武昌区七校联考2016-2017学年九年级第一学期期中数学试卷.pdf

合集下载

2016-2017学年度九年级(上)期中数学试卷解析

2016-2017学年度九年级(上)期中数学试卷解析

2016-2017学年度九年级(上)期中数学试卷学号一、选择题(本大题共16小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列标志中,可以看作是中心对称图形的是( )A.B.C. D.2.已知函数:①y=3x﹣1;②y=3x2﹣1;③y=﹣20x2;④y=x2﹣6x+5,其中是二次函数的有( )A.1个B.2个C.3个D.4个3.下列哪个方程是一元二次方程( )A.x+2y=1 B.2x(x﹣1)﹣2x+3=0 C.+4x=3 D.x2﹣2xy=04.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=155.一元二次方程x(x﹣2)=2﹣x的根是( )A.﹣1 B.2 C.1和2 D.﹣1和26.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是( )A.27 B.36 C.27或36 D.187.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为( )A.﹣2 B.1 C.2 D.﹣18.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是( )A.y=20(1﹣x)2B.y=20+2xC.y=20(1+x)2 D.y=20+20x2+20x9.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2015的值为( ) A.2014 B.2015 C.2016 D.201710.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为( )A.y=x2+2 B.y=(x﹣2)2+2 C.y=(x﹣2)2﹣2 D.y=(x+2)2﹣211.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A.点A B.点B C.点C D.点D12.如图,在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是( )A.(﹣4,3)B.(﹣3,4)C.(3,﹣4)D.(4,﹣3)13.设⊙O的半径为3,点O到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d 应满足的条件是( )A.d=3 B.d≤3 C.d<3 D.d>314.如图,已知CD相切圆O于点C,BD=OB,则∠A的度数是( )A.30°B.25°C.40°D.20°15.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )A.1 B.1或5 C.3 D.516.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A.函数有最小值 B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是__________.18.如图,在Rt△ABC中,∠BAC=90°,如果将该三角形绕点A按顺时针旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,那么旋转的角度等于__________.19.如图是一座抛物线形拱桥,当水面的宽为12m时,拱顶离水面4m,当水面下降2m时,水面的宽为__________m.20.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价__________元.三、解答题(本答题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤)21.如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?22.已知P(﹣3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x 轴无交点,求k的最小值.23.某市新建了圆形文化广场,小杰和小浩准备不同的方法测量该广场的半径.(1)小杰先找圆心,再量半径.请你在图1中,用尺规作图的方法帮小杰找到该广场的圆心O(不写作法,保留作图痕迹);(2)小浩在广场边(如图2)选取A、B、C三根石柱,量得A、B之间的距离与A、C之间的距离相等,并测得BC长为240米,A到BC的距离为5米.请你帮他求出广场的半径(结果精确到米).(3)请你解决下面的问题:如图3,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求出OP的长度范围是多少?24.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.25.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?26.某学校兴趣小组的同学进行社会实践,经过市场调查,整理出某种商品在第x天(1≤x≤80)天的售价与销量的相关信息如下表:时间x(天)1≤x<45 45≤x≤80售价(元/件)x+40 80每天销量(件)200﹣2x已知该商品的进价为每件20元,设该商品的每天销售利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于5400元?2016-2017学年度九年级(上)期中数学试答案一、选择题(本大题共16小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列标志中,可以看作是中心对称图形的是( )A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.【解答】解:根据中心对称的定义可得:A、C、D都不符合中心对称的定义.故选B.【点评】本题考查中心对称的定义,属于基础题,注意掌握基本概念.2.已知函数:①y=3x﹣1;②y=3x2﹣1;③y=﹣20x2;④y=x2﹣6x+5,其中是二次函数的有( )A.1个B.2个C.3个D.4个【考点】二次函数的定义.【分析】分别根据一次函数及二次函数的定义对各小题进行逐一分析即可.【解答】解:①y=3x﹣1是一次函数;②y=3x2﹣1;③y=﹣20x2;④y=x2﹣6x+5是二次函数.故选C.【点评】本题考查的是二次函数的定义,熟知一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数是解答此题的关键.3.下列哪个方程是一元二次方程( )A.x+2y=1 B.2x(x﹣1)﹣2x+3=0 C.+4x=3 D.x2﹣2xy=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是二元一次方程,故A错误;B、是一元二次方程,故B正确;C、是分式方程,故C错误;D、是二元二次方程,故D错误;故选:B.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.4.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.一元二次方程x(x﹣2)=2﹣x的根是( )A.﹣1 B.2 C.1和2 D.﹣1和2【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.【解答】解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.【点评】本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.6.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是( )A.27 B.36 C.27或36 D.18【考点】等腰三角形的性质;一元二次方程的解.【专题】分类讨论.【分析】由于等腰三角形的一边长3为底或腰不能确定,故应分两种情况进行讨论:①当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一根,再根据三角形的三边关系判断是否符合题意即可;②当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.【解答】解:分两种情况:①当其他两条边中有一个为3时,将x=3代入原方程,得32﹣12×3+k=0,解得k=27.将k=27代入原方程,得x2﹣12x+27=0,解得x=3或9.3,3,9不能够组成三角形,不符合题意舍去;②当3为底时,则其他两条边相等,即△=0,此时144﹣4k=0,解得k=36.将k=36代入原方程,得x2﹣12x+36=0,解得x=6.3,6,6能够组成三角形,符合题意.故k的值为36.故选:B.【点评】本题考查的是等腰三角形的性质,一元二次方程根的判别式及三角形的三边关系,在解答时要注意分类讨论,不要漏解.7.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为( )A.﹣2 B.1 C.2 D.﹣1【考点】二次函数的定义.【分析】根据题意列出关于m的不等式组,求出m的值即可.【解答】解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选A.【点评】本题考查的是二次函数的定义,熟知一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数是解答此题的关键.8.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是( )A.y=20(1﹣x)2B.y=20+2xC.y=20(1+x)2 D.y=20+20x2+20x【考点】根据实际问题列二次函数关系式.【分析】根据已知表示出一年后产品数量,进而得出两年后产品y与x的函数关系.【解答】解:∵某工厂一种产品的年产量是20件,每一年都比上一年的产品增加x倍,∴一年后产品是:20(1+x),∴两年后产品y与x的函数关系是:y=20(1+x)2.故选:C.【点评】此题主要考查了根据实际问题列二次函数关系式,得出变化规律是解题关键.9.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2015的值为( ) A.2014 B.2015 C.2016 D.2017【考点】抛物线与x轴的交点.【分析】根据抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0)得到m2﹣m﹣1=0,整体代入即可求出代数式m2﹣m+2015的值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m+2015=2016,故选C.【点评】此题主要考查了抛物线与x轴的交点、函数图象上点的坐标性质以及整体思想的应用,求出m2﹣m=1是解题关键.10.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为( )A.y=x2+2 B.y=(x﹣2)2+2 C.y=(x﹣2)2﹣2 D.y=(x+2)2﹣2【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】已知二次函数的顶点坐标,设顶点式比较简单.【解答】解:设这个二次函数的关系式为y=a(x+2)2﹣2,将(0,2)代入得2=a(0+2)2﹣2解得:a=1故这个二次函数的关系式是y=(x+2)2﹣2,故选D.【点评】本题考查了用待定系数法求函数解析式的方法,设解析式时注意选择顶点式还是选择一般式.11.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A.点A B.点B C.点C D.点D【考点】旋转的性质.【分析】连接PP1、NN1、MM1,分别作PP1、NN1、MM1的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.【解答】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选B.【点评】本题考查了学生的理解能力和观察图形的能力,注意:旋转时,对应顶点到旋转中心的距离应相等且旋转角也相等,对称中心在连接对应点线段的垂直平分线上.12.如图,在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是( )A.(﹣4,3)B.(﹣3,4)C.(3,﹣4)D.(4,﹣3)【考点】坐标与图形变化-旋转.【分析】根据旋转的性质结合坐标系内点的坐标特征解答.【解答】解:由图知A点的坐标为(3,4),根据旋转中心O,旋转方向逆时针,旋转角度90°,画图,从而得A′点坐标为(﹣4,3).故选A.【点评】本题涉及图形的旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心,旋转方向,旋转角度,通过画图求解.13.设⊙O的半径为3,点O到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d 应满足的条件是( )A.d=3 B.d≤3 C.d<3 D.d>3【考点】直线与圆的位置关系.【分析】当d=r时,直线与圆相切,直线L与圆有一个公共点;当d<r时,直线与圆相交,直线L与圆有两个公共点;当d>r时,直线与圆相离,直线L与圆没有公共点.【解答】解:因为直线L与⊙O至少有一个公共点,所以包括直线与圆有一个公共点和两个公共点两种情况,因此d≤r,即d≤3,故选B.【点评】本题考查的是直线与圆的位置关系,利用直线与圆的交点的个数判定圆心到直线的距离与圆的半径的大小关系.14.如图,已知CD相切圆O于点C,BD=OB,则∠A的度数是( )A.30°B.25°C.40°D.20°【考点】切线的性质.【专题】计算题.【分析】连结OC,如图,先根据切线的性质得∠OCD=90°,再利用直角三角形斜边上的中线性质得BC=BO=BD,则可判断△OBC为等边三角形,所以∠BOC=60°,然后根据等腰三角形的性质和三角形外角性质求∠A的度数.【解答】解:连结OC,如图,∵CD相切圆O于点C,∴OC⊥CD,∴∠OCD=90°,∵OB=BD,∴BC=BO=BD,∴OC=OB=BC,∴△OBC为等边三角形,∴∠BOC=60°,而OA=OC,∴∠A=∠OCA,而∠BOC=∠A+∠OCA,∴∠A=∠BOC=30°.故选A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.15.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )A.1 B.1或5 C.3 D.5【考点】直线与圆的位置关系;坐标与图形性质.【分析】平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.【点评】本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.16.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A.函数有最小值 B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0【考点】二次函数的性质.【专题】压轴题;数形结合.【分析】根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.【解答】解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.【点评】本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2x2﹣4x﹣3.【考点】二次函数图象与几何变换.【分析】根据旋转的性质,可得a的绝对值不变,根据中心对称,可得答案.【解答】解:将y=2x2﹣4x+3化为顶点式,得y=2(x﹣1)2+1,抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2(x+1)2﹣1,化为一般式,得y=﹣2x2﹣4x﹣3,故答案为:y=﹣2x2﹣4x﹣3.【点评】本题考查了二次函数图象与几何变换,利用了中心对称的性质.18.如图,在Rt△ABC中,∠BAC=90°,如果将该三角形绕点A按顺时针旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,那么旋转的角度等于60°.【考点】旋转的性质.【分析】根据直角三角形斜边上的中线等于斜边的一半以及旋转的性质可以证明△ABB1是等边三角形,据此即可求解.【解答】解:∵B1是AB的中点,∴BB1=AB1,又∵AB1=AB,∴△ABB1是等边三角形,∴∠BAB1=60°,故答案是:60°.【点评】本题考查了直角三角形的性质,以及旋转的性质,等边三角形的判定与性质,正确证明△ABB1是等边三角形是关键.19.如图是一座抛物线形拱桥,当水面的宽为12m时,拱顶离水面4m,当水面下降2m时,水面的宽为6m.【考点】二次函数的应用.【专题】推理填空题.【分析】根据题意可以建立合适的平面直角坐标系,设出二次函数的顶点式,由图象知抛物线过点(6,0),从而可以求得抛物线的解析式,然后将y=﹣2代入解析式,即可求得问题的答案.【解答】解:根据题意可以建立合适的平面直角坐标系,如下图所示:设二次函数的解析式为:y=ax2+4,∵点(6,0)在抛物线的上,∴0=a×62+4解得a=,∴y=,将y=﹣2代入,得,∴水面的宽为:.故答案为:.【点评】本题考查二次函数的应用,解题的关键是画出相应的平面直角坐标系,设出合适的二次函数.20.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价5元.【考点】一元二次方程的应用.【专题】销售问题.【分析】设每千克应涨价x元,根据每千克涨价1元,销售量将减少10千克,每天盈利1500元,列出方程,求解即可.【解答】解:设每千克应涨价x元,由题意列方程得:(5+x)=1500,解得:x=5或x=10,为了使顾客得到实惠,那么每千克应涨价5元;故答案为:5.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.三、解答题(本答题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤)21.如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?【考点】二次函数的性质;坐标与图形变化-旋转.【分析】(1)由于抛物线过点O(0,0),A(2,0),根据抛物线的对称性得到抛物线的对称轴为直线x=1;(2)作A′B⊥x轴于B,先根据旋转的性质得OA′=OA=2,∠A′OA=60°,再根据含30度的直角三角形三边的关系得OB=OA′=1,A′B=OB=,则A′点的坐标为(1,),根据抛物线的顶点式可判断点A′为抛物线y=﹣(x﹣1)2+的顶点.【解答】解:(1)∵二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).解得:h=1,a=﹣,∴抛物线的对称轴为直线x=1;(2)点A′是该函数图象的顶点.理由如下:如图,作A′B⊥x轴于点B,∵线段OA绕点O逆时针旋转60°到OA′,∴OA′=OA=2,∠A′OA=60°,在Rt△A′OB中,∠OA′B=30°,∴OB=OA′=1,∴A′B=OB=,∴A′点的坐标为(1,),∴点A′为抛物线y=﹣(x﹣1)2+的顶点.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x >﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.也考查了旋转的性质.22.已知P(﹣3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x 轴无交点,求k的最小值.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)根据对称轴的定义观察点P(﹣3,m)和Q(1,m)纵坐标相同,求出对称轴,从而求出b值;(2)把b值代入一元二次方程,根据方程的判别式来判断方程是否有根;(3)先将抛物线向上平移,在令y=0,得到一个新方程,此方程无根,令△<0,解出k的范围,从而求出k的最小值.【解答】解:(1)∵点P、Q在抛物线上且纵坐标相同,∴P、Q关于抛物线对称轴对称并且到对称轴距离相等.∴抛物线对称轴,∴b=4.(2)由(1)可知,关于x的一元二次方程为2x2+4x+1=0.∵△=b2﹣4ac=16﹣8=8>0,∴方程有实根,∴x===﹣1±;(3)由题意将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,∴设为y=2x2+4x+1+k,∴方程2x2+4x+1+k=0没根,∴△<0,∴16﹣8(1+k)<0,∴k>1,∵k是正整数,∴k的最小值为2.【点评】此题主要考查一元二次方程与函数的关系及函数平移的知识.23.某市新建了圆形文化广场,小杰和小浩准备不同的方法测量该广场的半径.(1)小杰先找圆心,再量半径.请你在图1中,用尺规作图的方法帮小杰找到该广场的圆心O(不写作法,保留作图痕迹);(2)小浩在广场边(如图2)选取A、B、C三根石柱,量得A、B之间的距离与A、C之间的距离相等,并测得BC长为240米,A到BC的距离为5米.请你帮他求出广场的半径(结果精确到米).(3)请你解决下面的问题:如图3,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求出OP的长度范围是多少?【考点】圆的综合题.【分析】(1)作出弦的垂直平分线,再结合垂径定理推论得出圆心位置;(2)设圆心为O,连结OA、OB,OA交BC于D,根据A、B之间的距离与A、C之间的距离相等,得出=,从而得出BD=DC=BC,再根据勾股定理得出OB2=OD2+BD2,设OB=x,即可求出广场的半径;(3)过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE=AB,再根据勾股定理求出OE的长,由此可得出结论.【解答】解:(1)如图1所示,在圆中作任意2条弦的垂直平分线,由垂径定理可知这2条垂直平分线必定与圆的2条直径重合,所以交点O即为所求;(2)如图2,连结OA、OB,OA交BC于D,∵AB=AC,∴=,∴OA⊥BC,∴BD=DC=BC=120(米),由题意DA=5,在Rt△BDO中,OB2=OD2+BD2,设OB=x,则x2=(x﹣5)2+1202,解得:10x=14425,x≈1443,答:广场的半径1443米.(3)如图3,过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3(cm),∵垂线段最短,半径最长,∴3cm≤OP≤5cm.【点评】此题考查了圆的综合题,用到的知识点是垂径定理、勾股定理、弧、弦、圆周角之间的关系,熟练利用勾股定理得出AO的长是解题的关键.另外,解答(3)时,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.【考点】切线的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)连结DE,先根据AAS证明△CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF.【解答】证明:(1)如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.【点评】本题主要考查了切线的判定,全等三角形的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【考点】二次函数的应用.【分析】(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到=4.5;,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.【解答】解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,=4.5;∴当t=时,y最大(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.【点评】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是解题的关键.26.某学校兴趣小组的同学进行社会实践,经过市场调查,整理出某种商品在第x天(1≤x≤80)天的售价与销量的相关信息如下表:时间x(天)1≤x<45 45≤x≤80售价(元/件)x+40 80每天销量(件)200﹣2x已知该商品的进价为每件20元,设该商品的每天销售利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于5400元?【考点】二次函数的应用.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于5400,一次函数值大于或等于54000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<45时,y=(x+40﹣20)=﹣2x2+160x+4000,当45≤x≤80时,y=(80﹣20)=﹣120x+12000.综上所述:y=;(2)当1≤x<45时,二次函数开口向下,二次函数对称轴为x=40,=﹣2×402+160×45+4000=7200,当x=40时,y最大当45≤x≤80时,y随x的增大而减小,=6600,当x=45时,y最大因为7200>6600,综上所述,该商品第40天时,当天销售利润最大,最大利润是7200元;。

2016-2017学年武汉市九上期中数学试卷

2016-2017学年武汉市九上期中数学试卷

2016-2017学年武汉市九上期中数学试卷一、选择题(共10小题;共50分)1. 下列方程是关于x的一元二次方程的是 =1 C. x+2y=1 D. x x−1=x2A. x2=1B. x+1x2. 已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是 A. −3B. 3C. 0D. 0或33. 一元二次方程2x2−3x+1=0根的情况是 A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根4. 二次函数y=x2+1的图象大致是 A. B.C. D.5. 已知抛物线y=−x−12+4,下列说法错误的是 A. 开口方向向下B. 形状与y=x2相同C. 顶点为−1,4D. 对称轴是直线x=16. 将x2+4x−5=0进行配方变形,下列正确的是 A. x+22=9B. x−22=9C. x+22=1D. x−22=17. 抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线解析式是 A. y=3x−12−2B. y=3x+12−2C. y=3x+12+2D. y=3x−12+28. 已知一个直角三角形的两条直角边长恰好是方程x2−14x+48=0的两根,则此三角形的斜边长为 A. 6B. 8C. 10D. 149. 如图,要设计一幅宽20 cm,长30 cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果要使彩条所占面积是图案面积的1975,则竖彩条宽度为 A. 1 cmB. 2 cmC. 19 cmD. 1 cm或19 cm10. 如图,平面直角坐标系内,二次函数y=−x2+4x−k的图形与x轴交于A,B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为 A. 1B. 12C. 43D. 45二、填空题(共6小题;共30分)11. 若抛物线y=a x−32+2经过点1,−2,则a=.12. 方程x2−x=0的解是.13. 为解决老百姓看病贵的问题,对某种原价为400元的药品进行连续两次降价,降价后的价格为256元,设每次降价的百分率为x,则依题意列方程为:.14. 在实数范围内定义一种运算“∗”,其规则为a∗b=a2−b2 .根据这个规则,方程x+2∗5=0的解为.15. 二次函数y=ax2+bx+c的图象如图所示,则当y≥0时,x的取值范围是.16. 已知抛物线y=x2−2x−3与x轴相交于A,B两点,其顶点为M,将此抛物线在x轴下方的部分沿x轴翻折,其余部分保持不变,得到一个新的图象.如图,当直线y=−x+n与此图象有且只有两个公共点时,则n的取值范围为.三、解答题(共8小题;共104分)17. 解方程:x2+3x−2=0.18. 某地有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一人传染了几人?19. 已知抛物线y=−x2+bx+c经过点A3,0,B−1,0.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.20. 已知关于x的方程x2−k+1x+14k2+1=0.(1)当k取何值时方程有两个实数根.(2)是否存在k值使方程的两根为一个矩形的两邻边长,且矩形的对角线长为5.21. 已知二次函数y=−a+b x2−2cx+a−b中,a,b,c是△ABC的三边.(1)当抛物线与x轴只有一个交点时,判断△ABC是什么形状;(2)当x=−12时,该函数有最大值a2,判断△ABC是什么形状.22. 小红的父母开了一个小服装店,出售某种进价为40元的服装,现每件60元,每星期可卖300件.该同学对市场作了如下调查:每降价1元,每星期可多卖20件;每涨价1元,每星期要少卖10件.(1)小红已经求出在涨价情况下一个星期的利润w(元)与售价x(元)(x为整数)的函数关系式为w=−10x−652+6250,请你求出在降价的情况下w与x的函数关系式;(2)在降价的条件下,问每件商品的售价定为多少时,一个星期的利润恰好为6000元?(3)问如何定价,才能使一星期获得的利润最大?23. 在Rt△ACB中,∠C=90∘,点O是AB的中点,点M,N分别在边AC,BC上,OM⊥ON,连接MN,AC=4,BC=8,设AM=a,BN=b,MN=c.(1)求证:a2+b2=c2;(2)①若a=1,求b;②探究a与b的函数关系;(3)△CMN面积的最大值为.(不写解答过程)24. 已知,如图,抛物线y=ax2+3ax+c a>0与y轴交于点C,与x轴交于A,B两点,点A在点B左侧,点B的坐标为1,0,C0,−3.(1)求抛物线的解析式.(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.(3)若点E在x轴上,点P在抛物线上,是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?如存在,求点P的坐标;若不存在,请说明理由.答案第一部分1. A2. A3. A 【解析】∵a=2,b=−3,c=1,∴Δ=b2−4ac=−32−4×2×1=1>0,∴该方程有两个不相等的实数根.4. B5. C6. A7. A8. C 【解析】∵x2−14x+48=0,∴x−6x−8=0,∴x1=6,x2=8,∴两直角边长为6和8,∴此三角形的斜边长=62+82=10.9. A 10. D第二部分11. −112. x=0或x=113. 4001−x2=25614. x1=3,x2=−715. −1≤x≤316. n>214或−1<n<3第三部分17. ∵a=1,b=3,c=−2,∴Δ=b2−4ac=32−4×1×−2=17,∴x=−3±172,∴x1=−3+172,x2=−3−172.18. 设每轮传染中平均每人传染了x人,依题意得1+x+x1+x=121,所以x=10或x=−12不合题意,舍去.所以每轮传染中平均一人传染了10人.19. (1)∵抛物线y=−x2+bx+c经过点A3,0,B−1,0,∴抛物线的解析式为y=−x−3x+1,即y=−x2+2x+3.(2)∵y=−x2+2x+3=−x−12+4,∴抛物线的顶点坐标为1,4.20. (1)∵Δ=−k+12−4×14k2+1=2k−3≥0,∴k≥32.(2)存在.设方程的两根为x1,x2,∴x12+x22=5,∵x1+x2=k+1,x1x2=14k2+1,∴x12+x22=x1+x22−2x1x2=k+12−2×14k2+1=5,解得k1=−6,k2=2.∵x1+x2=k+1>0,∴k>−1,∴k=2.21. (1)当抛物线与x轴只有一个交点时,△ABC是直角三角形;理由如下:当抛物线与x轴只有一个交点时,Δ=0,即−2c2−4×−a+b a−b=0,整理得c2+a2=b2,所以△ABC是直角三角形;(2)△ABC是等边三角形;理由如下:根据题意得:−2c2a+b =−12,即c=a+b2时,有−4a+b a−b−−2c 2−4a+b =a2,整理,得2b2−a2−2c2+ab=0,将c=a+b2代入,得a2=b2,因为a>0,b>0,所以a=b=c,即△ABC是等边三角形.22. (1)降价时,w=x−40300+2060−x=−20x2+2300x−6000040<x<60;(2)令w=−20x2+2300x−60000=6000,解得x1=55,x2=60(舍去);答:当每件商品的售价定为55元时,一个星期的利润恰好为6000元;(3)w1=−10x−652+6250,∵a=−10<0,∴当x=65时,w1有最大值为6250元,w2=−20x2+2300x−60000=−20x−57.52+6125,当x=57.5时,w2有最大值为6125元,∵6250>6125,∴当每件商品的定价为65元时,获得利润最大.23. (1)如图,过点B作BE∥AC交MO的延长线于E,连接NE.∵AM∥BE,∴∠A=∠OBE,在△AOM和△BOE中,∠A=∠OBE,AO=BO,∠AOM=∠BOE,∴△AOM≌△BOE,∴MO=EO,AM=BE=a,∵OM⊥ON,∴MN=NE=c,∵∠C=90∘,∴∠A+∠ABC=90∘,∴∠OBE+∠ABC=90∘,∴∠EBN=90∘,∴NE2=BN2+BE2,∵NE=c,BE=a,BN=b,∴a2+b2=c2.(2)①在Rt△MCN中,MN2=CM2+CN2,∴c2=4−a2+8−b2,∵a=1,a2+b2=c2,∴9+8−b2=1+b2,∴b=92.②∵c2=4−a2+8−b2=a2+b2,∴a+2b=10.(3)25424. (1)将点B,C的坐标代入抛物线的解析式得:4a+c=0, c=−3,解得:a=34, c=−3.∴抛物线的解析式为y=34x2+94x−3.(2)令y=0,则34x2+94x−3=0,解得x1=1,x2=−4,∴A−4,0,B1,0,∴S△ABC=12×5×3=152,设D m,34m2+94m−3,如图1,过点D作DE∥y轴交AC于E.设直线AC的解析式为y=sx+t,由题意得0=−4s+t,t=−3,解得s=−34,t=−3,∴直线AC的解析式为y=−34x−3,则E m,−34m−3,DE=−34m−3−34m2+94m−3=−34m+22+3,当m=−2时,DE的最大值为3,此时,S△ACD有最大值为12×DE×4=2DE=6,∴四边形ABCD的面积的最大值为6+152=272.(3)如图2所示:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形,∵C0,−3,∴设P1x,−3,∴34x2+94x−3=−3,解得x1=0,x2=−3,∴P1−3,−3;②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形,∵C0,−3,∴设P x,3,∴34x2+94x−3=3,解得x=−3+412或x=−3−412,∴P2−3+412,3或P3−3−412,3,综上所述存在3个点符合题意,坐标分别是P1−3,−3或P2−3+412,3或P3−3−412,3.。

2016~2017学年第一学期期中试卷九年级数学

2016~2017学年第一学期期中试卷九年级数学
2016~2017学年第一学期期中试卷 九年级数学
• 27.(10分)如图,在△ABC中,AB = 8cm, BC = 16cm ,点P从点A出发沿AB边想向点B以 2cm/s的速度移动,点Q从点B出发沿BC边向点C 以4cm/s的速度移动,如果P、Q同时出发,经过 几秒后△PBQ和△ABC相似?
• 22. (6分) 如图,已知∠1=∠3,∠B=∠D, AB=DE=5cm,BC=4cm。ABDCE13 • (1)求证:△ABC∽△ADE • (2)求:AD的长。
• 21.(6分)为迎接2008北京奥运会,某校举行 班级乒乓球对抗赛,每个班级选派1对男女混合双 打选手参赛,小明、小亮两名男生准备在小敏、 小颖、小丽三名女生中各自随机选择一名组成一 对参赛,请用树状图或列表法写出所有可能的配 对结果,若小明与小丽、小亮与小敏是最佳组合, 则组成最佳组合的概率是多少?
• 24. (8分)如图,四边形ABCD是矩形,E是AB边 上的一点,过点C作CF⊥DE,垂足为点F . • (1)求证:△ADE∽△FCD • (2)若AD=3,AE=4, DC=6,求CF的长度。
• 23.(6分)如图,为了测量一棵树CD的高度,测量者 在B点立一高为2.4米的标杆,观测者从E处可以看 到杆顶A,树顶C在同一条直线上.若测得BD=26.4 米,FB=3.6米,EF=1.8米,求树的高度
2
1
• 26.(10分)如图,在△ABC中,∠ACB=90°,BC的 垂直平分线DE交BC于D,交AB于E,F在射线DE上,并 且EF=AC. • (1)求证:AF=CE; • (2)当∠B的大小满足什么条件时,四边形ACEF是菱形? 请回答并证明你的结论;
• 25.(8分)某水果批发商场经销一种高档水果, 如果每千克盈利10元,每天可售出500kg,经市 场调查发现,在进货价不变的情况下,每涨价1元, 日销售量将减少20kg,现该商场要保证每天盈利 6000元, 同时又要使顾客得到实惠,那么涨价之 后,每天的销售量必须达到多少kg?

2016-2017学年七校联考九年级(上)期中数学试卷1

2016-2017学年七校联考九年级(上)期中数学试卷1

2016-2017学九年级(上)期中数学试卷1一、选择题(本大题共12个小题,每小题4分,共48分)1.下列方程中,是一元二次方程的是()A.x+3=0 B.x2﹣3y=0 C.x2﹣2x+1=0 D.x﹣=02.下列标志中,可以看作是中心对称图形的是()A.B.C.D.3.抛物线y=﹣2x2开口方向是()A.向上 B.向下 C.向左 D.向右4.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)5.一元二次方程x(x﹣2)=0的解是()A.x=0 B.x1=2 C.x1=0,x2=2 D.x=26.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=97.一元二次方程x2﹣2x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根8.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55° B.45° C.40° D.35°9.近年来某市加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C .2500(1+x%)2=3600D .2500(1+x )+2500(1+x )2=360010.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y=﹣(x+1)2+1上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 211.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是( )A .图①B .图②C .图③D .图④12.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,有下列5个结论:①abc<0;②3a +c >0;③4a +2b+c >0;④2a +b=0;⑤b 2>4ac其中正确的结论的有( )A .1个B .2个C .3个D .4个二、填空题:(本大题6个小题,每小题4分,共24分)13.点(﹣2,1)关于原点对称的点的坐标为 .14.若x=2是一元二次方程x 2+x ﹣a=0的解,则a 的值为 .15.若函数是二次函数,则m 的值为 .16.现定义运算“★”,对于任意实数a 、b ,都有a★b=a 2﹣3a+b ,如:3★5=32﹣3×3+5,若x★2=6,则实数x 的值是 .17.某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为 元.18.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED 的周长是9.其中正确的结论是(把你认为正确结论的序号都填上.)三、解答题:(本大题2个小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.解方程:2x2+x﹣3=0.20.如图,在建立了平面直角坐标系的正方形网格中,A(2,2),B(1,0),C(3,1)(1)画出将△ABC绕点B逆时针旋转90°,所得的△A1B1C1.(2)直接写出A1点的坐标.四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上21.先化简,再求值:(﹣)÷,其中x是方程x2﹣2x=0的根.22.已知:如图,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使锐角△AOB的面积等于3.求点B的坐标.23.如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[2,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[4,2],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[2,4]?24.“4•20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.五、解答题:(本大题2个小题,每小题12分,共24分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上. 25.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.26.如图,已知抛物线y=x 2+bx+c 的图象与x 轴的一个交点为B (4,0),另一个交点为A ,且与y 轴交于点C (0,4).(1)求直线BC 与抛物线的解析式;(2)若点M 是抛物线在x 轴下方图象上的一动点,过点M 作MN ∥y 轴交直线BC 于点N ,当 MN 的值最大时,求△BMN 的周长.(3)在(2)的条件下,MN 取得最大值时,若点P 是抛物线在x 轴下方图象上任意一点,以BC 为边作平行四边形CBPQ ,设平行四边形CBPQ 的面积为S 1,△ABN 的面积为S 2,且S 1=4S 2,求点P 的坐标.2016-2017学年九年级(上)期中数学试卷1参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1.下列方程中,是一元二次方程的是()A.x+3=0 B.x2﹣3y=0 C.x2﹣2x+1=0 D.x﹣=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【解答】解:A、方程x+3=0是一元一次方程,故本选项错误;B、方程x2﹣3y=0是二元二次方程,故本选项错误;C、方程x2﹣2x+1=0是一元二次方程,故本选项正确;D、方程x﹣=0是分式方程,故本选项错误.故选C.【点评】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.下列标志中,可以看作是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.抛物线y=﹣2x2开口方向是()A.向上 B.向下 C.向左 D.向右【考点】二次函数的性质.【分析】根据a的正负判断抛物线开口方向.【解答】解:∵a=﹣2<0,∴抛物线开口向下.故选B.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;a<0,抛物线开口向下;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).4.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)【考点】二次函数的性质.【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出顶点坐标是(h,k).【解答】解:∵抛物线为y=(x﹣2)2+3,∴顶点坐标是(2,3).故选B.【点评】要求熟练掌握抛物线的顶点式.5.一元二次方程x(x﹣2)=0的解是()A.x=0 B.x1=2 C.x1=0,x2=2 D.x=2【考点】解一元二次方程-因式分解法.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程x(x﹣2)=0,可得x=0或x﹣2=0,解得:x1=0,x2=2.故选C.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.6.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.一元二次方程x2﹣2x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根【考点】根的判别式.【分析】根据根的判别式△=b2﹣4ac的符号来判定一元二次方程x2﹣2x+2=0的根的情况.【解答】解:∵一元二次方程x2﹣2x+2=0的二次项系数a=1,一次项系数b=﹣2,常数项c=2,∴△=b2﹣4ac=4﹣8=﹣4<0,∴一元二次方程x2﹣2x+2=0没有实数根;故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55° B.45° C.40° D.35°【考点】旋转的性质.【分析】本题旋转中心为点O ,旋转方向为逆时针,观察对应点与旋转中心的连线的夹角∠BOD 即为旋转角,利用角的和差关系求解.【解答】解:根据旋转的性质可知,D 和B 为对应点,∠DOB 为旋转角,即∠DOB=80°,所以∠AOD=∠DOB ﹣∠AOB=80°﹣45°=35°.故选:D .【点评】本题考查旋转两相等的性质:即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.9.近年来某市加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,该市投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .2500x 2=3600B .2500(1+x )2=3600C .2500(1+x%)2=3600D .2500(1+x )+2500(1+x )2=3600【考点】由实际问题抽象出一元二次方程.【分析】设该市投入教育经费的年平均增长率为x ,根据:2013年投入资金给×(1+x )2=2015年投入资金,列出方程即可.【解答】解:设该市投入教育经费的年平均增长率为x ,根据题意,可列方程:2500(1+x )2=3600,故选:B .【点评】本题主要考查根据实际问题列方程的能力,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.10.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y=﹣(x+1)2+1上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性,可利用对称性,找出点A 的对称点A′,再利用二次函数的增减性可判断y 值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+1,∴对称轴是x=﹣1,∴点A 关于对称轴的点A′是(0,y 1),那么点A′、B 、C 都在对称轴的右边,而对称轴右边y 随x 的增大而减小,于是y 1>y 2>y 3.故选A .【点评】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,11.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是( )A .图①B .图②C .图③D .图④【考点】旋转的性质.【专题】规律型.【分析】每次均旋转45°,10次共旋转450°,而一周为360°,用450°﹣360°=90°,可知第10次旋转后得到的图形.【解答】解:依题意,旋转10次共旋转了10×45°=450°,因为450°﹣360°=90°,所以,第10次旋转后得到的图形与图②相同,故选B .【点评】根据图中给出的旋转规律,得知变化为周期性变化,结合周角的定义即可解答本题.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】根据二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定解答.【解答】解:开口向下,则a<0,与y轴交于正半轴,则c>0,∵﹣>0,∴b>0,则abc<0,①正确;∵﹣=1,则b=﹣2a,∵a﹣b+c<0,∴3a+c<0,②错误;∵b=﹣2a,∴2a+b=0,④正确;∴b2﹣4ac>0,∴b2>4ac,⑤正确,故选:D.【点评】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:(本大题6个小题,每小题4分,共24分)13.点(﹣2,1)关于原点对称的点的坐标为(2,﹣1).【考点】关于原点对称的点的坐标.【专题】计算题.【分析】根据点P(a,b)关于原点对称的点P′的坐标为(﹣a,﹣b)即可得到点(﹣2,1)关于原点对称的点的坐标.【解答】解:点(﹣2,1)关于原点对称的点的坐标为(2,﹣1).故答案为(2,﹣1).【点评】本题考查了关于原点对称的点的坐标特点:点P(a,b)关于原点对称的点P′的坐标为(﹣a,﹣b).14.若x=2是一元二次方程x2+x﹣a=0的解,则a的值为 6 .【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,把把x=2代入方程x2+x﹣a=0得到关于a的一次方程,然后解一元一次方程即可.【解答】解:把x=2代入方程x2+x﹣a=0得4+2﹣a=0,解得a=6.故答案为6.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.若函数是二次函数,则m的值为﹣3 .【考点】二次函数的定义.【分析】根据二次函数的定义得出m2﹣7=2,再利用m﹣3≠0,求出m的值即可.【解答】解:若y=(m﹣3)x m2﹣7是二次函数,则m2﹣7=2,且m﹣3≠0,故(m﹣3)(m+3)=0,m≠3,解得:m1=3(不合题意舍去),m2=﹣3,∴m=﹣3.故答案为:﹣3.【点评】此题主要考查了二次函数的定义,根据已知得出m2﹣7=2,注意二次项系数不为0是解题关键.16.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4 .【考点】解一元二次方程-因式分解法.【专题】压轴题;新定义.【分析】根据题中的新定义将所求式子转化为一元二次方程,求出一元二次方程的解即可得到x的值.【解答】解:根据题中的新定义将x★2=6变形得:x2﹣3x+2=6,即x2﹣3x﹣4=0,因式分解得:(x﹣4)(x+1)=0,解得:x1=4,x2=﹣1,则实数x的值是﹣1或4.故答案为:﹣1或4【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边变为积的形式,然后根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.17.某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为55 元.【考点】二次函数的应用.【分析】根据题意,总利润=销售量×每个利润,设售价为x元,总利润为W元,则销售量为40﹣1×(x﹣40),每个利润为(x﹣30),据此表示总利润,利用配方法可求最值.【解答】解:设售价为x元,总利润为W元,则W=(x﹣30)[40﹣1×(x﹣40)]=﹣x2+110x﹣2400=﹣(x﹣55)2+100,则x=55时,获得最大利润为100元,故答案为:55.【点评】本题考查二次函数的应用、构建二次函数是解决问题的关键,搞清楚利润、销售量、成本、售价之间的关系,属于中考常考题型.18.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED 的周长是9.其中正确的结论是①③④(把你认为正确结论的序号都填上.)【考点】旋转的性质;等边三角形的判定与性质.【专题】常规题型.【分析】先根据等边三角形的性质得BA=BC,∠ABC=∠C=∠BAC=60°,再根据旋转的性质得到∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,所以∠BAE=∠ABC=60°,则根据平行线的判定方法即可得到AE∥BC;由△BCD绕点B逆时针旋转60°,得到△BAE得到BD=BE,∠DBE=60°,则可判断△BDE是等边三角形;根据等边三角形的性质得∠BDE=60°,而∠BDC>60°,则可判断∠ADE≠∠BDC;由△BDE是等边三角形得到DE=BD=4,再利用△BCD绕点B逆时针旋转60°,得到△BAE,则AE=CD,所以△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD.【解答】解:∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,∴∠BAE=∠ABC,∴AE∥BC,所以①正确;∵△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,所以③正确;∴∠BDE=60°,∵∠BDC=∠BAC+∠ABD>60°,∴∠ADE≠∠BDC,所以②错误;∵△BDE是等边三角形,∴DE=BD=4,而△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+4=5+4=9,所以④正确.故答案为①③④.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.三、解答题:(本大题2个小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.解方程:2x2+x﹣3=0.【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:分解因式得:(2x+3)(x﹣1)=0,2x+3=0,x﹣1=0,x 1=﹣,x2=1.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键,难度适中.20.如图,在建立了平面直角坐标系的正方形网格中,A(2,2),B(1,0),C(3,1)(1)画出将△ABC绕点B逆时针旋转90°,所得的△A1B1C1.(2)直接写出A1点的坐标.【考点】作图-旋转变换.【专题】作图题.【分析】(1)根据网格结构找出点A 1、C 1的位置,再与点B (即B 1)顺次连接即可;(2)根据平面直角坐标系写出点A 1的坐标即可.【解答】解:(1)如图所示;(2)A 1(﹣1,1).【点评】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上21.先化简,再求值:(﹣)÷,其中x 是方程x 2﹣2x=0的根.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】首先计算括号内的分式,然后把除法转化成乘法进行乘法运算即可化简,然后解方程求得x 的值,代入求解.【解答】解:原式=•=•=.x2﹣2x=0.原方程可变形为x(x﹣2)=0.x=0或x﹣2=0∴x1=0,x2=2.∵当x=2时,原分式无意义,∴x=0.当x=1时,原式==﹣1.【点评】此题主要考查了方程解的定义和分式的运算,要特注意原式及化简过程中的每一步都有意义.如果取x=2,则原式没有意义.22.(2013•庄浪县校级模拟)已知:如图,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A 两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使锐角△AOB的面积等于3.求点B的坐标.【考点】抛物线与x轴的交点;二次函数的性质.【专题】压轴题.【分析】(1)把(0,0)代入已知函数解析式即可求得k的值;(2)利用面积法求得点B的纵坐标,然后由二次函数图象上点的坐标特征来求点B的横坐标即可.【解答】解:(1)如图,∵二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于原点0=O,∴k+1=0,解得,k=﹣1,故该二次函数的解析式是:y=x2﹣3x.(2)∵△AOB是锐角三角形,∴点B在第四象限.设B(x,y)(x>1.5,y<0).令x2﹣3x=0,即(x﹣3)x=0,解得x=3或x=0,则点A(3,0),故OA=3.∵锐角△AOB的面积等于3.∴OA•|y|=3,即×3|y|=3,解得,y=﹣2.又∵点B在二次函数图象上,∴﹣2=x2﹣3x,解得x=2或x=1(舍去).故点B的坐标是(2,﹣2).【点评】本题考查了二次函数的性质,解答(2)题时需要注意点B是位于这条抛物线的对称轴右边的图象上有一点.23.如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[2,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[4,2],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[2,4]?【考点】二次函数综合题.【分析】(1)根据函数的特征数的定义,写出二次函数,利用配方法即可解决问题.(2)①首先根据函数的特征数的定义,写出二次函数,再根据平移的规律:左加右减,上加下减,即可解决.②根据函数的特征数的定义,首先写出两个函数的解析式,利用配方法写成顶点式,根据平移规律解决问题.【解答】解:(1)由题意可得出:y=x2﹣2x+1=(x﹣1)2,∴此函数图象的顶点坐标为:(1,0);(2)①由题意可得出:y=x2+2x﹣1=(x+1)2﹣2,∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:y=(x+1﹣1)2﹣2+1=x2﹣1,∴图象对应的函数的特征数为:[0,﹣1];②∵一个函数的特征数为[4,2],∴函数解析式为:y=x2+4x+2=(x+2)2﹣2,∵一个函数的特征数为[2,4],∴函数解析式为:y=x2+2x+4=(x+1)2+3∴原函数的图象向右平移1个单位,再向上平移5个单位得到.【点评】本题考查二次函数综合题、配方法、顶点式、平移变换等知识,解题的关键是理解根据函数的特征数,熟练掌握配方法,记住函数图象平移规律,属于中考常考题型.24.“4•20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.【考点】一元二次方程的应用;一元一次方程的应用.【分析】(1)设小货车每次运送x顶,则大货车每次运送(x+200)顶,根据两种类型的车辆共运送16800顶帐篷为等量关系建立方程求出其解即可;(2)根据(1)的结论表示出大小货车每次运输的数量,根据条件可以表示出大货车现在每天运输次数为(1+m)次,小货车现在每天的运输次数为(1+m)次,根据一天恰好运送了帐篷14400顶建立方程求出其解就可以了【解答】解:(1)设小货车每次运送x顶,则大货车每次运送(x+200)顶,根据题意得:2[2(x+200)+8x]=16800,解得:x=800.∴大货车原计划每次运:800+200=1000顶答:小货车每次运送800顶,大货车每次运送1000顶;(2)由题意,得2×(1000﹣200m)(1+m)+8(800﹣300)(1+m)=14400,解得:m1=2,m2=21(舍去).答:m的值为2.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据各部分工作量之和=工作总量建立方程是关键.五、解答题:(本大题2个小题,每小题12分,共24分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上. 25.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.【考点】几何变换综合题.【分析】(1)由AE=DE,∠AED=90°,AD=3,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF=BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.【解答】解:(1)∵∠AED=90°,AE=DE,AD=3,∴AE=DE=3,在Rt△BDE中,∵DE=3,BE=4,∴BD=5,又∵F是线段BD的中点,∴EF=BD=2.5;(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=EF.解法2:∵∠BED=∠AED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,在△EDF和△GBF中,,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又∵点F是BD的中点,∴FA=FB=FD,在△ACF和△BCF中,,∴△ACF≌△BCF,∴∠ACF=∠BCF=∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又∵DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=EF.【点评】本题主要考查了几何综合变换,通过全等三角形来得出线段的相等,如果没有全等三角形的要根据已知条件通过辅助线来构建是解题的关键.26.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴交于点C(0,4).(1)求直线BC与抛物线的解析式;(2)若点M 是抛物线在x 轴下方图象上的一动点,过点M 作MN ∥y 轴交直线BC 于点N ,当 MN 的值最大时,求△BMN 的周长.(3)在(2)的条件下,MN 取得最大值时,若点P 是抛物线在x 轴下方图象上任意一点,以BC 为边作平行四边形CBPQ ,设平行四边形CBPQ 的面积为S 1,△ABN 的面积为S 2,且S 1=4S 2,求点P 的坐标.【考点】二次函数综合题.【分析】(1)直接用待定系数法求出直线和抛物线解析式;(2)先求出最大的MN ,再求出M ,N 坐标即可求出周长;(3)先求出△ABN 的面积,进而得出平行四边形CBPQ 的面积,从而求出BD ,联立方程组求解即可.【解答】解:(1)设直线BC 的解析式为y=mx+n ,将B (4,0),C (0,4)两点的坐标代入,得,,∴ 所以直线BC 的解析式为y=﹣x+4;将B (4,0),C (0,4)两点的坐标代入y=x 2+bx+c ,得,,∴ 所以抛物线的解析式为y=x 2﹣5x+4;(2)如图1,。

武昌七校2016-2017九(上)期中联考数学卷答案

武昌七校2016-2017九(上)期中联考数学卷答案

武昌七校2016-2017学年度第一学期部分学校九年级期中联合测试数学参考答案一、选择题(3分×10=30分)二、填空题(3分×6=18分)11.9 12.17cm 或7cm(填对一个得1分,填对2个但不写单位得2分) 13.1 14.7 15.3或413(填对1个得1分) 16.120,7(填对一个得1分) 17.解:……………………………………………….6分解之得x 1=4, x 2=-2…………………………………………………8分 18.(1)解:将抛物线的解析式化为顶点式可得:;∴∵抛物线过点C(0,3), ∴∴此抛物线的解析式为:……………………………. 4分 (2)令则∴G(x)是一个开口向上的抛物线,且∴抛物线在直线上方……………………………8分 19.(1)图略…………………………………………………………………………..2分 (2)图略………………………………………………………………………….. 4分 (3)P(2,0),图略……………………………………………………………..8分20.(1)ΔBPP ’是等边Δ.因为在△BPP’中,BP=BP ’,∠PBP ’=60° …………3分 (2)证:∵ΔABC 为等边三角形, ∴∠ABC=60°. ∵∠PBP ’=60°,∴∠ABP+∠PBC=∠CBP’+∠PBC , ∴∠ABP=∠CBP’.在△ABP 与△CBP’中, BA=BC ,∠ABP=∠CBP’, BP=BP ’,∴△ABP ≌△CBP’………………………………………………………………5分 ∴PA=P’C .∵∠BPC=150°,∠BPP ’=60°, ∴∠CPP’=90°.∵PP’=BP=3,PC=4,∴在Rt △PP ’C 中,P’C==5.∴PA=5…………………………………………………………………………8分 21.(1)证:∵在△OAD 中,OA=OD , ∴∠OAD=∠ODA. ∵AD 平分∠BAC , ∴∠CAD=∠OAD , ∴∠CAD=∠ODA.∴OD ∥AC……………………………………………………………………………………3分 (2)解:连BC 与OD 交于点E. ∵D 为中点,∴ OD ⊥BC.设OE=x ,则DE=10-x. ∴BE=.∵,AB=20,AD=4,∴=160.∵,∴解得∵OD ∥AC ,O 为AB 的中点., ∴OE 为ΔABC 的中位线,∴AC=2x=4………………………………………………………………………………………………..………8分22.(1)解:y=AB…………………………………………………………………..3分(2)解:W= ………………………………………………….6分(3)解: 当时,W=;=.∵抛物线开口向下,对称轴为x=150,当时y 随x 的增大而增大。

武汉地区2016-2017学年度九年级上期中考试数学试卷(word版含答案)

武汉地区2016-2017学年度九年级上期中考试数学试卷(word版含答案)

武汉地区2016-2017学年度上学期期中考试九年级数学试卷一、选择题(共10小题,每小题3分,共30分)1.将方程x 2-8x =10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是( )A .-8、-10B .-8、10C .8、-10D .8、102.下列四个图形分别是四场国际数学家大会的会标,其中属于中心对称图形的有( )A .4个B .3个C .2个D .1个3.一元二次方程x 2+3x -2=0的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定4.抛物线y =-3(x +1)2-2顶点坐标是( )A .(-1, 2)B .(-1,-2)C .(1,-2)D .(1,2)5. 若x 1、x 2是方程x 2+3x -6=0的两根,则x 1+x 2的值是( )A .-3B .3C .-6D .66.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数是57.若设主干长出x 个支干,则可列方程是( )A .(1+x )2=57B .1+x +x 2=57C .(1+x )x =57D .1+x +2x =577. 在△ABC 中,∠CAB=26°,在同一平面内,将△ABC 绕点A 旋转α°到三角形AB'C'的位置使得CC'∥AB 则α=( )A .138B .128C .118D .1088.如图,半径为5的⊙A 中,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长为( )A .41B .61C .11D .89.设A (-2,y 1)、B (1,y 2)、C (2,y 3)是抛物线y =-(x +1)2+m 上的三点,则y 1、y 2、y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 1>y 310.如图,错误!未找到引用源。

2016-2017学年度武汉市各区九年级上学期期中考试数学试卷(WORD版含答案)

2016-2017学年度武汉市各区九年级上学期期中考试数学试卷(WORD版含答案)

武珞路中学2016~2017学年度九年级上学期期中测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程3x 2+1=6x 的二次项系数和一次项系数分别为( )A .3和6B .3和-6C .3和-1D .3和12.下列是几个汽车的标志,其中是中心对称图形的是( )3.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共73.若设主干长出x 个支干,则可列方程是( )A .(1+x )2=73B .1+x +x 2=73C .(1+x )x =73D .1+x +2x =734.将抛物线y =-x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线解析式为( )A .y =-(x +2)2+3B .y =-(x -2)2+3C .y =-(x +2)2-3D .y =-(x -2)2-35.方程09242=+-x x 的根的情况是( )A .有两个不相等实根B .有两个相等实根C .无实根D .以上三种情况都有可能6.如图,A 、B 、C 三点都在⊙O 上,∠ABO =50°,则∠ACB =( )A .50°B .40°C .30°D .25°7.如图,在下面的网格中,每个小正方形的边长均为1,△ABC 的三个顶点都是网格线的交点.已知A (-2,2)、C (-1,-2),将△ABC 绕着点C 顺时针旋转90°,则点A 对应点的坐标为( )A .(2,-2)B .(-5,-3)C .(2,2)D .(3,-1)8.如图,四边形ABCD 的两条对角线互相垂直,AC +BD =12,则四边形ABCD 的面积最大值是( )A .12B .18C .24D .369.二次函数y =x 2+mx +1的图象的顶点在坐标轴上,则m 的值( )A .0B .2C .±2D .0或±210.若二次函数y =ax 2+bx +c 的图象的顶点在第一象限,且过点(0,1)和(-1,0),则s =a +b +c 的值的变化范围是( )A .0<s <1B .0<s <2C .1<s <2D .-1<s <2二、填空题(本大题共6个小题,每小题3分,共18分)11.点A (-2,5)关于原点的对称点B 的坐标是___________12.抛物线y =x 2-2x -2的顶点坐标是___________13.方程3x 2-1=2x +5的两根之和为___________,两根之积为___________14.如图,有一块长30 m 、宽20 m 的矩形田地,准备修筑同样宽的三条直路,把田地分成六块,种植不同品种的蔬菜,并且种植蔬菜面积为矩形田地面积的5039,则道路的宽为___________15.⊙O 的半径为25 cm ,AB 、CD 是⊙O 的两条弦,AB ∥CD ,AB =30 cm ,CD =48 cm ,则AB 和CD 之间的距离为___________16.如图,边长为4的正方形ABCD 外有一点E ,∠AEB =90°,F 为DE 的中点,连接CF ,则CF 的最大值为___________三、解答题(共8题,共72分)17.(本题8分)解方程:x 2-4x -7=018.(本题8分)画出函数y =x 2-3x -4的图象(草图),利用图象回答:(1) 方程x 2-3x -4=0的解是什么?(2) x 取什么值时,函数大于0?(3) x 取什么值时,函数小于0?19.(本题8分)如图,⊙O 中,直径CD ⊥弦AB 于M ,AE ⊥BD 于E ,交CD 于N ,连AC(1) 求证:AC =AN(2) 若OM ∶OC =3∶5,AB =5,求⊙O 的半径20.(本题8分)如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF(1) 在图中画出点O和△CDF,并简要说明作图过程(2) 若AE=12,AB=13,求EF的长21.(本题8分)一个涵洞成抛物线形,它的截面如图,现测得:当水面宽AB=1.6 m时,涵洞顶点与水面的距离为2.4 m,离开水面1.5 m处是涵洞宽ED(1) 求抛物线的解析式(2) 求ED的长22.(2010·武汉)(本题10分)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍)(1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围(2) 设宾馆一天的利润为w元,求w与x的函数关系式(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?23.(本题10分)已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD(1) 如图1,若AB为边在△ABC外作△ABE,AB=AE,∠DAC=∠EAB=60°,求∠BFC的度数(2) 如图2,∠ABC=α,∠ACD=β,BC=6,BD=8①若α=30°,β=60°,AB的长为② 若改变α、β的大小,但α+β=90°,求△ABC 的面积24.(本题12分)如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3(1) 求抛物线的解析式(2) 如图1,D 位抛物线的顶点,P 为对称轴左侧抛物线上一点,连OP 交直线BC 于G ,连GD .是否存在点P ,使2 GOGD ?若存在,求点P 的坐标;若不存在,请说明理由 (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值武珞路中学2016~2017学年度九年级上学期期中测试数学试卷参考答案一、选择题(共10小题,每小题3分,共30分)10.提示:将(0,1)和(-1,0)代入y =ax +bx +c 中,得c =1,b =a +1∴S =a +b +c =2b由抛物线图象可知:⎪⎩⎪⎨⎧>-<020a ba ,得-1<a <0∴0<2b <2二、填空题(共6小题,每小题3分,共18分)11.(2,-5) 12.(1,-3)13.32、-2 14. 2 m 15.13或2716.113+16.提示:利用中位线构造圆(期中就考试的变态题)三、解答题(共8题,共72分)17.解:11211221-=+=x x ,18.解:(1) x 1=4,x 2=-1;(2) x <-1或x >4;(3) -1<x <419.解:(1) 连接AC∵∠AED =∠AMO =90°∴∠BDC =∠EAB =∠BAC (八字型和圆周角)∵AM ⊥OC∴△AMN ≌△AMC (ASA )∴AC =AN(2) 设OM =3x ,OC =5x连接OA∴OA =5x ,AM =4x∵AB =5∴4x =25,x =85 ∴r =5x =825 20.解:(1) 如图(2) 27(提示:△AOG ≌△BOE )21.解:(1) 2415x y -= (2) 562 22.解:(1) x y 10150-=(0≤x ≤160,且x 是10的整数倍) (2) 800034101)20180)(10150(2++-=-+-=x x x x w (3) 10890)170(10180003410122+--=++-=x x x w 当x <170时,w 随x 的增大而增大∴当x =160时,w 有最大值为10880此时y =34答:一天订34个房间时,宾馆每天的利润最大,最大利润是10880元23.解:(1) 120°(2) ① 72② 73提示:比较简单的共顶点等腰三角形的旋转,不会的地方找各自老师提问24.解:(1) y =x 2-4x +3(2) ∵y =(x -2)2-1∴D (2,-1) 若2=GOGD 则△GOD 为等腰直角三角形根据三垂直模型,得G (1,2)∴直线OG 的解析式为y =2x联立⎪⎩⎪⎨⎧+-==3422x x y x y ,解得636321-=+=x x , ∵P 在对称轴左侧∴x <1 ∴63-=x∴P (62663--,) (3) 若∠MON =45°则CM 2+BN 2=MN 2设M (x 1,y 1)、N (x 2,y 2)∴CM 2=2x 12,BN 2=2(3-x 2)2,MN =2(x 1-x 2)2∴x 12+(3-x 2)2=(x 1-x 2)2,整理得2x 1x 2-6x 2+9=0联立⎪⎩⎪⎨⎧+-=+-=3432x x y x y ,化简得x 2-3x +m =0 ∴x 1+x 2=3,x 1x 2=m联立⎪⎩⎪⎨⎧=+-==+096232212121x x x m x x x x ,解得2299±-=m ∵m >0 ∴2299+-=m硚口2016~2017学年度蔡甸区部分学校九年级11月期中联考试题数 学 试 题(满分120分)2016.11.10一、选择题(每小题3分,共30分)1.在﹣1,0.﹣2,1四个数中,最小的数是( ) A . ﹣1 B . 0 C . ﹣2 D . 1 2.若式子在实数范围内有意义,则x 的取值范围是( )A . x ≥1B . x >1C . x <1D . x ≤13.下列方程中,是关于x 的一元二次方程的是( ) A . 3x 2=2(x+1)B .2112=-+xx C . ax 2+bx+c=0 D . x 2+2x=x 24.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .5.抛物线y=(x ﹣1)2+2的顶点坐标是( ) A .(﹣1,2) B .(﹣1,﹣2) C .(1,﹣2)D .(1,2)6.在平面直角坐标系中,P 点关于原点的对称点为)34,3(P 1--,P 点关于x 轴的对称点为P 2(a ,b),则ab -=( )A .2B .-2C .4D .-47.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A ′B ′C ′.若∠A=40°.∠B ′=110°,则 ∠BCA ′的度数是( )A . 110°B . 80°C . 40°D . 30°8.观察图形:将一张长方形纸片对折,可得到一条折痕.继续对折,对折是每次折痕与上次折痕保持平行,那么对折8次后折痕的条数是( )A.16 B .64 C .128D .2559.2016年11月5日金报讯:昨从国家统计局湖北调查总队获悉,10月份,我省大型企业集团的资产总额已达到11906万元,同上年比增长19%,下列说法:①2015年10月份我省大型企业集团的资产总额为11906(1﹣19%)万元; ②2015年10月份我省大型企业集团的资产总额为万元;③若2016年后两个月资产总额仍按19%的增长率增长,则到2016年12月份我省大型企业集团的资产总额将达到11906(1+19%)2万元.其中正确的是( ) A . ②③ B . ①③ C . ①②③ D . ①②10.如图,AD 为等边△ABC 边BC 上的高,AB=4,AE=1,P,Q 为高AD 上任两点,且Q 点在P 点上方PQ=,则BP+EQ 的最小值为()A . 2B .7C. 3 D 5二、填空题(每小题3分,共18分)11.已知抛物线y =x 2-2b x +4的顶点在x 轴上,则b 的值为12.据新华社北京2012年1月19日电,截至2011年末,北京常住人口已经突破20 000 000人,用科学记数法表示20 000 000这个数字为13.我市今年5月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.这组数据的中位数是 14.若x 1,x 2是一元二次方程x 2﹣3x+k=0的两根,则x 1+x 2的值是15.如图,△ABC 中,∠BAC=90°,AB=AC=2,D 为AB 上一动点,过点A 作AE ⊥BD 于E ,则线段BE 的最小值为16.若a,b 两数中较大的数记作D{a,b},直线y=kx+21(k>0)与函数y=D{12-x ,1+x }的图像有且只有2个交点,则k 的取值为三.解答题(共8小题,共72分)17.(8分)解方程:x 2﹣2x -4=0. 18.(8分)已知:如图,AC=AD ,AB 是∠CAD 的角平分线.求证:BC=BD . 19.(8分)已知二次函数y=﹣x 2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式. 20.(8分)已知关于x 的一元二次方程x 2+(m+3)x+m+1=0.A B(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若x1、x2是原方程的两根,且|x1﹣x2|=2,求m的值.21.(8分)如图,某小区在宽20m,长32m的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.22.(10分)已知△ABC与△ADE都是等腰直角三角形,且∠BAC=∠DAE=90º(1)证明:CE=BD,CE⊥BD(2)延长CE交BD于点F,当∠CAE=45º,AB=4,AD=时,试求线段CF的长23.(10分)如图,P为正方形ABCD边CD延长线上一点,BH⊥AP交PA的延长线于点H,AH=HE,连接BE,CE(!)求证:∠BCE=∠BEC;(2)如图,过E作PE的垂线交CB的延长线于点F,求证:EF+EP= EC(3)在(2)的条件下,若正方形的边长为2,DP=1,请直接写出线段CE的长。

武汉市部分中学2016届九年级上期中联考数学试卷及答案

武汉市部分中学2016届九年级上期中联考数学试卷及答案

xx
回到A原. 价(1, x若) 这2 两11天01此股B.票(股1价x的) 2平均19增0 长率C为. 1
,则
2x
满11足的方程是
10
D.
1 2x

10 9
8.如图是抛物线形拱桥,当拱顶高离水面 2m 时,水面宽 4m.水面下降 2.5m,水面宽度增加
1
第 8 题图
(1)若方程有一根为 1,求 a 的值;
9 ;8 15.(-3,1);
16.4 5
三、解答题(共 72分)
17.解:(1)将 x=1代入方程得 1+2+a-2=0,解得 a=1; …………3分
(2)将 a=1代入方程得 x2+2x﹣1=0,
∵a=1,b=2,c=-1
…………6分
∴………
∴ x1 1 2, x 1 2 2
2015-2016学年度第一学期期中考试 九年级数学试卷及答案
一、选择题(每小题 3 分,共 30 分) 1. 将 方 程 化 为 一 元 二 次 方 程 3x 8x 10 的 一 般 形 式 , 其 中 二 次 项 系 数 , 一 次
项系数,常数项分别是 CA.. 33,, -88,,--1100

(2)当∠ CPD1 2∠ CAD 1时,求CE
的长;
(3)连接 PA, PAB 面积的最大值为 1
.(直接填写结果)
C
C
E
A
D
B
第 23 题图
E D1 P
A
D
B
E1
第 23 题图(2)
24.(本题满分 12分)如图,已知抛物线
的顶点为 A,且经过点 B
(3,-3). (1)求顶点 A 的坐标; (2)在对称轴左侧的抛物线上存在一点 P,使得∠PAB=45°,求点 P 坐标; (3)如图(2),将原抛物线沿射线 OA 方向进行平移得到新的抛物线,新抛物线与射线 OA 交于 C,D 两点,请问:在抛物线平移的过程中,线段 CD 的长度是否为定值?若 是,请求出这个定值;若不是,请说明理由.

湖北省武汉市九年级数学上学期期中试题(扫描版) 新人教版

湖北省武汉市九年级数学上学期期中试题(扫描版) 新人教版

湖北省武汉市2016届九年级数学上学期期中试题2015-2016九年级(上)数学期中答案 一、A C D B C D C B D D二、11.3,-2,-1 12.(1,-2) 13.-2 14.17215.x <1或x >3 16.4 三、17.解:∵a = 1,b = 1,c = -3 ∴224141(3)130b ac ∆-=-⨯⨯-=>.........................................3分 又∵24b b ac x -±-=...............................................................5分113-±= ∴1113x -+=,2113x --=................................................8分 18.解:(1)2(1)4y a x =--过(-2,5) ∴2(21)45a ---=.............................................................2分 ∴ a = 1................................................................................3分∴22(1)423y x x x =--=--............................................4分 (2)令y = 0,则2230x x --= x 1 = -1,x 2 =3.............................................................6分 又∵ a = 1 >0,开口向上............................................................7分 ∴当x <-1或x >3时,y>0...........................................................8分19.证明:∵AB ⊥CO ,CF ⊥AD∴∠AEC =∠AFC = 90°12CE CD=,12AF AD =..................................................3分 在△AOF 和△COE 中 90AFO CEO AOF COE OA OC ⎧∠=∠=⎪∠=∠⎨⎪=⎩o∴△AOF ≌△COE.............................................................................5分 ∴AF = CE...........................................................................................6分即:1122AD CD = ∴AD = CD..........................................................................................8分(1)省略;........................................................................................3分 (2)(1,1)......................................................................................5分 (3)514π+........................................................................................8分21.解:设横彩条的宽度为2x cm ,竖彩条的宽度为3x cm ,则........1分()()93062041203025x x ⎛⎫--=-⨯⨯ ⎪⎝⎭ (4)分解得:x 1 = 1,x 2 = 9.............................................................6分 又∵ 4936⨯=>20 ∴ x = 9 舍去........................................................................7分 ∴横彩条的宽度为2cm ,竖彩条的宽度为6cm......................8分22.解:(1)设购买羽绒服x 件,则购买皮衣()20x -件,则:........1分∴202015001240020x x x x -⎧⎪-+⎨⎪<⎩≥≥≤∴ 10≤x ≤13,且为整数.........................................................4分 ∴该店主有4种进货方案.........................................................5分羽绒服 皮衣 一 10 10 二 11 9 三 12 8 四137(2 ()()()1760201500117001020130020W x x x x =+-++---⎡⎤⎣⎦g g=230(9)9570x -+ (10≤x ≤13且为整数)..........................8分 ∵ a = 30>0,∴当10≤x ≤13且为整数时,W 随x 的增大而增大 ∴当x = 13时,最大利润为10050元答:当采购羽绒服13件时,有最大利润为10050元.....................10分 23.(1)AF – BM=MF...........................................................................................2分(2)证明:过点A 作AF ⊥CM 于F ,交EN 于G ∵CM ⊥BD ,EN ⊥BD ∴CM ∥EN ∴AG ⊥EN∵∠ACF +∠BCM =∠CBM +∠BCM = 90° ∴∠ACF =∠CBM 在△CAF 和△BCM 中90ACF CBM AFC CMB AC CM ∠=∠⎧⎪∠=∠=⎨⎪=⎩o∴△CAF ≌△BCM . ∴AF =CM.......................................................................................................4分 同理可证AG = EN 证四边形FMNG 为矩形且为整数∴EF = MN = AF + AG = CM+EN.................................................................6分(3)作图略..............................................................................................................7分 CP = EP 且CP ⊥EP证明:延长CP 于H ,使HP = CP ,连结CE 、EH 、DH 在△CPB 和△HPD 中 BP DP CPB HPD CP HP =⎧⎪∠=∠⎨⎪=⎩∴△CPB ≌△HPD ∴CB =DH......................................................................................................8分 又∵CB = CA ∴DH = CA∠CAE =270BAD EDH -∠=∠o 在△CAE 和△HDE 中CA HD CAE HDE AE DE =⎧⎪∠=∠⎨⎪=⎩∴△CAE ≌△HDE ∴CE =HE........................................................................................................9分 ∠CEA =∠DEH ∠CEH =∠AED = 90° ∴△CEH 为等腰Rt △ 又∵P 为CH 的中点 ∴EP = CP ,EP ⊥CP.....................................................................................10分24.(1)当a = 1时,2223y x mx m =--过(0,-3)∴233m -=- ∴1m =± 又∵m >0 ∴ m = 1....................................................................................................2分 ∴223y x x =--2230x x --= ∴x 1 = 0,x 2 = 2........................................................................................3分 ∴D (2,-3)..........................................................................................4分(2)∵22(23)y a x mx m =--过(0,-3) ∴233am -=- ∴21a m =........................................................................................................5分当y = 0时,()()22222123230a x mx m x mx m m--=--= x 1 = -m ,x 2 = 3m ∴A (-m ,0),B (3m ,0)当y = -3时,x 1 = 0,x 2 = 2m ∴D (2m ,-3).............................................................................................6分∴直线AD :11y x m=-- ∵AB 平分∠DAE ∴直线AE :11y x m=+ ∴()22211123y x m y x mx m m⎧=+⎪⎪⎨⎪=--⎪⎩解得x 1 = -m ,x 2 =4m...................................................................................7分∴x E = 4m ∴1415E y m m=⨯+= ∴E (4m ,5) ∴无论a ,m 取何值时,E 在直线y = 5上................................................8分(3)F (m ,-4)...................................................................................................9分()2291AD m =+,()22251AE m =+ ∴()2222161PF AE AD m =-=+...............................................................10分()()222F P F PF y x x =+- ()()2221614P F m x x +=+- ()2216P F x x m -= ∴4P F x x m -=........................................................................................11分 ∴P (5m ,0)或(-3m ,0)..................................................................12分。

武汉地区2016-2017学年度九年级上期中考试数学试卷含答案

武汉地区2016-2017学年度九年级上期中考试数学试卷含答案

13.关于 x 的一元二次方程
有实数根,则整数
a 的最大值是__________ 14.已知点 A(a,m)、B(b,m)、P(a+b,n)为抛物线 y=x2-2x-2
上的点,则 n=__________ 15.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①


;
按照以上变换有:
那么
__________
16.已知 a、b 是方程 x2-2x+m-1=0(m≠1)的两根,在直角坐标系下有 A(a,0)、 B(0,b),以 AB 为直径作⊙M,则⊙M 的半径的最小值为_________ 三、解答题(共 8 小题,共 72分)
17.(本题 8 分)解方程:
18. (本题 8 分)如图是一块车轮碎片的示意图,点 O 是这块轮片的圆心,AB=24 cm,C 是弧 AB 上一点, OC⊥AB,垂足为 D,CD=4 cm,求原轮片的半径
A’B’C’的位置,连接 BC’,则线段 BC’的长为( )
B'
A
A.
B.
C.
D.1
二、填空题(共 6 小题,每小题 3 分,共 18分)
第 1 页(共 10 页)
C' C
B
11.在平面直角坐标系中,点 A(-3,2)关于原点对称点的坐标为__________ 12.如图,⊙O 的直径 CD=10 cm,AB 是⊙O 的弦,AB⊥CD,垂足为 M, OM∶OC=3∶5,则 AB 的长为__________
C.(1+x)x=57
D.1+x+2x=57
7. 在△ABC中,∠CAB=26°,在同一平面内,将△ABC绕点 A 旋转α°
到三角形 AB'C'的位置使得 CC'∥AB 则α=(

【精品】2016年湖北省武汉市武昌区七校联考九年级上学期数学期中试卷及解..

【精品】2016年湖北省武汉市武昌区七校联考九年级上学期数学期中试卷及解..

2015-2016学年湖北省武汉市武昌区七校联考九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 4 C C.3和﹣1 1 D D.3和12.(3分)二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.(3分)将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°130°B B.50°C.40°D.60°4.(3分)用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±5.(3分)下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=06.(3分)平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)7.(3分)如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.cm B.8cm C.6cm D.4cm8.(3分)已知抛物线C的解析式为y=ax2+bx+c,则下列说法中错误的是()A.a确定抛物线的形状与开口方向B.若将抛物线C沿y轴平移,则a,b的值不变第1页(共27页)C.若将抛物线C沿x轴平移,则a的值不变D.若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变9.(3分)如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是(的面积最大值是( )A.64 B.16 C.24 D.3210.(3分)已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:①b 2﹣4ac<0;②ab+ac<0;③方程ax 2+bx+c=0有两个不同根x1、x2,且(x1﹣1)(1﹣x2)>0;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是(其中正确的个数是( )A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,共18分)11.(3分)抛物线y=﹣x2﹣x﹣1的对称轴是的对称轴是 .12.(3分)已知x=(b2﹣4c>0),则x2+bx+c的值为的值为 .13.(3分)⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离之间的距离 .14.(3分)如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为的长为 .15.(3分)抛物线的部分图象如图所示,则当y<0时,x的取值范围是的取值范围是 .16.(3分)如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是.三、解答题(共8小题,共72分)17.(8分)解方程:x2+x﹣2=0.18.(8分)已知抛物线的顶点坐标是(3,﹣1),与y轴的交点是(0,﹣4),求这个二次函数的解析式.19.(8分)已知x1、x2是方程x2﹣3x﹣5=0的两实数根(1)求x1+x2,x1x2的值;(2)求2x12+6x2﹣2015的值.20.(8分)如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(3)若⊙M能盖住△ABC,则⊙M的半径最小值为的半径最小值为 .21.(8分)如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.22.(10分)飞机着陆后滑行的距离S(单位:m)关于滑行时间t(单位:s)2的函数解析式是:S=60t﹣1.5t(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23.(10分)如图,△ABC 是边长为6cm 的等边三角形,点D 从B 点出发沿B→A 方向在线段BA 上以a a cm/scm/s 速度运动,与此同时,点E 从线段BC 的某个端点出发,以b b cm/s cm/s 速度在线段BC 上运动,当D 到达A 点后,D 、E 运动停止,运动时间为t (秒)(1)如图1,若a=b=1,点E 从C 出发沿C→B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时: ①求∠AFC 的度数; ②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B→C 方向运动,E 点到达C 点后再沿C→B 方向运动.当t ≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.(12分)定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. (1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n2,点A(0,)(n≠0),B(1,2﹣n2),P为抛物线上一点,求P A+PB的最小值及此时P点坐标;(3)若(2)中抛物线的顶点为C,抛物线与x轴的两个交点分别是D、E,过C、D、E三点作⊙M,⊙M上是否存在定点N?若存在,求出N点坐标并指出这样的定点N有几个;若不存在,请说明理由.2015-2016学年湖北省武汉市武昌区七校联考九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为(的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 4 C C .3和﹣1 1 D D .3和1【解答】解:∵3x 2﹣4x ﹣1=0,∴方程3x 2﹣4x ﹣1=0的二次项系数是3,一次项系数是﹣4; 故选:B .2.(3分)二次函数y=x 2﹣2x +2的顶点坐标是(的顶点坐标是( ) A .(1,1) B .(2,2) C .(1,2) D .(1,3) 【解答】解:y=x 2﹣2x +2的顶点横坐标是﹣=1,纵坐标是=1,y=x 2﹣2x +2的顶点坐标是(1,1). 故选:A .3.(3分)将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为(的夹角(锐角)为( ) A .130° B .50° C .40° D .60°【解答】解:如图,△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则∠A 1OA=50°,OA=OA 1,OB=OB 1,AB=A 1B 1. 设直线AB 与直线A 1B 1交于点M . 由SSS 易得△OAB ≌△OA 1B 1, ∴∠OAB=∠OA 1B 1,∴∠OAM=∠OA 1M , 设A 1M 与OA 交于点D , 在△OA 1D 与△MAD 中,∵∠DAM=∠DA 1O ,∠ODA 1=∠MDA , ∴∠M=∠A 1OD=50°. 故选:B .4.(3分)用配方法解方程x 2+6x +4=0,下列变形正确的是(,下列变形正确的是( ) A .(x +3)2=﹣4 B .(x ﹣3)2=4 C .(x +3)2=5 D .(x +3)2=±【解答】解:∵x 2+6x +4=0, ∴x 2+6x=﹣4,∴x 2+6x +9=5,即(x +3)2=5. 故选:C .5.(3分)下列方程中没有实数根的是(分)下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x +2=0 C .2015x 2+11x ﹣20=0 D .x 2+x +2=0【解答】解:A 、x 2﹣x ﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B 、x 2+3x +2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误; C 、2015x 2+11x ﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D 、x 2+x +2=0,△=12﹣4×2=﹣7<0,方程没有实数根,此选项正确; 故选:D .6.(3分)平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.7.(3分)如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为(的长为( )A.cm B.8cm C.6cm D.4cm【解答】解:如图所示,连接OA.⊙O的直径CD=10cm,则⊙O的半径为5cm,即OA=OC=5,又∵OM:OC=3:5,所以OM=3,∵AB⊥CD,垂足为M,∴AM=BM,在Rt△AOM中,AM==4,∴AB=2AM=2×4=8.故选:B.8.(3分)已知抛物线C的解析式为y=ax2+bx+c,则下列说法中错误的是(,则下列说法中错误的是( )A.a确定抛物线的形状与开口方向B.若将抛物线C沿y轴平移,则a,b的值不变C.若将抛物线C沿x轴平移,则a的值不变D.若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变【解答】解:∵平移的基本性质:平移不改变图形的形状和大小;∴抛物线C的解析式为y=ax 2+bx+c,a确定抛物线的形状与开口方向;若将抛物线C沿y轴平移,顶点发生了变化,对称轴没有变化,a的值不变,则﹣不变,所以b的值不变;若将抛物线C沿直线l:y=x+2平移,则a的值不变,故选:D.9.(3分)如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是(的面积最大值是( )A.64 B.16 C.24 D.32【解答】解:设AC=x,四边形ABCD面积为S,则BD=16﹣x,则:S=AC•BD=x(16﹣x)=﹣(x﹣8)2+32,当x=8时,S最大=32;所以AC=BD=8时,四边形ABCD的面积最大,故选:D.10.(3分)已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:①b 2﹣4ac<0;②ab+ac<0;③方程ax 2+bx+c=0有两个不同根x1、x2,且(x1﹣1)(1﹣x2)>0;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是( )A .1 B .2 C .3 D .4【解答】解:当a >0时,∵a 2+ab +ac <0,∴a +b +c <0,∴b +c <0,如图1,∴b 2﹣4ac >0,故①错误;a (b +c )<0,故②正确;∴方程ax 2+bx +c=0有两个不同根x 1、x 2,且x 1<1,x 2>1,∴(x 1﹣1)(x 2﹣1)<0,即(x 1﹣1)(1﹣x 2)>0,故③正确;∴二次函数的图象与x 轴有两个交点,与y 轴有一个交点,轴有一个交点,所以与坐标轴有三个所以与坐标轴有三个不同交点,故④正确;当a <0时,同理可得①错误,②③④正确.故选:C .二、填空题(共6小题,每小题3分,共18分)11.(3分)抛物线y=﹣x 2﹣x ﹣1的对称轴是的对称轴是直线x=﹣ .【解答】解:对称轴为直线x=﹣=﹣=﹣,即直线x=﹣故答案为:直线x=﹣.12.(3分)已知x=(b 2﹣4c >0),则x 2+bx +c 的值为的值为 0 .【解答】解:∵x=(b 2﹣4c >0), ∴x 2+bx +c=()2+b +c=++c===0.故答案为:0.13.(3分)⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离之间的距离 7cm 或17cm .【解答】解:作OE ⊥AB 于E ,交CD 于F ,连结OA 、OC ,如图,∵AB ∥CD ,∴OF ⊥CD ,∴AE=BE=AB=12,CF=DF=CD=5,在Rt △OAE 中,∵OA=13,AE=12,∴OE==5,在Rt △OCF 中,∵OC=13,CF=5,∴OF==12,当圆心O 在AB 与CD 之间时,EF=OF +OE=12+5=17;当圆心O 不在AB 与CD 之间时,EF=OF ﹣OE=12﹣5=7;即AB 和CD 之间的距离为7cm 或17cm .故答案为7cm 或17cm .14.(3分)如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC•AB ,AD 2=CD•AC ,AE 2=DE•AD ,则AE 的长为的长为﹣2 .【解答】解:设AC=x ,则BC=AB ﹣AC=1﹣x , ∵AC 2=BC•AB ,∴x 2=1﹣x ,解得:x 1=,x 2=(不合题意,舍去), ∴AC=, ∵AD 2=CD•AC ,∴AD=×=, ∵AE 2=DE•AD ,∴AE=×=﹣2;故答案为:﹣2.15.(3分)抛物线的部分图象如图所示,则当y <0时,x 的取值范围是的取值范围是 x >3或x <﹣1 .【解答】解:根据函数图象可知:抛物线的对称轴为x=1,抛物线与x 轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(3,0).∵y<0,∴x>3或x<﹣1.故答案为:x>3或x<﹣1.16.(3分)如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是长度的取值范围是 (2﹣3)a≤DE≤a..【解答】解:当B、D重合或C、E重合时DE长度最大,如图1,∵∠BAE=30°,∠AEB=90°,∴DE=AB=a,当∠BAD=∠CAE=15°时,DE长度最小,如图2,作AF⊥BC,且AF=AB,连接DF、CF,∵AF⊥BC,∴∠BAF=∠CAF=30°,∵∠BAD=∠CAE=15°,∴∠DAH=∠EAH=15°,∴∠BAD=∠DAH,在△ADB和△ADF中,,∴△ABD≌△ADF,∴∠B=∠AFD,BD=DF,∵∠AHB=∠DHF=90°,∴△ABH ∽△DFH ,AB :AH=DF :DH ,∴=, ∴=,∴DH=,其中BD +DH=a 、AH=a ,∴DH==a∴DE=(2﹣3)a ,故DE 长度的取值范围是(2﹣3)a ≤DE ≤a .三、解答题(共8小题,共72分)17.(8分)解方程:x 2+x ﹣2=0.【解答】解:分解因式得:(x ﹣1)(x +2)=0,可得x ﹣1=0或x +2=0,解得:x 1=1,x 2=﹣2.18.(8分)已知抛物线的顶点坐标是(3,﹣1),与y 轴的交点是(0,﹣4),求这个二次函数的解析式. 【解答】解:设抛物线解析式为y=a (x ﹣3)2﹣1,把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣,则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.(8分)已知x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根 (1)求x 1+x 2,x 1x 2的值;(2)求2x 12+6x 2﹣2015的值.【解答】解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根,∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根,∴x 12﹣3x 1﹣5=0,∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2005=﹣1987.20.(8分)如图所示,△ABC 与点O 在10×10的网格中的位置如图所示 (1)画出△ABC 绕点O 逆时针旋转90°后的图形;(2)画出△ABC 绕点O 逆时针旋转180°后的图形;(3)若⊙M 能盖住△ABC ,则⊙M 的半径最小值为的半径最小值为 .【解答】解:(1)如图,△AʹBʹCʹ为所作;(2)如图,△AʺBʺCʺ为所求;(3)如图,当点M为AC的中点时,此时⊙M是能盖住△ABC的最小的圆,⊙M的半径为.故答案为.21.(8分)如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.【解答】解:(1)连接OC,∵OA⊥BC,OC=OB,∴∠AOC=∠AOB,∠ACO=∠ABO,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB,∠ACO=∠OAB,∴∠DAB=∠AOC,∴∠DAB=∠AOB,又∠DAB+∠AOB=60°,∴∠AOB=30°;(2)∵∠AOB=30°,∴BE=OB,设⊙O的半径为r,则BE=r,OE=r﹣1,由勾股定理得,r 2=(r)2+(r﹣1)2,解得r1=4+2,r2=4﹣2(舍去)∵OB=OC,∠BOC=2∠AOB=60°,∴BC=r=4+2.22.(10分)飞机着陆后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?【解答】解:(1)飞机着陆时的速度V=60;(2)当S取得最大值时,飞机停下来,则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600,此时t=20因此t 的取值范围是0≤t ≤20;(3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600.飞机着陆后滑行600米才能停下来.23.(10分)如图,△ABC 是边长为6cm 的等边三角形,点D 从B 点出发沿B→A方向在线段BA 上以a a cm/scm/s 速度运动,与此同时,点E 从线段BC 的某个端点出发,以b b cm/scm/s 速度在线段BC 上运动,当D 到达A 点后,D 、E 运动停止,运动时间为t (秒)(1)如图1,若a=b=1,点E 从C 出发沿C→B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时:①求∠AFC 的度数;②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B→C 方向运动,E 点到达C 点后再沿C→B 方向运动.当t ≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.【解答】解:(1)如图1,由题可得BD=CE=t .∵△ABC 是等边三角形,∴BC=AC ,∠B=∠ECA=60°.在△BDC 和△CEA 中,,∴△BDC ≌△CEA ,∴∠BCD=∠CAE ,∴∠EFC=∠CAE +∠ACF=∠BCD +∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG 于H ,如图2,∵∠AFG=180°﹣120°120°=60°=60°,FG=FA , ∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°.∵△ABC 是等边三角形,∴AB=AC ,∠BAC=60°,∴∠GAF=∠BAC,∴∠GAB=∠FAC.在△AGB和△AFC中,,∴△AGB≌△AFC,∴GB=FC,∠AGB=∠AFC=120°,∴∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中,BH=BG•sin∠BGH=BG•sin60°=y,GH=BG•cos∠BGH=BG•cosBGH=BG•cos60°60°60°==y,∴FH=FG﹣GH=x﹣y.在Rt△BHF中,BF 2=BH2+FH2=(y)2+(x﹣y)2=x2﹣xy+y2.∴==1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6.∴BE=6﹣(2t﹣6)=12﹣2t,BN=BE•cosB=BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC .∵△DEM 是等边三角形, ∴DE=EM ,∠DEM=60°.∵∠NDE +∠NED=90°,∠NED +∠MEC=180°﹣30°﹣60°60°=90°=90°, ∴∠NDE=∠MEC .在△DNE 和△ECM 中,,∴△DNE ≌△ECM , ∴∠DNE=∠ECM=90°,∴M 点运动的路径为过点C 垂直于BC 的一条线段. 当t=3时,E 在点B ,D 在AB 的中点, 此时CM=EN=CD=BC•sinB=6×=3;当t=6时,E 在点C ,D 在点A , 此时点M 在点C .∴当3≤t ≤6时,M 点所经历的路径长为3.24.(12分)定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. (1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求P A +PB 的最小值及此时P 点坐标; (3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由. 【解答】解:(1)设抛物线上有一点(x ,y ), 由定义知:x 2+(y ﹣)2=|y +|2,解得y=ax 2;(2)如图1,由(1)得抛物线y=x 2的焦点为(0,),准线为y=﹣,∴y=x 2﹣n2由y=x2向下平移n2个单位所得,∴其焦点为A(0,﹣n 2),准线为y=﹣﹣n2,由定义知P为抛物线上的点,则PA=PH,∴P A+PH最短为P、B、A共线,此时P在Pʹ处,∵x=1,∴y=1﹣n 2<2﹣n2,∴点B在抛物线内,∴BI=y B﹣y I=2﹣n2﹣(﹣﹣n2)=,∴P A+PB的最小值为,此时P点坐标为(1,1﹣n 2);(3)由(2)知E(|n|,0),C(0,n 2),设OQ=m(m>0),则CQ=QE=n 2﹣m,在Rt△OQE中,由勾股定理得中,由勾股定理得||n|2+m2=(n2﹣m)2,解得m=﹣,则QC=+=QN,∴ON=QN﹣m=1,即点N(0,1),故AM过定点N(0,1).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点. (1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径. O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

2016九年级(上)数学期中试卷

2016九年级(上)数学期中试卷

2016-2017学年度第一学期第一阶段学业质量监测试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.下列方程中,是一元二次方程的是 A .2x +3y +1=0 B .x 2-1=0C .y =(x -2)2D .1x+x =12.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表:这10人完成引体向上个数的众数与中位数分别是 A .9和10B .9.5和10C .10和9D .10和9.53.设x 1、x 2是一元二次方程x 2-4x -1=0的两个根,则x 1+x 2的值为A .1B .4C .-1D .-44.如图,点A 、B 、C 、D 在⊙O 上,C 是AB ︵的中点,∠CDB =25°,∠AOB 的度数是 A .50°B .100°C .125°D .150°5.如图,正八边形ABCDEFGH 的两条对角线AC 、BE 相交于点P ,∠EPC 的度数为(第5题)AB C DEFPGH (第4题)A .67.5°B .69°C .72°D .112.5°6.如果四边形内存在一个点到四个顶点的距离相等,那么这个四边形一定..有 A .一组邻角相等B .一组对角相等C .两组对角分别相等D .两组对角的和相等二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 7.将方程x 2+4x -1=0化为(x +a )2=b 的形式为 ▲ .8.圆锥的母线长为5,底面半径为3,圆锥的侧面积为 ▲ .(结果保留π) 9.小亮本学期数学的平时作业、期中考试、期末考试及数学综合实践活动的成绩分别是88分、82分、90分和90分,各项占学期成绩的百分比分别为30%、30%、35%、5%,则小亮的数学学期成绩是 ▲ 分.10.已知关于x 的一元二次方程3(x -1)(x -m )=0的两个根是1和2,则m 的值是 ▲ . 11.甲、乙两地5月下旬10天的日平均气温统计如下表(单位:°C ):则甲、乙两地这10天日平均气温的方差的大小关系为:S 2甲 ▲ S 2乙.(填“>”、“<”或“=”)12.某电视机厂今年3月的产量为50万台,5月上升到72万台,求该厂平均每月产量增长的百分率.若设该厂平均每月产量增长的百分率为x ,则列出的方程是 ▲ . 13.在直径为650 mm 的圆柱形油罐内装进一些油后,其横截面如图.若油面宽AB =600 mm ,则油的最大深度为 ▲ mm .14.如图,四边形ABCD 中,AB 、CD 分别与以AD 为直径的半圆O 切于点A 、D ,BC切半圆O 于点E ,若AB =4 cm ,CD =9 cm ,则AD = ▲ cm .15.如图,四边形OABC 为菱形,点B 在以点O 为圆心、以OC 为半径的EF ︵上,若OA =3,∠COF =∠AOE ,则EF ︵的长度为 ▲ .(结果保留π)OABCEF(第15题)(第14题)(第13题)16.顶点在圆外,并且两边都和圆相交的角叫做圆外角.圆外角的两边所夹的两条弧的度数与该角的度数之间的数量关系是:圆外角的度数等于 ▲ .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)解方程x 2-3x -1=0.18.(6分)解方程x (x +2)=6+3x .19.(8分)已知关于x 的一元二次方程x 2+(2m -1)x +m 2+3=0有两个不相等的实数根,求m 的取值范围.20.(8分)证明定理“垂直于弦的直径平分弦以及弦所对的两条弧”. 如图,AB 为⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD ,垂足为P .求证CP =DP ,BC ︵=BD ︵,AC ︵=AD ︵.21.(8分)如图,我区准备用一块长为60 m ,宽为54 m 的矩形荒地建造一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的两个完全一样的矩形区域将铺设塑胶作为运动场地.若塑胶运动场地总面积为2700 m 2,求通道的宽度.B(第20题)(第21题)22.(8分)如图,⊙O 是正方形ABCD 与正六边形AEFCGH 的外接圆.(1)正方形ABCD 与正六边形AEFCGH 的边长之比为 ▲ ; (2)连接BE .BE 是否为⊙O 的内接正n 边形的一边?如果是,求出n 的值;如果不是,请说明理由.23.(8分)教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.(1)请你根据图中的数据填写下表:(2)根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.24.(8分)如图,在⊙O 的内接四边形ABCD 中,AB =AD ,∠C =120°.E 是AB ︵上一点(点E 不与点A 、B 重合). (1)求∠E 的度数;(2)若⊙O 的半径为2,则图中阴影部分的面积是 ▲ . (结果保留根号和π)25.(8分)如图,过△ABC 的顶点A 作射线AM ,使∠1=∠B .(第24题)(第22题) 甲射靶成绩的条形统计图 乙射靶成绩的折线统计图(第23题)(1)用直尺和圆规作出△ABC 的外接圆O (保留作图痕迹,不写作法); (2)判断直线AM 与⊙O 的位置关系,并说明理由.26.(10分)实际问题某批发商以40元/kg 的成本价购入了某产品700 kg ,据市场预测,该产品的销售价y (元/kg )与保存时间x (天)的函数关系为y =50+2x ,但保存这批产品平均每天将损耗15 kg .另外,批发商每天保存该批产品的费用为50元.已知该产品每天的销量不超过600 kg ,若批发商希望通过这批产品卖出获利7000元,则批发商应在保存该产品多少天时一次性...卖出? 小明的思路及解答当x =0时,700-15x =700>600(不合题意,舍去), 当x =40时,700-15x =100<600.答:批发商应在保存该产品40天时一次性卖出可获利7000元. 数学老师的批改数学老师在小明的解答中画了一条横线,并打了一个“×”. 你的观点及做法AM C (第25题)B1(1)请指出小明错误的原因;(2)重新给出正确的解答过程.27.(10分)如图①,已知AB 是⊙O 的直径,C 是AmB ︵上的一个动点(点C 与点A 、B 不重合),连接AC .D 是ABC ︵的中点,作弦DE ⊥AB ,垂足为F .(1)若点C 和点E 不重合,连接BC 、CE 和EB .当△BCE 是等腰三角形时,求∠CAB的度数;(2)若点C 和点E 重合,如图②.探索AB 与AC 的数量关系并说明理由.(第27题)②①。

2016-2017学年武汉市武昌区九上期中数学试卷【七校联考】

2016-2017学年武汉市武昌区九上期中数学试卷【七校联考】

2016-2017学年武汉市武昌区九上期中数学试卷【七校联考】一、选择题(共10小题;共50分)1. 下列汉字中,属于中心对称图形的是A. B.C. D.2. 方程的解是A. B. C. , D. 无解3. 如图,在中,.在同一平面内,将绕点旋转到的位置,使得,则A. B. C. D.4. 菱形的一条对角线长为,边的长是方程的一个根,则菱形的周长为A. B. C. 或 D.5. 将抛物线向左平移个单位,再向下平移个单位,所得抛物线为A. B.C. D.6. 如图,将绕点旋转得到,设点的坐标为,则点的坐标为A. B.C. D.7. 如图,抛物线与轴交于,两点,与轴交于点,,则下列各式成立的是A. B. C. D.8. 下列图形都是按照一定规律组成的,第一个图形中共有个三角形,第二个图形中共有个三角形,第三个图形中共有个三角形,,依此规律,第五个图形中三角形的个数是个.A. B. C. D.9. 如图,内接于,,为的直径,交于点且,,则的长为A. B. C. D.10. 中,,,将绕着点逆时针旋转至,连接,,且为等腰三角形,设的面积为,则的值有个.A. B. C. D.二、填空题(共6小题;共30分)11. 某种植物主干长出若干数目的枝干,每个分支又长出同样数目的小分支,主干、枝干、小分支的总数是,每个枝干长出个小分支.12. 的半径为,,是的两条弦,,,,则,之间的距离为.13. 已知,是方程的两个实数根,则.14. 如图,的直径的长为,弦长为,的平分线交于,则长为.15. 设为实数,若方程有且仅有三个实数根,则的值为.16. 如图三角形中,,,以为边向三角形外作等边三角形,连接,则当度时,有最大值,最大值为.三、解答题(共8小题;共104分)17. 解方程:.18. 已知抛物线的对称轴为直线,且过点.(1)求此抛物线的解析式;(2)证明:该抛物线恒在直线上方.19. 如图,三个顶点的坐标分别为,,.(1)画出向左平移个单位长度后得到的;(2)请画出关于原点对称的;(3)在轴上求作一点,使的周长最小,请画出,并直接写出的坐标.20. 已知,为等边三角形内一点,且,,将绕点顺时针旋转至的位置.(1)试判断的形状,并说明理由;(2)若,求的长度.21. 如图,,两点在以为直径的半圆上,平分.(1)求证.(2)若,,求的长.22. 某商品的进价为每件元,如果售价为每件元,每个月可卖出件;如果售价超过元但不超过元,每件商品的售价每上涨元,则每个月少卖件;如果售价超过元后,若再涨价,则每涨元每月少卖件.设每件商品的售价为元,每个月的销售量为件.(1)求与的函数关系式并直接写出自变量的取值范围;(2)设每月的销售利润为,请直接写出与的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?23. 在,中,,,.(1)若,,在一条直线上,连接,,分别取,的中点,如图(),求出线段,之间的数量关系;(2)若将绕旋转到如图()的位置,连接,,取的中点,请探究线段,之间的关系,并证明你的结论;(3)若将由图()的位置绕顺时针旋转角度,且,,是否存在角度使得?若存在,请直接写出此时的面积;若不存在,请说明理由.24. 已知,如图,在平面直角坐标系中,点坐标为,点坐标为,点为射线上的动点(点不与点,重合),抛物线上存在动点,使得,为轴正半轴上一点,且,抛物线的图象经过,两点.(1)求此抛物线的函数解析式;(2)若点的横坐标为,求点的坐标;(3)抛物线上是否存在点,使得,若存在,求点的坐标;若不存在,说明理由.答案第一部分1. D2. C3. C4. A5. C6. D 【解析】已知关于原点对称的点的坐标规律:横坐标和纵坐标都互为相反数;知道平移规律:上加下减;右加左减.在次基础上转化求解.把向上平移个单位得的对应点坐标和的对应点坐标后求解.7. B 8. C 9. B 10. B第二部分11.12. 或13.14.15. 或16. ,第三部分17.或18. (1),,将点的坐标代入得:,抛物线的解析式为.(2),抛物线恒在直线上方.19. (1)如图,为所求.(2)如图,为所求.(3)如图,点为所求,.20. (1)为等边三角形,理由:由旋转的性质可知,,为等边三角形.(2),为等边三角形,,,,,,在和中,..,..在中,,,..21. (1),,又平分,,.(2)连接交于点,连接,,又,,,设,则,,,,,,,,.22. (1)当时,,即,当时,,即.则.(2)由利润(售价成本)销售量,可以列出函数关系式,.(3)当时,,当有最大值,最大值为,当时,,当时,有最大值,最大值为,故售价定为元,利润最大为元.23. (1)取中点为,连接,,如图所示,,,,,由,得:,且,,.(2),证明如下:延长至,使,连接并延长,与的延长线交于点,如图所示,易证,,,,,在和中,,.(3)存在,此时或.24. (1)由题意得,,,点的坐标为,将,两点的坐标代入,得:解得抛物线的解析式为.(2)易知,所在直线的解析式为,点的横坐标为,代入得:,点的坐标为,当在轴上方时,如图所示,过点作交于点,作于点,延长,过作于点,易证,,,点的坐标为,易得所在直线的解析式为,联立解得,又,,点的坐标为,当在轴下方时,方法如上,可得所在直线的解析式为,如图所示,联立解得,又,,点的坐标为,点的坐标为或.(3)过作轴交于点,如图所示,设,,,,,,解得或,或或.第11页(共11 页)。

湖北省武汉市部分中学九年级数学上学期期中联考试题 新人教版

湖北省武汉市部分中学九年级数学上学期期中联考试题 新人教版

湖北省武汉市部分中学2016届九年级数学上学期期中联考试题一、选择题(每小题3分,共30分)1.将方程化为一元二次方程10832=-x x 的一般形式,其中二次项系数,一次项系数,常数项分别是A .3,-8,-10B .3,-8, 10C . 3, 8,-10D . -3 ,-8,-10 2.用配方法解方程2250x x --=时,原方程应变形为A .2(1)6x += B .2(2)9x += C .2(1)6x -= D .2(2)9x -= 3.在下列四个图案中,不是中心对称图形的是A B .C .D .4.将二次函数2)1(2--=x y 的图象先向右平移1个单位,再向上平移1个单位后顶点为 A .(1,3) B .(2,-1) C .(0,-1) D .(0,1) 5.如图,在△ABC 中,∠CAB =65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB ,则旋转角的度数为 A.35° B.40°C.50°D.65°6.如图,已知长方形的长为10cm ,宽为4cm ,则图中阴影部分的面积为A .20cm 2B .15cm 2C .10cm 2D .25cm27.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。

已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是A.1011)1(2=+x B. 910)1(2=+x C. 101121=+x D. 91021=+x8.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m .水面下降2.5m ,水面宽度增加A .1 mB .2 mC .3 mD .6 m9.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是第8题图第5题图 第6题图 P Q OOO OO yy y y yx x x x xA .B .C .D .第9题图10.一元二次方程:M :20ax bx c ++=; N :20cx bx a ++=,其中ac ≠0,a ≠c ,以下四个结论:①如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根; ②如果方程M 有两根符号相同,那么方程N 的两根符号也相同;③如果m 是方程M 的一个根,那么m 1是方程N 的一个根;④如果方程M 和方程N 有一个相同的根,那么这个根必是1x = 正确的个数是 A .1 B .2 C .3 D .4二、填空题(每题3分,共18分)11.若点)1,2(A 与点B 是关于原点O 的对称点,则点B 的坐标为 12.一元二次方程x 2﹣2x =0的解是13.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m 2的矩形空地,则原正方形空地的边长是14.二次函数k x x y +--=322的图象在x 轴下方,则k 的取值范围是15.在平面直角坐标系xOy 中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),点2015A 的坐标为 . 16.如图,在△ABC 中,∠ACB=90,D 为边AB 的中点,E,F 分别为边AC ,BC 上的点,且AE=AD ,BF=BD ,若DE=22,DF=4,则AB 的长为三、解答题( 共8道小题,共72分)17. (本题满分8分)已知关于x 的方程x 2+2x +a ﹣2=0 (1)若方程有一根为1,求a 的值; (2)若a=1,求方程的两根.18. (本题满分8分)四边形ABCD 是正方形,E 、F 分别是DC 和CB 的延长线上的点,且DE=BF ,连接AE 、AF 、EF . (1)求证:△ADE ≌△ABF ;(2)填空:△ABF 可以由△ADE 绕旋转中心 点,按顺时针方向旋转 度得到;19. (本题满分8分)已知关于x 的方程x 2-2(k -1)x+k 2=0第18题图FEDC BA第16题图第13题图有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若21211x x x x -=+,求k 的值.20. (本题满分8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-4,3)、B (-3,1)、C (-1,3).(1)请按下列要求画图:①将△ABC 先向右平移4个单位长度、再向上平移2个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1;②△A 2B 2C 2与△ABC 关于原点O 成中心对称,画出△A 2B 2C 2. (2)在(1)中所得的△A 1B 1C 1和△A 2B 2C 2关于点M 成中心对称,请直接写出对称中心M 点的坐标.21. (本题满分8分)如图,已知ABC ∆是等边三角形.(1)如图(1),点E 在线段AB 上,点D 在射线CB 上,且ED=EC.将BCE ∆绕点C 顺时针旋转60°至ACF ∆,连接EF.猜想线段AB,DB,AF 之间的数量关系;(2)点E 在线段BA 的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整,并猜想线段AB,DB,AF 之间的数量关系; (3)请选择(1)或(2)中的一个猜想进行证明.22.(本题满分10分)已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x 元(x 为整数),每星期的销售利润为w 元. (1)求w 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元? (3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果. 23. (本题满分10分)如图(1),在Rt △ABC 中,∠A =90°,AC =AB =4, D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,如图(2),设旋转角为第20题图 A B C A C D E 第21题图(1) 第21题图(2)α(0<α≤180°),记直线BD 1与CE 1的交点为P . (1)求证:BD 1= CE 1 ;(2)当∠=1CPD 2∠1CAD 时,求1CE 的长;(3)连接PA,PAB ∆面积的最大值为 .(直接填写结果)24.(本题满分12分)如图,已知抛物线的顶点为A ,且经过点B (3,-3).(1)求顶点A 的坐标;(2)在对称轴左侧的抛物线上存在一点P ,使得∠PAB=45°,求点P 坐标; (3)如图(2),将原抛物线沿射线OA 方向进行平移得到新的抛物线,新抛物线与射线OA 交于C ,D 两点,请问:在抛物线平移的过程中,线段CD 的长度是否为定值?若是,请求出九年级数学参考答案及评分标准一、选择题(共10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 78910答案AC B B CABB A C二、填空题(共6小题,每小题3分,共18分) 11.(-2,-1); 122,021==x x 13. 7 ; 14.k <89-; 15.(-3,1); 16.45三、解答题(共72分)17.解:(1)将x=1代入方程得1+2+a-2=0,解得a=1; …………3分x 52468PAOB y 第24题图(1)E B第23题图(1)PE 1BCED D 1A第23题图(2)xy5422A OC D第24题图(2)(2)将a=1代入方程得x 2+2x ﹣1=0,∵a=1,b=2,c=-1 …………6分 ∴……… ∴21,2121--=+-=x x . …………8分18.(1)∵四边形ABCD 是正方形,∴AD=AB,∠D=∠ABC …………1分 在△ADE 和△ABF 中AD=AB,∠D=∠ABF,DE=BF …………4分 ∴△ADE≌△ABF …………6分 (2)A ;90 …………8分 19.解:(1)∵△=≥0 …………….2分∴-8k+4≥0 ∴k≤21…………….4分 (2) ∵+=2(k-1),=k2………….5分∴2(k -1)=1-k 2∴k 1=1, k 2=-3 ……….7分 ∵k≤21 ∴k=-3 ………8分20. 解:(1)画图略,每图3分 ……… 6分 (2) (2 , 1) ………8分21. (1)AB=AF+BD; …………2分 (2)如图(2)中的实线图,AB=AF-BD; …………4分(3)如图(1),过点E 作EG∥BC 交AC 于点G,得△AEG 为等边三角形 ∵DE=CE,∴∠CDE=∠ECD,又∵∠CDE+∠BED=∠ABC=∠ACD=∠ECD+∠GCE,∴∠BED=∠GCE…………6分 又∵BE=CG,DE=CE∴△BDE≌△GEC ∴BD=EG=AEA C D GE C A FG E 第21题图(1) 第21题图(2)又∵AF=BE ∴AB=BE+AE=AF+BD …………8分如图(2),过点E 作EG∥BC 交AC 于点G,得△AEG 为等边三角形 ∵DE=CE,∴∠CDE=∠ECD,又∵∠CDE -∠BED=∠ABC=∠ACD=∠ECD -∠GCE,∴∠BED=∠GCE …………6分 又∵BE=CG,DE=CE∴△BDE≌△GEC ∴BD=EG=AE又∵AF=BE ∴AB=BE -AE=AF-BD ………8分23. (1)在△AB 1D 和△AC 1E 中∵AC=AB, ∠CAE 1=∠BA 1D ,A 1E = A 1D ……………3分∴△AB 1D ≌△AC 1E ∴BD 1= CE 1 ……………4分 (2)由(1)知△AB 1D ≌△AC 1E ,可证∠1CPD =90°, ……………5分 ∴∠1CAD =45°,∠1BAD =135° 在△AB 1D 中,可以求得B 21D =20+28∴C 21E =20+28 ……………8分 (3)2+32 ……………10分PCED 124. 解:(1)依题意-32+3m+m-2=-3∴m=2 …………2分∴y=-x2+2x∴顶点A(1,1)…………4分(2)过B作BQ⊥BA交AP于Q,过B作GH∥y轴分别过A,Q作AG⊥GH于G,QH⊥GH于H∵∠PAB=45° ∴BA=BQ∴△ABG≌△BQH∴AG=BH=2,BG=QH=4∴Q(-1 ,-5)…………6分∴直线AP的解析式为y=3x-2联立∴-x2+2x=3x-2∴x1=1, x2=-2 ………7分∵P在对称轴左侧的抛物线上∴P(-2,-8)………8分(3)∵直线OA的解析式为y=x∴可设新抛物线解析式为y=-(x-a)2+a ………9分联立∴-(x-a)2+a=x∴x 1=a, x 2=a-1 ………11分 即C,D 两点横坐标的差是常数1 ∴CD= ………12分52468PA OBxyxy5422A OC D第24题图GQH。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档