高中数学同步导学---(207)《必修2》第三章、第四章综合测试题
高中数学(必修二)同步导学案(207)第三章、第四章 综合测试题
高中数学(必修二)同步导学案第三章、第四章 综合测试题班级_______ 学号_________ 分数___________一、选择题:每小题有且只有一个答案是正确的,请将其代号填入下表:1.如果直线Ax By C ++=0经过第一、二、四象限,则 ( )A.AB BC >>00,B.AB BC ><00,C.AB BC <>00,D.AB BC <<00,2、如图:直线L 1 的倾斜角α1=300,直线 L 1⊥L 2 ,则L 2的斜率为( )A.33-B.33 C.3- D.33.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A.052=-+y xB.012=-+y xC.250x y --=D.072=+-y x4.已知点(1,2)B,则线段AB的垂直平分线的方程是()A、(3,1)A.4250+-= D.250x y--=x yx y--= B.4250x y+-= C.2505.经过两条直线2x+y-8=0和x-2y+1=0的交点,且垂直于直线3x-2y+4=0的直线的方程为()A.23120--= D.32130+-=x yx yx y+-= B.23120x y++= C.32506.三条直线x-y+1=0、2x+y-4=0与ax-y+2=0共有2个交点,则a的值为 ( )(A)1 (B)2 (C) 1或-2 (D)-1或27.过点A(2,1)的所有直线中,距离原点最远的直线方程是 ( )A.x=2B.x-2y+5=0C.2x+y+5=0D.2x+y-5=08. 已知直线L过点P(3,0),且其倾斜角是直线x-y-1=0的倾斜角的三倍,则直线L 的方程是()A.390--= D.30x y++=x y+-= C.30x y--= B.30x y9.直线x-y+4=0被圆x2+y2+4x-4y+6=0截得的弦长等于 ( )。
人教版高中数学必修2同步章节训练题及答案全册汇编
高中数学必修2全册同步练习题目录1-1-1 棱柱、棱锥、棱台的结构特征1-1-2 圆柱、圆锥、圆台、球的结构特征、简单组合体的结构特征1-2-1、2 中心投影与平行投影空间几何体的三视图1-2-3 空间几何体的直观图1-3-1-1 柱体、锥体、台体的表面积1-3-1-2 柱体、锥体、台体的体积1-3-2 球的体积和表面积高中数学第一章综合素能检测2-1-1 平面2-1-2 空间中直线与直线之间的位置关系2-1-3、4 空间中直线与平面之间的位置关系平面与平面之间的位置关系2-2-1 直线与平面平行的判定2-2-2 平面与平面平行的判定2-2-3 直线与平面平行的性质2-2-4 平面与平面平行的性质2-3-1 直线与平面垂直的判定2-3-2 平面与平面垂直的判定2-3-3 直线与平面垂直的性质2-3-4 平面与平面垂直的性质高中数学第二章综合素能检测3-1-1 倾斜角与斜率3-1-2 两条直线平行与垂直的判定3-2-1 直线的点斜式方程3-2-2 直线的两点式方程3-2-3 直线方程的一般式3-3-1 两条直线的交点坐标3-3-2 两点间的距离公式3-3-3、4 点到直线的距离两条平行直线间的距离高中数学第三章综合检测4-1-1 圆的标准方程4-1-2 圆的一般方程4-2-1 直线与圆的位置关系4-2-2 圆与圆的位置关系4-2-3 直线与圆的方程的应用4-3-1、2 空间直角坐标系空间两点间的距离公式高中数学第四章综合检测一、选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行[答案] D2.下列几何体中,不属于多面体的是()A.立方体B.三棱柱C.长方体D.球[答案] D3.如图所示的几何体是()A.五棱锥B.五棱台C.五棱柱D.五面体[答案] C4.下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形[答案] D5.棱锥侧面是有公共顶点的三角形,若围成一个棱锥侧面的三角形都是正三角形,则这样侧面的个数最多有几个.() A.3B.4C.5D.6[答案] C[解析]由于顶角之和小于360°,故选C.6.下面描述中,不是棱锥的几何结构特征的为()A.三棱锥有四个面是三角形B.棱锥都是有两个面是互相平行的多边形C.棱锥的侧面都是三角形D.棱锥的侧棱交于一点[答案] B7.下列图形经过折叠不能围成一个棱柱的是()[答案] B8.(2012-2013·嘉兴高一检测)如下图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()A.(1)(2) B.(2)(3)C.(3)(4) D.(1)(4)[答案] B[解析]在图(2)、(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)、(3)完全一样,而(1)、(4)则不同[解题提示]让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.二、填空题9.图(1)中的几何体叫做________,AA1、BB1等叫它的________,A、B、C1等叫它的________.[答案]棱柱侧棱顶点10.图(2)中的几何体叫做________,P A、PB叫它的________,平面PBC、PCD叫做它的________,平面ABCD叫它的________.[答案]棱锥侧棱侧面底面11.图(3)中的几何体叫做________,它是由棱锥________被平行于底面ABCD的平面________截得的.AA′,BB′叫它的__________,平面BCC′B′、平面DAA′D′叫它的________.[答案]棱台O-ABCD A′B′C′D′侧棱侧面12.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:①水的形状成棱柱形;②水面EFGH的面积不变;③水面EFGH始终为矩形.其中正确的命题序号是________.[答案]①③[解析]根据棱柱的定义及结构特征来判断.在棱柱中因为有水的部分和无水的部分始终有两个面平行,而其余各面易证是平行四边形,故①正确;而随着倾斜程度的不同,水面EFGH的面积是会改变的,但仍为矩形故②错误;③正确.三、解答题13.判断下列语句的对错.(1)一个棱锥至少有四个面;(2)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;(3)五棱锥只有五条棱;(4)用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.[解析](1)正确.(2)不正确.四棱锥的底面是正方形,它的侧棱可以相等,也可以不相等.(3)不正确,五棱锥除了五条侧棱外,还有五条底边,故共有10条棱.(4)正确.14.如右图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解析]这个几何体是由两个同底面的四棱锥组合而成的正八面体.有8个面,都是全等的正三角形;有6个顶点;有12条棱.15.已知正方体ABCD-A1B1C1D1,图(1)中截去的是什么几何体?图(2)中截去一部分,其中HG∥AD∥EF,剩下的几何体是什么?若再用一个完全相同的正方体放在第一个正方体的左边,它们变成了一个什么几何体?[解析]三棱锥五棱柱A1B1BEH-D1C1CFG长方体16.一个几何体的表面展开平面图如图.(1)该几何体是哪种几何体;(2)该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?[解析](1)该几何体是四棱台;(2)与“祝”相对的面是“前”,与“你”相对的面是“程”.一、选择题1.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D.圆台平行于底面的截面是圆面[答案] C[解析]由圆锥的概念知,直角三角形绕它的一条直角边所在直线旋转一周所围成的几何体是圆锥.强调一定要绕着它的一条直角边,即旋转轴为直角三角形的一条直角边所在的直线,因而C错.2.正方形绕其一条对角线所在直线旋转一周,所得几何体是()A.圆柱B.圆锥C.圆台D.两个圆锥[答案] D3.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心[答案] D[解析]圆锥的母线长与底面直径的大小不确定,则A项不正确;圆柱的母线与轴平行,则B项不正确;圆台的母线与轴相交,则C项不正确;很明显D项正确.4.如右图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体[答案] B[解析]圆旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.5.一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积为()A.10 B.20C.40 D.15[答案] B[解析]圆柱的轴截面是矩形,其一边为圆柱的母线,另一边为圆柱的底面圆的直径.因而,轴截面的面积为5×4=20.6.在空间,到定点的距离等于定长的所有点的集合是()A.球B.正方体C.圆D.球面[答案] D7.(2012-2013·南京模拟)经过旋转可以得到图1中几何体的是图2中的()[答案] A[解析]观察图中几何体的形状,掌握其结构特征,其上部为一个圆锥,下部是一个与圆锥同底的圆台,圆锥可由一直角三角形以过一直角边的直线为轴旋转一周得到,圆台可由一直角梯形绕过垂直于两底的腰的直线为轴旋转而成,通过上述判断再对选项中的平面图形适当分割,只有A适合.故正确答案为A.8.图中最左边的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则截面图形可能是()A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(5)[答案] D[解析]圆锥除过轴的截面外,其它截面截圆锥得到的都不是三角形.二、填空题9.图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.[答案]球球心半径直径10.图②中的几何体叫________,AB、CD都是它的________,⊙O和⊙O′及其内部是它的________.[答案] 圆柱 母线 底面11.图③中的几何体叫做________,SB 为叫它的________. [答案] 圆锥 母线12.图④中的几何体叫做________,AA ′叫它的________,⊙O ′及其内部叫它的________,⊙O 及其内部叫它的________,它还可以看作直角梯形OAA ′O ′绕它的________________旋转一周后,其他各边所形成的面所围成的旋转体.[答案] 圆台 母线 上底面 下底面 垂直于两底的腰OO ′ 三、解答题13.说出下列7种几何体的名称.[解析]a是圆柱,b是圆锥,c是球,d、e是棱柱,f是圆台,g 是棱锥.14.说出如图所示几何体的主要结构特征.[解析](1)是一个六棱柱中挖去一个圆柱;(2)是一个圆台与一个圆柱的组合体;(3)是两个四棱锥构成的组合体.15.如图所示,几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.[解析]先出画几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:16.如图所示,在长方体ABCD-A′B′C′D′中,AB=2 cm,AD=4 cm,AA′=3 cm.求在长方体表面上连接A、C′两点的诸曲线的长度的最小值.[解析]将长方体的表面展开为平面图,这就将原问题转化为平面问题.本题所求必在下图所示的三个图中,从而,连接AC′的诸曲线中长度最小的为41 cm(如图乙所示).一、选择题1.一个空间几何体的正视图与侧视图均为全等的等腰三角形,俯视图为一个圆及其圆心,那么这个几何体为()A.棱锥B.棱柱C.圆锥D.圆柱[答案] C2.已知某空间几何体的三视图如图所示,则此几何体为()A.圆台B.四棱锥C.四棱柱D.四棱台[答案] D3.下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是()A.(1)(2) B.(2)(3)C.(3)(4) D.(1)(4)[答案] D4.(2012-2013·安徽淮南高三模拟)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④[答案] D[解析]①正方体,三视图均相同;②圆锥,正视图和侧视图相同;③三棱台,三视图各不相同;④圆台,正视图和侧视图相同.[点评]熟悉常见几何体的三视图特征,对于画几何体的直观图是基本的要求.下图是最基本的常见几何体的三视图.[答案] C[解析]结合俯视图的定义,仔细观察,易得答案C.6.一个几何体的三视图如图,则组成该组合体的简单几何体为()A.圆柱与圆台B.四棱柱与四棱台C.圆柱与四棱台D.四棱柱与圆台[答案] B[解析]该几何体形状如图.上部是一个四棱柱,下部是一个四棱台.7.如图所示几何体的正视图和侧视图都正确的是()[答案] B8.(2011·新课标全国高考)在一个几何体的三视图中,主视图和俯视图如右图所示,则相应的侧视图可以为()[答案] D[解析]此几何体为一个半圆锥和一个半三棱锥的组合体,只有D项符合题意.二、填空题9.下列图形:①三角形;②直线;③平行四边形;④四面体;⑤球.其中投影不可能是线段的是________.[答案]②④⑤[解析]三角形的投影是线段成三角形;直线的投影是点或直线;平行四边形的投影是线段或平行四边形;四面体的投影是三角形或四边形;球的投影是圆.10.由若干个小正方体组成的几何体的三视图如下图,则组成这个组合体的小正方体的个数是________.[答案] 5[解析]由三视图可作出直观图,由直观图易知共有5个小正方体.11.(2012~2013·烟台高一检测)已知某一几何体的正视图与侧视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有________.[答案]①②③④12.(2012-2013·湖南高三“十二校联考”)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则用________个这样的几何体可以拼成一个棱长为4的正方体.[答案] 3[解析]该几何体是四棱锥,其底面是边长为4的正方形,高等于4,如图(1)所示的四棱锥A-A1B1C1D1,如图(2)所示,三个相同的四棱锥A-A1B1C1D1,A-BB1C1C,A -DD1C1C可以拼成一个棱长为4的正方体.三、解答题13.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.[解析]所给四棱锥的三视图如下图.[点评](1)画三视图时,务必做到正视图与侧视图的高度一致(即所谓的高平齐)、正视图与俯视图的长度一致(即所谓的“长对正”)、侧视图与俯视图的宽度一致(即所谓的“宽相等”).(2)习惯上将侧视图放在正视图的右侧,将俯视图放在正视图的下方.[拓展提高]1.三视图中各种数据的对应关系:(1)正视图中AB的长对应原四棱锥底面多边形的左右方向的长度,AC、BC的长则不对应侧棱的长,它们对应四棱锥的顶点到底面左、右两边的距离.(2)侧视图中,EF的长度对应原四棱锥底面的前后长度,GE、GF的长度则是四棱锥顶点与底面前后两边的距离.(3)俯视图中HIJK的大小与四棱锥底面的大小形状完全一致,而OK,OI,OJ,OH的大小,则为四棱锥的顶点在底面上的投影到底面各顶点的距离.2.误区警示:正视图、侧视图中三角形的腰长有的学生会误认为是棱锥的侧棱长,实则不然.弄清一些数据的对应关系,是后面进行相关计算的前提.14.依所给实物图的形状,画出所给组合体的三视图.[解析]图中所给几何体是一个圆柱和一个正六棱柱的组合体,在中心以中心轴为轴线挖去一个小圆柱,故其三视图如下:15.说出下列三视图表示的几何体:[解析]16.根据下列图中所给出的一个物体的三视图,试画出它的形状.[答案]所对应的空间几何体的图形为:一、选择题1.如果平面图形中的两条线段平行且相等,那么在它的直观图中对应的这两条线段()A.平行且相等B.平行不相等C.相等不平行D.既不平行也不相等[答案] A2.给出以下关于斜二测直观图的结论,其中正确的个数是()①角的水平放置的直观图一定是角.②相等的角在直观图中仍相等.③相等的线段在直观图中仍然相等.④若两条线段平行,则在直观图中对应的两条线段仍然平行.A.0 B.1C.2 D.3[答案] C[解析]由斜二测画法规则可知,直观图保持线段的平行性,∴④对,①对;而线段的长度,角的大小在直观图中都会发生改变,∴②③错.3.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上说法正确的是()A.①B.①②C.③④D.①②③④[答案] B[解析]根据画法规则,平行性保持不变,与y轴平行的线段长度减半.4.如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是()[答案] A[解析]由几何体直观图画法及立体图形中虚线的使用可知A正确.5.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是()A.AB B.ADC.BC D.AC[答案] D[解析]△ABC是直角三角形,且∠ABC=90°,则AC>AB,AC >AD,AC>BC.6.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,若按的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为() A.4 cm,1 cm, 2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.2 cm,0.5 cm,1 cm,0.8 cm[答案] C[解析]由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm,1 cm,2 cm和1.6 cm,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm,0.5 cm,2 cm,1.6 cm.7.如图为一平面图形的直观图,则此平面图形可能是选项中的()[答案] C[解析]由直观图一边在x′轴上,一边与y′轴平行,知原图为直角梯形.8.在下列选项中,利用斜二测画法,边长为1的正三角形ABC的直观图不是全等三角形的一组是( )[答案] C[解析] C 中前者画成斜二测直观图时,底AB 不变,原来高h 变为h 2,后者画成斜二测直观图时,高不变,边AB 变为原来的12.二、填空题9.斜二测画法中,位于平面直角坐标系中的点M (4,4)在直观图中的对应点是M ′,则点M ′的坐标为________,点M ′的找法是________.[答案] M ′(4,2) 在坐标系x ′O ′y ′中,过点(4,0)和y ′轴平行的直线与过点(0,2)和x ′轴平行的直线的交点即是点M ′.[解析] 在x ′轴的正方向上取点M 1,使O 1M 1=4,在y ′轴上取点M 2,使O ′M 2=2,过M 1和M 2分别作平行于y ′轴和x ′轴的直线,则交点就是M ′.10.如右图,水平放置的△ABC 的斜二测直观图是图中的△A ′B ′C ′,已知A ′C ′=6,B ′C ′=4,则AB 边的实际长度是________.[答案] 10[解析] 由斜二测画法,可知△ABC 是直角三角形,且∠BCA =90°,AC =6,BC =4×2=8,则AB =AC 2+BC 2=10.11.如图,是△AOB 用斜二测画法画出的直观图,则△AOB 的面积是________.[答案] 16[解析] 由图易知△AOB 中,底边OB =4, 又∵底边OB 的高为8, ∴面积S =12×4×8=16.12.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是________?[答案]8[解析]原图形为OABC为平行四边形,OA=1,AB=OA2+OB2=3,∴四边形OABC周长为8.三、解答题13.用斜二测画法画出下列图形的直观图(不写画法).[解析]14.如图所示,四边形ABCD 是一个梯形,CD ∥AB ,CD =AO =1,三角形AOD 为等腰直角三角形,O 为AB 的中点,试求梯形ABCD 水平放置的直观图的面积.[解析] 在梯形ABCD 中,AB =2,高OD =1,由于梯形ABCD 水平放置的直观图仍为梯形,且上底CD 和下底AB 的长度都不变,如图所示,在直观图中,O ′D ′=12OD ,梯形的高D ′E ′=24,于是梯形A ′B ′C ′D ′的面积为12×(1+2)×24=328.15.已知几何体的三视图如下,用斜二测画法,画出它的直观图(直接画出图形,尺寸不作要求).[解析]如图.16.如图所示,直角梯形ABCD中,AD∥BC,且AD>BC,该梯形绕边AD所在直线EF旋转一周得一几何体,画出该几何体的直观图和三视图.[分析]该几何体是一个圆锥和一个圆柱拼接成的简单组合体.[解析]直观图如图a所示,三视图如图b所示.一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍 D .2倍[答案] D[解析] 由已知得l =2r ,S 侧S 底=πrl πr 2=lr =2,故选D.2.长方体的高为1,底面积为2,垂直于底的对角面的面积是5,则长方体的侧面积等于( )A .27B .4 3C .6D .3[答案] C[解析] 设长方体的长、宽、高分别为a 、b 、c , 则c =1,ab =2,a 2+b 2·c =5, ∴a =2,b =1,故S 侧=2(ac +bc )=6.3.已知一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A.1+2π2πB.1+4π4πC.1+2ππD.1+4π2π[答案] A[解析] 设圆柱的底面半径为r ,高为h ,则由题设知h =2πr ,∴S 全=2πr 2+2πr ·h =2πr 2(1+2π)又S 侧=h 2=4π2r 2,∴S 全S 侧=1+2π2π.[点评] 圆柱的侧面展开图是一个矩形,矩形两边长分别为圆柱底面周长和高;圆锥侧面展开图是一个扇形,半径为圆锥的母线,弧长为圆锥底面周长;圆台侧面展开图是一个扇环,其两段弧长为圆台两底周长,扇形两半径的差为圆台的母线长,对于柱、锥、台的有关问题,有时要通过侧面展开图来求解.4.将一个棱长为a 的正方体,切成27个全等的小正方体,则表面积增加了( )A .6a 2B .12a 2C .18a 2D .24a 2[答案] B[解析] 原来正方体表面积为S 1=6a 2,切割成27个全等的小正方体后,每个小正方体的棱长为13a ,其表面积为6×⎝ ⎛⎭⎪⎫13a 2=23a 2,总表面积S 2=27×23a 2=18a 2,∴增加了S 2-S 1=12a 2.5.如图所示,圆台的上、下底半径和高的比为,母线长为10,则圆台的侧面积为( )A .81πB .100πC .14πD .169π[答案] B[解析] 圆台的轴截面如图,设上底半径为r ,则下底半径为4r ,高为4r .因为母线长为10,所以在轴截面等腰梯形中,有102=(4r )2+(4r -r )2.解得r =2.所以S 圆台侧=π(r +4r )·10=100π,故选B.6.如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的全面积为( )A.3π2 B .2π C .πD .4π[答案] A[解析] 由三视图可知,该几何体是底半径为12,高为1的圆柱,故其全面积S =2π×⎝ ⎛⎭⎪⎫122+2π×12×1=3π2.7.(2012-2013·安徽合肥一模)如图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .6πB .12πC .18πD .24π[答案] B[解析] 该几何体是两底面半径分别为1、2,母线长为4的圆台,则其侧面积是π(1+2)×4=12π.8.(2011·海南、宁夏高考)一个棱锥的三视图如图所示,则该棱锥的全面积(单位:cm 2)为( )A .48+12 2B .48+24 2C .36+12 2D .36+24 2[答案] A[解析] 由三视图可得:底面为等腰直角三角形,腰长为6,面积为18;垂直于底面的面为等腰三角形,面积为12×62×4=122;其余两个面为全等的三角形,每个三角形的面积都为12×6×5=15.所以全面积为48+12 2.二、填空题9.已知圆柱OO ′的母线l =4 cm ,全面积为42π cm 2,则圆柱OO ′的底面半径r = ________cm.[答案] 3[解析] 圆柱OO ′的侧面积为2πrl =8πr (cm 2),两底面积为2×πr 2=2πr 2(cm 2),∴2πr 2+8πr =42π, 解得r =3或r =-7(舍去),∴圆柱的底面半径为3 cm.10.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为________.[答案] 24+2 3[解析] 该几何体是三棱柱,且两个底面是边长为2的正三角形,侧面是全等的矩形,且矩形的长是4,宽是2,所以该几何体的表面积为2×(12×2×3)+3×(4×2)=24+2 3.11.如图所示,一圆柱内挖去一个圆锥,圆锥的顶点是圆柱底面的圆心,圆锥的底面是圆柱的另一个底面.圆柱的母线长为6,底面半径为2,则该组合体的表面积等于________.[答案] (410+28)π[解析] 挖去的圆锥的母线长为62+22=210,则圆锥的侧面积等于410π.圆柱的侧面积为2π×2×6=24π,圆柱的一个底面面积为π×22=4π,所以组合体的表面积为410π+24π+4π=(410+28)π.12.下图中,有两个相同的直三棱柱,高为2a ,底面三角形的三边长分别为3a 、4a 、5a (a >0).用它们拼成一个三棱柱或四棱柱,在所有可能的情况中表面积最小的是一个四棱柱,则a 的取值范围是________.[答案] 0<a <153[解析] 底面积为6a 2,侧面面积分别为6、8、10,拼成三棱柱时,有三种情况:S 1=2×6a 2+2(10+8+6)=12a 2+48, S 2=24a 2+2(10+8)=24a 2+36, S 3=24a 2+2(10+6)=24a 2+32. 拼成四棱柱时只有一种情况:表面积为(8+6)×2+4×6a 2=24a 2+28.由题意得24a 2+28<12a 2+48,解得0<a <153. 三、解答题13.已知各棱长为5,底面为正方形,各侧面均为正三角形的四棱锥S -ABCD ,如图所示,求它的表面积.[分析] 求各侧面的面积→ 求侧面积→求底面积→求表面积[解析] ∵四棱锥S -ABCD 的各棱长均为5, 各侧面都是全等的正三角形, 设E 为AB 的中点, 则SE ⊥AB ,∴S 侧=4S △SAB =4×12×5×532=253, S 底=52=25,∴S 表面积=S 侧+S 底=253+25=25(3+1). 14.正四棱台两底面边长分别为a 和b (a <b ).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.[解析] (1)如图,设O 1、O 分别为上、下底面的中心,过C 1作C 1E ⊥AC 于E ,过E 作EF ⊥BC ,连接C 1F ,则C 1F 为正四棱台的斜高.由题意知∠C 1CO =45°,CE =CO -EO =CO -C 1O 1=22(b -a ), 在Rt △C 1CE 中,C 1E =CE =22(b -a ), 又EF =CE ·sin45°=12(b -a ), ∴C 1F =C 1E 2+EF 2 =[22(b -a )]2+[12(b -a )]2=32(b -a ).∴S 侧=12(4a +4b )×32(b -a )=3(b 2-a 2). (2)由S 侧=a 2+b 2,∴12(4a +4b )·h 斜=a 2+b 2, ∴h 斜=a 2+b 22(a +b ).又EF =b -a 2,∴h =h 2斜-EF 2=aba +b.15.(2012-2013·嘉兴高一检测)如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.[解析] 设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S .则R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC ,∴AE AO =EB OC ,即323=r 2,∴r =1S 底=2πr 2=2π,S 侧=2πr ·h =23π. ∴S =S 底+S 侧=2π+23π=(2+23)π.16.已知某几何体的三视图如图,求该几何体的表面积.(单位:cm)[解析] 几何体的直观图如图.这是底面边长为4,高为2的同底的正四棱柱与正四棱锥的组合体,易求棱锥的斜高h ′=22,其表面积S =42+4×4×2+⎝ ⎛⎭⎪⎫12×4×22×4=48+16 2 cm 2.一、选择题1.长方体三个面的面积分别为2、6和9,则长方体的体积是( ) A .6 3 B .3 6 C .11 D .12[答案] A[解析] 设长方体长、宽、高分别为a 、b 、c ,则ab =2,ac =6,bc =9,相乘得(abc )2=108,∴V =abc =6 3.2.已知正六棱台的上、下底面边长分别为2和4,高为2,则体积为( )A .32 3B .28 3C .24 3D .20 3 [答案] B[解析] 上底面积S 1=6×34×22=63, 下底面积S 2=6×34×42=243, 体积V =13(S 1+S 2+S 1S 2)·h=13(63+243+63·243)×2=28 3.3.(2012~2013学年枣庄模拟)一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,直角边长为1,则这个几何体的体积为( )。
数学试题 人教a版必修2 同步练习第四章检测测试题(两套)
第四章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆心为(1,-7),半径为2的圆的方程是( )A.(x-1)2+(y+7)2=4B.(x+1)2+(y-7)2=4C.(x+1)2+(y-7)2=2D.(x-1)2+(y+7)2=2解析:由已知条件得圆的标准方程为(x-1)2+(y+7)2=4.答案:A2.已知空间两点P1(-1,3,5),P2(2,4,-3),则|P1P2|等于( )A解析:|P1P2|答案:A3.直线l:x-y=1与圆C:x2+y2-4x=0的位置关系是( )A.相离B.相切C.相交D.无法确定解析:圆C的圆心为C(2,0),半径为2,圆心C到直线l的距离d.答案:C4.圆x2+y2=1与圆x2+y2=4的位置关系是( )A.外离B.内含C.相交D.相切解析:圆x2+y2=1的圆心为(0,0),半径为1,圆x2+y2=4的圆心为(0,0),半径为2,则圆心距0<|2-1|=1,所以两圆内含.答案:B5.圆(x-1)2+(y-1)2=1上的点到直线x+2y+2=0的最短距离为( )A解析:由已知得圆心坐标为(1,1),半径r为1,圆心到直线的距离d.所以最短距离为d-r答案:C6.已知圆C:(x-a)2+(y-b)2=1过点A(1,0),则圆C的圆心的轨迹是( )A.点B.直线C.线段D.圆解析:∵圆C:(x-a)2+(y-b)2=1过点A(1,0),∴(1-a)2+(0-b)2=1,即(a-1)2+b2=1.故圆C的圆心的轨迹是以(1,0)为圆心,1为半径的圆.答案:D7.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为( )A.(x+1)2+(y-1)2=2B.(x-1)2+(y-1)2=2C.(x-1)2+(y+1)2=2D.(x+1)2+(y+1)2=2解析:由题意设圆心坐标为(a,-a),因为圆心到直线x-y-4=0与x-y=0的距离相等,所a=1.所以圆心坐标为(1,-1),半径r故所求圆的方程为(x-1)2+(y+1)2=2.答案:C8.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )A.-2B.-4C.-6D.-8解析:圆的方程可化为(x+1)2+(y-1)2=2-a,因此圆心为(-1,1),半径r圆心到直线x+y+2=0的距离d4,因此由勾股定理可a=-4.故选B.答案:B9.圆x2+y2+2x+4y-3=0上到直线x+y+2=0的距离A.1个B.2个C.3个D.4个解析:圆的标准方程为(x+1)2+(y+2)2=((-1,-2)到直线x+y+2=0的距离4个.答案:D10.若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限内的部分有交点,则k的取值范围是( )A.0<kC.0<k解析:圆x2+4x+y2-5=0可变形为(x+2)2+y2=9,如图所示.当x=0时,y=A(0k AM∈(0答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.点P(3,4,5)关于原点的对称点的坐标是.解析:因为点P(3,4,5)与P'(x,y,z)的中点为坐标原点,所以点P'的坐标为(-3,-4,-5).答案:(-3,-4,-5)12.已知圆C1:(x+1)2+(y-1)2=1与圆C2:(x+5)2+(y+2)2=m2(m>0)外切,则m的值为.解析:由已知得C1(-1,1),半径r1=1;C2(-5,-2),半径r2=m,所以圆心距d=|C1C2|又因为两圆外切,所以d=r1+r2.所以5=1+m,即m=4.答案:413.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是.解析:由题意可知点P在以MN为直径的圆上,且除去M,N两点,所以圆心坐标为(0,0),半径为2.所以轨迹方程是x2+y2=4(x≠±2).答案:x2+y2=4(x≠±2)14.若圆x2+y2=4与圆x2+y2-2ax+a2-1=0内切,则a=.解析:两圆的圆心分别为O1(0,0),O2(a,0),半径分别为r1=2,r2=1.由两圆内切可得|O1O2|=r1-r2,即|a|=1,所以a=±1.答案:±115.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.解析:因为直线mx-y-2m-1=0(m∈R)恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r(x-1)2+y2=2.答案:(x-1)2+y2=2三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)已知圆M:(x-1)2+(y-1)2=4,直线l经过点P(2,3)且与圆M交于A,B两点,且|AB|=解:当直线l的斜率存在时,设直线l的方程为y-3=k(x-2),即kx-y+3-2k=0.如图,作MC⊥AB于点C,连接BM.在Rt△MBC中,|BC||MC|由点到直线的距离公式解得k l的方程为3x-4y+6=0.当直线l的斜率不存在时,其方程为x=2,且|AB|=.综上所述,直线l的方程为3x-4y+6=0或x=2.17.(8分)求与直线y=x相切,圆心在直线y=3x上且截y轴所得的弦长为解:设圆心坐标为O1(x0,3x0),半径为r,解得r y轴被圆截得的弦长∴即圆的方程为(x(x18.(9分)已知一个圆的圆心为A(2,1),且与圆x2+y2-3x=0相交于P1,P2两点.若|P1P2|=2,求这个圆的方程. 解:设圆的方程为(x-2)2+(y-1)2=r2,即x2+y2-4x-2y+5-r2=0.所以直线P1P2的方程为x+2y-5+r2=0.则点A(2,1)到直线P1P2的距离又因为|P1P2|=2,所以当r=1时,易知符合题意,此时所求圆的方程为(x-2)2+(y-1)2=1.当r≠1时,r2=6或r2=1(舍去).此时所求圆的方程为(x-2)2+(y-1)2=6.故所求圆的方程是(x-2)2+(y-1)2=6或(x-2)2+(y-1)2=1.19.(10分)在棱长为2的正方体OABC-O1A1B1C1中,P是对角线O1B上任意一点,Q为棱B1C1的中点.求|PQ|的最小值.解:分别以OA,OC,OO1所在的直线为x轴、y轴、z轴建立如图所示的空间直角坐标系.由于Q是B1C1的中点,所以Q(1,2,2).点P在xOy平面上的射影在OB上,在yOz平面上的射影在O1C上 ,所以点P的坐标(x,y,z)满则|PQ|当x=1时,即P(1,1,1)时,|PQ|取得最小20.(10分)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O 为坐标原点.(1)求点M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.解:(1)当C,M,P三点均不重合时,∠CMP=90°,所以点M的轨迹是以线段PC为直径的圆(除去点P,C),即(x-1)2+(y-3)2=2(x≠2,且y≠2或x≠0,且y≠4).当C,M,P三点中有重合的情形时,易求得点M的坐标为(2,2)或(0,4).综上可知,点M的轨迹是一个圆,轨迹方程为(x-1)2+(y-3)2=2.(2)由(1)可知点M的轨迹是以点N(1,3)为圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上.又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以l的斜率l的方程为y=又易得|OM|=|OP|=O到l的距离△POM的面积第四章检测(B)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点A(3,-2,4)关于点(0,1,-3)的对称点的坐标为( )A.(-3,4,-10)B.(-3,2,-4)C解析:由中点坐标公式得A(3,-2,4)关于点(0,1,-3)对称的点为(-3,4,-10).答案:A2.若方程x2+y2-4x+4y+10-k=0表示圆,则k的取值范围是( )A.k<2B.k>2C.k≥2D.k≤2解析:若方程表示圆,则(-4)2+42-4(10-k)>0,解得k>2.答案:B3.圆心为(1,1),且与直线x+y=4相切的圆的方程是( )A.(x-1)2+(y-1)2=4B.(x+1)2+(y+1)2=4C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析:根据题意得r故圆的方程是(x-1)2+(y-1)2=2.答案:D4.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心解析:直线y=kx+1恒过定点(0,1),定点到圆心的距离d=1,所以直线y=kx+1与圆相交但直线不过圆心. 答案:C5.若圆C1:(x-a)2+y2=12与圆C2:x2+y2=4相切,则a的值为( )A.±3B.±1C.±1或±3D.1或3解析:圆C1的圆心坐标为(a,0),半径为1,圆C2的圆心坐标为(0,0),半径为2.当两圆外切时,|a|=3,则a=±3.当两圆内切时,|a|=1,则a=±1.答案:C6.已知半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程是( )A.(x-4)2+(y-6)2=6B.(x+4)2+(y-6)2=6或(x-4)2+(y-6)2=6C.(x-4)2+(y-6)2=36D.(x+4)2+(y-6)2=36或(x-4)2+(y-6)2=36解析:由题意可设圆的方程为(x-a)2+(y-6)2=36.由两圆内切,a2=16,所以a=±4,故所求圆的方程是(x+4)2+(y-6)2=36或(x-4)2+(y-6)2=36.答案:D7.已知一条光线从点(-2,-3)射出,经y轴反射后与圆C:(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )A.C.解析:圆(x+3)2+(y-2)2=1的圆心为C(-3,2),半径r=1.如图,作出点A(-2,-3)关于y轴的对称点B(2,-3).由题意可知,反射光线的反向延长线一定经过点 B.设反射光线的斜率为k,则反射光线所在直线的方程为y-(-3)=k(x-2),即kx-y-2k-3=0.由反射光线与圆相切可|5k+5|12k2+25k+12=0,即(3k+4)(4k+3)=0,解得k=k=答案:D8.过点A(3,1)和圆(x-2)2+y2=1相切的直线方程是( )A.y=1B.x=3C.x=3或y=1D.不确定解析:由题意知,点A在圆外,故过点A的切线应有两条.当所求直线的斜率存在时,设其为k,则直线方程为y-1=k(x-3),即kx-y+1-3k=0.因为直线与圆相切,所以d k=0,所以切线方程为y=1.当所求直线的斜率不存在时,x=3也符合条件.综上所述,所求切线方程为x=3或y=1.答案:C9.已知圆C1:x2+y2+4x-4y-3=0,动点P在圆C2:x2+y2-4x-12=0上,则△PC1C2面积的最大值为( )A.解析:圆C1:x2+y2+4x-4y-3=0,即(x+2)2+(y-2)2=11,圆心为C1(-2,2),半径圆C2:x2+y2-4x-12=0,即(x-2)2+y2=16,圆心为C2(2,0),半径为4,则|C1C2|故△PC1C2的面积最大值 B.答案:B10.若两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆圆心距|C1C2|等于( )A.4B.解析:由题意知两圆的圆心在直线y=x上.设C1(a,a),C2(b,b),可得(a-4)2+(a-1)2=a2,(b-4)2+(b-1)2=b2,即a,b是方程x2-10x+17=0的两根,a+b=10,ab=17,|C1C2|答案:C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11. 如图,在空间直角坐标系中,正方体ABCD-A1B1C1D1的棱长为1,若|B1E|A1B1答案:12.已知点M是圆x2+y2=1上的任意一点,点N是圆(x-3)2+(y-4)2=4上的任意一点,则|MN|的最小值为.解析:由已知可得两圆圆心分别为(0,0),(3,4),半径分别为1,2,所以圆心距为5>1+2.所以两圆外离,所以当M,N在圆心连线上时,|MN|取最小值,且最小值为5-3=2.答案:213.已知点A(1,2,-1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则|BC|的值为.解析:由已知可求得点C的坐标为(1,2,1),点B的坐标为(1,-2,1),所以|BC|答案:414.若直线y=kx+1与圆x2+y2=1相交于P,Q两点,且∠POQ=120°(其中O为原点),则k的值为.解析:由题意知点O到直线y=kx+1的距离答案:15.若☉O:x2+y2=5与☉O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB 的长度是.解析:由题意知点A处的切线分别过两圆的圆心,所以OA⊥O1A.所以m2=m=±5.由等面积法得|AB|=2答案:4三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)已知圆x2+y2+x-6y+3=0与直线x+2y-3=0的两个交点为P,Q,求以PQ为直径的圆的方程.解:设点P(x1,y1),Q(x2,y2),则点P,Q的坐标满足方程组,即点P(1,1),Q(-3,3),所以线段PQ的中点坐标为(-1,2),|PQ|故以PQ为直径的圆的方程是(x+1)2+(y-2)2=5.17.(8分)已知圆C:x2+y2-2x+4my+4m2=0,圆C1:x2+y2=25,直线l:3x-4y-15=0.(1)求圆C1:x2+y2=25被直线l截得的弦长;(2)当m为何值时,圆C与圆C1的公共弦平行于直线l?解:(1)因为圆C1:x2+y2=25的圆心为O(0,0),半径r=5,所以圆心O到直线l:3x-4y-15=0的距离d由勾股定理可知,圆C1:x2+y2=25被直线l截得的弦长(2)圆C与圆C1的公共弦的方程为2x-4my-4m2-25=0.因为该公共弦平行于直线3x-4y-15=0,m18.(9分)已知实数x,y满足x2+y2+4x+3=0,求:(1(2)(x-3)2+(y-4)2的最大值与最小值.解:圆x2+y2+4x+3=0的标准方程为(x+2)2+y2=1,记为圆C,则圆心C(-2,0),半径r=1.(1)如图①,设点M(x,y)在圆C上,Q(1,2),k kx-y-k+2=0.由图可知,当直线QM与圆C相切时,k取得最大值或最小值.由C(-2,0)到直线kx-y-k+2=0的距离为1,k所图①图②(2)如图②,令A(3,4),则(x-3)2+(y-4)2表示圆上的点与点A距离的平方.设直线AC与圆交于P,Q两点,则(x-3)2+(y-4)2的最大值为|AQ|2,最小值为|AP|2.|AQ|=|AC|+r( x-3)2+(y-4)2的最大值最小值19.(10分)已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过P作圆C的切线l,设切点为M.(1)若点P运动到(1,3)处,求此时切线l的方程;(2)求满足条件|PM|=|PO|的点P的轨迹方程.解:把圆C的方程化成标准方程(x+1)2+(y-2)2=4,所以圆心为C(-1,2),半径r=2.(1)当l的斜率不存在时,此时l的方程为x=1,点C到l的距离d=2=r,满足条件.当l的斜率存在时,设斜率为k,则l的方程为y-3=k(x-1),即kx-y+3-k=0,k=所以l的方程为y-3=即3x+4y-15=0.综上,满足条件的切线l的方程为x=1或3x+4y-15=0.(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,因为|PM|=|PO|,所以(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0.故点P的轨迹方程为2x-4y+1=0.20.(10分)已知圆C经过点M(0,-2),N(3,1),且圆心C在直线x+2y+1=0上.(1)求圆C的方程;(2)设直线ax-y+1=0与圆C相交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.解:(1)设圆C的方程为x2+y2+Dx+Ey+F=0,故圆C的方程为x2+y2-6x+4y+4=0.(2)设符合条件的实数a存在,由于l垂直平分弦AB,故圆心C(3,-2)必在l上,所以l的斜率k PC=-2,k AB=a=所以a把直线ax-y+1=0,即y=ax+1代入圆C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.由于直线ax-y-1=0交圆C于A,B两点,故Δ=36(a-1)2-36(a2+1)>0,即-72a>0,解得a<0.则实数a的取值范围是(-∞,0).由∉(-∞,0),故不存在实数a,使得过点P(2,0)的直线l垂直平分弦AB.。
【人教A版】高中数学同步辅导与检测必修2第四章模块综合评价
模块综合评价(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某几何体的正视图和侧视图均如图①所示(上面是一个圆,下面是个正方形),则下面四个图中可以作为该几何体的俯视图的是( )图① (1) (2) (3) (4)A .(1)(3)B .(1)(4)C .(2)(4)D .(1)(2)(3)(4)解析:由该几何体的正视图和侧视图,可知该几何体可以为一个正方体上面放着一个球,也可以是一个圆柱上面放着一个球,则其俯视图可以为(1)(3).答案:A2.已知直线l 的倾斜角为45°,直线l 1经过点A (3,2),B (-a ,1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b = ( )A .-4B .-2C .0D .2解析:由题意知,直线l 的斜率为1,则直线l 1的斜率为-1,所以2-13+a=-1,所以a =-4,又l 1∥l 2,所以-2b =-1,所以b =2,所以a +b =-4+2=-2.答案:B3.某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π解析:由三视图可知,该几何体是一个长方体和一个半圆柱组成的几何体,所以体积为12π×22×4+2×2×4=16+8π.答案:A4.已知点Q是点P(3,4,5)在平面xOy上的射影,则线段PQ 的长等于()A.2 B.3C.4 D.5解析:由题意,得Q(3,4,0),故线段PQ的长为5.答案:D5.如图①所示,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图②所示,那么,在四面体A-EFH中必有()图①图②A.AH⊥△EFH所在平面B.AG⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面解析:折成的四面体中有AH⊥EH,AH⊥FH,所以AH⊥面HEF.答案:A6.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2 B.4 2C.6 D.210解析:由题设得圆C的标准方程为(x-2)2+(y-1)2=4,知圆C 的圆心为(2,1),半径为2,因为直线l为圆C的对称轴,所以圆心在直线l上,则2+a-1=0,解得a=-1,所以|AB|2=|AC|2-|BC|2=[(-4-2)2+(-1-1)2]-4=36,所以|AB|=6.答案:C7.一个球的内接正方体的表面积为54,则球的表面积为() A.27πB.18πC.9πD.54π解析:设正方体的棱长为a,球的半径为r,则6a2=54,所以a=3.又因为2r =3a所以r =32a =332, 所以S 表=4πr 2=4π×274=27π. 答案:A 8.已知高为3的直棱柱ABC -A ′B ′C ′的底面是边长为1的正三角形(如图所示),则三棱锥B ′ABC 的体积为( )A.14B.12C.36D.34解析:V B ′ABC =13·S △ABC ·h =13×34×3=34. 答案:D9.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离为1,则半径r 的取值范围是( )A .(4,6)B .[4,6)C .(4,6]D .[4,6]解析:因为圆心到直线的距离为|12+15-2|42+(-3)2=5,所以半径r 的取值范围是(4,6).答案:A10.直线x +ky =0,2x +3y +8=0和x -y -1=0交于一点,则k 的值是( )A.12B .-12C .2D .-2解析:解方程组⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,得⎩⎪⎨⎪⎧x =-1,y =-2,则点(-1,-2)在直线x +ky =0上,得k =-12. 答案:B11.在四面体A -BCD 中,棱AB ,AC ,AD 两两互相垂直,则顶点A 在底面BCD 上的投影H 为△BCD 的( )A .垂心B .重心C .外心D .内心解析:因为AB ⊥AC ,AB ⊥AD ,AC ∩AD =A ,因为AB ⊥平面ACD ,所以AB ⊥CD .因为AH ⊥平面BCD ,所以AH ⊥CD ,AB ∩AH =A ,所以CD ⊥平面ABH ,所以CD ⊥BH .同理可证CH ⊥BD ,DH ⊥BC ,则H 是△BCD 的垂心.答案:A12.如图所示,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,PA =AB ,则PB 与AC 所成的角=( )A .90°B .60°C .45°D .30°解析:将其还原成正方体ABCD -PQRS ,连接SC ,AS ,则PB ∥SC ,所以∠ACS (或其补角)是PB 与AC 所成的角.因为△ACS 为正三角形,所以∠ACS =60°,所以PB 与AC 所成的角是60°.答案:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若点P 在直线x +y -4=0上,O 为原点,则|OP |的最小值是________.解析:|OP |的最小值即为点O 到直线x +y -4=0的距离,d =|0+0-4|1+1=2 2. 答案:2214.若函数y =ax +8与y =-12x +b 的图象关于直线y =x 对称,则a +b =________.解析:直线y =ax +8关于y =x 对称的直线方程为x =ay +8,所以x =ay +8与y =-12x +b 为同一直线, 故得⎩⎪⎨⎪⎧a =-2,b =4,所以a +b =2.答案:215.圆x2+(y+1)2=3绕直线kx-y-1=0旋转一周所得的几何体的表面积为________.解析:由题意,圆心为(0,-1),又直线kx-y-1=0恒过点(0,-1),所以旋转一周所得的几何体为球,球心即为圆心,球的半径即是圆的半径,所以S=4π(3)2=12π.答案:12π16.设a,b,c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是________________.解析:因为a⊥b,b⊥c,所以a与c可以相交、平行、异面,故①错.因为a、b异面,b、c异面.则a、c可能导面、相交、平行,故②错.由a、b相交,b、c相交,则a、c可以异面、平行,故③错.同理④错,故真命题个数为0.答案:0三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示,在正三棱柱ABC-A1B1C1中,AA1=6,异面直线BC1与AA1所成角的大小为30°,求该三棱柱的体积.解:因为CC1∥AA1.所以∠BC1C为异面直线BC1与AA1所成的角,即∠BC1C=30°. 在Rt△BCC1中,BC=CC1·tan∠BC1C=6×33=23,从而S△ABC=34BC2=33,因此该三棱柱的体积V=S△ABC·AA1=33×6=18 3.18.(本小题满分12分)已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P,Q在正视图中所处的位置为:P为三角形的顶点,Q为四边形的顶点,求在该几何体的侧面上,从点P到点Q的最短路径的长.解:(1)由三视图可知,此几何体是一个圆锥和一个圆柱的组合体,其表面积是圆锥的侧面积、圆柱的侧面积与圆柱的一个底面积之和.S圆锥侧=12(2πa)·(2a)=2πa2,S圆柱侧=(2πa)·(2a)=4πa2,S圆柱底=πa2,所以此几何体的表面积S表=S圆锥侧+S圆柱侧+S圆柱底=2πa2+4πa 2+πa 2=(2+5)πa 2.(2)分别沿点P 与点Q 所在的母线剪开圆柱的侧面,并展开铺平,如图所示,则|PQ |=|AP |2+|AQ |2=(2a )2+(πa )2=a 4+π2. 所以P ,Q 两点在该几何体的侧面上的最短路径的长为a 4+π2.19.(本小题满分12分)如图,已知在平行四边形ABCD 中,边AB 所在直线方程为2x -y -2=0,点C (2,0).求:(1)直线CD 的方程;(2)AB 边上的高CE 所在直线的方程.解:(1)因为四边形ABCD 为平行四边形,所以AB ∥CD ,所以k CD =k AB =2.故CD 的方程为y =2(x -2),即2x -y -4=0.(2)因为CE ⊥AB ,所以k CE =-1k AB =-12. 所以直线CE 的方程为y =-12(x -2), 即x +2y -2=0.20.(本小题满分12分)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解:(1)设AP中点为M(x,y),由中点坐标公式可知,P点坐标(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y).在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON(图略),则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.21.(本小题满分12分)(2015·北京卷)如图所示,在三棱锥V-ABC 中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V-ABC的体积.(1)证明:因为O,M分别AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC.所以VB∥平面MOC(2)证明:因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,且OC⊂平面ABC,所以OC⊥平面VAB.又OC⊂平面MOC.所以平面MOC⊥平面VAB.(3)解:在等腰直角三角形ACB中,AC=BC=2,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB= 3.又因为OC⊥平面VAB,所以三棱锥C-VAB的体积等于13OC·S△VAB=3 3.又因为三棱锥V-ABC的体积与三棱锥C-VAB的体积相等,所以三棱锥V-ABC的体积为3 3.22.(本小题满分12分)已知圆C过点A(1,2)和B(1,10),且与直线x-2y-1=0相切.(1)求圆C的方程;(2)设P为圆C上的任意一点,定点Q(-3,-6),当点P在圆C 上运动时,求线段PQ中点M的轨迹方程.解:(1)圆心显然在线段AB的垂直平分线y=6上,设圆心为(a,6),半径为r,则圆C的标准方程为(x-a)2+(y-6)2=r2,由点B在圆上得:(1-a)2+(10-6)2=r2,又圆C与直线x-2y-1=0相切,则r=|a-13|5.于是(a -1)2+16=(a -13)25, 解得:a =3,r =25或a =-7,r =4 5.所以圆C 的标准方程为(x -3)2+(y -6)2=20或(x +7)2+(y -6)2=80.(2)设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),由M 为PQ 的中点,则⎩⎨⎧x =x 0-32,y =y 0-62, 即:⎩⎪⎨⎪⎧x 0=2x +3,y 0=2y +6, 又点P (x 0,y 0)在圆C 上,若圆C 的方程为(x -3)2+(y -6)2=20,有:(x 0-3)2+(y 0-6)2=20,则(2x +3-3)2+(2y +6-6)2=20,整理得:x 2+y 2=5,此时点M 的轨迹方程为:x 2+y 2=5.若圆C 的方程为(x +7)2+(y -6)2=80,有:(x 0+7)2+(y 0-6)2=80,则(2x +3+7)2+(2y +6-6)2=80,整理得:(x +5)2+y 2=20,此时点M 的轨迹方程为:(x +5)2+y 2=20.综上所述:点M 的轨迹方程为x 2+y 2=5,或(x +5)2+y 2=20.。
(人教版B版)高中数学必修第二册 第四章综合测试试卷02及答案
第四章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数()3x y f =的定义域为[1,1]-,则函数()3log y f x =的定义域为( )A .[1,1]-B .1,23éùêúëûC .[1,2]D.2.已知函数1()2)2f x x =+,则1(lg 2)lg 2f f æö+=ç÷èø( )A .1-B .0C .1D .23.设函数2()log f x x =,若(1)2f a +<,则实数a 的取值范围为( )A .(1,3)-B .(,3)-¥C .(,1)-¥D .(1,1)-4.已知函数2||()e x f x x =+,若()02a f =,121log 4b f æö=ç÷ç÷èø,2log c f æ=ççè,则,,a b c 的大小关系为( )A .a b c >>B .a c b >>C .b a >>cD .c a b>>5.已知(31)4,1,()log ,1aa x a x f x x x -+ì=íî<≥,是R 上的减函数,那么实数a 的取值范围是( )A .(0,1)B .11,73éö÷êëøC .10,3æöç÷èøD .11,93æöç÷èø6.已知,(1,)m n Î+¥,且m n >,若26log log 13m n n m +=,则函数2()m nf x x =的图像为( )AB C D7.给出下列命题:①函数e e 2x xy -+=为偶函数;②函数e 1e 1x x y -=+在x ÎR上单调递增;③函数lg y x =在区间(0,)+¥上单调递减;④函数13xy æö=ç÷èø与3log y x =-的图像关于直线y x =对称。
人教A版高中同步学案数学选择性必修第二册精品习题课件 第四章 综合训练
( + ) = + + + ⋯ + + ,则( + ) − () = + + + ⋯ + + − (
+ + + ⋯ + − ) = + + + + + + + + ,则从 = 到
) + =
−
−
+ = .
5.用数学归纳法证明1 + 2 + 22 + ⋯ + 25−1 ( ∈ ∗ )能被31整除时,从 = 到
= + 1添加的项数为() C
A.7
B.6
C.5
D.4
[解析]设() = + + + ⋯ + − ,假设当 = 时,
(
−
)
+(
−
)
+
8.[2023新高考Ⅰ]设 为数列{ }的前项和,设甲:{ }为等差数列;乙:{ }为等差
数列,则() C
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
[解析]甲:{ }为等差数列,设其首项为 ,公差为,则 = +
[解析]设等差数列{ }的公差为,因为 ∈ ∗ 时,( + ) < + ,即
高一数学必修二第四章基础检测(含答案)
高一数学必修二第四章基础检测1.如果方程22+y 4250x x y k -++=表示圆,那么k 的取值范围是( ) A .(,)-∞+∞ B .(,1)-∞ C .(,1]-∞ D .[1,)+∞2.圆x 2+y 2-2x -4y -4=0的圆心坐标是( ). A .(-2,4)B .(2,-4)C .(-1,2)D .(1,2)3.圆x 2+y 2=1和圆x 2+y 2-6y +5=0的位置关系是( ). A .外切B .内切C .外离D .内含4.圆(x -1)2+(y -1)2=2被x 轴截得的弦长等于( ). A . 1B .23C . 2D . 35.已知直线mx +3y -4=0与圆5)2(22=++y x 相交于A 、B ,若|AB|=2,则m 的值是( )A 、25 B 、45 C 、25± D 、0,456.已知点A (1,0,2),B (1,-3,1),点M 在z 轴上且到A 、B 两点的距离相等,则点M 的坐标为( ) A .(-3,0,0) B .(0,-3,0) C .(0,0,-3) D .(0,0,3) 7.若直线),(042R n m ny mx ∈=-+将圆042422=---+y x y x 分成两段相等的弧,则m +n 等于( )A 、-2 B 、-1 C 、1 D 、28.已知圆心()2,3-,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是( ) A .224680x y x y +-++= B .224680x y x y +-+-= C .22460x y x y +--= D .22460x y x y +-+=9.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A .2 B10.过点A (-1,0),斜率为k 的直线,被圆22(1)4x y -+=截得的弦长为k 的值为( )11.过点M ()13,作圆C 22(2)(2)4x y -+-=的弦,其中最短的弦长为 . 12.点P (1,2,3)关于y 轴的对称点为P 1,P 关于坐标平面xOz 的对称点为P 2,则|P 1P 2|= .13. 圆x 2+y 2=1上的点到直线3x +4y -25=0的距离最小值为____________.14.过点P (3,6)且被圆2225x y +=截得的弦长为8的直线方程为 . 15.以点A (2,0)为圆心,且经过点B (-1,1)的圆的方程是 . 16.求过点(2,4)A 向圆422=+y x 所引的切线方程17.已知点A (-4,-5),B (6,-1),求以线段AB 为直径的圆的方程。
高中数学必修2第三章测试题 及答案
高中数学必修2第三章测试题一、选择题1.若直线过点(1,2),(4,2+),则此直线的倾斜角是( )A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A、 -3B、-6C、D、3.点P(-1,2)到直线8x-6y+15=0的距离为( )(A)2 (B) (C)1 (D)4. 点M(4,m)关于点N(n, - 3)的对称点为P(6,-9),则( )A m=-3,n=10B m=3,n=10C m=-3,n=5 D m=3,n=55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|,则L的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=07. 直线mx-y+2m+1=0经过一定点,则该点的坐标是A(-2,1) B (2,1) C (1,-2) D (1,2)8. 直线的位置关系是(A)平行 (B)垂直 (C)相交但不垂直 (D)不能确定10.已知A(1,2)、B(-1,4)、C(5,2),则ΔABC的边AB上的中线所在的直线方程为( )(A)x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0则过点且与的距离相等的直线方程为 .12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 .13.直线5x+12y+3=0与直线10x+24y+5=0的距离是.16. ①求平行于直线3x+4y-12=0,且与它的17.直线x+m2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m的值.②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是的直线的方程.18.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:①l在x轴上的截距是-3;②斜率为1.19.已知△ABC的三顶点是A(-1,-1),B(3,1),C(1,6).直线l平行于AB,交AC,BC分别于E,F,△CEF的面积是△CAB面积的.求直线l的方程.20.一直线被两直线l1:4x+y+6=0,l2:3x-5y-6=0截得的线段的中点恰好是坐标原点,求该直线方程.21.直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.15、求经过两条直线和的交点,且与直线平行的直线方程;16、已知直线L:y=2x-1,求点P(3 ,4)关于直线L的对称点。
完整版)高一数学必修2第三章测试题及答案解析
完整版)高一数学必修2第三章测试题及答案解析数学必修二第三章综合检测题一、选择题1.若直线过点 (1,2),(4,2+3),则此直线的倾斜角是()A。
30° B。
45° C。
60° D。
90°2.若三点 A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b 等于()A。
2 B。
3 C。
9 D。
-93.过点 (1,2),且倾斜角为 30°的直线方程是()A。
y+2=(3/2)(x+1) B。
y-2=3(x-1)C。
3x-3y+6-3=0 D。
3x-y+2-3=04.直线 3x-2y+5=0 与直线 x+3y+10=0 的位置关系是()A。
相交 B。
平行 C。
重合 D。
异面5.直线 mx-y+2m+1=0 经过一定点,则该定点的坐标为()A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知 ab<0,bc<0,则直线 ax+by+c=0 通过()A。
第一、二、三象限 B。
第一、二、四象限C。
第一、三、四象限 D。
第二、三、四象限7.点 P(2,5) 到直线 y=-3x 的距离 d 等于()A。
(23+5)/2 B。
(-23+5)/2 C。
(-23-5)/2 D。
(22)/38.与直线 y=-2x+3 平行,且与直线 y=3x+4 交于 x 轴上的同一点的直线方程是()A。
y=-2x+4 B。
y=(1/2)x+4C。
y=-2x-(3/2) D。
y=(2/3)x-(3/2)9.两条直线 y=ax-2 与 y=(a+2)x+1 互相垂直,则 a 等于()A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形 ABC 的斜边所在的直线是 3x-y+2=0,直角顶点是 C(3,-2),则两条直角边 AC,BC 的方程是()A。
3x-y+5=0.x+2y-7=0 B。
2x+y-4=0.x-2y-7=0C。
2x-y+4=0.2x+y-7=0 D。
高中数学必修2第四章测试(含答案)
第四章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是()A.相离B.相交C.外切D.内切2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为()A.3x-y-5=0 B.3x+y-7=0C.x+3y-5=0 D.x-3y+1=03.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1,-1 B.2,-2C.1 D.-14.经过圆x2+y2=10上一点M(2,6)的切线方程是()A.x+6y-10=0 B.6x-2y+10=0C.x-6y+10=0 D.2x+6y-10=05.点M(3,-3,1)关于xOz平面的对称点是()A.(-3,3,-1) B.(-3,-3,-1)C.(3,-3,-1) D.(3,3,1)6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=() A.5 B.13 C.10 D.107.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. 3B. 2C.3或- 3D.2和- 28.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是()A.4 B.3 C.2 D.19.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是()A.2x-y=0 B.2x-y-2=0C.x+2y-3=0 D.x-2y+3=010.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为()A.9πB.πC.2π D.由m的值而定11.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连结线段PQ的中点的轨迹方程是()A.(x+3)2+y2=4 B.(x-3)2+y2=1C.(2x-3)2+4y2=1 D.(2x+3)2+4y2=112.曲线y=1+4-x2与直线y=k(x-2)+4有两个交点,则实数k的取值范围是()A.(0,512) B.(512,+∞)C .(13,34]D .(512,34] 二、填空题(本大题共4小题,每小题5分,满分20分,把答案填在题中横线上)13.圆x 2+y 2=1上的点到直线3x +4y -25=0的距离最小值为____________.14.圆心为(1,1)且与直线x +y =4相切的圆的方程是________.15.方程x 2+y 2+2ax -2ay =0表示的圆,①关于直线y =x 对称;②关于直线x +y =0对称;③其圆心在x 轴上,且过原点;④其圆心在y 轴上,且过原点,其中叙述正确的是__________.16.直线x +2y =0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于__________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.18.(12分)已知圆M :x 2+y 2-2mx +4y +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0相交于A ,B 两点,且这两点平分圆N 的圆周,求圆M 的圆心坐标.19.(12分)已知圆C 1:x 2+y 2-3x -3y +3=0,圆C 2:x 2+y 2-2x -2y =0,求两圆的公共弦所在的直线方程及弦长.20.(12分)已知圆C :x 2+y 2+2x -4y +3=0,从圆C 外一点P 向圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求|PM |的最小值.21.(12分)已知⊙C :(x -3)2+(y -4)2=1,点A (-1,0),B (1,0),点P 是圆上动点,求d =|P A |2+|PB |2的最大、最小值及对应的P 点坐标.22.(12分)已知曲线C :x 2+y 2+2kx +(4k +10)y +10k +20=0,其中k ≠-1.(1)求证:曲线C 表示圆,并且这些圆心都在同一条直线上;(2)证明曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值.1解析:将圆x 2+y 2-6x -8y +9=0,化为标准方程得(x -3)2+(y -4)2=16.∴两圆的圆心距(0-3)2+(0-4)2=5,又r 1+r 2=5,∴两圆外切.答案:C2解析:依题意知,所求直线通过圆心(1,-2),由直线的两点式方程得y +21+2=x -12-1,即3x -y -5=0.答案:A 3解析:圆x 2+y 2-2x =0的圆心C (1,0),半径为1,依题意得|1+a +0+1|(1+a )2+1=1,即|a +2|=(a +1)2+1,平方整理得a =-1.答案:D4解析:∵点M (2,6)在圆x 2+y 2=10上,k OM =62,∴过点M 的切线的斜率为k =-63, 故切线方程为y -6=-63(x -2), 即2x +6y -10=0. 答案:D5解析:点M (3,-3,1)关于xOz 平面的对称点是(3,3,1).答案:D6解析:依题意得点A (1,-2,-3),C (-2,-2,-5).∴|AC |=(-2-1)2+(-2+2)2+(-5+3)2=13.答案:B7解析:由题意知,圆心O (0,0)到直线y =kx +1的距离为12, ∴11+k 2=12,∴k =±3.答案:C 8解析:两圆的方程配方得,O 1:(x +2)2+(y -2)2=1,O 2:(x -2)2+(y -5)2=16,圆心O 1(-2,2),O 2(2,5),半径r 1=1,r 2=4,∴|O 1O 2|=(2+2)2+(5-2)2=5,r 1+r 2=5.∴|O 1O 2|=r 1+r 2,∴两圆外切,故有3条公切线.答案:B9解析:依题意知,直线l 过圆心(1,2),斜率k =2,∴l 的方程为y -2=2(x -1),即2x -y =0.答案:A10解析:∵x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0,∴[x -(2m +1)]2+(y -m )2=m 2.∴圆心(2m +1,m ),半径r =|m |.依题意知2m +1+m -4=0,∴m =1.∴圆的面积S =π×12=π.答案:B11解析:设P (x 1,y 1),Q (3,0),设线段PQ 中点M 的坐标为(x ,y ), 则x =x 1+32,y =y 12,∴x 1=2x -3,y 1=2y . 又点P (x 1,y 1)在圆x 2+y 2=1上,∴(2x -3)2+4y 2=1.故线段PQ 中点的轨迹方程为(2x -3)2+4y 2=1.答案:C12解析:如图所示,曲线y =1+4-x 2变形为x 2+(y -1)2=4(y ≥1),直线y =k (x -2)+4过定点(2,4),当直线l 与半圆相切时,有|-2k +4-1|k 2+1=2,解得k =512. 当直线l 过点(-2,1)时,k =34. 因此,k 的取值范围是512<k ≤34.答案:D 13解析:圆心(0,0)到直线3x +4y -25=0的距离为5,∴所求的最小值为4.14解析:r =|1+1-4|2=2,所以圆的方程为(x -1)2+(y -1)2=2. 15解析:已知方程配方得,(x +a )2+(y -a )2=2a 2(a ≠0),圆心坐标为(-a ,a ),它在直线x +y =0上,∴已知圆关于直线x +y =0对称.故②正确.16解析:由x 2+y 2-6x -2y -15=0,得(x -3)2+(y -1)2=25.圆心(3,1)到直线x +2y =0的距离d =|3+2×1|5= 5.在弦心距、半径、半弦长组成的直角三角形中,由勾股定理得,弦长=2×25-5=4 5.17解:解法1:连接OP ,则OP ⊥BC ,设P (x ,y ),当x ≠0时,k OP ·k AP =-1,即y x ·y x -4=-1, 即x 2+y 2-4x =0①当x =0时,P 点坐标为(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内).解法2:由解法1知OP ⊥AP ,取OA 中点M ,则M (2,0),|PM |=12|OA |=2,由圆的定义知,P 点轨迹方程是以M (2,0)为圆心,2为半径的圆.故所求的轨迹方程为(x -2)2+y 2=4(在已知圆内).18解:由圆M 与圆N 的方程易知两圆的圆心分别为M (m ,-2),N (-1,-1).两圆的方程相减得直线AB 的方程为2(m +1)x -2y -m 2-1=0.∵A ,B 两点平分圆N 的圆周,∴AB 为圆N 的直径,∴AB 过点N (-1,-1),∴2(m +1)×(-1)-2×(-1)-m 2-1=0,解得m =-1.故圆M 的圆心M (-1,-2).19解:设两圆的交点为A (x 1,y 1),B (x 2,y 2),则A 、B 两点的坐标是方程组⎩⎪⎨⎪⎧x 2+y 2-3x -3y +3=0x 2+y 2-2x -2y =0的解,两方程相减得:x +y -3=0,∵A 、B 两点的坐标都满足该方程,∴x +y -3=0为所求.将圆C 2的方程化为标准形式,(x -1)2+(y -1)2=2,∴圆心C 2(1,1),半径r = 2.圆心C 2到直线AB 的距离d =|1+1-3|2=12, |AB |=2r 2-d 2=22-12= 6. 即两圆的公共弦长为 6.20解:如图:PM 为圆C 的切线,则CM ⊥PM ,∴△PMC 为直角三角形,∴|PM |2=|PC |2-|MC |2. 设P (x ,y ),C (-1,2),|MC |= 2.∵|PM |=|PO |,∴x 2+y 2=(x +1)2+(y -2)2-2,化简得点P 的轨迹方程为:2x -4y +3=0.求|PM |的最小值,即求|PO |的最小值,即求原点O 到直线2x -4y +3=0的距离,代入点到直线的距离公式可求得|PM |最小值为3510. 21解:设点P 的坐标为(x 0,y 0),则d =(x 0+1)2+y 02+(x 0-1)2+y 02=2(x 02+y 02)+2.欲求d 的最大、最小值,只需求u =x 02+y 02的最大、最小值,即求⊙C 上的点到原点距离的平方的最大、最小值.作直线OC ,设其交⊙C 于P 1(x 1,y 1),P 2(x 2,y 2), 如图所示.则u 最小值=|OP 1|2=(|OC |-|P 1C |)2=(5-1)2=16.此时,x 13=y 14=45, ∴x 1=125,y 1=165. ∴d 的最小值为34,对应点P 1的坐标为⎝⎛⎭⎫125,165.同理可得d 的最大值为74,对应点P 2的坐标为⎝⎛⎭⎫185,245.22解:(1)证明:原方程可化为(x +k )2+(y +2k +5)2=5(k +1)2 ∵k ≠-1,∴5(k +1)2>0.故方程表示圆心为(-k ,-2k -5),半径为5|k +1|的圆.设圆心的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =-k ,y =-2k -5,消去k ,得2x -y -5=0.∴这些圆的圆心都在直线2x -y -5=0上.(2)证明:将原方程变形为(2x +4y +10)k +(x 2+y 2+10y +20)=0,∵上式对于任意k ≠-1恒成立, ∴⎩⎪⎨⎪⎧ 2x +4y +10=0,x 2+y 2+10y +20=0.解得⎩⎪⎨⎪⎧x =1,y =-3.∴曲线C 过定点(1,-3).(3)∵圆C 与x 轴相切,∴圆心(-k ,-2k -5)到x 轴的距离等于半径,即|-2k -5|=5|k +1|.两边平方,得(2k+5)2=5(k+1)2,∴k=5±3 5.。
高中数学同步导学---(207)《必修2》第三章、第四章 综合测试题
《必修2》第三章、第四章 综合测试题班级_______ 学号_________ 分数___________一、选择题:每小题有且只有一个答案是正确的,请将其代号填入下表:1.如果直线Ax By C ++=0经过第一、二、四象限,则 ( )A.AB BC >>00,B.AB BC ><00,C.AB BC <>00,D.AB BC <<00,2、如图:直线L 1 的倾斜角α1=300,直线 L 1⊥L 2 ,则L 2的斜率为( )A.33- B.33 C.3- D.33.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A.052=-+y xB.012=-+y xC.250x y --=D.072=+-y x4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( )A .4250x y --=B .4250x y +-=C .250x y +-=D .250x y --=5.经过两条直线2x+y-8=0和x-2y+1=0的交点,且垂直于直线3x-2y+4=0的直线的方程为( )A.23120x y +-=B.23120x y ++=C.3250x y --=D.32130x y +-=6.三条直线x-y +1=0、2x +y-4=0与ax-y +2=0共有2个交点,则a 的值为 ( )(A)1 (B)2 (C) 1或-2 (D)-1或27.过点A(2,1)的所有直线中,距离原点最远的直线方程是 ( )A.x=2B.x-2y+5=0C.2x+y+5=0D.2x+y-5=08. 已知直线L 过点P (3,0),且其倾斜角是直线x-y-1=0的倾斜角的三倍,则直线L 的方程是( )A.390x y --=B.30x y +-=C.30x y --=D.30x y ++=9.直线x-y+4=0被圆x 2+y 2+4x-4y+6=0截得的弦长等于 ( )A.8B.4C.42D.2210.若直线l 沿x 轴向左平移3个单位,再沿y 轴向上平移1个单位后,回到原来的位置,则直线l 的斜率为( )A.3 B.-3 C.13- D. 1311.从点P (1,-2)引圆(x +1)2+(y -1)2=4的切线,则切线长是 ( )A .4B .3C .2D .112.两圆x 2+y 2-6x=0和x 2+y 2-6x-4y-12=0的位置关系是( )(A)相交 (B)外离 (C)内切 (D)外切13.与直线3x-4y+5=0关于x 轴对称的直线的方程是( )A.3450x y +-=B.3450x y ++=C.3450x y -+=D. 3450x y --=14、已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,则直线l 的斜率k 的取值范围是( ) A.4(,4)(,)3-∞-⋃+∞ B.4(4,)3- C.4(,)(4,)3-∞-⋃+∞ D.4(,)3+∞二.填空题: 15、已知三点A (a ,2) B(5,1) C(-4,2a )在同一条直线上,则a = .16.已知A(3,0),B(2,2),C(1,-1)三点,使直线AD ⊥BC 且AB ∥CD 的点D 的坐标为_____________.17.不论m 为何实数,直线(2m+3)x+(m+4)y+2(m-1)=0恒过一个定点,该定点的坐标为__________.18、若直线0132=++y x 和圆03222=--+x y x 相交于点A 、B 两点,则弦AB 的垂直平分线的方程为________________________________.19. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __________.20、已知点M (a ,b )在直线1543=+y x 上,则22(1)(2)a b -++的最小值为 .三.解答题:21.三角形的三个顶点A(4,0),B(6,7),C(0,3).(1)分别写出边AC 和BC 所在直线的方程;(2)分别求出BC 边上的高和中线所在直线的方程l1:x+my+6=0,直线l2:(m-2)x+3y+2m=0, 求m的值, 使得l1和l2:22.已知直线1(1)相交; (2) 垂直; (3) 平行; (4) 重合。
(人教版B版)高中数学必修第二册第四章综合测试03(含答案)
第四章综合测试一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数()()lg 4f x x =-的定义域为M ,函数()g x =的值域为N ,则M N 等于( ) A .MB .NC .[)0,4D .[)0,+∞2.函数||31x y =-的定义域为[]1,2-,则函数的值域为( ) A .[]2,8B .[]0,8C .[]1,8D .[]1,8-3.已知()23log f x =()1f 的值为( ) A .1B .2C .1-D .12 4.21+log 52等于( ) A .7B .10C .6D .925.若1005a =,102b =,则2a b +等于( ) A .0B .1C .2D .36.比较13.11.5、 3.12、13.12的大小关系是( ) A .113.13.13.122 1.5<< B .113.13.13.11.522<<C .11 3.13.13.11.522<<D .11 3.13.13.12 1.52<<7.()()4839log 3log 3log 2log 8++等于( ) A .56B .2512C .94D .以上都不对8.已知0ab >,下面四个等式:①()lg lg lg ab a b =+;②lg lg lg a a b b =-;③21lg lg 2a ab b ⎛⎫= ⎪⎝⎭;④()1lg log 10ab ab =其中正确的个数为( ) A .0B .1C .2D .39.函数x y a =(0a >且1a ≠)与函数()2121y a x x =---在同一个坐标系内的图像可能是( )ABCD10.抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽( ) (参考数据:120.3010g ≈) A .6次B .7次C .8次D .9次11.已知113log 2x =,1222x -=,3x 满足3331log 3x x ⎛⎫= ⎪⎝⎭,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .132x x x <<C .213x x x <<D .312x x x <<12.已知幂函数()()22421mm f x m x -+=-在()0,+∞上单调递增,函数()2x g x k =-,当[)1,2x ∈时,记()f x ,()g x 的值域分别为集合A ,B ,若A B A = ,则实数k 的取值范围是( )A .()0,1B .[)0,1C .(]0,1D .[]0,1二、填空题(本大题共4小题,每小题5分,共20分)13.若函数()f x 的反函数为()12f x x -=(0x >),则()4=f ________。
新人教版高中数学必修二第四章检测
新人教版高中数学必修二第四章检测一.选择题(共16小题)1.(2014•崇明县一模)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值.C D.2.(2014•浦东新区三模)在平面斜坐标系xoy中∠xoy=45°,点P的斜坐标定义为:“若=x0+y0(其中,,分别为与斜坐标系的x轴,y轴同方向的单位向量),则点P的坐标为(x0,y0)”.若F1(﹣1,0),F2(1,0)且动点M(x,y)满足||=||,则点M在斜坐标系中的轨迹方程为()D.3.(2014•南开区二模)设圆C:x2+y2=3,直线l:x+3y﹣6=0,点P(x0,y0)∈l,存在点Q∈C,使∠OPQ=60°(O .D.4.(2014•宜昌模拟)已知圆心(a,b)(a<0,b<0)在直线y=2x+1上的圆,若其圆心到x轴的距离恰好等于圆5.(2014•潮州二模)(理)已知双曲线的左焦点为F1,左、右顶点为A1、A2,P为双曲线上任意一点,6.(2013•上海)已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若,7.(2013•江西)过点()引直线l与曲线y=相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于().C D.8.(2013•东莞一模)已知Ω={(x,y)|},直线y=mx+2m和曲线y=有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若P(M)∈[,,][9.(2012•天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值﹣1+],22+2[2+2 10.(2013•浙江模拟)棱长为2的正方体ABCD﹣A1B1C1D1在空间直角坐标系中移动,但保持点A、B分别在x .C2212.(2012•上高县模拟)点P到图形C上每一个点的距离的最小值称为点P到图形C的距离,那么平面内到定圆C13.(2012•大连模拟)在平行四边形ABCD中,∠BAD=60°,AD=2AB,若P是平面ABCD内一点,且满足(x,y∈R),则当点P在以A为圆心,为半径的圆上时,实数x,y应满足关系式为()14.(2012•湘潭模拟)已知,直线l:y=kx+2k与曲线C:有两个不同的交点,设直线l与曲线C围成的封闭区域为P,在区域M内随机取一点A,点A落在区域P内的概率为p,若,则实数k的取值范围为().D.15.(2011•江西)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范,,,),)∪,16.(2011•上海)直线l:y=k(x+)与圆C:x2+y2=1的位置关系是()二.填空题(共4小题)17.(2014•兴安盟一模)将一颗骰子投掷两次分别得到点数a,b,则直线ax﹣by=0与圆(x﹣2)2+y2=2相交的概率为_________.18.(2013•江西)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是_________.19.(2013•金华模拟)直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若MN≥2,则k的取值范围是_________.20.(2013•湖南模拟)设圆C:(x﹣3)2+(y﹣5)2=5,过圆心C作直线l交圆于A,B两点,与y轴交于点P,若A恰好为线段BP的中点,则直线l的方程为_________.三.解答题(共10小题)21.(2014•蓟县一模)已知椭圆的长轴长为4,离心率为,F1,F2分别为其左右焦点.一动圆过点F2,且与直线x=﹣1相切.(Ⅰ)(ⅰ)求椭圆C1的方程;(ⅱ)求动圆圆心轨迹C的方程;(Ⅱ)在曲线C上有四个不同的点M,N,P,Q,满足与共线,与共线,且,求四边形PMQN面积的最小值.22.(2013•陕西)已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.(Ⅰ)求动圆圆心的轨迹C的方程;(Ⅱ)已知点B(﹣1,0),设不垂直于x轴的直线与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线过定点.23.(2013•四川)已知圆C的方程为x2+(y﹣4)2=4,点O是坐标原点.直线l:y=kx与圆C交于M,N两点.(Ⅰ)求k的取值范围;(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m的函数.24.(2012•北京模拟)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x﹣2y=0的距离最小的圆的方程.25.(2012•南京一模)已知圆F1:(x+1)2+y2=16,定点F2(1,0),动圆过点F2,且与圆F1相内切.(1)求点M的轨迹C的方程;(2)若过原点的直线l与(1)中的曲线C交于A,B两点,且△ABF1的面积为,求直线l的方程.26.(2011•湖北)平面内与两定点A1(﹣a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;(Ⅱ)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tan∠F1NF2的值;若不存在,请说明理由.27.(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.(1)当点P在l上运动时,求点M的轨迹E的方程;(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.28.(2011•江苏模拟)已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.29.(2011•密山市模拟)已知M(4,0),N(1,0),若动点P满足.(1)求动点P的轨迹C的方程;(2)设过点N的直线l交轨迹C于A,B两点,若,求直线l的斜率的取值范围.30.(2011•大同一模)以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,﹣5),点M的极坐标为(4,).若直线l过点P,且倾斜角为,圆C以M为圆心、4为半径.(Ⅰ)求直线l的参数方程和圆C的极坐标方程;(Ⅱ)试判定直线l和圆C的位置关系.新人教版高中数学必修二第四章检测参考答案与试题解析一.选择题(共16小题)1.(2014•崇明县一模)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值.C D.的长度,和夹角,并将PO=,则,.3+2.此时.2.(2014•浦东新区三模)在平面斜坐标系xoy中∠xoy=45°,点P的斜坐标定义为:“若=x0+y0(其中,,分别为与斜坐标系的x轴,y轴同方向的单位向量),则点P的坐标为(x0,y0)”.若F1(﹣1,0),F2(1,0)且动点M(x,y)满足||=||,则点M在斜坐标系中的轨迹方程为()D.由定义知,,得:|=|∴整理得:3.(2014•南开区二模)设圆C:x2+y2=3,直线l:x+3y﹣6=0,点P(x0,y0)∈l,存在点Q∈C,使∠OPQ=60°(O .D.OPQ=),4.(2014•宜昌模拟)已知圆心(a,b)(a<0,b<0)在直线y=2x+1上的圆,若其圆心到x轴的距离恰好等于圆|CD|=2|CB|=)5.(2014•潮州二模)(理)已知双曲线的左焦点为F1,左、右顶点为A1、A2,P为双曲线上任意一点,在双曲线坐支,则,6.(2013•上海)已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若,,7.(2013•江西)过点()引直线l与曲线y=相交于A,B两点,O为坐标原点,当△ABO的面积.C D.y=y=,即被半圆截得的半弦长为,当,即时,.,解得.8.(2013•东莞一模)已知Ω={(x,y)|},直线y=mx+2m和曲线y=有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若P(M)∈[,,][,9.(2012•天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值﹣1+],22+2[2+2d==1≤=2+2)2+22+22][2+210.(2013•浙江模拟)棱长为2的正方体ABCD﹣A1B1C1D1在空间直角坐标系中移动,但保持点A、B分别在x .C|=tan|22的距离为12.(2012•上高县模拟)点P到图形C上每一个点的距离的最小值称为点P到图形C的距离,那么平面内到定圆C 的距离与到定点A的距离相等的点的轨迹不可能是()13.(2012•大连模拟)在平行四边形ABCD中,∠BAD=60°,AD=2AB,若P是平面ABCD内一点,且满足(x,y∈R),则当点P在以A为圆心,为半径的圆上时,实数x,y应满足关系式为()|=x+yDB=∵∴=x+y,=1∴+y2222•=x=x,是解题的关键,属中档题.14.(2012•湘潭模拟)已知,直线l:y=kx+2k与曲线C:有两个不同的交点,设直线l与曲线C围成的封闭区域为P,在区域M内随机取一点A,点A落在区域P内的概率为p,若,则实数k的取值范围为().D.OA×=的斜率为=115.(2011•江西)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范,,,),)∪,d=,解得±(﹣,16.(2011•上海)直线l:y=k(x+)与圆C:x2+y2=1的位置关系是()x+d==<<二.填空题(共4小题)17.(2014•兴安盟一模)将一颗骰子投掷两次分别得到点数a,b,则直线ax﹣by=0与圆(x﹣2)2+y2=2相交的概率为.圆心到直线的距离故答案为18.(2013•江西)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是.所求圆的方程为:故答案为:19.(2013•金华模拟)直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若MN≥2,则k的取值范围是[﹣,0].MN=2≥k+≤﹣20.(2013•湖南模拟)设圆C:(x﹣3)2+(y﹣5)2=5,过圆心C作直线l交圆于A,B两点,与y轴交于点P,若A恰好为线段BP的中点,则直线l的方程为y=2x﹣1或y=﹣2x+11.∴即=三.解答题(共10小题)21.(2014•蓟县一模)已知椭圆的长轴长为4,离心率为,F1,F2分别为其左右焦点.一动圆过点F2,且与直线x=﹣1相切.(Ⅰ)(ⅰ)求椭圆C1的方程;(ⅱ)求动圆圆心轨迹C的方程;(Ⅱ)在曲线C上有四个不同的点M,N,P,Q,满足与共线,与共线,且,求四边形PMQN面积的最小值.由抛物线定义可知:,22.(2013•陕西)已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.(Ⅰ)求动圆圆心的轨迹C的方程;(Ⅱ)已知点B(﹣1,0),设不垂直于x轴的直线与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线过定点.|MN|,的方程为|ME|=0.∴,∴的方程为∴,化为,23.(2013•四川)已知圆C的方程为x2+(y﹣4)2=4,点O是坐标原点.直线l:y=kx与圆C交于M,N两点.(Ⅰ)求k的取值范围;(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m的函数.)∪,=得:=+====代入得:=,代入=(﹣,n==,((﹣,24.(2012•北京模拟)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x﹣2y=0的距离最小的圆的方程.轴所得的弦长为轴所得的弦长为的距离为或.∴②有最小值25.(2012•南京一模)已知圆F1:(x+1)2+y2=16,定点F2(1,0),动圆过点F2,且与圆F1相内切.(1)求点M的轨迹C的方程;(2)若过原点的直线l与(1)中的曲线C交于A,B两点,且△ABF1的面积为,求直线l的方程.的面积为,,所以的方程.过椭圆的中心,由椭圆的对称性可知,,所以.,,即:点的坐标为的斜率为,故所求直线方和程为26.(2011•湖北)平面内与两定点A1(﹣a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;(Ⅱ)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tan∠F1NF2的值;若不存在,请说明理由.a a,时,由条件可得的方程为的方程为,的方程为a a,≤,或,或[=a﹣a=r|=r,r=,于是由=|m|a[]27.(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.(1)当点P在l上运动时,求点M的轨迹E的方程;(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.|om|=|x+2|=H的斜率时,直线当]28.(2011•江苏模拟)已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.PQ==,利用二次函数的性质求出它的最小值.OP=的最小值为2a+3=取得最小值为PQ====时,线段OP=,故当a=取得最小值为,=29.(2011•密山市模拟)已知M(4,0),N(1,0),若动点P满足.(1)求动点P的轨迹C的方程;(2)设过点N的直线l交轨迹C于A,B两点,若,求直线l的斜率的取值范围.,由已知得,由此得到点由已知得,即的轨迹是椭圆(,∴∵(∴∴30.(2011•大同一模)以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,﹣5),点M的极坐标为(4,).若直线l过点P,且倾斜角为,圆C以M为圆心、4为半径.(Ⅰ)求直线l的参数方程和圆C的极坐标方程;(Ⅱ)试判定直线l和圆C的位置关系.的参数方程为)因为化为普通方程为,。
人教版高中数必修2同步练习单元测试卷第四章章末检测
章末检测一、选择题1.方程x 2+y 2+2ax +2by +a 2+b 2=0表示的图形是( )A .以(a ,b )为圆心的圆B .以(-a ,-b )为圆心的圆C .点(a ,b )D .点(-a ,-b )2.点P (m,3)与圆(x -2)2+(y -1)2=2的位置关系为( )A .点在圆外B .点在圆内C .点在圆上D .与m 的值有关 3.空间直角坐标系中,点A (-3,4,0)和B (x ,-1,6)的距离为86,则x 的值为 ( ) A .2B .-8C .2或-8D .8或-2 4.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是 ( ) A .[-3,-1] B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞) 5.设A 、B 是直线3x +4y +2=0与圆x 2+y 2+4y =0的两个交点,则线段AB 的垂直平分线的方程是( )A .4x -3y -2=0B .4x -3y -6=0C .3x +4y +6=0D .3x +4y +8=06.圆x 2+y 2-4x =0过点P (1,3)的切线方程为( )A .x +3y -2=0B .x +3y -4=0C .x -3y +4=0D .x -3y +2=07.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心 8.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积为( )A .5B .10C.252D.2549.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( ) A .-3或7B .-2或8C .0或10D .1或1110.已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能 11.若直线mx +2ny -4=0(m 、n ∈R ,n ≠m )始终平分圆x 2+y 2-4x -2y -4=0的周长,则mn 的取值范围是( )A .(0,1)B .(0,-1)C .(-∞,1)D .(-∞,-1) 12.过点P (-2,4)作圆O :(x -2)2+(y -1)2=25的切线l ,直线m :ax -3y =0与直线l 平行,则直线l 与m 的距离为( )A .4B .2C.85D.125二、填空题13.与直线2x +3y -6=0关于点(1,-1)对称的直线方程为________. 14.过点P (-2,0)作直线l 交圆x 2+y 2=1于A 、B 两点,则|P A |·|PB |=________.15.若垂直于直线2x +y =0,且与圆x 2+y 2=5相切的切线方程为ax +2y +c =0,则ac 的值为________.16.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 三、解答题17.自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.18. 已知圆x 2+y 2+x -6y +m =0与直线x +2y -3=0相交于P ,Q 两点,O 为原点,若OP ⊥OQ ,求实数m 的值.19.已知圆x 2+y 2-6mx -2(m -1)y +10m 2-2m -24=0(m ∈R ).(1)求证:不论m 为何值,圆心在同一直线l 上; (2)与l 平行的直线中,哪些与圆相交、相切、相离;(3)求证:任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等. 20.如图,已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q , 且有|PQ |=|P A |. (1)求a 、b 间关系; (2)求|PQ |的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最 小的圆的方程.答案章末检测1.D 2.A 3.C 4.C 5.B 6.D 7.C 8.D 9.A 10.A 11.C 12.A 13.2x +3y +8=0 14.3 15.±5 16.4317.解 如图所示,已知圆C :x 2+y 2-4x -4y +7=0关于x 轴对称的圆为C 1:(x -2)2+(y +2)2=1,其圆心C 1的坐标为(2,-2),半径为1,由光的反射定律知,入射光线所在直线方程与圆C 1相切.设l 的方程为y -3=k (x +3), 即kx -y +3+3k =0. 则|5k +5|1+k2=1,即12k 2+25k +12=0. ∴k 1=-43,k 2=-34.则l 的方程为4x +3y +3=0或3x +4y -3=0.18.解 设P ,Q 两点坐标为(x 1,y 1)和(x 2,y 2),由OP ⊥OQ 可得 x 1x 2+y 1y 2=0, 由⎩⎪⎨⎪⎧x 2+y 2+x -6y +m =0,x +2y -3=0, 可得5y 2-20y +12+m =0.①所以y 1y 2=12+m5,y 1+y 2=4.又x 1x 2=(3-2y 1)(3-2y 2) =9-6(y 1+y 2)+4y 1y 2=9-24+45(12+m ),所以x 1x 2+y 1y 2=9-24+45(12+m )+12+m 5=0,解得m =3.将m =3代入方程①,可得Δ=202-4×5×15=100>0,可知m =3满足题意,即3为所求m 的值.19.(1)证明 配方得:(x -3m )2+[y -(m -1)]2=25,设圆心为(x ,y ),则⎩⎪⎨⎪⎧x =3m y =m -1, 消去m 得x -3y -3=0,则圆心恒在直线l :x -3y -3=0上.(2)解 设与l 平行的直线是l 1:x -3y +b =0, 则圆心到直线l 1的距离为 d =|3m -3(m -1)+b |10=|3+b |10.∵圆的半径为r =5,∴当d <r ,即-510-3<b <510-3时,直线与圆相交; 当d =r ,即b =±510-3时,直线与圆相切;当d >r ,即b <-510-3或b >510-3时,直线与圆相离.(3)证明 对于任一条平行于l 且与圆相交的直线l 1:x -3y +b =0,由于圆心到直线l 1的距离d =|3+b |10,弦长=2r 2-d 2且r 和d 均为常量.∴任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等. 20.解 (1)连接OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|P A |,所以|OP |2=|OQ |2+|PQ |2=1+|P A |2,所以a 2+b 2=1+(a -2)2+(b -1)2,故2a +b -3=0.(2)由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2- 12a +8=5(a -1.2)2+0.8,得|PQ |min =255.(3)以P 为圆心的圆与圆O 有公共点,半径最小时为与圆O 相切的情形,而这些半径的最小值为圆O 到直线l 的距离减去圆O 的半径,圆心P 为过原点且与l 垂直的直线l ′与l 的交点P 0,所以r =322+12-1=355-1,又l ′:x -2y =0,联立l :2x +y -3=0得P 0(65,35).所以所求圆的方程为(x -65)2+(y -35)2=(355-1)2.。
人教A版高中数学必修2第四章综合检测
第四章综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.点B 是点A (1,2,3)在坐标平面yOz 内的射影,则|OB |等于( ) A.14 B.13 C .2 3D.11[解析] B 点坐标为(0,2,3), ∴|OB |=02+22+32=13.∴应选B.2.若方程x 2+y 2-x +y +m =0表示圆,则实数m 的取值范围为( )A .m <12B .m <0C .m >12 D .m ≤12[答案] A[解析] (-1)2+12-4m >0,∴m <12,故选A.3.圆x 2+y 2+2x -4y =0的圆心坐标和半径分别是( ) A .(1,-2),5 B .(1,-2), 5 C .(-1,2),5 D .(-1,2), 5[答案] D[解析] 圆的方程化为标准方程为(x +1)2+(y -2)2=5,则圆心是(-1,2),半径为 5.4.直线l :y =k (x +12)与圆C :x 2+y 2=1的位置关系是( )A .相交或相切B .相交或相离C .相切D .相交[答案] D[解析] 方法一:圆C 的圆心(0,0)到直线y =k (x +12)的距离d =|12k |k 2+1, ∵d 2=14k 2k 2+1<14<1,∴所判断的位置关系为相交.方法二:直线l :y =k (x +12)过定点(-12,0),而点(-12,0)在圆C :x 2+y 2=1内部,故直线l 与圆C 相交.5.圆x 2+y 2+ax =0的圆心到y 轴的距离为1,则a =( ) A .-1 B .±1 C .-2 D .±2[答案] D[解析] ∵圆心坐标为(-a2,0), ∴|-a2|=1,∴a =±2.6.圆C 1:x 2+y 2=r 2与圆C 2:(x -3)2+(y +1)2=r 2(r >0)外切,则r 的值为( )A.102B.52 C .5 D .10 [答案] A[解析] 圆C 1与圆C 2的圆心坐标分别为(0,0),(3,-1),则圆心距d =10,故2r =10,r =102.7.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0 D .x -3y +2=0[答案] D[解析] ∵点(1,3)在圆x 2+y 2-4x =0上, ∴点P 为切点,从而圆心与P 的连线应与切线垂直. 设切线的斜率为k ,又∵圆心为(2,0),∴0-32-1·k =-1,解得k =33,∴切线方程为x -3y +2=0.8.(2012-2013·江苏苏州模拟)若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为( )A .-1或 3B .1或3C .-2或6D .0或4 [答案] D[解析] 由半径、半弦长、圆心到直线的距离d 所形成的直角三角形,可得d =2,故|a -2|2=2,解得a =4,或a =0.9.(2012~2013·北京东城区高三期末检测)直线l 过点(-4,0),且与圆(x +1)2+(y -2)2=25交于A ,B 两点,如果|AB |=8,那么直线l 的方程为( )A .5x +12y +20=0B .5x -12y +20=0或x +4=0C .5x -12y +20=0D .5x +12y +20=0或x +4=0 [答案] D[解析] 由题意,得圆心C (-1,2),半径r =5,当直线l 的斜率不存在时,直线l 的方程为x +4=0,解方程组⎩⎪⎨⎪⎧ (x +1)2+(y -2)2=25,x +4=0,得⎩⎪⎨⎪⎧ x =-4,y =-2或⎩⎪⎨⎪⎧x =-4,y =6,即此时与圆C 的交点坐标是(-4,-2)和(-4,6),则|AB |=8,即x +4=0符合题意;当直线l 的斜率存在时,设直线l 的方程为y =k (x +4),即kx -y +4k =0,圆心C 到直线l 的距离d =|-k -2+4k |k 2+1=|3k -2|k 2+1,又|AB |=2r 2-d 2,所以225-(|3k -2|k 2+1)2=8,解得k =-512,则直线l 的方程为-512x -y +4×(-512)=0, 即5x +12y +20=0.10.(2012·广东卷)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长等于( )A .3 3B .2 3 C. 3 D .1[答案] B[解析] 圆x 2+y 2=4的圆心O (0,0)到直线3x +4y -5=0的距离d =|-5|5=1,弦AB 的长|AB |=2r 2-d 2=2 3.11.(2012-2013·山东威海模拟)若直线y =kx +1与圆x 2+y 2=1相交于P ,Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为( )A .-3或 3 B. 3 C .-2或 2 D. 2[答案] A[解析] 方法一:∵|PQ |=2×1×sin60°=3,圆心到直线的距离d =1-(32)2=12,∴1k 2+1=12,解得k =±3.方法二:利用数形结合.如图所示,∵直线y =kx +1过定点(0,1),而点(0,1)在圆x 2+y 2=1上,故不妨设P (0,1),在等腰三角形POQ 中,∠POQ =120°,∴∠QPO =30°,故∠P AO =60°,∴k =3,即直线P A 的斜率为 3.同理可求得直线PB 的斜率为- 3.12.若直线y =kx -1与曲线y =-1-(x -2)2有公共点,则k 的取值范围是( )A .(0,43]B .[13,43]C .[0,12] D .[0,1][答案] D[解析] 曲线y =-1-(x -2)2表示的图形是一个半圆,直线y =kx -1过定点(0,-1),在同一坐标系中画出直线和半圆的草图,由图可知,k 的取值范围是[0,1],故选D.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知点A (1,2,3),B (2,-1,4),点P 在y 轴上,且|P A |=|PB |,则点P 的坐标是________.[答案] -76[解析] 设点P (0,b,0),则 (1-0)2+(2-b )2+(3-0)2=(2-0)2+(-1-b )2+(4-0)2,解得b =-76.14.(2012-2013·江苏扬州安宜高中期中)若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________.[答案] 1[解析] 由(x 2+y 2+2ay -6)-(x 2+y 2-4)=0得两圆公共弦方程为ay -1=0,又因公共弦长为23,所以圆心(0,0)到该公共弦的距离为1,即|0-1|a2=1.又a >0,所以a =1.15.已知圆C:(x-1)2+(y+2)2=4,点P(0,5),则过P作圆C 的切线有且只有________条.[答案] 2[解析]由C(1,-2),r=2,则|PC|=12+(-2-5)2=52>r=2,∴点P在圆C外,∴过P作圆C的切线有两条.16.与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是________.[答案](x-2)2+(y-2)2=2[解析]∵⊙A:(x-6)2+(y-6)2=18的圆心A(6,6),半径r1=32,∵A到l的距离52,∴所求圆B的直径2r2=22,即r2= 2.设B(m,n),则由BA⊥l得n-6m-6=1,又∵B到l距离为2,∴|m+n-2|2=2,解出m=2,n=2.故其方程为(x-2)2+(y-2)2=2.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)求经过两点A(-1,4),B(3,2)且圆心C在y轴上的圆的方程.[解析]∵AB的中点是(1,3),k AB=4-2-1-3=-12,∴AB的垂直平分线方程为y-3=2(x-1),即2x-y+1=0.令x =0,得y =1, 即圆心C (0,1).∴所求圆的半径为|AC |=12+(4-1)2=10. ∴所求圆的方程为x 2+(y -1)2=10.18.(本小题满分12分)(2012~2013·宁波高一检测)如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,M 为BD 1的中点,N 在A 1C 1上,且|A 1N |=3|NC 1|,试求MN 的长.[解析] 以D 为原点建立如图所示坐标系,则B (a ,a,0),A 1(a,0,a ),C 1(0,a ,a ),D 1(0,0,a ).由于M 为BD 1的中点,所以M (a 2,a 2,a2),取A 1C 1中点O 1,则O 1(a 2,a2,a ),因为|A 1N |=3|NC 1|,所以N 为O 1C 1的中点,故N (a 4,34a ,a ).由两点间的距离公式可得: |MN |=(a 2-a 4)2+(a 2-34a )2+(a2-a )2=64a .规律总结:空间中的距离可以通过建立空间直角坐标系通过距离公式求解.19.(本小题满分12分)已知直线x -my +3=0和圆x 2+y 2-6x +5=0.(1)当直线与圆相切时,求实数m 的值;(2)当直线与圆相交,且所得弦长为2510时,求实数m 的值. [解析] (1)∵圆x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,∴圆心为(3,0).∵直线x -my +3=0与圆相切, ∴|3+3|1+m2=2,解得m =±2 2. (2)圆心(3,0)到直线x -my +3=0的距离d =61+m 2.由2510=24-(61+m 2)2得,2+2m 2=20m 2-160, 解得m 2=9,故m =±3.20.(本小题满分12分)已知点M (x 0,y 0)在圆x 2+y 2=4上运动,N (4,0),点P (x ,y )为线段MN 的中点.(1)求点P (x ,y )的轨迹方程;(2)求点P (x ,y )到直线3x +4y -86=0的距离的最大值和最小值. [解析] (1)∵点P (x ,y )是MN 的中点,∴⎩⎨⎧x =x 0+42,y =y 02,故⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y .将用x ,y 表示的x 0,y 0代入到x 20+y 20=4中得(x -2)2+y 2=1.此式即为所求轨迹方程.(2)由(1)知点P 的轨迹是以Q (2,0)为圆心,以1为半径的圆. 点Q 到直线3x +4y -86=0的距离d =|6-86|32+42=16.故点P 到直线3x +4y -86=0的距离的最大值为16+1=17,最小值为16-1=15.21.(本小题满分12分)如图所示,l 1,l 2是通过某城市开发区中心O 的两条南北和东西走向的街道,连接M ,N 两地之间的铁路线是圆心在l 2上的一段圆弧,点M 在点O 正北方向,且|MO |=3 km ,点N 到l 1,l 2的距离分别为4 km 和5 km.(1)建立适当的坐标系,求铁路线所在圆弧的方程;(2)若该城市的某中学拟在点O 正东方向选址建分校,考虑到环境问题,要求校址到点O 的距离大于4 km ,并且铁路线上任意一点到校址的距离不能小于26 km.求校址距离点O 的最近距离.(注:校址视为一个点.)[解析] (1)以城市开发中心O 为原点,分别以l 2、l 1为x 轴、y 轴,建立平面直角坐标系.根据题意,得M (0,3),N (4,5),故k MN =5-34-0=12,MN 的中点为(2,4), ∴线段MN 的垂直平分线方程为y -4=-2(x -2).令y =0,得x =4,故圆心A 的坐标为(4,0),半径r =(4-0)2+(0-3)2=5.∴圆A 的方程为(x -4)2+y 2=25,∴MN ︵的方程为(x -4)2+y 2=25(0≤x ≤4,3≤y ≤5).(2)设校址选在点B (a,0)(a >4), 则(x -a )2+y 2≥26时0≤x ≤4恒成立,又y 2=25-(x -4)2,所以(8-2a )x +a 2-17≥0①对0≤x ≤4恒成立.令f (x )=(8-2a )x +a 2-17,∵a >4,∴8-2a <0.∴f (x )在[0,4]上为减函数,要使①恒成立,当且仅当⎩⎪⎨⎪⎧ a >4,f (4)≥0时,即⎩⎪⎨⎪⎧a >4,(8-2a )4+a 2-17≥0, ∴a ≥5,即校址距离点O 的最近距离为5 km.22.(本小题满分12分)已知圆P :(x -a )2+(y -b )2=r 2(r ≠0),满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1.求在满足条件①②的所有圆中,使代数式a2-b2-2b+4取得最小值时,圆的方程.[分析]根据条件可以判断出圆P被x轴截得的劣弧的圆心角为90°,建立起r,a,b之间的方程组,然后解出相应的a,b,r间的关系,最后借助于一元二次函数解决.[解析]如下图所示,圆心坐标为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.∵圆P被x轴分成两段圆弧,其弧长的比为3:1,∴∠APB=90°.取AB的中点D,连接PD,则有|PB|=2|PD|,∴r=2|b|.取圆P截y轴的弦的中点C,连接PC,PE.∵圆截y轴所得弦长为2,∴|EC|=1,∴1+a2=r2,即2b2-a2=1.则a2-b2-2b+4=b2-2b+3=(b-1)2+2.∴当b=1时,a2-b2-2b+4取得最小值2,此时a=1,或a=-1,r2=2.对应的圆为:(x-1)2+(y-1)2=2,或(x+1)2+(y-1)2=2.∴使代数式a2-b2-2b+4取得最小值时,对应的圆为(x-1)2+(y-1)2=2,或(x+1)2+(y-1)2=2.规律总结:(1)当直线与圆相离时,圆上的点到直线的最大距离为d+r,最小距离为d-r,其中d为圆心到直线的距离.(2)当直线与圆相交时,设弦长为l,弦心距为d,半径为r,则有(l2)2+d2=r2.。
(完整版)高中数学必修二第三章同步训练(含答案),推荐文档
AB一、 选择题3.1.1 倾斜角与斜率练习一1、已知,A(–3, 1)、B(2, –4),则直线 AB 上方向向量 的坐标是A 、(–5, 5)B 、(–1, –3)C 、(5, –5)D 、(–3, –1) 2、过点 P(2, 3)与 Q(1, 5)的直线 PQ 的倾斜角为π A 、arctan2 B 、arctan(–2) C 、 –arctan2 D 、π–arctan223、直线 l 1: ax+2y –1=0 与直线 l 2: x+(a –1)y+a 2=0 平行,则 a 的值是A 、–1B 、2 C 、–1 或 2 D 、0 或 14、过点 A(–2, m), B(m, 4)的直线的倾斜角为A 、2 B 、10 C 、–8 D 、0π+arccot2,则实数 m 的值为25、已知点 A(cos77 °,sin77°), B(cos17°, sin17°),则直线 AB 的斜率为 A 、 tan47° B 、cot47° C 、–tan47° D 、–cot47°6、下列命题正确的是A 、若直线的斜率存在,则必有倾斜角 α 与它对应B 、若直线的倾斜角存在,则必有斜率与它对应C 、直线的斜率为 k ,则这条直线的倾斜角为 arctan kD 、直线的倾斜角为 α,则这条直线的斜率为 tanα17、过点 M (–2, a ), N (a , 4)的直线的斜率为– 2,则 a 等于A 、–8B 、10C 、2D 、43π 8、过点 A (2, b )和点 B (3, –2)的直线的倾斜角为 4,则 b 的值是A 、–1B 、1C 、–5D 、59、如图,若图中直线l 1, l 2, l 3 的斜率分别为k 1, k 2, k 3, 则A 、k 1<k 2<k 3B 、k 3<k 1<k 2C 、k 3<k 2<k 1D 、k 1<k 3<k 210、已知点 M (cosα, sinα), N (cosβ, sinβ),若直线 MN 的倾斜角为 θ,0<α<π<β<2π, 则 θ 等于11 A 、 (π+α+β)B 、 22(α+β)a b–11 C 、 (α+β–π)D 、 22 a(β–α)11、若直线 l 的斜率为 k =– b(ab >0),则直线 l 的倾斜角为a A 、arctanB 、 arctan()a aC 、π–arctanbD 、π+arctan b二、填空题:12、若直线 k 的斜率满足–<k< 3,则该直线的倾斜角 α 的范围是.13、若直线 l 的倾斜角是连接 P(3, –5), Q(0, –9)两点的直线的倾斜角的 2 倍,则直线 l 的斜率为14、已知直线 l 1 和 l 2 关于直线 y=x 对称,若直线 l 1 的斜率为斜角为.,则直线 l 2 的斜率为;倾15、已知 M(2, –3), N(–3,–2),直线 l 过点 P(1, 1),且与线段 MN 相交,则直线 l 的斜率 k 的取值 范围是.答案: 一、 选择题1、C ;2、D ;3、B ;4、C ;5、B ;6、A ;7、B ;8、A ;9、B ;10、C ;11、C 二、 填空题212、[0, ) ( 6 3,)3 3 3 b33 33 3 313、14、 3 ,3 615、 k ≥ 3或k ≤ -443.1.1 倾斜角与斜率练习二一、 选择题1、过(0,5)和(1,2)两点的直线的倾斜角是( )+ arctan 3 A 、π-arctan3 B 、π+arctan3 C 、arctan(-3)D 、 22、若直线 l 的倾斜角 θ 满足tan< ,则 θ 的取值范围是( )k - << k +0 ≤<<<A 、23 (k∈Z)B 、6 或 2 0 ≤<<<0 ≤< 2<<C 、3 或 2D 、6 或 33、已知直线的倾斜角为 θ,且 cotθ=α(α<0)则 θ 为( )- arctan 1A 、arctanαB 、+ arctan 1C 、D 、- arctan4、k 是直线 l 的斜率,θ 是直线 l 的倾斜角,若 30°≤θ<120°,则 k 的取值范围是( )-≤ k ≤≤ k ≤ 1 k ≥k ≥A 、3B 、 3C 、k < - 或 3D 、5、已知直线l 1 过点 A (2,-1)和 B (3,2),直线l 2 的倾斜角是直线l 1 倾斜角的 2 倍,则直线l 2 的斜率是( )- 3A 、-6B 、 53 C 、4 -3 D 、4 -2473y =l l l f(x )-16、函数 y=f(x)与其反函数 的对称轴 1 绕原点按逆时针旋转 90°得直线 2 ,则直线1 到直线 l2 的斜率 k 的变化范围是( )3 [ , ] A 、4 4B 、[1,+∞)C 、(-∞,-1)D 、(-∞,-1)∪[1,+∞]7、已知直线 l 1: y =x sinα 和直线 l 2: y =2x +c ,则直线 l 1 与 l 2 ( )A 、通过平移可以重合B 、不可能垂直C 、可能与 x 轴围成等腰直角三角形D 、通过绕 l 1 上某一点旋转可以重合48、已知直线 l 的倾斜角为 α,若 cosα=– 5,则直线 l 的斜率为3A 、 44 B 、 33 C 、– 44 D 、– 3二、填空题9、若直线 l 的斜率 k=sinθ,其倾斜角的取值范围是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《必修2》第三章、第四章综合测试题
班级_______ 学号_________
分数___________ 一、选择题:每小题有且只有一个答案是正确的,请将其代号填入下表:
题号1234567891011121314得分答案
1.如果直线经过第一、二、四象限,则()
A.AB BC 00,
B.AB BC 00
, C.AB BC 00, D.AB BC 00
,2、如图:直线L 1 的倾斜角1=300
,直线L 1L 2,则L 2的斜率为()
A.33B.33
C.3D.3
3.过点(1,3)且平行于直线032y x 的直线方程为()
A.052y x
B.012y x
C.250x y
D.0
72y x 4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是()
A .4250x y
B .4250x y
C .250x y
D .250
x y 5.经过两条直线2x+y-8=0和x-2y+1=0的交点,且垂直于直线3x-2y+4=0的直线的方程为(
)
A.23120x y
B.23120x y
C.3250x y
D.32130
x y 6.三条直线x-y +1=0、2x +y-4=0与ax-y +2=0共有2个交点,则a 的值为 ( )
(A)1 (B)2 (C) 1或-2 (D)-1或2
7.过点A(2,1)的所有直线中,距离原点最远的直线方程是 ( )
A.x=2
B.x-2y+5=0
C.2x+y+5=0
D.2x+y-5=0
8. 已知直线L 过点P (3,0),且其倾斜角是直线
x-y-1=0的倾斜角的三倍,则直线L 的方程是()A.390x y B.30x y C.30x y D.30
x y 9.直线x-y+4=0被圆x 2+y 2+4x-4y+6=0截得的弦长等于 ( )
A.8
B.4
C.42
D.22
10.若直线l 沿x 轴向左平移3个单位,再沿
y 轴向上平移1个单位后,回到原来的位置,则直线l 的斜率为(
)A.3 B.-3 C.1
3D.1
3
11.从点P (1,-2)引圆(x +1)2+(y -1)2=4的切线,则切线长是
( )
A .4
B .3
C .2
D .1 12.两圆x 2+y 2-6x=0和x 2+y 2-6x-4y-12=0的位置关系是(
)
(A)相交(B)外离(C)内切(D)外切13.与直线3x-4y+5=0关于x 轴对称的直线的方程是(
)A.3450x y B.3450x y C.3450x y D. 3450
x y 14、已知(2,3),(3,2)A B 两点,直线l 过定点(1,1)P 且
与线段AB 相交,则直线l 的斜率k 的取值范围是(
)A.4(
,4)(,)3 B.4(4,)3C.4(,)(4,)3 D.4(,)3
二.填空题:
15、已知三点A (a ,2) B(5,1) C(-4,2a )在同一条直线上,则a = .
16.已知A(3,0),B(2,2),C(1,-1)三点,使直线AD ⊥BC 且AB ∥CD 的点D 的坐标为_____________.
17.不论m 为何实数,直线(2m+3)x+(m+4)y+2(m-1)=0恒过一个定点,该定点的坐标为__________.
18、若直线0132y x 和圆03222x y x 相交于点A 、B 两点,则弦AB 的垂直平分线的方程为________________________________.
19. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __________.
20、已知点M (a ,b )在直线1543y x 上,则22
(1)(2)a b 的最小值为 . 三.解答题:
21.三角形的三个顶点A(4,0),B(6,7),C(0,3).
(1)分别写出边AC 和BC 所在直线的方程;
(2)分别求出BC 边上的高和中线所在直线的方程。