的值,并求出矩形EFHD 面积的最小值.参考答案及评分建议一、选择题(每小题3分,共30分):题号 1 2 3 4 5 6 7 8 9 10 答案BACDDADBCA二、填空题(每小题4分,共24分):11.12 2.1213.230x y --= 14. 20 15. 1 16. 2m =或52m =-(全对4分,有对有错给2分,全错0分)三、解答题: 17.(6分)解:°30ABC ∠=132AC AB BC AB ∴==………4分AC BC ⊥且D 是CB 延长线上一点12tan 233322AB ACADC BC BDAB AB ∴∠====-+++…………2分 18.解:男1 男2 女1 女2 男1 男1男2 男1女1 男1女2 男2 男2男1 男2女1 男2女2 女1 女1男1 女1男2 女1女2 女2女2男1女2男2女2女1…………………………………………………………6分所求概率为16P =……………………………………………2分19.(8分)解:(1)1(40)(040)2S x x x =-<<………………………4分 (2)221120(20)20022S x x x =-+=--+所以当20x =时,菱形面积最大,最大值为2002cm ………………4分20.(10分)解:(1)连接BC°90BAC ∠= BC ∴为直径,且20BC =………4分102AB AC ∴== 90210252360BC l ππ=⨯⨯=弧 扇形ABC 的周长为202+52π……………………………2分 (2)由(1)可知 102AB AC ==290=2=50360S ππ⨯扇形ABC (10)………………………2 220=-50=502S πππ阴影()………………………………2分21.(10分)解:(1)连接ADAB AC =,D 为BC 中点 BAD CAD ∴∠=∠DE DF ∴=……………………4分(2)在线段BA 上截取EH CF =AEDF 四边形是圆内接四边形°180AED AFD ∴∠+∠=DFC DEH ∴∠=∠DFC DEH ∴∆≅∆………………………3分 DC DH ∴=B BHDC ∴∠=∠=∠∴以线段,,BE CF BD DC +为边围成的三角形与ABC ∆相似.………………3分 22.(12分)解:(1)正确……………………………………………2分函数2(21)2(0)y mx m x m =-++≠的对称轴为 211122m x m m+==+………………………………………2分 0m < 1112x m∴=+< ∴当0m <时,函数2(21)2y mx m x =-++在1x >时,y 随x 的增大而减小……………………………………………………………2分(2)不正确…………………………………………2分令0y =,记在x 轴上截得线段长为l解得:2212(21)(21)(21)(21),m m m m x x ++-+--==……………2分 当1221122m l x x m m -=-==-<时,14m <…………………………2分 (取0到14之间的一个特殊值验证也给满分)23.(12分)(1)证明:四边形ABCD 为矩形 AD ∴∥BC MN BC ⊥ MN AD ∴⊥ EMD FNE ∴∠=∠又四边形DEFH 为矩形 °90MED NEF ∴∠+∠=NEF MDE ∴∠=∠MED ∴∆∽NFE ∆ ………………………4分(2)设AM x =,则4MD NC x ==-tan tan ME DC DAC MAE AM AD ∠=∠==34ME x ∴= 334NE x ∴=-MED ∆∽NFE ∆ NF ENME MD∴=916NF x ∴=25416FC xEF ∴=-=当EF FC =时解得:4x =或2825x = 由题意可知4x =不合题意. 当2825x =时,75AE = 所以725AE k AC ==……………………………………………………4分 (3)由(1)可知DE MEEF NF =所以43DE EF =2224439(3)()33416EFHD S DE EF EF x x ⎡⎤∴===-+⎢⎥⎣⎦矩形 当6425x =时,矩形面积最小; 此时1625AE k AC == 最小值为:10825……………………………………………………4分1、三人行,必有我师。

2020-2021学年浙教 版九年级上册数学期末复习试卷1(有答案)

2020-2021学年浙教 版九年级上册数学期末复习试卷1(有答案)

2020-2021学年浙教新版九年级上册数学期末复习试卷1 一.选择题(共10小题,满分30分,每小题3分)1.cos30°的值是()A.1B.C.D.2.若2b=3a,则=()A.6B.2C.D.3.用放大镜观察一个五边形时,不变的量是()A.各边的长度B.各内角的度数C.五边形的周长D.五边形的面积4.若一个正方形的周长为24,则该正方形的边心距为()A.2B.3C.3D.25.有40个数据,其中最大值为36,最小值为12,若取组距为4,则应分为()A.4组B.5组C.6组D.7组6.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°7.如果A(﹣2,n),B(2,n),C(4,n+12)这三个点都在同一个函数的图象上,那么这个函数的解析式可能是()A.y=2x B.y=﹣C.y=﹣x2D.y=x28.如图,AB∥CD,AD与BC相交于点O,,AD=10,则OA的长为()A.3B.4C.5D.69.已知关于x的一元二次方程(m﹣1)2x2+(2m﹣1)x+1=0有两个不相等的实数根,则m的取值范围是()A.m>B.m≥C.m>且m≠1D.m≥且m≠1 10.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE =2,连结CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是;③△ADF与△EBF的面积比为3:2;④△ABF的面积为,其中一定成立的个数为()A.1B.2C.3D.4二.填空题(共6小题,满分24分,每小题4分)11.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.12.如图,AB,B C为⊙O中异于直径的两条弦,OA交BC于点D,若∠AOC=50°,∠C =35°,则∠A的度数为.13.二次函数的顶点式:y=a(x﹣h)2+k,则对称轴为:最值为:.14.在四边形ABCD中,∠ABC=90°,DB=DC,tan∠DBC=,∠DAC=2∠ACB,AD =,则线段CD=.15.如图,在Rt△ABC中,∠ABC=90°,BC=4,AB=6,在线段AB上有一点M,且BM =2,在线段AC上有一动点N,连接MN,BN,将△BMN沿BN翻折得到△BM′N,连接AM′,CM′,则2CM′+AM′的最小值为.16.已知⊙O的半径长为2,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.若S△AOD 是S△AOB和S△COD的比例中项,则OD的长为.三.解答题(共7小题,满分66分)17.为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30°方向,C在A的南偏西15°方向(30+30)km处.学生分成两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是40km/h,第二组乘公交车,速度是30km/h,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).18.有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上放在桌面上,小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?19.网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.20.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P,Q是△ABC边上的两个动点,点P从点A开始沿A→B方向运动,且速度为1cm/s,点Q从点B开始沿B→C→A方向运动,且速度为2cm/s,它们同时出发,设运动的时间为ts.(1)当t=2时,PQ=.(2)求运动几秒时,△APC是等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.(直接写答案)21.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.22.如图,抛物线L:y=a(x﹣1)(x﹣5)与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,且OB=OC.点P(m,n)为抛物线L的对称轴右侧图象上的一点(1)a的值为;抛物线的顶点坐标为;(2)设抛物线L在点C和点P之间部分(含点C和点P)的最高点与最低点的纵坐标之差为h,求h关于m的函数表达式,并写出自变量m的取值范围;(3)当点P(m,n)的坐标满足:m+n=19时,连接PC,PB,AC,若M为线段PC 上一点,且BM分四边形ABPC的面积为相等两部分,求点M的坐标.23.在矩形ABCD中,AB=a,AD=b,点E为对角线AC上一点,连接DE,以DE为边,作矩形DEFG,点F在边BC上;(1)观察猜想:如图1,当a=b时,=,∠ACG=;(2)类比探究:如图2,当a≠b时,求的值(用含a、b的式子表示)及∠ACG的度数;(3)拓展应用:如图3,当a=6,b=8,且DF⊥AC,垂足为H,求CG的长.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:cos30°=.故选:B.2.解:∵2b=3a,∴=,故选:D.3.解:∵用一个放大镜去观察一个五边形,∴放大后的五边形与原五边形相似,∵相似五边形的对应边成比例,∴各边长都变大,故A选项错误;∵相似五边形的对应角相等,∴对应角大小不变,故选项B正确;∵相似五边形的周长得比等于相似比,∴C选项错误.∵相似五边形的面积比等于相似比的平方,∴D选项错误;故选:B.4.解:∵一个正方形的周长为24,∴正方形的边长为6,由中心角只有四个可得出360°÷4=90°,∴中心角是:90°,∴边心距是边长的一半,为3,故选:B.5.解:(36﹣12)÷4=6,为使数据统计更客观,一般分组的起始数据、结束时间均要比最大值大一些,比最小值小一些,故分为7组比较合适,故选:D.6.解:∵∠AOC=140°,∴∠BOC=40°,∵∠BOC与∠BDC都对,∴∠D=∠BOC=20°,故选:A.7.解:∵A(﹣2,n),B(2,n),C(4,n+12)这三个点都在同一个函数的图象上,∴A、B关于y轴对称,在y轴的右侧,y随x的增大而增大,A、对于函数y=2x,y随x的增大而增大,故不可能;B、对于函数y=﹣,图象位于二、四象限,每个象限内y随x的增大而增大,故不可能;C、对于函数y=﹣x2,对称轴为y轴,当x>0时,y随x的增大而减小,故不可能;D、对于函数y=x2,对称轴为y轴,当x>0时,y随x的增大而增大,故有可能;故选:D.8.解:∵AB∥CD,∴,即,解得,AO=4,故选:B.9.解:根据题意得m﹣1≠0且△=(2m﹣1)2﹣4(m﹣1)2>0,解得m>且m≠1.故选:C.10.解:∵四边形ABCD是菱形,AB=6,∴BC=AB=6,∵∠DAB=60°,∴AB=AD=DB=6,∠ABD=∠DBC=60°,在△ABF与△CBF中,,∴△ABF≌△CBF(SAS),故①成立;如图,过点E作EG⊥AB延长线于点G;过点F作MH⊥AB交AB,CD于点H,M,则由菱形的对边平行可得MH⊥CD,∵CE=2,BC=6,∠ABC=120°,∴BE=6﹣2=4,∠EBG=60°∵EG⊥AB,∴EG=4sin60°=4×=2,故②不成立;∵AD∥BE,∴△ADF∽△EBF,∴===,故③不成立;∵△ADF∽△EBF,∴==,∵DB=6,∴BF=,∴FH=BF•sin∠FBH=×sin60°=,=AB•FH=,故④成立.∴S△ABF综上一定成立的有①和④.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:共有球3+2=5个,白球有2个,因此摸出的球是白球的概率为:.故答案为:.12.解:∵∠AOC=50°,∴∠B=∠AOC=25°,∵∠ADB=∠CDO,∴∠A+∠B=∠AOC+∠C,∴∠A=50°+35°﹣25°=60°.故答案为60°.13.解:二次函数y=a(x﹣h)2+k的对称轴为:直线x=h,最值为:k,故答案为:直线x=h,k.14.解:过D作DH⊥BC于H交AC于G,连接BG,∴∠DHC=∠ABC=90°,∴AB∥DH,∵DB=DC,∴BH=CH,∴AG=CG,∴BG=CG=AG=AC,∴∠GBC=∠GCB,∵∠AGB=∠GBC+∠GCB,∴∠AGB=2∠ACB,∵∠DAC=2∠ACB,∴∠DAC=∠AGB,∴AD∥BG,∴四边形ABGD是平行四边形,∴AD=BG,AB=DG,∵AD=,∴BG=,∴AC=2,∵tan∠DBC==,∴设DH=3k,BH=2k,∴BC=4k,∵BH=CH,AG=CG,∴HG=AB=DG,∴AB=DG=2k,∵AB2+BC2=AC2,∴(2k)2+(4k)2=(2)2,∴k=,∴BH=2,DH=3,∴CD=BD==,故答案为:.15.解:如图,在BA上取一点T,使得BT=,连接TM′,TC.∵BM′=BM=2,BT=,BA=6,∴M′B2=BT•BA,∴=,∵∠ABM′=∠M′BT,∴△BAM′∽△BM′T,∴==,∴TM′=AM′,∵2CM′+AM′=2(CM′+AM′)=2(CM′+TM′),∵CM′+TM′≥CT,CT===,∴2CM′+AM′≥,∴2CM′+AM′的最小值为.故答案为.16.解:作OH⊥AC于H,设OD=x,在△AOB和△AOC中,,∴△AOB≌△AOC(SSS),∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD,∴==,∴==,解得:AD=,AB=,∵S△AOD 是S△AOB和S△COD的比例中项,且S△AOD=AD•OH,S△AOB=AC•OH,S△COD=CD•OH,∴AD2=AC•CD,∵AC=AB,CD=AC﹣AD=﹣,∴()2=•(﹣),整理得:x2+2x﹣4=0,解得:x=﹣1或x=﹣﹣1(舍弃),经检验:x=﹣1是分式方程的根,且符合题意,∴OD=﹣1.三.解答题(共7小题,满分66分)17.解:作BD⊥AC于D.依题意得,∠BAE=45°,∠ABC=105°,∠CAE=15°,∴∠BAC=30°,∴∠ACB=45°.在Rt△BCD中,∠BDC=90°,∠ACB=45°,∴∠CBD=45°,∴∠CBD=∠DCB,∴BD=CD,设BD=x,则CD=x,在Rt△ABD中,∠BAC=30°,∴AB=2BD=2x,tan30°=,∴,∴AD=x,在Rt△BDC中,∠BDC=90°,∠DCB=45°,∴sin∠DCB=,∴BC=x,∵CD+AD=30+30,∴x+,∴x=30,∴AB=2x=60,BC=,第一组用时:60÷40=1.5(h);第二组用时:30(h),∵<1.5,∴第二组先到达目的地,答:第一组用时1.5小时,第二组用时小时,第二组先到达目的地.18.解:列表如下:2015105 2035302515352520103025155252015由表格知,共有12种等可能结果,其中两次所获奖品总值不低于30元的有4种结果,∴小明两次所获奖品总值不低于30元的概率为=.19.解:(1)当y≥4000,即﹣100x+5000≥4000,∴x≤10,∴当6≤x≤10时,w=(x﹣6+1)(﹣100x+5000)﹣2000=﹣100x2+5500x﹣27000,当10<x≤30时,w=(x﹣6)(﹣100x+5000)﹣2000=﹣100x2+5600x﹣32000,综上所述:w=;(2)当6≤x≤10时,w=﹣100x2+5500x﹣27000=﹣100(x﹣)2+48625,∵a=﹣100<0,对称轴为x=,=18000元,∴当6≤x≤10时,y随x的增大而增大,即当x=10时,w最大值当10<x≤30时,w=﹣100x2+5600x﹣32000=﹣100(x﹣28)2+46400,∵a=﹣100<0,对称轴为x=28,∴当x=28时,w有最大值为46400元,∵46400>18000,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为46400元;(3)∵40000>18000,∴10<x≤30,∴w=﹣100x2+5600x﹣32000,当w=40000元时,40000=﹣100x2+5600x﹣32000,∴x1=20,x2=36,∴当20≤x≤36时,w≥40000,又∵10<x≤30,∴20≤x≤30,此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,∴对称轴为直线x=﹣=28+a,∵a<4,∴28+a<30,∴当x=28+a时,日获利的最大值为42100元∴(28+a﹣6﹣a)[﹣100×(28+a)+5000]﹣2000=42100,∴a1=2,a2=86,∵a<4,∴a=2.20.解:(1)当t=2时,则AP=2,BQ=2t=4,∵AB=8cm,∴BP=AB﹣AP=8﹣2=6(cm),在Rt△BPQ中,由勾股定理可得PQ===2(cm),即PQ的长为2cm.故答案是:2cm;(2)如图1,当PC=PA时,△APC是等腰三角形,此时PA=t=PC,则PB=8﹣t,在Rt△ABP中,由BC2+PB2=PC2得,62+(8﹣t)2=t2,解得,t=,答:运动秒时,△APC是等腰三角形;(3)①如图2,作BC的中垂线,交AC于点Q,此时QC=QB,则MC=MB=BC=3cm,MQ=AB=4cm,∴QC==5(cm),因此点Q运动的距离为6+5=11(cm),故需要的时间t=11÷2=5.5(s),②如图3,以点C为圆心,以CB为半径画弧,交AC于点Q,则CB=CQ=6,此时点Q运动的距离为6+6=12(cm),因此需要的时间为12÷2=6(s);③如图4,以点B为圆心,以CB为半径画弧,交AC于点Q,则BC=BQ=6cm,过点B作BN⊥AC,垂足为N,则,CN=NQ,∵∠BNC=∠ABC=90°,∠C=∠C,∴△BNC∽△ABC,∴=,即:=,解得,CN=3.6,∴CQ=2CN=7.2cm,此时点Q运动的距离为6+7.2=13.2(cm),因此需要的时间为13.2÷2=6.6(s);综上所述,当运动时间为5.5秒、6秒、6.6秒时,△BCQ成为等腰三角形.21.(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC﹣BE=12﹣BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,∴S△ABC =S△EFC=×20=45.22.解:(1)∵抛物线L:y=a(x﹣1)(x﹣5)与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,∴A(1,0),B(5,0),∵OB=OC,∴C(0,5),∵y=a(x﹣1)(x﹣5)=ax2﹣6ax+5a,∴5a=5,∴a=1,∴抛物线L为y=x2﹣6x+5,∵y=x2﹣6x+5=(x﹣3)2﹣4,∴抛物线的顶点为(3,﹣4),故答案为1,(3,﹣4);(2)由(1)可知:抛物线L的解析式为y=x2﹣6x+5,∴当y=5时,x2﹣6x+5=5,∴x1=0,x2=6,∴抛物线L的对称轴为直线x=3,当3≤m≤6时,点C是最高点,抛物线L的顶点是最低点,∴h=5﹣(﹣4)=9,当m>6时,点P是最高点,抛物线L的顶点是最低点,∴h=m2﹣6m+5+4=m2﹣6m+9;(3)∵点P(m,n)是抛物线y=x2﹣6x+5图象上的点.∴n=m2﹣6m+5.又∵m+n=19,∴n=﹣m+19.∴﹣m+19=m2﹣6m+5,即m2﹣5m﹣14=0.∴m1=7,m2=﹣2(舍).∴点P的坐标为(7,12).设直线PC的函数表达式为y=kx+b.∴,解得.∴y=x+5,设点M的坐标为(x,y),连接BM,OP,OM.∵S四边形ABMC =S四边形ABPC.∴S△OMC +S△OBM﹣S△OAC=(S△OPC+S△OBP﹣S△OAC)∴+=(﹣),解得x=,∴y=x+5=,∴点M的坐标为(,).23.解:(1)如图1,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵a=b,∴AB=AD,∴矩形ABCD是正方形,∴∠ACD=∠DAE=45°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE.∵四边形DEFG是矩形,∴矩形DEFG是正方形;∵四边形ABCD是正方形,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG.∠DAE=∠DCG=45°,∴=1,∠ACG=∠ACD+∠DCG=90°,故答案为:1;90°;(2)如图2,作EM⊥BC于M,EN⊥CD于N,则EM∥AB,EN∥AD,四边形EMCN是矩形,∴EM:AB=CE:AC,EN:AD=CE:AC,∠MEN=90°,∴EM:AB=EN:AD,∴==,∵四边形ABCD、四边形DEFG是矩形,∴∠ADC=∠DEF=∠EDG=90°,∴∠DEN=∠FEM,∠ADE=∠CDG,∵∠END=∠EMF=90°,∴△DEN∽△FEM,∴===,∴△ADE∽△CDG,∴==,∠DAE=∠DCG,∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC+∠DAE=90°,∴∠ACD+∠DCG=90°,即∠ACG=90°;(3)∵a=6,b=8,∴CD=AB=6,BC=AD=8,∴AC==10,∵DF⊥AC,∴DH===,∴CH===,∵∠FHC=∠B=90°,∠FCH=∠ACB,∴△CFH∽△CAB,∴=,即=,解得:FH=,∴DF=DH+FH=,由(2)得:===,设DE=4x,则EF=3x,∵∠DEF=90°,∴DF==5x=,∴x=,∴DE=4x=6=DC,∴EH=CH,∴CE=2CH=,∴AE=AC﹣CE=10﹣=,由(2)得:====,∴CG=AE=.。

(浙江杭州)2020-2021学年第一学期九年级期末测试-数学试题卷(浙教版)

(浙江杭州)2020-2021学年第一学期九年级期末测试-数学试题卷(浙教版)

试卷说明1.本试卷考核范围:浙教版九上全册、九下第1 章。

2.本试卷共6 页,满分120 分。

3.答题结束可扫描左侧二维码,查看习题视频解析及相关知识点讲解课程,并可查看同类题推送及创建电子错题本进行知识巩固。

4.2020-2021 学年第一学期九年级期末测试数学试题卷一、选择题:本大题有10 个小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a=2,那么a的值为()b 3 a +bA.1B.2C.3D.33 5 5 42.如图,在小正方形组成的网格中,△ABC 的顶点都是格点(网格线的交点),则tan∠ABC等于()A.5B.2 5C.1D.5 5 5 2 3第2 题图第4 题图第6 题图3.下列事件属于必然事件的是()A.随意翻到一本书的某页,这页的页码是奇数B.测量某天的最低气温,结果为-150 ℃C.把4 个球放到3 个抽屉里,其中有一个抽屉里至少有2 个球D.明天降雪4.如图,l1∥l2∥l3,AC、DF 交于点O,则下列比例式成立的是()A.AB=DEB.AC=DFC.AB=ADD.AB=AC BC EF BC DE AC CF BE DF5.用长为50 的竹竿围成一个长为x 的矩形,则该矩形的面积y 与x 的函数表达式为()A.y=x(50+x)(0<x<50) B.y=x(25+x)(0<x<25)C.y=x(50-x)(0<x<50) D.y=x(25-x)(0<x<25)6.如图,已知扇形BOD,DE⊥OB 于点E,若ED=OE=2,则阴影部分的面积为()A.2 2 - 2 B.π-2 C.π- D.π25 7. 如图,已知点 C 是线段 AB 的黄金分割点(AC >BC ),D 是线段 AC 的黄金分割点(AD >CD ),则 AD ∶AB =( )A .5 -1B .3 - 5 D . - 222第 7 题图 第 8 题图8. 如图,在离铁塔 a 米的 A 处,用测倾仪测得塔顶的仰角为 β,测倾仪高 AD 为 h 米,则铁塔的高 BC 为( )A .(h +a tan β)米B .( h + atan β )米 C .(h +a sin β)米 D .( h +a a sin β )米 9. 如图,在一块斜边长 30 cm 的直角三角形木板(Rt △ACB )上截取一个正方形 CDEF ,点 D在边 BC 上,点 E 在斜边 AB 上,点 F 在边 AC 上,若 AF ∶AC =1∶3,则这块木板截取正方形 CDEF 后,剩余部分的面积为( ) A .100 cm 2 B .150 cm 2C .170 cm 2D .200 cm 2第 9 题图 第 10 题图10. 二次函数 y 1=ax 2+bx +c (a ,b ,c 为常数)的图象如图所示,若 y 1+y 2=2,则下列关于函数y 2 的图象与性质描述正确的是( )A .函数 y 2 的图象开口向上B .函数 y 2 的图象与 x 轴没有公共点C .当 x =1 时,函数 y 2 的值小于 0D .当 x >2 时,y 2 随 x 的增大而减小二、填空题:本大题有 6 个小题,每小题 4 分,共 24 分. 11.如图,A ,B ,C ,D 是⊙O 上的四点,且∠C =100°,则∠A =°.12.计算:6cos 245°-2sin30°·tan60°=.C . 5 -113. 如图,有一个广告牌 OE ,小明站在距广告牌 10 米远的 A 处观察广告牌顶端,眼睛 B 距地面 1.5 米,他的正前方 5 米处有一堵墙 DC ,若墙高 DC 为 2 米,则广告牌 OE 的高度为 米.EAC O第 13 题图 第 15 题图 第 16 题图14. 已知二次函数 y =ax 2+bx +c (a <0)与一次函数 y =kx +1 的图象交于 A (-3,m ),B (1,n )两点 ,则关于 x 的不等式 ax 2+(b -k )x +c ≥1 的解集为 .15. 如图,在□ABCD 中,点 E 在 BC 上,AE 与 BD 相交于点 F ,若 BE = 2,则△ABF 与EC 3四边形 CDFE 的面积比= . 16. 如图,已知 BC 是⊙O 的直径,点 A 、D 在⊙O 上,DB ∥OA ,BC =10,AC =6,则 DB 的长为 . 三、解答题:本大题有 7 个小题,共 66 分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分 6 分)甲、乙两人从A 、B 、C 这三个景点中各随机选择一个景点游览. (1) 利用画树状图或列表的方法表示出所有可能的结果;(2) 求甲、乙两人选择的两个景点恰好相同的概率.18.(本题满分 8 分)如图,在△ABC 中,点 D ,E 分别在边 AB ,AC 上,∠AED =∠B ,线段AG 分别交线段 DE ,BC 于点 F ,G ,且 AD = DF.AC CG(1) 求证:△ADF ∽△ACG ;(2) 若 AD = 3 ,求 AF的值.AC 7 FGB D19.(本题满分8 分)某商场以每件30 元的价格购进一种商品,前期调查发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=150-3x.(1)请求出该商场卖出这种商品每天获得的销售利润y(元)与每件的销售价x(元)之间的函数关系式;(2)该商场每天销售这种商品获得的利润能否达到300 元?如果能,求出此时的销售价格;如果不能,请说明理由.20.(本题满分10 分)图1,2 分别是某种型号拉杆箱的实物图与示意图,滑杆DE,箱长BC,拉杆AB 的长度都相等,即DE=BC=AB=40 cm,B,F 在AC 上,C 在DE 上,且CE∶CD=1∶3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列问题:(1)求拉杆端点A 到水平滑杆ED 的距离;(结果保留根号)(2)求支杆DF 的长度.(结果保留根号)CF21.(本题满分 10 分)如图,在正五边形 ABCDE 中,对角线 AC 与 BE 交于点 F .(1) 求证:四边形 CDEF 为菱形;(2) 求四边形 CDEF 的面积与△ABE 的面积比;(3) 连结 AD ,DF ,求 sin ∠ADF 的值.DBEA22.(本题满分 12 分)已知二次函数 y =x (ax +b )+1.(1) 若该二次函数的图象过点(-1,6)和(4,1),求该二次函数的表达式; (2) 若 x >1 时 ax +b <0;若 x <1 时 ax +b >0.①求 a 和 b 之间的关系式;②求证:y ≤ax -a +1.23.(本题满分12 分)如图,△ABC 内接于半圆O,AB 为直径,点M 是的中点,连结BM 交AC 于点E,AD 平分∠CAB 交BM 于点D.(1)求证:∠MDA=45°;(2)若点D 恰好为BM 的中点.①求tan∠CBE 的值;②当AB 4 10 时,求CE 的长.。

2020-2021学年浙教 版九年级上册数学期末复习试卷

2020-2021学年浙教 版九年级上册数学期末复习试卷

2020-2021学年浙教新版九年级上册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.下列图形是中心对称图形的有几个?()A.1个B.2个C.3个D.4个2.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020B.﹣2020C.2019D.﹣20193.如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.掷一枚均匀的正六面体骰子,出现3点朝上4.如图,PA、P B分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=78°,则∠ACB的度数为()A.102°B.51°C.41°D.39°5.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1﹣x)2=461B.180(1+x)2=461C.368(1﹣x)2=442D.368(1+x)2=4426.如果圆锥的母线长为5cm,底面半径为4cm,那么这个圆锥的侧面积为()A.10cm2B.10πcm2C.20cm2D.20πcm27.如图,已知在平面直角坐标系xOy中,直线y=x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=(k>0,x>0),y2=(x<0)的图象于点C和点D,过点C作CE⊥x轴于点E,连结OC,OD,若△COE的面积与△DOB的面积相等,则k的值是()A.1B.C.2D.48.如图,在平面直角坐标系中,抛物线y=﹣(x+3)2+k经过坐标原点O,与x轴的另一个交点为A.过抛物线的顶点B分别作BC⊥x轴于点C、BD⊥y轴于点D,则图中阴影部分图形的面积和为()A.18B.12C.9D.69.如图,正方形ABCD的边长为4,点E在CD边上,DE=1,△ADE与△AFE关于AE 所在直线对称,将△ADE绕点A顺时针旋转90°得到△ABG,则FG的长为()A.5B.C.D.410.七年级五个班的班长因为参加校会而没有看年级的乒乓球比赛.年级辅导员让他们猜比赛的结果.1班班长猜:2班第三,3班第五;2班班长猜:1班第一,5班第四;3班班长猜:5班第四,4班第五;4班班长猜:3班第一,2班第二;5班班长猜:1班第三,4班第四.辅导员说,每班的名次都至少被一人说对,那么1~5班的名次依次是()A.1、2、3、4、5B.3、2、1、5、4C.1、3、2、5、4D.3、2、1、4、5二.填空题(共6小题,满分30分,每小题5分)11.如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是.12.在△ABC中,∠C=90°,AC=BC,将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,连结C′B、BB′.若AC=2,则BC′=.13.已知实数x满足(x2﹣x)2﹣2(x2﹣x)﹣3=0,则代数式x2﹣x+2020的值为.14.一只不透明的袋子里装有4个黑球,2个白球.每个球除颜色外都相同,则事件“从中任意模出1个球,是黑球”的事件类型是(填“随机事件”“不可能事件”或“必然事件”).15.如图,△ABC为等边三角形,D为AB上一点,点E为CD延长线上一点,CE=CB,连接BE并延长交CA的延长线于点F,若AD=3,CF=7,则CD=.16.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.因为上游水库泄洪,水面宽度变为6m,则水面上涨的高度为m.三.解答题(共8小题,满分80分)17.已知二次函数y=x2﹣2x+1,求3≤x≤5范围内y的最小值.18.有A、B两个口袋,A口袋中装有两个分别标有数字2,3的小球;B口袋中装有三个分别标有数字﹣1,4,﹣5的小球.小明先从A口袋中随机取出一个小球,用m表示所取球上的数字,再从B口袋中随机取出两个小球,用n表示所取球上的数字之和.(1)用树状图法或列表法表示小明所取出的三个小球的所有可能结果;(2)求的值是整数的概率.19.如图,在Rt△ABC中,∠C=90°,∠B=30°.(1)用直尺和圆规作⊙O,使圆心O在BC边,且⊙O经过A,B两点(不写作法,保留作图痕迹);(2)连接AO,求证:AO平分∠CAB.20.某地区2018年投入教育经费2000万元,2020年投入教育经费2880万元.(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2021年该地区将投入教育经费多少万元.21.在⊙O中,直径AB⊥弦CD于点F,点E是弧AD上一点,连BE交CD于点N,点P 在CD的延长线上,PN=PE.(1)求证:PE是⊙O的切线;(2)连接DE,若DE∥AB,OF=3,BF=2,求PN的长.22.如图,在同一平面直角坐标系中,直线y=x+2和双曲线y=相交于A、B两点.(1)连结AO、BO,求出△AOB的面积.(2)已知点E在双曲线y=上且横坐标为1,作EF垂直于x轴垂足为F,点H是x 轴上一点,连结EH交双曲线于点I,连结IF并延长交y轴于点G,若点G坐标为(0,﹣),请求出H点的坐标.(3)已知点M在x轴上,点N是平面内一点,以点O、E、M、N为顶点的四边形是菱形,请你直接写出N点的坐标.23.在平面直角坐标系xOy中,抛物线y=mx2﹣8mx+16m﹣1(m>0).(1)求证:抛物线总与x轴有两个不同的交点;(2)若抛物线与x轴的交点分别为A(x1,0),B(x2,0)且AB=2,求此抛物线的解析式;(3)已知x轴上两点C(2,0),D(5,0),若抛物线y=mx2﹣8mx+16m﹣1(m>0)与线段CD有交点,请写出m的取值范围.24.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,交y轴于点A,以AC为直角边作等腰Rt△ACD,连接BD分别交y轴和AC于E、F两点,连接AB.(1)求证:AB=AD;(2)若BF=4,DF=6,求线段CD的长;(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:从左到右第一、第二、第三个图形是中心对称图形,第四个图形不是中心对称图形.故选:C.2.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a2﹣1=a,﹣a2+a=﹣1,∴﹣a3+2a+2020=﹣a(a2﹣1)+a+2020=﹣a2+a+2020=2019.故选:C.3.解:A、抛一枚硬币,出现正面朝上的频率是=0.5,故本选项错误;B、从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球的概率是≈0.33,故本选项正确;C、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是=0.25,故本选项错误;D、掷一个正六面体的骰子,出现3点朝上的频率约为:≈0.17,故本选项错误;故选:B.4.解:连接OA、OB,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣78°=102°,∴∠ACB=∠AOB=×102°=51°.故选:B.5.解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B.6.解:圆锥的侧面积=2π×4×5÷2=20πcm2.故选:D.7.解:由题意可求B(0,﹣1),∵直线y=x﹣1与y1=交于点C,=k,∴S△OCE设D(x,),=×1×(﹣x)=﹣x,∴S△BOD∵△COE的面积与△DOB的面积相等,∴k=﹣x,∴k=﹣x,∴D(﹣k,﹣2),∵D点在直线y=x﹣1上,∴﹣2=﹣k﹣1,∴k=2,故选:C.8.解:把(0,0)代入y=﹣(x+3)2+k,得﹣(0+3)2+k=0,解得k=6,∴抛物线解析式为y=﹣(x+3)2+6,∴B点坐标为(﹣3,6),∵BC⊥x轴于C,=3×6=18.∴图中阴影部分图形的面积和=S矩形OCBD故选:A.9.解:如图,连接BE,∵△AFE与△ADE关于AE所在的直线对称,∴AF=AD,∠EAD=∠EAF,∵△ADE按顺时针方向绕点A旋转90°得到△ABG,∴AG=AE,∠GAB=∠EAD.∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠BAF+∠EAF.∴∠GAF=∠EAB.在△GAF和△EAB中,,∴△GAF≌△EAB(SAS).∴FG=BE,∵四边形ABCD是正方形,∴BC=CD=AB=4.∵DE=1,∴CE=3.在Rt△BCE中,BE===5,∴FG=5,故选:A.10.解:如图所示:一班名次二班名次三班名次四班名次五班名次一班班长猜35二班班长猜14三班班长猜54四班班长猜21五班班长猜34正确结果∵每班的名次都至少被他们中的一人说对了,∴五班名次一定是第4,∴四班名次为第5,进而可知三班名次为第1,一班名次为第3,二班名次为第2.综上所述:1~5班的名次依次是:3、2、1、5、4.故选:B.二.填空题(共6小题,满分30分,每小题5分)11.解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0)把A、B的坐标代入得:,解得:,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0);故答案为:(,0).12.解:如图,延长BC'交AB'于点H,∵∠C=90°,AC=BC=2,∴AB=2,∵将△ABC绕点A顺时针方向旋转60°到△AB'C'的位置,∴AB=AB′=2,∠BAB′=60°,∴△ABB′为等边三角形,∴∠B′BA=60°,BB′=BA;在△BB′C′与△BAC中,,∴△BB′C′≌△BAC(SSS),∴∠B′BC′=∠ABC′=30°,且AB=BB',∴BH⊥AB',AH=B'H=,∴BH=AH=,∵AC'=B'C',∠AC'B'=90°,C'H⊥AB'∴AH=C'H=,∴BC'=BH﹣C'H=﹣,故答案为:﹣.13.解:令x2﹣x=t,∴t=x2﹣x=(x)2﹣≥,∴t2﹣2t﹣3=0,解得:t=3或t=﹣1(舍去),∴t=3,即x2﹣x=3,∴原式=3+2020=2023,故答案为:2023.14.解:∵袋子里装有4个黑球,2个白球,∴从中任意模出1个球,可能是黑球,有可能是白球,∴事件“从中任意模出1个球,是黑球”的事件类型是随机事件,故答案为:随机.15.解:以点C为圆心,CA为半径作⊙C,在AC上截取AG=BD,设∠ABE=α,∴点A、E、B都在⊙C上,∴∠ACE=2∠ABE=2α,∠BCE=60°﹣2α,∵AG=BD,∠BAG=60°=∠CBD,AB=BC,在△ABG和△BCD中,,∴△ABG≌△BCD,∴BG=CD,∠ABG=∠BCD=60°﹣2α,∴∠FBG=∠ABE+∠ABG=60°﹣α,又∵∠F=∠BAC﹣∠ABF=60°﹣α,∴∠FBG=∠F,∴BG=FG,∴CD=FG,∵BD=AG,AB=AC,∴CG=AC﹣AG=AB﹣BD=AD=3,∴FG=CF﹣CG=4,∴CD=4.故答案为4.16.解:如图:以水面为x轴、桥洞的顶点所在直线为y轴建立平面直角坐标系,根据题意,得A(5,0),C(0,5),设抛物线解析式为:y=ax2+5,把A(5,0)代入,得a=﹣,所以抛物线解析式为:y=﹣x2+5,当x=3时,y=,所以当水面宽度变为6m,则水面上涨的高度为m.故答案为.三.解答题(共8小题,满分80分)17.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴该函数的对称轴为直线x=1,当x>1时,y随x的增大而增大,∴当3≤x≤5时,x=3时,取得最小值,此时y=32﹣2×3+1=4,即3≤x≤5范围内y的最小值是4.18.解:(1)用树状图表示取出的三个小球上的数字所有可能结果如下:∴共有12种等可能的情况;(2)由树状图可知,所有可能的值分别为:,共有12种情况,且每种情况出现的可能性相同,其中的值是整数的情况有6种.所以的值是整数的概率P=.19.(1)解:如图,⊙O为所作;(2)证明:∵OA=OB,∴∠OAB=∠B=30°,而∠CAB=90°﹣∠B=60°,∴∠CAO=∠BAO=30°,∴OC平分∠CAB.20.解:(1)设2018年至2020年该地区投入教育经费的年平均增长率为x,依题意得:2000(1+x)2=2880,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:2018年至2020年该地区投入教育经费的年平均增长率为20%.(2)2880×(1+20%)=3456(万元).答:预计2021年该地区将投入教育经费3456万元.21.(1)证明:连接OE,如图1所示:∵PN=PE,∴∠PEN=∠PNE=∠BNF,∵OE=OB,∴∠OEB=∠OBE.∵AB⊥CD,∴∠OBE+∠BNF=90°,∴∠OEB+∠PEN=90°,即∠OEP=90°,∴PE⊥OE,∴PE是⊙O的切线.(2)解:连接CE,如图2所示:∵DE∥AB,AB⊥CD,∴∠EDC=90°∴CE为⊙O的直径.∵AB⊥CD,∴CF=DF,∴DE=2OF=6.∵OF=3,BF=2,∴OC=OB=5,CE=10,∴CD===8,由(1)知PE⊥CE.设PD=x,则PC=x+8.在Rt△PDE和Rt△PCE中,由勾股定理,得:PD2+DE2=PE2=PC2﹣CE2,即x2+62=(x+8)2﹣102,解得:x=,∴PD=.∴PE===,∴PN =PE =.22.解:(1)如图1中,设AB 交y 轴于C .由,解得或,∴A (2,4),B (﹣4,﹣2),∵直线AB 交y 轴于C (0,2),∴S △AOB =S △AOC +S △OCB =×2×2+×2×4=6.(2)如图2中,由题意E(1,8),F(1,0),∵G(0,﹣),∴直线FG的解析式为y=x﹣,由,解得或,∴I(,),∴直线EH的解析式为y=x+令y=0,解得x=,∴H(,0).(3)如图3中,∵E(1,8),∴OE==,当OM1是菱形的对角线时,E,N1关于x轴对称,可得N1(1,﹣8).当OM为菱形的边时,可得N2(1+,8),N4(1﹣,8).当OE为菱形的对角线时,连接M3N3交OE于T,EN3交y轴于P.∵M3N3⊥OE,∴∠OTM3=90°,∵∠POE=∠TM3O,∴sin∠POE=sin∠OM3T,∴=,∴OM3=,∴M3(,0),∵TN3=TM3,T(,4),∴可得N3(﹣,8),综上所述,满足条件的点N的坐标为(1,﹣8)或(1+,8)或(1﹣,8)或(﹣,8).23.(1)证明:△=64m2﹣4m•(16m﹣1)=4m,∵m>0,∴△>0,∴抛物线总与x轴有两个不同的交点;(2)根据题意,x1、x2为方程mx2﹣8mx+16m﹣1=0的两根,∴x1+x2==8,x1•x2=,∵|x1﹣x2|=2,∴(x1+x2)2﹣4x1•x2=4,∴82﹣4•=4,∴m=1,∴抛物线的解析式为y=x2﹣8x+15;(3)抛物线的对称轴为直线x==4,∵抛物线开口向上,∴当x=2,y≥0时,抛物线与线段CD有交点,∴4m﹣16m+16m﹣1≥0,∴m≥.24.(1)证明:∵OA⊥BC,且OA过圆心点P,∴OB=OC,在△AOB和△AOC中,,∴△AOB≌△AOC(SAS),∴AB=AC,∵以AC为直角边作等腰Rt△ACD,∴AD=AC,∴AB=AD;(2)如图1,过点A作AM⊥BD于M,由(1)知,AB=AD,∴DM=BD,∵BF=4,DF=6,∴BD=10,∴DM=5,∵∠AMD=90°=∠DAF,∠ADM=∠FDA,∴△ADM∽△FDA,∴,∴,∴AD=,在等腰直角三角形ADC中,CD=AD=2;(3)的值是不发生变化,理由:如图2,过点D作DH⊥y轴于H,作DQ⊥x轴于Q,∴∠AHD=90°=∠COA,∴∠ADH+∠DAH=90°,∵∠CAD=90°,∴∠CAO+∠DAH=90°,∴∠ADH=∠CAO,∵AD=AC,∴△ADH≌△ACO(AAS),∴DH=AO,AH=OC,∵∠OHD=∠QOH=∠OQD=90°,∴四边形OQDH是矩形,DH=OQ,DQ=OH,又∵HO=AH+AO=OC+DH=OB+DH=OB+OQ=BQ,∴DQ=BQ,∴△DBQ为等腰直角三角形,∴∠DBQ=45°,∴∠DEH=∠BEO=45°,∴sin∠DEH=,∴=,∴,∴.。

浙教版2020-2021学年九年级数学上册期末复习试题(有答案)

浙教版2020-2021学年九年级数学上册期末复习试题(有答案)

浙教版2020-2021学年九年级数学上册期末复习试题一.选择题(共10小题,满分40分,每小题4分)1.下列事件中,必然事件是()A.明天是晴天B.购买福利彩票,中一等奖C.不在同一直线上的三个点确定一个圆D.掷一次骰子,向上一面的点数是62.如图,四边形ABCD内接于⊙O,若∠BCD=110°,则∠BOD的度数为()A.35°B.70°C.110°D.140°3.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定4.如图,反比例函数y=(k≠0)的图象经过等边△ABC的顶点A,B,且原点O刚好落在AB上,已知点C的坐标是(3,3),则k的值为()A.3B.﹣C.﹣D.﹣35.如图,点A、B、C、D、E、F是⊙O的等分点,分别以点B、D、F为圆心,AF的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O的半径为1,那么“三叶轮”图案的面积为()A.B.C.D.6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π7.如图,△ABC是面积为18cm2的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为()A.4cm2B.6cm2C.8cm2D.10cm28.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°9.一次函数y=2x+3与y=3x+2的交点在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,△ABC内切圆是⊙O,折叠矩形ABCD,使点D、O重合,FG是折痕,点F在AD上,G在ABC上,连结OG,DG,若OG垂直DG,且⊙O的半径为1,则下列结论不成立的是()A.CD+DF=4B.CD﹣DF=2﹣3C.BC+AB=2+4D.BC﹣AB=2二.填空题(共6小题,满分30分,每小题5分)11.在一个不透明的袋中装有黑色和红色两种颜色的球共计15个,每个球除颜色外都相同,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到黑球的频率稳定于0.6,则可估计这个袋中红球的个数约为.12.与抛物线y=(x﹣1)2+3关于原点对称的抛物线的解析式为.13.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,求这次有多少队参加比赛?若设这次有x队参加比赛,则根据题意可列方程为.14.如图,在平行四边形ABCD中,AB=AE.若AE平分∠DAB,∠EAC=25°,则∠B =,∠AED的度数为.15.如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为.16.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,点P的坐标为.三.解答题(共8小题,满分80分)17.选用适当的方法,解下列方程:(1)2x2+5x+2=0;(2)(2x+3)2=4 (2x+3).18.甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局.(1)请用画树状图的方法,列出所有可能出现的结果;(2)试用概率说明游戏是否公平.19.已知:如图,点D、F是△ABC的AB边上的两点,满足AD2=AF•AB,连接CD,过点F作FE∥DC,交边AC于E,连接DE.求证:DE∥BC.20.如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(3)若⊙M能盖住△ABC,则⊙M的半径最小值为.21.如图①,在Rt△ABO中,∠A=90°,AB=2,AO=4,⊙O的半径为1,点C为BO 的中点,点H为⊙O上一点,CH=2(1)求证;CH是⊙O的切线;(2)如图②,过C作CD⊥CH交AO于D点,求tan∠ODC的值.22.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)23.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.24.如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P 从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)点M在抛物线上,且△AOM的面积与△AOC的面积相等,求出点M的坐标.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:A、明天是晴天,是随机事件;B、购买福利彩票,中一等奖,是随机事件;C、不在同一直线上的三个点确定一个圆,是必然事件;D、掷一次骰子,向上一面的点数是6,是随机事件;故选:C.2.解:∵四边形ABCD内接于⊙O,∴∠A=180°﹣∠BCD=70°,由圆周角定理得,∠BOD=2∠A=140°,故选:D.3.解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.4.解:由对称性可知:OA=OB,∵△ABC是等边三角形,∴OC⊥AB,∵C(3,3),∴OC=3,∴OB=OC=,∴B(,﹣),把B点坐标代入y=,得到k=﹣3,故选:D.5.解:连接OA、OB、AB,作OH⊥AB于H,∵点A、B、C、D、E、F是⊙O的等分点,∴∠AOB=60°,又OA=OB,∴△AOB是等边三角形,∴AB=OB=1,∠ABO=60°,∴OH ==, ∴“三叶轮”图案的面积=(﹣×1×)×6=π﹣, 故选:B .6.解:这个圆锥的母线长==10, 这个圆锥的侧面积=×2π×10×10=100π.故选:C . 7.解:∵△ABC 被一平行于BC 的矩形所截,∴EH ∥FG ∥BC ,∴△AEH ∽△AFG ∽△ABC ,又∵AB 被截成三等份, ∴=()2=,=()2=,∴S △AEH =2cm 2,S △AFG =8cm 2,则S 阴影=S △AFG ﹣S △AEH =6cm 2.故选:B .8.解:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =(180°﹣120°)=30°,∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′﹣∠C ′AB ′=120°﹣30°=90°.故选:D .9.解:根据题意,画出函数图象,如图所示.两函数图象交于第一象限.故选:A.10.解:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,∵将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,∴OG=DG,∵OG⊥DG,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC,在△OMG和△GCD中,,∴△OMG≌△GCD,∴OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD,∴BC﹣AB=2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),∴c=a+b﹣2.在Rt△ABC中,由勾股定理可得a2+b2=(a+b﹣2)2,整理得2ab﹣4a﹣4b+4=0,又∵BC﹣AB=2即b=2+a,代入可得2a(2+a)﹣4a﹣4(2+a)+4=0,解得a=1+或a=1﹣(不合题意舍去),∴BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=3+﹣1﹣x,OF=x,ON=1+﹣1=,由勾股定理可得(2+﹣x)2+()2=x2,解得x=4﹣,∴CD﹣DF=+1﹣(4﹣)=2﹣3,CD+DF=+1+4﹣=5.综上只有选项A错误,故选:A.二.填空题(共6小题,满分30分,每小题5分)11.解:15×(1﹣0.6)=15×0.4=6答:估计这个袋中红球的个数约为6.故答案为:6.12.解:∵关于原点对称的点的横纵坐标互为相反数,∴抛物线y=(x﹣1)2+3关于原点对称的抛物线的解析式为:﹣y=(﹣x﹣1)2+3,即y=﹣(x+1)2﹣3.故答案为:y=﹣(x+1)2﹣3.13.解:设这次有x队参加比赛,则此次比赛的总场数为场,根据题意列出方程得:=45,故答案是:.14.解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△EAD中,,∴△ABC≌△EAD(SAS),∴∠BAC=∠AED,∵AE平分∠DAB,∴∠DAE=∠BAE;又∵∠DAE=∠AEB,∴∠BAE=∠AEB=∠B.∴△ABE为等边三角形.∴∠B=∠BAE=60°,∵∠EAC=25°,∴∠BAC=85°,∴∠AED=85°.故答案为:60°,85°.15.解:∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∴在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠AFE=∠BAD+∠FBA=∠CBE+∠FBA=∠ABC=60°,∴∠AFB=120°,∴点F的运动轨迹是以点O为圆心,OA为半径的弧,如图,此时∠AOB=120°,OA==,所以弧AB的长为:=.则点F的运动路径的长度为.故答案为:.16.解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△PAB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),故答案为:(0,).三.解答题(共8小题,满分80分)17.解(1)∵a=2,b=5,c=2,∵b2﹣4ac=52﹣4×2×2=9>0,∴,∴,x2=﹣2.(2)∵(2x+3)2=4(2x+3),∴(2x+3)2﹣4(2x+3)=0,∴(2x+3)(2x+3﹣4)=0,则2x+3=0或2x+3﹣4=0,解得x1=,x2=.18.解:(1)如图所示:(红,红),(红,黄),(红,绿),(黄,红),(黄,黄),(黄,绿),(绿,红),(绿,黄),(绿,绿)共9种情况;(2)P(甲获胜)==,P(乙获胜)=,P(甲获胜)>P(乙获胜),所以游戏不公平.19.证明:∵AD2=AF•AB,∴.(2分)∵FE∥DC,∴.(2分)∴.(3分)∴DE∥BC.(3分)20.解:(1)如图,△A′B′C′为所作;(2)如图,△A″B″C″为所求;(3)如图,当点M为AC的中点时,此时⊙M是能盖住△ABC的最小的圆,⊙M的半径为.故答案为.21.解:(1)连接OH,如图①,∵∠A=90°,AB=2,AO=4,∴OB===2.∵点C是OB的中点,∴OC=OB=.∵CH=2,OH=1,∴CH2+OH2=5=OC2,∴∠OHC=90°,∴CH与⊙O相切;(2)连接OH,设CH与OA交于点E,如图②,∵===,∴△CHO∽△OAB,∴∠HCO=∠AOB,∴EC=EO.设OE=x,则EC=x,EH=2﹣x.在Rt△EHO中,(2﹣x)2+12=x2,解得x=,∴EH=2﹣=,∴tan∠HOE==.∵CD⊥CH,∴∠DCH=∠OHC=90°,∴OH∥DC,∴∠ODC=∠HOE,∴tan∠ODC=tan∠HOE=.22.解:(1)由题意,得:w=(x﹣20)•y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,即w=﹣10x2+700x﹣10000(20≤x≤32)(2)对于函数w=﹣10x2+700x﹣10000的图象的对称轴是直线.又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W随着x的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,﹣10x2+700x﹣10000=2000解这个方程得:x1=30,x2=40.∵a=﹣10<0,抛物线开口向下.∴当30≤x≤40时,w≥2000.∵20≤x≤32∴当30≤x≤32时,w≥2000.设每月的成本为P(元),由题意,得:P=20(﹣10x+500)=﹣200x+10000∵k=﹣200<0,∴P随x的增大而减小.=3600.∴当x=32时,P的值最小,P最小值答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.23.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=2,∴,∴EF=4.24.解:(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入得:y=﹣x2+x+4,∴b=,c=4(2)在点P、Q运动过程中,△APQ不可能是直角三角形.理由如下:连结QC.∵在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角,∴当△APQ是直角三角形时,则∠APQ=90°.将x=0代入抛物线的解析式得:y=4,∴C(0,4).∵AP=OQ=t,∴PC=5﹣t,∵在Rt△AOC中,依据勾股定理得:AC=5在Rt△COQ中,依据勾股定理可知:CQ2=t2+16在Rt△CPQ中依据勾股定理可知:PQ2=CQ2﹣CP2,在Rt△APQ中,AQ2﹣AP2=PQ2∴CQ2﹣CP2=AQ2﹣AP2,即(3+t)2﹣t2=t2+16﹣(5﹣t)2解得:t=4.5,∵由题意可知:0≤t≤4∴t=4.5不合题意,即△APQ不可能是直角三角形.(3 )∵AO是△AOM与△AOC的公共边∴点M到AO的距离等于点C到AO的距离即点M到AO的距离等于CO所以M的纵坐标为4或﹣4把y=4代入y=﹣x2+x+4得﹣x2+x+4=4解得x1=0,x2=1把y=﹣4代入y=﹣x2+x+4得﹣x2+x+4=﹣4解得x1=,x2=,另外点M与C重合时,也满足条件,此时M(0,4),M(1,4)或M(,﹣4)或M(,﹣4)或(0,4).1、三人行,必有我师。

2020-2021学年浙教版九年级数学上册期末测试题(有答案)

2020-2021学年浙教版九年级数学上册期末测试题(有答案)

2020-2021学年浙教版九年级数学上册期末 测试题考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.甲乙两人做游戏,同时掷两枚相同的硬币,双方约定:同面朝上甲胜,异面朝上则乙胜,则这个游戏对双方( )A.公平B.对甲有利C.对乙有利D.无法确定公平性2.两个相似多边形对应边之比等于1:2,那么这两个相似多边形面积之比等于( )A.1:4B.1:2C.1:√2D.2:1 3.将二次函数y =x 2−4的图象先向右平移2个单位,再向上平移3个单位后得到的抛物线的函数表达式为( )A.y =(x +2)2−7B.y =(x −2)2−7C.y =(x +2)2−1D.y =(x −2)2−14.下列说法正确的是( )A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆 5.如图,⊙O 的两弦AB 、CD 相交于点M ,AB =8cm ,M 是AB 的中点,CM:MD =1:4,则CD =( )A.12cmB.10cmC.8cmD.5cm6.已知二次函数y =x 2+6x −1,当−6≤x ≤2时,y 的最大值和最小值是( )A.0,−10B.15,−10C.−1,−10D.15,−17.如图,A 、B 、C 、D 四点在同一个圆上.下列判断正确的是( )A.∠C +∠D =180∘B.当E 为圆心时,∠C =∠D =90∘C.若E 是AB 的中点,则E 一定是此圆的圆心D.∠COD =2∠CAD8.先作半径为√22的圆的内接正方形,接着作上述内接正方形的内切圆,再作上述内切圆的内接正方形,…,则按以上规律作出的第7个圆的内接正方形的边长为( )A.(√22)6B.(√22)7C.(√2)6D.(√2)7 9.把二次函数y =x 2−4x +1化成y =a(x −ℎ)2+k (其中ℎ、k 是常数)的形式的结果为( )A.y=(x−2)2−3B.y=(x−4)2−15C.y=(x−2)2+3D.y=(x−4)2+1510.如图,将腰长为1cm的等腰Rt△ABC绕点B旋转至△A′B′C′的位置,使A、B、C′三点在同一条直线上,则点A经过的最短路线长是()A.3 4πB.34√2πC.1 2πD.12√2π二、填空题(共 10 小题,每小题 3 分,共 30 分)11.若二次函数y=ax2+bx+c的图象如图所示,则ac________0;方程ax2+ bx+c=0的根是x1=________,x2=________,对称轴是________.12.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过12分钟旋转了________.13.已知二次函数y=−x2+2x+m的图象如图所示,则关于x的一元二次方程−x2+2x+m=0的根为________;不等式−x2+2x+m>0的解集是________;当x________时,y随x的增大而减小.14.如图,在四边形ABCD中,∠ABC=30∘,将△DCB绕点C顺时针旋转60∘后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=________(提示:可连接BE)15.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1, 0),B(3, 2),不等式x2+bx+c<x+m的解集为________.16.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(200−x)件,设这种商品的利润为y元,则y与x的函数关系式为________(化成一般式).17.飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数解析式是s= 60t−15t2.则飞机着陆后滑行到停下来滑行的距离为________米.18.如图所示,顶角A为36∘的第一个黄金三角形△ABC的腰AB=1,底边与腰之比为K,三角形△BCD为第二个黄金三角形,依此类推,第2008个黄金三角形的周长为________.19.如图,△ABC中,DE // BC,AD=2cm,AB=6cm,AE=1.5cm,则EC=________.20.如图,长方形ABCD中,AB=4,AD=3,E是边AB上一点(不与A、B重合),F是边BC上一点(不与B、C重合).若△DEF和△BEF是相似三角形,则CF=________.三、解答题(共 8 小题,共 60 分)21.(4分) 在平面直角坐标系中,△ABC的顶点坐标分别是A(−2, 3),B(−3, 2),C(−1, 1).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)以点O为位似中心,在△ABC的同侧作出相似比为2:1,放大后的△A2B2C2.22.(8分) 如图,△ABC是⊙O的内接三角形,AB=AC,D是BC上一点,AD的延长线交⊙O于点E.(1)△ABE与△CDE相似吗?为什么?(2)图中还有哪几对相似三角形?23.(8分) 如图,在四边形ABCD中,∠BAD=∠BCD=90∘,BC=CD,E是AD延长线上一点,若DE=AB=3cm,CE=4√2cm,连接AC,BD.(1)求证:△BCD∽△ACE;(2)试求出线段AD的长.24.(8分)中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?25.(8分)如图,AB为半圆直径,D为AB上一点,分别在半圆上取点E、F,使EA=DA,FB=DB,过D作AB的垂线,交半圆于C.求证:CD平分EF.26.(8分)已知:如图所示,要在高AD=80mm,底边BC=120mm的三角形余料中截出一个正方形板材PQMN.求正方形的边长.27.(8分)给你1枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现1、2、3、4、5、6向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测1枚骰予的质量.28.(8分) 如图,在Rt△ACB中,∠ACB=90∘,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F 与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)证:∠BCD=∠BEC;(2)BC=2,BD=1,求CE的长及sin∠ABF的值.答案1.A2.A3.D4.D5.B6.B7.B8.A9.A10.B11.<−13x =112.72∘13.x =−1或x =3−1<x <3>114.515.1<x <316.y =−x 2+230x −600017.60018.K 2007(2+K)19.3cm20.53或3221.解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求..22.(1)解:∵AB =AC ,∴∠ABC =∠ACB ,∴∠AEB =∠AEC ,∠BAE =∠ECD ,∴△ABE ∽△CDE ;(2)解:∠AEB =ACB =∠ABC =∠AEC , ∠EBC =∠EAC ,相似三角形有:△ABD ∽△AEB ,△ABD ∽△CED ,△ACD ∽△BED .23.解:(1)证明:在四边形ABCD 中,∵∠BAD =∠BCD =90∘, ∴90∘+∠B +90∘+∠ADC =360∘,∴∠B +∠ADC =180∘,又∵∠CDE+∠ADE=180∘,∴∠B=∠CDE,在△ABC和△EDC中,{AB=DE∠B=∠CDE BC=CD,∴△ABC≅△EDC(SAS);∴AC=CE,∵BC=CD∴BC AC =CDEC,∵∠BAD=∠BCD=90∘,∴△BCD∽△ACE.(2)解:∵△ABC≅△EDC,∴AC=EC,∠ACB=∠ECD,∵∠BCD=∠ACB+∠ACD=90∘,∴∠ACE=∠ECD+∠ACD=90∘,∴△ACE是等腰直角三角形,∵CE=4√2cm,∴AE=4√2×√2=8cm,∴AD=AE−DE=8−3=5cm.24.解:∵20个商标中2个已翻出,还剩18张,18张中还有3张有奖的,∴第三次翻牌获奖的概率是:318=16.25.证明:如图,分别过点E、F作AB的垂线,G、H为垂足,连FA、EB.易知:DB2=FB2=AB⋅HB,AD2=AE2=AG⋅AB.二式相减得:DB2−AD2=AB⋅(HB−AG),或(DB−AD)⋅AB=AB⋅(HB−AG).于是:DB−AD=HB−AG,或DB−HB=AD−AG.∴DH=GD.显然,EG // CD // FH.故CD平分EF.26.解:设正方形的边长为x,∵四边形PQMN是正方形,∴DE=PN=x,PN // BC,∴△APN∽△ABC,∴AE AD =PNBC,∵AE =AD −DE =80−x ,BC =120,AD =80,∴80−x 80=x 120, ∴x =48,∴正方形的边长为48mm .27.解:填表如下:28.∵∠ACB =90∘,∴∠BCD +∠ACD =90∘,∵DE 是⊙A 的直径,∴∠DCE =90∘,∴∠BEC +∠CDE =90∘,∵AD =AC ,∴∠CDE =∠ACD ,∴∠BCD =∠BEC ,∵∠BCD =∠BEC ,∠EBC =∠EBC ,∴△BDC ∽△BCE ,∴CD CE =BD BC =BC BE , ∵BC =2,BD =1,∴BE =4,EC =2CD ,∴DE =BE −BD =3,在Rt △DCE 中,DE 2=CD 2+CE 2=9,∴CD =3√55,CE =6√55,过点F 作FM ⊥AB 于M ,∵∠FAB =∠ABC ,∠FMA =∠ACB =90∘,∴△AFM ∽△BAC ,∴FM AC =AF AB ,∵DE =3,∴AD =AF =AC =32,AB =52,∴FM =910,过点F 作FN ⊥BC 于N ,∴∠FNC =90∘,∵∠FAB =∠ABC ,∴FA // BC ,∴∠FAC =∠ACB =90∘,∴四边形FNCA 是矩形,∴FN =AC =32,NC =AF =32,∴BN =12,在Rt △FBN 中,BF =√102, 在Rt △FBM 中,sin∠ABF =FM BF =9√1050.1、三人行,必有我师。

2020-2021学年浙教版九年级上册数学期末复习试卷1(有答案)

2020-2021学年浙教版九年级上册数学期末复习试卷1(有答案)

2020-2021学年浙教新版九年级上册数学期末复习试卷1 一.选择题(共12小题,满分48分,每小题4分)1.抛物线y=(x﹣2)2﹣1的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)2.若=,则的值为()A.5B.C.3D.3.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2D.y=﹣3(x+1)2+24.下列事件是随机事件的是()A.只买一张彩票,就中了大奖B.长春市某天的最低气温为﹣150℃C.口袋中装的全是黑球,从中摸出一个球是黑球D.抛掷8枚硬币,结果是3个正面朝上与6个反面朝上5.如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A.B.C.D.6.半径为R的圆内接正六边形边长为()A.R B.R C.R D.2R7.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数501001502005008001000合格频数4288141176448720900估计出售2000件衬衣,其中次品大约是()A.50件B.100件C.150件D.200件8.如图,OA,OB是⊙O的半径,C是⊙O上的一点,∠AOB=40°,∠OCB=50°,则∠OAC的度数为()A.20°B.30°C.40°D.50°9.如图,点G是△ABC的中线BE、CD的交点,则△DEG和△CEG的面积比是()A.1:2B.1:3C.1:4D.2:910.如图,AB为半圆⊙O的直径,AB=10,AC为⊙O的弦,AC=8,D为的中点,DM ⊥AC于M,则DM的长为()A.B.C.1D.11.若函数y=x2﹣4x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<2,则()A.y1>y2B.y1<y2C.y1=y2D.y1,y2的大小不确定12.如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A.28cm2B.27cm2C.21cm2D.20cm2二.填空题(共6小题,满分24分,每小题4分)13.在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为,则a=.14.如图所示的网格是正方形网格,△ABC的顶点A、B、C恰好落在正方形网格中的格点上,则∠ABC=°.15.如图,在△ABC中,DE∥BC,AD=2cm,DB=1cm,BC=12cm,则DE=cm.16.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.若AB=5,则AD=.17.平面直角坐标系中,⊙O交x轴正负半轴于点A、B,点P为⊙O外y轴正半轴上一点,C为第三象限内⊙O上一点,PH⊥CB交CB延长线于点H,已知∠BPH=2∠BPO,PH =15,CH=24,则tan∠BAC的值为.18.若抛物线开口向下,且与y轴交于点(0,1),写出一个满足条件的抛物线的解析式:.三.解答题(共8小题,满分78分)19.计算:20.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的高线CD;(2)求出△ABC的面积为;=3的格点Q,共有个.(3)图中,能使S△QBC21.甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字﹣2、﹣1、1、2、3,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点,若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?22.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(B,C,D,E均在同一平面内).已知斜坡CD的坡度(或坡比)i=4:3,且点C到水平面的距离CF为8米,在E处测得建筑物顶端A的仰角为24°,求建筑物AB的高度.(参考数据:sin24°=0.41,cos24°=0.91,tan24°=0.45)23.如图,已知直线y=x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.(1)线段OC=,线段AD=;(2)点M在CD上,且CM=OM,抛物线y=2x2+bx+c经过点C,M,求抛物线的解析式;(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长;若不存在,请说明理由.24.如图,点A,B,C在直径为2的⊙O上,∠BAC=45°,求图中阴影部分的面积.(结果中保留π)25.如图,抛物线y=﹣+bx+c过点A(3,0)和B(0,2),点M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求此抛物线的解析式;(2)若点P是MN的中点,则求点P的坐标;(3)若以点B、N、P为顶点的三角形与△AMP相似,请直接写出点P的坐标.26.如图,在△ABC中,AB=AC=10cm,BD⊥AC于D,且BD=8cm.点M从点A出发,沿AC方向匀速运动,速度为2cm/s;同时直线PQ由点B出发沿BA方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于P,交BC于Q,连接PM,设运动时间为t(s),0<t≤5.(1)CM=,PQ=,BQ=;(用含t的式子表示)(2)当四边形PQCM是平行四边形时,求t的值;(3)当点M在线段PC的垂直平分线上时,求t的值;(4)是否存在时刻t,使以PM为直径的圆与△ABC的边相切?若存在,直接写出t的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:∵抛物线y=a(x﹣h)2+k的顶点坐标是(h,k),∴抛物线y=(x﹣2)2﹣1的顶点坐标是(2,﹣1),故选:D.2.解:由=,得4b=a﹣b.,解得a=5b,==5,故选:A.3.解:将抛物线y=﹣3x2向左平移1个单位所得直线解析式为:y=﹣3(x+1)2;再向下平移2个单位为:y=﹣3(x+1)2﹣2,即y=﹣3(x+1)2﹣2.故选:C.4.解:A、只买一张彩票,就中了大奖,是随机事件;B、长春市某天的最低气温为﹣150℃,是不可能事件;C、口袋中装的全是黑球,从中摸出一个球是黑球,是必然事件;D、抛掷8枚硬币,结果是3个正面朝上与6个反面朝上,是不可能事件;故选:A.5.解:由题意得,A中三角形对应角相等,对应边成比例,两三角形相似;C,D中正方形,菱形四条边均相等,所以对应边成比例,又角也相等,所以正方形,菱形相似;而B中矩形四个角相等,但对应边不一定成比例,所以B中矩形不是相似多边形.故选:B.6.解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,∴∠AOB=60°,又∵OA=OB=R,∴三角形AOB是等边三角形,∴AB=OA=R.故选:B.7.解:2000×(1﹣)≈200件,故选:D.8.解:∵∠AOB=40°,∴∠ACB=×40°=20°.∵∠OCB=50°,∴∠ACO=50°﹣20°=30°.∵OA=OC,∴∠OAC=∠ACO=30°,故选:B.9.解:∵点G是△ABC的中线BE、CD的交点,∴AD=DB,AE=EC,∴DE∥BC,DE:BC=1:2.∴==,∴==,故选:A.10.解:如图,连接OD交AC于H,连接BC.∵AB是直径,∴∠ACB=90°,∴BC==6,∵=,∴OD⊥AB,∵∠OAH=∠CAB,∠AOH=∠ACB=90°,∴△AOH∽△ACB,∴==∴==∴OH=,AH=,∵DH=OD﹣OH=5﹣=,∵DM⊥AC,∵∠DMH=∠AOH=90°,∠DHM=∠AHO,∴△DMH∽△AOH,∴=,∴=,∴DM=1,故选:C.11.解:∵y=x2﹣4x+m,∴此函数的对称轴为:x=﹣=﹣=2,∵x1<x2<2,两点都在对称轴左侧,a=1>0,∴对称轴左侧y随x的增大而减小,∴y1>y2.故选:A.12.解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则,设DF=xcm,得到:解得:x=4.5,则剩下的矩形面积是:4.5×6=27cm2.故选:B.二.填空题(共6小题,满分24分,每小题4分)13.解:根据题意,得:=,解得a=8,经检验:a=8是分式方程的解,故答案为:8.14.解:如图,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABC=180°﹣45°=135°,故答案为:135.15.解:∵DE∥BC,∴∠ADE=∠ABC,∵∠A=∠A,∴△ADE∽△ABC,∴,∵AD=2cm,DB=1cm,BC=12cm,∴,∴DE=8(cm),故答案为:8.16.解:∵将△ABC绕点B顺时针旋转60°得△DBE,∴AB=BD,∠ABD=60°,∴△ADB是等边三角形,∴AB=AD=5.故答案为:5.17.解:设PB交⊙O于点N,连接PA,延长PB、AC交于点M,∵AB是直径,PH⊥CB∴∠ANP=90°=∠ACB=∠H,∴MC∥PH,由圆的对称性可得,PA=PB,∠BPO=∠APO=∠APB,∵∠BPH=2∠BPO,∴∠BPH=∠APB,∴△PHB≌△PNA(AAS),∴PN=PH=15,由MC∥PH得,∠HPB=∠M=∠APM,∴AM=AP=PB,∵AN⊥PM,∴PM=2PN=30,由△PHB∽△MCB,∴==,设MC=a,BC=b,MB=c,则HB=24﹣b,PB=30﹣c,∴==,∴==sin M=sin∠HPB,∴cos∠HPB=在Rt△PHB中,PH=15,∴PB===25,HB=sin∠HPB•PH=20,∴BC=24﹣20=4,MB=30﹣25=5,则MC==3,在Rt△ABC中,BC=4,AC=AM﹣MC=25﹣3=22,∴tan∠BAC===,故答案为:.18.解:抛物线解析式为y=﹣x2+1(答案不唯一).故答案为:y=﹣x2+1(答案不唯一).三.解答题(共8小题,满分78分)19.解:原式=×﹣2×+,=1﹣+(tan60°﹣1),=1﹣+﹣1,=0.20.解:(1)如图线段CD即为所求.=5×7﹣×2×6﹣×5×7﹣×1×3﹣1×2=8.(2)S△ABC故答案为8.(3)如图,满足条件的点Q共有7个,故答案为7.21.解:画树状图如下:共有25种情况,其中此点在第一、三象限的有13种结果,此点在第二、四象限的有12种结果,∴甲获胜的概率为,乙获胜的概率为,∵>,∴这样的游戏对甲、乙双方不公平.22.解:延长AB交直线DE于M,则BM⊥ED,如图所示:则四边形BMFC是矩形,∵CF⊥DE,在Rt△CDF中,∵=,CF=8,∴DF=6,∴CD==10,∵四边形BMFC是矩形,∴BM=CF=8,BC=MF=20,EM=MF+DF+DE=20+6+40=66,在Rt△AEM中,tan24°=,∴0.45=,解得:AB=21.7(米),答:建筑物AB的高度为21.7米.23.解:(1)∵直线y=x+1与x轴交于点A,与y轴交于点B,∴y=0时,x=﹣3,x=0时,y=1,∴A点坐标为:(﹣3,0),B点坐标为:(0,1),∴OC=3,DO=1,∴点C的坐标是(0,3),线段AD的长等于4故答案为:3,4;(2)∵CM=OM,∴∠OCM=∠COM.∵∠OCM+∠ODM=∠COM+∠MOD=90°,∴∠ODM=∠MOD,∴OM=MD=CM,∴点M是CD的中点,∴点M的坐标为(,).将点C,M的坐标代入抛物线表达式并解得:b=﹣3,c=3,∴抛物线y=x2+bx+c的解析式为:y=2x2﹣4x+3.(3)抛物线上存在点P,使得以C,E,F,P为顶点的四边形是菱形.①如图1,当点F在点C的左边时,四边形CFEP为菱形.∴∠FCE=∠PCE,由题意可知,OA=OC,∴∠ACO=∠PCE=45°,∴∠FCP=90°,∴菱形CFEP为正方形.过点P作PH⊥CE,垂足为H,则Rt△CHP为等腰直角三角形.∴CP=CH=PH.设点P为(x,2x2﹣4x+3),则OH=2x2﹣4x+3,PH=x,∵PH=CH=OC﹣OH,∴3﹣(2x2﹣4x+3)=x,解得:x=∴CP=CH=×=,则四边形的周长为4CP=6.②如图2,当点F在点C的右边时,四边形CFPE为菱形.∴CF=PF,CE∥FP.∵直线AC过点A(﹣3,0),点C(0,3),∴直线AC的解析式为:y=x+3.过点C作CM⊥PF,垂足为M,则Rt△CMF为等腰直角三角形,CM=FM.反向延长PF交x轴于点N,则PN⊥x轴,∴PF=FN﹣PN,设点P为(x,2x2﹣4x+3),则点F为(x,x+3),∴FC=x,FP=(x+3)﹣(2x2﹣4x+3)=x解得:x=,∴FC=x=∴菱形CFEP的周长为10﹣4,综上所述,这样的菱形存在,它的周长为6或10﹣4.24.解:连接OB 、OC ,过O 作OD ⊥BC 于D ,∵∠BAC =45°,∴∠BOC =2∠BAC =90°,∵OB =OC ,OD ⊥BC ,∴∠OBC =∠OCB =45°,BD =DC ,∴BD =OD ,∵OB ==1,∴OD =BD =CD =OB ×sin45°=, 即BC =BD +CD =,∴阴影部分的面积S =S 扇形BOC ﹣S △BOC =﹣=π﹣. 25.解:(1)抛物线经过点A (3,0),B (0,2),∴,解得,∴抛物线的解析式为:;(2)∵B (0,2),∴可设直线AB 的解析式为y =kx +2, 将点A (3,0)代入y =kx +2,得3k +2=0,∴k =﹣,∴直线AB的解析式为,由M(m,0),设,,则,,点P是MN的中点,即NP=PM,∴,解得(舍),∴;(3)∵∠APM=∠NPB,∴若以点B、N、P为顶点的三角形与△AMP相似,则存在△AMP∽△NBP和△AMP∽△BNP两种情况,如图,过点P作PH∥x轴交y轴于H,则△BHP∽△BOA,∴=,∵OA=3,PH=m,BA==,∴BP=m,∴AP=AB﹣BP=﹣m=,①当△AMP∽△NBP时,=,∴=,解得m1=3(舍去),m2=,∴P1(,);②当△AMP∽△BNP时,=,∴=,解得m1=3(舍去),m2=,∴P2(,);∴点P的坐标为(,)或(,).26.解:(1)∵AB=AC=10cm,BD⊥AC,BD=8cm.∴由勾股定理可得:AD=6cm,∴DC=4cm,∴在Rt△BDC中,BC==4cm,由题意得:CM=AC﹣AM=(10﹣2t)cm,BP=tcm;∵PQ∥AC,∴△BPQ∽△BAC,∴==,∴==,∴PQ=tcm,BQ=cm;故答案为:(10﹣2t)cm,tcm,cm;(2)当四边形PQCM是平行四边形时,PQ∥AC且PQ=CM,∴t=10﹣2t,解得s.∴四边形PQCM是平行四边形时,s;(3)当点M在线段PC的垂线平分线上时,MP=MC,过点M作ME⊥AB于点E,如图所示:在Rt△ABD中,∵AB=10cm,BD=8cm,∴cm,∴,在Rt△AEM中,∵AM=2t,,∴,∴,∴,解得:t1=0(舍去),s,∴当点M在线段PC的垂直平分线上时,s;(4)存在t=或或或,使以PM为直径的圆与△ABC的边相切.①与A C相切,即PM⊥AC,=cos A,∴=,∴t=;②与AB相切,即MP⊥AB,=cos A,∴=,∴;③与BC相切,即PM中点O到BC距离为,如图,设切点为K,连接EK,则EK⊥BC,作PG⊥BC于G,AS⊥BC于S,MH⊥BC 于H,PN⊥AC,则EK∥PG∥AS∥MH,∵BC=4cm,AB=AC,AS⊥BC,∴BS=2cm,∴AS==4cm,∴PG:BP=AS:AB=4:10=2:5,∴PG=cm;同理:MH:CM=AS:AC=4:10=2:5,∴MH=(10﹣2t)cm.∵E为PM的中点,∴K为GH的中点,∴EK是梯形PGHM的中位线,∴EK==(10﹣t)cm,∵PM=2EK,∴PM=(10﹣t)cm.∵=cos A=,AP=(10﹣t)cm,∴AN=(10﹣t)=(6﹣t),∴MN=|AN﹣AM|=|6﹣t﹣2t|=|6﹣t|cm;∵BD⊥AC,PN⊥AC,∴PN∥BD,∴△APN∽△ABD,∴=,∵BD=8cm,AP=(10﹣t)cm,AB=10cm,∴PN=×8=(8﹣t)cm,∴在Rt△PMN中,由勾股定理得:+=,整理得:33t2﹣140t+100=0,解得:或.综上,存在t=或或或,使以PM为直径的圆与△ABC的边相切.。

2020-2021学年最新浙教版九年级数学上册期末模拟综合复习检测试卷及答案

2020-2021学年最新浙教版九年级数学上册期末模拟综合复习检测试卷及答案

期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AĈ上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°2.两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为()A.23B.32C.49D.943.在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为()A.1:20B.1:20000C.1:200000D.1:20000004.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cmB.5cmC.3cmD.2cm5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是()A.①②B.①③C.①③④D.①②③④6.围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是23.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗7.一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。

如果任意抛掷小正方体两次,那么下列说法正确的是()A.得到的数字之和必然是4B.得到的数字之和可能是3C.得到的数字之和不可能是2D.得到的数字之和有可能是18.函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是().A.a>0B.a−b+c<0C.c<0D.当−1<x<3时,y>09.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是()A.(-1.4,-1.4)B.(1.4,1.4)C.(- ,- )D.(,)10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个二、填空题(共10题;共30分)11.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________.12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.13.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB=________14.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=________时,以A、D、E为顶点的三角形与△ABC相似.15.已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.16.某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t﹣1.5t2,那么飞机着陆后滑行________米才能停止.17.已知点P为平面内一点,若点P 到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为________.18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________19.如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为________.20.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 √2,则另一直角边AE的长为________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使ODOB =OEOA=13,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.23.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.24.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:.25.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)26.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB的关系是?27.如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点M作MC⊥BC,垂足为C,MC 与⊙O交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).(1)当x=9时,求BM的长和△ABM的面积;(2)是否存在点M,使MD•DC=20?若存在,请求出x的值;若不存在,请说明理由.28.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币).(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】D4.【答案】A5.【答案】C6.【答案】C7.【答案】B8.【答案】B9.【答案】D10.【答案】C二、填空题11.【答案】2512.【答案】5513.【答案】108°14.【答案】125, 5 315.【答案】(0,10)16.【答案】60017.【答案】2或318.【答案】1319.【答案】220.【答案】10三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE ,∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC .又∵∠B=∠D ,∴△ABC∽△ADE .22.【答案】解: ∵ODOB =OEOA,∠AOB=∠EOD(对顶角相等),∴△AOB∼△EOD,∴ODOB =OEOA=13,∴37.2AB =13,解得AB=111.6米.所以,可以求出A、B之间的距离为111.6米23.【答案】解:图中的弧为BC,AB,AC,ACB,BAC,ABC.24.【答案】解:∵共3红2黄1绿相等的六部分, ∴①指针指向红色的概率为36=12; ②指针指向绿色的概率为16; ③指针指向黄色的概率为26=13; ④指针不指向黄色为56,(1)可能性最大的是④,最小的是②; (2)由题意得:②<③<①<④, 故答案为:②<③<①<④.25.【答案】解:设男同学标记为A 、B ;女学生标记为1、2,可能出现的所有结果列表如下:的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为212=16 26.【答案】解:连CO ∵DC ⊥AD ,CE ⊥OB CD=EC ∠1=∠227.【答案】证明:(1)∵直线BC 与半径为6的⊙O 相切于点B ,且AB 为⊙O 的直径, ∴AB ⊥BC , 又∵MC ⊥BC , ∴AB ∥MC , ∴∠BMC=∠ABM , ∵AB 是⊙O 的直径, ∴∠AMB=90°, ∴∠BCM=∠AMB=90°, ∴△BCM ∽△AMB , ∴BMAB =MCBM ,∴BM 2=AB •MC=12×9=108, ∴BM=6√3, ∵BC 2+MC 2=BM 2, ∴BC=√BM 2−MC 2=3√3∴S △ABM =12AB •BC=12×12×3√3=18√3;(2)解:过O作OE⊥MC,垂足为E,∵MD是⊙O的弦,OE⊥MD,∴ME=ED,又∵∠CEO=∠ECB=∠OBC=90°,∴四边形OBCE为矩形,∴CE=OB=6,又∵MC=x,∴ME=ED=MC﹣CE=x﹣6,MD=2(x﹣6),∴CD=MC﹣MD=x﹣2(x﹣6)=12﹣x,∴MD•DC=2(x﹣6)•(12﹣x)=﹣2x2+36x﹣144=﹣2(x﹣9)2+18∵6<x<12,∴当x=9时,MD•DC的值最大,最大值是18,∴不存在点M,使MD•DC=20.28.【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地[80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x)=-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40.又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.。

2020-2021学年浙教版九年级数学第一学期期末测试卷(含答案)

2020-2021学年浙教版九年级数学第一学期期末测试卷(含答案)

2020-2021学年浙教版九年级数学第一学期期末测试卷考试时间:120分钟满分:150分一、选择题(本大题有12小题,每小题4分,共48分)下面每小题给出的四个选项中,只有一个是正确的.1.若,则等于()A. B. C. D.2.如图,点A,B,P是⊙O上的三点,若,则∠APB的度数为()A. 80°B. 140°C. 20°D. 50°(第2题图)(第4题图)(第7题图)(第8题图)3.某商场举行投资促销活动,对于“抽到一等奖的概率为”,下列说法正确的是()A. 抽一次不可能抽到一等奖B. 抽次也可能没有抽到一等奖C. 抽次奖必有一次抽到一等奖D. 抽了次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A. =B. =C. =D. =5.二次函数的图像的顶点坐标是()A. B. C. (1,2) D.6.已知⊙O的直径为10,圆心O到弦AB的距离OM为3,则弦AB的长是()A. 4B. 6C. 7D. 87.如图,在平行四边形ABCD中,点E为CD的中点,AE交BD于点O,下列说法错误的是()A. AB:DE=2:1B. S△ODE:S△AOB=1:2C. S△ABD:S△BDC=1:1D. S△AOB=4S△ODE8.如图等腰三角形的顶角=45°,以AB为直径的半圆O与BC,AC相较于点D,E两点,则弧AE所对的圆心角的度数为()A. 40°B. 50°C. 90°D. 100°9.抛物线y=﹣x2+bx+c的部分图象如图所示,要使y>0,则x的取值范围是()A. ﹣4<x<1B. ﹣3<x<1C. x<﹣4或x>1D. x<﹣3或x>110.如图,D是△ABC的边BC上一点,AB=4,AD=2.∠DAC=∠B.若△ACD的面积为a,则△ABD的面积为()A. 2aB. 3aC. 4aD. 5a(第9题图)(第10题图)(第11题图)11.如图,在边长为1的小正方形网格中,点A,B,C,D都在这些小正方形的顶点上,连结CD与AB相交于点P,则tan∠APD的值是( )A. 2B.C.D.12.如图,在平面直角坐标系中,直线不经过第四象限,且与轴,轴分别交于两点,点为的中点,点在线段上,其坐标为,连结,,若,那么的值为()A. B. 4 C. 5 D. 6(第12题图)(第13题图)二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13.如图,,直线a、b与、、分别相交于点A、B、C和点D、E、F.若,,,则________.14.已知(-10≤x≤0),则函数y的取值范围是________15.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为________时,△ADP和△ABC相似.16.如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为________.17.如图,已知△中,,,点、分别在边、上,,,那么的长是________.18.如图,在平面直角坐标系中,点P是以C()为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最大值是________.(第15题图)(第16题图)(第17题图)(第18题图)三、解答题(本大题有8小题,共78分)解答应写出文字说明,证明过程或推演步骤.19.(6分)(1)计算:sin30°-3tan60°+cos245°。

浙教版九年级上册数学期末复习试题(有答案)

浙教版九年级上册数学期末复习试题(有答案)

浙教新版2020-2021学年九年级上册数学期末复习试题一.选择题(共10小题,满分30分,每小题3分)1.抛物线y=﹣3(x﹣1)2+5的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣5D.直线x=52.小刚是一名学校足球队的队员,根据以往比赛数据统计,小刚每场比赛进球率为15%,他明天将参加一场学校足球队比赛,下面说法正确的是()A.小刚明天肯定进球B.小刚明天每射球15次必进球1次C.小刚明天有可能进球D.小刚明天一定不能进球3.已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为()A.3B.2C.4D.54.二次函数y=(x﹣1)(x﹣m+1)(m是常数),当﹣2≤x≤0时,y>0,则m的取值范围为()A.m<0B.m<1C.0<m<1D.m>15.如图,AB是⊙O的直径,点C、D在⊙O上,∠BDC=20°,则∠AOC的大小为()A.40°B.140°C.160°D.170°6.如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan∠CPN为()A.1B.2C.D.7.如图,在扇形OAB中,∠AOB=100°30',OA=20,将扇形OAB沿着过点B的直线折叠,点O恰好落在AB的点D处,折痕交OA于点C,则的长为()A.4.5πB.5πC.πD.7.2π8.如图,已知矩形ABCD的边AD长为8cm,边AB长为6cm,从中截去一个矩形(图中阴影部分),如果所截矩形与原矩形相似,那么所截矩形的面积是()A.28cm2B.27cm2C.21cm2D.20cm29.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④10.如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.若(b+d+f≠0),则=.12.3sin60°﹣2tan30°=.13.如果函数y=b的图象与函数y=x2﹣3|x﹣1|﹣4x﹣3的图象恰有三个交点,则b的可能值是.14.小猫行走在如图所示的图形上,△ABC顶点是正方形网格中,小猫停留在白砖上的概率为.15.平面直角坐标系中,⊙O交x轴正负半轴于点A、B,点P为⊙O外y轴正半轴上一点,C为第三象限内⊙O上一点,PH⊥CB交CB延长线于点H,已知∠BPH=2∠BPO,PH =15,CH=24,则tan∠BAC的值为.16.如图,在△ABC中,∠A=45°,∠ACB=75°,BC=5,将△ABC绕点C旋转得到△A'B'C,且点B'恰好落在AB边上,则BB'的长为.三.解答题(共8小题,满分66分)17.计算:18.已知函数y=(x﹣1)[(k﹣1)x+(k﹣3)].(1)函数图象是否始终经过某定点,若经过,请求出该定点;(2)函数图象与坐标轴有且仅有2个交点,求k的值;(3)当x时,y随x的增大而增大,求k的取值范围.19.如图,四边形ABCD内接于⊙O,AC⊥BD于E.(1)用尺规作图作DF⊥AB于F,交AC于G,并标出F、G(保留作图痕迹,不写作法);(2)在(1)中,求证:EG=EC.20.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了多少人;(2)将条形统计图补充完整;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.21.人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)22.某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w 元,问:x为何值时,w最大?最大值是多少?23.矩形ABCD的一边长AB=4,且BC>AB,以边AB为直径的⊙O交对角线AC于H,AH=2,如图,点K为下半圆上一点.(1)求∠HAB的度数;(2)求CH的长;(3)求图中阴影部分的面积;(4)若圆上到直线AK距离等于3的点有且只有一个,请直接写出线段AK的长.24.如图,已知一次函数y=kx+b的图象经过A(﹣1,﹣5),B(0,﹣4)两点且与x轴交于点C,二次函数y=ax2+bx+4的图象经过点A、点C.(1)求一次函数和二次函数的函数表达式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D,C,B构成的三角形与△OAB相似?若存在,求出点D的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵由抛物线y=﹣3(x﹣1)2+5可知,其顶点坐标为(1,5),∴抛物线的对称轴为直线x=1.故选:B.2.解:根据以往比赛数据统计,小刚每场比赛进球率为15%,他明天将参加一场比赛小刚明天有可能进球.故选:C.3.解:∵△FHB和△EAD的周长分别为30和15,∴△FHB和△EAD的周长比为2:1,∵△FHB∽△EAD,∴=2,即=2,解得,EA=3,故选:A.4.解:∵二次函数y=(x﹣1)(x﹣m+1)(m是常数),∴该函数的图象开口向上,与x轴的交点为(1,0),(m﹣1,0),∵当﹣2≤x≤0时,y>0,∴当m﹣1≥1时,即m≥2或当0<m﹣1<1,得1<m<2,由上可得,m的取值范围为m>1,故选:D.5.解:∵∠BOC=2∠BDC=2×20°=40°,∴∠AOC=180°﹣40°=140°.故选:B.6.解:连接格点MN、DM,如图所示:则四边形MNCE是平行四边形,△DAM和△MBN都是等腰直角三角形,∴EC∥MN,∠DMA=∠NMB=45°,DM=AD=2,MN=BM=,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=180°﹣∠DMA﹣∠NMB=180°﹣45°﹣45°=90°,∴tan∠CPN=tan∠DNM===2,故选:B.7.解:连接OD,100°30′=100.5°,由折叠的性质可知,OB=BD,∴OD=OB=BD,∴△OBD为等边三角形,∴∠BOD=60°,∴∠AOD=100.5°﹣60°=40.5°,∴的长==4.5π,故选:A.8.解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形AEFB,则,设AE=x(cm),得到:,解得:x=4.5,则截取的矩形面积是:6×4.5=27(cm2).故选:B.9.解:①由图象可知,小球在空中达到的最大高度为40m,则小球在空中经过的路程一定大于40m,故①错误;②由图象可知,小球6s时落地,故小球运动的时间为6s,故②正确;③小球抛出3秒时达到最高点,即速度为0,故③正确;④设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a (0﹣3)2+40,解得a =﹣,∴函数解析式为h =﹣(t ﹣3)2+40,∴当t =1.5s 时,h =﹣(1.5﹣3)2+40=30,∴④正确.综上,正确的有②③④.故选:C . 10.解:如图,连接AL ,GL ,PF .由题意:S 矩形AMLD =S 阴=a 2﹣b 2,PH =,∵点A ,L ,G 在同一直线上,AM ∥GN ,∴△AML ∽△GNL , ∴=,∴=,整理得a =3b ,∴===,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:∵,∴==.故答案为.12.解:原式=3×﹣2×=﹣=.故答案为:.13.解:当x≥1时,函数y=x2﹣3|x﹣1|﹣4x﹣3=x2﹣7x,图象的一个端点为(1,﹣6),顶点坐标为(,﹣),当x<1时,函数y=x2﹣3|x﹣1|﹣4x﹣3=x2﹣x﹣6,顶点坐标为(,﹣),∴当b=﹣6或b=﹣时,两图象恰有三个交点.故本题答案为:﹣6,﹣.14.解:∵由图可知,△ABC是等腰直角三角形,其面积为:×AB×AC=2.5,共有9块方砖,∴白色方砖在整个地板中所占的比值==,∴小猫停留在白砖上的概率为:.故答案为:.15.解:设PB交⊙O于点N,连接PA,延长PB、AC交于点M,∵AB是直径,PH⊥CB∴∠ANP=90°=∠ACB=∠H,∴MC∥PH,由圆的对称性可得,PA=PB,∠BPO=∠APO=∠APB,∵∠BPH=2∠BPO,∴∠BPH=∠APB,∴△PHB≌△PNA(AAS),∴PN=PH=15,由MC∥PH得,∠HPB=∠M=∠APM,∴AM=AP=PB,∵AN⊥PM,∴PM=2PN=30,由△PHB∽△MCB,∴==,设MC=a,BC=b,MB=c,则HB=24﹣b,PB=30﹣c,∴==,∴==sin M=sin∠HPB,∴cos∠HPB=在Rt△PHB中,PH=15,∴PB===25,HB=sin∠HPB•PH=20,∴BC=24﹣20=4,MB=30﹣25=5,则MC==3,在Rt△ABC中,BC=4,AC=AM﹣MC=25﹣3=22,∴tan∠BAC===,故答案为:.16.解:∵△ABC中,∠A=45°,∠ACB=75°,∴∠B=180°﹣45°﹣75°=60°,由旋转的性质得:CB'=CB,∴△BCB'是等边三角形,∴BB'=BC=5;故答案为:5.三.解答题(共8小题,满分66分)17.解:=1﹣+1+3×﹣4=2﹣+﹣4=2﹣418.解:(1)∵y=(x﹣1)[(k﹣1)x+(k﹣3)],∴x=1时,y=0,∴该函数图象始终经过一个定点,点坐标为(1,0).(2)∵y=(x﹣1)[(k﹣1)x+(k﹣3)]=(k﹣1)x2﹣2x﹣(k﹣3),当k﹣1=0时,得k=1.此时函数与坐标轴有两个交点,符合题意;当k﹣1≠0时,则△=(﹣2)2﹣4(k﹣1)[﹣(k﹣3)]=0,解得k=2,综上k的值为1或2,(3)∵y=(x﹣1)[(k﹣1)x+(k﹣3)]=(k﹣1)x2﹣2x﹣(k﹣3),∴对称轴为直线x=﹣=,由题意可知,k﹣1<0,≥﹣,解得k≤﹣3.19.解:(1)如图所示;(2)证明:∵AC⊥BD,DF⊥AB,∴∠BFD=∠AEB=90°,即∠GED=∠DEC=90°,∵∠B=∠B,∴△ABE∽△DBF,∴∠BAE=∠BDF,∵∠BAE=∠BDC,∴∠BDC=∠BDF,∵DE=DE,∴△DGE≌△DCE(ASA),∴GE=CE.20.解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200人,故答案为:200;(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.21.解:过点A作AF⊥BC于点F,则AF∥DE,∴∠BDE=∠BAF,∵AB=AC,∠BAC=40°,∴∠BDE=∠BAF=20°,∴DE=BD•cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.22.解:(1)当100≤x≤300时,设y与x的函数关系式为:y=kx+b,根据题意得出:,解得:,∴y与x的函数关系式为:y=﹣x+110,故答案为:y=﹣x+110;(2)当x=200时,y=﹣20+110=90,∴90×200=18000(元),答:某零售商一次性批发A品牌服装200件,需要支付18000元;(3)分两种情况:①当100≤x≤300时,w=(﹣x+110﹣71)x=﹣+39x=﹣(x﹣195)2+3802.5,∵批发件数x为10的正整数倍,∴当x=190或200时,w有最大值是:﹣(200﹣195)2+3802.5=3800;②当300<x≤400时,w=(80﹣71)x=9x,当x=400时,w有最大值是:9×400=3600,∴一次性批发A品牌服装x(100≤x≤400)件时,x为190元或200元时,w最大,最大值是3800元.23.解:(1)连接OH,∵AB为⊙O的直径,∴∠AHB=90°,∵AB=4,AH=2,∴OA=OH=AH,∴∠HAB=60°;(2)∵四边形ABCD 是矩形,∴∠ABC =90°,又∠BAH =60°,∴∠ACB =30°,∴AC =2AB =8,∴CH =AC ﹣AH =6;(3)过H 作HE ⊥AO 于E ,∵∠HAB =60°,AH =2,∴HE =AH =,∵AC =8,CD =AB =4,∴AD ==4,∴图中阴影部分的面积=S △ABC ﹣(S 扇形HAO ﹣S △AOH )=×4﹣(﹣)=9﹣π; (4)过O 作MN ⊥A K 于N .交⊙O 于M ,由题意可知MN =3,∵OM =OA =2,∴ON =1,∴AN ==,∴AK =2AN =2.24.解:(1)∵一次函数y=kx+b的图象经过A(﹣1,﹣5),B(0,﹣4)两点,∴﹣5=﹣k+b,b=﹣4,k=1,∴一次函数解析式为:y=x﹣4,∵一次函数y=x﹣4与x轴交于点C,∴y=0时,x=4,∴C(4,0),∵二次函数y=ax2+bx+4的图象经过点A(﹣1,﹣5)、点C(4,0),∴,解得a=﹣2,b=7,∴二次函数的函数表达式为y=﹣2x2+7x+4;(2)过O作OH⊥BC,垂足为H,∵C(4,0),B(0,﹣4),∴OB=OC=4,即△BOC为等腰直角三角形,∴BC===4,∴OH=BC=2,由点O(0,0),A(﹣1,﹣5),得:OA=,在Rt△OAH中,sin∠OAB===;(3)存在,由(2)可知,△OBC为等腰直角三角形,OH=BH=2,在Rt△AOH中,根据勾股定理得:AH===3,∴AB=AH﹣BH=,∴当点D在C点右侧时,∠OBA=∠DCB=135°,①当,即时,解得CD=2,∵C(4,0),即OC=4,∴OD=OC+CD=2+4=6,此时D坐标为(6,0);②当,即时,解得CD=16,∵C(4,0),即OC=4,∴OD=OC+CD=16+4=20,此时D坐标为(20,0),综上所述,若△BCD与△ABO相似,此时D坐标为(6,0)或(20,0).。

2020-2021学年浙教版九年级上册数学期末复习试卷(有答案)

2020-2021学年浙教版九年级上册数学期末复习试卷(有答案)

2020-2021学年浙教新版九年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.二次函数y=(x+1)2﹣2的最小值是()A.﹣2B.﹣1C.1D.22.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.3.若=,则的值为()A.5B.C.3D.4.在Rt△ABC中,∠C=90°,如果AC=2,cos A=,那么AB的长是()A.B.C.D.5.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.当x=﹣1时,y有最大值是2C.对称轴是x=﹣1D.顶点坐标是(1,2)6.下列线段不成比例的是()A.1cm,2cm,3cm,4cm B.1cm,2cm,6cm,12cmC.2cm,1cm,6cm,3cm D.3cm,4cm,6cm,8cm7.对于函数y=x2﹣2|x|﹣3,下列说法正确的有()个①图象关于y轴对称;②有最小值﹣4;③当方程x2﹣2|x|﹣3=m有两个不相等的实数根时,m>﹣3;④直线y=x+b与y=x2﹣2|x|﹣3的图象有三个交点时,﹣<b≤﹣3.A.1B.2C.3D.48.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E,那么∠AED等于()A .80°B .60°C .40°D .30°9.中国最早的一部数学著作《周髀算经》中记载着勾股定理.约1400年后的汉代数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的证明.这就是如图所示的“赵爽弦图”,若|sin a ﹣cos a |=,则小正方形与直角三角形的面积比为( )A .1:B .1:1C .2:D .1:510.如图,在Rt △ABC 中,∠ABC =90°.AB =BC .点D 是线段AB 上的一点,连结CD .过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF ,给出以下四个结论:①=;②若点D 是AB 的中点,则AF =AB ;③当B 、C 、F 、D 四点在同一个圆上时,DF =DB ;④若=,则S △ABC =9S △BDF ,其中正确的结论序号是( )A .①②B .③④C .①②③D .①②③④二.填空题(共6小题,满分24分,每小题4分)11.计算:sin30°•cot60°= .12.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么该镇在日常生活中会进行垃圾分类的人数大约为 人.13.如果点P 是线段AB 的黄金分割点(AP >BP ),那么的值是 . 14.如图,AB ∥CD ,∠B =120°,∠D =145°,则∠BED 等于 °.15.圆O的半径为10,两平行弦AC,BD的长分别为12,16,则两弦间的距离是.16.如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为.三.解答题(共7小题,满分66分)17.用配方法求二次函数y=﹣x2﹣x+的对称轴和顶点坐标.18.为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.19.如图,在Rt△ABC中,∠A=90°,AC=16cm,AB=8cm,动点D从点B出发,沿BA 方向运动;同时动点E从点A出发,沿AC方向运动.如果点E的运动速度为4cm/s,点D的运动速度为2cm/s,那么运动几秒时,△ABC和△ADE相似?20.如图,在锐角三角形ABC中,AB=4,BC=,∠B=60°,求△ABC的面积21.如图,⊙O的直径AB=16,半径OC⊥AB,D为上一动点(不包括B,C两点),DE⊥OC,DF⊥AB,垂足分别为E,F.(1)求EF的长.(2)若点E为OC的中点,①求劣弧CD的长度;②若点P为直径AB上一动点,直接写出PC+PD的最小值.22.在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1.(1)求抛物线顶点C的坐标(用含m的代数式表示);(2)已知点A(0,3),B(2,3),若该抛物线与线段AB有公共点,结合函数图象,求出m的取值范围.23.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:二次函数y=(x+1)2﹣2的顶点坐标为(﹣1,﹣2),因此当x=﹣1时,y=最小﹣2,故选:A.2.解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.3.解:由=,得4b=a﹣b.,解得a=5b,==5,故选:A.4.解:在Rt△ABC中,∵∠C=90°,AC=2,又∵cos A==,∴AB=,故选:B.5.解:二次函数y=(x﹣1)2+2的图象的开口向上,故A错误;当x=1时,函数有最小值2,故B错误;对称轴为直线x=1,故C错误;顶点坐标为(1,2),故D正确.故选:D.6.解:A、1×4≠2×3,不成比例;B、1×12=2×6,成比例;C、2×3=1×6,成比例;D、8×3=4×6,成比例;故选:A.7.解:①∵a2﹣2|a|﹣3=(﹣a)2﹣2|﹣a|﹣3,∴y=x2﹣2|x|﹣3的图象关于y轴对称,故①正确;②∵y=x2﹣2|x|﹣3=(|x|﹣1)2﹣4,∴当|x|=1即x=±1时,y有最小值为﹣4,故②正确;③当m=﹣4时,方程x2﹣2|x|﹣3=m为x2﹣2|x|﹣3=﹣4,可化为(|x|﹣1)2=0,解得x=±1,有两个不相等的实数根,此时m=﹣4<﹣3,故③错误;④∵直线y=x+b与y=x2﹣2|x|﹣3的图象有三个交点,∴方程x2﹣2|x|﹣3=x+b,即x2﹣2|x|﹣x﹣3﹣b=0有3个解,∴方程x2﹣3x﹣3﹣b=0(x≥0)与方程x2+x﹣3﹣b=0(x<0)一共有3个解,∴当方程x2﹣3x﹣3﹣b=0(x≥0)有两个不相等的非负数根,则方程x2+x﹣3﹣b=0(x <0)有两个相等的负数根;或当方程x2﹣3x﹣3﹣b=0(x≥0)有两个不相等的非负数根,则方程x2+x﹣3﹣b=0(x<0)有一个负数根;或方程x2﹣3x﹣3﹣b=0(x≥0)有一个非负数根或两个相等的非负数根,则方程x2+x﹣3﹣b=0(x<0)有两个不相等的负数根.即或或,解得,b=﹣,或b=﹣3,∴当b=﹣或b=﹣3时,直线y=x+b与y=x2﹣2|x|﹣3的图象有三个交点,故④错误;故选:B.8.解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.故选:C.9.解:如图.在Rt△ABC中,∵∠ACB=90°,∴sinα=,cosα=.∵|sin a﹣cos a|=,∴(﹣)2=()2,∴()2=,即=.设S小正方形=k,则S大正方形=5k,∴S直角三角形=(S大正方形﹣S小正方形)=k,∴==1.故选:B.10.解:依题意可得BC∥AG,∴△AFG∽△CFB,∴,又AB=BC,∴.故结论①正确;如右图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△ABG与△BCD中,,∴△ABG ≌△BCD (ASA ),∴AG =BD ,又∵BD =AD ,∴AG =AD ;∵△ABC 为等腰直角三角形,∴AC =AB ;∴AG =AD =AB =BC ;∵△AFG ∽△BFC ,∴=,∴FC =2AF ,∴AF =AC =AB .故结论②正确;当B 、C 、F 、D 四点在同一个圆上时,∵∠ABC =90°,∴CD 是B 、C 、F 、D 四点所在圆的直径,∵BG ⊥CD ,∴, ∴DF =DB ,故③正确;∵,AG =BD ,,∴, ∴=, ∴AF =AC ,∴S △ABF =S △ABC ;∴S △BDF =S △ABF ,∴S △BDF =S △ABC ,即S △ABC =12S △BDF .故结论④错误.故选:C .二.填空题(共6小题,满分24分,每小题4分)11.解:原式=×=.故答案为:. 12.解:由题意可得,该镇在日常生活中会进行垃圾分类的人数大约为: 150000×=30000(人).故答案为:30000.13.解:∵点P 是线段AB 的黄金分割点(AP >BP ),∴==. 故答案为. 14.解:过点E 作EF ∥AB ,则EF ∥CD ,如图所示.∵AB ∥EF ,∴∠BEF =180°﹣∠B =60°;∵CD ∥EF ,∴∠DEF =180°﹣∠D =35°.∴∠BED =∠BEF +∠DEF =95°.故答案为:95.15.解:如图①,当弦AC,BD在⊙O的圆心同侧时,作OE⊥AC垂足为E,交BD于点F,∵OE⊥ACAC∥BD,∴OF⊥BD,∴AE=AC=6,BF=BD=8,在Rt△AOE中OE===8,同理可得:OF=6,∴EF=OE﹣OF=8﹣6=2;如图②,当弦AC,BD在⊙O的圆心两侧时,如图②,当弦AC,BD在⊙O的圆心两侧时,同理可得:EF=OE+OF=8+6=14,综上所述两弦之间的距离为2或14,故答案为:2或14.16.解:抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的对称轴分别为直线x=3与直线x=﹣2,∵点A的横坐标为1,∴点C的横坐标为5,点B横坐标为﹣5,∴AC=4,AB=6,则==,故答案为:三.解答题(共7小题,满分66分)17.解:∵二次函数为,∴二次函数y=﹣(x2+2x+1)++=﹣(x+1)2+2,∴对称轴是直线x=﹣1,顶点坐标为(﹣1,2).18.解:(1)用列表法表示所有可能结果如下:(2)共有6种等可能情形,恰好选中医生甲和护士A只有一种情形,P(恰好选中医生甲和护士A)=,∴恰好选中医生甲和护士A的概率是.19.解:设同时运动ts时两个三角形相似,根据题意可知:AC=16,AB=8,AD=AB﹣DB=8﹣2t,AE=4t,当△DAE∽△CAB,则=,=,解得t=0.8;当△DAE∽△BAC,则=,=,解得t=2.答:同时运动0.8s或者2s时两个三角形相似.20.解:作AD⊥BC于点D,在Rt△ABD中,sin B=,∴AD=AB•sin B=4×=2,∴△ABC的面积=×BC×AD=×3×2=9.21.解:(1)如图,连接OD,∵⊙O的直径AB=16,∴圆的半径为16÷2=8.∵OC⊥AB,DE⊥OC,DF⊥AB,∴四边形OFDE是矩形,∴EF=OD=8.(2)①∵点E为OC的中点,∴,∴∠EDO=30°,∴∠DOE=60°,∴劣弧CD的长度为.②延长CO交⊙O于点G,连接DG交AB于点P,则PC+PD的最小值为DG.∵,,∴,∴PC+PD的最小值为.22.解:(1)y=x2﹣2mx+m2﹣1=(x﹣m)2﹣1,∴抛物线顶点为C(m,﹣1).(2)把A(0,3)的坐标代入y=x2﹣2mx+m2﹣1,得3=m2﹣1,解得,m=±2.把B(2,3)的坐标代入y=x2﹣2mx+m2﹣1,得3=22﹣2m×2+m2﹣1,即m2﹣4m=0,解得,m=0或m=4.结合函数图象可知:﹣2≤m≤0或2≤m≤4.23.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=2,∴,∴EF=4.。

2020-2021学年浙教 版九年级上册数学期末复习试卷(有答案)

2020-2021学年浙教 版九年级上册数学期末复习试卷(有答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2020-2021学年浙教新版九年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.如图,AB是⊙O的直径,C,D是⊙O上两点,且CD=CB,CD与AB交于点E,连接OD,若∠AOD=80°,则∠B的度数是()A.20°B.25°C.30°D.35°2.已知=,则的值为()A.B.C.D.3.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上4.如图所示,△ABC的顶点在正方形网格的格点上,则tan A的值为()A.B.C.2D.25.已知二次函数y=﹣(x﹣3)2,那么这个二次函数的图象有()A.最高点(3,0)B.最高点(﹣3,0)C.最低点(3,0)D.最低点(﹣3,0)6.如图,在边长为2的正方形ABCD中,以点D为圆心,AD为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S2﹣S1的值为()A.﹣4B.+4C.﹣2D.+27.如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A.B.C.D.8.如图,已知∠ACD=∠B,若AC=6,AD=4,BC=10,则CD长为()A.B.7C.8D.99.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)10.在平面直角坐标系中,点P的坐标为(1,2),将抛物线y=x2﹣3x+2沿坐标轴平移一次,使其经过点P,则平移的最短距离为()A.B.1C.5D.二.填空题(共6小题,满分18分,每小题3分)11.如果α是锐角,且sinα=cos20°,那么α=度.12.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.13.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.14.现有以下命题:①平分弦的直径垂直弦,平分弦所对的弧;②等弧所对的弦相等,所对的圆周角相等;③在同圆或等圆中,弦相等所对的圆周角也相等;④各边都相等的多边形是正多边形.正确的有.15.如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.16.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,∠ABC 的平分线BF交AD于点F,若DE=4,DF=3,则AF的长为.三.解答题(共7小题,满分72分)17.(12分)计算:2cos245°+tan60°•tan30°﹣cos60°18.(8分)在平面直角坐标系xOy中,二次函数y=ax2﹣2kx+k2+k图象的对称轴为直线x =k,且k≠0,顶点为P.(1)求a的值;(2)求点P的坐标(用含k的式子表示);(3)已知点A(0,1),B(2,1),若函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB恰有一个公共点,直接写出k的取值范围.19.(8分)福州国际马拉松赛事设有“马拉松(42.195公里)”,“半程马拉松(21.0975公里)”,“迷你马拉松(5公里)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195公里)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.20.(10分)为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30°方向,C在A的南偏西15°方向(30+30)km处.学生分成两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是40km/h,第二组乘公交车,速度是30km/h,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).21.(10分)下面是小明设计的“作圆的一个内接正三角形”的尺规作图过程.已知:⊙O.求作:等边△ABC,使得等边△ABC内接于⊙O,作法:如图,①作⊙O的直径AD;②以点D为圆心,DO长为半径画弧,交⊙O的圆弧于B,C两点;③连接AB,AC,所以△ABC就是所求作的三角形.根据小明设计的尺规作图过程,完成下面的证明:证明:连接BO,CO,BD,CD.∵点B,D都在⊙O上;点O,B都在⊙D上,∴OB=OD,BD=OD.∴OB=OD=BD,∴△BOD是等边三角形(①)(填推理的依据).∴∠BOD=∠BDO=60°同理∠COD=∠CDO=60°.∴∠BOC=∠BOD+∠COD=120°∴在⊙O中,∠BAC=∠BOC=60°(②)(填推理的依据).∵∠ACB=∠ADB=60°(③)(填推理的依据).∴△ABC为等边三角形.22.(12分)△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC 的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N 分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?23.(12分)如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时E点的坐标;(3)如图2,在x轴上是否存在一点D使得△ACD为等腰三角形?若存在,请求出所有符合条件的点D的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:连接BD,∵∠AOD=80°,∴∠OBD=∠AOD=40°,∠BOD=180°﹣∠AOD=180°﹣80°=100°,∴=50°,∵DC=CB,∴∠CDB=∠CBD==65°,∴∠CBA=∠CBD﹣∠OBD=65°﹣40°=25°.故选:B.2.解:∵=,∴a=b,∴==.故选:A.3.解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C.4.解:如图,连接BD,由网格的特点可得,BD⊥AC,AD==2,BD==,∴tan A===,故选:A.5.解:∵二次函数y=﹣(x﹣3)2,∴a=﹣1,该函数图象开口向下,当x=3时,有最大值y=0,即该函数图象有最高点(3,0),故选:A.6.解:由图形可知,扇形ADC的面积+半圆BC的面积+阴影部分①的面积﹣正方形ABCD 的面积=阴影部分②的面积,∴S2﹣S1=扇形ADC的面积+半圆BC的面积﹣正方形ABCD的面积=+π×12﹣22=﹣4,故选:A.7.解:由题意得,A中三角形对应角相等,对应边成比例,两三角形相似;C,D中正方形,菱形四条边均相等,所以对应边成比例,又角也相等,所以正方形,菱形相似;而B中矩形四个角相等,但对应边不一定成比例,所以B中矩形不是相似多边形.故选:B.8.解:∵∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,∴,∵AC=6,AD=4,BC=10,∴,∴CD=.故选:A.9.解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置,点的坐标为(﹣1,1).故选:B.10.解:y=x2﹣3x+2=(x﹣3)2﹣,当沿水平方向平移时,纵坐标和P的纵坐标相同,把y=2代入y=x2﹣3x+2得:2=x2﹣3x+2,解得:x=0或6,平移的最短距离是1﹣0=1,当沿竖直方向平移时,横坐标和P的横坐标相同,把x=1代入y=x2﹣3x+2得:y=×12﹣3×1+2=﹣,平移的最短距离是2+=,即平移的最短距离是1,故选:B.二.填空题(共6小题,满分18分,每小题3分)11.解:∵sinα=cos20°,∴α=90°﹣20°=70°.故答案为:70.12.解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∴出场顺序恰好是甲、乙、丙的概率为,故答案为:.13.解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣2x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8,∵墙长为15m,∴16﹣2x≤15,∴0.5≤x<8,∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.14.解:①平分弦(不是)的直径垂直弦,平分弦所对的弧,故原命题错误;②等弧所对的弦相等,所对的圆周角相等,正确;③在同圆或等圆中,弦相等所对的圆周角相等或互补,故原命题错误;④各边都相等、各角也相等的多边形是正多边形,故原命题错误,正确的有②,故答案为:②.15.解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.16.证明:如图,∵AE平分∠BAC,∴∠1=∠4,∵∠1=∠5,∴∠4=∠5,∵BF平分∠ABC,∴∠2=∠3,∵∠6=∠3+∠4=∠2+∠5,即∠6=∠EBF,∴EB=EF;∵DE=4,DF=3,∴BE=EF=DE+DF=7,∵∠5=∠4,∠BED=∠AEB,∴△EBD∽△EAB,∴,∴,∴EA=,∴AF=AE﹣EF=,故答案为:.三.解答题(共7小题,满分72分)17.解:原式=2×()2+×﹣=1+1﹣=.18.解:(1)∵二次函数y=ax2﹣2kx+k2+k图象的对称轴为直线x=k,∴﹣,∴a=1;(2)把a=1代入y=ax2﹣2kx+k2+k得,y=x2﹣2kx+k2+k,当x=k时,y=k2﹣2k2+k2+k=k,∴顶点P(k,k);(3)∵函数y=ax2﹣2kx+k2+k=x2﹣2kx+k2+k=(x﹣k)2+k,∴抛物线的开口向上,抛物线的对称轴为x=k,顶点为(k,k),∵点A(0,1),B(2,1),∴①当k>1时,抛物线的顶点在直线AB的上方,抛物线与直线AB没有公共点,则函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB没有公共点;②当k=1时,顶点(1,1)在线段AB上,即函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB恰有一个公共点;③当k<0时,则x=k+1或k﹣1时,y=1+k<1,函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象在线段AB下方,没有公共点;④当k=0时,函数y=ax2﹣2kx+k2+k=x2,与线段AB恰有一个公共点(1,1);⑤当0<k<1时,若函数图象过A(0,1)时,k2+k=1,解得k=<0(舍去),或k=,∵0<<1,∴根据抛物线的对称性知,当≤k<1时,函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB有两个公共点,当0<k<时,函数y=ax2﹣2kx+k2+k(k﹣1≤x ≤k+1)的图象与线段AB恰有一个公共点;综上所述:若函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB恰有一个公共点,则0≤k<或k=1;19.解:(1)小智被分配到“马拉松(42.195公里)”项目组的概率为,故答案为:;(2)记这三个项目分别为A、B、C,画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3,所以小智和小慧被分到同一个项目组进行志愿服务的概率为=.20.解:作BD⊥AC于D.依题意得,∠BAE=45°,∠ABC=105°,∠CAE=15°,∴∠BAC=30°,∴∠ACB=45°.在Rt△BCD中,∠BDC=90°,∠ACB=45°,∴∠CBD=45°,∴∠CBD=∠DCB,∴BD=CD,设BD=x,则CD=x,在Rt△ABD中,∠BAC=30°,∴AB=2BD=2x,tan30°=,∴,∴AD=x,在Rt△BDC中,∠BDC=90°,∠DCB=45°,∴sin∠DCB=,∴BC=x,∵CD+AD=30+30,∴x+,∴x=30,∴AB=2x=60,BC=,第一组用时:60÷40=1.5(h);第二组用时:30(h),∵<1.5,∴第二组先到达目的地,答:第一组用时1.5小时,第二组用时小时,第二组先到达目的地.21.解:根据小明设计的尺规作图过程,证明:连接BO,CO,BD,CD.∵点B,D都在⊙O上;点O,D都在AD上,∴OB=OD,BD=OD..∴OB=OD=BD,∴△BOD是等边三角形(①三边相等的三角形是等边三角形)(填推理的依据).∴∠BOD=∠BDO=60°同理∠COD=∠CDO=60°.∴∠BOC=∠BOD+∠COD=120°∴在⊙O中,∠BAC=∠BOC=60°(②一条弧所对的圆周角是它所对圆心角的一半)(填推理的依据).∵∠ACB=∠ADB=60°(③同弧所对的圆周角相等)(填推理的依据).∴△ABC为等边三角形.故答案为:三边相等的三角形是等边三角形,一条弧所对的圆周角是它所对圆心角的一半,同弧所对的圆周角相等.22.解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2.∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.23.解:(1)将点A(1,0),B(﹣3,0)代入y=ax2+bx+3,得,,解得,,∴抛物线表达式为y=﹣x2﹣2x+3;(2)如图1,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,∴===,∴当时,S最大,且最大值为;四边形BOCE当时,,此时,点E坐标为;(3)如图2,连接AC,①当CA=CD时,此时CO为底边的垂直平分线,满足条件的点D1,与点A关于y轴对称,点D1坐标为(﹣1,0);②当AD=AC时,在Rt△ACO中,∵OA=1,OC=3,由勾股定理得,AC==,以点A为圆心,AC的长为半径作弧,交x轴于两点D2,D3,即为满足条件的点,此时它们的坐标分别为,;③当DA=DC时,线段AC的垂直平分线与x轴的交点D4,即为满足条件的点,设垂直AC的垂直平分线交y轴于点P,过AC中点Q,∵∠AOC=∠BOC=∠PQC=∠PQA=90°,∠D4PO=∠CPQ,∴∠ACO=∠OD4P,∴△D4AQ∽△CAO,∴=,即=,∴D4A=5,∴OD4=D4A﹣OA=4,∴点D4的坐标为(﹣4,0);综上所述,存在符合条件的点D,其坐标为D1(﹣1,0)或或或D4(﹣4,0).。

2020-2021学年浙教 版九年级上册数学期末复习试题(含答案解析)

2020-2021学年浙教 版九年级上册数学期末复习试题(含答案解析)

2020-2021学年浙教新版九年级上册数学期末复习试题一.选择题(共10小题,满分30分,每小题3分)1.已知线段b是线段a、c的比例中项,a=3,c=2,那么b的长度等于()A.B.6C.D.2.下列事件中,属于必然事件的是()A.明天的最高气温将达35℃B.任意购买一张动车票,座位刚好挨着窗口C.掷两次质地均匀的骰子,其中有一次正面朝上D.对顶角相等3.已知A(m,2020),B(m+n,2020)是抛物线y=﹣(x﹣h)2+2036上两点,则正数n=()A.2B.4C.8D.164.如图,⊙O中,点D,A分别在劣弧BC和优弧BC上,∠BDC=130°,则∠BOC=()A.120°B.110°C.105°D.100°5.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A.80πcm2B.40πcm2C.24πcm2D.2πcm26.国际象棋决赛在甲、乙两名选手之间进行,比赛规则是:共下8局棋,每局胜方得1分,负方得0分,平局则各得0.5分,谁的积分先达到4.5分便夺冠,不维续比赛:若8局棋下完双方积分相同,则继续下,直到分出胜负为止已知他们下完6局时,甲3胜1平.若以前6局棋取胜的频率为各自取胜的概率,那么在后面的两局棋中,甲夺冠的概率是()A.B.C.D.7.如图,已知∠ACD=∠B,若AC=6,AD=4,BC=10,则CD长为()A.B.7C.8D.98.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin A的值是()A.B.C.D.9.A(﹣,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣2)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1 10.如图,四边形ACBD是⊙O的内接四边形,AB是⊙O的直径,点E是DB延长线上的一点,且∠DCE=90°,DC与AB交于点G.当BA平分∠DBC时,的值为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.2sin45°+2cos60°﹣tan60°=.12.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为cm2.13.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为度.14.如图,在正六边形ABCDEF中,AC=2,则它的边长是.15.如图,已知点P是△ABC的重心,过P作AB的平行线DE,分别交AC于点D,交BC 于点E,作DF∥BC,交AB于点F,若四边形BEDF的面积为4,则△ABC的面积为.16.已知二次函数y=(x+1)(x﹣3),则该二次函数的对称轴为.三.解答题(共7小题,满分66分)17.某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.18.如图,在△ABC中,sin B=,tan C=,BC=3.求AC的长.19.如图,AB为⊙O的弦,半径OC,OD分别交AB于点E,F.且=.(1)求证:AE=BF;(2)作半径ON⊥AB于点M,若AB=12,MN=3,求OM的长.20.如图,已知正三角形ABC的边长为4,矩形DEFG的DE两个点在正三角形BC边上,F,G点在AB,AC边上,求矩形DEFG的面积最大值是多少?21.如图,在△ABC中,CD是边AB上的高,且=,(1)求∠ACB的大小;(2)求证BC2=BD•AB.22.如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B (2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;23.如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.。

2020-2021学年浙教版九年级上册数学期末试卷及答案

2020-2021学年浙教版九年级上册数学期末试卷及答案

2020-2021学年浙教版九年级上册数学期末试卷一.选择题(共10小题,满分27分)1.已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°2.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生3.国旗上的五角星需要旋转多少度后才能与自身重合()A.36°B.60°C.45°D.72°4.如图,在△ABC中,DE∥BC交AB于点D,交AC于点E,下列比例式中不成立的是()A.=B.=C.=D.=5.已知二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,则m的值一定不是()A.2B.6C.﹣2D.06.如图.在△ABC中,DE∥BC,∠B=∠ACD,则图中相似三角形有()A.2对B.3对C.4对D.5对7.如图,四边形ABCD的外接圆为⊙O,BC=CD,∠DAC=35°,∠ACD=45°,则∠ADB的度数为()A.55°B.60°C.65°D.70°8.如图,在Rt△ABC中,AC=BC,CD⊥AB于点D,E为BC中点,CD、AE交于点G,则下列结论中不一定正确的是()A.AG=2EGB.C.DG:AD=1:3D.△ADG的面积=四边形BEGD的面积9.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限10.如图,已知⊙O的半径为6,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB 与∠COD互补,弦CD=6,则弦AB的长为()A.6B.8C.3D.6二.填空题(共6小题,满分24分,每小题4分)11.若a是2,4,6的第四比例项,则a=;若x是4和16的比例中项,则x=.12.在学习了“用频率估计概率”这一节内容后,某课外兴趣小组利用计算器进行模拟试验来探究“6个人中有2个人同月过生日的概率”,他们将试验中获得的数据记录如下:试验次数100300500100016002000“有2个人同月过生日”的次数8022939277912511562“有2个人同月过生日”的频率0.80.7630.7840.7790.7820.781通过试验,该小组估计“6个人中有2个人同月过生日”的概率大约是(精确到0.01).13.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=.14.如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长(填:大或小),理由为.15.如图,矩形ABCD的长为6,宽为4,以D为圆心,DC为半径的圆弧与以BC为直径的半圆O相交于点F,连接CF并延长交BA的延长线于点H,FH•FC=.16.如图,平面直角坐标系中,点A(﹣3,﹣3),B(1,﹣1),若抛物线y=ax2+2x﹣1(a≠0)与线段AB(包含A、B两点)有两个不同交点,则a的取值范围是.三.解答题(共7小题)17.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)你认为这个游戏规则对双方公平吗?说说你的理由.18.如图,AB、CD为两个建筑物,建筑物AB的高度为90米,从建筑物AB的顶部A点测得建筑物CD的顶部C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD 为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号)19.如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=8cm,求图中劣弧BC的长.20.已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如下表所示:x……﹣3﹣2﹣101……y……03430……(1)求这个二次函数的解析式;(2)在直角坐标系中画出二次函数的图象;(3)结合图象,直接写出当y>0时,x的取值范围.21.如图,在平面直角坐标系中,A、B、C是⊙M上的三个点,A(0,4)、B(4,4)、C(6,2).(1)圆心M的坐标为;(2)判断点D(4,﹣3)与⊙M的位置关系.22.在平面直角坐标系xOy中,抛物线y=x2﹣2ax+a2﹣的对称轴与x轴交于点A.(1)求点A的坐标(用含a的代数式表示);(2)若抛物线与x轴交于P,Q两点,且PQ=2,求抛物线解析式;(3)点B的坐标为(0,),若该抛物线与线段AB恰有一个公共点,结合函数图象直接写出a的取值范围.23.【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.参考答案与试题解析一.选择题(共10小题,满分27分)1.解:由∠A为锐角,且sin A=,得∠A=45°,故选:C.2.解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.3.解:根据旋转对称图形的概念可知:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而国旗上的每一个正五角星绕着它的中心至少旋转72度能与自身重合.故选:D.4.解:∵DE∥BC,∴△ADE∽△ABC,∴==,=,=,∴=,∴选项A,B,C正确,故选:D.5.解:∵二次函数y=x2﹣(m﹣2)x+4=(x﹣)2﹣+4,∴该函数的顶点坐标为(,﹣+4),∵二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,∴=0或﹣+4=0,解得m=2或m1=﹣2,m2=6,故选:D.6.解:∵∠B=∠ACD,∠A=∠A,∴△ACD ∽△ABC , ∵DE ∥BC , ∴△ADE ∽△ABC , ∴△ACD ∽△ADE , ∵DE ∥BC , ∴∠EDC =∠DCB , ∵∠B =∠DCE , ∴△CDE ∽△BCD , 故共4对, 故选:C . 7.解:∵BC =CD , ∴=,∵∠ABD 和∠ACD 所对的弧都是,∴∠BAC =∠DAC =35°, ∵∠ABD =∠ACD =45°,∴∠ADB =180°﹣∠BAD ﹣∠ABD =180°﹣70°﹣45°=65°. 故选:C .8.解:∵在Rt △ABC 中,AC =BC ,CD ⊥AB 于点D , ∴D 为AB 的中点,CD =AD , 又∵E 为BC 中点, ∴点G 为△ABC 的重心,∴AG =2EG ,CG =CD ,DG =CD =AD , ∴DG :AD =1:3, 如图,连接BG ,则S △ADG =S △BDG <S 四边形BDGE ,即D 选项错误, 故选:D .9.解:由抛物线y=﹣x2+3x﹣1可知抛物线开口向下,与y轴的交点为(0,﹣1),对称轴为直线x=﹣>0,∴抛物线对称轴在y轴的右侧,∴直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2)都在第四象限,故选:D.10.解:作OE⊥AB于点E,∵⊙O的半径为6,弦CD=6,∴OC=OD=CD,∴△DOC是等边三角形,∴∠DOC=60°,∵∠AOB与∠COD互补,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵OA=6,OE⊥AB,∴AE=OA•cos30°=6×=3,∴AB=2AE=6,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵a是2,4,6的第四比例项,∴2:4=6:a,∴a=12;∵x是4和16的比例中项,∴x2=4×16,解得x=±8.故答案为:12;±8.12.解:通过图表给出的数据得出,该小组估计“6个人中有2个人同月过生日”的概率大约是0.78.故答案为:0.78.13.解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH=EF,∵EF∥AC,∴△BEF∽△BAC,∴=,即=,解得:EF=2,∴DH=EF=×2=1,故答案为:1.14.解:将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长小,理由是两点之间,线段最短.故答案为:小;两点之间,线段最短.15.解:连接BF、OF、OD,OD交CH于K.∵DF=DC,OF=OC,∴OD垂直平分线段CF,∴CK=KF==,OK==,∵OB=OC,CK=KF,∴BF=2OK=,∵BC是直径,∴∠BFC=90°,∵∠CBH=90°,∴∠CBF+∠FCB=90°,∠HBF+∠FBC=90°,∴∠HBF=∠FCB,∵∠BFH=∠BFC=90°,∴△BFH∽△CFB,∴BF2=CF•FH=.故答案为.16.解:①a<0时,x=1时,y≤﹣1,x=﹣3时,y≤﹣3,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,x=1时,y≥﹣1,即a≥,点A、B的坐标得,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2;故答案为≤a<或a≤﹣2.三.解答题(共7小题)17.解:(1)列表如下:小亮和小明234 22+2=42+3=52+4=633+2=53+3=63+4=744+2=64+3=74+4=8由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率=;(2)这个游戏规则对双方不公平.理由:因为P(和为奇数)=,P(和为偶数)=,而≠,所以这个游戏规则对双方是不公平的.18.解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=90,∴两建筑物底部之间水平距离BD的长度为90米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=90,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=90×=30,又∵FD=90,∴CD=90﹣30,∴建筑物CD的高度为(90﹣30)米.19.解:(1)连接OB,∵OA⊥BC,∴=,∴∠AOC=∠AOB,由圆周角定理得,∠AOB=2∠ADB=60°,∴∠AOC=∠AOB=60°;(2)∵OA⊥BC,∴BE=BC=4,在Rt△BOE中,∠AOB=60°,∴OB==,∴劣弧BC的长==π(cm).20.解:(1)∵抛物线经过点(﹣3,0),(1,0),(0,3),∴设抛物线解析式为y=a(x+3)(x﹣1),把(0,3)代入得3=a(0+3)(0﹣1),解得a=﹣1,∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2)如图,(3)当y>0时,x的取值范围为﹣3<x<1.21.解:(1)根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0)故答案为:2,0.(2)圆的半径AM==2,线段MD==<2,所以点D在⊙M内.22.解:(1)函数的对称轴为:x=a,则点A(a,0);(2)△=4a2﹣4(a2﹣)=4×>0,解得:a>0,x2﹣2ax+a2﹣=0,x1+x2=2a,x1x2=a2﹣,PQ===2,解得:a=1,故抛物线的表达式为:y=x2﹣2x;(3)若该抛物线与线段AB恰有一个公共点,则抛物线与y轴的交点应该在点B的上方,即:≤a2﹣,解得:﹣≤a<0或a≥.23.解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴,∴BF2=BE•BC,∴BC==,∴AD=.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵,∴DG=,∴DC=DG﹣CG=5﹣2.1、三人行,必有我师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年浙教版九年级数学第一学期期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.如图,AB是⊙O的直径,C,D是⊙O上两点,且CD=CB,CD与AB交于点E,连接OD,若∠AOD=80°,则∠B的度数是()A.20°B.25°C.30°D.35°2.已知=,则的值为()A.B.C.D.3.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上4.如图所示,△ABC的顶点在正方形网格的格点上,则tan A的值为()A.B.C.2D.25.已知二次函数y=﹣(x﹣3)2,那么这个二次函数的图象有()A.最高点(3,0)B.最高点(﹣3,0)C.最低点(3,0)D.最低点(﹣3,0)6.如图,在边长为2的正方形ABCD中,以点D为圆心,AD为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S2﹣S1的值为()A.﹣4B.+4C.﹣2D.+27.如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A.B.C.D.8.如图,已知∠ACD=∠B,若AC=6,AD=4,BC=10,则CD长为()A.B.7C.8D.99.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)10.在平面直角坐标系中,点P的坐标为(1,2),将抛物线y=x2﹣3x+2沿坐标轴平移一次,使其经过点P,则平移的最短距离为()A.B.1C.5D.二.填空题(共6小题,满分18分,每小题3分)11.如果α是锐角,且sinα=cos20°,那么α=度.12.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.13.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.14.现有以下命题:①平分弦的直径垂直弦,平分弦所对的弧;②等弧所对的弦相等,所对的圆周角相等;③在同圆或等圆中,弦相等所对的圆周角也相等;④各边都相等的多边形是正多边形.正确的有.15.如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.16.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,∠ABC 的平分线BF交AD于点F,若DE=4,DF=3,则AF的长为.三.解答题(共7小题,满分72分)17.(12分)计算:2cos245°+tan60°•tan30°﹣cos60°18.(8分)在平面直角坐标系xOy中,二次函数y=ax2﹣2kx+k2+k图象的对称轴为直线x =k,且k≠0,顶点为P.(1)求a的值;(2)求点P的坐标(用含k的式子表示);(3)已知点A(0,1),B(2,1),若函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB恰有一个公共点,直接写出k的取值范围.19.(8分)福州国际马拉松赛事设有“马拉松(42.195公里)”,“半程马拉松(21.0975公里)”,“迷你马拉松(5公里)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195公里)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.20.(10分)为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30°方向,C在A的南偏西15°方向(30+30)km处.学生分成两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是40km/h,第二组乘公交车,速度是30km/h,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).21.(10分)下面是小明设计的“作圆的一个内接正三角形”的尺规作图过程.已知:⊙O.求作:等边△ABC,使得等边△ABC内接于⊙O,作法:如图,①作⊙O的直径AD;②以点D为圆心,DO长为半径画弧,交⊙O的圆弧于B,C两点;③连接AB,AC,所以△ABC就是所求作的三角形.根据小明设计的尺规作图过程,完成下面的证明:证明:连接BO,CO,BD,CD.∵点B,D都在⊙O上;点O,B都在⊙D上,∴OB=OD,BD=OD.∴OB=OD=BD,∴△BOD是等边三角形(①)(填推理的依据).∴∠BOD=∠BDO=60°同理∠COD=∠CDO=60°.∴∠BOC=∠BOD+∠COD=120°∴在⊙O中,∠BAC=∠BOC=60°(②)(填推理的依据).∵∠ACB=∠ADB=60°(③)(填推理的依据).∴△ABC为等边三角形.22.(12分)△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC 的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N 分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?23.(12分)如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时E点的坐标;(3)如图2,在x轴上是否存在一点D使得△ACD为等腰三角形?若存在,请求出所有符合条件的点D的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:连接BD,∵∠AOD=80°,∴∠OBD=∠AOD=40°,∠BOD=180°﹣∠AOD=180°﹣80°=100°,∴=50°,∵DC=CB,∴∠CDB=∠CBD==65°,∴∠CBA=∠CBD﹣∠OBD=65°﹣40°=25°.故选:B.2.解:∵=,∴a=b,∴==.故选:A.3.解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C.4.解:如图,连接BD,由网格的特点可得,BD⊥AC,AD==2,BD==,∴tan A===,故选:A.5.解:∵二次函数y=﹣(x﹣3)2,∴a=﹣1,该函数图象开口向下,当x=3时,有最大值y=0,即该函数图象有最高点(3,0),故选:A.6.解:由图形可知,扇形ADC的面积+半圆BC的面积+阴影部分①的面积﹣正方形ABCD 的面积=阴影部分②的面积,∴S2﹣S1=扇形ADC的面积+半圆BC的面积﹣正方形ABCD的面积=+π×12﹣22=﹣4,故选:A.7.解:由题意得,A中三角形对应角相等,对应边成比例,两三角形相似;C,D中正方形,菱形四条边均相等,所以对应边成比例,又角也相等,所以正方形,菱形相似;而B中矩形四个角相等,但对应边不一定成比例,所以B中矩形不是相似多边形.故选:B.8.解:∵∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,∴,∵AC=6,AD=4,BC=10,∴,∴CD=.故选:A.9.解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置,点的坐标为(﹣1,1).故选:B.10.解:y=x2﹣3x+2=(x﹣3)2﹣,当沿水平方向平移时,纵坐标和P的纵坐标相同,把y=2代入y=x2﹣3x+2得:2=x2﹣3x+2,解得:x=0或6,平移的最短距离是1﹣0=1,当沿竖直方向平移时,横坐标和P的横坐标相同,把x=1代入y=x2﹣3x+2得:y=×12﹣3×1+2=﹣,平移的最短距离是2+=,即平移的最短距离是1,故选:B.二.填空题(共6小题,满分18分,每小题3分)11.解:∵sinα=cos20°,∴α=90°﹣20°=70°.故答案为:70.12.解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∴出场顺序恰好是甲、乙、丙的概率为,故答案为:.13.解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣2x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8,∵墙长为15m,∴16﹣2x≤15,∴0.5≤x<8,∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.14.解:①平分弦(不是)的直径垂直弦,平分弦所对的弧,故原命题错误;②等弧所对的弦相等,所对的圆周角相等,正确;③在同圆或等圆中,弦相等所对的圆周角相等或互补,故原命题错误;④各边都相等、各角也相等的多边形是正多边形,故原命题错误,正确的有②,故答案为:②.15.解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.16.证明:如图,∵AE平分∠BAC,∴∠1=∠4,∵∠1=∠5,∴∠4=∠5,∵BF平分∠ABC,∴∠2=∠3,∵∠6=∠3+∠4=∠2+∠5,即∠6=∠EBF,∴EB=EF;∵DE=4,DF=3,∴BE=EF=DE+DF=7,∵∠5=∠4,∠BED=∠AEB,∴△EBD∽△EAB,∴,∴,∴EA=,∴AF=AE﹣EF=,故答案为:.三.解答题(共7小题,满分72分)17.解:原式=2×()2+×﹣=1+1﹣=.18.解:(1)∵二次函数y=ax2﹣2kx+k2+k图象的对称轴为直线x=k,∴﹣,∴a=1;(2)把a=1代入y=ax2﹣2kx+k2+k得,y=x2﹣2kx+k2+k,当x=k时,y=k2﹣2k2+k2+k=k,∴顶点P(k,k);(3)∵函数y=ax2﹣2kx+k2+k=x2﹣2kx+k2+k=(x﹣k)2+k,∴抛物线的开口向上,抛物线的对称轴为x=k,顶点为(k,k),∵点A(0,1),B(2,1),∴①当k>1时,抛物线的顶点在直线AB的上方,抛物线与直线AB没有公共点,则函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB没有公共点;②当k=1时,顶点(1,1)在线段AB上,即函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB恰有一个公共点;③当k<0时,则x=k+1或k﹣1时,y=1+k<1,函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象在线段AB下方,没有公共点;④当k=0时,函数y=ax2﹣2kx+k2+k=x2,与线段AB恰有一个公共点(1,1);⑤当0<k<1时,若函数图象过A(0,1)时,k2+k=1,解得k=<0(舍去),或k=,∵0<<1,∴根据抛物线的对称性知,当≤k<1时,函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB有两个公共点,当0<k<时,函数y=ax2﹣2kx+k2+k(k﹣1≤x ≤k+1)的图象与线段AB恰有一个公共点;综上所述:若函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB恰有一个公共点,则0≤k<或k=1;19.解:(1)小智被分配到“马拉松(42.195公里)”项目组的概率为,故答案为:;(2)记这三个项目分别为A、B、C,画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3,所以小智和小慧被分到同一个项目组进行志愿服务的概率为=.20.解:作BD⊥AC于D.依题意得,∠BAE=45°,∠ABC=105°,∠CAE=15°,∴∠BAC=30°,∴∠ACB=45°.在Rt△BCD中,∠BDC=90°,∠ACB=45°,∴∠CBD=45°,∴∠CBD=∠DCB,∴BD=CD,设BD=x,则CD=x,在Rt△ABD中,∠BAC=30°,∴AB=2BD=2x,tan30°=,∴,∴AD=x,在Rt△BDC中,∠BDC=90°,∠DCB=45°,∴sin∠DCB=,∴BC=x,∵CD+AD=30+30,∴x+,∴x=30,∴AB=2x=60,BC=,第一组用时:60÷40=1.5(h);第二组用时:30(h),∵<1.5,∴第二组先到达目的地,答:第一组用时1.5小时,第二组用时小时,第二组先到达目的地.21.解:根据小明设计的尺规作图过程,证明:连接BO,CO,BD,CD.∵点B,D都在⊙O上;点O,D都在AD上,∴OB=OD,BD=OD..∴OB=OD=BD,∴△BOD是等边三角形(①三边相等的三角形是等边三角形)(填推理的依据).∴∠BOD=∠BDO=60°同理∠COD=∠CDO=60°.∴∠BOC=∠BOD+∠COD=120°∴在⊙O中,∠BAC=∠BOC=60°(②一条弧所对的圆周角是它所对圆心角的一半)(填推理的依据).∵∠ACB=∠ADB=60°(③同弧所对的圆周角相等)(填推理的依据).∴△ABC为等边三角形.故答案为:三边相等的三角形是等边三角形,一条弧所对的圆周角是它所对圆心角的一半,同弧所对的圆周角相等.22.解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2.∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.23.解:(1)将点A(1,0),B(﹣3,0)代入y=ax2+bx+3,得,,解得,,∴抛物线表达式为y=﹣x2﹣2x+3;(2)如图1,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,∴===,∴当时,S最大,且最大值为;四边形BOCE当时,,此时,点E坐标为;(3)如图2,连接AC,①当CA=CD时,此时CO为底边的垂直平分线,满足条件的点D1,与点A关于y轴对称,点D1坐标为(﹣1,0);②当AD=AC时,在Rt△ACO中,∵OA=1,OC=3,由勾股定理得,AC==,以点A为圆心,AC的长为半径作弧,交x轴于两点D2,D3,即为满足条件的点,此时它们的坐标分别为,;③当DA=DC时,线段AC的垂直平分线与x轴的交点D4,即为满足条件的点,设垂直AC的垂直平分线交y轴于点P,过AC中点Q,∵∠AOC=∠BOC=∠PQC=∠PQA=90°,∠D4PO=∠CPQ,∴∠ACO=∠OD4P,∴△D4AQ∽△CAO,∴=,即=,∴D4A=5,∴OD4=D4A﹣OA=4,∴点D4的坐标为(﹣4,0);综上所述,存在符合条件的点D,其坐标为D1(﹣1,0)或或或D4(﹣4,0).1、三人行,必有我师。

相关文档
最新文档