2019-2020年七年级下《第六章概率初步》单元测试含答案

合集下载

2020年北师大版七年级下学期数学第六章 概率初步单元测试题及答案

2020年北师大版七年级下学期数学第六章 概率初步单元测试题及答案

第六章概率初步一、填空题(本大题共6小题,每小题4分,共24分)1.一个在不透明的盒子中装有除颜色外其他都一样的5个红球,3个蓝球和2个白球,它们已经被搅匀了,下列三种事件是必然事件、随机事件,还是不可能事件、(1)从盒子中任取4个球,全是蓝球。

(2)从盒子中任取3个球,只有蓝球和白球,没有红球。

(3)从盒子中任取9个球,恰好红、蓝、白三种颜色的球都有。

2.初一(3)班共有学生50人,其中男生有21人,女生29人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性(填“大”或“小”).3.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .4.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.5.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到绿灯的概率是 .6.有一个质地均匀的正二十面体形状的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,将这个骰子掷出后,朝正上方的数字为“6”的概率是________,数字________朝正上方的可能性最大.二、选择题(本大题共12小题,共36分,每小题只有一个正确选项)7.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是().A .61 B .41 C . 31 D . 127 8. 在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是52,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为41,则原来盒里有白色棋子( ) A. 1颗 B. 2颗 C. 3颗 D. 4颗9. 如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有两条水路、两条陆路,从B 地到C 地有3条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .20种B .8种C .5种D .13种10. 袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球11.如图,转动转盘,指向阴影部分的可能性为a ,指向空白部分的可能性为b ,则( ) A.a >bB.a <bC.a=bD.无法确定12.下列事件中,随机事件是( )A.没有水分,种子仍能发芽B.等腰三角形两个底角相等C.从13张红桃扑克牌中任抽一张,是红桃AD.从13张方块扑克牌中任抽一张,是红桃10 13.从一副扑克牌中则下列事件中可能性最大的是( )A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花JD.抽出一张不是Q 的牌 14.在相同条件下重复试验,若事件A 发生的概率是,下列陈述中,正确的是( )A .事件A 发生的频率是B .反复大量做这种试验,事件A 只发生了7次C .做100次这种试验,事件A 一定发生7次D .做100次这种试验,事件A 可能发生7次 15.下列说法正确的是( )A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件16.2019年枣庄市初中学业水平实验操作考试.要求每名学生从物理.化学.生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A.19B.16C.14D.1317.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是( )A.47 B.37 C.27 D.1718.以下有四个事件:①抛一枚匀质硬币,正面朝上;②掷一枚匀质骰子,所得的点数为3;③从一副54张扑克牌中任意抽出一张恰好为红桃;④从装有1个红球,2个黄球的袋中随意摸出一个球,这两种球除颜色外其他都相同,结果恰好是红球.按概率从小到大顺序排列的结果是()A.①<②<③<④B.②<③<④<①C.②<①<③<④D.③<②<①<④三.解答题(共7小题共60分)19.(6分)小明购买双色球福利彩票时,两次分别购买了1张和100张,均未获奖,于是他说:“购买1张和100张中奖的可能性相等。

北师大版七年级下册《第6章概率初步》单元测试卷有答案数学

北师大版七年级下册《第6章概率初步》单元测试卷有答案数学

2019 年北师大版七下数学《第6章概率初步》单元测试卷一.选择题(共10 小题)1.以下成语中描绘的事件必定发生的是()A .水中捞月B.瓮中捉鳖C.刻舟求剑 D .拔苗滋长2.以下事件中是必定发生的事件是()A.翻开电视机,正播放新闻B.经过长久努力学习,你会成为数学家C.从一副扑克牌中随意抽取一张牌,花色是红桃D.某校在同一年出生的有367 名学生,则起码有两人的诞辰是同一天3.从甲,乙,丙三人中任选两名代表,甲被选中的可能性是()A .B.C. D .14.不透明袋子中有 2 个红球、 3 个绿球,这些球除颜色外其余无差异.从袋子中随机拿出 1 个球,则()A.能够预先确立拿出球的颜色B.取到红球的可能性更大C.取到红球和取到绿球的可能性同样大D.取到绿球的可能性更大5.某校男生中,若随机抽取若干名同学做“能否喜爱足球”的问卷检查,抽到喜爱足球的同学的概率是,这个的含义是()A .只发出 5 份检查卷,此中三份是喜爱足球的答卷B.在答卷中,喜爱足球的答卷与总问卷的比为3: 8C.在答卷中,喜爱足球的答卷占总答卷的D.在答卷中,每抽出100 份问卷,恰有60 份答卷是不喜爱足球6.已知抛一枚均匀硬币正面向上的概率为,以下说法错误的选项是()A .连续抛一枚均匀硬币 2 次必有 1 次正面向上B.连续抛一枚均匀硬币10 次都可能正面向上C.大批频频抛一枚均匀硬币,均匀每100 次出现正面向上 50次D.经过抛一枚均匀硬币确立谁先发球的竞赛规则是公正的7.在一个不透明的口袋中有若干个只有颜色不一样的球,假如口袋中装有 4 个黄球,且摸出黄球的概率为,那么袋中共有球的个数为()A . 6 个B. 7 个C. 9 个 D .12 个8.在一个不透明的盒子里有形状、大小同样的黄球2 个、红球 3个,从盒子里随意摸出 1 个球,摸到红球的概率是()A .B.C. D .9.有一把钥匙藏在以下图的16 块正方形瓷砖的某一块下边,则钥匙藏在黑色瓷砖下边的概率是()A .B.C. D .10.转动以下名转盘,指针指向红色地区的概率最大的是()A .B .C. D .二.填空题(共 5 小题)11.给出以下事件:(1)某餐厅供给客饭,共准备2 荤 2 素 4 种不一样的品种,一顾客任选一种菜肴,且选中素菜;(2)某一百件产品所有为正品,今从中选出一件次品;( 3)在 1,2, 3, 4,5 五条线路停靠的车站上,张老师等待到 6 路车;(4)七人排成一排照相,甲、乙正好相邻;(5)在有 30 个空位的电影院里,小红找到了一个空位,请将事件的序号填写在横线上:必定事件,不行能事件,不确立事件.12.如图,转动以下图的一些能够自由转动的转盘,当转盘停止时,猜想指针落在黑色地区内的可能性大小,将转盘的序号按可能性从小到大的次序摆列为.13.某校学生小明每日骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通讯号灯,他在路口碰到红灯的概率为,碰到黄灯的概率为,那么他碰到绿灯的概率为.14.在 10 个外观同样的产品中,有 2 个不合格产品,现从中随意抽取 1 个进行检测,抽到合格产品的概率是.15.如图,一个正六边形转盘被分红 6 个全等的正三角形,随意旋转这个转盘 1 次,当旋转停止时,指针指向暗影地区的概率是.三.解答题(共 6 小题)16.一枚一般的正方体骰子,每个面上分别标有1,2,3,4,5,6,在扔掷一枚一般的正方体骰子的过程中,请用语言描绘:(1)一件不行能事件:(2)一件必定事件:(3)一件不确立事件:.17.下边第一排表示了十张扑克牌中不一样状况,随意摸一张,请你用第二排的语言来描绘摸到红色扑克牌的可能性大小,并用线连起来.18.将下边事件的字母写在最能代表它的概率的点上.A:扔掷一枚硬币时,获取一个正面;B:在一小时内,你步行能够走80 千米;C:给你一个骰子中,你掷出一个3;D :明日太阳会升起来.19.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.依据平常成绩,把各项目进入复选的学生状况绘制成以下不完好的统计图:( 1)参加复选的学生总人数为人,扇形统计图中短跑项目所对应圆心角的度数为°;( 3)求在跳高项目中男生被选中的概率.20.“六一”小孩节时期,某商厦为了吸引顾客,建立了一个能够自由转动的转盘(转盘被均匀分红16 份),并规定:顾客每购置 100 元的商品,就能获取一次转动转盘的时机.假如转盘停止后,指针正好瞄准哪个地区,顾客就能够获取相应的奖品.颜色奖品红色玩具熊黄色童话书绿色彩笔小明和妈妈购置了125 元的商品,请你剖析计算:(1)小明获取奖品的概率是多少?(2)小明获取童话书的概率是多少?21.在一个不透明的口袋里装有若干个同样的红球,为了用预计袋中红球的数目,八(1)班学生在数学实验室分组做摸球实验:每组先将10 个与红球大小形状完好同样的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不停重复.下表是此次活动统计汇总各小组数据后获取的全班数据统计表:摸球的次数 s15030060090012001500摸到白球的频数 n63a247365484606摸到白球的频次b( 1)按表格数据格式,表中的a=;b=;( 2)请预计:当次数s 很大时,摸到白球的频次将会靠近(精准到);( 3)请计算:摸到红球的概率是(精准到);( 4)试估量:这一个不透明的口袋中红球有只.2019 年北师大版七下数学《第 6 章概率初步》单元测试卷参照答案与试题分析一.选择题(共10 小题)1.以下成语中描绘的事件必定发生的是()A .水中捞月B.瓮中捉鳖C.刻舟求剑 D .拔苗滋长【剖析】分别依据确立事件与随机事件的定义对各选项进行逐个剖析即可.【解答】解: A、水中捞月是不行能事件,故本选项错误;B、瓮中捉鳖是必定能发生的事件,属必定事件,故本选项正确;C、刻舟求剑是可能发生也可能不发生的事件,是随机事件,故本选项错误;D、拔苗滋长是必定不会发生的事件,是不行能事件,故本选项错误.应选: B.【评论】本题考察的是随机事件,熟知在必定条件下,可能发生也可能不发生的事件,称为随机事件是解答本题的重点.2.以下事件中是必定发生的事件是()A.翻开电视机,正播放新闻B.经过长久努力学习,你会成为数学家C.从一副扑克牌中随意抽取一张牌,花色是红桃D.某校在同一年出生的有367 名学生,则起码有两人的诞辰是同一天【剖析】必定事件就是必定发生的事件,即发生的概率是 1 的事件.【解答】解: A、 B、 C 选项可能发生,也可能不发生,是随机事件.故不切合题意;D、是必定事件.应选: D.【评论】该题考察的是对必定事件的观点的理解;解决此类问题,要学会关注身旁的事物,并用数学的思想和方法去剖析、对待、解决问题,提升自己的数学修养.3.从甲,乙,丙三人中任选两名代表,甲被选中的可能性是()A .B.C. D .1【剖析】让 2 除以总人数即为所求的可能性.【解答】解:选两名代表共有以下状况:甲,乙;甲,丙;乙,丙;三种状况.故甲被选中的可能性是.应选: C.【评论】本题考察的是可能性大小的判断,用到的知识点为:可能性等于所讨状况数与总状况数之比.4.不透明袋子中有 2 个红球、 3 个绿球,这些球除颜色外其余无差异.从袋子中随机拿出 1 个球,则()A.能够预先确立拿出球的颜色B.取到红球的可能性更大C.取到红球和取到绿球的可能性同样大D.取到绿球的可能性更大【剖析】依据不一样颜色的球的数目确立摸到哪一种球的可能性的大小后即可确立正确的选项.【解答】解:∵不透明袋子中有 2 个红球、 3 个绿球,这些球除颜色外其余无差异,∴绿球数目大于红球数目,其摸球拥有随机性,∴摸到绿球的可能性大于摸到红球的可能性,应选: D.【评论】本题考察了可能性的大小的知识,哪一种球的数目大,摸到这类球的可能性就大.5.某校男生中,若随机抽取若干名同学做“能否喜爱足球”的问卷检查,抽到喜爱足球的同学的概率是,这个的含义是()A .只发出 5 份检查卷,此中三份是喜爱足球的答卷B.在答卷中,喜爱足球的答卷与总问卷的比为3: 8C.在答卷中,喜爱足球的答卷占总答卷的D.在答卷中,每抽出100 份问卷,恰有60 份答卷是不喜爱足球【剖析】概率是反应事件发生时机的大小的观点,不过表示发生的时机的大小,时机大也不必定发生.【解答】解:这个的含义是在答卷中,喜爱足球的答卷占总答卷的,应选C.【评论】正确理解概率的含义是解决本题的重点.6.已知抛一枚均匀硬币正面向上的概率为,以下说法错误的选项是()A .连续抛一枚均匀硬币 2 次必有 1 次正面向上B.连续抛一枚均匀硬币10 次都可能正面向上C.大批频频抛一枚均匀硬币,均匀每 100 次出现正面向上 50 次D.经过抛一枚均匀硬币确立谁先发球的竞赛规则是公正的【剖析】依据概率的意义,概率是反应事件发生时机的大小的观点,不过表示发生的时机的大小,时机大也不必定发生.【解答】解: A、连续抛一均匀硬币 2 次必有 1 次正面向上,不正确,有可能两次都正面向上,也可能都反面向上,故此选项错误;B、连续抛一均匀硬币10 次都可能正面向上,是一个随机事件,有可能发生,故此选项正确;C、大批频频抛一均匀硬币,均匀100 次出现正面向上50 次,也有可能发生,故此选项正确;D、经过抛一均匀硬币确立谁先发球的竞赛规则是公正的,概率均为,故此选项正确.应选: A.【评论】本题主要考察了概率的意义,重点是弄清随机事件和必定事件的观点的差异.7.在一个不透明的口袋中有若干个只有颜色不一样的球,假如口袋中装有 4 个黄球,且摸出黄球的概率为,那么袋中共有球的个数为()A . 6 个B. 7 个C. 9 个 D .12 个【剖析】依据概率的求法,找准两点:① 所有状况的总数;② 切合条件的状况数目;两者的比值就是其发生的概率.【解答】解:设袋中共有球数为x,依据概率的公式列出方程:=,解得: x= 12.应选: D.【评论】本题考察概率的求法:假如一个事件有n 种可能,并且这些事件的可能性同样,此中事件 A 出现m 种结果,那么事件 A 的概率 P( A)=.8.在一个不透明的盒子里有形状、大小同样的黄球 2 个、红球 3 个,从盒子里随意摸出 1 个球,摸到红球的概率是()A .B.C. D .【剖析】依据随机事件概率大小的求法,找准两点:① 切合条件的状况数目;② 所有状况的总数.两者的比值就是其发生的概率的大小.【解答】解:∵共 5 个球中有 3 个红球,∴任取一个,是红球的概率是:,应选: B.【评论】本题考察概率的求法与运用,一般方法为:假如一个事件有n 种可能,并且这些事件的可能性相同,此中事件 A 出现 m 种结果,那么事件 A 的概率 P( A)=.9.有一把钥匙藏在以下图的16 块正方形瓷砖的某一块下边,则钥匙藏在黑色瓷砖下边的概率是()A .B.C. D .【剖析】数出黑色瓷砖的数目和瓷砖总数,求出两者比值即可.【解答】解:依据题意剖析可得:钥匙藏在黑色瓷砖下边的概率是黑色瓷砖面积与总面积的比值,从而转化为黑色瓷砖个数与总数的比值即=.应选: C.【评论】本题考察几何概率的求法:第一依据题意将代数关系用面积表示出来,一般用暗影地区表示所求事件( A);而后计算暗影地区的面积在总面积中占的比率,这个比率即事件(A)发生的概率.10.转动以下名转盘,指针指向红色地区的概率最大的是()A .B .C. D .【剖析】红色地区面积与圆的面积之比即为指针指向红色地区的概率,比较即可.【解答】解:红色地区面积与圆的面积之比即为指针指向红色地区的概率,察看可知红色地区面积D> C = A> B.应选 D.【评论】考察了几何概率的计算公式,用到的知识点为:概率=相应的面积与总面积之比.二.填空题(共 5 小题)11.给出以下事件:( 1)某餐厅供给客饭,共准备 2 荤 2 素 4 种不一样的品种,一顾客任选一种菜肴,且选中素菜;( 2)某一百件产品所有为正品,今从中选出一件次品;( 3)在 1,2, 3, 4,5 五条线路停靠的车站上,张老师等待到 6 路车;(4)七人排成一排照相,甲、乙正好相邻;(5)在有 30 个空位的电影院里,小红找到了一个空位,请将事件的序号填写在横线上:必定事件( 5),不行能事件(2)(3),不确立事件(1)(4).【剖析】必定事件指在必定条件下,必定发生的事件;不行能事件是指在必定条件下,必定不发生的事件;不确立事件即随机事件是指在必定条件下,可能发生也可能不发生的事件.【解答】解:依据观点,得必定事件:( 5);不行能事件:(2)( 3);不确立事件:(1)( 4).【评论】本题主要考察了必定事件、不行能事件、不确立事件的观点.正确理解观点是解题的重点.12.如图,转动以下图的一些能够自由转动的转盘,当转盘停止时,猜想指针落在黑色地区内的可能性大小,将转盘的序号按可能性从小到大的次序摆列为④①②③.【剖析】指针落在暗影地区内的可能性是:,比较暗影部分的面积即可.【解答】解:自由转动以下转盘,指针落在黑色部分多的可能性大,按从小到大的次序摆列,序号挨次是④①②③ ,故答案为:④①②③.【评论】本题主要考察了可能性大小的比较:只需总状况数目(面积)同样,谁包括的状况数目(面积)多,谁的可能性就大;反之也建立;若包括的状况(面积)相当,那么它们的可能性就相等.13.某校学生小明每日骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通讯号灯,他在路口碰到红灯的概率为,碰到黄灯的概率为,那么他碰到绿灯的概率为.【剖析】依据在路口碰到红灯、黄灯、绿灯的概率之和是1,再依据在路口碰到红灯的概率为,碰到黄灯的概率为,即可求出他碰到绿灯的概率.【解答】解:∵经过一个十字路口,共有红、黄、绿三色交通讯号灯,∴在路口碰到红灯、黄灯、绿灯的概率之和是1,∵在路口碰到红灯的概率为,碰到黄灯的概率为,∴碰到绿灯的概率为1﹣=;故答案为:.【评论】本题考察了概率的意义,用到的知识点是概率公式,假如一个事件有n 种可能,并且这些事件的可能性同样,此中事件 A 出现 m 种结果,那么事件 A 的概率 P( A)=.14.在 10 个外观同样的产品中,有 2 个不合格产品,现从中随意抽取 1 个进行检测,抽到合格产品的概率是.【剖析】由在 10 个外观同样的产品中,有 2 个不合格产品,直接利用概率公式求解即可求得答案.【解答】解:∵在10 个外观同样的产品中,有 2 个不合格产品,∴现从中随意抽取 1 个进行检测,抽到合格产品的概率是:=.故答案为:.【评论】本题考察了概率公式的应用.注意用到的知识点为:概率=所讨状况数与总状况数之比.15.如图,一个正六边形转盘被分红 6 个全等的正三角形,随意旋转这个转盘 1 次,当旋转停止时,指针指向暗影地区的概率是.【剖析】确立暗影部分的面积在整个转盘中占的比率,依据这个比率即可求出转盘停止转动时指针指向暗影部分的概率.【解答】解:如图:转动转盘被均匀分红 6 部分,暗影部分占 2 份,转盘停止转动时指针指向暗影部分的概率是=;故答案为:.【评论】本题考察了几何概率.用到的知识点为:概率=相应的面积与总面积之比.三.解答题(共 6 小题)16.一枚一般的正方体骰子,每个面上分别标有1,2,3,4,5,6,在扔掷一枚一般的正方体骰子的过程中,请用语言描绘:( 1)一件不行能事件:如出现数字 7 向上( 2)一件必定事件:如出现向上的点数小于7( 3)一件不确立事件:如出现向上的点数为5.【剖析】依据不行能事件,必定事件,不确立事件的定义即可判断.【解答】解:答案不独一( 1)如出现数字7 向上;( 1 分)( 2)如出现向上的点数小于7;( 1 分)( 3)如出现向上的点数为5.( 1 分)【评论】本题主要考察了不行能事件,必定事件,不确立事件的定义,正确理解定义是重点.17.下边第一排表示了十张扑克牌中不一样状况,随意摸一张,请你用第二排的语言来描绘摸到红色扑克牌的可能性大小,并用线连起来.【剖析】 A 中摸到红色扑克牌的可能为0, B 摸到红色扑克牌的可能性较小, C 中摸到红色扑克牌与摸到黑色扑克牌的可能性相等, D 中摸到黑色扑克牌的可能性较大, E 必定摸到红色扑克牌.连线即可解答.【解答】解:.【评论】本题考察可能性大小的比较:只需总状况数目同样,谁包括的状况数目多,谁的可能性就大;反之也建立;若包括的状况相当,那么它们的可能性就相等.18.将下边事件的字母写在最能代表它的概率的点上.A:扔掷一枚硬币时,获取一个正面;B:在一小时内,你步行能够走80 千米;C:给你一个骰子中,你掷出一个3;D :明日太阳会升起来.【剖析】依据随机事件概率大小的求法,找准两点:① 、切合条件的状况数目;② 、所有状况的总数.两者的比值就是其发生的概率的大小.【解答】解: A、扔掷一枚硬币时,获取一个正面的概率=;B、在一小时内,你步行能够走 80 千米是不行能事件,概率为 0;C、给你一个骰子中,你掷出一个 3 的概率是;D、明日太阳会升起来是必定事件,概率为1.因此将下边事件的字母写在最能代表它的概率的点上以下图:【评论】本题考察概率的求法与运用,一般方法:假如一个事件有n 种可能,并且这些事件的可能性同样,此中事件 A 出现 m 种结果,那么事件 A 的概率 P(A)=.注意必定事件发生的概率为1,即 P(必定事件)= 1;不行能事件发生的概率为0,即 P(不行能事件)=0;假如 A 为不确立事件,那么0< P(A)< 1.19.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.依据平常成绩,把各项目进入复选的学生状况绘制成以下不完好的统计图:( 1)参加复选的学生总人数为25人,扇形统计图中短跑项目所对应圆心角的度数为72°;(2)补全条形统计图,并注明数据;(3)求在跳高项目中男生被选中的概率.【剖析】( 1)利用条形统计图以及扇形统计图得出跳远项目的人数和所占比率,即可得出参加复选的学生总人数;用短跑项目的人数除以总人数获取短跑项目所占百分比,再乘以360°即可求出短跑项目所对应圆心角的度数;( 2)先求出长跑项目的人数,减去女生人数,得出长跑项目的男生人数,依据总人数为25 求出跳高项目的女生人数,从而补全条形统计图;( 3)用跳高项目中的男生人数除以跳高总人数即可.【解答】解:( 1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷ 32% = 25(人);扇形统计图中短跑项目所对应圆心角的度数为:× 360°= 72°.故答案为: 25, 72;(2)长跑项目的男生人数为: 25× 12%﹣ 2= 1,跳高项目的女生人数为: 25﹣ 3﹣ 2﹣ 1﹣ 2﹣ 5﹣ 3﹣4=5.以以下图:( 3)∵复选中的跳高总人数为9 人,跳高项目中的男生共有 4 人,∴跳高项目中男生被选中的概率=.20.“六一”小孩节时期,某商厦为了吸引顾客,建立了一个能够自由转动的转盘(转盘被均匀分红16 份),并规定:顾客每购置100 元的商品,就能获取一次转动转盘的时机.假如转盘停止后,指针正好瞄准哪个地区,顾客就能够获取相应的奖品.颜色奖品红色玩具熊黄色童话书绿色彩笔小明和妈妈购置了125 元的商品,请你剖析计算:(1)小明获取奖品的概率是多少?(2)小明获取童话书的概率是多少?【剖析】(1)看有颜色部分的面积占总面积的多少即为所求的概率.( 2)看黄色部分的面积占总面积的多少即为所求的概率.【解答】解:( 1)∵转盘被均匀分红16 份,此中有颜色部分占 6 份,∴小明获取奖品的概率==.( 2)∵转盘被均匀分红16 份,此中黄色部分占 2 份,∴小明获取童话书的概率==.【评论】本题将概率的求解设置于转动转盘游戏中,考察学生对简单几何概率的掌握状况,既防止了纯真依赖公式机械计算的做法,又表现了数学知识在现实生活、甚至娱乐中的运用,表现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.21.在一个不透明的口袋里装有若干个同样的红球,为了用预计袋中红球的数目,八(1)班学生在数学实验室分组做摸球实验:每组先将10 个与红球大小形状完好同样的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不停重复.下表是此次活动统计汇总各小组数据后获取的全班数据统计表:摸球的次数s15030060090012001500摸到白球的频数n63a247365484606摸到白球的频次b( 1)按表格数据格式,表中的a= 123; b=;( 2)请预计:当次数 s 很大时,摸到白球的频次将会靠近0.4 (精准到);( 3)请计算:摸到红球的概率是(精准到);( 4)试估量:这一个不透明的口袋中红球有15只.【剖析】(1)依据频次=频数÷样本总数分别求得a、 b 的值即可;( 2)从表中的统计数据可知,摸到白球的频次稳固在0.4 左右;( 3)摸到红球的概率为 1﹣=;( 4)依据红球的概率公式获取相应方程求解即可;【解答】解:( 1) a= 300×= 123,b= 606÷1500 =;( 2)当次数 s 很大时,摸到白球的频次将会靠近;( 3)摸到红球的概率是 1﹣=;( 4)设红球有 x 个,依据题意得:=,解得: x= 15;故答案为: 123,;;; 15.【评论】考察利用频次预计概率,大批频频试验下频次稳固值即概率.用到的知识点为:概率=所讨状况数与总状况数之比.构成整体的几部分的概率之和为1.。

(典型题)初中数学七年级数学下册第六单元《概率初步》测试题(有答案解析)

(典型题)初中数学七年级数学下册第六单元《概率初步》测试题(有答案解析)

一、选择题1.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上2.下列事件为必然事件的是()A.掷一枚硬币,正面朝上B.打开电视机,正在播放动画片C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形D.两角及一边对应相等的两个三角形全等3.某林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中成活情况的一组数据统计结果.下面三个推断:①当移植棵数是1500时,该幼树移植成活的棵数是1356,所以“移植成活”的概率是0.904;②随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880;③若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率是0.875.其中合理的是()A.①③B.②③C.①D.②4.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数5.下列事件是必然事件的是()A.长度分别是3,5,6cm cm cm的三根木条能组成一个三角形B.某彩票中奖率是1%,买100张一定会中奖C.2019年女足世界杯,德国队一定能夺得冠军D.打开电视机,正在播放动画片6.下列说法正确的是()A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法B.一组数据2,2,3,6的众数和中位数都是2C.“掷一枚硬币正面朝上的概率是12”,表示每抛硬币2次就有1次正面朝上D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明乙的成绩较为稳定7.下列说法正确的是( )A .蜡烛在真空中燃烧是一个随机事件B .在射击比赛中,运动员射中靶心和没有射中靶心的可能性相同C .某抽奖游戏的中奖率为1%,说明只有抽奖100次,才能中奖1次D .天气预报明天降水概率为80%,表示明天下雨的可能性较大8.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为( )A .14B .18C .112D .1169.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是( )A .1B .67C .12D .010.下列事件是必然事件的是( ).A .购买一张彩票中奖B .通常加热到100℃时,水沸腾C .明天一定是晴天D .任意一个三角形,其内角和是360°11.下列事件:(1)打开电视机,正在播放新闻;(2)下个星期天会下雨;(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(4)一个有理数的平方一定是非负数;(5)若a ,b 异号,则0a b +<;属于确定事件的有( )个.A .1B .2C .3D .412.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是( )A .19B .16C .29D .13二、填空题13.任意掷一枚骰子,面朝上的点数大于2的可能性是_____.14.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.15.有一小球在如图所示的地板上自由滚动,地板上的每个三角形均为等边三角形,则小球在地板上最终停留在黑色区域的概率为__.16.一副没有大小王的扑克,共 52 张,从中任意抽取一张牌恰好是红桃的机会为____. 17.如图是一个可以自由转动的转盘,被等分成六个扇形.请在转盘适当的扇形区域内涂上阴影,使自由转动的该转盘停止转动时,指针指向阴影区域的概率是_____.18.一个不透明的袋子中装有除颜色外完全相同的三个黄球和两个红球,现从中随机摸出球,则摸出的球是红球的概率等于______.19.如图,A、B是边长1的小正方形组成的网格上的两个格点,在格点上任意放置点C (除去A、B两点),以A、B、C三点为顶点能画出三角形的概率是_____.20.香洲区某所中学下午安排三节课,分别是数学、体育、物理,把数学课安排在第一节课的概率为____.三、解答题21.(1)如图1是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,指针落在红色区域和白色区域的概率分别是多少?(2)请在图2中设计一个转盘:自由转动这个转盘,当转盘停止转动时,指针落在红色区域的概率为58,落在黄色区域的概率为14,落在白色区域的概率为18.22.在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,是绿球的概率为,是红球的概率为,是白球的概率为.(2)如果任意摸出一个球是绿球的概率是15,求袋中有几个白球?23.如图所示,转盘被等分..成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)若自由转动转盘,当它停止转动时,指针指向的数小于或等于4的概率是多少?24.某中学为了调查本校初2021级学生的跳绳水平,抽取了某班60名学生的跳绳成绩(满分为10分,分数均为自然数),绘制如下两幅不完整的统计图.请根据统计图的信息,回答下列问题.(1)在扇形统计图中,a的值是,成绩为10分所在扇形的圆心角是度;(2)补全条形统计图;(3)若从该班男生中随机抽取一人,求这名男生跳绳成绩不是10分的概率.25.(7分)在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数l、2、3、、的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,再在剩下的4张卡片中任取一张,将该卡片上的数作为点P的纵坐标,请用所学的知识求出点P落在△AOB内部的概率.26.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、打开电视,正在播放新闻,是随机事件,故A错误;B、买一张电影票,座位号是奇数号,是随机事件,故B错误;C、任意画一个三角形,其内角和是180°,是必然事件,故C正确;D、掷一枚质地均匀的硬币,正面朝上,是随机事件,故D错误;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.掷一枚硬币,正面朝上是随机事件,;B.打开电视机,正在播放动画片是随机事件;C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形是不可能事件;D.两角及一边对应相等的两个三角形全等是必然事件.故选D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D解析:D【分析】根据统计图中的数据和频率与概率的关系,可以判断各个小题中的结论是否成立,从而可以解答本题.【详解】当移植棵数是1500时,该幼树移植成活的棵数是1356,所以此时“移植成活”的频率是0.904,但概率不一定是0.904,故①错误,随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880,故②正确,若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率也不一定是0.875,因为某一次或几次的频率太高或太低会影响估计概率,概率是一件事情发生的可能性,故③错误,故选:D.【点睛】此题考查频率与概率,统计图,解题关键在于看懂图中数据.4.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.5.A解析:A【解析】【分析】必然事件是一定会发生的事件,据此求解即可.【详解】A、长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,是必然事件;B、某彩票中奖率是1%,买100张一定会中奖是随机事件;C、2019年女足世界杯,德国队一定能夺得冠军,是随机事件;D、打开电视机,正在播放动画片,是随机事件,故选:A.【点睛】此题考查了概率的意义及随机事件的知识,必然事件是一定会发生的事件.6.A解析:A【解析】【分析】根据抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义逐一判断即可得.【详解】A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法,此选项正确;B.一组数据2,2,3,6的众数是2,中位数是2.5,此选项错误;C.“掷一枚硬币正面朝上的概率是”,表示每抛硬币2次可能有1次正面朝上,此选项错误;D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明甲的成绩较为稳定;故选A.【点睛】本题主要考查概率的意义,解题的关键是掌握抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义.7.D解析:D【解析】【分析】根据概率的定义,事件的定义一一判断即可.【详解】解:A、蜡烛在真空中燃烧是一个随机事件,错误,蜡烛在真空中燃烧是一个不可能事件.B、在射击比赛中,运动员射中靶心和没有射中靶心的可能性相同,错误,射中靶心和没有射中靶心的两种情况的机会不等,因而不是等可能事件.C、某抽奖游戏的中奖率为1%,说明只有抽奖100次,才能中奖1次,错误,抽100次奖只能推断为:有可能中奖一次,也有可能一次也不中,还有可能中好几次,属于不确定事件中的可能性事件,而不是买100张一定会一等中奖.D、天气预报明天降水概率为80%,表示明天下雨的可能性较大,正确.故选D.【点睛】本题考查概率,事件的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.A解析:A【解析】【分析】根据概率公式直接进行解答即可.【详解】解:∵有甲,乙,丙,丁四位选手,∴丙跑第一棒的概率为14;故选:A.【点睛】本题考查概率公式.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.C解析:C【解析】【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).10.B解析:B【分析】根据随机事件的分类,对各个选项逐个分析,即可得到答案.【详解】购买一张彩票中奖,是不确定事件,故选项A错误;通常加热到100℃时,水沸腾,是必然事件,故选项B正确;明天一定是晴天,是不确定事件,故选项C错误;任意一个三角形,其内角和是360°,是不可能事件,故选项D错误;故选:B.【点睛】本题考查了随机事件的知识;解题的关键是熟练掌握随机事件的分类,从而完成求解.11.B解析:B【分析】根据事件发生的可能性大小逐一判断相应事件的类型,即可得答案.【详解】(1)打开电视机,正在播放新闻是随机事件,(2)下个星期天会下雨是随机事件,(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1是不可能事件,是确定事件,(4)一个有理数的平方一定是非负数是确定事件,(5)若a、b异号,则a+b<0是随机事件.综上所述:属于确定事件的有(3)(4),共2个,故选:B.【点睛】本题考查的是必然条件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握基础知识是解题的关键.12.D解析:D【分析】直接利用轴对称图形的性质分析得出答案.【详解】如图所示:当1,2两个分别涂成灰色,新构成灰色部分的图形是轴对称图形,故新构成灰色部分的图形是轴对称图形的概率是:21 63 .故选D.【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.二、填空题13.【分析】根据掷得面朝上的点数大于2情况有4种进而求出概率即可【详解】解:掷一枚均匀的骰子时有6种情况出现点数大于2的情况有4种掷得面朝上的点数大于2的概率是=;故填:【点睛】此题考查了概率的求法:如解析:2 3【分析】根据掷得面朝上的点数大于2情况有4种,进而求出概率即可.【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于2的情况有4种,掷得面朝上的点数大于2的概率是46=23;故填:23.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.【分析】根据概率的计算公式解答【详解】∵共有16个小正方形其中有4个涂上阴影∴小虫落到阴影部分的概率是故答案为:【点睛】此题考查简单事件的概率计算掌握事件发生的所有可能性及该事件可能发生的次数是解题解析:1 4【分析】根据概率的计算公式解答.【详解】∵共有16个小正方形,其中有4个涂上阴影,∴小虫落到阴影部分的概率是41164,故答案为:14.【点睛】此题考查简单事件的概率计算,掌握事件发生的所有可能性及该事件可能发生的次数是解题的关键.15.【分析】先求出黑色等边三角形在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色等边三角形4块共有16块等边三角形地板∴黑色等边三角形地板在整个地板中所占的比值∴小球停留在黑色区域的解析:1 4【分析】先求出黑色等边三角形在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色等边三角形4块,共有16块等边三角形地板,∴黑色等边三角形地板在整个地板中所占的比值41164==,∴小球停留在黑色区域的概率是14.故答案为:14.【点睛】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.16.【解析】【分析】由一副扑克牌(除大小王外)共52张红桃的有13张直接利用概率公式求解即可求得答案【详解】解:∵一副扑克牌(除大小王外)共52张红桃的有13张∴一副扑克牌(除大小王外)共52张从中随意解析:1 4【解析】【分析】由一副扑克牌(除大、小王外)共52张,红桃的有13张,直接利用概率公式求解即可求得答案.【详解】解:∵一副扑克牌(除大、小王外)共52张,红桃的有13张,∴一副扑克牌(除大、小王外)共52张,从中随意抽一张是红桃的概率是:131524=.故答案为:1 4 .【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值【详解】如图所示:因为整个圆面被平均分成6个部分其中阴影部分占3份时指针落在阴影区域的概率为:【点睛】本题考解析:1 2【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值.【详解】如图所示:因为整个圆面被平均分成6个部分,其中阴影部分占3份时,指针落在阴影区域的概率为: 3162,【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率. 18.【解析】【分析】直接根据概率公式求解:摸出的球是红球的概率=【详解】解:摸出的球是红球的概率=故答案为【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结解析:2 5【解析】【分析】直接根据概率公式求解:摸出的球是红球的概率=25.【详解】解:摸出的球是红球的概率=25.故答案为25.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数..19.3134【解析】【分析】在5×5的网格中共有36个格点除去AB两点有34个格点再找到以ABC三点为顶点画出三角形的格点数即可利用概率公式求解【详解】在5×5的网格中共有36个格点除去AB两点有34个解析:【解析】【分析】在5×5的网格中共有36个格点,除去A、B两点有34个格点,再找到以A、B、C三点为顶点画出三角形的格点数,即可利用概率公式求解.【详解】在5×5的网格中共有36个格点,除去A. B两点有34个格点,而以A. B. C三点为顶点画出三角形的格点有31个,故以A. B. C三点为顶点能画出三角形的概率是31÷34=.故答案为:.【点睛】本题考查的知识点是概率公式,解题的关键是熟练的掌握概率公式.20.【解析】试题分析:根据随机事件概率大小的求法找准两点:①符合条件的情况数目②全部情况的总数二者的比值就是其发生的概率的大小解:把数学课安排在第一节课的概率为故答案为考点:概率公式解析:【解析】试题分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.解:把数学课安排在第一节课的概率为,故答案为考点:概率公式.三、解答题21.(1)13,23;(2)见解析【分析】(1)用红色区域的面积除以圆的面积可得到指针落在红色区域的概率;用白色区域的面积除以圆的面积可得到指针落在白色区域的概率;(2)把圆分成8等份,然后把红色占5份,黄色占2份,白色占1份即可.【详解】解:(1)P(指针落在红色区域)1201 3603︒==︒.P(指针落在白色区域)3601202402 3603603︒︒︒︒︒-===(2)如图:(答案不唯一)【点睛】本是考查的是简单事件的概率问题,掌握概率的计算方法是解决此类问题的关键.22.(1)14,512,13;(2)袋中有7个白球.【解析】【分析】(1)依据有5个红球,3个绿球和4个白球,即可得到任意摸出一个球是绿球的概率,红球的概率,白球的概率;(2)设袋子内有n个白球,依据概率公式列出方程,即可得到白球的数量.【详解】(1)一共有3+5+4=12个球,任意摸出一个球是绿球的概率是312=14,任意摸出一个球是红球的概率是5 12,任意摸出一个球是白球的概率是412=13;故答案为:14,512,13;(2)设袋中有n个白球,则3 35n ++=15,解得:n=7,经检验n=7是分式方程的解,所以,袋中内有7个白球.【点睛】本题考查概率的求法与运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.23.(1)12;(2)23【解析】【分析】(1)先指出指向数字总共的结果,再指出指向奇数区的结果即可;(2)先指出指向数字总共的结果,再指出指针指向的数小于或等于4的结果即可.【详解】解:(1)自由转动转盘,当它停止转动时,指针指向数字的结果总共有6种,指针指向奇数区的结果有3种,所以指针指向奇数区的概率是12.(2)自由转动转盘,当它停止转动时,指针指向数字的结果总共有6种,指针指向的数小于或等于4的结果有4种,所以指针指向的数不大于4的概率是42 63 =.【点睛】本题考查的是概率,熟练掌握概率是解题的关键.24.(1)10,216; (2)见解析;(3)7 15.【解析】【分析】(1)用8分的人数除以60可求得a的值,用360度乘以10分所占的百分比即可求得答案;(2)分别求出8分以下的女生人数、16分的女生人数,然后补全条形统计图即可;(3)先求出男生的总人数,然后确定出成绩不是10分的人数,根据概率公式进行计算即可.【详解】(1)a%=(2+4)÷60=10%,所以a=10,成绩为10分所在扇形的圆心角是360°×(1-10%-10%-20%)=216°,故答案为:10,216;(2)成绩为8分以下的人数为:60×10=6,其中女生人数为:6-2=4人,成绩为16分的人数为:60×(1-10%-10%-20%)=36,其中女生人数为:36-16=20人,所以补全条形统计图如图所示:(3)男生共有2+4+8+16=30人,其中成绩为10分的有16人,成绩不是10分的有14人,所以从该班男生中随机抽取一人,成绩不是10分的概率是147 3015=.【点睛】本题考查了条形统计图与扇形统计图的综合运用,简单的概率计算,准确识图,从中找到有用的信息是解题的关键.25.1231(2,1)(3,1)(,1)(,1)2(1,2)(3,2)(,2)(,2)3(1,3)(2,3)(,3)(,3)(1,)(2,)(3,)(,)(1,)(2,)(3,)(,)当时,∴点(1,),(1,)在△AOB内部,当时,∴点(2,),(2,)在△AOB内部,当时,∴设上述点在△AOB内部,当时,则点(,1)(,2),(,)在△AOB内部,当时,则点(,1)(,2), (,)在△AOB内点,则点P在△AOB的内部概率P(内部)【解析】试题分析:由列表法得到所有的点,再找出在△AOB内部的点的个数即可.试题由题意得,列表如下:1231(1,2)(1,3)(1,)(1,)2(2,1)(2,3)(2,)(2,)3(3,1)(3,2)(3,)(3,)(,1)(,2)(,3)(,)(,1)(,2)(,3)(,)所有的点共有20个,当x=1时,y=2,点(1,),(1,)在△AOB内部,有2个;当x=2时,y=1,点(2,),(2,)在△AOB内部,有2个;当x=3时,y=0,没有点在△AOB内部,有0个;当x=时,y=,点(,1),(,2),(,)在△AOB内部,有3个;当x=时,y=,点(,1),(,2),(,)在△AOB内部,有3个;可以发现落在△AOB内的点共有10个,所以点P落在△AOB内的概率为=.考点:1.概率公式;2.一次函数的性质.26.(1)19;(2)727;(3)左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【分析】(1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果与三辆车全部同向而行的情况,然后利用概率公式求解即可求得答案;(2)由(1)中的树状图即可求得至少有两辆车向左转的情况,然后利用概率公式求解即可求得答案;(3)由汽车向右转、向左转、直行的概率分别为233,,51010,即可求得答案.【详解】解:(1)分别用A,B,C表示向左转、直行,向右转;根据题意,画出树形图:∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,∴P(三车全部同向而行)=19;(2)∵至少有两辆车向左转的有7种情况,∴P(至少两辆车向左转)=727;(3)∵汽车向右转、向左转、直行的概率分别为233 ,, 51010,∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意:概率=所求情况数与总情况数之比.。

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)一、选择题(30分)1.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50 2.下列事件中,属于必然事件的是( )A .随意抛掷一枚骰子,掷得偶数点B .从一副扑克牌中抽出一张,抽得红桃牌C .任意选择电视的某一频道,正在播放动画片D .在同一年出生的367名学生中,至少有两个人同月同日生3.在相同条件下重复试验,若事件A 发生的概率是7100,则下列说法中正确的是( )A .事件A 发生的频率是7100 B .反复大量做这种试验,事件A 只发生了7次C .做100次这种试验,事件A 一定发生了7次D .做100次这种试验,事件A 可能发生了7次4.(2019·东营)从1,2,3,4中任取两个不同的数,分别记为a 和b ,则a 2+b 2>19的概率是( ) A .12 B .512 C .712 D .135.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A .16B .13C .12D .236.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )A .110B .19C .16D .157.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是( )A .16B .13C .12D .238.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为( )A .15B .4115C .49D .139.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在16附近10.某学习小组在做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )试验 次数 100 200 300 500 800 1000 2000 频率0.3650.3280.3300.3340.3360.3320.333B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率 二、填空题(16分)11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是______.12.从分别标有1,2,3,4的四张卡片中任意抽取1张,抽到奇数的概率是______. 13.一个不透明的盒子中装有10个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球有________个.14.若将分别写有“生活”“城市”的2张卡片,随机放入“ 让 更美好”中的两个 内(每个 只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是________.15.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,朝上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)16.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向的数大于6的概率为________.17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为________.18.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是________.三、简答题(54分)19.(9分)一个口袋中有10个红球和若干个白球,请通过以下试验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中.不断重复上述过程,试验中总共摸了200次,其中有50次摸到红球.20.(9分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值(2)于45,求m的值.21.(12分)(2018·苏州期末)暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为20份),并规定:顾客每买够200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物300元.(1)求他此时获得购物券的概率是多少;(2)他获得哪种购物券的概率最大?请说明理由.22.(12分)有一个质地均匀的小正方体,正方体的六个面上分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?23.(12分)一个小球分别在如图①②所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球停留在白色区域的概率分别是多少?参考答案1~10:ADDDB AACDB 11.1/2 12. 1/2 13. 15 14. 1/2 15. ①③ 16. 1/4 17. 2/3 18. 1/3 19.解:试验中总共摸了200次,其中50次摸到红球,则摸出一球是红球的概率估计值是50200=14,因为红球有10个,则袋中共有球10÷14=40(个),故口袋中白球的个数为40-10=30(个).20. (1)4 2,3(2)解:根据题意得6+m 10=45,解得m =2,所以m 的值为2.21.(1)解:因为转盘被均匀地分为20份,转动转盘获得购物券的有10种情况,所以他此时获得购物券的概率是1020=12.(2)解:他获得50元购物券的概率最大.理由:因为P (获得200元购物券)=120,P (获得100元购物券)=320,P (获得50元购物券)=620=310,所以他获得50元购物券的概率最大.22.解:这个游戏不公平.因为正方体的六个面上分别标有1,2,3,4,5,6这六个数字,其中数字6只有1个,也就是说甲胜利的概率是16;不是6的数字有5个,也就是说乙胜利的概率是56,双方胜利的机会不是均等的,所以说这个游戏不公平.可以把游戏规则改为:任意掷出正方体后,如果朝上的数字是奇数(1,3,5),甲是胜利者;如果朝上的数字是偶数(2,4,6),乙是胜利者,按这样的游戏规则对甲、乙双方是公平的.(答案不唯一) 23.解:图①:P =34;图②:P =23.。

北师大版七年级数学下册单元测试卷第六章 概率初步附答案

北师大版七年级数学下册单元测试卷第六章 概率初步附答案

第六章概率初步一、选择题(共18小题;共54分)1. 一条信息可以通过如图的网络线由上(点)往下向各站点传送,例如:信息到点可由经的站点送达,也可由经的站点送达,共有两条途径传送,则信息由点到达的不同途径共有A. 条B. 条C. 条D. 条2. 从件不同款式的衬衣和条不同款式的裙子中分别取一件衬衣和一条裙子搭配,可能的情况有A. 种B. 种C. 种D. 种3. 从标号分别为,,,,的张卡片中,随机抽取张.下列事件中,必然事件是A. 标号小于B. 标号大于C. 标号是奇数D. 标号是4. 一个暗箱里装有个黑球,个白球,个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是C. D.5. 盒子中装有个红球和个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是A. B. C. D.6. 太阳绕地球转,这是的.A. 可能B. 不可能C. 一定7. 下列事件中,是必然事件的是A. 打开电视机,正在播放新闻B. 父亲年龄比儿子年龄大C. 通过长期努力学习,你会成为数学家D. 下雨天,每个人都打着雨伞8. 某篮球运动员在同一条件下,进行投篮训练,共投次,其中投中次,据此估计,这名球员投篮一次投中的概率约是A. B. C. D.9. 下列成语所描述的事件概率为的是A. 水中捞月B. 守株待兔C. 瓮中捉鳖D. 十拿九稳10. 下列说法正确的是A. 某种彩票的中奖率为千分之一,一次买一千张彩票一定中奖B. 一批零件的合格率为百分之九十九,任意抽查一个一定合格C. 下雨天走在路上不太可能被雷电击倒D. 抛掷两枚一元的硬币,出现一正一反的可能性比出现两个正面的可能性小11. 小明训练上楼梯赛跑,他每步可上阶或者阶(不上阶),那么小明上阶楼梯的不同方法共有(注:两种上楼梯的方法只要一步所踏楼梯的阶数不同,便认为是不同的方法)A. 种B. 种C. 种D. 种12. 在投掷一枚硬币的游戏过程中,已知“正面朝上”的概率为,那么下列说法正确的是A. 投掷次必有次“正面朝上”B. 投掷很多次的时候,极有可能出现“正面朝上”C. 投掷次可能有次“正面朝上”D. 投掷很多次的时候,极少出现“正面朝上”13. 下列事件中最有可能发生的是A. 刚买回来的新手机不能打电话B. 足球比赛比分为C. 北方的冬天下雪D. 买彩票中了一等奖14. 下列事件中,属于随机事件的是A. 在十进制中B. 从长度分别为厘米,厘米,厘米,厘米的根小木棒中,取根为边拼成一个三角形C. 方程在实数范围内有解D. 在装有个红球的口袋内,摸出一个白球15. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是A. B. C. D.16. 某班学生中随机选取一名学生是男生的概率是,那么该班男女生的人数比是17. 现有,,,,共五个数,从中取若干个数分给A,B两组,两组都不能放空,要使得B组中最小的数比A组中最大的数都大,则有分配方法A. 种B. 种C. 种D. 种18. 小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是D.二、填空题(共7小题;共31分)19. 现有张扑克牌,牌面分别是方块,,和草花,,,小红从草花和方块里各摸张牌,摸到张牌上的数之和是的概率是.20. 三条任意长的线段可以组成一个三角形,这一事件是事件.21. 某班要选名同学代表参加班级间的交流活动.现在按下面的办法选取:把全班同学的姓名分别写在没有明显差别的纸片上,把纸片混放在一个盒子里,充分搅拌后,随机抽取张,按照纸片上所写的名字选取名同学.你觉得上面的选取过程是简单随机抽样吗? (填“是”或“不是”).22. 甲、乙、丙、丁、戊五位同学参加一次活动,很幸运的是他们都得到了一件精美的礼品(如图),他们每人只能从其中一串的最下端取一件礼品,直到礼物取完为止,甲第一个取得礼物,然后乙,丙,丁,戊依次取得第到第件礼物,当然取法各种各样,那么他们共有种不同的取法.23. 一道选择题有A,B,C,D 个选项,只有个选项是正确的.若两位同学随意任选个答案,则同时选对的概率为.24. 若一事件发生的概率是,则它发生(填“必然”、“可能”或“不可能”).25. 从学校任选一位同学,事件:该同学是八年级的,事件:该同学是九年级()班的,事件:该同学是男的,用,,分别表示事件,,发生的可能性大小,按从小到大的顺序排列是.三、解答题(共5小题;共65分)26. 如图,圆盘分成大小相等的扇形,分别写有数字,任意转动圆盘,比较下列事件的可能性大小,并按照从大到小的顺序排列(当指针落在扇形边界时,统计在逆时针方向相邻的扇形区域内).()指针落在数字区域内,可能性记为;()指针落在奇数区域内,可能性记为;()指针落在的倍数区域内,可能性记为.27. 请你设计一个游戏,其中包括“不太可能”发生的事件、“很有可能”发生的事件、“不可能发生”的事件.28. 有一个质地均匀的正方体,一面涂上红色,两面涂上黄色,三面涂上绿色.用依次表示抛掷出“红”“黄”“绿”“红或黄或绿”“蓝”的可能性大小,请你将它们的可能性大小按照从小到大的顺序排列.29. 小明有双黑袜子和双白袜子,假设袜子不分左右,那么从中随机抽取只恰好配成一双的概率是多少?如果袜子分左右呢?30. 在袋中装有大小、形状、质量完全相同的个白球和个红球,甲、乙两人从中进行摸球游戏,在游戏之前两人就各有分,然后从中轮番摸球,每次摸三个球,然后放回袋中搅匀,再由另一个人摸球,得分规则如下:最后以得分高者为胜者,请问这个游戏对甲、乙双方公平吗?如果不公平,谁更有利;如果公平,请说明理由.答案第一部分1. C 【解析】经的只有条,经的有条,经的只有条,经的有条,所以总共有条.2. D3. A4. C5. C6. B7. B8. B9. A10. C11. C 【解析】根据题意可知,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,,上阶楼梯的方法数为.12. B13. C14. B15. C【解析】在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有种等可能的结果,与图中阴影部分构成轴对称图形的有②④⑤,共种情况,所以与图中阴影部分构成轴对称图形的概率是.16. A17. B18. B 【解析】如图,基本事件是,颜色都对号了的事件是,所以答案是第二部分【解析】摸到张牌上的数之和是的情况有:,;,;,.故摸到张牌上的数之和是的概率是.20. 随机21. 是22.【解析】甲、乙、丙、丁、戊取礼物的顺序有种,为:①A,B,C,D,E;②A,C,D,E,B;③A,C,D,B,E;④A,C,B,D,E;⑤C,D,E,A,B;⑥C,D,A,B,E;⑦C,D,A,E,B;⑧C,A,B,D,E;⑨C,A,D,B,E;⑩C,A,D,E,B.23.【解析】一个同学任取一个的概率为个答案同时选对的概率为.24. 可能25.第三部分26. .27. 略28. .29. 共有种等可能的结果数,若袜子不分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子不分左右,那么从中随机抽取只恰好配成一双的概率;若袜子分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子分左右,那么从中随机抽取只恰好配成一双的概率.30. 这个游戏对双方公平.理由:在三红三白六个球中,任意摸出三个球,是三红的概率为,同理三个球都为白球的概率也为,若摸出的球是二红一白,则有三种情况:红,红,白;红,白,红;白,红,红,摸出球为二红一白概率为,同理二白一红的概率也为,所以(分),(分),所以,所以摸一次球甲、乙两人所得的平均分相等,因此这个游戏公平.。

北师大版七年级数学(下)第六章【概率初步】单元测试卷(一)含答案与解析

北师大版七年级数学(下)第六章【概率初步】单元测试卷(一)含答案与解析

北师大版七年级数学(下)第六章单元测试卷(一)概率初步学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分一、单选题(共30分)1.(本题3分)(2020·浙江绍兴市·七年级月考)下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间在降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天2.(本题3分)下列说法错误的是()A.李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是1 2B.一组数据6,8,7,8,8,9,10的众数和中位数都是8C.对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定D.一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是8 253.(本题3分)(2020·全国七年级单元测试)对“某市明天下雨的概率是80%”这句话,理解正确的是()A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大4.(本题3分)(2020·沈阳市虹桥中学七年级期中)下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为415,买10 000张该种彩票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上5.(本题3分)(2020·全国七年级单元测试)在一副52张的扑克牌(没有大、小王)中任意抽取一张牌,抽出的这张牌是方块的概率是( )A.B.C.D.06.(本题3分)(2020·全国七年级课时练习)如图,转动转盘,指向阴影部分的可能性为a,指向空白部分的可能性为b,则( )A.a>b B.a<b C.a=b D.无法确定7.(本题3分)(2020·全国七年级课时练习)某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元) 1000 500 100 50 10 2数量(个) 10 40 150 400 1000 10000如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是()A.B.C.D.8.(本题3分)(2020·深圳市龙岗区龙岗街道新梓学校七年级期中)假如小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是()A.18B.14C.34D.129.(本题3分)(2020·山西七年级期末)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )实验100 200 300 500 800 1000 2000次数频0.365 0.328 0.330 0.334 0.336 0.332 0.333率A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率10.(本题3分)(2020·全国七年级单元测试)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D.用2,3,4三个数字随机排成一个三位数,排出的数是偶数二、填空题(共24分)11.(本题3分)下列事件是必然事件的是________.(填序号)①3个人分成两组,一定有2人分在一组;②随意掷两个完好的骰子,朝上一面的点数之和不小于2;③明天北京会刮大风,出现沙尘暴;④你百米可跑5秒.12.(本题3分)(2020·山东烟台市·烟台开发区实验中学七年级月考)在一个不透明的口袋中,装有4个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,从口袋中任意摸出一个球,估计它是红球的概率是_____.13.(本题3分)(2020·全国七年级单元测试)从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是________.14.(本题3分)(2020·全国七年级单元测试)五张分别写有3,4,5,6,7的卡片,现从中任意取出一张卡片,则该卡片上的数字为奇数的概率是________15.(本题3分)(2020·全国七年级单元测试)一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入___个___球(只能再放入同一颜色的球).16.(本题3分)(2020·全国七年级单元测试)如图,线段AB被等分成5段,在图上任取一点,这一点取在粗线段上的概率是____.17.(本题3分)(2020·全国七年级课时练习)如果x=y,那么12+2x=12+2y的可能性是________.18.(本题3分)(2020·辽宁锦州市·七年级期末)小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为_____.三、解答题(共46分)19.(本题9分)(2020·佛山市顺德区杏坛梁銶琚初级中学七年级月考)(2017·广东佛山禅城区期末)一个口袋中装有3个白球、5个红球,这些球除了颜色外完全相同,充分摇匀后随机摸出一球,发现是白球.(1)如果将这个白球放回,再摸出一球,它是白球的概率是多少?(2)如果将这个白球不放回,再摸出一球,它是白球的概率是多少?20.(本题9分)(2020·山西七年级期末)在一个不透明的袋子中装有3个红球和6个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求出摸出的球是红球和黄球的概率.(2)为了使摸出两种球的概率相同,再放进去7个同样的红球或黄球,那么这7个球中红球和黄球的数量分别应是多少?21.(本题9分)(2020·全国七年级单元测试)如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(本题9分)(2020·全国七年级单元测试)用10个球分别设计一个摸球游戏(这些球除颜色不同外其余均相同):(1)使从中摸一个球,摸到红球的概率为15;(2)使从中摸一个球,摸到红球和白球的概率都是2 5 .23.(本题10分)(2020·全国七年级单元测试)在一个不透明的袋中有除颜色外其他完全相同的3个球,每次从袋中摸出一个球,记下颜色后放回搅匀再摸,在摸球试验中得到下表中部分数据:摸球总次数40 80 120 160 200 240 280 320 360 400摸到黄球的次数14 23 38 52 67 86 97 111 120 136摸到黄球的频率35% 32% 33% 35% 35%(1)请将上表补充完整(结果精确到1%);(2)制作折线统计图表示摸到黄球的频率的变化情况;(3)估计从袋中摸出一个球是黄球的概率是多少.参考答案与试题解析一、单选题(共30分)1.(本题3分)(2020·浙江绍兴市·七年级月考)下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间在降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天【答案】D【解析】试题解析:A、“明天降雨的概率是80%”表示明天有降雨的可能性,故错误;B、“抛一枚硬币正面朝上的概率是0.5”表示抛一枚硬币正面朝上与反面朝上的机会是一样的,故错误;C、“彩票中奖的概率是1%”表示在设计彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故错误;D、在同一年出生的367名学生,而一年中至多有366天,因而至少有两人的生日是同一天.故选D.2.(本题3分)下列说法错误的是()A.李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是1 2B.一组数据6,8,7,8,8,9,10的众数和中位数都是8C.对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定D.一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是8 25【答案】D【解析】【分析】根据概率的意义,可判断A;根据众数的定义、中位数的定义,可判断B;根据方差的性质,可判断C;根据频率表示概率,可判断D【详解】A、李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是21 =42,故A正确;B、一组数据6,8,7,8,8,9,10的众数和中位数都是8,故B正确;C、对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定,故C正确;D、一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是1325,故D错误.【点睛】本题的考点是概率的意义及有关计算;众数和中位数的定义;方差的性质;熟练掌握其基础知识是解题的关键.3.(本题3分)(2020·全国七年级单元测试)对“某市明天下雨的概率是80%”这句话,理解正确的是()A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大【答案】D【分析】概率它反映随机事件出现的可能性大小,随机事件是指在相同条件下,可能出现也可能不出现的事件.【详解】A选项,某市明天将有80%的时间下雨不符合对概率意义的理解,B选项,某市明天将有80%的地区下雨不符合对概率意义的理解,C选项,某市明天一定会下雨不符合对概率意义的理解,D选项,某市明天下雨的可能性较大符合对概率意义的理解.故选D.【点睛】本题主要考查概率的意义,解决本题的关键是要掌握对概率意义的理解.4.(本题3分)(2020·沈阳市虹桥中学七年级期中)下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为415,买10 000张该种彩票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上【答案】D【解析】【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】A.小菊上学乘坐公共汽车是随机事件,不符合题意;B.买10000张一定会中奖也是随机事件,尽管中奖率是415,不符合题意;C.一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D.常温下豆油的密度<水的密度,所以豆油一定会浮在水面上,是必然事件,符合题意.故选D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(本题3分)(2020·全国七年级单元测试)在一副52张的扑克牌(没有大、小王)中任意抽取一张牌,抽出的这张牌是方块的概率是( )A.B.C.D.0【答案】B【分析】让方块的总张数13除以牌的总张数52即为任抽一张牌是方块的机会.【详解】P(方块)=.故选B.【点睛】解答此题关键是要明白在一副52张扑克牌中(没有大小王)有方块,红桃,黑桃,梅花各13张,再根据概率公式计算即可.用到的知识点为:概率=所求情况数与总情况数之比.6.(本题3分)(2020·全国七年级课时练习)如图,转动转盘,指向阴影部分的可能性为a,指向空白部分的可能性为b,则( )A.a>b B.a<b C.a=b D.无法确定【答案】C【解析】由图可知,阴影部分与空白部分的面积相等,故a=b.故选C.7.(本题3分)(2020·全国七年级课时练习)某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元)100050010050102数量(个)1040150400100010000如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是()A.B.C.D.【答案】C【解析】【分析】让所得奖金不少于50元的彩票张数除以彩票的总张数就是所得奖金不少于50元的概率.【详解】因为从10万张彩票中购买一张,每张被买到的机会相同,因而有10万个结果,奖金不少于50元的共有10+40+150+400=600(个),所以所得奖金不少于50元的概率=.故选:C.【点睛】本题考查了概率公式,解决关键是理解列举法求概率的条件,事件有有限个结果,每个结果出现的机会相等.用到的知识点为:概率=所求情况数与总情况数之比.8.(本题3分)(2020·深圳市龙岗区龙岗街道新梓学校七年级期中)假如小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是()A.18B.14C.34D.12【答案】B【分析】先求出阴影的面积在整个地面中所占的比值,再根据其比值即可得出结论.【详解】观察这个图可知:黑色区域(4块)的面积占总面积(16块)的14,故其概率为14.故选B.【点睛】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.9.(本题3分)(2020·山西七年级期末)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率【答案】B【分析】根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.【详解】解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D、抛一枚硬币,出现反面的概率为12,不符合题意,故选B.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.10.(本题3分)(2020·全国七年级单元测试)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D.用2,3,4三个数字随机排成一个三位数,排出的数是偶数【答案】B【解析】【分析】根据统计图可知,试验结果在0.15到0.20之间波动,即:这个实验的概率大约为0.17,分别计算四个选项的概率,大约为0.17即为正确答案.【详解】A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为13,故本选项不符合题意;B.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为160.17,故本选项符合题意;C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是14=0.25,故本选项不符合题意;D.由于用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234,324,342,432,∴排出的数是偶数的概率为:4263.故本选项不符合题意.故选B.【点睛】本题是利用频率估计概率,主要考查了学生的观察频数(率)分布折线图,利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(共24分)11.(本题3分)下列事件是必然事件的是________.(填序号)①3个人分成两组,一定有2人分在一组;②随意掷两个完好的骰子,朝上一面的点数之和不小于2;③明天北京会刮大风,出现沙尘暴;④你百米可跑5秒.【答案】①②【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】①3个人分成两组,一定有2人分在一组,是必然事件;②随意掷两个完好的骰子,朝上一面的点数之和不小于2,是必然事件;③明天北京会刮大风,出现沙尘暴,是随机事件;④你百米可跑5秒,是不可能事件.故答案为①②【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.(本题3分)(2020·山东烟台市·烟台开发区实验中学七年级月考)在一个不透明的口袋中,装有4个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,从口袋中任意摸出一个球,估计它是红球的概率是_____.【答案】1 4【解析】【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率即可.【详解】解:∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,即1 4 .故答案为1 4 .【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.13.(本题3分)(2020·全国七年级单元测试)从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是________.【答案】1 5【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.本题先找出4的倍数只有4和8这两个数,然后用2除以10即可.【详解】∵1,2,3,…,10这10个自然数中只有4和8是4的倍数,因此从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是21= 105.故答案为15.【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn,难度适中.14.(本题3分)(2020·全国七年级单元测试)五张分别写有3,4,5,6,7的卡片,现从中任意取出一张卡片,则该卡片上的数字为奇数的概率是________【答案】35.【解析】试题分析:根据题意可知一共有5个数,奇数有3个,因此根据概率的意义可得P (数字为奇数)=35. 15.(本题3分)(2020·全国七年级单元测试)一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入___个___球(只能再放入同一颜色的球).【答案】2; 红 【解析】 【分析】甲、乙两人获胜的可能性一样大,即甲摸到白球的概率等于乙摸到红球的概率,设必须往袋中再放入x 个红球,根据概率公式列出方程,解方程即可. 【详解】设必须往袋中再放入x 个红球,由题意,得:535353xx x+=++++ 解得:x =2. 故答案为:2,红. 【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n=. 16.(本题3分)(2020·全国七年级单元测试)如图,线段AB 被等分成5段,在图上任取一点,这一点取在粗线段上的概率是____.【答案】25【解析】 【分析】先求出粗线段的长,然后根据概率公式即可得出答案. 【详解】∵线段AB 被等分成5段,粗线段有2段,∴在图上任取一点,这一点取在粗线段上的概率为25. 故答案为25. 【点睛】本题考查了概率公式,关键是求出粗线段的长,用到的知识点为:概率=粗线段长与总线段长之比. 17.(本题3分)(2020·全国七年级课时练习)如果x=y,那么12+2x=12+2y 的可能性是________. 【答案】1 【解析】试题解析:当x y =时,112222x y +=+必然成立. 必然事件发生的可能性是1 . 故答案为:1.18.(本题3分)(2020·辽宁锦州市·七年级期末)小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为_____.【答案】518【分析】根据题意,设每个小正方形面积为1,观察图形并计算可得阴影部分的面积与总面积之比即为所求的概率. 【详解】设小正方形面积为1,观察图形可得,图形中共36个小正方形,则总面积为36, 其中阴影部分面积为:2+2+3+3=10, 则投中阴影部分的概率为:1036=518. 故答案为518. 【点睛】本题考查几何概率,解题的关键是熟练掌握几何概率的求法.三、解答题(共46分)19.(本题9分)(2020·佛山市顺德区杏坛梁銶琚初级中学七年级月考)(2017·广东佛山禅城区期末)一个口袋中装有3个白球、5个红球,这些球除了颜色外完全相同,充分摇匀后随机摸出一球,发现是白球. (1)如果将这个白球放回,再摸出一球,它是白球的概率是多少? (2)如果将这个白球不放回,再摸出一球,它是白球的概率是多少?【答案】(1)38 ;(2)27【解析】试题分析:(1)摸出一个白球放回对第二次摸到白球没有影响,直接利用概率公式求解即可; (2)如果这个白球不放回,则总数减少1,再利用概率公式求解即可. 试题解析:解:(1)因为P (白球)=353+=38,所以它是白球的概率是38. (2)因为P (白球)=31531-+-=27,所以它是白球的概率27.20.(本题9分)(2020·山西七年级期末)在一个不透明的袋子中装有3个红球和6个黄球,这些球除颜色外都相同,将袋子中的球充分 摇匀后,随机摸出一球.(1)分别求出摸出的球是红球和黄球的概率.(2)为了使摸出两种球的概率相同,再放进去7个同样的红球或黄球,那么这7个球中红球和黄球的 数量分别应是多少? 【答案】(1)12,33;(2) 5个和2 个 【解析】试题分析:(1)直接利用概率公式计算即可求出摸出的球是红球和黄球的概率,(2)设放入红球x 个,则黄球为(7-x )个,由摸出两种球的概率相同建立方程,解方程即可求出7个球中红球和黄球的数量分别是多少,试题解析:(1)因为袋子中装有3个红球和6个黄球,所以随机摸出一球是红球和黄球的概率分别是31633=+,62633=+, (2)设放入红球x 个,则黄球为()7x -个,由题意列方程得:3679797x x++-=++,解得5x =, 所以这7个球中红球和黄球的数量分别应是5个和2个.21.(本题9分)(2020·全国七年级单元测试)如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?【答案】小鸟落在小圆区域外大圆区域内(阴影部分内)的概率为34.【解析】【分析】求出阴影部分的面积(大圆面积减去小圆面积)与大圆的面积之比,就是小鸟落在小圆区域外大圆区域内(阴影部分内)的概率.【详解】小鸟落在小圆区域外大圆区域内(阴影部分内)的概率是:22221324πππ⋅-⋅=⋅.【点睛】本题考查了几何概率的计算公式,用到的知识点为:概率=相应的面积与总面积之比.22.(本题9分)(2020·全国七年级单元测试)用10个球分别设计一个摸球游戏(这些球除颜色不同外其余均相同):(1)使从中摸一个球,摸到红球的概率为15;(2)使从中摸一个球,摸到红球和白球的概率都是2 5 .【答案】(1)10个球中有2个红球,8个黄球;(2)10个球中有4个红球,4个白球,2个绿球.【解析】【分析】(1)利用概率公式,要使摸到红球的概率为15,则红球有2个,然后设计摸球游戏;(2)利用概率公式,要使摸到红球和白球的概率都是25.则红球有4个,白球有4个,然后设计摸球游戏.【详解】(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个绿球.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.(本题10分)(2020·全国七年级单元测试)在一个不透明的袋中有除颜色外其他完全相同的3个球,每次从袋中摸出一个球,记下颜色后放回搅匀再摸,在摸球试验中得到下表中部分数据:。

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。

七年级数学(下)单元质量检测 第六章概率初步 (含答案)

七年级数学(下)单元质量检测 第六章概率初步 (含答案)

班级: 姓名: 得分:七年级数学(下)单元质量检测第六章 概率初步(时间:90分钟 满分:100分)题号 一 二 三总分 16 171819 20得分一、选择题(本大题共10小题,每小题3分,共30分)1. 某校举行“中国梦•我的梦”演讲比赛,需要在初三年级选取一名主持人,共有12名同学报名参加,其中初三(1)班有2名,初三(2)班有4名,初三(3)班有6名,现从这12名同学中随机选取一名主持人,则选中的这名同学恰好是初三(1)班同学的概率是( )A 、B 、C 、D 、2. 在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是( )A 、B 、C 、D 、3. 下列说法正确的是( )A 、 袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B 、 天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C 、 某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D 、 连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上 4. 已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是( )A 、 2B 、 4C 、 6D 、 85. 在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A 、B 、C 、D 、6. 在英文单词“parallcl “(平行)中任意选择一个字母是“a “的概率为( )A 、B 、C 、D 、7. 下列事件中,是必然事件的是( )A 、 购买一张彩票,中奖B 、 通常温度降到0℃以下,纯净的水结冰评卷人得 分C 、 明天一定是晴天D 、 经过有交通信号灯的路口,遇到红灯8. 在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( ) A 、 2 B 、 4 C 、 12 D 、 16 9. 甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( )A 、B 、C 、D 、10. 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是( )A 、B 、C 、D 、二、填空题(本大题共5小题,每小题3分,共15分)11. 在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是______.12. 在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是______ .13. 甲盒装有3个乒乓球,分别标号为:1,2,3;乙盒装有2个乒乓球,分别标号为1,2现分别从每个盒中随机地取出1个球,则取出的两球标号之和为4的概率是______.14. 一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有______个黄球.每批数n 100 300 400 600 100 000 300发芽的频m 96 284 380 571 948 192 248 发芽频率 0960.947.950.9520.98.9510.49三、解答题(共55分)16. (9分)在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑球1只,它们除了颜色之外没有其它区别,从袋中随机地摸出1只球,记录下颜色后放回搅匀,再摸出第二只球并记录颜色,求两次都摸出白球的评卷人得 分评卷人得 分概率.17.(10分)从甲地到乙地有A1、A2两条路线,从乙地到丙地有B1、B2、B3三条路线,从丙地到丁地有C1、C2两条路线.一个人任意选了一条从甲地到丁地的路线,求他恰好选到B2路线的概率是多少?18.(12分)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)19.(12分)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.20.(12分)研究“掷一枚图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:(1)请你估计第一小组和第二小组所得的概率分别是多少?(2)你认为哪一个小组的结果更准确?为什么?答案和解析【答案】1. D2. C3. D4. D5. B6. C7. B8. B9. B10. C11. 12. 13. 14. 15 15. 0.95白黑白黑红黑黑黑白红白红红红黑红白白白白红白黑白白白白白红白黑白4种情况,∴两次都摸出白球的概率是:=.17. 解:用树状图分析如下:所以P(选到B2路线)==.答:他恰好选到B2路线的概率是.18. 解:根据题意画出树状图如下:一共有4种情况,确保两局胜的有3种,所以,P=.19. 解:(1)画树状图如下:由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;(2)由(1)可知两人再次成为同班同学的概率==.【解析】1. 解:∵初三(1)班有2名,初三(2)班有4名,初三(3)班有6名,∴共有12名同学,∵初三(1)班有2名,∴P(初三一班)==;故选D.用初三一班的学生数除以所有报名学生数的和即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.2. 解:∵共有5个球,其中红球有3个,∴P(摸到红球)=,故选C.用红球的个数除以所有球的个数即可求得抽到红球的概率.此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.3. 解:A、袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,故本选项错误;B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故本选项错误;C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故本选项错误;D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故本选项正确.故选D.根据概率的意义对各选项进行逐一分析即可.本题考查的是概率的意义,熟知一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率是解答此题的关键.4. 解:袋中球的总个数是:2÷=8(个).故选:D.根据概率公式结合取出红球的概率即可求出袋中球的总个数.本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.5. 解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球和3个黑球,∴从中任意摸出一个球,则摸出黑球的概率是.故选B.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6. 解:单词中共有8个字母,a有两个,所以在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率==,故选C.可先找出单词中字母的个数,再找出a的个数,用a的个数除以总个数即可得出本题的答案.本题考查的是概率的公式,要求准确找出字母的总数和含n的个数.用到的知识点为:概率=所求情况数与总情况数之比.7. 解:(A)购买一张彩票中奖是随机事件;(B)根据物理学可知0℃以下,纯净的水结冰是必然事件;(C)明天是晴天是随机事件;(D)经过路口遇到红灯是随机事件;故选(B)根据随机事件与必然事件的定义即可求出答案.本题考查随机事件的定义,解题的关键是正确理解随机事件与必然事件,本题属于基础题型.8. 解:设黄球的个数为x个,根据题意得:=,解得:x=4.∴黄球的个数为4.故选:B.首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.此题考查了概率公式的应用.解此题的关键是设黄球的个数为x个,利用方程思想求解.9. 解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==.故选:B.画树状图展示所有6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.10. 解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是:=.故选C.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.11. 解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是.故答案为.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12. 解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:确定出偶数有2个,然后根据概率公式列式计算即可得解.本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13. 解:列树状图得:共有6种等可能的情况,取出的两球标号之和为4的情况有2种,所以概率是.列举出所有情况,看取出的两球标号之和为4的情况占总情况的多少即可.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14. 解:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.4,设黄球有x个,∴0.4(x+10)=10,解得x=15.答:口袋中黄色球的个数很可能是15个.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得红球的频率,再乘以总球数求解.解答此题的关键是要估计出口袋中红色球所占的比例,得到相应的等量关系.15. 解:观格得到这种油菜籽发芽的频率稳095附近,则种油菜发芽概率是0.95,故答为:.95.观察表格得到这油菜发的频率稳定在.95,即可估计出这种油菜的概率.题查利用率估率,从表格中的数确定出这种油菜籽芽的频率是解本题的关键.16. 首先根据题意列出表格,然后表格求得所有等可能的结果与两次都摸出白球的情况,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.17. 用树状图列举出所有情况,看所求的情况占总情况的多少即可.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.18. 根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.本题考查了用树状图列举随机事件出现的所有情况,并求出某些事件的概率,但应注意在求概率时各种情况出现的可能性务必相同.用到的知识点为:概率=所求情况数与总情况数之比.19. (1)画树状图法或列举法,即可得到所有可能的结果;(2)由(1)可知两人再次成为同班同学的概率.本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.20.解:(1)根据题意,因为次数越多,就越精确,所以选取试验次数最多的进行计算可得:第一小组所得的概率估计是=0.4;第二小组所得的概率估计是=0.41.(2)不知道哪一个更准确.因为试验数据可能有误差,不能准确说明.。

北师大版2019-2020年七年级数学下册同步练习 第六章 概率初步1(含答案)

北师大版2019-2020年七年级数学下册同步练习 第六章 概率初步1(含答案)

一、选择题1.下列说法正确的是()A. 不可能事件发生的概率为0B. 随机事件发生的概率为C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A. 甲组B. 乙组C. 丙组D. 丁组3.下列事件中,是必然事件的是()A. 两条线段可以组成一个三角形B. 400人中有两个人的生日在同一天C. 早上的太阳从西方升起D. 打开电视机,它正在播放动画片4.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A. B. C. D.5.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A. 0.8B. 0.75C. 0.6D. 0.486.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A. 20B. 24C. 28D. 307.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是()A. B. C. D.8.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是()A. B. C. D. 19.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A. B. C. D.10.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是()A. 事件M是不可能事件B. 事件M是必然事件C. 事件M发生的概率为D. 事件M发生的概率为二、填空题11.一个盒中装着大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是.如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是,则原来盒中有白色弹珠______ 颗.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为______ .13.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是______.14.从数-2,-,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是______ .15.一个均匀的正方体各面上分别标有数字:1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是______.三、计算题16.全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是______;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.17.四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.18.一只口袋中放着3只红球和2只黑球,这两种球除了颜色以外没有任何区别.袋中的球已经搅匀.蒙上眼睛从口袋中取一只球,(1)取出黑球与红球的概率分别是多少?(2)若第一次取出的是一只红球不放回去,第二次取出的是红球的概率是多少?19.在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.答案和解析【答案】1. A2. D3. B4. C5. B6. D7. A8. A9. B10. B11. 412. 1513.14.15.16.17. 解:此游戏规则不公平.理由如下:画树状图得:共有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,所以P(小亮获胜)==;P(小明获胜)=1-=,因为>,所以这个游戏规则不公平.18. 解:(1)根据题意得:P(黑球)=;P(红球)=;(2)根据题意得:P(第二次为红球)==.19. 解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率==;(2)设放入袋中的黑球的个数为x,根据题意得=,解得x=2,所以放入袋中的黑球的个数为2.【解析】1. 解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选:A.根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.本题考查了不可能事件、随机事件的概念.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2. 解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选:D.大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.考查了模拟实验,选择和抛硬币类似的条件的试验验证抛硬币实验的概率,是一种常用的模拟试验的方法.3. 解:A、两条线段可以组成一个三角形是不可能事件,故A错误;B、400人中有两个人的生日在同一天是必然事件,故B正确;C、早上的太阳从西方升起是不可能事件,故C错误;D、打开电视机,它正在播放动画片是随机事件,故D错误;故选:B.根据必然事件指在一定条件下,一定发生的事件,可得答案.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4. 解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用.一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5. 解:设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,故现年20岁到这种动物活到25岁的概率为=0.75.故选B.先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.考查了概率的意义,用到的知识点为:概率=所求情况数与总情况数之比.注意在本题中把20岁时的动物只数看成单位1.6. 解:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.7. 解:第3个小组被抽到的概率是,故选:A.根据概率是所求情况数与总情况数之比,可得答案.本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.8. 解:在这四个图片中只有第三幅图片是中心对称图形,因此是中心对称称图形的卡片的概率是.故选:A.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题将两个简易的知识点,中心对称图形和概率组合在一起,是一个简单的综合问题,其中涉及的中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形,简易概率求法公式:P(A)=,其中0≤P(A)≤1.9. 解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选:B.由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.也考查了轴对称图形的定义.10. 连接BE,根据正五边形ABCDE的性质得到BC=DE=CD=AB=AE,根据多边形的内角和定理求出∠A=∠ABC=∠C=∠D=∠AED=108°,根据等腰三角形的性质求出∠ABE=∠AEB=36°,求出∠CBE=72°,推出BE∥CD,得到四边形BCDE是等腰梯形,即可得出答案.11. 解:∵取得白色棋子的概率是,可得方程=又由再往盒中放进12颗白色棋子,取得白色棋子的概率是∴可得方程=,组成方程组解得:x=4,y=8故答案为4.根据从盒中随机取出一颗棋子,取得白色棋子的概率是,可得方程=又由再往盒中放进12颗白色棋子,取得白色棋子的概率是可得方程=联立即可求得x的值.本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12. 解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.本题考查了频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13. 解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:=.故答案为:.由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率.此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.14. 解:从数-2,-,0,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,∵正比例函数y=kx的图象经过第三、第一象限,∴k=mn>0.由树状图可知符合mn>0的情况共有2种,∴正比例函数y=kx的图象经过第三、第一象限的概率是=.故答案为:.根据题意先画出图形,求出总的情况数,再求出符合条件的情况数,最后根据概率公式进行计算即可.本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.15. 解:由图可知1、3相对,2、6相对,4、5相对,那么3朝上或6朝上时,朝上一面所标数字恰好等于朝下一面所标数字的3倍,共有6种情况,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是.根据随机事件概率大小的求法,找准两点:①朝上一面所标数字恰好等于朝下一面所标数字的3倍的情况数目;②所有标法的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 解:(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.17. 先利用树状图展示所有有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,再根据概率公式求出P(小亮获胜)和P(小明获胜),然后通过比较两概率的大小判断游戏的公平性.本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.18. (1)根据5只小球中红球与黑球的个数求出所求概率即可;(2)取出一个红球,口袋中红球与黑球个数都为2,即可求出所求概率即可.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19. (1)画树状图展示所有20种等可能的结果数,再找出从袋中同时摸出的两个球都是黄球的结果数,然后根据概率公式求解;(2)设放入袋中的黑球的个数为x,利用概率公式得到=,然后解方程即可.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。

北师大版七年级数学下学期第6章概率初步单元卷包含答案

北师大版七年级数学下学期第6章概率初步单元卷包含答案

第6章概率初步一.选择题〔共12小题〕1.以下事件中为必然事件的是〔〕.翻开电视机,正在播放茂名新闻.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上.下雨后,天空出现彩虹2.以下事件中,是不可能事件的是〔〕.买一张电影票,座位号是奇数B.射击运发动射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°3.袋中有红球4个,白球假设干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是〔〕A.3个B.缺乏3个C.4个D.5个或5个以上4.“a是实数,|a|≥0〞这一事件是〔〕A.必然事件B.不确定事件C.不可能事件D.随机事件5.以下说法中不正确的选项是〔〕.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意翻开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个〔每个球除了颜色外都相同〕.如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6 6.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,假设每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,那a的值约为〔〕么A.12B.15C.18D.217.从长为10cm、7cm、5cm、〕3cm的四条线段中任选三条能够组成三角形的概率是〔A.B.C.D.8.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影局部构成轴对称图形的概率是〔〕A.B.C.D.9.对“某市明天下雨的概率是75%〞这句话,理解正确的选项是〔〕A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨.某市明天下雨的可能性较大10.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为〔〕A.B.C.D.11.如图,飞镖游戏板中每一块小正方形除颜色外都相同.假设某人向游戏板投掷飞镖一次〔假设飞镖落在游戏板上〕,那么飞镖落在阴影局部的概率是〔〕A.B.C.D.12.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,那么n的值为〔〕A.3B.5C.8D.10二.填空题〔共5小题〕13.一个不透明的盒子里装有除颜色外无其他差异的白珠子6颗和黑珠子假设干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过屡次试验发现摸到白珠子的频率稳定在左右,那么盒子中黑珠子可能有颗.14.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为〔精确到〕.投篮次数〔n〕50100150200250300500投中次数〔m〕286078104123152251投中频率〔m/n〕15.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.16.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为.17.袋中装有6个黑球和n个白球,经过假设干次试验,发现“假设从袋中任摸出一个球,恰是黑球的概率为〞,那么这个袋中白球大约有个.三.解答题〔共5小题〕18.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.假设红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是.〔1〕求袋中红球的个数;〔2〕求从袋中任取一个球是黑球的概率.19.如下列图的正三角形区域内投针〔区域中每个小正三角形除颜色外完全相同〕,针随机落在某个正三角形内〔边线忽略不计〕1〕投针一次,针落在图中阴影区域的概率是多少?(2〕要使针落在图中阴影区域和空白区域的概率均为,还要涂黑几个小正三角形?请在图中画出.20.超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖时机.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.一次性购物满300元者,如果不摇奖可返还现金15元.〔1〕摇奖一次,获一等奖的概率是多少?〔2〕老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.21.如图是一个涂有红、黄两种颜色的旋转转盘.有几个同学做转盘实验,他们将实验中获得的数据填入下面的统计表中.〔1〕请将统计表补充完整;转动次1001502005008001000200数n落在681081365607001400“红〞的次数落在“红〞的频率〔2〕请你估计:当n很大时,频率将会接近%〔保存两个有效数字〕.22.〔实践创新题〕小明在操场上做游戏,他发现地上有一个不规那么的封闭图形ABC如图所示,为了求其面积,小明在封闭的图中找出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:掷石子次数50次150次300次石子落在区域石子落在⊙O内〔含⊙O上〕次数m144393石子落在阴影内次数n2985186你能否求出封闭图形ABC的面积?试试看.参考答案一.选择题〔共12小题〕1.B.2..3..4.A.5.C.6.B.7.C.8.C.9..10.B.11.C.12.C.二.填空题〔共5小题〕13.14.14..15..16..17.2.三.解答题〔共5小题〕18.解:〔1〕290×=10〔个〕,290﹣10=280〔个〕,280﹣40〕÷〔2+1〕=80〔个〕,280﹣80=200〔个〕.故袋中红球的个数是200个;〔2〕80÷290=.答:从袋中任取一个球是黑球的概率是.19.解:〔1〕因为阴影局部的面积与三角形的面积的比值是=,所以投针一次击中阴影区域的概率等于.〔2〕如下列图:要使针落在图中阴影区域和空白区域的概率均为,还要涂黑2个小正三角形.20.解:〔1〕整个圆周被分成了16份,红色为1份,∴获得一等奖的概率为:,〔2〕转转盘:60×+50×+40×=20元,20元>15元,∴转转盘划算.21.解:〔1〕请将统计表补充完整;转动次1001502005008001000200数n落在681081363455607001400“红〞的次数落在“红〞的频率〔2〕频率将会接近70%〔保存两个有效数字〕.22.解:由记录=1:2,可见P〔落在⊙O内〕==,又P〔落在圆O内〕=,所以=,AB C 2〕.S=3π〔m。

北师大七年级下《第6章概率初步》单元测试题含答案

北师大七年级下《第6章概率初步》单元测试题含答案

第六章 概率初步时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1、如图有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意一张是数字3的概率是( )A 、61 B 、31 C 、21 D 、32 2、在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( ) A 、15B 、29C 、14D 、5183. 向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于( )A 、 1 6B 、 1 4C 、 3 8D 、 5 84、 一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的0.5的概率是( ) A 、61 B 、 31 C 、21 D 、32 5、在a 2□4a □4的空格□中,任意填上“+”或“-”,在所得到的代数式中,能构成完全平方式的概率是( )A 、1B 、0.5C 、0.75D 、0.256.将一枚质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率为( )A.12B.13C.15D.167.一个暗箱里放有a 个完全相同的白球,为了估计暗箱里球的个数,放入3个红球,这两种球除颜色外其他均相同,将球搅拌均匀后任意摸出一个球,记下颜色再放回暗箱,搅匀后重复摸球.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%左右,那么a的值大约是( )A.12 B.9 C.4 D.38.小明在白纸上任意画了一个锐角,他画的角在45°到60°之间的概率是( )A.16B.13C.12D.239.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是( )A.47B.37C.27D.1710.以下有四个事件:①抛一枚匀质硬币,正面朝上;②掷一枚匀质骰子,所得的点数为3;③从一副54张扑克牌中任意抽出一张恰好为红桃;④从装有1个红球,2个黄球的袋中随意摸出一个球,这两种球除颜色外其他都相同,结果恰好是红球.按概率从小到大顺序排列的结果是( )A.①<②<③<④ B.②<③<④<①C.②<①<③<④ D.③<②<①<④二、填空题(每小题3分,共24分)11.任意选择电视的某一频道,正在播放新闻,这个事件是________事件(填“必然”“不可能”或“随机”).12.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是________.13.如图所示的地面上有一只跳蚤在随意跳动,那么它最终停留在黑色方砖上的概率是________.14.在分别写有-1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1的概率为________.15.将一个均匀的转盘平均分成若干份,其中两份涂上白色,一份涂上黄色,其余涂成红色.若任意转动转盘指针指向白色的概率为12,则任意转动转盘指针指向红色的概率为________.16.在一个不透明的口袋中装有除颜色不同外其他均相同的黄、白两种小球,其中白球8个,黄球n 个.若从袋中任取一个球,摸出白球的概率为23,则n =________.17.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是________.18.有一个质地均匀的正二十面体形状的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,将这个骰子掷出后,朝正上方的数字为“6”的概率是________,数字________朝正上方的可能性最大.三、解答题(共66分)19.(9分)在三个不透明的布袋中分别放入一些除颜色不同外其他都相同的玻璃球,并搅匀,具体情况如下表:(1)随机地从第1个布袋中摸出一个玻璃球,该球是黄色、绿色或红色的; (2)随机地从第3个布袋中摸出一个玻璃球,该球是红色的;(3)随机地从第1个布袋和第2个布袋中各摸出一个玻璃球,两个球的颜色一致.20.(9分)抛掷一枚普通的正方体骰子24次.(1)你认为下列四种说法哪些是正确的?①出现1点的概率等于出现3点的概率;②抛掷24次,2点一定会出现4次;③抛掷前默念几次“出现4点”,抛掷结果出现4点的可能性就会加大;④连续抛掷6次,出现的点数之和不可能等于37.(2)求出现5点的概率;(3)出现6点大约有多少次?21.(9分)某篮球运动员在同一条件下进行投篮训练,结果如下表:(1)(2)根据上表,画出该运动员投中的频率的折线统计图;(3)观察画出的折线统计图,投中的频率的变化有什么规律?2.(7分)请用一个被等分为12个扇形的圆盘设计一个飞镖盘,当进行投飞镖练习时,假设每次投飞镖都能命中这个飞镖盘,每投一次飞镖,命中红色区域的概率为16,命中黄色区域的概率为13,命中蓝色区域的概率为12.23.(10分)一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外其他都相同,将球摇匀.(1)如果从中任意摸出1个球. ①你能够事先确定摸到球的颜色吗? ②你认为摸到哪种颜色的球的概率最大?③如何改变袋中白球、红球的个数,使摸到这三种颜色的球的概率相等? (2)从中一次性最少摸出________个球,必然会有红色的球.24.(10分)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式.若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.25.(12分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.(1)假设平均每天通过该路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆各是多少辆;(2)目前在此路口,汽车左转、右转、直行的绿灯亮的时间均为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的绿灯亮的时间做出合理的调整. 答案BBCAB BB 记分B11.随机 12.25 13.14 14.1215.14 16.4 17.12 18.145和6 19.解:(1)一定会发生,是必然事件.(3分) (2)一定不会发生,是不可能事件.(6分) (3)可能发生,也可能不发生,是随机事件.(9分)20.解:(1)①和④是正确的.(3分)(2)出现5点的概率不受抛掷次数的影响,始终是16.(6分)(3)出现6点大约有24×16=4(次).(9分)21.解:(1)0.8 0.9 0.84 0.86 0.845 0.848 0.859(3分) (2)图略.(6分) (3)逐步接近0.85.(9分)22.解:∵16+13+12=212+412+612=1212,∴这个飞镖盘中,红、黄、蓝色的扇形个数分别为2,4,6.(4分)制作的飞镖盘如图所示.(7分)23.解:(1)①不能事先确定摸到的球是哪一种颜色.(2分)②摸到红球的概率最大.(4分)③增1个白球,减1个红球;答案不唯一,只要使袋子中的白球、黄球、红球的个数相等即可.(7分)(2)4(10分)24.解:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,∴P (得到优惠)=612=12.(5分) (2)选择转动转盘1能获得的优惠为0.3×300+0.2×300×2+0.1×300×312=25(元),(7分)选择转动转盘2能获得的优惠为40×24=20(元),(9分)∴选择转动转盘1更合算.(10分)25.解:(1)汽车在此左转的车辆数为5000×310=1500(辆),(2分)在此右转的车辆数为5000×25=2000(辆),(4分)在此直行的车辆数为5000×310=1500(辆).(6分)(2)根据频率估计概率的知识,得P (汽车向左转)=310,P (汽车向右转)=25,P (汽车直行)=310.(9分)∴可调整绿灯亮的时间如下:左转绿灯亮的时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒),直行绿灯亮的时间为90×310=27(秒).(12分)。

第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)

第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)

北师大新版七年级下册《第6章概率初步》2024年单元测试卷一、选择题1.“任意买一张电影票,座位号是2的倍数”,此事件是( )A.不可能事件B.随机事件C.必然事件D.确定事件2.小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A.B.C.D.3.下列事件发生的概率为0的是( )A.随意掷一枚硬币两次,有一次正面朝上B.早晨太阳从东方升起C.|a|=2,a=2D.从三个红球中摸出一个黑球4.在一个不透明的口袋中装有2个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有( )A.5个B.6个C.7个D.8个5.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2B.P1<P2C.P1=P2D.以上都有可能6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( )A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A.1B.C.D.8.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( )A.B.C.D.9.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为( )A.B.C.D.10.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A.B.C.D.二、填空题11.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 .12.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出红球的概率是0.2,则n= .13.小明和爸爸进行射击比赛,他们每人都射击10次.小明击中靶心的概率为0.6,则他击不中靶心的次数为 次;爸爸击中靶心8次,则他击不中靶心的概率为 .14.一个圆形转盘的半径为2cm,现将转盘分成若干个扇形,并分别相间涂上红、黄两种颜色.转盘转动10000次,指针指向红色部分有2500次.转盘上黄色部分的面积大约是 .15.已知一包糖共有5种颜色(糖果只有颜色差别),如图所示是这包糖果分布的百分比的统计图在这包糖中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .16.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为 .17.在世界大学生运动会射击运动员选拔活动中,甲、乙两组各四名选手的射击平均环数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名选手,则这两名选手的射击平均环数为19的概率 .三、解答题18.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:(1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?19.如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?20.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P (在客厅捉到小猫);(2)P (在小卧室捉到小猫);(3)P (在卫生间捉到小猫);(4)P (不在卧室捉到小猫).21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近  ;(2)假如你去摸一次,你摸到白球的概率是  ,摸到黑球的概率是  ;(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少只?22.用10个球设计一个摸球游戏,且分别满足下列要求:(1)使摸到红球的概率为;(2)使摸到红球和白球的概率都是.23.将正面分别写有数字1,2,3的三张卡片(卡片的形状、大小、质地、颜色等其他方面完全相同)洗匀后,背面朝上放在桌面上.甲从中随机抽取一张卡片,记该卡片上的数字为a,然后放回洗匀,背面朝上放在桌面上;再由乙从中随机抽取一张卡片,记该卡片上的数字为b,组成数对(a,b).(1)请写出数对(a,b)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽取一次卡片,按照得到的数对计算ab2的值,若ab2的值为奇数则甲赢;ab2的值为偶数则乙赢.你认为这个游戏公平吗?请说明理由.北师大新版七年级下册《第6章概率初步》2024年单元测试卷参考答案与试题解析一、选择题1.【解答】解:“任意买一张电影票,座位号是2的倍数”,此事件是随机事件.故选:B.2.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小军能一次打开该旅行箱的概率是,故选:A.3.【解答】解:A、随意掷一枚硬币两次,有一次正面朝上,是随机事件,发生的概率大于0并且小于1,不符合题意;B、早晨太阳从东方升起,是必然事件,发生的概率为1,不符合题意;C、|a|=2,a=2,是随机事件,发生的概率大于0并且小于1,不符合题意;D、从三个红球中摸出一个黑球,是不可能事件,发生的概率为0,符合题意;故选:D.4.【解答】解:设袋中白球的个数为x,根据题意,得:=20%,解得x=8,经检验x=8是分式方程的解,所以口袋中白球可能有8个,故选:D.5.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在甲种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选:A.6.【解答】解:根据概率的意义可得“抽到一等奖的概率为0.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.7.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.8.【解答】解:因为后3位是3,6,7三个数字共6种排列情况,而正确的只有1种,故小明第一次就拨对的概率是.故选:B.9.【解答】解:图中共有水彩笔2+3+4+3+6+2=20支,其中蓝色水彩笔6支,则抽到蓝色水彩笔的概率为=;故选:C.10.【解答】解:列树状图得:共有6种情况,和为3的情况数有3种,所以概率为,故选:A.二、填空题11.【解答】解:P(答对)=.12.【解答】解:根据题意得:=0.2,解得:n=12,经检验:n=12是原分式方程的解.故答案为:12.13.【解答】解:由题意知:小明不中靶心的次数为10×(1﹣0.6)=4次,爸爸击中靶心8次,则他击不中靶心有2次,故其概率为0.2.故本题答案为:4;0.2.14.【解答】解:转盘转动10000次,指针指向红色部分为2500次,指针指向红色的概率2500÷10000=25%,即红色面积占总面积的25%;而黄色面积占75%,其面积为0.75×4π=3π(cm2).故答案为:3πcm2.15.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=,故答案为:.16.【解答】解:AB间距离为10,MN的长为2,故以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为=.17.【解答】解:画树状图如图:∵共有16种等可能结果,两名同学的射击平均环数为19的结果有5种结果,∴这两名同学的射击平均环数为19的概率为,故答案为:.三、解答题18.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是偶数的有2,4,6,它们发生的可能性是所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是=,朝上的点数不大于4的数有1,2,3,4,发生可能性是=,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.19.【解答】解:根据几何概率的意义可得:P(红色区域)==,P(白色区域)===,答:指针落在白色区域的概率是,指针落在红色区域的概率是.20.【解答】解:(1)P(在客厅捉到小猫)==.(2)P(在小卧室捉到小猫)==.(3)P(在卫生间捉到小猫)==.(4)P(不在卧室捉到小猫)===.21.【解答】解:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60,故答案为:0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;故答案为:0.6,0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球有30×0.6=18个,黑球有30×0.4=12个.22.【解答】解:(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.23.【解答】解:(1)如图所示:(2)由树状图知,共有9种等可能结果,其中ab2的值为奇数的有1、9、3、27这4种结果,ab2的值为偶数的有4、2、8、18、12这5种结果,所以甲赢的概率为,乙赢的概率为,∵≠,∴这个游戏不公平.。

2020年北师大版七年级数学下册 第6章 概率初步 单元综合评价试卷含解析

2020年北师大版七年级数学下册 第6章 概率初步 单元综合评价试卷含解析

2020年北师大版七年级数学下册第6章概率初步单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共10小题)1.有一个正方体骰子,6个面分别标有1~6这6个整数,投掷这个正方体骰子一次,朝上一面出现奇数的概率是()A.B.C.D.2.下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.明天晚上会看到太阳C.五个人分成四组,这四组中有一组必有2人D.三天内一定会下雨3.一个不透明的盒子中装有5个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大4.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”5.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2B.12C.18D.246.某个事件发生的概率是,这意味着()A.在一次试验中没有发生,下次肯定发生B.在一次事件中已经发生,下次肯定不发生C.每次试验中事件发生的可能性是50%D.在两次重复试验中该事件必有一次发生7.点O1、O2、O3为三个大小相同的正方形的中心,一只小虫在如图所示的实线围成的区域内爬行,则小虫停留在阴影区域内的概率是()A.B.C.D.8.某林业部门要考察某幼苗的成活率,于是进行了试验,如表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9050.8970.8970.902 A.由此估计这种幼苗在此条件下成活的概率约为0.9B.如果在此条件下再移植这种幼苗20000株,则必定成活18000株C.可以用试验次数累计最多时的频率作为概率的估计值D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率9.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是()A.若α>90°,则指针落在红色区域的概率大于0.25B.若α>β+γ+θ,则指针落在红色区域的概率大于0.5C.若α﹣β=γ﹣θ,则指针落在红色或黄色区域的概率和为0.5D.若γ+θ=180°,则指针落在红色或黄色区域的概率和为0.510.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上B.可能有3次正面朝上C.至少有1次正面朝上D.不可能有6次正面朝上二.填空题(共8小题)11.王强投掷一枚质地均匀的硬币,连续投3次,硬币落地均是正面向上,他投掷第四次正面向上的概率为.12.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为事件.13.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.14.一个布袋里放有5个红球,3个球黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是.15.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是.16.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室41120B教室34032C教室12143通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.17.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.18.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为.三.解答题(共8小题)19.现有4个红球,请你设计摸球游戏.(1)使摸球事件是个不可能事件;(2)使摸球事件是个必然事件.20.盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是,写出表示x和y关系的表达式.(2)往盒中再放进10枚黑棋,取得黑棋的概率变为,求x和y的值.21.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据:抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率0.630.600.630.600.620.610.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.22.如图,是一个被等分成8个扇形的转盘.请在扇形内写上“红、黑”表示涂上相应的颜色,未写表示白色,使得自由转动停止后,指针落在红色区域的概率等于落在黑色区域的概率,且小于落在白色区域的概率.填出两种,再指出“红、黑,白”分别是多少个?23.为弘扬中华传统文化,某学校决定开设民族器乐选修课,为了更适合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,给出以下未完成的统计图.(1)这次抽样调查中,共调查名学生.(2)扇形统计图(图2),“古筝”部分所对应的圆心角为度,“二胡”部分所对应的圆心角为度.(3)如果从选择“琵琶”选项的学生中,随机抽取15名学生参加“琵琶”乐器选修课,那么被选中的学生的可能性大小是.24.动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?25.如图为一个封闭的圆形装置,整个装置内部为A、B、C三个区域(A、B两区域为圆环,C区域为小圆),具体数据如图.(1)求出A、B、C三个区域三个区域的面积:S A=,S B=,S C=;(2)随机往装置内扔一粒豆子,多次重复试验,豆子落在B区域的概率P B为多少?(3)随机往装置内扔180粒豆子,请问大约有多少粒豆子落在A区域?26.在边长为4的正方形平面内,建立如图1所示的平面直角坐标系.学习小组做如下实验:连续转动分布均匀的转盘(如图2)两次,指针所指的数字作为直角坐标系中P点的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标).(1)转盘转动共能得到个不同点,P点落在正方形边上的概率是;(2)求P点落在正方形外部的概率.参考答案与试题解析一.选择题(共10小题)1.解:由题意可得,投掷这个正方体骰子一次,朝上一面出现的奇数是1,3,5,故投掷这个正方体骰子一次,朝上一面出现奇数的概率是=,故选:B.2.解:A、任意购买一张电影票,座位号是奇数是随机事件;B、明天晚上会看到太阳是不可能事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、三天内一定会下雨是随机事件;故选:C.3.解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.根据不透明的盒子中装有5个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C 选项错误;D.根据不透明的盒子中装有5个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D 选项正确;故选:D.4.解:A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴选项A不正确;B、∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴选项B不正确;C、∵“直角三角形”三边的长度不相同,∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,∴选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,∴选项D正确.故选:D.5.解:根据题意得=0.25,解得:a=18,经检验:a=18是分式方程的解,故选:C.6.解:∵某个事件发生的概率是,∴根据概率的意义:该事件在一次试验中可能发生,也可能不发生,每次试验中事件发生的可能性是50%,故选:C.7.解:由图知:小虫停留在阴影区域内的概率==,故选:B.8.解:A.由此估计这种幼苗在此条件下成活的概率约为0.9,此选项正确;B.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,此选项错误;C.可以用试验次数累计最多时的频率作为概率的估计值,此选项正确;D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,此选项正确;故选:B.9.解:A、∵α>90°,∴>=0.25,故A正确;B、∵α+β+γ+θ=360°,α>β+γ+θ,∴>=0.5,故B正确;C、∵α﹣β=γ﹣θ,∴α+θ=β+γ,∵α+β+γ+θ=180°,∴α+θ=β+γ=180°,∴=0.5,∴指针落在红色或紫色区域的概率和为0.5,故C错误;D、∵γ+θ=180°,∴α+β=180°,∴=0.5,∴指针落在红色或黄色区域的概率和为0.5,故D正确;故选:C.10.解:掷一枚质地均匀的硬币,可能正面向上,也可能反面向上,可能性是均等的,不会受到前一次的影响,掷一枚质地均匀的硬币6次,不一定3次正面朝上,因此A选项不符合题意,“可能有3次正面朝上”是正确的,因此B选项正确;可能6次都是反面向上,因此C不符合题意,有可能6次正面向上,因此D选项不符合题意;故选:B.二.填空题(共8小题)11.解:∵抛掷一枚质地均匀的硬币一次,可能的结果有:正面向上,反面向上;∴P(正面向上)=P(反面向上)=.故答案为:.12.解:投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为随机事件,故答案为:随机.13.解:黑色区域的面积=3×5﹣×3×1﹣×2×2﹣×3×1=10,所以击中黑色区域的概率==.故答案为:.14.解:∵在一个布袋里放有5个红球,3个球黄球和2个黑球,它们除了颜色外其余都相同,∴从布袋中任意摸出一个球是黑球的概率为:=.故答案为:.15.解:51、53、55、57、59、60这6个数中能被5整除的有55和60两个,所以抽到的数能被5整除的可能性的大小是=,故答案为:.16.解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.17.解:P(中奖)==.故本题答案为:.18.解:由题意可得,×100%=20%,解得,a=15.故答案为:15.三.解答题(共8小题)19.解:(1)在4个白球中摸出一个红球,是不可能事件;(2)在4个白球中摸出一个白球,是必然事件.20.解:(1)∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是,∴可得关系式=;(2)如果往口袋中再放进10个黑球,则取得黑棋的概率变为,又可得=;联立求解可得x=15,y=25.21.解:(1):抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率0.630.600.620.630.620.600.620.610.610.61(2)(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.22.解:根据题意画图如下:第一个图红色2份,所占的概率是=,第一个图黑色2份,所占的概率是=,第一个图白色4份,所占的概率是=;第二个图红色1份,所占的概率是,第二个图黑色1份,所占的概率是,第二个图白色6份,所占的概率是=.23.解:(1)根据题意得:20÷10%=200(名),答:一共调查了200名学生;故答案为:20;(2))“古筝”部分所对应的圆心角为:360°×25%=90°;喜欢古琴所占的百分比30÷200=15%,喜欢二胡所占的百分比1﹣10%﹣25%﹣20%﹣15%=30%,二胡部分所对应的圆心角的度数为:30%×360°=108°;故答案为:90,108;(3)被选中的学生的可能性大小是:=;故答案为:.24.解;现年20岁的这种动物活到25岁的概率为=0.625,现年25岁的这种动物活到30岁的概率为=0.6,答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.25.解:(1)S A=π•22=4π,S B=π•42﹣π•22=12π,S C=π•62﹣π•42=20π;故答案为:4π,12π,20π;(2)豆子落在B区域的概率P B为:=;(3)根据题意得:180×=100(粒),答:大约有100粒豆子落在A区域.26.解:(1)列表如下:123﹣1﹣2﹣3 1(1,1)(1,2)(1,3)(1,﹣1)(1,﹣2)(1,﹣3)2(2,1)(2,2)(2,3)(2,﹣1)(2,﹣2)(2,﹣3)3(3,1)(3,2)(3,3)(3,﹣1)(3,﹣2)(3,﹣3)﹣1(﹣1,1)(﹣1,2)(﹣1,3)(﹣1,﹣1)(﹣1,﹣2)(﹣1,﹣3)﹣2(﹣2,1)(﹣2,2)(﹣2,3)(﹣2,﹣1)(﹣2,﹣2)(﹣2,﹣3)﹣3(﹣3,1)(﹣3,2)(﹣3,3)(﹣3,﹣1)(﹣3,﹣2)(﹣3,﹣3)根据图表可得:转盘转动共能得到36个不同点,P点落在正方形边上的有12个,则P点落在正方形边上的概率是=;故答案为:36,;(2)根据图表得出:共有36个点,其中落在正方形外部的点共有20个,则P点落在正方形外部的概率是:=.。

2020北师大版七年级数学下册第6章《概率初步》单元测试试卷及答案(2)【精编版】

2020北师大版七年级数学下册第6章《概率初步》单元测试试卷及答案(2)【精编版】

北师大版七年级数学下册第6章《概率初步》单元测试试卷及答案(2)(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列事件是必然事件的是( )A.某运动员投篮时连续3次全中B.太阳从西方升起C.打开电视正在播放动画片D.若,则2.下列事件:①掷一枚硬币,着地时正面向上;②在标准大气压下,水加热到会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有( )A.1个B.2个C.3个D.4个3.气象台预报“本市明天降水概率是”,对此信息,下面的几种说法正确的是( )A.本市明天将有的地区降水 B.本市明天将有的时间降水 C.明天肯定下雨D.明天降水的可能性比较大 4.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( ) A.1 B.12 C.13 D.0 5.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是1p ,摸到红球的概率是2p ,则( )A.1211p p ==,B.1201p p ==,C.120p p ==,14D.12p p ==146.有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( ) A.13 B.16 C.12 D.147.某市民政部门:五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:A.20001B.5001C.5003D.20038.做重复实验:抛掷同一枚啤酒瓶盖次.经过统计得“凸面向上”的频率约为,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()9.关于频率和概率的关系,下列说法正确的是()A.频率等于概率B.当实验次数很大时,频率稳定在概率附近C.当实验次数很大时,概率稳定在频率附近D.实验得到的频率与概率不可能相等10.现有游戏规则如下:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到“38”,谁就获胜.在这个游戏中,若采取合理的策略,你认为()A.后报者可能胜B.后报者必胜C.先报者必胜D.不分胜负二、填空题(每小题3分,共24分)11.下列6个事件中:(1)掷一枚硬币,正面朝上;(2)从一副没有大、小王的扑克牌中抽出一张恰为黑桃;(3)随意翻开一本有400页的书,正好翻到第100页;(4)天上下雨,马路潮湿;(5)买奖券中特等大奖;(6)掷一枚正方体骰子,得到的点数大于7.其中确定事件为___________,不确定事件为____________;不可能事件为_________,必然事件为__________;不确定事件中,发生可能性最大的是_______,发生可能性最小的是________.12.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)13.小芳掷一枚硬币次,有次正面向上,当她掷第次时,正面向上的概率为______.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.15.如图,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是________.16.如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________.17.从某玉米种子中抽取6批,在同一条件下进行发芽实验,有关数据如下:第16题图18.一个口袋里有个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共实验次,其中有次摸到黄球,由此估计袋中的黄球约有_____个.三、解答题(共46分)19.(6分)一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完全相同,每次任取3只,出现了下列事件:(1)3只正品;(2)至少有一只次品;(3)3只次品;(4)至少有一只正品.指出这些事件分别是什么事件.20.(6分)如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:(1)小猫踩在白色的正方形地板上,这属于哪一类事件?(2)小猫踩在白色或黑色的正方形地板上,这属于哪一类事件?(3)小猫踩在红色的正方形地板上,这属于哪一类事件?(4)小猫踩在哪种颜色的正方形地板上可能性较大?21.(6分)一只小狗在如图所示的方砖上走来走去,求最终停在阴影方砖上的概率是多少?22.(6分)如图所示,有一个转盘,转盘被分成4个相同的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当做指向右边的扇形),求下列事件的概率:(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.23.(6分)请用“一定”、“很可能”、“可能性极小”、“可能”、“不太可能”、“不可能”等语言来描述下列事件的可能性.(1)买20注彩票,获特等奖500万.(2)袋中有50个球,1个红的,49个白的,从中任取一球,取到红色的球.(3)掷一枚均匀的骰子,6点朝上.(4)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品.(5)早晨太阳从东方升起.第21题图(6)小丽能跳高.24.(8分)小颖和小红两名同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?25.(8分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取到红球的概率是14.(1)取到白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?参考答案1.D 解析:A 项和C 项可能发生也可能不发生,是随机事件;B 项不可能发生,是不可能事件;D 项必然发生,是必然事件.2.A 解析:②在标准大气压下,水加热到会沸腾是必然事件. 3.D 解析:本市明天降水概率是,只能说明明天降水的可能性比较大,是随机事件,A ,B ,C 属于对题意的误解,只有D 正确.4.C 解析:因为是随机选取的,故选取桂花、菊花、杜鹃花的可能性是相等的.5.B 解析:因为袋中只有红球,故摸到白球是不可能事件,摸到红球是必然事件.6.C 解析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为12. 7.C 解析:因为从10万张彩票中购买一张,每张被买到的机会相同,因而有10万个结果,奖金不少于50元的共有,个)(6004001504010=+++,元所得奖金不少于所以5003100000600)50(==P 故选C. 8.D 解析:在大量重复实验下,随机事件发生的频率可以作为概率的估计值,因此抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为.9.B 解析:A.利用频率只能估计概率;B 正确;C.概率是定值;D.可以相等,如“抛硬币实验”,可得到正面向上的频率为,与概率相同. 10.C 解析:为了抢到,必须抢到35,那么不论另一个人报还是,你都能胜.游戏的关键是报数先后顺序,并且每次报数的个数和对方合起来是三个,即对方报个数,你就报个数.抢数游戏,它的本质是一个是否被“”整除的问题.谁先抢到,对方无论报“36”或“37”你都获胜. 11.解析:因为一枚硬币有正、反两面,所以掷一枚硬币,正面朝上,是随机事件;因为一副没有大小王的扑克牌中有黑桃、红桃、梅花及方块共四种花色,故随机抽出一张恰是黑桃,是随机事件;因为一本书有400页,每页都有被翻到的可能性,正好翻到第100页,是随机事件;天上下雨后雨水落到地上,马路就湿了,是必然事件;买奖券可能中特等奖,也可能不中特等奖,是随机事件;正方体骰子共有6个面,点数为得到的点数大于7,是不可能事件.发生的概率为21,可能性最大;发生的可能性最小,概率往往为数百万分之一. 12.不公平 解析:甲获胜的概率是49,乙获胜的概率是59,两个概率值不相等,故这个游戏不公平. 13.21 解析:掷一枚硬币正面向上的概率为21,概率是个固定值,不随实验次数的变化而变化.14.45解析:在圆、等腰三角形、矩形、菱形、正方形5种图形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是45. 15.21 解析:圆形地面被分成面积相等的八部分,其中阴影占四部分,所以小球落在黑色石子区域内的概率是 21. 16.21 解析:由图可知阴影部分的面积是大圆面积的一半,所以豆子落在阴影部分的概率是21. 17. 解析:由表知,种子发芽的频率在0.8左右摆动,并且随着统计量的增加这种规律逐渐明显,所以可以把0.8作为该玉米种子发芽概率的估计值.18.15 解析:因为口袋里有25个球,实验200次,其中有120次摸到黄球,所以摸到黄球的频率为,所以袋中的黄球有.故袋中的黄球约有个.19.解:(1)(2)可能发生,也可能不发生,是随机事件.(3)一定不会发生,是不可能事件.(4)一定发生,是必然事件.20.解:(1)可能发生,也可能不发生,是随机事件;(2)一定会发生,是必然事件;(3)一定不会发生,是不可能事件;(4)踩在黑色的正方形地板上可能性较大.21.解:因为方砖共有15块,而阴影方砖有5块,所以停在阴影方砖上的概率是51153=. 22.解:转一次转盘,它的可能结果有四种:红、红、绿、黄,并且各种结果发生的可能性 相等.(1)(指针指向绿色)14;(2)(指针指向红色或黄色)34; (3)(指针不指向红色)12. 23.解:(1)买20注彩票,获特等奖500万,可能性极小;(2)袋中有50个球,1个红的,49个白的,从中任取一球,取到红色的球,不太可能;(3)掷一枚均匀的骰子,6点朝上,可能;(4)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品,很可能;(5)早晨太阳从东方升起,一定;(6)小丽能跳高,不可能.24.解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当实验的次数足够大时,该事件发生的频率才稳定在事件发生的概率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.25.解:(1)()().434111=-=-=取到红球取到白球P P (2)设袋中的红球有x 只,则有1184x x =+ 或183184x =+,解得6x =. 所以袋中的红球有6只.。

2019-2020年北师大版七年级数学下册第6章 概率初步单元测试卷解析版

2019-2020年北师大版七年级数学下册第6章 概率初步单元测试卷解析版

2019-2020年北师大版七年级数学下册第6章概率初步单元测试卷一.选择题(共12小题)1.下列事件是必然事件的是()A.2018年5月15日宁德市的天气是晴天B.从一副扑克中任意抽出一张是黑桃C.在一个三角形中,任意两边之和大于第三边D.打开电视,正在播广告2.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和是360°B.任意抛一枚图钉,钉尖着地C.通常加热到100℃时,水沸腾D.太阳从东方升起3.给出下列结论:①打开电视机它正在播广告的可能性大于不播广告的可能性②小明上次的体育测试是“优秀”,这次测试它百分之百的为“优秀”③小明射中目标的概率为,因此,小明连射三枪一定能够击中目标④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等其中正确的结论有()A.1个B.2个C.3个D.4个4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上5.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球6.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖7.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.8.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A.2B.4C.12D.169.小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.10.如果小强将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为()A.B.C.D.11.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.90个B.24个C.70个D.32个12.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9二.填空题(共8小题)13.“一个有理数的绝对值是负数”是的.(填“必然发生”或“不可能发生”或“可能发生”)14.请你写出一个必然事件.15.把如图自由转动的转盘的序号按转出黑色的可能性从小到大的顺序排列起来是16.如图所示,有一电路连着三个开关,每个开关闭合的可能性均为,若不考虑元件的故障因素,则电灯点亮的可能性为.17.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是.18.张强的身高将来会长到4米,这个事件的概率为.19.在一个不透明的布袋中装有5个红球,2个白球,3个黄球,它们除了颜色外其余都相同,从袋中任意摸出一个球,是黄球的概率为.20.一只口袋中放着8只红球和16只黑球,这两种球除颜色以外没有任何其他区别.从口袋中随机取出一个球,取出这个球是红球的概率为.三.解答题(共8小题)21.下列有四种说法:①了解某一天出入宜宾市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么他仍是可能发生的事件.其中,正确的说法是.22.如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:(1)小猫踩在白色的正方形地板上,这属于哪一类事件?事件(填“必然”,“不可能”或“不确定”)(2)小猫踩在白色或黑色的正方形地板上,这属于哪一类事件?事件(3)小猫踩在红色的正方形地板上,这属于哪一类事件?事件(4)小猫踩在哪种颜色的正方形地板上可能性较大?.23.如图所示,下面第一排表示了各袋中球的情况,请用第二排中的语言来描述摸到红球的可能性大小,并用线连起来.24.在你的班级中任意抽一名学生,则抽到男同学的可能性与抽到女同学的可能性哪个大?为什么?25.某商场设计了两种促销方案:第一种是顾客在商场消费每满200元就可以从一个装有100个完全相同的球(球上分别标有数字1,2,…,100)的箱子中随机摸出一个球(摸后放回).若球上的数字是88,则返500元购物券;若是66或99,则返300元购物券;若球上的数字被5整除,则返5元购物券;若是其它数字不返还购物券.第二种是顾客在商场消费每满200元直接返还15元购物券.估计活动期间将有5000人参加活动.请你通过计算说明商家选择哪种方案促销合算些?26.某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%.在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中.全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问:(1)最后一个3分球由甲、乙中谁来投,获胜的机会更大?(2)请简要说说你的理由.27.有两个布袋,甲布袋有12只白球,8只黑球,10只红球;乙布袋中有3只白球,2只黄球,所有小球除颜色外都相同,且各袋中小球均已搅匀.(1)如果任意摸出1球,你想摸到白球,你认为选择哪个布袋成功的机会较大?(2)如果又有一布袋丙中有32只白球,14只黑球,4只黄球,你又选择哪个布袋呢?28.一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)在(1)的条件下,取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?参考答案与试题解析一.选择题(共12小题)1.下列事件是必然事件的是()A.2018年5月15日宁德市的天气是晴天B.从一副扑克中任意抽出一张是黑桃C.在一个三角形中,任意两边之和大于第三边D.打开电视,正在播广告【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:A、2018年5月15日宁德市的天气是晴天是随机事件;B、从一副扑克中任意抽出一张是黑桃是随机事件;C、在一个三角形中,任意两边之和大于第三边是必然事件;D、打开电视,正在播广告是随机事件;故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和是360°B.任意抛一枚图钉,钉尖着地C.通常加热到100℃时,水沸腾D.太阳从东方升起【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、任意画一个三角形,其内角和是360°是不可能事件,故本选项错误;B、任意抛一枚图钉,钉尖着地是随机事件,故本选项正确;C、通常加热到100℃时,水沸腾是必然事件,故本选项错误;D、太阳从东方升起是必然事件,故本选项错误;故选:B.【点评】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.给出下列结论:①打开电视机它正在播广告的可能性大于不播广告的可能性②小明上次的体育测试是“优秀”,这次测试它百分之百的为“优秀”③小明射中目标的概率为,因此,小明连射三枪一定能够击中目标④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据可能性的意义,依次分析可得正确选项.【解答】解:依次分析可得:①未知是什么时间,打开哪个台的节目,故无法判断,错误;②上次测试与这次不同,小明这次测试未必为“优秀”,错误;③小明射中目标的概率为,只表明其命中的可能性大小,小明连射三枪不一定能够击中目标,错误;④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等,都是0.5,正确;只有④是正确的,故选:A.【点评】随机事件是指在一定条件下,可能发生也可能不发生的事件;概率=所求情况数与总情况数之比.4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上【分析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.【解答】解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选:D.【点评】本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.5.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球【分析】直接利用概率的意义分析得出答案.【解答】解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球.故选:C.【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键.6.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖【分析】利用概率的意义和必然事件的概念的概念进行分析.【解答】解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选:A.【点评】此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.7.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.【分析】让正面的数字是偶数的情况数除以总情况数5即为所求的概率.【解答】解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.8.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A.2B.4C.12D.16【分析】根据白球的个数和摸到白球的概率,利用概率公式求得黄球的个数即可.【解答】解:设黄球的个数为x个,根据题意得:=,解得:x=16,故选:D.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.9.小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S,进而得出答案.△CEB 【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,且阴影部分面积=S △CEB =S △ABC =S 正方形ABCD ,故小明投掷飞镖一次,则飞镖落在阴影部分的概率为:.故选:B .【点评】此题主要考查了几何概率,正确利用正方形性质得出阴影部分面积=S △CEB 是解题关键.10.如果小强将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为( )A .B .C .D .【分析】根据几何概率的求法:镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:观察这个图可知:阴影部分占四个小正方形,占总数36个的,故其概率是.故选:A .【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.11.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为( )A .90个B .24个C .70个D .32个【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再利用频率等于原白球数除以总球数进行求解.【解答】解:设黄球数为x个,∵重复360次,摸出白色乒乓球90次∴白球的概率为∴=解得x=24.故选:B.【点评】解答此题的关键是要计算出口袋中白色球所占的比例即白球的概率,再计算黄球的个数.12.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意;故选:D.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.二.填空题(共8小题)13.“一个有理数的绝对值是负数”是不可能发生的.(填“必然发生”或“不可能发生”或“可能发生”)【分析】根据任何一个有理数的绝对值一定是非负数,然后根据必然事件、不可能事件、可能发生事件的定义即可作出判断.【解答】解:一个有理数的绝对值是负数”是不可能发生的.故答案是:不可能发生.【点评】本题考查了必然事件、随机事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.14.请你写出一个必然事件明天的太阳从东方升起..【分析】填写一个一定发生的事件即可.【解答】解:明天的太阳从东方升起就是一个必然事件.【点评】必然事件指在一定条件下一定发生的事件.15.把如图自由转动的转盘的序号按转出黑色的可能性从小到大的顺序排列起来是④<②<①<③<⑥<⑤【分析】得到相应的可能性,比较即可.【解答】解:黑色部分多的可能性较大,自由转动的转盘的序号按转出黑色的可能性从小到大的顺序排列起来是④<②<①<③<⑥<⑤.【点评】此题考查可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大;反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等.16.如图所示,有一电路连着三个开关,每个开关闭合的可能性均为,若不考虑元件的故障因素,则电灯点亮的可能性为.【分析】用列举法列举出可能出现的情况,在根据概率公式求解即可.【解答】解:由于每个开关闭合的可能性均为,则共有8种情况;1、K1关、K2关、K3开;2、K1关、K2关、K3关;3、K1关、K2开、K3开;4、K1关、K2开、K3关;5、K1开、K2开、关K3;6、K1开、K2关、K3关;7、K1开、K2开、K3开;8、K1开、K2开、K3关.只有5、7、8电灯可点亮,可能性为.【点评】本题考查的是可能性大小的判断,用到的知识点为:可能性等于所求情况数与总情况数之比.17.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是.【分析】抛一枚质地均匀的硬币,有两种结果,正面或反面朝上,每种结果等可能出现,利用概率公式即可求得答案.【解答】解:∵抛掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴他第二次再抛这枚硬币时,正面向上的概率是:.故答案为:.【点评】本题主要考查了古典概率中的等可能事件的概率的求解.此题属基础题,注意如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.张强的身高将来会长到4米,这个事件的概率为0.【分析】世界上最高的人也长不到3米,张强的身高将来会长到4米,是一个不可能事件.【解答】解:世界上最高的人的身高只有两米多,所以张强的身高将来会长到4米,这个事件的概率为0.【点评】联系现实生活状况是解答本题的关键.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.19.在一个不透明的布袋中装有5个红球,2个白球,3个黄球,它们除了颜色外其余都相同,从袋中任意摸出一个球,是黄球的概率为.【分析】先求出总球的个数,再根据概率公式即可得出答案.【解答】解:∵不透明的布袋中装有5个红球,2个白球,3个黄球,共有10个球,∴从袋中任意摸出一个球,是黄球的概率为;故答案为:.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.20.一只口袋中放着8只红球和16只黑球,这两种球除颜色以外没有任何其他区别.从口袋中随机取出一个球,取出这个球是红球的概率为.【分析】由一只口袋中放着8只红球和16只黑球,这两种球除颜色以外没有任何其他区别,直接利用概率公式求解即可求得答案.【解答】解:∵一只口袋中放着8只红球和16只黑球,这两种球除颜色以外没有任何其他区别,∴从口袋中随机取出一个球,取出这个球是红球的概率为:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.三.解答题(共8小题)21.下列有四种说法:①了解某一天出入宜宾市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么他仍是可能发生的事件.其中,正确的说法是②③④.【分析】根据调查方式的选择、必然事件、不可能事件、随机事件的概念可判断.【解答】解:其中正确的说法是②、③、④.【点评】不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.22.如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:(1)小猫踩在白色的正方形地板上,这属于哪一类事件?不确定事件(填“必然”,“不可能”或“不确定”)(2)小猫踩在白色或黑色的正方形地板上,这属于哪一类事件?必然事件(3)小猫踩在红色的正方形地板上,这属于哪一类事件?不可能事件(4)小猫踩在哪种颜色的正方形地板上可能性较大?黑色.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:(1)可能发生,也可能不发生,是不确定事件;(2)一定会发生,是必然事件;(3)一定不会发生,是不可能事件;(4)踩在黑色的正方形地板上可能性较大.【点评】用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.只要总情况数目相同,谁包含的情况数目多,谁的可能性就大.23.如图所示,下面第一排表示了各袋中球的情况,请用第二排中的语言来描述摸到红球的可能性大小,并用线连起来.【分析】事件的可能性主要看事件的类型,事件的类型决定了可能性及可能性的大小.得到相应的可能性,连线即可.【解答】解:【点评】用到的知识点为:可能性等于所求情况数与总情况数之比.24.在你的班级中任意抽一名学生,则抽到男同学的可能性与抽到女同学的可能性哪个大?为什么?【分析】看班里男同学还是女同学的人数较多即可.【解答】解:班级中学生总数一定,男生多则抽到的可能性大,女生多,则抽到女同学的可能性大.【点评】可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.25.某商场设计了两种促销方案:第一种是顾客在商场消费每满200元就可以从一个装有100个完全相同的球(球上分别标有数字1,2,…,100)的箱子中随机摸出一个球(摸后放回).若球上的数字是88,则返500元购物券;若是66或99,则返300元购物券;。

北师大版2019-2020学年七年级数学下学期第6章概率初步单元测试卷及答案

北师大版2019-2020学年七年级数学下学期第6章概率初步单元测试卷及答案

第6章 频率初步一、填空题(本大题6小题,每小题4分,共24分)1.“种瓜得瓜,种豆得豆”这一事件是 _______________.(填“必然事件”、“不可能事件”或“随机事件”).2.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在偶数区域的概率是________.3、有4根细木棒,它们的长度分别是3cm ,4cm ,5cm ,7cm ,从中任取3根恰好能搭成一个三角形的概率是________.4、现有标号分别为1、2、3、4、5、6、7、8、9、10的十张卡片供甲、乙两人玩一种游戏:甲先取一张,记下点数,放回后乙再取一张,记下点数.如果取出点数为偶数就算甲胜,取出点数为3的倍数就算乙胜.并判断这种游戏规则______________(填“公平”或“不公平”)5、初一(5)班有学生37人,其中4个或4个以上学生在同一个月出生的可能性用百分数表示为________%.6.某航班每次约有100名乘客.一次飞行中飞机失事的概率为p=5105-⨯,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿60万人民币.平均来说,保险公司至少应该收取保险费________元每人. 二、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.7.下列成语描述的事件中,属于随机事件的是( )A .水中捞月B .风吹草动C .一手遮天D .守株待兔 8、关于频率和概率的关系,下列说法正确的是( ) A .频率等于概率;B .当实验次数很大时,频率稳定在概率附近;C .当实验次数很大时,概率稳定在频率附近;D .实验得到的频率与概率不可能相等 9、下列事件中,是不确定事件的是( ) A .打开电视正在播放重庆卫视电视台B .同位角相等,两条直线平行C .平行于同一条直线的两条直线平行D .对顶角相等10、“若ab >0,则a >0且b >0”这一事件是( )A .必然事件B .不确定事件C .不可能事件D .以上答案都不对11、通过大量重复抛掷两枚均匀硬币的试验,出现两个反面的成功率大约稳定在( )A .25% B .50% C .75% D .100%12、从甲,乙,丙三人中任选两名代表,甲被选中的可能性是( ) A .51 B .31 C .32D .1 13、如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P 1,在乙种地板上最终停留在黑色区域的概率为P 2,则( )A .P 1>P 2B .P 1<P 2C .P 1=P 2D .以上都有可能14、一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球 的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放入 盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A .28个 B .30个 C .36个 D .42个15.如图,在正方体的表面展开图中,要将-a 、-b 、-c 填入剩下的三个空白处,(彼此不同),则正方体三组相对的两个面中数字和均为零的概率为( ) A .21 B .31 C .41 D .61 16.在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使得△ABC 的面积为1的概率为( )A .163 B .83 C .41 D .165 三、解答题(一)(本大题共3题,每小题6分,共18分)17、一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀,从中任意摸出一个球:(1)该球是白球; (2)该球是黄球; (3)该球是红球.估计上述事件发生的可能性的大小,将这些事件的序号按发生的可能性从小到大的顺序排列.18、请你设计一个有红、白、蓝三种颜色的转盘,使得它停止转动时,指针落在红色区域的可能性比落在白色区域的可能性小,而比落在蓝色区域的可能性大.19、投掷一枚普通的正方体骰子24次.(1)你认为下列四种说法哪种是正确的?①出现1点的概率等于出现3点的概率;②投掷24次,2点一定会出现4次;③投掷前默念几次“出现4点”,投掷结果出现4点的可能性就会加大;④连续投掷6次,出现的点数之和不可能等于37.(2)求出现5点的概率;(3)出现6点大约有多少次?四、解答答题(二)(本大题共3题,每小题7分,共21分)20、从1,2,3这三个数字中任意取出一个、两个或三个可以构成不同的一位数、两位数或三位数,所有这些数中均无重复数字(如22,311等为有重复数字的数).(1)列举所有可能出现的结果;(2)出现奇数的概率是多少?21、某校开展对学生“劳动习惯”情况的调查,为了解全校500名学生“主动做家务事”的情况,随机抽查了该校部分学生一周“主动做家务事”的次数,制成了如下的统计表和统计图.(1)根据以上信息,求在被抽查学生中,一周“主动做家务事”3次的人数;(2)若在被抽查学生中随机抽取1名,则抽到的学生一周“主动做家务事”不多于2次的概率是多少?(3)根据样本数据,估计全校学生一周“主动做家务事”3次的人数.22、甲、乙、丙、丁、戊五位同学参加一次节日活动,很幸运的是他们都得到了一件精美的礼品(如图),他们每人只能从其中一串的最下端取一件礼品,直到礼物取完为止,甲第一个取得礼物,然后乙,丙,丁,戊依次取得第2到第5件礼物,当然取法各种各样, (1)列出他们所有不同的取法?(2)事后他们打开礼物仔细比较,发现礼物D 最精美,那么通过计算取得礼物D 可能性最大的是哪位同学?五、解答题(三)(本大题共3题,每小题9分,共27分)23、一个不透明布袋中除颜色不同外,其它均相同的乒乓球有x 个黄球和y 个白球,从袋中随机抽取一个球,它是黄色乒乓球的概率是83. (1)写出表示x 和y 关系的表达式;(2)如再往袋中放进10个黄色乒乓球,则取黄色乒乓球的概率变为21,求x 和y 的值.24、密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××(注:中旬为某月中的11日-20日),小张同学要破解其密码: (1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是_______. (2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率.25、甲、乙两人玩“锤子、石头、剪子、布”游戏,他们在不透明的袋子中放入形状、大小均相同的15张卡片,其中写有“锤子”、“石头”、“剪子”、“布”的卡片张数分别为2,3,4,6.两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“锤子”胜“石头”和“剪子”,“石头”胜“剪子”,“剪子”胜“布”,“布”胜“锤子”和“石头”,同种卡片不分胜负. (1)若甲先摸,则他摸出“石头”的概率是多少? (2)若甲先摸出了“石头”,则乙获胜的概率是多少? (3)若甲先摸,则他先摸出哪种卡片获胜的可能性最大?参考答案:1、解:“种瓜得瓜,种豆得豆”这一事件是必然事件, 故答案为:必然事件.2、解:观察这个图可知:所标数字为偶数的面积占总面积的(6121 )=32, 故其概率为32.3、解:根据题意,从有4根细木棒中任取3根,有3、4、5,3、4、7,3、5、7,4、5、7,共4种取法,而能搭成一个三角形的有3、4、5,3、5、7,4、5、7,三种; 故其概率为 43.4、解: 1、2、3、4、5、6、7、8、9、10的十张卡片中偶数的有2、4、6、8、10共5张,3的倍数有3、6、9共3张,它们可能性不相等,所以不公平.5、解:∵一年有12个月,把37个平均分到12个月中1237=3…1, ∴剩下那一个无论怎么放都使那个月里超过4人. 故答案为:100%.6、解:每次约有100名乘客,如飞机一旦失事,每位乘客赔偿60万人民币,共计6000万元,一次飞行中飞机失事的概率为P=0.00005, 故赔偿的钱数为60000000×0.00005=3000元, 故至少应该收取保险费每人=1003000=30元. 7、解:A 、水中捞月是不可能事件,故A 错误; B 、风吹草动是必然事件,故B 错误; C 、一手遮天是不可能事件,故C 错误; D 、守株待兔是随机事件,故D 正确; 故选:D .8、解:A 、频率只能估计概率;B 、正确;C 、概率是定值;D 、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同. 故选:B .9、解: A 、打开电视正在播放重庆卫视电视台是随机事件,即:不确定事件;B 、同位角相等,两条直线平行,是必然事件,即:确定是件;C 、平行于同一条直线的两条直线平行,是必然事件,即:确定是件;D 、对顶角相等,是必然事件,即:确定是件;故选:A .10、解:若ab >0,则a >0且b >0,或a <0且b <0.因而“若ab >0,则a >0且b >0”这一事件是不确定事件. 故选:B .11、解:抛掷两枚均匀的硬币,可能出现的情况为:正正,反反,正反,反正, ∴出现两个反面的概率为41, ∴抛掷多次以后,出现两个反面的成功率大约稳定在25%. 故选:A .12、解:选两名代表共有以下情况:甲,乙;甲,丙;乙,丙;三种情况.故甲被选中的可能性是32 故选:C .13、解:由图甲可知,黑色方砖6块,共有16块方砖, ∴黑色方砖在整个地板中所占的比值==,∴在甲种地板上最终停留在黑色区域的概率为P 1是, 由图乙可知,黑色方砖3块,共有9块方砖, ∴黑色方砖在整个地板中所占的比值==, ∴在乙种地板上最终停留在黑色区域的概率为P 2是, ∵>,∴P 1>P 2; 故选:A .14、解:设袋中有x 个白球,根据题意得:8840088+=x ,解之得28≈x , 故选:A .15、解:将-a 、-b 、-c 分别填入三个空,共有3×2×1=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为:61. 故选:D .16、解:可以找到4个恰好能使△ABC 的面积为1的点,则概率为:41164=. 故选:C .17、解:∵不透明的袋子中装有1个白球、2个黄球和3个红球, ∴摸到白球的概率为61,摸到黄球的概率为3162=,摸到红球的概率为2163=, ∵213161<<,∴(1)<(2)<(3).18、解:如图:白色区域的扇形面积最大,蓝色区域的扇形面积最小.19、解:(1)①抛掷正方体骰子出现3和出现1的概率均为61,故①正确; ②投掷24次,2点不一定会出现,故②错误;③投掷结果出现4点的概率一定,不会受主观原因改变,故③错误;④连续投掷6次,最多为6×6=36,所以出现的点数之和不可能等于37,故④正确. 所以只有①④说法正确;(2)出现5点的概率不受抛掷次数的影响,始终是61; (3)出现6点大约有24×61=4次.20、解:(1)所有可能出现的结果:一位数3个:1、2、3;两位数6个:12、13、21、23、31、32;三位数6个:123、132、213、231、312、321;(2)共有15个数,奇数有10个,所以出现奇数的概率为321510 .21、解:(1)6÷12%=50(人),50-(3+6+13+12)=16(人).答:一周“主动做家务事”3次的人数是16人; (2)(3+6+13)÷50=22÷50=0.44.答:抽到的学生一周“主动做家务事”不多于2次的概率是0.44; (3)500×5016=160(人). 答:估计全校学生一周“主动做家务事”3次的人数是160人.22、解:甲乙丙丁戊取礼物的顺序有10种,为: ①A 、B 、C 、D 、E ;②A 、C 、D 、E 、B ; ③A 、C 、D 、B 、E ; ④A 、C 、B 、D 、E ; ⑤C 、D 、E 、A 、B ; ⑥C 、D 、A 、B 、E ; ⑦C 、D 、A 、E 、B ; ⑧C 、A 、B 、D 、E ; ⑨C 、A 、D 、B 、E ; ⑩C 、A 、D 、E 、B .取得礼物D 的概率分别为:P (乙)=0.3,P (丙)=0.4,P (丁)=0.3, 取得礼物D 可能性最大的是丙同学.23、解:(1)∵有x 个黄球和y 个白球,从袋中随机抽取一个球,它是黄色乒乓球的概率是83,∴)(83y x x +=,∴x=y 53;(2)∵再往袋中放进10个黄色乒乓球,则取黄色乒乓球的概率变为21, ∴)10(2110++=+y x x , 由(1)得x=53y ,把x=53y 代入得:y=25, ∴x=15.24、解:(1)∵小黄同学是9月份中旬出生∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2; 故答案为1或2;(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920; 能被3整除的有912,915,918,; 密码数能被3整除的概率103.25、解:(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张, 故甲摸出“石头”的概率为51153=; (2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为74148=; (3)若甲先摸,则“锤子”、“石头”、“剪子”、“布”四种卡片都有可能被摸出, 若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为21147=; 若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为72144=; 若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为73146=;若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为145.故甲先摸出“锤子”获胜的可能性最大.。

北师大版2019-2020学年初一下学期数学第六章 概率初步单元测试卷及答案

北师大版2019-2020学年初一下学期数学第六章 概率初步单元测试卷及答案

第六章概率初步一、填空题(本大题共6小题,每小题4分,共24分)1.一个在不透明的盒子中装有除颜色外其他都一样的5个红球,3个蓝球和2个白球,它们已经被搅匀了,下列三种事件是必然事件、随机事件,还是不可能事件、(1)从盒子中任取4个球,全是蓝球。

(2)从盒子中任取3个球,只有蓝球和白球,没有红球。

(3)从盒子中任取9个球,恰好红、蓝、白三种颜色的球都有。

2.初一(3)班共有学生50人,其中男生有21人,女生29人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性(填“大”或“小”).3.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .4.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.5.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到绿灯的概率是 .6.有一个质地均匀的正二十面体形状的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,将这个骰子掷出后,朝正上方的数字为“6”的概率是________,数字________朝正上方的可能性最大.二、选择题(本大题共12小题,共36分,每小题只有一个正确选项)7.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是().A .61 B .41 C . 31 D . 127 8. 在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是52,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为41,则原来盒里有白色棋子( ) A. 1颗 B. 2颗 C. 3颗 D. 4颗9. 如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有两条水路、两条陆路,从B 地到C 地有3条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .20种B .8种C .5种D .13种10. 袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球11.如图,转动转盘,指向阴影部分的可能性为a ,指向空白部分的可能性为b ,则( )A.a >bB.a <bC.a=bD.无法确定12.下列事件中,随机事件是( )A.没有水分,种子仍能发芽B.等腰三角形两个底角相等C.从13张红桃扑克牌中任抽一张,是红桃AD.从13张方块扑克牌中任抽一张,是红桃10 13.从一副扑克牌中则下列事件中可能性最大的是( )A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花JD.抽出一张不是Q 的牌 14.在相同条件下重复试验,若事件A 发生的概率是,下列陈述中,正确的是( )A .事件A 发生的频率是B .反复大量做这种试验,事件A 只发生了7次C .做100次这种试验,事件A 一定发生7次D .做100次这种试验,事件A 可能发生7次 15.下列说法正确的是( )A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件16.2019年枣庄市初中学业水平实验操作考试.要求每名学生从物理.化学.生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A.19B.16C.14D.1317.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是( )A.47 B.37 C.27 D.1718.以下有四个事件:①抛一枚匀质硬币,正面朝上;②掷一枚匀质骰子,所得的点数为3;③从一副54张扑克牌中任意抽出一张恰好为红桃;④从装有1个红球,2个黄球的袋中随意摸出一个球,这两种球除颜色外其他都相同,结果恰好是红球.按概率从小到大顺序排列的结果是()A.①<②<③<④B.②<③<④<①C.②<①<③<④D.③<②<①<④三.解答题(共7小题共60分)19.(6分)小明购买双色球福利彩票时,两次分别购买了1张和100张,均未获奖,于是他说:“购买1张和100张中奖的可能性相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年七年级下《第六章概率初步》单元测试含答案
一、选择题(本大题共15小题,每小题3分,共45分)
1.( A .3天内会下雨
B .打开电视,正在播放广告
C .367人中至少有2人公历生日相同
D .某妇产医院里,下一个出生的婴儿是女孩
2.(三明中考)对“某市明天下雨的概率是75%”这句话,理解正确的是(D )
A .某市明天将有75%的时间下雨
B .某市明天将有75%的地区下雨
C .某市明天一定下雨
D .某市明天下雨的可能性较大
3.有两个事件,事件A :掷一次骰子,向上的一面是3;事件B :篮球队员在罚球线上投篮一次,投中,则(C ) A .只有事件A 是随机事件 B .只有事件B 是随机事件
C .事件A 和B 都是随机事件
D .事件A 和B 都不是随机事件
4.2017年3月,某市举办了首届中学生汉字听写大赛,从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是(C )
A.32
B.13
C.1
4
D .1
5.掷一枚质地均匀的硬币10次,下列说法正确的是(A )
A .可能有5次正面朝上
B .必有5次正面朝上
C .掷2次必有1次正面朝上
D .不可能10次正面朝上
6.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是(D )
A .3个
B .不足3个
C .4个
D .5个或5个以上
7.(贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是(C ) A.110 B.15 C.310 D.25
8.(贵阳中考)有5张大小、背面都相同的扑克牌,正面上的数字分别是4,5,6,7,8.若将这5张牌背面朝上洗匀后,从中任意抽取1张,那么这张牌正面上的数字为偶数的概率是(B ) A.45 B.35 C.25 D.15
9.小狗在如图所示的方砖上走来走去,最终停在黑色方砖上的概率为(C ) A.18 B.79 C.29 D.716
10.如图,让圆形转盘自由转动一次,指针落在灰色区域的概率是(B ) A.12 B.13 C.23 D.34
11.一次抽奖活动中,印发奖券1 000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的机会是(D )
A.150
B.225
C.15
D.310
12.如果小王将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为(C ) A.16 B.18
C.19
D.112
13.图中有四个可以自由转动的转盘,每个转盘被分成若干等份,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是(D )
A .转盘2与转盘3
B .转盘2与转盘4
C .转盘3与转盘4
D .转盘1与转盘4
14.(湖州中考)已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为1
3
,则a 等于(A )
A .1
B .2
C .3
D .4
15.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,它们的形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球试验后,小新发现其中摸出红球的频率稳定于0.2,摸出黑球的频率稳定于0.5.对此试验,他总结出下列结论:
①若进行大量摸球试验,摸出白球的频率应稳定于0.3;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.
其中说法正确的是(B )
A .①②③
B .①②
C .①③
D .②③ 二、填空题(本大题共5小题,每小题5分,共25分)
16.七年级(1)班共有学生54人,其中有男生30人,女生24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大(填“大”或“小”).
17.抛掷一枚质地均匀的硬币15次,有6次出现正面朝上,则出现正面朝上的频率是0.4.
18.把标有号码1,2,3,…,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是3
10
.
19.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a 大约是12.
20.如图所示是一条线段,AB 的长为10厘米,MN 的长为2厘米,假设可以随意在这条线段上取一个点,那么这
个点取在线段MN 上的概率为1
5
.
三、解答题(本大题共7小题,共80分) 21.(8分)下列事件中,哪些是确定事件?哪些是不确定事件?确定事件中,哪些是必然事件?哪些是不可能事件? (1)打开电视机,正在播动画片;
(2)任意掷一枚质地均匀的骰子,朝上的点数是6; (3)在一个平面内,三角形三个内角的和是190度;
(4)线段垂直平分线上的点到线段两端的距离相等.
解:(1)(2)是不确定事件;(3)是确定事件,也是不可能事件; (4)是确定事件,也是必然事件.
22.(10分)如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据.
(1)(2)请估计,当n 很大时,频率将会接近多少?
(3)假如你去转动转盘一次,你获得铅笔的概率是多少? 解:(1)如表. (2)接近0.7. (3)0.7.
23.(10分)用10个球设计一个摸球游戏: (1)使摸到红球的概率为1
5;
(2)使摸到红球和白球的概率都是2
5
.
解:(1)10个球中,有2个红球,8个其他颜色球.
(2)10个球中,有4个红球,4个白球,2个其他颜色球.
24.(12分)如图1,2,3,三个相同的盒子里各放有一个塑料制成的圆环,这三个大小不同的圆环恰好可以按左图所示那样较紧密地套在一起,我们随意从三个盒子中拿出两个,则这两个圆环可以比较紧密地套在一起的概率有多大?
图1 图2 图3
解:根据题意分析可得:从三个盒子中拿出两个共3种情况,即(1,2;2,3;1,3),其中有2种情况即(1,2;2,
3)可使这两个圆环可以比较紧密地套在一起,故其概率是2
3
.
25.(12分)研究“掷一枚图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:
(1)请你估计第一小组和第二小组所得的概率分别是多少? (2)你认为哪一个小组的结果更准确?为什么? 解:(1)根据题意,因为次数越多,就越精确,
所以选取试验次数最多的进行计算可得:第一小组所得的概率估计是160
400=0.4;
第二小组所得的概率估计是
164
400
=0.41. (2)不知道哪一个更准确.因为试验数据可能有误差,不能准确说明.
26.(14分)米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求: (1)P(在客厅捉到小猫); (2)P(在小卧室捉到小猫); (3)P (在卫生间捉到小猫); (4)P(不在卧室捉到小猫). 解:(1)P(在客厅捉到小猫)=3090=1
3.
(2)P(在小卧室捉到小猫)=1590=1
6.
(3)P(在卫生间捉到小猫)=9+490=13
90
.
(4)P(不在卧室捉到小猫)=90-18-1590=5790=19
30
.
27.(16分)有一组互不全等的三角形,它们的三边长均为整数,每个三角形有两条边的长分别为5和7. (1)请写出其中一个三角形的第三边的长; (2)设组中最多有n 个三角形,求n 的值;
(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率. 解:(1)第三边长取3(2到12之间的任意整数均可,不包括2,12). (2)设第三边长为x ,则7-5<x<7+5,即2<x<12.
又因为x 为整数,所以x =3,4,5,6,7,8,9,10,11.所以n =9.
(3)因为5+7=12,为偶数,所以只需第三边长为偶数,所以此时x =4,6,8,10. 所以P(三角形周长为偶数)=4
9
.。

相关文档
最新文档