A Model of Computation for MapReduce

合集下载

人工智能基础(习题卷64)

人工智能基础(习题卷64)

人工智能基础(习题卷64)说明:答案和解析在试卷最后第1部分:单项选择题,共50题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]DBSCAN算法将“簇”定义为:由()导出的最大的密度相连样本集合。

A)密度直达关系B)密度可达关系C)密度相连关系2.[单选题]Spark Job默认的调度模式是()。

A)FIFOB)FAIRC)无D)运行时指定3.[单选题]语音分析就是根据音位规则,从语言流中区分出一个个独立的()A)音素B)音词C)音句D)音节4.[单选题]半导体应变片的工作原理是基于( )。

A)压阻效应B)热电效应C)压电效应D)压磁效应5.[单选题]( )是指自己能够找出问题、思考问题、解决问题的人工智能。

A)弱人工智能B)超级人工智能C)强人工智能D)模式识别6.[单选题]下列不属于数据科学跨平台基础设施和分析工具的是( )。

A)微软AzureB)Google云平台C)阿里云D)Ad。

be7.[单选题]专家系统的推理机的最基本的方式是( )。

A)直接推理和间接推理B)正向推理和反向推理C)逻辑推理和非逻辑推理D)准确推理和模糊推理8.[单选题]Python不支持的数据类型有()A)charB)intC)floatD)dict9.[单选题]在数据加工过程中,将特征值按比例缩小,使之落入一个特定的区间的方法是()A)标准化B)平滑处理C)特征构造D)聚集10.[单选题]以下关于文件的描述错误的选项是:A)readlines() 函数读入文件内容后返回一个列表,元素划分依据是文本文件中的换行符B)read() 一次性读入文本文件的全部内容后,返回一个字符串C)readline() 函数读入文本文件的一行,返回一个字符串D)二进制文件和文本文件都是可以用文本编辑器编辑的文件11.[单选题]( )是由能源和生态两个基本术语结合而成的综合术语。

A)生态能源B)清洁能源C)新能源D)能源生态12.[单选题]在支持向量机中,软间隔支持向量机的目标函数比硬间隔支持向量机多了一个()。

2020年全国计算机二级等级考试全真模拟试卷及答案(六)

2020年全国计算机二级等级考试全真模拟试卷及答案(六)

2020年全国计算机二级等级考试全真模拟试卷及答案(六)1.下列叙述中正确的是A) 所谓算法就是计算方法B) 程序可以作为算法的一种描述方法C) 算法设计只需考虑得到计算结果D) 算法设计可以忽略算法的运算时间参考答案:B2.下列各序列中不是堆的是A) (91,85,53,36,47,30,24,12)B) (91,85,53,47,36,30,24,12)C) (47,91,53,85,30,12,24,36)D) (91,85,53,47,30,12,24,36)参考答案:C3.深度为5的完全二叉树的结点数不可能是A) 15B) 16C) 17D) 18参考答案:A4.A) ABDEGCFHB) DBGEAFHCC) DGEBHFCAD) ABCDEFGH参考答案:A5.下面描述不属于软件特点的是A) 软件是一种逻辑实体,具有抽象性B) 软件在使用中不存在磨损、老化问题C) 软件复杂性高D) 软件使用不涉及知识产权参考答案:D6.下面对类-对象主要特征描述正确的是A) 对象唯一性B) 对象无关性C) 类的单一性D) 类的依赖性参考答案:A7.在数据库中,数据模型包括数据结构、数据操作和A) 数据约束B) 数据类型C) 关系运算D) 查询参考答案:A8.一个运动队有多个队员,一个队员仅属于一个运动队,一个队一般都有一个教练,则实体运动队和队员的联系是A) 一对多B) 一对一C) 多对一D) 多对多参考答案:A9.设循环队列为Q(1: m),其初始状态为front=rear=m。

经过一系列入队与退队运算后,front=30,rear=10。

现要在该循环队列中作顺序查找,最坏情况下需要比较的次数为A) 19B) 20C) m-19D) m-20参考答案:D10.A) 投影B) 交C) 选择D) 并参考答案:A11.关于C语言标识符,以下叙述错误的是A) 标识符可全部由数字组成B) 标识符可全部由下划线组成C) 标识符可全部由小写字母组成D) 标识符可全部由大写字母组成参考答案:A12.以下叙述正确的是A) 只使用三种基本结构即可解决任何复杂问题B) C语言程序并不是必须要定义main()函数C) 只要程序包含了任意一种基本结构,就肯定是结构化程序D) 程序中的语法错误只能在运行时才能显现参考答案:A13.以下选项中,合法的数值型常量是A) 3.2B) 'X'C) 099D) 0xEH参考答案:A14.有以下程序#include <stdio.h>main( ){int x = 0x13;printf("INT:%d\n", x+1);}程序运行后的输出结果是A) INT:14B) INT:13C) INT:12D) INT:20参考答案:D15.设有定义:int x=7,y=12;,则以下表达式值为3的是A) (y%=x)-(x%=5)B) y%=(x%=5)C) y%=x-x%5D) y%=(x-x%5)参考答案:A16.以下不是合法C语言转义字符的是A) '\c'B) '\a'C) '\b'D) '\r'参考答案:A17.有如下程序#include <stdio.h>main( ){int i;for (i=0; i<5; i++)putchar('Z' - i);}程序运行后的输出结果是A) 'X''Y''Z''W''V'B) VWXYZC) ZYXWVD) 'ABCDE'参考答案:C18.字符数组a和b中存储了两个字符串,判断字符串a和b是否相等,应当使用的是A) if(strcmp(a,b)==0)B) if(strcpy(a,b))C) if(a==b)D) if(a=b)参考答案:A19.以下程序段中,与其他三个功能不同的程序段是A) s=0;i=1;for( ; ; ) {s+=i; i++; if(i<=10) break;} B) s=0,i=1;for( ; i<=10; ) {s+=i,i++;}C) s=0;for(i=1; i<=10; i++) {s+=i;}D) for(s=0,i=1; i<=10; s+=i,i++) ; 参考答案:A20.有以下程序#include <stdio.h>main( ){ int x=1, y=2, z=3;if(x>1)if(y>x) putchar('A');else putchar('B');elseif(z<x) putchar('C');else putchar('D');}程序的运行结果是A) DB) CC) BD) A参考答案:A21.有语句:k=x<y ?(y<z?1:0):0; ,以下选项中,与此语句功能相同的是A) if(x<y || y<z) k=1; else k=0;B) if(x<y) k=0; else if(y<z) k=1;C) if(x<y) if(y<z) k=1;else k=0;D) if(x<y && y<z) k=1; else k=0;参考答案:D22. 有如下程序#include <stdio.h>void change(int* array, int len){for (; len>=0; len--)array[len] -= 1;}main( ){int i, array[5] = {2,2};change(array, 4);for (i=0; i<5; i++)printf("%d,", array[i]); printf("\n");程序运行后的输出结果是A) 1,1,-1,-1,-1,B) 1,0,-1,1,-1,C) 1,1,1,1,1,D) 1,-1,1,-1,1,参考答案:A23.有以下程序#include <stdio.h>main( ){char* p1 = 0;int* p2 = 0;float* p3 = 0;printf("%d,%d,%d\n", sizeof(p1), sizeof(p2), sizeof(p3));}程序运行后的输出结果是A) 1,4,8B) 4,4,4C) 1,2,4D) 1,1,4参考答案:B24. 有以下程序段int *p1,*p2,a[10];p1=a;p2=&a[5];则p2-p1的值为A) 5B) 10C) 12D) 无法确定参考答案:A25.以下叙述中错误的是A) 基类型不同的指针可以直接相互赋值B) 函数可以通过指针形参向所指单元传回数据C) 字符型指针可以指向一个字符串D) 指针的运用可使程序代码效率更高参考答案:A26. 有以下程序#include <stdio.h>main( ){ int i,j = 0;char a[] = "How are you", b[10] = {0}; for (i=0; a[i]; i++)if (a[i] == ' ')b[j++] = a[i+1];printf("%s\n",b);}程序运行后的输出结果是A) HayB) HowareyouC) weD) ay参考答案:D27. 有以下程序#include <stdio.h>main( ){ char w[20], a[5][10] = {"abcdef", "ghijkl", "mnopq", "rstuv", "wxyz"};int i,j;for (i=0; i<5; i++){ j=0;while (a[i][j]!='\0') j++;w[i] = a[i][j/2+1];}w[5]= '\0';puts(w);程序运行后的输出结果是A) ekpuzB) agmrwC) flqvzD) djoty参考答案:A28.有以下程序#include <stdio.h>main( ){ int i,j = 0;char a[] = "How are you!", b[10] = {0}; for (i=0; a[i]; i++)if (a[i] == ' ')b[j++] = a[i-1];printf("%s\n", b);}程序运行后的输出结果是A) weB) Howareyou!C) ayD) we!参考答案:A29.以下涉及字符串数组、字符指针的程序段,没有编译错误的是A) char* str, name[5];str = "C/C++";B) char* str, name[6];name = "Hello";C) char str1[7] = "prog.c", str2[8]; str2 = str1;D) char line[];参考答案:A30.有如下程序#include <stdio.h>void get_put(){char ch;ch = getchar();if (ch != '\n') get_put();putchar(ch);}main( ){get_put();}程序运行时,输入ABCD<回车>,则输出结果是A) DCDCB) DCBAC) BABAD) ABCD参考答案:B31.有以下程序#include <stdio.h>main( ){char name[10] = {'S', 'T', 'R'}; name[2] = '#'; name[6] = 0;printf("%s\n", name);}程序运行后的输出结果是A) ST#B) STR#C) STR#0D) STR0参考答案:A32. 有以下函数int fun(char *ps){ char *p;p=ps;if(*ps==0) return 0; while(*++p);return(p-ps);}该函数的功能是A) 计算字符串的长度B) 实现字符串的赋值C) 将字符串逆序存放D) 计算字符串所占字节数参考答案:A33.有以下函数void fun(char *p, char *q){ while ((*p++ = *q++) != '\0'); } 该函数的功能是A) 计算字符串的长度B) 计算字符串所占字节数C) 将字符串逆序存放D) 实现字符串的复制参考答案:D34. 以下叙述错误的是A) 未经赋值的全局变量值不确定B) 未经赋值的auto变量值不确定C) 未经赋值的register变量值不确定D) 未经赋值的静态局部变量值为0 参考答案:A35.有以下程序#include <stdio.h>main( ){ int c, d;c = 10^3;d = 10+3;printf("%d,%d\n", c, d);}程序运行后的输出结果是A) 103,13B) 13,13C) 10,13D) 9,13参考答案:D36.有以下程序#include <stdio.h>#include <string.h>typedef struct stu {char name[10];char gender;int score;} STU;void f(char *name, char *gender, int *score) { strcpy(name, "Qian");*gender = 'f';*score = 350;}main( ){ STU a = {"Zhao", 'm', 290}, b;b = a;f(, &b.gender, &b.score);printf("%s,%c,%d,", , a.gender, a.score); printf("%s,%c,%d\n", , b.gender, b.score);}程序运行后的输出结果是A) Zhao,m,290,Qian,f,350B) Zhao,m,290,Zhao,m,290C) Zhao,m,290,Qian,m,350D) Zhao,m,290,Qian,m,290参考答案:A37.有如下程序#include <stdio.h>main( ){int a = 9, b;b = (a >> 3) % 4;printf("%d,%d\n", a, b);}程序运行后的输出结果是A) 9,1B) 4,0C) 4,3D) 9,3参考答案:A38. 有如下定义:struct{ int num;char name[10];struct{ int y; int m; int d;} birth;} s,*ps=&s;以下对内嵌结构体成员的引用形式错误的是A) ps.birth.yB) s.birth.yC) ps->birth.yD) (*ps).birth.y参考答案:A39. 函数rewind(fp)的作用是A) 函数rewind(fp)的作用是使文件读写指针指向文件开始位置B) 使文件位置指针指向文件的末尾C) 使文件位置指针移至前一个字符的位置D) 使文件位置指针移至下一个字符的位置参考答案:A40.以下选项中错误的是A) a&=b 与 a=a&b 等价B) a^=b 与 a=a^b 等价C) a|=b 与 a=a|b 等价D) a!^=b 与 a=a!^b 等价参考答案:D。

人工智能自然语言技术练习(习题卷6)

人工智能自然语言技术练习(习题卷6)

人工智能自然语言技术练习(习题卷6)说明:答案和解析在试卷最后第1部分:单项选择题,共116题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]知识图谱中的边称为?A)连接边B)关系C)属性D)特征2.[单选题]One-Hot是一种什么样的表示方式A)分布式表示B)基于矩阵的表示C)基于神经网络的表示D)离散型表示3.[单选题]在 NLP 虚拟环境中安装需要的程序包,并自动安装这个包的依赖项需要用()。

A)pipB)condaC)condaD)pip4.[单选题]逻辑回归的损失函数是什么A)信息熵B)信息增益C)对数损失D)均方误差5.[单选题]以下哪些方法可以优化K-Means?A)较少K的个数B)增加K的个数C)增加样本特征D)以上都可以6.[单选题]假如说特征过少,模型过于简单,可能会发生什么情况A)正常拟合B)过拟合C)欠拟合D)不确定7.[单选题]以下哪个激活函数用来处理二分类任务A)tanhB)Leaky ReluC)sigmoidD)relu8.[单选题]关于采用卷积神经网络进行图像分类和文本分类的比较,下列说法错误的是( )A)卷积神经网络只能用于图像分类,不能用于文本分类B)使用卷积神经网络进行句子分类,一般将句子中每个词表示为固定长度的向量,这样句子就可以表示为矩阵,从而使得在结构上与图像类似,并在后续进行卷积等处C)图像处理应用中,卷积核处理的局部区域为图像的一小块区域,而在文本分类时卷积核处理的局部区域通常为相邻的上下几行(几个词)。

因此卷积核的宽度和输入矩阵的宽度相等D)使用卷积神经网络进行句子分类或者文档分类,卷积提取的特征与采用n-gram 模式提取的特征类似9.[单选题]X.dat中字段含义错误的是A)ss_type:词性标注B)w_cont:词语个数C)word:词语D)lex_id:2位16进制数表示的一个词语编号10.[单选题]在图像的人脸识别中,深度学习有哪些应用,使用到的是哪个网络结构A)LeNET5B)(CNN:AlexNet)C)VGGD)ResNet11.[单选题]在NLP中, 不可以做以下选项中的那个任务A)聊天机器人B)车牌检测C)推荐系统D)文本纠错12.[单选题]下列不属于感知器学习算法的基本思想的是()A)如果第i个神经元的输出是正确的,即有yi=ti,那么与第i个神经元联接的权值 wij和 偏差值bi保持不变。

人工智能自然语言技术练习(试卷编号241)

人工智能自然语言技术练习(试卷编号241)

人工智能自然语言技术练习(试卷编号241)1.[单选题]tf.tanh的作用是什么A)计算元素的sigmoid值.B)计算元素的softmax值.C)计算元素的双曲正切值.D)计算元素的relu值答案:C解析:2.[单选题]感知器的学习规则属于()A)梯度下降法B)飞度法C)ADB算法D)梯度上升法答案:A解析:3.[单选题]不属于分布式表示模型的是( )。

A)分类模型B)LSA 矩阵分解模型C)PLSA 潜在语义分析概率模型D)Word2Vec 模型答案:A解析:4.[单选题]LDA中的一个采样是什么采样A)gamma函数B)二项分布C)pLSAD)Gibbs采样答案:D解析:5.[单选题]CNN中,一般选择有多个卷积核是为了什么A)同时提取多个图像的特征B)提取某些图像多个特征C)图像有多个通道D)与多特征无关6.[单选题]tf里的con1d的作用是什么A)二维卷积B)一维卷积C)lstm操作D)GRU操作答案:B解析:7.[单选题]Word2Vec常用到中文同义词替换,以下说法错误的是A)Word2Vec基于概率统计B)Word2Vec结果符合当前预料环境C)Word2Vec得到的都是语义上的同义词D)Word2Vec受限于训练语料的数量和质量答案:C解析:8.[单选题]在NLP的应用当中,估计条件概率常用的方法是什么A)交叉熵函数B)信息熵函数C)加和求平均D)极大似然估计答案:D解析:9.[单选题]如果要采用神经网络来对文本进行建模,必须先将文本向量化,这一过程是指( )A)将文本分词B)获得文本类别标签C)将文本压缩D)将文本转换为数值向量答案:D解析:10.[单选题]以下关于自然语言处理的说法不正确的是( )。

A)Yuring测试反映了NLP在人工智能领域的重要地位。

B)有关NLP的研究将彻底解放人类的大脑。

C)人类得逻辑思维以语义为形式D)NLP的诱人前景正使得它越来越成为研究得热点。

腾讯对话机器人

腾讯对话机器人

Knowledge
Understanding
Generation
Planning
• Structured • Unstructured • Real world
• Annotation • Semantics • Matching
2
User Interests
• Predefined ontology • Automatically extracted tags • User behavior based user interests • …
Technology
Recommendation system
News characteris2cs
Environmental characteris2cs
User characteris2cs
Context characteris2cs
Ar$cle score Score(u,d)=f(class,topic,tag,2me,…)
Linear Model
Shallow CNN of (J&Z 15)
Deep Pyramid CNN (J&Z 17)
2
Example: Tencent Verticle Search Applications
Internet
Mobile
Science
Jack Ma
Robin Li
iPhone
NASA
Basketball
Kobe
Lakers
User
Classification + tag
Sport

物联网理论知识习题(附答案)

物联网理论知识习题(附答案)

物联网理论知识习题(附答案)一、单选题(共40题,每题1分,共40分)1、以下有关基于Wi-Fi的定位技术的描述中,错误的是()。

A、终端必须能够进行数据通信B、在同时收到多个AP的信号时,还可以进一步利用信号的强度来增加定位精度C、即使不能利用某个AP接入网络,也可以利用其进行定位D、主要通过利用AP的IP地址来进行定位正确答案:D2、嵌入式系统最常用的数据传送方式是()。

A、DMAB、I/O处理机C、查询D、中断正确答案:D3、以下关于智能传感器复合感知能力的描述中,错误的是()。

A、帮助人类全面地感知和研究环境的变化规律。

B、使用新型传感器或集成多种感知能力的传感器C、综合感知无线信号的强度、频率、噪声与干扰等参数D、使智能传感器具有对物体与外部环境的物理量、化学量或生物量的复合感知能力正确答案:C4、以下关于计算机网络定义要点的描述中错误的是()。

A、网络体系结构遵循分层结构模型B、联网计算机之间的通信必须遵循TCP/IP协议C、组建计算机网络的主要目的是实现计算机资源的共享D、互联的计算机系统是自治的系统正确答案:B5、以下关于可穿戴计算机属性的描述中,错误的是()。

A、非限制性体现在可穿戴计算机不限制用户的移动B、可觉察性体现在可穿戴计算机可以在必要时对用户进行有效的提醒C、可控性体现在用户在任何需要的时候可以获得系统的控制权D、交流性体现在可穿戴计算机具有通信能力上正确答案:A6、在环境监测系统中一般不常用到的传感器类型有()。

A、温度传感器B、湿度传感器C、速度传感器D、照度传感器正确答案:C7、基于TCP/IP协议,在企业内部运作的网络系统是()。

A、EnterprisenetB、IntranetC、InternetD、Extranet正确答案:B8、RFID接入层采取()的无线方式传输。

A、一跳B、多跳C、直接连接D、二跳正确答案:A9、以下关于接入层网络技术类型的描述中,错误的是()。

2022-3 大数据分析师(初级)考前冲刺题A1卷

2022-3 大数据分析师(初级)考前冲刺题A1卷

信息素养培训平台2022.3 大数据分析师(初级)考前冲刺题A1卷1.【单选题】下面关于MapReduce任务描述不正确的是()。

A:不同的Map任务之间不会进行通信B:不同的Reduce任务之间也不会发生任何信息交换C:Map需要考虑数据全局性D:用户不能显式地从一台机器向另一台机器发送消息正确答案:C答案解析:在MapReduce工作工作中: 不同的Map任务之间不会进行通信。

不同的Reduce任务之间也不会发生任何信息交换。

Map需要考虑数据局部性,Reduce无需考虑数据局部性。

用户不能显式地从一台机器向另一台机器发送消息。

所有的数据交换都是通过MapReduce框架自身去实现的。

2.【单选题】下列不适用于大数据图计算的产品是()。

A:GraphXB:PregelC:FlumeD:PowerGraph正确答案:C答案解析:Flume是实时采集工具。

3.【单选题】利用Sqoop进行数据同步描述错误的是()。

A:将关系数据库数据导入HDFSB:将关系数据库数据导入HiveC:将关系数据库数据导入HBaseD:将HDFS数据导入Hive正确答案:D答案解析:Sqoop是一款开源的工具,主要用于在Hadoop与传统的关系数据库间进行数据的传递4.【单选题】散点图用于展示数据的相关性和分布关系,由X轴和Y轴两个变量组成。

通过因变量(Y轴数值)随自变量(X轴数值)变化的呈现数据的大致趋势,同时支持从类别和颜色两个维度观察数据的分布情况。

散点图支持()坐标系。

A:一维B:二维C:三维D:四维正确答案:B答案解析:散点图用于描述二维数据之间的关系。

5.【单选题】下列属于图形数据库的是()。

A:HBaseB:MongoDBC:Neo4JD:Oracle正确答案:C答案解析:图数据库的相关产品包括:Neo4J、OrientDB、InfoGrid、GraphDB等。

6.【单选题】哪种图形用于表示三维数据()。

大模型归纳总结 mapreduce

大模型归纳总结 mapreduce

英文回答:MapReduce is a distributedputing framework of high practical value applicable to large—scale data processing。

The working method is to split the data that will need to be processed into blocks, to process them in parallel on multipleputer nodes and eventually to aggregate the results。

The MapReduce framework is divided into two key parts: mapping and summing。

At the mapping stage, the framework divides the data entered and processes theputational nodes in parallel; at the consolidation stage, the results of the previous treatment will be aggregated and summarized。

In this way, MapReduce is able to handle large—scale data effectively and has a good scalability。

MapReduce是一种具有很高实用价值的分布式计算框架,适用于大规模数据处理。

其工作原理是将需要处理的数据分割成小块,在多台计算机节点上并行处理这些数据,最终将结果进行汇总。

MapReduce 框架分为两个关键部分:映射和归纳。

在映射阶段,框架将输入的数据进行分割并由各个计算节点并行处理;而在归纳阶段,框架将上一步的处理结果进行汇总和归纳。

人工智能基础(试卷编号2331)

人工智能基础(试卷编号2331)

人工智能基础(试卷编号2331)1.[单选题]最初的大数据概念还比较模糊,只是隐约的知道像个性化推荐、搜索引擎之类的处理需要大量数据,那么在搜索引擎方面,谁是世界上最大的厂商A)谷歌B)百度C)360答案:A解析:2.[单选题]在pandas中以下哪个方法用于向csv文件中实现写入工作?A)to_csv()B)read_csv()C)to_excel()答案:A解析:3.[单选题]()是python数据分析的首选库。

它含有各种各样的数据结构如DataFrame、Series等,使数据分析工作变得简单而高效。

A)ipythonB)numpyC)pandasD)matplotlib答案:C解析:4.[单选题]贝叶斯学习是一种以贝叶斯法则为基础的,并通过()手段进行学习的方法。

A)逻辑B)概率C)推理D)假定答案:B解析:5.[单选题]对前馈神经网络这种深度学习方法描述不正确的是()A)是一种端到端学习的方法B)是一种监督学习的方法C)实现了非线性映射D)隐藏层数目大小对学习性能影响不大。

6.[单选题]下列哪项不是知识图谱构建的主要技术()A)命名实体识别B)实体链接C)关系抽取D)词性标注答案:D解析:知识图谱构建的不太利用词性标注7.[单选题]估价函数指的是从初始结点经过多个结点到达目的结点的路径的 ( )A)最大代价估计值B)最小代价估计值C)最短路径长度D)关键路径答案:B解析:8.[单选题]VGG模型于2014年被提出,是最流行的()模型之一,在ImageNet比赛中,达到了Top5错误率7.3%。

A)CNNB)KNNC)RNND)DNN答案:A解析:VGG模型于2014年被提出,是最流行的CNN模型之一,在ImageNet比赛中,达到了Top5错误率7.3%。

9.[单选题]规则生成本质上是一个贪心搜索的过程,须有一定的机制来缓解过拟合的风险,最常见的做法是()A)序列化B)剪枝C)去重D)重组答案:B解析:10.[单选题]一个特征的权重越高,说明该特征比其他特征()。

人工智能基础(习题卷75)

人工智能基础(习题卷75)

人工智能基础(习题卷75)说明:答案和解析在试卷最后第1部分:单项选择题,共50题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]假定你已经搜集了10000行推特文本的数据,不过没有任何信息。

现在你想要创建一个推特分类模型,好把每条推特分为三类:积极、消极、中性。

以下哪个模型可以执行做到?()A)朴素贝叶斯B)支持向量机C)以上都不是2.[单选题]turtle.circle(A20,A80)是绘制一个什么样的图形?( )。

A)半径为A80的扇形B)半径为A20的半圆C)半径为A20的圆形D)半径为A80的圆形3.[单选题]统一安全监测体系应覆盖云.管.边.端各环节,实现安全状态监测.安全评估.态势感知.( )等。

A)主动拦截B)告警弹窗C)预警发布D)安全提示4.[单选题]以下不属于有监督的词义消歧方法的是( )。

A)Flip-Flop算法B)贝叶斯分类器C)最大嫡消歧D)基于词典的消歧5.[单选题]相同的词可以如何实现多个词嵌入?A)GloVeB)Word2VecC)ELMoD)Nltk6.[单选题]如果使用线性回归模型,下列说法正确的是( )。

A)检查异常值是很重要的,因为线性回归对离群效应很敏感B)线性回归分析要求所有变量特征都必须具有正态分布C)线性回归假设数据中基本没有多重共线性D)以上说法都不对7.[单选题]()主要提供内存计算框架。

C)服务核心层D)Spark层8.[单选题]不属于传感器静态特性指标的是( )。

A)重复性B)固有频率C)灵敏度D)漂移9.[单选题]()是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。

A)专家系统B)机器系统C)智能芯片D)人机交互10.[单选题]( )是把句法成分与应用领域中的目标表示相关联。

A)词法分析B)句法分析C)语用分析D)语义分析11.[单选题]按标注活动的自动化程度,以下()不属于数据标注的类别。

某高校考试题目及答案

某高校考试题目及答案

某高校考试题目及答案一、单项选择题(每题2分,共20分)1. 计算机科学之父是哪位科学家?A. 阿兰·图灵B. 查尔斯·巴贝奇C. 约翰·冯·诺伊曼D. 艾伦·凯答案:A2. 以下哪个选项是HTML的元素?A. <p>B. <body>C. <table>D. 以上都是答案:D3. 在C语言中,用于声明一个整型变量的关键字是?A. intB. floatC. charD. double答案:A4. 以下哪个数据库系统是基于关系模型的?A. MongoDBB. OracleC. CassandraD. Redis答案:B5. 在操作系统中,哪个概念指的是计算机资源的分配和回收?A. 进程B. 线程C. 调度D. 同步答案:C6. 以下哪个算法是用于解决旅行商问题的?A. 快速排序B. 动态规划C. 遗传算法D. 深度优先搜索答案:C7. 在网络协议栈中,哪一层负责路由选择?A. 应用层B. 传输层C. 网络层D. 数据链路层答案:C8. 以下哪个是面向对象编程的三大特性之一?A. 封装B. 继承C. 多态D. 以上都是答案:D9. 在Unix/Linux系统中,哪个命令用于查看当前路径?A. pwdB. lsC. cdD. mkdir答案:A10. 以下哪个是Python中的内置数据结构?A. ListB. MapC. SetD. 以上都是答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是Java的垃圾回收机制的特点?A. 自动管理内存B. 减少内存泄漏C. 必须手动释放对象D. 提高程序性能答案:A, B, D12. 在软件开发过程中,以下哪些是敏捷开发的核心实践?A. 持续集成B. 持续部署C. 需求文档化D. 短迭代周期答案:A, B, D13. 以下哪些是云计算服务的类型?A. IaaS(基础设施即服务)B. PaaS(平台即服务)C. SaaS(软件即服务)D. DaaS(数据即服务)答案:A, B, C, D14. 在网络安全中,以下哪些是常见的攻击类型?A. SQL注入B. 跨站脚本攻击(XSS)C. 分布式拒绝服务攻击(DDoS)D. 社交工程答案:A, B, C, D15. 以下哪些是数据科学中常用的技术?A. 数据挖掘B. 机器学习C. 统计分析D. 数据可视化答案:A, B, C, D三、填空题(每题4分,共20分)16. 在HTML中,用于定义最重要的标题的标签是______。

人工智能基础(习题卷4)

人工智能基础(习题卷4)

人工智能基础(习题卷4)说明:答案和解析在试卷最后第1部分:单项选择题,共53题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]请问Bert预训练模型的网络结构是?A)LSTMB)GRUC)Trasformer2.[单选题]通常来说,()能够用来预测连续因变量。

A)线性回归B)逻辑回归C)线性回归和逻辑回归D)以上答案都不正确3.[单选题]深度学习中神经网络类型很多,以下神经网络信息是单向传播的是:A)LSTMB)卷积神经网络C)循环神经网络D)GRU4.[单选题]mapreduce计算模型适用于哪种任务A)多线程处理B)有关联的行处理C)批处理D)实时数据变化处理5.[单选题]高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常 数量以便引入一些低频分量。

这样滤波器叫( )。

A)巴特沃斯高通滤波器B)高频提升滤波器C)高频加强滤波器D)理想高通滤波器6.[单选题]一个SVM模型存在欠拟合问题,下面怎么做能提高模型的性能?A)增大惩罚参数CB)减小惩罚参数CC)减小核函数系数(gamma值)D)增大核函数系数(gamma值)7.[单选题]下面算法属于局部处理的是( )。

A)灰度线性变换B)二值化C)傅里叶变换D)中值滤波8.[单选题]剪枝分为前剪枝和后剪枝,前剪枝本质就是早停止,后剪枝通常是通过衡量剪枝后()变化来决定是否剪枝。

A)信息增益B)损失函数C)准确率D)召回率9.[单选题]()是一个主要用于绘制二维图形的Python库。

用途:绘图、可视化.A)numpyB)pandasC)MatplotlibD)PIL10.[单选题]一般情况下,KNN最近邻方法在( )情况下效果最好()A)样本呈现团状分布B)样本呈现链状分布C)样本较多但典型性不好D)样本较少但典型性好11.[单选题]变压器声纹在线监测通过获取大量变压器运行声学样本,构建变压器声学指纹大数据库,实现了什么目标A)声纹预测B)变压器运行状态在线声纹检测C)变压器运行状态离线声纹检测D)变压器运行状态声纹在线监测及主动预警12.[单选题]()是指针对用户非常明确的数据査询和处理任务,以高性能和高吞吐量的方式实现大众化的服务,是数据价值最重要也是最直接的发现方式。

人工智能基础(习题卷76)

人工智能基础(习题卷76)

人工智能基础(习题卷76)说明:答案和解析在试卷最后第1部分:单项选择题,共50题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]在pandas中以下哪个方法用于向csv文件中实现写入工作?A)to_csv()B)read_csv()C)to_excel()2.[单选题]已知a={“fruits”:pear,“animals”:dog,“vegetables”:carrot},则a[“animals”]的值为()A)pearB)dogC)carrotD)以上选项均不正确3.[单选题]下列关于Python的说法中,错误的是( )。

A)Python是从ABC发展起来的B)Python源程序需编译和连接后才可生成可执行文件C)Python是开源的,它可以被移植到许多平台上D)Python是一门高级的计算机语言4.[单选题]用热电阻传感器测温时,经常使用的配用测量电路是( )。

A)交流电桥B)差动电桥C)直流电桥D)以上几种均可5.[单选题]中心极限定理是指在给定条件下,大量互相独立的随机变量的值的()趋近于正态分布。

A)标准差B)最大值C)平均值D)最小值6.[单选题]()是指数据减去一个总括统计量或模型拟合值时的残余部分A)极值B)标准值C)平均值D)残值7.[单选题]通过数字技术与实体经济深度融合,不断提高经济社会的数字化.( ).智能化水平A)多元化B)统一化C)共享化8.[单选题]基于神经网络的分类模型是?A)生成模型B)判别模型C)两者都不属于D)两者都属于9.[单选题]根据操作的反馈总结更好的策略,这个过程抽象出来,就是(___)A)强化训练B)加强训练C)强化学习D)加强学习10.[单选题]常用的机器学习算法,可使用哪些开发包A)sklearnB)xgboostC)IightgbmD)numpy11.[单选题]有特征,有部分标签的机器学习属于()。

A)监督学习B)半监督学习C)无监督学习D)强化学习12.[单选题]盲目搜索策略 不包括下列那个()A)广度优先搜索B)深度优先搜索C)有界深度优先搜索D)全局择优搜索13.[单选题]红外传感器关于测量距离的原理是( )。

Evaluating MapReduce for multi-core and multiprocessor systems

Evaluating MapReduce for multi-core and multiprocessor systems

Evaluating MapReduce for Multi-core and Multiprocessor SystemsColby Ranger,Ramanan Raghuraman,Arun Penmetsa,Gary Bradski,Christos Kozyrakis∗Computer Systems LaboratoryStanford UniversityAbstractThis paper evaluates the suitability of the MapReduce model for multi-core and multi-processor systems.MapRe-duce was created by Google for application development on data-centers with thousands of servers.It allows pro-grammers to write functional-style code that is automati-cally parallelized and scheduled in a distributed system. We describe Phoenix,an implementation of MapReduce for shared-memory systems that includes a programming API and an efficient runtime system.The Phoenix run-time automatically manages thread creation,dynamic task scheduling,data partitioning,and fault tolerance across processor nodes.We study Phoenix with multi-core and symmetric multiprocessor systems and evaluate its perfor-mance potential and error recovery features.We also com-pare MapReduce code to code written in lower-level APIs such as P-threads.Overall,we establish that,given a care-ful implementation,MapReduce is a promising model for scalable performance on shared-memory systems with sim-ple parallel code.1IntroductionAs multi-core chips become ubiquitous,we need parallel programs that can exploit more than one processor.Tradi-tional parallel programming techniques,such as message-passing and shared-memory threads,are too cumbersome for most developers.They require that the programmer manages concurrency explicitly by creating threads and synchronizing them through messages or locks.They also require manual management of data locality.Hence,it is very difficult to write correct and scalable parallel code for non-trivial algorithms.Moreover,the programmer must of-ten re-tune the code when the application is ported to a dif-ferent or larger-scale system.To simplify parallel coding,we need to develop two com-ponents:a practical programming model that allows users to specify concurrency and locality at a high level and an ∗Email addresses:{cranger,ramananr,penmetsa}@, garybradski@,and christos@.efficient runtime system that handles low-level mapping,re-source management,and fault tolerance issues automati-cally regardless of the system characteristics or scale.Nat-urally,the two components are closely linked.Recently, there has been a significant body of research towards these goals using approaches such as streaming[13,15],mem-ory transactions[14,5],data-flow based schemes[2],asyn-chronous parallelism,and partitioned global address space languages[6,1,7].This paper presents Phoenix,a programming API and runtime system based on Google’s MapReduce model[8]. MapReduce borrows two concepts from functional lan-guages to express data-intensive algorithms.The Map func-tion processes the input data and generates a set of interme-diate key/value pairs.The Reduce function properly merges the intermediate pairs which have the same key.Given such a functional specification,the MapReduce runtime automat-ically parallelizes the computation by running multiple map and/or reduce tasks in parallel over disjoined portions of the input or intermediate data.Google’s MapReduce im-plementation facilitates processing of terabytes on clusters with thousands of nodes.The Phoenix implementation is based on the same principles but targets shared-memory systems such as multi-core chips and symmetric multipro-cessors.Phoenix uses threads to spawn parallel Map or Reduce tasks.It also uses shared-memory buffers to facilitate com-munication without excessive data copying.The runtime schedules tasks dynamically across the available processors in order to achieve load balance and maximize task through-put.Locality is managed by adjusting the granularity and assignment of parallel tasks.The runtime automatically re-covers from transient and permanent faults during task exe-cution by repeating or re-assigning tasks and properly merg-ing their output with that from the rest of the computation. Overall,the Phoenix runtime handles the complicated con-currency,locality,and fault-tolerance tradeoffs that make parallel programming difficult.Nevertheless,it also allows the programmer to provide application specific knowledge such as custom data partitioning functions(if desired).We evaluate Phoenix on commercial multi-core and mul-tiprocessor systems and demonstrate that it leads to scal-able performance in both environments.Through fault in-jection experiments,we show that Phoenix can handle per-manent and transient faults during Map and Reduce tasks at a small performance penalty.Finally,we compare the performance of Phoenix code to tuned parallel code written directly with P-threads.Despite the overheads associated with the MapReduce model,Phoenix provides similar per-formance for many applications.Nevertheless,the stylized key management and additional data copying in MapRe-duce lead to significant performance losses for some ap-plications.Overall,even though MapReduce may not be applicable to all algorithms,it can be a valuable tool for simple parallel programming and resource management on shared-memory systems.The rest of the paper is organized as follows.Section 2provides an overview of MapReduce,while Section3 presents our shared-memory implementation.Section4de-scribes our evaluation methodology and Section5presents the evaluation results.Section6reviews related work and Section7concludes the paper.2MapReduce OverviewThis section summarizes the basic principles of the MapReduce model.2.1Programming ModelThe MapReduce programming model is inspired by func-tional languages and targets data-intensive computations. The input data format is application-specific,and is spec-ified by the user.The output is a set of<key,value> pairs.The user expresses an algorithm using two functions, Map and Reduce.The Map function is applied on the in-put data and produces a list of intermediate<key,value> pairs.The Reduce function is applied to all intermediate pairs with the same key.It typically performs some kind of merging operation and produces zero or more output pairs. Finally,the output pairs are sorted by their key value.In the simplest form of MapReduce programs,the program-mer provides just the Map function.All other functionality, including the grouping of the intermediate pairs which have the same key and thefinal sorting,is provided by the run-time.The following pseudocode shows the basic structure of a MapReduce program that counts the number of occurences of each word in a collection of documents[8].The map function emits each word in the documents with the tempo-rary count1.The reduce function sums the counts for each unique word.//input:a document//intermediate output:key=word;value=1 Map(void*input){for each word w in inputEmitIntermediate(w,1);}//intermediate output:key=word;value=1 //output:key=word;value=occurences Reduce(String key,Iterator values){int result=0;for each v in valuesresult+=v;Emit(w,result);}The main benefit of this model is simplicity.The pro-grammer provides a simple description of the algorithm that focuses on functionality and not on parallelization.The ac-tual parallelization and the details of concurrency manage-ment are left to the runtime system.Hence the program code is generic and easily portable across systems.Nev-ertheless,the model provides sufficient high-level informa-tion for parallelization.The Map function can be executed in parallel on non-overlapping portions of the input data and the Reduce function can be executed in parallel on each set of intermediate pairs with the same key.Similarly,since it is explicitly known which pairs each function will oper-ate upon,one can employ prefetching or other scheduling optimizations for locality.The critical question is how widely applicable is the MapReduce model.Dean and Ghemawat provided several examples of data-intensive problems that were successfully coded with MapReduce,including a production indexing system,distributed grep,web-link graph construction,and statistical machine translation[8].A recent study by Intel has also concluded that many data-intensive computations can be expressed as sums over data points[9].Such compu-tations should be a good match for the MapReduce model. Nevertheless,an extensive evaluation of the applicability and ease-of-use of the MapReduce model is beyond the scope of this work.Our goal is to provide an efficient im-plementation on shared-memory systems that demonstrates its feasibility and enables programmers to experiment with this programming approach.2.2Runtime SystemThe MapReduce runtime is responsible for paralleliza-tion and concurrency control.To parallelize the Map func-tion,it splits the input pairs into units that are processed concurrently on multiple nodes.Next,the runtime parti-tions the intermediate pairs using a scheme that keeps pairs with the same key in the same unit.The partitions are processed in parallel by Reduce tasks running on multi-ple nodes.In both steps,the runtime must decide on fac-tors such as the size of the units,the number of nodes in-volved,how units are assigned to nodes dynamically,and how buffer space is allocated.The decisions can be fully automatic or guided by the programmer given applicationspecific knowledge(e.g.,number of pairs produced by each function or the distribution of keys).These decisions allow the runtime to execute a program efficiently across a wide range of machines and dataset scenarios without modifica-tions to the source code.Finally,the runtime must merge and sort the output pairs from all Reduce tasks.The runtime can perform several optimizations.It can re-duce function-call overheads by increasing the granularity of Map or Reduce tasks.It can also reduce load imbal-ance by adjusting task granularity or the number of nodes used.The runtime can also optimize locality in several ways.First,each node can prefetch pairs for its current Map or Reduce tasks using hardware or software schemes.A node can also prefetch the input for its next Map or Re-duce task while processing the current one,which is simi-lar to the double-buffering schemes used in streaming mod-els[23].Bandwidth and cache space can be preserved using hardware compression of intermediate pairs which tend to have high redundancy[10].The runtime can also assist with fault tolerance.When it detects that a node has failed,it can re-assign the Map or Reduce task it was processing at the time to another node. To avoid interference,the replicated task will use separate output buffers.If a portion of the memory is corrupted,the runtime can re-execute just the necessary Map or Reduce tasks that will re-produce the lost data.It is also possible to produce a meaningful partial or approximated output even when some input or intermediate data is permanently lost. Moreover,the runtime can dynamically adjust the number of nodes it uses to deal with failures or power and tempera-ture related issues.Google’s runtime implementation targets large clusters of Linux PCs connected through Ethernet switches[3].Tasks are forked using remote procedure calls.Buffering and communication occurs by reading and writingfiles on a dis-tributedfile system[12].The locality optimizations focus mostly on avoiding remotefile accesses.While such a sys-tem is effective with distributed computing[8],it leads to very high overheads if used with shared-memory systems that facilitate communication through memory and are typ-ically of much smaller scale.The critical question for the runtime is how significant are the overheads it introduces.The MapReduce model re-quires that data is associated with keys and that pairs are handled in a specific manner at each execution step.Hence, there can be non-trivial overheads due to key management, data copying,data sorting,or memory allocation between execution steps.While programmers may be willing to sac-rifice some of the parallel efficiency in return for a simple programming model,we must show that the overheads are not overwhelming.3The Phoenix SystemPhoenix implements MapReduce for shared-memory systems.Its goal is to support efficient execution on mul-tiple cores without burdening the programmer with concur-rency management.Phoenix consists of a simple API that is visible to application programmers and an efficient run-time that handles parallelization,resource management,and fault recovery.3.1The Phoenix APIThe current Phoenix implementation provides an application-programmer interface(API)for C and C++. However,similar APIs can be defined for languages like Java or C#.The API includes two sets of functions sum-marized in Table1.Thefirst set is provided by Phoenix and is used by the programmer’s application code to ini-tialize the system and emit output pairs(1required and 2optional functions).The second set includes the func-tions that the programmer defines(3required and2optional functions).Apart from the Map and Reduce functions,the user provides functions that partition the data before each step and a function that implements key comparison.Note that the API is quite small compared to other models.The API is type agnostic.The function arguments are declared as void pointers wherever possible to provideflexibility in their declaration and fast use without conversion overhead. In constrast,the Google implementation uses strings for ar-guments as string manipulation is inexpensive compared to remote procedure calls andfile accesses.The data structure used to communicate basic function information and buffer allocation between the user code and runtime is of type scheduler args t.Itsfields are sum-marized in Table2.The basicfields provide pointers to in-put/output data buffers and to the user-provided functions. They must be properly set by the programmer before call-ing phoenix scheduler().The remainingfields are optionally used by the programmer to control scheduling decisions by the runtime.We discuss these decisions further in Section3.2.4.There are additional data structure types to facilitate communication between the Splitter,Map,Parti-tion,and Reduce functions.These types use pointers when-ever possible to implement communication without actually copying significant amounts of data.The API guarantees that within a partition of the interme-diate output,the pairs will be processed in key order.This makes it easier to produce a sortedfinal output which is of-ten desired.There is no guarantee in the processing order of the original input during the Map stage.These assumptions did not cause any complications with the programs we ex-amined.In general it is up to the programmer to verify that the algorithm can be expressed with the Phoenix API given these restrictions.The Phoenix API does not rely on any specific com-Function Description R/OFunctions Provided by Runtimeint phoenix scheduler(scheduler args t*args)R Initializes the runtime system.The scheduler args t struct provides the needed function&data pointersvoid emit intermediate(void*key,void*val,int key size)O Used in Map to emit an intermediate output<key,value>pair.Required if the Reduce is definedvoid emit(void*key,void*val)O Used in Reduce to emit afinal output pairFunctions Defined by Userint(*splitter t)(void*,int,map args t*)R Splits the input data across Map tasks.The arguments are the input data pointer,the unit size for each task,and theinput buffer pointer for each Map taskvoid(*map t)(map args t*)R The Map function.Each Map task executes this function on its inputint(*partition t)(int,void*,int)O Partitions intermediate pair for Reduce tasks based on their keys.The arguments are the number of Reduce tasks,a pointer to the keys,and a the size of the key.Phoenix provides a default partitioning function based on key hashingvoid(*reduce t)(void*,void**,int)O The Reduce function.Each reduce task executes this on its input.The arguments are a pointer to a key,a pointer to the associated values,and value count.If not specified,Phoenix uses a default identity functionint(*key cmp t)(const void*,const void*)R Function that compares two keysTable1.The functions in the Phoenix API.R and O identify required and optional fuctions respectively.piler options and does not require a parallelizing com-piler.However,it assumes that its functions can freely use stack-allocated and heap-allocated stuctures for pri-vate data.It also assumes that there is no communica-tion through shared-memory structures other than the in-put/output buffers for these functions.For C/C++,we can-not check these assumptions statically for arbitrary pro-grams.Although there are stringent checks within the sys-tem to ensure valid data are communicated between user and runtime code,eventually we trust the user to provide functionally correct code.For Java and C#,static checks that validate these assumptions are possible.3.2The Phoenix RuntimeThe Phoenix runtime was developed on top of P-threads[18],but can be easily ported to other shared-memory thread packages.3.2.1Basic Operation and Control FlowFigure1shows the basic dataflow for the runtime system. The runtime is controlled by the scheduler,which is initi-ated by user code.The scheduler creates and manages the threads that run all Map and Reduce tasks.It also manages the buffers used for task communication.The programmer provides the scheduler with all the required data and func-tion pointers through the scheduler args t structure. After initialization,the scheduler determines the number of cores to use for this computation.For each core,it spawns a worker thread that is dynamically assigned some number of Map and Reduce tasks.To start the Map stage,the scheduler uses the Splitter to divide input pairs into equally sized units to be processed by the Map tasks.The Splitter is called once per Map task and returns a pointer to the data the Map task will pro-cess.The Map tasks are allocated dynamically to work-ers and each one emits intermediate<key,value>pairs. The Partition function splits the intermediate pairs into units for the Reduce tasks.The function ensures all values of the same key go to the same unit.Within each buffer, values are ordered by key to assist with thefinal sorting.At this point,the Map stage is over.The scheduler must wait for all Map tasks to complete before initiating the Reduce stage.Reduce tasks are also assigned to workers dynamically, similar to Map tasks.The one difference is that,while with Map tasks we have complete freedom in distributing pairs across tasks,with Reduce we must process all values for the same key in one task.Hence,the Reduce stage may exhibit higher imbalance across workers and dynamic scheduling is more important.The output of each Reduce task is already sorted by key.As the last step,thefinal output from all tasks is merged into a single buffer,sorted by keys.The merging takes place in log2(P/2)steps,where P is the number of workers used.While one can imagine cases where the out-put pairs do not have to be ordered,our current implemen-tation always sorts thefinal output as it is also the case in Google’s implementation[8].Field DescriptionBasic FieldsInput data Input data pointer;passed to the Splitter by the runtime Data size Input dataset sizeOutput data Output data pointer;buffer space allocated by user Splitter Pointer to Splitter functionMap Pointer to Map functionReduce Pointer to Reduce functionPartition Pointer to Partition functionKey cmp Pointer to key compare functionOptional Fields for Performance TuningUnit size Pairs processed per Map/Reduce taskL1cache size L1data cache size in bytesNum Map workers Maximum number of threads(workers)for Map tasks Num Reduce workers Maximum number of threads(workers)for Reduce tasks Num Merge workers Maximum number of threads(workers)for Merge tasks Num procs Maximum number of processors cores usedTable2.The scheduler args t data structure type.3.2.2Buffer ManagementTwo types of temporary buffers are necessary to store data between the various stages.All buffers are allocated in shared memory but are accessed in a well specified way by a few functions.Whenever we have to re-arrange buffers (e.g.,split across tasks),we manipulate pointers instead of the actual pairs,which may be large in size.The intermedi-ate buffers are not directly visible to user code.Map-Reduce buffers are used to store the intermediate output pairs.Each worker has its own set of buffers.The buffers are initially sized to a default value and then resized dynamically as needed.At this stage,there may be multiple pairs with the same key.To accelerate the Partition function,the Emit intermediate function stores all values for the same key in the same buffer.At the end of the Map task,we sort each buffer by key order.Reduce-Merge buffers are used to store the outputs of Reduce tasks before they are sorted.At this stage,each key has only one value associated with it.After sorting,thefinal output is available in the user allocated Output data buffer.3.2.3Fault RecoveryThe runtime provides support for fault tolerance for tran-sient and permanent faults during Map and Reduce tasks.It focuses mostly on recovery with some limited support for fault detection.Phoenix detects faults through timeouts.If a worker does not complete a task within a reasonable amount of time, then a failure is assumed.The execution time of similar tasks on other workers is used as a yardstick for the timeout interval.Of course,a fault may cause a task to complete with incorrect or incomplete data instead of failing com-pletely.Phoenix has no way of detecting this case on its own and cannot stop an affected task from potentially corrupt-ing the shared memory.To address this shortcoming,one should combine the Phoenix runtime with known error de-tection techniques[20,21,24].Due to the functional nature of the MapReduce model,Phoenix can actually provide in-formation that simplifies error detection.For example,since the address ranges for input and output buffers are known, Phoenix can notify the hardware about which load/store ad-dresses to shared structures should be considered safe for each worker and which should signal a potential fault. Once a fault is detected or at least suspected,the runtime attempts to re-execute the failed task.Since the original task may still be running,separate output buffers are allo-cated for the new task to avoid conflicts and data corruption. When one of the two tasks completes successfully,the run-time considers the task completed and merges its result with the rest of the output data for this stage.The scheduler ini-tially assumes that the fault was a transient one and assigns the replicated task to the same worker.If the task fails a few times or a worker exhibits a high frequency of failed tasks overall,the scheduler assumes a permanent fault and no further tasks are assigned to this worker.The current Phoenix code does not provide fault recovery for the scheduler itself.The scheduler runs only for a very small fraction of the time and has a small memory footprint, hence it is less likely to be affected by a transient error.On the other hand,a fault in the scheduler has more serious im-plications for the program correctness.We can use known techniques such as redundant execution or checkpointing to address this shortcoming.Google’s MapReduce system uses a different approachMap Stage Reduce Stage Figure1.The basic dataflow for the Phoenix runtime.for worker fault tolerance.Towards the end of the Map or Reduce stage,they always spawn redundant executions of the remaining tasks,as they proactively assume that some workers have performance or failure issues.This approach works well in large clusters where hundreds of machines are available for redundant execution and failures are more frequent.On multi-core and symmetric multiprocessor sys-tems,the number of processors and frequency of failures are much smaller hence this approach is less profitable. 3.2.4Concurrency and Locality ManagementThe runtime makes scheduling decisions that affect the overall parallel efficiency.In general,there are three scheduling approaches one can employ:1)use a default policy for the specific system which has been developed taking into account its characteristics;2)dynamically de-termine the best policy for each decision by monitoring re-source availability and runtime behavior;3)allow the pro-grammer to provide application specific policies.Phoenix employs all three approaches in making the scheduling de-cisions described below.Number of Cores and Workers/Core:Since MapRe-duce programs are data-intensive,we currently spawn workers to all available cores.In a multi-programming en-vironment,the scheduler can periodically check the sys-tem load and scale its usage based on system-wide priori-ties.The mechanism for dynamically scaling the number of workers is already in place to support fault recovery.In sys-tems with multithreaded cores(e.g.,UltraSparc T1[16]), we spawn one worker per hardware thread.This typically maximizes the system throughput even if an individual task takes longer.Task Assignment:To achieve load balance,we always assign Map and Reduce task to workers dynamically.Since all Map tasks must execute before Reduce tasks,it is dif-ficult to exploit any producer-consumer locality between Map and Reduce tasks.Task Size:Each Map task processes a unit of the input data.Given the size of an element of input data,Phoenix adjusts the unit size so that the input and output data for a Map taskfit in the L1data cache.Note that for some computations there is little temporal locality within Map or Reduce stages.Nevertheless,partitioning the input at L1 cache granularity provides a good tradeoff between lower overheads(few larger units)and load balance(more smaller units).The programmer can vary this parameter given spe-cific knowledge of the locality within a task,the amount of output data produced per task,or the processing overheads. Partition Function:The partition function determines the distribution of intermediate data.The default partition function partitions keys evenly across tasks.This may be suboptimal since keys may have a different number of val-ues associated with them.The user can provide a function that has application-specific knowledge of the values’dis-tribution and reduces imbalance.There are additional locality optimizations one can use with Phoenix.The runtime can trigger a prefetch engine that brings the data for the next task to the L2cache in par-allel with processing the current task.The runtime can also provide cache replacement hints for input and output pairs accessed in Map and Reduce tasks[25].Finally,hardware compression/decompression of intermediate outputs as they are emitted in the Map stage or consumed in the Reduce stage can reduce bandwdith and storage requirements[10].4MethodologyThis section describes the experimental methodology we used to evaluate Phoenix.4.1Shared Memory SystemsWe ran Phoenix on the two shared-memory systems de-scribed in Table3.Both systems are based on the Sparc architecture.Nevertheless,Phoenix should work with-out modifications on any architecture that supports the P-threads library.The CMP system is based on the UltraSparc T1multi-core chip with8multithreaded cores sharing the L2cache[16].The SMP system is a symmetric multipro-cessor with24chips.The use of two drastically different systems allows us to evaluate if the Phoenix runtime can deliver on its promise:the same program should run as ef-ficiently as possible on any type of shared-memory system without any involvement by the user.4.2ApplicationsWe used the8benchmarks described in Table4.They represent key computations from application domains such as enterprise computing(Word Count,Reverse Index, String Match),scientific computing(Matrix Multiply),ar-tificial intelligence(Kmeans,PCA,Linear Regression),and image processing(Histogram).We used three datasets for each bemchmarks(S,M,L)to test locality and scalability issues.We started with sequential code for all benchmarks that serves as the baseline for speedups.From that,we de-veloped a MapReduce version using Phoenix and a conven-tional parallel version using P-threads.The P-threads code is statically scheduled.Table4also lists the code size ratio of each parallel ver-sion to that of the sequential code(lower is better).Code size is measured in number of source code lines.In general, parallel code is significantly longer than sequential code. Certain applications,such as WordCount and ReverseIndex,fit well with the MapReduce model and lead to very com-pact and simple Phoenix code.In contrast,the MapReduce style and structure introduce significant amounts of addi-tional code for applications like PCA and MatrixMultiply because key-based data management is not the most natu-ral way to express their data accesses.The P-threads code would be signifciantly longer if dynamic scheduling was implemented.Phoenix provides dynamic scheduling in the runtime.Of course,the number of lines of code is not a direct metric of programming complexity.It is difficult to compare the complexity of code that manages keys or type-agnostic Phoenix function interfaces against the complexity of code that manually manages threads.For reference,the Phoenix runtime is approximately1,500lines of code(in-cluding headers).The following are brief descriptions of the main mecha-nisms used to code each benchmark with Phoenix.CMP SMPModel Sun Fire T1200Sun Ultra-Enterprise6000 CPU Type UltraSparc T1UltraSparc IIsingle-issue4-way issuein-order in-orderCPU Count824Threads/CPU41L1Cache8KB4-way SA16KB DML2Size3MB12-way SA512KB per CPUshared(off chip)Clock Freq. 1.2GHz250MHzTable3.The characteristics of the CMP and SMP sys-tems used to evaluate Phoenix.Word Count:It counts the frequency of occurence for each word in a set offiles.The Map tasks process different sections of the inputfiles and return intermediate data that consist of a word(key)and a value of1to indicate that the word was found.The Reduce tasks add up the values for each word(key).Reverse Index:It traverses a set of HTMLfiles,ex-tracts all links,and compiles an index from links tofiles. Each Map task parses a collection of HTMLfiles.For each link itfinds,it outputs an intermediate pair with the link as the key and thefile info as the value.The Reduce task combines allfiles referencing the same link into a single linked-list.Matrix Multiply:Each Map task computes the re-sults for a set of rows of the output matrix and returns the (x,y)location of each element as the key and the result of the computation as the value.The Reduce task is just the identity function.String Match:It processes twofiles:the“encrypt”file contains a set of encrypted words and a“keys”file con-tains a list of non-encrypted words.The goal is to encrypt the words in the“keys”file to determine which words were originally encrypted to generate the“encryptfile”.Each Map task parses a portion of the“keys”file and returns a word in the“keys”file as the key and aflag to indicate whether it was a match as the value.The reduce task is just the identity function.KMeans:It implements the popular kmeans algo-rithm that groups a set of input data points into clusters. Since it is iterative,the Phoenix scheduler is called multi-ple times until it converges.In each iteration,the Map task takes in the existing mean vectors and a subset of the data points.Itfinds the distance between each point and each mean and assigns the point to the closest cluster.For each point,it emits the cluster id as the key and the data vector as the value.The Reduce task gathers all points with the same cluster-id,andfinds their centriod(mean vector).It emits。

工程(项目)管理及案例分析类论文模板

工程(项目)管理及案例分析类论文模板
论文题目一般为“<XXX行业/企业/地市等>XX系统建设研究与实践”,即题目中应给出论文相关具体项目的所属行业、企业或地市及项目的具体名称,如“安徽省电力客户服务中心系统建设研究与实践”等。
摘要
摘要采用三层结构的方式进行写作,通常情况下为一段,也可以分为两段(第一个层次一段,二、三层次一段),300字左右。层次结构如下所示:
本文在分析项目建设需求的基础上,组织建设了一个XX领域(或企业)的呼叫中心系统。首先在分析系统功能与性能需求的基础上,确定了相应的软硬件系统选型,设计了项目建设的整体技术方案,并对项目可行性进行了分析;其次重点分析了在项目实施过程中软硬件集成、系统部署测试以及在项目成本管理、风险管理和人员管理等方面面临的问题,并给出了相应的解决方案;最后对xxx系统进行验收交付,并阐述了后续维护(或售后服务)的基本方法。
西安电子科技大学软件学院
工程硕士论文写作指导
(工程(项目)管理和案例分析类)
版本:0.5
作者:张立勇李青山
日期:2012年9月
西安电子科技大学
学位论文创新性声明
秉承学校严谨的学分和优良的科学道德,本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果;也不包含为获得西安电子科技大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中做了明确的说明并表示了谢意。
在撰写工程(项目)管理和案例分析类学位论文时,应注重与实际工程项目的结合,避免大量空谈项目管理的一般方法;同时应注意结合作者本人所负责的重点及难点技术工作选择论文着重论述的核心内容,核心内容论述要充分、深入、具体,避免全面但蜻蜓点水似的泛泛而谈。

mapreduce莎士比亚文集Wordcount

mapreduce莎士比亚文集Wordcount

Mapreduce程序设计报告姓名:学号:题目:莎士比亚文集WordCount1、实验环境联想pc机虚拟机:VM 10.0操作系统:Centos 6.4Hadoop版本:hadoop 1.2.1Jdk版本:jdk-7u25Eclipse版本:eclipse-SDK-4.2.2-linux-gtk-x86_642、实验设计及源程序2.1实验说明对莎士比亚文集文档数据进行处理,统计所有除Stop-Word(如a, an, of, in, on, the, this, that,…)外所有出现次数k次以上的单词计数,最后的结果按照词频从高到低排序输出。

2.2实验设计(1)TokenizerMapper类这个类实现Mapper 接口中的map 方法,输入参数中的value 是文本文件中的一行,利用正则表达式对数据进行处理,使文本中的非字母和数字符号转换成空格,然后利用StringTokenizer 将这个字符串拆成单词,最后将输出结果。

public static class TokenizerMapperextends Mapper<Object, Text, Text, IntWritable>{private final static IntWritable one = new IntWritable(1);private Text word = new Text();public void map(Object key, Text value, Context context) throws IOException, InterruptedException { //System.out.println(key+".........."+value);String line=value.toString();String s;//将文本中的非字母和数字符号转换成空格Pattern p =pile("[(,.:;'|?!)]");Matcher m=p.matcher(line);S tring line2=m.replaceAll(" ");//System.out.println(line2);S tringTokenizer itr = new StringTokenizer(line2); //将字符串拆成单词while (itr.hasMoreTokens()) {s=itr.nextToken();word.set(s);if(!ls.contains(s))context.write(word, one);}}}(2)IntSumReducer类这个类是第一个作业的Reduce类,实现Reducer 接口中的reduce 方法, 输入参数中的key, values 是由Map任务输出的中间结果,values 是一个Iterator, 遍历这个Iterator, 就可以得到属于同一个key 的所有value.此处,key 是一个单词,value 是词频。

Spark大数据技术与应用智慧树知到答案章节测试2023年山西职业技术学院

Spark大数据技术与应用智慧树知到答案章节测试2023年山西职业技术学院

第一章测试1.与MapReduce相比,Spark更适合处理以下哪种类型的任务()A:较少迭代次数的短任务B:较多迭代次数的长任务C:较少迭代次数的长任务D:较多迭代次数的短任务答案:D2.Standalone模式下配置Spark集群时,master节点的工作端口号需要在conf文件夹下的哪个文件指明()A:regionserverB:spark-defaults.confC:spark-env.shD:slaves答案:C3.以下关于SPARK中的spark context,描述错误的是:()A:可以控制dagsheduler组件B:控制整个application的生命周期C:SparkContext为Spark的主要入口点D:可以控制task scheduler组件答案:B4.以下对Spark中Work的主要工作描述错误的是()A:不会运行业务逻辑代码B:会运行业务逻辑代码C:管理当前节点内存D:接收master分配过来的资源指令答案:B5.配置Standalone模式下的Spark集群,Worker节点需要在conf文件夹下的哪个文件中指明()A:spark-env.shB:regionserverC:spark-defaults.confD:slaves答案:D6.Spark支持的分布式部署方式中哪个是错误的()A:standaloneB:Spark on localC:spark on YARND:spark on mesos答案:B7.Spark单机伪分布式模式,它的特点是在一台节点上既有Master服务,又有Worker服务()A:对B:错答案:A8.在部署Spark独立模式时,配置spark内部通信的端口为()A:16010B:7077C:9870D:7070答案:B9.在部署Spark独立模式时,配置spark的web端口为()A:4040B:9870C:7077D:8080答案:C10.Spark的bin目录是spark运行脚本目录,该目录中包含了加载spark的配置信息,提交作业等执行命令的脚本()A:错B:对答案:B第二章测试1.valrdd=sc.parallelize(1 to 10).filter(_%2== 0)rdd.collect上述代码的执行结果为()A:Array(1, 3, 5,7,9)B:Array(1,2,3,4,5,6,7,8,9,10)C:Array(1,10)D:Array(2, 4, 6, 8, 10)答案:D2.下面哪个操作是窄依赖()A:groupB:joinC:filterD:sort答案:C3.下面哪个操作肯定是宽依赖()A:flatMapB:mapC:reduceByKeyD:sample答案:C4.以下操作中,哪个不是Spark RDD编程中的操作。

计算机应用研究JisuanjiYingyongYanjiu

计算机应用研究JisuanjiYingyongYanjiu
算法研究探讨
CPS中的一种 KID组合优化算法 刘 斌,程良伦(17) 基于 LDAwSVM模型的文本分类研究 李锋刚,梁 钰,GAOXiaozhi,ZENGERKai(21) 基于遗传算法的云服务商伙伴选择问题研究 康艳芳,聂规划,陈冬林,付 敏(26) Num近邻方差优化的 Kmedoids聚类算法 谢娟英,高 瑞(30) 基于本体的“两型社会”建设决策问题分析的云服务框架 胡东滨,曾钊伟(35) 基于高性能计算的 SWAT参数敏感度分析并行框架 李 强,陆忠华,王彦蓀,陈 曦,罗 毅(41) L空间和 P空间模型下的树状结构网络 陈 希,钱江海,韩定定(45) 基于分布式粗粒度并行计算的遗传规划算法研究 李志坚,吴晓军,任哲坡,欧小波(48) 基于多 agent的移动数据库事务级同步复制模型研究 余文涛,李立新,余文彬,王 魁(51) 基于全局收敛多维牛顿迭代法的飞行配平算法研究 吴成富,程鹏飞,段晓军,郭 月(56) 台风最大风速预测的高斯过程回归模型 王 鑫,李红丽(59) 穿戴位置无关的手机用户行为识别模型 范 琳,王忠民(63) 基于负载均衡的 MapReduce后备任务上限自适应算法 李燕歌,张治斌,王 娜(67) 基于一种新的正交优化的群智能优化算法 韩义波,韩 璞(71) 分子标记多位点排序的并行计算 蒋安纳,徐逸卿,董程玲,童春发(75) 基于社会网络的群体情绪模型 殷雁君,唐卫清,李蔚清(80) 基于社会网络的农村群体负面情绪传播机制 李从东,洪宇翔(85) 基于分数阶傅里叶变换的两步运动补偿 CS算法 谭鸽伟,潘光武,林 薇(89) 基于概念格模型的代数系统应用分析 徐旭光,欧毓毅,凌 捷(93) 基于网格密度和引力的不确定数据流聚类算法 邢长征,温 培(98)
网络与通信பைடு நூலகம்术

The Application of MapReduce in the Cloud Computing

The Application of MapReduce in the Cloud Computing

The Application of MapReduce in the Cloud ComputingGaizhen YangDepartment of Mathematics and Computer ScienceHuanggang Normal UniversityHubei, Chinajsjygz@Abstract—Hadoop provides a sophisticated framework for cloud platform programmers, which, MapReduce is a programming model for large-scale data sets of parallel computing. By MapReduce distributed processing framework, we are not only capable of handling large-scale data, and can hide a lot of tedious details, scalability is also wonderful. This paper analyzes the Hadoop architecture and MapReduce Working principle; described how to perform a MapReduce job in the cloud platform, how to write Mapper and Reducer classes, and how to use the object; proposed a program based on the MapReduce framework that enables distributed programming, Comparison results show that use of MapReduce architecture simplifies distributed programming.Keywords-MapReduce;Hadoop; cloud platform; architecture; distributed programmingI.I NTRODUCTIONIn the cloud computing platform, all the time, data centers need to handle large-scale data, such as web access log analysis, the inverted index construction, document clustering etc. Because of these data is large, resulting in processing have to parallel. MapReduce model is a solution proposed by Google, which can process large data sets magnitude calculated as P in low-cost computers cluster.II.H ADOOPHadoop is an Apache open source distributed computing framework, and have been applied in many sites such as Amazon, Face book and Yahoo, and so on. It is a distributed system infrastructure, take advantage of the power of clusters, with high-speed computing and storage ability. It assumes that computing elements and storage will fail, so keep multiple working copies of data to ensure the re-distribution process of the failure of the node [3]. It works in parallel and speed up processing speed through parallel processing.The most central part of the Hadoop framework is: MapReduce and HDFS. MapReduce will be detailed analyzed in the next section in this paper, simply summed up as "task decomposition and results summary." HDFS (Hadoop Distributed File System), provide underlying support for the distributed computing storage.To client users,HDFS architecture can create, delete, move, or rename the file like traditional architecture, but it is based on building a specific set of nodes, these nodes include a Name Node, who provide the original data services; Data Node, who is file storage blocks. Files are stored in HDFS and divided into blocks, which are then copied to multiple Data Nodes in block, which is very different from traditional RAID architecture. Data block size and number of copies is decided by client users. Name Node can control all file operations. The all internal communications are based on standard TCP / IP protocol. HDFS architecture is shown in figure1:Figure 1. HDFS architectureA. NameNodeName Node is a software essentially, which run on a separate machine, in order to manage the file system namespace, and control access of external clients, it maintains the file system tree and the tree index of all files and directories. Name Node will store file system Meta-data in memory, which including file information, each block information of files, and every file block information in Data Node of. This information saves on local disk permanently in two forms: namespace image and edit the log. The user does not need to know the specific location of the node When programming, servers provide storage and location-block services.B.DataNodeData Node is a software running on a separate machine, which is the basic unit of file storage; the Block is stored in the local file system, save the Meta-data of Blocks, and sent all messages of existing Blocks periodically to Name Node. Hadoop cluster contains only one Name Node and many DataNodes. Data Node usually to connect all systems by a switch in the form of tissue rack.Data Node response read and write request from theclient, and also respond, create, delete, and copy the block2011 International Symposium on Intelligence Information Processing and Trusted Computingcommand from Name Node. Name Node dependent the message from each Data Node heartbeat. Each message contains a report of the block, according to the report, Name Node verify the block map, and other file system metadata. If Data Node can not send heartbeat messages, Name Node will take remedial measures and re-copied Block that missing on this node [5].C.ClientClient is the applications which need for a distributed file system.Their relationship is as follows:1) Client send file written request to the NameNode.2) According to file size and file block configuration, NameNode returned file information of its management section to the Client.3) Client divide files into multiple Blocks, according to DataNode address information,write to each DataNode Block orderly.III.M APREDUCEMapReduce is a simple programming model which used for data processing. The same program, Hadoop can run the MapReduce programs write in various languages. Most importantly, MapReduce program is parallel essentially, so we can give the large-scale data analysis to any operators with enough machines. MapReduce has the advantage of handling large data sets, so it is so suitable for cloud computing platform [1].MapReduce's core task is to divide the data into different logic blocks, programs written with the distributed properties model, can process on distributed clusters in parallel. Its input data is a set of key / value pairs, the output is also the key / value pairs. Users will need divided work into two blocks: Map and Reduce. First Map process each block separately in parallel, the results of these logic blocks are reassembled into a different sort collections, they are processed by the Reduce at last.MapReduce data process model is shown in Figure 2:Figure 2. MapReduce process architectureUser-defined Map function takes an input pair, then generate an intermediate key/value pairs set. MapReduce library put all values with the same intermediate key together, then pass them to the Reduce function.The function is expressed as:map (in_key, in_value) Æ (out_key, intermediate_value) listUser-defined Reduce function accepts an intermediate key and related value, it combined the value to form a set of relatively small value set, and usually this collection is smaller than the input. The function is expressed as: reduce (out_key, intermediate_value list) Æout_value listGenerally, Reduce produce only 0 or 1 output value. Pass the middle value to the reduce function an iterator, then we can control the value list based on memory size [4].MapReduce programs can be run in three modes:A.Standalone ModeOnly run a Java virtual machine, no distributed components. This mode does not use HDFS file system, but use native Linux file system.B.Pseudo-distributed Mode:Start several JVM process on the same machine, each hadoop daemon runs in a separate JVM process, do "pseudo-distributed" operation.C. Fully-distributed ModeThe real run on multiple machines distributed mode.Which, Standalone mode using the local file system as well as local MapReducer job runner, distributed mode using HDFS and MapReduce daemons?IV.MAPREDUCE PROGRAMMED TO PERFORM TASKHadoop platform framework written in Java code to achieve good portability, but MapReduce programs can not only use the Java language, you can also use C++ and other scripting language, but the Java language is the most appropriate and most efficient [2]. Now, let’s achieve the implementation process on the cloud platform with Hadoop-based modeling method:A.Inputs division and dispatchHadoop framework can dispatch different parts of the job on multiple machines, so each part will be passed to a separate distributed operation after the division. With N represents the number of input file Map, the number of N will affect the overall operating efficiency.B.task configurationFirst create a JobConf object, and specifying a JAR file on the command startup options that contains the Map andReduce task classes, which ensure that the framework canfind the JAR file when run the Map and Reduce tasks. The main code is as follows:JobConf c1= new JobConf(MapReduceIntro.class);/** create a New JobConf object*/C.task executiveThe ultimate goal of these Configuration task is to perform the job:Logger .info ("Start.");/** Send the job configuration to the framework/*and request that the job be run.*/final RunningJob job = JobClient.runJob(c1);logger. info("Completed.");The runJob() method commit the configuration information to the framework, then waiting for frames to finish the job back, job object reference contains the corresponding results information.D.Create customized Mapper and ReducerSet customized Mapper, perform the corresponding class:hadoop jar DOWNLOAD_PATH/lw1.jarcom.apress.hadoopbook.examples.lw1.MapReduceIntroLongWritableThen, in order to the task can produce a digital sort output, we must change the task configuration, and provide customized Mapper type. Map and Reduce methods use four parameters: key, data values, output collector and report objects. Report object provides a mechanism to inform the current state of the framework task.After the task is completed, the framework will provide a RunningJob object with full information. With this object the method c1.isSuccessful () will get the job status and success information. If the frame can not complete any Map task or job, or it is manually terminated, the framework will be reported to the client “the job did not complete successfully”. In practice, we can try to use the Backup in MapReduce to increase computing speed. Through modifying the code so that Map came a single calculation, then copies it directly to Reduce output. Furthermore, Hadoop also provides better fault tolerance, if the stand-alone task fails, within 10 minutes failed to produce response, Hadoop automatically reschedule the task on the machine running.V.C ONCLUSION AND P ROSPECTIn practice, MapReduce, the distributed processing framework commonly used in distributed grep, distributed sort, Web access log analysis, based on statistical machine translation, and generation of search engine indexes and other large-scale data processing, and has been used in many well-known Internet company such as Baidu and Taobao.For cloud computing programming model, in addition to Google's internal use of MapReduce, there by the Yahoo development team led by Doug Cutting, Apache open-source version of MapReduce management Hadoop, and once launch, it is great welcomed by the industry, and derived from HDFS, Zookeeper, Hbase, Hive ,Pig and other products. Thus, the cloud-based programming model will be the future trends in the programming field.ACKNOWLEDGMENTI thank reviewers for constructive reviews and suggestions that improved the quality of this manuscript. This essay is the fruit of our several months’ consisting work. This work was supported by the Natural Science Research Project of Huanggang Normal University China (Grant No.2011CB089).R EFERENCES[1]Dean J, Ghemawat S. MapReduce: Simplifed Data Processing onLarge Clusters[C]//Proc. of the 6th Symposium on Operating SystemDesign and Implementation, San Francisco. 2004.[2]Anthony T. Velte ,Toby J. Velte, Ph.D. ,Robert Elsenpeter, CloudComputing: A Practical Approach, September 2009, pp.89–102.. [3]BaiduEncyclopedia, Mapreduce,/view/2902.htm.[4]ZHENG Xin-jie, ZHU Cheng-rong, XIONG Qi-bang, “Design andImplementation of Distributed Ray Tracing” . Computer Engineering.November 2007[5]Introduce the open source Hadoop distributed computingframework./system-analysis/20080804/13302.html.。

人工智能基础(习题卷27)

人工智能基础(习题卷27)

人工智能基础(习题卷27)第1部分:单项选择题,共131题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]在Hadoop的分区阶段,默认的 Partitioner 是()。

A)RangePartitionerB)PartitionerC)HashPartitioner答案:C解析:Hadoop 中默认的 partitioner 是 Hashpartitioner。

2.[单选题]温度上升,光敏三极管、光敏二极管的暗电流( )。

A)上升B)下降C)不变答案:A解析:3.[单选题]设P(A)=0.4,P(A|C)=0.2,P(C|A)=0.15。

则P(C)=?A)0.1B)0.2C)0.3D)0.5答案:C解析:4.[单选题]在K-mean或Knn中,是采用哪种距离计算方法?A)曼哈顿距离B)切比雪夫距离C)欧式距离D)闵氏距离答案:C解析:欧氏距离可用于任何空间的距离计算问题。

因为,数据点可以存在于任何空间,欧氏距离是更可行的选择。

5.[单选题]下面对强化学习、监督学习和深度卷积神经网络学习的描述正确的是A)评估学习方式、有标注信息学习方式、端到端学习方式B)有标注信息学习方式、端到端学习方式、端到端学习方式C)评估学习方式、端到端学习方式、端到端学习方式D)无标注学习、有标注信息学习方式、端到端学习方式答案:A解析:6.[单选题]环境在接受到个体的行动之后,会反馈给个体环境目前的状态(state)以及由于上一个行动而产生的()。

A)actionB)rewardC)state答案:B解析:7.[单选题]深度学习与传统的机器学习算法根本差别在于()A)模型假设B)评价函数C)假设的复杂度D)优化算法答案:C解析:深度学习与传统的机器学习算法根本差别在于假设的复杂度8.[单选题]训练样本集S含有天气、气温、人体感受、风力4个指标,已知天气的熵为0.694,温度的熵为0.859,人体感受的熵为0.952,风力的熵为0.971,如使用ID3算法,选择()为树模型的分界点A)天气B)气温C)人体感受D)风力答案:A解析:9.[单选题]目前RNN中常用的激活函数是()A)reluB)sigmoidC)eluD)Swish答案:B解析:目前RNN中常用的激活函数是sigmoid10.[单选题]为了降低MapReduce两个阶段之间的数据传递量,一般采用()段的输出进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Siddharth Suri†
Sergei Vassilvitskii‡
of available data. The MapReduce framework was originally developed at Google [4], but has recently seen wide adoption and has become the de facto standard for large scale data analysis. Publicly available statistics indicate that MapReduce is used to process more than 10 petabytes of information per day at Google alone [5]. An open source version, called Hadoop, has recently been developed, and is seeing increased adoption both in industry and academia [14]. Over 70 companies use Hadoop including Yahoo!, Facebook, Adobe, and IBM [8]. Moreover, Amazon’s Elastic Compute Cloud (EC2) is a Hadoop cluster where users can upload large data sets and rent processor time. In addition, at least seven universities (including CMU, Cornell, and the University of Maryland) are using Hadoop clusters for research [8]. MapReduce is substantially different from previously analyzed models of parallel computation because it interleaves parallel and sequential computation. In recent years several nontrivial MapReduce algorithms have emerged, from computing the diameter of a graph [9] to implementing the EM algorithm to cluster massive data sets [3]. Each of these algorithms gives some insights into what can be done in a MapReduce framework, however, there is a lack of rigorous algorithmic analyses of the issues involved. In this work we begin by presenting a formal model of computation for MapReduce and compare it to the popular PRAM model. We show that a large subclass of PRAM algorithms, namely those using O(n2− ) processors and O(n2− ) total memory, for a fixed > 0, can be efficiently simulated in MapReduce. We conclude by demonstrating two basic techniques for parallelizing using MapReduce and show their applications by presenting algorithms for MST in dense graphs and undirected s-t connectivity.
1.1 MapReduce Basics In the MapReduce programming paradigm, the basic unit of information is In a world in which large data sets are measured in a key ; value pair where each key and each value are tera- and petabytes, a new form of parallel computing binary strings. The input to any MapReduce algorithm has emerged as an easy-to-program, reliable, and disis a set of key ; value pairs. Operations on a set of tributed paradigm to process these massive quantities pairs occur in three stages: the map stage, the shuffle stage and the reduce stage, which we discuss in turn. ∗ AT&T Labs—Research, howard@ In the map stage, the mapper µ takes as input a † Yahoo! Research, suri@ ‡ Yahoo! Research, sergei@ single key ; value pair, and produces as output any
number of new key ; value pairs. It is crucial that the map operation is stateless—that is, it operates on one pair at a time. This allows for easy parallelization as different inputs for the map can be processed by different machines. During the shuffle stage, the underlying system ththe values that are associated with an individual key to the same machine. This occurs automatically, and is seamless to the programmer. In the reduce stage, the reducer ρ takes all of the values associated with a single key k , and outputs a multiset of key ; value pairs with the same key, k . This highlights one of the sequential aspects of MapReduce computation: all of the maps need to finish before the reduce stage can begin. Sine the reducer has access to all the values with the same key, it can perform sequential computations on these values. In the reduce step, the parallelism is exploited by observing that reducers operating on different keys can be executed simultaneously. Overall, a program in the MapReduce paradigm can consist of many rounds of different map and reduce functions, performed one after another.
A Model of Computation for MapReduce
Howard Karloff∗
Abstract In recent years the MapReduce framework has emerged as one of the most widely used parallel computing platforms for processing data on terabyte and petabyte scales. Used daily at companies such as Yahoo!, Google, Amazon, and Facebook, and adopted more recently by several universities, it allows for easy parallelization of data intensive computations over many machines. One key feature of MapReduce that differentiates it from previous models of parallel computation is that it interleaves sequential and parallel computation. We propose a model of efficient computation using the MapReduce paradigm. Since MapReduce is designed for computations over massive data sets, our model limits the number of machines and the memory per machine to be substantially sublinear in the size of the input. On the other hand, we place very loose restrictions on the computational power of of any individual machine— our model allows each machine to perform sequential computations in time polynomial in the size of the original input. We compare MapReduce to the PRAM model of computation. We prove a simulation lemma showing that a large class of PRAM algorithms can be efficiently simulated via MapReduce. The strength of MapReduce, however, lies in the fact that it uses both sequential and parallel computation. We demonstrate how algorithms can take advantage of this fact to compute an MST of a dense graph in only two rounds, as opposed to Ω(log(n)) rounds needed in the standard PRAM model. We show how to evaluate a wide class of functions using the MapReduce framework. We conclude by applying this result to show how to compute some basic algorithmic problems such as undirected s-t connectivity in the MapReduce framework. 1 Introduction
相关文档
最新文档