Response of fixed offshore platforms to wave and current loading

合集下载

海洋油气工程专业英语

海洋油气工程专业英语

阅读翻译 摘要写作
课堂考勤及表现
10%
期末阅读与答辩
20%
Unit 1
Sea Environments Related to Oil and Gas Engineering
New words
air gap 气隙 casing 油井套管 chagrin [ʃəˈgrin] v. 使懊恼 cypress [ˈsaɪprəs] n. 柏树 derrick [ˈderɪk] n. 塔式井架 drilling rig 钻井设备 floating pile driver 浮动式打桩机 flowlines 出油管 FPSO( Floating Production Storage and
Not until 1932 did the Indian Oil Company courageously build a stand-alone platform in the shallow Pacific Ocean waters off Rincon California.
In the area around Lake Caddo in East Texas over the years following 1900, wildcatters searching for oil continually stumbled on pockets of associated natural gas-the chagrin of most.
Gulf acquired the concession to drill 8,000 acres of lake bottom and brought new techniques to the area and to the industry. Starting in 1910, they towed up the Mississippi and Red Rivers a floating pile driver, a fleet of supply boats, and barges of derricks, boilers, and generators.

工程建设行业标准:海洋石油工程

工程建设行业标准:海洋石油工程

◎〖SY/T4801-92〗单点系泊装置建造与入级规范Code for building and classing single point mooring◎〖SY/T4802-92〗海上固定平台规划、设计和建造的推荐作法Recommended practice for planning,designing and constructing fixed offshore platforms◎〖SY/T4803-92〗冰环境条件下海上固定结构规划、设计和建筑的推荐作法Planning,designing and constructing fixed offshore structures in ice environments◎〖SY/T4804-92〗海底管道系统规范Code for submarine pipeline Systems◎〖SY/T4805-92〗海上结构物生产实施的推荐作法Recommended method for production facilities on offshore stuctures◎〖SY/T4806-92〗海上固定平台直升机场规划、设计和建造的推荐作法Recommended method for planning,designing and constructing heliports for fixed offshore platforms◎〖SY/T4807-92〗井下安全阀系统的设计、安装、修理和操作的推荐做法Recommended method for design,installation,repair and operation of subsurface safety valve system◎〖SY/T4808-92〗海上生产平台上部设施安全系统的基本分析、设计、安装和测试的推荐作法Recommended method for anal-ysis,design,installation and testing of basic surface systems for offshore production plat-forms◎〖SY/T4809-92〗海上生产平台管道系统的设计和安装的推荐作法Recommended method for design and installation of offshore production platform piping systems◎〖SY/T4810-92〗敞开式海上生产平台防火与消防的推荐作法Recommended method for fire prevention and control on open Type offshore production platforms◎〖SY/T4811-92〗陆上及海上固定与移动式平台钻井与采油实施的电器安装区域分类的推荐作法Recommended method for classification of locations for electrical installations at drilling rigs and production facilities on marine fixed and mobile platforms◎〖SY/T4812-92〗泄压和减压系统指南Guide for pressure-relieving and depressuring systems◎〖SY/T10001-1996〗原油生产与储存装置入级规范Code of classification of oil production and storage vessels◎〖SY/T10002-96〗结构钢管制造规范Specification for the febrication of structural steel pipe◎〖SY/T10003-96〗海上平台起重机规范Specification for offshore cranes◎〖SY/T10004-96〗海上平台管节点用碳锰钢板规范Specification for carbon manancse steel plate for offshore platform tublar joints◎〖SY/T10005-96〗海上结构建筑的超声检验推荐作法和超声技师资格考核指南Ultrasonic examination of offshore structural farication and guidelines for qualification of ultrasonic technicians◎〖SY/T10006-96〗海上用井口上部安全阀和水下安全阀规范Wellhead surface safety valves and underwater safety valves for offshore service◎〖SY/T10007-96〗海底管道稳定性设计On-bottom stability design of submarine pipeline◎〖SY/T10008-96〗海上固定式石油生产钢质平台的腐蚀控制Corrosion control of steel,fixed offshore platforms associated with petroleum production◎〖SY/T10009-96〗海上固定平台规划、设计和建造的推荐作法---荷载和抗力系数的设计法Planning,designing and constructing fixed offshore production platforms-load and resistance factor design◎〖SY/T10010-96〗海上生产平台的电气系统的设计与安装的推荐作法Designing and installation of electrical system for offshore production platforms◎〖SY/T10011-96〗海上油田总体开发方案编制指南Guide to programing overall development program for offshore oil fields◎〖SY/T10013-96〗海上砂岩气田开发可行性评价指南Guide of the feasible fvaluation for offshore standstone gas field development◎〖SY/T10014-96〗海上砂岩气田总体开发方案编制指南Guide to programing overall development program for offshore sandstone gas fields◎〖SY/T10024-96〗井下安全阀系统的设计、安装、修理和操作的推荐做法Recommended practice for design,installation,repair and operation on subsurface safety valve system。

结构钢管焊接钢管检验标准及规范

结构钢管焊接钢管检验标准及规范

API 2B
需要提出的是,通常在业主的规格书中都有关于钢材含碳量(CE)的要求,我们 在进行材料确认时需要注意这些特殊要求。另外,对于比较主要的钢材,如用来做 TKY节点的管节点的加厚段的管。大都有低温冲击/NDE的要求。
建造
管材的预制通常在我们的检验计划中有要求,通常检验计划中会列出以下的一些检 查项: 1:焊接程序和焊工资格的检查. 2:材料的准备,包括了材料的确认和跟踪,坡口的制备. 3:焊接材料和焊接设备的检查. 4:焊接过程的控制(包括焊接参数的控制和焊接顺序的控制). 5:管材焊后外观的检查.
3:API 2A
焊接检验员通常需要在业主的技术规格书的要求下来开展他的工作, 通常在业主的规格书中列出了大量的标准和规范。我们来看看PL193的规格书
简介
简介
在接下来的几节里,我们将分别讨论以下的几个规范: API 2B---Specification for the fabrication of structure steel pipe(结构 钢管制造规范)
5:周长:在管材长度上的任意一处的外周长与公称周长的偏差不能大于公称周长的 ± 1%或±1/2in.(12.7mm),两者取小值。
6:直线度:任意10ft(3050mm)的管材上的直线度偏差不能大于1/8in.(3 .2mm),对于长度超过3050mm的,全长的直线度的误差不超过1/8in.x(总长度, ft)/10ft
API 2B
简介
API 2B是关于结构用钢管建造的规范,它覆盖了外径从14英寸到40英寸或更大的管 径的近海结构用的钢管的建造。它不包含电阻焊管和螺旋管的建造。
我们主要从以下几个方面并结合我们实际工程来讨论其中的一些要求。
材料
用于卷管的材料必须要有材质证书,以便将来提供给采购方。在材质证书上通常会 有以下的一些信息:炉号(HEAT No.)、批号(BATCH No.)、规格( Specification)、NDE 的检验结果、化学成分的分析(包括含碳量)、机械性能试 验的结果、供货状态(热扎/冷扎/调质等)等。我们需要将有些信息转移到我们卷 制的钢管上去。

海洋平台设计原理课程教学大纲

海洋平台设计原理课程教学大纲

海洋平台设计原理课程教学大纲课程代码:74120610课程中文名称:海洋平台设计原理课程英文名称:Principles of Offshore Platform Design学分:3.0 周学时:3.0-0.0面向对象:预修要求:统计学、结构力学一、课程介绍(一)中文简介本课程就各式海洋平台特性,介绍其设计要点和设计程序,特别强调设计方法论,包括极限状态设计法、板壳结构之极限强度分析、海洋平台之波浪负荷分析;海洋平台的疲劳强度分析及可靠度设计法;设计分析中不确定因素的分类处理与机率方法;海洋平台的寿期安全设计法。

透过课程的理论与方法学习和实践训练,使学生可系统地了解和掌握平台设计的结构强度、结构使用寿命和平台结构运营期间的安全可靠度。

同时具备应用统计学和可靠度理论计算平台结构特征负荷的能力;应用结构力学知识分析平台结构极限强度和疲劳强度的能力;以及综合评估平台使用寿命和寿期可靠度的能力。

(二)英文简介The main items and the procedure related to the design of various offshore platforms are demonstrated in the course.The design method dologies are particularly emphasized.Inwhich,the syllabus encompasses the limit-state method of design,the analysis theory of the ultimate of design,the analysis theory of the ultimate strength of plate and shell structures,analysis theory of characteristic wave loads sustained by offshore platforms,complete reliability design method in considering fatigue strength,categorization and probability method used in dealing with the uncertainty factors encountered in designs,and the life-cycle reliability design method.Through the theoretical and methodological studies and the practice ofexercises,students may systematically understand and master the design methods for the analyses of wave loads and structural strength.Also,the students can be provided with the capability of the design assessment of the fatigue life time of platforms,and the reliability and safety during the period of in-service operation .一、教学目标(一)学习目标基于海洋设计与一般结构物设计的不同,风险分析的概念与思想的强化是学习的首要重点。

盘式制动器本科毕业设计论文 精品

盘式制动器本科毕业设计论文 精品

1.课题研究的目的及意义汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。

汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。

随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能、长寿命的制动系统。

其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。

汽车是现代交通工具中用得最多、最普遍、也是运用得最方便的交通工具。

汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置,而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。

汽车的制动性能直接影响汽车的行驶安全性。

随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,必须为汽车配备十分可靠的制动系统。

车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。

现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。

2.汽车制动器的国内外现状及发展趋势对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。

目前,汽车所用的制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。

盘式制动器被普遍使用。

但由于为了提高其制动效能而必须加制动增力系统,使其造价较高,故低端车一般还是使用前盘后鼓式。

汽车制动过程实际上是一个能量转换过程,它把汽车行驶时产生的动能转换为热能。

高速行驶的汽车如果频繁使用制动器,制动器因摩擦会产生大量的热量,使制动器温度急剧升高,如果不能及时的为制动器散热,它的效率就会大大降低,影响制动性能,出现所谓的制动效能热衰退现象。

固定式海洋平台

固定式海洋平台

中国海洋大学本科生课程大纲一、课程介绍1.课程描述(中英文):《固定式海洋平台》是针对船船与海洋工程专业本科生开设的专业知识教育层面必修课,为本专业核心及特色课程。

课程主要讲授固定式海洋平台结构设计•基本步骤和分析方法。

包括各类荷载讣算及工程简化方法、海洋土力学的基本知识及典型基础结构的工程校核、以及海洋平台建模和海洋工程材料性能和选择依据。

通过本课程学习,可以使学生了解海洋油气资源开发装备技术的最新动态;熟悉相关行业标准及规范,掌握固定式海洋平台结构设汁的基本原理和分析方法;具备相关类型平台设计研发,分析校核的基本技能。

Bottom Fixed Offshore Platform is a compulsory course of professional knowledge education for undergraduates majoring in naval architecture and ocean engineering, which is the core and characteristic course of this major. The course mainly introduces the basic design steps and analysis methods of fixed offshore platform. It includes various load calculation and engineering simplification methods, basic knowledge of marine soil mechanics and engineering check of typical foundation structure, modeling of offshore platform and performance and selection basis of marine engineering materials. Through the study of this course, students can understand the latest development of offshore oil and gas resources development equipment technology; be familiar withrelevant industry standards and specifications; master the basic principles and analysis methods of fixed offshore platform structure design; have the basic skills of design, development, analysis and verification of relevant types of platforms.2.设计思路:本课程以浅海平台的基础设计理论到不同类型固定式海洋平台的典型特征和设计方法为主线,结合典型工程结构案例分析,辅以大量的工程数值仿真训练和行业规范解读,使同学们掌握基本的固定式海洋平台设计理论知识并能够将其应用到实际设计中,培养专业技术人员及管理人员的基本方法和技能。

海上固定平台安全规则(中英文对照版)

海上固定平台安全规则(中英文对照版)

海上固定平台安全规则目录第一章总则 (1)第二章平台布置 (3)第三章平台结构 (6)第四章防腐蚀 (10)第五章海上施工作业 (13)第六章钻井系统和油(气)生产工艺系统 (17)第七章通用机械设备及管系 (24)第八章起重机 (33)第九章电气设备及电缆 (36)第十章仪表及控制系统........................ (43)第十一章生活区 (47)第十二章直升机甲板设施 (49)第十三章防火结构及脱险通道 (50)第十四章火灾与可燃气体探测报警系统及消防系统 (56)第十五章逃生及救生装置 (60)第十六章助航标志及信号 (64)第十七章通信设备 (66)第十八章防污染及噪声、振动控制 (69)第十九章建造检验 (71)第二十章生产期检验 (78)第二十一章安全分析和安全管理系统 (83)第一章总则1.1宗旨为了减少或避免平台在建造、安装、调试、投产和生产作业、检修、改造直至废弃的全过程中,可能出现的下列损失:人员伤亡,环境污染,设施破坏和财产损失。

根据《海上石油天然气生产设施检验规定》(下称《油(气)生产设施检验规定》)和《海洋石油作业安全管理规定》,制定本《规则》。

1.2 适用范围1.2.1 本《规则》适用于在中华人民共和国的内海、领海、大陆架以及其它属于中华人民共和国海洋资源管辖海域内, 建设和使用的海上固定平台(包括常规导管架平台, 简易平台和无人驻守平台等,下称平台)。

1.2.2 张力腿式、牵索塔式、混凝土重力式等其它类型固定平台其上部生产设施的设计、建造、安装和试运转及生产作业应符合本《规则》的有关规定。

1.2.3“浮式生产储油装置”的安全规则另行颁发。

在其正式颁布执行之前,浮式生产系统、浮式储油装置和其他移动式生产平台其上部设施可参照本规则执行。

1.2.4 平台废弃与拆除的有关规定另行颁布。

1.2.5 本《规则》为平台安全的主要规定; 本《规则》未做规定的内容可适用所用规范、标准中的有关规定。

海上风力发电机组载荷设计工况研究及对比分析

海上风力发电机组载荷设计工况研究及对比分析

海上风力发电机组载荷设计工况研究及对比分析作者:廖丹来源:《科技视界》2017年第08期【摘要】基于海上风电机组,本文主要分析介绍了海上和陆地风力发电机组工况上的区别,并依据海上风力发电机组的设计工况和模型分析方法,用Bladed软件进行海上风电机组的载荷计算,并与相应的陆上机组载荷进行了简单对比。

【关键词】海上风电机组;海上机组设计工况;载荷计算0 概述海上风力发电机组开发时,前期主要针对海上风资源研究(基本原理,风数据/坐标数据获取,模型方法,发电量,损失因素和不确定因素,预测),最重要的是对海上风载和浪载(载荷来源,工况与模型,浪载(疲劳和极限载荷)的分析和评估,之后再利用Bladed软件进行风波联合载荷等海上风电特殊载荷的计算。

1 陆上风力发电机组设计载荷工况[1]陆上风力发电机组设计载荷工况包含以下八大类工况(DLC):(1)发电工况(1.1~1.9):风机模型应考虑风轮不平衡、风轮制造所规定的最大质量和气动不平衡限制、最佳运行工况实际同理论的偏差。

在计算中应假设各种情况的最不利组合,如风向改变与典型偏航角度误差组合与电气接头损坏组合,应包含由大气湍流引起的载荷要求。

1.3和1.6~1.9规定了作为风力发电机组寿命评定的可能临界事件的瞬态情况。

在DLC1.4和1.5中,考虑了由于外部故障和电气接头损坏引起的瞬变事件。

(2)发电和产生故障(2.1~2.3):假设控制和保护系统的任何故障,或电气系统的内部故障(如发电机短路)在发电期间发生。

其中2.1,控制系统故障属正常事件。

2.2,保护系统或内部电气系统故障为罕见事件。

如果某一故障没引起立刻停机,随后的载荷可导致结构产生明显疲劳损伤,则应在2.3中定义这种工况持续的时间。

(3)启动(3.l~3.3):包括从静止或空转状态到发电这一过渡期间产生载荷的所有事件。

(4)正常关机(4.1~4.2):包括从发电到静止或空转状态的正常过渡期间产生载荷的事件。

上部结构物安装方法比较分析

上部结构物安装方法比较分析

平台组块海上安装方法比较研究罗超(海洋石油工程股份有限公司,天津 塘沽 300451)摘要:本文针对目前海洋平台组块海上安装的主要方法的作业程序和计算分析及关键技术进行了详细阐述,并通过比较吊装安装和浮托法安装两种平台组块海上安装方法,提出了两种方法的优缺点。

关键词:吊装;浮托引言在海洋油气田开发工程设计阶段中,海洋石油工程安装设计是继概念设计、基本设计、详细设计和加工设计之后的海上安装工程所进行的施工设计,它是海上油气开发工程设计的重要组成部分。

海上安装是把安装设计付诸实践的施工过程,它大体可以分为三个阶段:码头装船、拖航运输和海上安装。

海上安装所用的各类船舶和专用机具主要包括:起重铺管船、起重船、工程驳船、半潜驳船、下水驳船、拖轮、打桩锤、线性绞车等。

组块海上安装方法常用的有两种:吊装安装和浮托法安装(float-over)。

通常根据组块的尺度、重量、起重船的技术性能和装组块的驳船的技术性能决定组块的海上安装方法。

吊装安装需要综合考虑组块的尺度、重量、加上吊装索具的总高度,导管架顶部高度以及起重船的技术性能等多个因素,这些因素都满足海上安装的要求,可采用起重船吊装的方式安装。

浮托法安装就是使用一个可调载的重型驳船将组块运输到导管架的正上方,然后通过压载调节驳船的吃水,使组块慢慢落在导管架的桩腿耦合缓冲器(Leg Mating Units, LMU)上;浮托法安装需要将组块和导管架作为整体进行设计,导管架要事先安上桩腿耦合缓冲器,桩腿顶部之间也需要为驳船调载留出足够的空间,驳船也需要有防碰撞设施(Fendering System)。

较之吊装安装,浮托法能够安装大型组块。

本文将主要就此两种组块安装方法程序和需要进行的计算分析进行说明,并对两种方法进行比较,提出大型组块海上安装的可行性施工方案。

1.采用的技术标准和规范组块安装采用的技术标准和规范如下:ALSC Manual of Steel ConstructionAPI.RP2A API Recommended Practice for Planning,Designing, and Constructing Fixed Offshore PlatformsAWSD1.1 Structural Welding Code-SteelAPI Recommended Practice 2SKDNV Rules for Planning and Execution of Marine OperationsTransportationforMarineND GeneralGuidelinesIMO Intact Stability for All Types of Ships Covered by IMO InstrumentsLOC Guidelines for Marine OperationsCCS 海上拖航指南Hydrodynamics of offshore structure (by S.K. Chakrabarti)2.组块吊装安装环境条件的限制:海上吊装作业均须在开阔的海域进行,受环境条件的影响因素所制约,因此环境因素是人力不可抗拒的重要因素,安装设计时必须根据安装项目的重要性、安装工作的性质及施工的船舶抗风浪能力制定出该项安装工作的限定环境条件,以此来界定海上安装活动中各阶段、各种作业、现场待机、现场撤离的最大允许环境条件,包括:风、浪、流等等。

海洋平台大型方罐地震液体晃荡分析方法

海洋平台大型方罐地震液体晃荡分析方法

海洋平台大型方罐地震液体晃荡分析方法摘要:利用地震响应谱理论和海洋平台结构分析软件SACS求解平台罐体处各阶振型对应的地震加速度并拟合地震激励,利用流体动力学软件FLUENT模拟在地震激励作用下方罐内液体的响应,从而得到方罐四周液体的动压力情况,解决了大型方罐地震液体晃荡问题。

关键词:方形储油罐,抗震设计地震响应谱液体晃荡流体动力学Abstract:Answer the platform square storage tank’s seismic acceleration and exciting fitting under the response spectrum theory and offshore platform structure analysis software SACS,acquire liquid response and dynamic pressure under the fluid dynamics software-FLUENT,and solve the liquid sloshing problem for the large square storage tank.Key Words:Square storage tank Antiseismic design Seismic response spectrum Liquid sloshing Fluid dynamics1. 引言2009年投产的旅大32-2 PSP平台是国内第一个自主设计、建造和安装的,集生产、储油和外输于一体的新型生产储油平台,是中海油一种新型开发模式的有益探索。

该平台利用主结构作为载体有效围成储油能力为1万2千多方的方形储油罐,储油罐与平台结构连为一体相互影响。

地震时,罐内液体的对罐体和平台的影响是设计要考虑的重要问题,同时,该问题没有相关规范可遵循。

3. 平台整体地震响应分析方法3.1 地震设计原则和条件抗震设计的基本原则是“小震不坏、中震可修、大震不倒”,这就是说,按照这个原则设计的结构,在遭遇轻微的地震时,不会发生损坏或不需修理仍可继续使用;从力学概念上讲,一般情况下,当结构遭遇第一水准烈度的地震时,还处于弹性状态;当遭遇第二水准烈度的地震时,结构进入非弹性状态(但这种非弹性还仅是材料的变化);当遭遇第三水准烈度时,结构已发生较大的非弹性变形。

海洋工程建筑物分类

海洋工程建筑物分类

海洋工程建筑物分类英文回答:Classification of Marine Structures.Marine structures can be classified into several different categories based on their function, design, and construction materials. Here are some of the most common types of marine structures:Fixed offshore platforms: These are large, fixed structures that are used for drilling and producing oil and gas from the seabed. They are typically constructed ofsteel or concrete and are anchored to the seabed usingpiles or caissons.Floating offshore platforms: These are structures that are not permanently attached to the seabed and can be moved from one location to another. They are typically used for exploration and drilling activities, as well as forproduction and storage of oil and gas.Subsea pipelines: These are pipelines that are laid on the seabed to transport oil, gas, or other fluids. They are typically made of steel or plastic and are protected from corrosion and damage by a variety of coatings and coverings.Marine terminals: These are structures that are usedfor loading and unloading cargo from ships. They can be located on land or in the water, and they typically consist of a pier, wharf, or dock.Breakwaters: These are structures that are built to protect shorelines and harbors from waves and currents.They can be made of a variety of materials, including concrete, steel, or rock.Seawalls: These are structures that are built toprotect shorelines from erosion. They are typically made of concrete, steel, or rock, and they can be either verticalor sloping.Revetments: These are structures that are built to protect shorelines from erosion by absorbing the energy of waves. They are typically made of riprap, which is a layer of large stones that are placed on the shoreline.Artificial reefs: These are structures that are built to provide habitat for marine life. They can be made of a variety of materials, including concrete, steel, or rock, and they can be placed in a variety of locations, including near shorelines, in coastal waters, or in deep water.中文回答:海洋工程建筑物分类。

论述海洋工程建造吊装计算优化

论述海洋工程建造吊装计算优化

论述海洋工程建造吊装计算优化前言随着海洋工程建造项目向国际化合作方向的发展,建造过程中的重要作业施工程序要求越来越规范。

吊装是海洋工程结构建造施工的重要环节,吊装程序的设计必须依据成熟的规范进行。

但国内相关海洋工程建造的吊装规范极不完善,不同建造场地进行吊装设计时大多依据建造经验,这样导致吊装作业施工的技术指导性较差。

国外关于海洋工程吊装施工的规范主要有美国的API规范[2]和挪威的DNV 规范,DNV的吊装规范[1]较为全面。

本文旨在借鉴DNV规范和API规范的基础,以工程经验为辅,讨论吊装作业时吊装工程选择及吊机优化选择。

为国内及涉外海洋工程建造项目的吊装施工提供参考。

1、基本荷载1.1重量重心被吊物实际的重量重心与理论计算得到的重量重心存在偏差。

解决重量重偏差的措施主要有两种:第一种,是取重量不确定系数。

第二种,绘制被吊物重心变化的包络线。

第一种方法比较简单,适用于吊装施工对被吊物的重量重心变化不敏感的施工。

重量不确定系数的取值,DNV规范建议取1.1,即吊装重量=1.1×被吊物理论计算重量。

第二种方法更具有适用性并且精确性较高。

重量重心的不确定性导致力在吊绳上分布的不确定性。

任何对重量重心变化敏感的吊装施工都需要考虑重心的包络线,这种情况不建议采用重量不确定系数代替重心的包络线。

同时,重心包络线的另一个重要用途是确定吊绳力的荷载。

依据重心包络线设定吊绳力的荷载系数。

具体的设定方法参见文献[1]。

1.2特殊荷载在特定的吊装施工中,需要考虑特殊荷载。

如,近海岸活海上吊装需要考虑风荷载,水下吊装需要考虑水动力荷载。

1.3动态荷载動态荷载的产生包括:吊装的开始阶段,吊装过程中吊装速度的不均匀性,吊机或者吊臂、履带等运动,被吊物的运动等。

影响动态荷载的主要因素:环境条件,吊索具的分布,吊机的型号和匹配,吊机吊臂等结构的刚度,被吊物的重量等。

动态荷载的考虑取动态放大系数[1]。

DNV规范规定的动态放大系数值见表1.对于近海岸或者海上吊装超过50t的吊装施工都必须要考虑动态方法系数。

平台锚泊定位操作流程

平台锚泊定位操作流程

平台锚泊定位操作流程Anchoring and positioning a platform is a crucial operation in the maritime industry. 平台锚泊定位是海上行业中至关重要的操作。

It involves securing a platform in a specific location using anchoring systems and dynamic positioning systems. 它涉及使用锚泊系统和动力定位系统将平台固定在特定位置。

This process ensures the stability and safety of the platform, allowing it to withstand the forces of waves, wind, and currents. 这个过程确保了平台的稳定性和安全性,使其能够承受波浪、风和洋流的力量。

The first step in the platform anchoring and positioning process is to conduct a thorough assessment of the environmental conditions. 平台锚泊定位过程的第一步是对环境条件进行彻底评估。

This includes analyzing factors such as water depth, seabed topography, and the intensity of currents and waves. 这包括分析水深、海床地形以及洋流和波浪的强度等因素。

Understanding these environmental factors is essential for determining the most suitable anchoring and positioning systems to use. 了解这些环境因素对于确定最适合使用的锚泊和定位系统至关重要。

静态支撑式旋转导向在流沙港组悬空侧钻的技术

静态支撑式旋转导向在流沙港组悬空侧钻的技术

南海西部某井φ215.9mm井段从3741m钻至4006m均在流沙港组二段,短起时发生井壁失稳,轨迹姿态为水平段。

当时底部组合开泵时间已经96h,分析起钻打侧钻水泥塞需要耗费36h,而且水平段油基泥浆水泥塞质量能以保证,如果等待造斜能力强的指向式旋导需要至少3天时间。

综合考虑决定直接使用井下静态支撑式旋导进行悬空侧钻作业。

1 流沙港组悬空侧钻难点1.1 老井眼轨迹稳方位,且井斜变化较小仅3°老井眼在水平段轨迹为稳方位,井斜变化较小,其中3752~3765m这13m增斜1.25°,狗腿度2.9°/30m;3765~3780m这15m增斜1.75°,狗腿度3.5°/30m;3780~3795m稳斜87.65°。

一般有明确悬空侧钻需求的井,会主动制造20~25m段长的6~10°/30m强增斜趋势。

本次侧钻属于计划外作业,老井眼最大狗腿度仅3.5°/30m。

1.2 使用静态支撑式旋转导向工具,且开泵时间已经100h由于工具结构原理限制,静态支撑式旋导实施悬空侧钻的难度较大,耗时较指向式旋导长不少时间。

前期φ215.9mm井段该工具在该海域开泵最长未超过200h,综合考虑后续还需要耗时悬空侧钻,同时剩余800m裸眼段待钻,预计开泵时间260h左右,将接近或超出工具寿命极限。

1.3 地层可钻性差,且南海西部尚无流二段悬空侧钻案例老井眼在侧钻段岩性为灰色油斑粉砂岩,钻参:排量2000L/min、转速100r/min、钻压10kN,钻速为15~25m/h,可钻性较差,而且在南海西部海域该层位尚无悬空侧钻作业记录供参考。

2 流沙港组悬空侧钻技术措施2.1 优化侧钻设计,利用好的增斜段结合老井眼轨迹姿态、地层岩性以及指令实际效果,选择3768m作为侧钻点,目标在3788m完成悬空侧钻后及时降方位安全分离老井眼。

见表1。

2.2 优化参数,降低排量和工具传输速率钻具组合如下:φ215.9m m P D C钻头+φ171.45m m A u t o T r a k+φ171.45m m F l e x-s t a b+φ171.45m m O n t r a k+φ171.45m m BCPM+φ171.45mm 上断电短接+φ196.85mm扶正器+φ171.45mm滤网短接+φ171.45mm浮阀接头+φ171.45mm震击器+φ171.45mm 配合接头+φ127mm加重钻杆X 5根+φ127mm钻杆X 120根+φ171.45mm 配合接头+φ149.23mm 钻杆。

大学英语六级分类模拟题486_真题(含答案与解析)-交互

大学英语六级分类模拟题486_真题(含答案与解析)-交互

大学英语六级分类模拟题486(总分242, 做题时间90分钟)Part Ⅰ Writing1.1.随着科技的发展,现代人的技能也随之变化2.有人认为外语、计算机等技能很重要,也有人认为沟通技能更重要3.在我看来……SSS_TEXT_QUSTI分值: 15The Most Important Skills for Modern PeopleWith the development of science and technology, the skills that modern people master are also changing with it. Some old skills including cooking, sewing and gardening are no longer deemed as necessary skills.Then what are the most important skills for modem people? Some hold that foreign language skills **puter skills are on top of the list, whereas some others believe **munication skills are the must.As far as I am concerned, communication skills are of the greatest importance for modern people. Firstly, in a globalized world, everyone is interconnected with each other. Communication is the key in personal interaction, and **munication skills can bring people sound interpersonal relationship. Secondly, most of the work done today requires teamwork. One person alone can not finish everything. Cooperation asks **munication, and **munication will promote cooperation. That"s the reason why lots of **panies **munication skills first when they are recruiting new employees.Part Ⅱ Reading ComprehensionSection APetroleum ResourcesA) Petroleum, consisting of crude oil and natural gas, seems to originate from organic matter in marine sediment. Microscopic organisms settle to the seafloor and accumulate in marine mud. The organic matter may partially decompose, using up the dissolved oxygen in the sediment. As soon as the oxygen is gone, decay stops and the remaining organic matter is preserved.B) Continued sedimentation—the process of deposits" settling on the sea bottom—buries the organic matter and subjects it to higher temperatures and pressures, which convert the organic matter to oil and gas. As muddy sediments are pressed together, the gas and small droplets of oil may be squeezed out of the mud and may move intosandy layers nearby. Over long periods of time ( millions of years), accumulations of gas and oil can collect in the sandy layers. Bothoil and gas are less dense than water, so they generally tend to rise upward through water-saturated rock and sediment.C) Oil pools are valuable underground accumulations of oil, and oil fields are regions underlain by one or more oil pools. When an oil pool or field has been discovered, wells are drilled into the ground. Permanent towers, called derricks, used to be built to handle the long sections of drilling pipe. Now portable drilling machines are set up and are then dismantled and removed. When the well reaches a pool, oil usually rises up the well because of its density difference with water beneath it or because of the pressure of expanding gas trapped above it. Although this rise of oil is almost alwayscarefully controlled today, spouts of oil, or gushers, **mon in the past. Gas pressure gradually dies out, and oil is pumped from the well. Water or steam may be pumped down adjacent wells to help push the oil out. At a refinery, the crude oil from underground is separated into natural gas, gasoline, kerosene, and various oils. Petrochemicals such as dyes, fertilizer, and plastic are also manufactured from the petroleum.D) As oil becomes increasingly difficult to find, the search for it is extended into more hostile environments. The development of theoil field on the North Slope of Alaska and the construction of the Alaska pipeline are examples of the great expense and difficulty involved in new oil discoveries. Offshore drilling platforms extend the search for oil to the ocean"s continental shelves—those gently sloping submarine regions at the edges of the continents. More than one-quarter of the world"s oil and almost one-fifth of the world"s natural **e from offshore, even though offshore drilling is six to seven times more expensive than drilling on land. A significant part of this oil and **es from under the North Sea between Great Britain and Norway.E) Of course, there is far more oil underground than can be recovered. It may be in a pool too small or too far from a potential market to justify the expense of drilling. Some oil lies under regions where drilling is forbidden, such as national parks or other public lands. Even given the best extraction techniques, only about 30 to 40 percent of the oil in a given pool can be brought to the surface. The rest is far too difficult to extract and has to remain underground.F) Moreover, getting petroleum out of the ground and from under the sea and to the consumer can create environmental problems anywhere along the line. Pipelines carrying oil can be broken by faults or landslides, causing serious oil spills. Spillage from huge oil-carrying cargo ships, called tankers, involved in collisions or accidental groundings (such as the one off Alaska in 1989) can create oil slicks at sea. Offshore platforms may also lose oil, creating oil slicks that drift ashore and foul the beaches, harming the environment. Sometimes, the ground at an oil field may subside as oil is removed. The Wilmington field near Long Beach, California, has subsided nine meters in 50 years; protective barriers have had to be built to prevent seawater from flooding the area. Finally, the refining and burning of petroleum and its products can cause air pollution. Advancing technology and strict laws, however, are helping control some of these adverse environmental effects.G) Natural gas is a naturally occurring hydrocarbon gas mixture consisting primarily of methane, **monly includes varying amounts of other higher alkanes and even a lesser percentage of carbon dioxide, nitrogen, and hydrogen sulfide. Natural gas is an energy source often used for heating, cooking, and electricity generation. It is also used as fuel for vehicles and as a chemical feedstock in the manufacture of plastics and **mercially important organic chemicals.H) Natural gas is found in deep underground rock formations or associated with other hydrocarbon reservoirs in coal bedsand as methane clathrates. Petroleum is also another resource found in proximity to and with natural gas.I) Most natural gas was created over time by two mechanisms: biogenic and thermogenic. Biogenic gas is created by methanogenic organisms in marshes, bogs, landfills, and shallow sediments. Deeper in the earth, at greater temperature and pressure, thermogenic gas is created from buried organic material.J) Before natural gas can be used as a fuel, it must undergo processing to remove impurities, including water, to meet the specifications of marketable natural gas.K) The by-products of processing include ethane, propane, butanes, pentanes, and higher molecular weight hydrocarbons, hydrogen sulfide (which may be converted into pure sulfur) , carbon dioxide, water vapor, and sometimes helium and nitrogen.L) Natural gas is often informally referred to simply as gas, especially **pared to other energy sources such as oil or coal.M) However, it is not to be confused with gasoline, especially in North America, where the term gasoline is often shortened in colloquial usage to gas.N) In the 19th century, natural gas was usually obtained as a by-product of producing oil, since the small, light gas carbon chains came out of solution as the extracted fluids underwent pressure reduction from the reservoir to the surface, similar to uncapping a bottle of soda where the carbon dioxide effervesces.O) Unwanted natural gas was a disposal problem in the active oil fields. If there was not a market for natural gas near the wellhead it was virtually valueless since it had to be piped to the end user.SSS_FILL1.According to the analysis, there are two main parts in the petroleum, namely the crude oil and natural gas.分值: 7.1A[解析] 转换题。

单桩柔性靠船墩桩基结构设计简析

单桩柔性靠船墩桩基结构设计简析

单桩柔性靠船墩桩基结构设计简析林岳;曹代利【摘要】本文介绍了英国海工建筑物标准中对于柔性墩台的设计准则,进行了设计方法及流程方面的总结,结合国外某油码头扩建项目,采用P-Y曲线法以及SAP 2000有限元软件对单桩柔性靠船桩结构进行了设计分析,为海工设计人员提供参考.【期刊名称】《港工技术》【年(卷),期】2019(056)0z1【总页数】4页(P49-52)【关键词】单桩;大直径;柔性靠船桩;英国标准;吸能-反力-变形;有限元;SAP2000;P-Y曲线法【作者】林岳;曹代利【作者单位】中交第四航务工程勘察设计院有限公司,广东广州 510230;中交第四航务工程勘察设计院有限公司,广东广州 510230【正文语种】中文【中图分类】TU473.1引言随着经济全球化的不断深入,国内外沿海港口建设向大型化深水化发展,对码头防冲设备的要求越来越高,靠船桩成为港口水工结构中采用的主要防冲设备形式之一[1-2]。

根据吸能形式不同,靠船桩可以分为两类:1)由多根桩组成的刚性靠船桩,在受撞击过程中变形很小,撞击能量主要由橡胶护舷吸收;2)柔性靠船桩,在受撞击过程中变形较大,船舶撞击能量由桩的变形和橡胶护舷共同吸收[3]。

柔性靠船桩具有以下优点:1)由于柔性靠船桩结合了护舷和桩的共同吸能作用,其桩身吸能能力与桩的悬臂长度成正比,适用于深水条件[4];2)由于柔性靠船桩或系缆墩结构相对独立,对现有码头结构影响较小,在码头扩建类项目中适用性高;3)由于结构灵活,对水位变化适应性高,在高水位差的码头项目中应用广泛。

本文内容主要包括:1)介绍英国海工建筑物标准BS 63 49中(以下简称为英标)对于柔性靠船桩的设计准则;2)对柔性靠船桩典型的设计方法及流程进行总结;3)以国外某油码头扩建项目的柔性靠船墩台为例,利用SAP 2000有限元软件对柔性靠船桩结构进行实例分析与设计。

1 英标设计准则[5-6]柔性墩台的基础一般是由一根或多根直桩组成,上部墩台一般是混凝土或钢结构。

海上固定平台生活楼模块舾装减重影响因素分析与建议

海上固定平台生活楼模块舾装减重影响因素分析与建议
1 生活楼的布置及重量分布
生活楼的主要用途是给海上平台工作人员提供 一 个 安 全 、舒 适 的 休 息 、娱 乐 场 所 。 生 活 楼 的 主 要 房 间 包 括 居 住 用 房 、公 共 用 房 、卫 生 用 房 、办 公 用 房 、炊
收 稿 日 期 :2014-08-25 作 者 简 介 :宋 杰 (1982- ),男 ,工 程 师 ,主 要 从 事 海 洋 平 台 设 计 研 究 。
one of the most important parts of the topside.After analyzing all kinds of cabin furniture and outfitting materials of a 90-person living quarters,it is pointed out that the rational utilization of light-weight and good-performance new materials can reduce the overall outfitting weight,which in turn leads to the weight reduction of the platform topside
第1卷 第3期 2014 年 9 月
海洋工程装备与技术
OCEAN ENGINEERING EQUIPMENT AND TECHNOLOGY
Vol.1,No.3 Sep.,2014
海上固定平台生活楼模块舾装减重 影响因素分析与建议
宋 杰,许 莲,李春萌
(上海利策科技股份有限公司,上海 200233)
图 2 90 人 生 活 楼 舾 装 重 量 组 成 Fig.2 Weight components of outfitting of 90-person living quarters
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The Kvitebjørn substructure has four legs supported by vertical steel piles grouped symmetrically around each corner leg. Due to weight limitations for the offshore lift, the jacket is fabricated, towed to the site and lift-installed as two separate structural units. The upper part of the structure is connected to the lower part through a traditional grouted
2. Platform description
The platform considered in this study is the ‘Kvitebjørn’ platform shown in Fig. 1. It is currently under construction in the Norwegian section of the North Sea. Water depth at the site is 190 m and the substructure is a piled steel jacket.
jacket offshore tower is affected by the flexibility and nonlinear behaviour of the supporting piles. For offshore towers supported by clusters of piles, the response to environmental loads is strongly affected by the pile –soil – pile interaction. In the present study, the response of fixed offshore platforms supported by clusters of piles is investigated. The soil resistance to the pile movement is modelled using dynamic p – y curves and t – z curves to account for soil nonlinearity and energy dissipation through radiation damping. The load transfer curves for a single pile have been modified to account for the group effect. The wave forces on the tower members and the tower response are calculated in the time domain using a finite element package (ASAS). Several parameters affecting the dynamic characteristics of the platform and the platform response have been investigated. q 2004 Elsevier Ltd. All rights reserved.
(year)
(m)
MSL (m)
Mean value 90% interval
1
22.0
12.8
10
25.3
14.2
100
28.5
16.1
Байду номын сангаас
10,000
36.0
20.4
13.8
12.2– 15.5
14.6
13.0– 16.4
15.3
13.6– 17.1
17.1
15.1– 19.1
The weights of the upper and lower parts of the structure are approximately 73,000 and 45,000 kN, respectively. The total weight of the foundation is 53,000 kN and the total weight of the platform is 171,200 kN. The structure is designed to support a maximum operating topside weight of 225,000 kN. The lower part is square shaped with base dimensions 50 m £ 50 m, is approximately 45 m high and has vertical corner legs. The top part extends from approximately El. 2 145 to El. þ 8 m and has a constant batter on all sides with square dimensions at the bottom of 50 m £ 50 m to square dimensions at the top of 25 m £ 25 m. The jacket is flared on two sides to meet the interface dimension of 22.5 m £ 30 m towards the topside at El. 21.2 m. These dimensions are held constant from El. 21.2 m to the topside interface elevation of 24.1 m. All elevations are relative to MSL. The jacket is supported on 16 piles with a diameter of 2.438 m arranged in symmetrical groups of four piles per corner leg. Each corner leg has an additional pile with a diameter of 1.372 m to be used for levelling.
Soil Dynamics and Earthquake Engineering 24 (2004) 357–368
/locate/soildyn
Response of fixed offshore platforms to wave and current loading including soil– structure interaction
p-multipliers were found to vary with the spacing between piles, soil type, peak amplitude of loading and the angle between the line connecting any two piles and the direction of loading [4]. Several parameters such as the foundation flexibility, dynamic soil resistance, pile – soil – pile interaction, soil stiffness, and platform deck mass that affect the dynamic characteristics of the platform and the platform response to wave and current loading have been investigated.
Yasser E. Mostafaa, M. Hesham El Naggarb,*
aGeotechnical Engineer, Golder Associates, Burmnaby, B.C., Canada bAssociate Professor and Research Director, Geotechnical Research Centre, Faculty of Engineering,
The University of Western Ontario, London, Ontario, Canada N6A 5B9
Accepted 17 November 2003
Abstract Fixed offshore platforms supported by pile foundations are required to resist dynamic lateral loading due to wave forces. The response of a
1. Introduction
Foundation piles have a significant effect on the response of fixed offshore structures. Bea [1] performed a series of static push-over analyses on a fixed offshore platform and found that the first nine nonlinear events were concentrated in the foundation piles. Mitwally and Novak [2] used a linear analysis to account for the effect of foundation flexibility including pile – soil – pile interaction on the response of offshore structures to random wave loading. El Naggar and Novak [3] considered foundation nonlinearity using an equivalent linear approach. This paper describes an efficient approach to model the response of pile groups supporting a jacket structure to transient loading. The method employs the concepts of dynamic p – y curves and dynamic p-multipliers, t – z curves and q – z curves to model the soil reactions to pile movement. Mostafa and El Naggar [4] have established dynamic p-multipliers to relate the dynamic load transfer curves of a pile in a group to the dynamic load transfer curves for a single pile. The dynamic
相关文档
最新文档