数字信号处理实验五
数字信号处理实验实验五汇总
数字信号处理实验报告实验名称:应用FFT实现信号频谱分析学生姓名:z学生学号:学生班级:上课时间:周二上午指导老师:一、 实验目的(1) 能够熟练掌握快速离散傅里叶变换的原理及应用FFT 进行频谱分析的基本方法。
(2) 对离散傅里叶变换的主要性质及FFT 在数字信号处理中的重要作用有进一步的了解。
二、 实验原理1、离散傅里叶变换(DFT )及其主要性质DFT 表示离散信号的离散频谱,DFT 的主要性质中有奇偶对称性、虚实特性等。
通过实验可以加深理解。
实序列的DFT 具有偶对称的实部和奇对称的虚部,这可以证明如下: 由定义,可得X(k)=∑-=1)(N n kn N W n x=)2sin()()2cos()(110kn N n x j kn N n x N n N n ∑∑-=-=-ππX(N-k)=∑-=-10)()(N n n k N NWn x =∑-=-1)(N n kn nNnWWn x =∑-=-1)(N n kn N W n x=)2sin()()2cos()(110kn N n x j kn N n x N n N n ∑∑-=-=+ππ所以,X(k)=X *(N-k)实序列DFT 的这个特性,在本实验中可以通过实指数序列及三角序列看出来。
对于单一频率的三角序列来说,它的DFT 谱线也是单一的,这个物理意义可以从实验中得到验证,在理论上可以推导如下: 设)()2s i n ()(n R n Nn x N π= 其DFT 为 X(k)=∑-=-102)(N n kn Nen x π=kn Nj N n e n N ππ21)2sin(--=∑=kn N j n N j N n N j e e e j πππ22102)(21---=-∑=)(21)1(210)1(2+--=---∑k n N j N n k n N j e e j ππ从而,X(0)=0)(212102=---=∑n N j N n Nj e e j ππX(1)=22)1(21104Nj j N e j N n n N j -==-∑-=-πX(2)=0 …… X(N-2)=0X(N-1)=22)(21210)2(2Nj j N e e j n j N n n N N j =-=-∑-=--ππ以上这串式中X(0)反映了x(n)的直流分量,X(1)是x(n)的一次谐波,又根据虚实特性X *(N-1)=X(1),而其他分量均为零。
数字信号处理实验报告 (5)
实验一信号、系统及系统响应一、实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定的理解。
2、熟悉时域离散系统的时域特性。
3、利用卷积方法观察分析系统的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、实验原理采样的的过程既是连续信号离散化的过程。
采用单位冲击串进行采样,为使采样信号能不失真的还原为采样前的信号,根据奈奎斯特采样率,采样频率应该大于信号最高频率的2倍。
因为时域的采样既是对时域的离散化处理,时域离散频域会进行周期延拓,为了防止频域频谱混叠,必须满足奈奎斯特采样定律。
线性卷积的过程为:反褶,移位,相乘,相加。
设一个N1点的序列与一个N2的序列进行卷积则得到N1+N2-1点的序列。
时域卷积,对应频域的相乘。
序列的傅里叶变换即DTFT 。
具有的性质有: 线性,移位性,对偶性,等等。
三、实验内容及步骤1)分析采样序列的特性。
产生采样序列()a x n ,A 444.128=,a =,0Ω=。
a 、 取采样频率s f 1kHz =,即T 1ms =。
观察所采样()a x n 的幅频特性()j X e ω和)(t x a 的幅频特性()X j Ω在折叠频率处有无明显差别。
应当注意,实验中所得频谱是用序列的傅立叶变换公式求得的,所以在频率量度上存在关系:T ω=Ω。
b 、改变采样频率,s f 300Hz =,观察()j X eω的变化并做记录。
c 、 进一步降低采样频率,s f 200Hz =,观察频谱混叠是否明显存在,说明原因,并记录()j X e ω的幅频曲线。
上图是采用不同采样频率时所得到的序列及其对应的傅里叶变换,从图中可以看到,当采样频率比较低时,频谱会发生混叠,且频率越低,混叠现象越明显。
增大采样频率可以有效地防止混叠。
2) 离散信号、系统和系统响应分析。
a 、观察信号()b x n 和系统h ()b n 的时域和频域持性;利用线形卷积求信号()b x n 通过系统h ()b n 的响应y(n),比较所求响应y(n)和h ()b n 的时域及频域特性,注意它们之间有无差异,绘图说明,并用所学结论解释所得结果。
数字信号处理实验五
实验五:抽样定理一、实验目的1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。
2、进一步加深对时域、频域抽样定理的基本原理的理解。
3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。
二、实验内容及步骤1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。
2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m =1Hz 。
(1)分别显示原连续信号波形和F s =f m 、F s =2f m 、F s =3f m 三种情况下抽样信号的波形;dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]);课程名称 数字信号处理 实验成绩 指导教师实 验 报 告院系 信息工程学院 班级 学号 姓名 日期end-2-1.5-1-0.50.511.5200.51原连续信号和抽样信号(2)求解原连续信号和抽样信号的幅度谱; dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; N=length(t); f=sinc(t); wm=2*pi*fm; k=0:N-1; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3;if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1; w=k*wm/N; F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end00.511.522.533.540.20.40.60.811.200.511.522.533.54012(3)用时域卷积的方法(内插公式)重建信号。
数字信号处理上机实验 作业结果与说明 实验三、四、五
上机频谱分析过程及结果图 上机实验三:IIR 低通数字滤波器的设计姓名:赵晓磊 学号:赵晓磊 班级:02311301 科目:数字信号处理B一、实验目的1、熟悉冲激响应不变法、双线性变换法设计IIR 数字滤波器的方法。
2、观察对实际正弦组合信号的滤波作用。
二、实验内容及要求1、分别编制采用冲激响应不变法、双线性变换法设计巴特沃思、切贝雪夫I 型,切贝雪夫II 型低通IIR 数字滤波器的程序。
要求的指标如下:通带内幅度特性在低于πω3.0=的频率衰减在1dB 内,阻带在πω6.0=到π之间的频率上衰减至少为20dB 。
抽样频率为2KHz ,求出滤波器的单位取样响应,幅频和相频响应,绘出它们的图,并比较滤波性能。
(1)巴特沃斯,双线性变换法Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radians frequency in pi unitsa r g (H [e x p (j w )](2)巴特沃斯,冲激响应不变法(3)切贝雪夫I 型,双线性变换法(4)切贝雪夫Ⅱ型,双线性变换法综合以上实验结果,可以看出,使用不同的模拟滤波器数字化方法时,滤波器的性能可能产生如下差异:使用冲击响应不变法时,使得数字滤波器的冲激响应完全模仿模拟滤波器的冲激响应,也就是时域逼急良好,而且模拟频率和数字频率之间呈线性关系;但频率响应有混叠效应。
frequency in Hz|H [e x p (j w )]|Designed Lowpass Filter Magnitude Response in dBfrequency in pi units|H [e x p (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [e xp (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radiansfrequency in pi unitsa r g (H [e x p (j w )]使用双线性变换法时,克服了多值映射的关系,避免了频率响应的混叠现象;在零频率附近,频率关系接近于线性关系,高频处有较大的非线性失真。
数字信号处理实验报告1-5
实验一时域离散信号的产生及时域处理实验目的:了解Matlab软件数字信号处理工具箱的初步使用方法。
掌握其简单的Matlab语言进行简单的时域信号分析。
实验内容:[1.1]已知两序列x1=[0,1,2,3,4,3,2,1,0];n1=[-2:6];x2=[2,2,0,0,0,-2,-2],n2=[2:8].求他们的和ya及乘积yp. 程序如下:x1=[0,1,2,3,4,3,2,1,0];ns1=-2;x2=[2,2,0,0,0,-2,-2];ns2=2;nf1=ns1+length(x1)-1;nf2=ns2+length(x2)-1;ny=min(ns1,ns2):max(nf1,nf2);xa1=zeros(1,length(ny));xa2=xa1;xa1(find((ny>=ns1)&(ny<=nf1)==1))=x1;xa2(find((ny>=ns2)&(ny<=nf2)==1))=x2;ya=xa1+xa2yp=xa1.*xa2subplot(4,4,1),stem(ny,xa1,'.')subplot(4,1,2),stem(ny,xa2,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,3),stem(ny,ya,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,4),stem(ny,yp,'.')line([ny(1),ny(end)],[0,0])[1.2]编写产生矩形序列的程序。
并用它截取一个复正弦序列,最后画出波形。
程序如下:clear;close alln0=input('输入序列起点:n0=');N=input('输入序列长度:N=');n1=input('输入位移:n1=');n=n0:n1+N+5;u=[(n-n1)>=0];x1=[(n-n1)>=0]-[(n-n1-N)>=0];x2=[(n>=n1)&(n<(N+n1))];x3=exp(j*n*pi/8).*x2;subplot(2,2,1);stem(n,x1,'.');xlabel('n');ylabel('x1(n)');axis([n0,max(n),0,1]);subplot(2,2,3);stem(n,x2,'.');xlabel('n');ylabel('x2(n)');axis([n0,max(n),0,1]);subplot(2,2,2);stem(n,real(x3),'.'); xlabel('n');ylabel('x3(n)的实部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);subplot(2,2,4);stem(n,imag(x3),'.'); xlabel('n');ylabel('x3(n)的虚部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);[1.3]利用已知条件,利用MATLAB生成图形。
实验五 用FFT对信号做频谱分析(数字信号实验)
备注:(1)、按照要求独立完成实验内容。
(2)、实验结束后,把电子版实验报告按要求格式改名,由实验教师批阅记录后;实验室统一刻盘留档。
实验五 用FFT 对信号做频谱分析一、实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。
二、实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是 ,因此要求 。
可以根据此式选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
三、实验内容(包括代码与产生的图形及分析讨论)1. 对以下序列进行谱分析:1423()()1,03()8,470, 4,03()3,470, x n R n n n x n n n n n n x n n n n=+≤≤⎧⎪=-≤≤⎨⎪⎩-≤≤⎧⎪=-≤≤⎨⎪⎩选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线, 并进行对比、分析和讨论。
解:(1))(1n x 代码如下:x1n=[ones(1,4)]; X1k8=fft(x1n,8); X1k16=fft(x1n,16); subplot(2,1,1);mstem(X1k8);title('(1a) 8µãDFT[x_1(n)]');xlabel('¦Ø/¦Ð');ylabel('·ù¶È'); axis([0,2,0,1.2*max(abs(X1k8))]) subplot(2,1,2);mstem(X1k16);title('(1b)16µãDFT[x_1(n)]');xlabel('¦Ø/¦Ð');ylabel('·ù¶È'); axis([0,2,0,1.2*max(abs(X1k16))])图形如下:ω/π幅度(1a) 8点DFT[x 1(n)]ω/π幅度(1b)16点DFT[x 1(n)](2))(2n x 代码如下:M=8;xa=1:(M/2); xb=(M/2):-1:1; x2n=[xa,xb];X2k8=fft(x2n,8); X2k16=fft(x2n,16); subplot(2,1,1);mstem(X2k8);title('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); axis([0,2,0,1.2*max(abs(X2k8))]) subplot(2,1,2);mstem(X2k16);title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); axis([0,2,0,1.2*max(abs(X2k16))])图形如下:ω/π幅度(2a) 8点DFT[x 2(n)]ω/π幅度(2b)16点DFT[x 2(n)](3))(3n x 代码如下:x3n=[xb,xa];X3k8=fft(x3n,8); X3k16=fft(x3n,16); subplot(2,1,1);mstem(X3k8);title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度'); axis([0,2,0,1.2*max(abs(X3k8))]) subplot(2,1,2);mstem(X3k16);title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度'); axis([0,2,0,1.2*max(abs(X3k16))])图形如下:ω/π幅度(3a) 8点DFT[x 3(n)]ω/π幅度(3b)16点DFT[x 3(n)]2.对以下周期序列进行谱分析:选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。
数字信号处理实验五
实验五基于MATLAB的IIR数字滤波器设计一、实验目的:1.加深对IIR数字滤波器常用指标的理解;2.学会设计IIR数字滤波器;3.根据指标要求设计数字滤波器,并进行信号的处理。
二、实验原理:补充:(1)filter函数用来实现数字滤波器对数据的滤波,函数调用格式为:y=filter(b,a,x)其中,b,a分别为滤波器系统函数H(z)的分子和分母多项式的系数,x为滤波器的输入,y为滤波器的输出,y与x具有相同大小的向量。
(2)filtfilt函数实现零相位前后与后向结合滤波,其调用格式为:y=filtfilt(b,a,x)其中,b,a分别为滤波器系统函数H(z)的分子和分母多项式的系数,x为滤波器的输入,y为滤波器的输出,y与x具有相同大小的向量,这个函数实现的滤波后其输出信号与输入信号的相位一致,也就是没有改变信号波形形状。
但filter函数滤波后有一些延迟,改变了信号的形状。
三、作业:1.假设一个信号x(t)= sin(2*pi*f1*t)+0.5cos(2*pi*f2*t),其中f1=5Hz ,f2=30Hz。
请设计一个数字滤波器能把f2滤除掉,请写出程序,并画出原信号波形以及原信号通过该数字滤波器后输出信号的波形。
MATLAB程序如下:f1=5;f2=30;dt=1/100;t=0:dt:1;x=sin(2*pi*f1*t)+0.5*cos(2*pi*f2*t);Wp=0.2*pi;Ws=0.3*pi;Ap=1;As=10;Fs=100;wp=Wp*Fs;ws=Ws*Fs;N=buttord(wp,ws,Ap,As,'s');wc=wp/(10^(0.1*Ap)-1)^(1/2/N);[a1,b1]=butter(N,wc,'s');[a2,b2]=impinvar(a1,b1,Fs);y=filter(a2,b2,x);plot(t,x) % plot(t,y)原图形的波形图如下:1经滤波后的波形图如下:-1-0.8-0.6-0.4-0.20.20.40.60.81。
数字信号处理实验报告完整版[5篇模版]
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
数字信号处理实验1--5含代码
数字信号处理实验1--5含代码实验一离散时间信号的时域分析 1. 在MATLAB中利用逻辑关系式n,,0来实现序列,显示范围。
(产生如下,,,n,nn,n,n012图所示的单位脉冲信号的函数为impseq(n0,n1,n2),程序如示例所示),3,n,10并利用impseq函数实现序列:; ,,,,,,yn,2,n,3,,n,6,,xn1nnnn120源代码:impseq.mfunction y=impseq(n0,n1,n2)n=[n1:n2]y=[(n-n0)==0]exp01-1.mfunction impseq(n0,n1,n2)n=-3:1:10y=2*impseq(3,-3,10)+impseq(6,-3,10);stem(n,y)n,,0,,2. 在MATLAB中利用逻辑关系式来实现序列,显示范围。
(自己编写un,nn,n,n012产生单位阶跃信号的函数,函数命名为stepseq(n0,n1,n2)) 并利用编写的stepseq函数实现序列: ,,,,,,yn,un,2,un,2,5,n,10源代码:stepseq.mfunction y=stepseq(n0,n1,n2)n=n1:1:n2y=[(n-n0)>=0]exp01-2.mfunction stepseq(n0,n1,n2)n=-5:1:20y=stepseq(-2,-5,20)+stepseq(2,-5,20)stem(n,y)3. 在MATLAB中利用数组运算符“.^”来实现一个实指数序列。
如: n ,,,,xn,0.30,n,15源代码:n=0:1:15;x=0.3.^nstem(n,x)4. 在MATLAB中调用函数sin或cos产生正余弦序列,如:π,, ,,,,xn,3sin0.4πn,,5cos0.3πn0,n,20,,5,,源代码:n=0:1:20x=11*sin(0.3*pi*n+pi/5)+5*cos(0.3*pi*n)stem(n,x)思考题:1.在MATLAB环境下产生单位脉冲序列和单位阶跃序列各有几种方法,如何使用,2.在MATLAB环境下进行序列的相乘运算时应注意什么问题,实验二离散时间系统的时域分析1. 在MATLAB中利用内部函数conv来计算两个有限长序列的卷积。
数字信号处理实验5
一、实验目的:研究不同类型的窗函数,研究一些不同的方法来测试窗函数的性能; 专注于有关窄带信号的几个不同的情形。
二、实验原理:信号是无限长的,而在进行信号处理时只能采用有限长信号,所以需要将信号“截断”。
在信号处理中,“截断”被看成是用一个有限长的“窗口”看无限长的信号,或者从分析的角度是无限长的信号x(t)乘以有限长的窗函数w(t),由傅里叶变换性质可知三、实验内容:1、用MA TLAB 编程绘制各种窗函数的形状。
0102030矩形窗0102030hanning0102030hammingbartlett>> w1=boxcar(25);>> n=0:24;>> subplot(221),stem(n,w1),title('矩形窗'); >> w2=hanning(25);>> subplot(222),stem(n,w2),title('hanning'); >> w3=hamming(25);>> subplot(223),stem(n,w3),title('hamming'); >> w4=bartlett (25);>> subplot(224),stem(n,w4),title('bartlett');blackman0102030triangkaiser0102030chebwin>> w5=blackman(25);>> n=0:24;>> subplot(221),stem(n,w5),title('blackman'); >> w6=triang(25);>> subplot(222),stem(n,w6),title('triang'); >> w7=kaiser(25,12);>> subplot(223),stem(n,w7),title('kaiser');>> w8=chebwin(25,15);>> subplot(224),stem(n,w8),title('chebwin');2、用MA TLAB 编程绘制各种窗函数的幅度响应。
数字信号处理实验五报告
实验5F I R滤波器的设计一、实验目的1.掌握用窗函数法,频率采样法及优化设计法设计FIR 滤波器的原理及方法。
2.熟悉线性相位FIR 滤波器的幅频特性和相频特性。
3.了解各种不同窗函数对滤波器性能的影响。
二、实验内容a)N=45,计算并画出矩形窗、汉明窗、布莱克曼窗的归一化的幅度谱,并比较各自的主要特点。
各自特点:矩形窗函数具有最窄的主瓣宽度,但有最大的旁瓣峰值;汉明窗函数的主瓣稍宽,而旁瓣较小;布莱克曼窗函数主瓣最宽,旁瓣最小。
矩形窗设计的滤波器过渡带最窄,但是阻带最小衰减也最差;布莱克曼窗设计的滤波器阻带衰减最好,过渡带最宽,约为矩形窗设计的三倍。
汉明窗设计的滤波器处于以上二者之间。
b)N=15,带通滤波器的两个通带边界分别是ω1=π,ω2=π。
用汉宁窗设计此线性相位带通滤波器,观察它的实际3dB 和20dB 带宽。
N=45,重复这一设计,观察幅频和相位特性的变化,注意长度N 变化的影响。
N增加,3db带宽和20db带宽分别减小,滤波器特性变好,过渡带变陡,幅频曲线显示其通带较平缓,波动小,阻带衰减大,相频特性曲线显示其相位随频率变化也变大。
c)分别改用矩形窗和布莱克曼窗,设计(2)中的带通滤波器,观察并记录窗函数对滤波器幅频特性的影响,比较三种窗的特点。
矩形窗设计的滤波器过渡带最窄,但阻带最小衰减也最差;汉宁窗设计的滤波器过渡带稍宽,但有较好的阻带衰减;布莱克曼窗设计的滤波器阻带衰减最好,但过渡带最宽。
当使用同种窗设计滤波器时,N越大,主瓣宽度越窄,通带越平坦,过渡带宽越小。
对于同一个N值,当用不同窗设计时,矩形窗的过渡带最窄,但阻带衰减最差;布莱克曼窗的阻带衰减最好,但过渡带最宽;汉明窗的两种特性介于前两者之间。
d)用Kaiser 窗设计一专用线性相位滤波器,N=40,当β=4、6、10 时,分别设计、比较它们的幅频和相频特性,注意β取不同值时的影响。
由图中可以看出,β越大,则窗越窄,过渡带宽越大,主瓣的宽度也相应增加,而频谱的旁瓣越小,阻带最小衰减也越大。
数字信号处理实验五
实验报告实验名称____利用DFT分析离散信号频谱课程名称____数字信号处理________院系部:电气与电子工程专业班级:信息1002学生姓名:王萌学号: 11012000219同组人:实验台号:指导教师:范杰清成绩:实验日期:华北电力大学一、实验目的应用离散傅里叶变换(DFT),分析离散信号x [k ]的频谱。
深刻理解DFT 分析离散信号频谱的原理,掌握改善分析过程中产生的误差的方法。
二、实验原理根据信号傅里叶变换建立的时域与频域之间的对应关系,可以得到有限长序列的离散傅里叶变换(DFT)与四种确定信号傅里叶变换的之间的关系,实现由DFT 分析其频谱。
Matlab 中提供了fft 函数,FFT 是DFT 的快速算法X=fft(x):用于计算序列x 的离散傅里叶变换(DFT )X=fft(x,n):对序列x 补零或截短至n 点的离散傅里叶变换。
当x 的长度小于n 时,在x 的尾部补零使x 的长度达到n 点; 当x 的长度大于n 时,将x 截短使x 的长度成n 点;x=ifft(X)和x=ifft(X ,n)是相应的离散傅里叶反变换。
fftshift(x)将fft 计算输出的零频移到输出的中心位置。
利用DFT 计算离散周期信号 的频谱 分析步骤为:(1) 确定离散周期序列 ][~k x 的基本周期N ;(2) 利用fft 函数求其一个周期的DFT ,得到X [m ];(3) ][][~m X m X。
][~k x利用DFT 计算离散非周期信号x [k ] 的频谱分析步骤为:(1) 确定序列的长度M 及窗函数的类型。
当序列为无限长时,需要根据能量分布,进行截短。
(2) 确定作FFT 的点数N ;根据频域取样定理.为使时域波形 不产生混叠,必须取。
(3) 使用fft 函数作N 点FFT 计算X [m ]。
三、实验内容1、利用FFT 分析信号31,1,0 ),8π3cos(][ ==k k k x的频谱;(1) 确定DFT 计算的参数;(2) 进行理论值与计算值比较,讨论信号频谱分析过程中误差 原因及改善方法。
数字信号处理实验5
实验五连续时间信号的数字处理实验室名称:计算机基础实验室(信息学院2202)实验时间:2015 年10 月31日姓名:王凤琼学号:20131060114 专业:电子信息工程指导教师:柏正尧一、实验目的1、了解认识信号的抽样;2、了解认识时域混叠效果;3、了解认识频域混叠效果;4. 通过对时间信号的时域和频域分析,学习连续信号的一些基本性质,及对它的处理方法5. 通过实验了解到滤波器的一些基本原理及其应用,并且学会如何设计滤波器6. 学习和理解采样定理 .二、实验内容Q5.1 运行程序P5.1,产生连续时间信号及其抽样形式,并显示它们。
Q5.2 正弦信号的频率是多少赫兹?抽样周期是多少秒?Q5.4以比在程序P5.1中列出的抽样周期低于两个抽样周期和高的两个抽样周期的四个其他值,运行P5.1。
评论你的结果。
Q5.6运行程序P5.2,产生离散时间信号x[n]及其连续时间等效Ya(t),并显示它们。
Q5.7 在程序P5.2中,t的范围和时间增量的值是什么?在图中,t的范围是什么?改变t的范围,显示上述程序所计算的全范围Ya(t)并再次运行程序P5.2。
评论这种改变后产生的曲线。
答:t的范围=-0.5:1.5;时间增量的值=。
图中t的范围无显示,无法从图中看出。
Q5.9 在程序P5.3中,连续时间函数xa(t)是什么?xa(t)的连续时间傅里叶变换是如何计算的?答:即为指数衰减的连续时间信号;傅里叶变换Q5.10 运行程序P5.3,产生并显示离散时间信号及其连续时间等效,以及它们各自的傅里叶变换。
有何明显的混叠影响吗?答:可知有明显的混叠现象,比较x和|Xa|在0.5的值可知发生混叠现象。
Q5.13在程序P5.4中,通带波纹RP和最小阻带衰减Rs是多少dB?通带及阻带边界频率是多少Hz?Q5.14运行程序P5.4并显示增益响应。
所设计的滤波器满足给定的指标吗?所设计的滤波器的阶数N和单位为Hz的3dB截止频率是多少?Q5.15用cheb1ord和cheby1修改程序P5.4,以设计程序P5.4有着相同指标的一个切比雪夫1型低通滤波器。
数字信号处理实验五
实验五:FIR数字滤波器设计与软件实现学院:物理与电子科学学院专业:应用电子技术教育班级:一班学号:1108030105 姓名:夏智垚指导老师:佘开一、实验目的(1)掌握用窗函数设计FIR数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。
(3)掌握FIR滤波器的快速卷积实现原理。
(4)学会调用MATLAB函数设计与实现FIR滤波器。
二、实验器材计算机、MATLAB软件三、实验内容与步骤(1)认真复习教材第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理;(2)调用信号函数产生函数xtg产生具有加性噪声的信号,并自动显示频谱。
(3)设计低通滤波器,从高频噪声中提取单频调幅信号,要求信号幅频失真小于0.1dB将噪声频谱衰减60dB.(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数firl设计一个FIR低通滤波器,并编写程序,调用MATLAB快速卷积函数fftfilt实现滤波。
绘图显示滤波器的频率响应特性曲线、滤波器输出信号的幅频特性图和时域波形图。
(5)重复(3),滤波指标不变,但改用等波纹最佳逼近法,调用MATLAB 函数设计FIR数字滤波器。
并比较两种设计方法设计的滤波器阶数。
四、实验程序function xt=xtg(N)N=1000;Fs=1000;T=1/Fs;Tp=N*T;t=0:T:(N-1)*T;fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;mt=cos(2*pi*f0*t); %产生单频正弦波调制信号mt,频率为f0ct=cos(2*pi*fc*t); %产生载波正弦波信号ct,频率为fcxt=mt.*ct; %相乘产生单频调制信号xtnt=2*rand(1,N)-1; %产生随机噪声nt%=======设计高通滤波器hn,用于滤除噪声nt中的低频成分,生成高通噪声===fp=150; fs=200;Rp=0.1;As=70; % 滤波器指标fb=[fp,fs];m=[0,1]; % 计算remezord函数所需参数f,m,devdev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(n,fo,mo,W); % 调用remez函数进行设计,用于滤除噪声nt中的低频成分yt=filter(hn,1,10*nt); %滤除随机噪声中低频成分,生成高通噪声yt %=======================================================xt=xt+yt; %噪声加信号fst=fft(xt,N);k=0:N-1;f=k/Tp;subplot(2,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');axis([0,Tp/2,min(xt),max(xt)]);title('(a) 信号加噪声波形')subplot(2,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b) 信号加噪声的频谱')axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度')N=1000;xt=xtg(N);fp=120; fs=150;Rp=0.2;As=60;Fs=1000; % 输入给定指标% (1) 用窗函数法设计滤波器wc=(fp+fs)/Fs; %理想低通滤波器截止频率(关于pi归一化)B=2*pi*(fs-fp)/Fs; %过渡带宽度指标Nb=ceil(11*pi/B); %blackman窗的长度Nhn=fir1(Nb-1,wc,blackman(Nb));Hw=abs(fft(hn,1024)) % 求设计的滤波器频率特性ywt=fftfilt(hn,xt,N); %调用函数fftfilt对xt滤波figure(1)subplot(211);plot(20*log10(Hw));grid;axis([0,500,-120,20])title('a 用窗函数法设计滤波器')t=0:1/Fs:(N-1)/Fs;subplot(212);plot(t,ywt);grid;axis([0,0.5,-1,1]); % (2) 用等波纹最佳逼近法设计滤波器fb=[fp,fs];m=[1,0]; % 确定remezord函数所需参数f,m,devdev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];[Ne,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(Ne,fo,mo,W); % 调用remez函数进行设计Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性yet=fftfilt(hn,xt,N); % 调用函数fftfilt对xt滤波figure(2)subplot(211);plot(20*log10(Hw));grid;axis([0,500,-80,10])title('b 用等波纹最佳逼近法设计滤波器')t=0:1/Fs:(N-1)/Fs;subplot(212);plot(t,yet);grid;axis([0,0.5,-1,1]);grid五、实验结果00.050.10.150.20.250.30.350.40.450.5t/sx (t )(a) 信号加噪声波形05010015020025030035040045050000.51(b) 信号加噪声的频谱f/Hz 幅度50100150200250300350400450500-100-50a 用窗函数法设计滤波器00.050.10.150.20.250.30.350.40.450.5-1-0.50.51050100150200250300350400450500-80-60-40-20b 用等波纹最佳逼近法设计滤波器00.050.10.150.20.250.30.350.40.450.5-1-0.50.51。
数字信号处理实验报告_五个实验
实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。
二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。
对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t x x aa其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a X Ω-Ω=Ω∑∞-∞= 上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。
其延拓周期为采样角频率(T /2π=Ω)。
只有满足采样定理时,才不会发生频率混叠失真。
在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。
公式如下:Tw jwae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。
为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1)k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]);w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]);endk=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]);Xa=FF(A,a,w,fs);i=i+1;string+['fs=',num2str(fs)];figure(i)DFT(Xa,50,string);1=yesinput1=str2num(1);end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]'); end end end子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数 function[c,l]=DFT(x,N,str) n=0:N-1; k=-200:200; w=(pi/100)*k; l=w; c=x*Xc=stepseq(1,1,5); 子函数:产生信号function c=FF(A,a,w,fs) n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2) n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。
数字信号处理实验(1-7)原始实验内容文档(含代码)
实验要求1.每个实验进行之前须充分预习准备,实验完成后一周内提交实验报告;2.填写实验报告时,分为实验题目、实验目的、实验内容、实验结果、实验小结五项;3.实验报告要求:实验题目、实验目的、实验内容、实验结果四项都可打印;但每次实验的实验内容中的重要代码(或关键函数)后面要用手工解释其作用。
实验小结必须手写!(针对以前同学书写实验报告时候抄写代码太费时间的现象,本期实验报告进行以上改革)。
实验一信号、系统及系统响应实验目的:1. 掌握使用MATLAB进行函数、子程序、文件编辑等基本操作;2. 编写一些数字信号处理中常用序列的3. 掌握函数调用的方法。
实验内容:1.在数字信号处理的基本理论和MATLAB信号处理工具箱函数的基础上,可以自己编写一些子程序以便调用。
(1)单位抽样序列δ(n-n0)的生成函数impseq.m(2)单位阶跃序列u(n-n0)的生成函数stepseq.m(3)两个信号相加的生成函数sigadd.m(4)两个信号相乘的生成函数sigmult.m(5)序列移位y(n)=x(n-n0)的生成函数sigshift.m(6)序列翻褶y(n)=x(-n)生成函数sigfold.m(7)奇偶综合函数evenodd.m(8)求卷积和2.产生系列序列,并绘出离散图。
(1) x1(n)=3δ(n-2)-δ(n+4) -5≤n≤5(2) x3(n)=cos(0.04πn)+0.2w(n) 0≤n≤50其中:w(n)是均值为0,方差为1 的白噪声序列。
3.设线性移不变系统的抽样响应h(n)=(0.9)^n*u(n),输入序列x(n)=u(n)-u(n-10),求系统的输出y(n).实验二 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
数字信号处理实验五用DFT(FFT)对信号进行频谱分析
开课学院及实验室:电子楼3172018年 4月 29 日3()x n :用14()()x n R n =以8为周期进行周期性延拓形成地周期序列.(1> 分别以变换区间N =8,16,32,对14()()x n R n =进行DFT(FFT>,画出相应地幅频特性曲线;(2> 分别以变换区间N =4,8,16,对x 2(n >分别进行DFT(FFT>,画出相应地幅频特性曲线; (3> 对x 3(n >进行频谱分析,并选择变换区间,画出幅频特性曲线.<二)连续信号 1. 实验信号:1()()x t R t τ=选择 1.5ms τ=,式中()R t τ地波形以及幅度特性如图7.1所示.2()sin(2/8)x t ft ππ=+式中频率f 自己选择.3()cos8cos16cos 20x t t t t πππ=++2. 分别对三种模拟信号选择采样频率和采样点数.对1()x t ()R t τ=,选择采样频率4s f kHz =,8kHz ,16kHz ,采样点数用τ.s f 计算.对2()sin(2/8)x t ft ππ=+,周期1/T f =,频率f 自己选择,采样频率4s f f =,观测时间0.5p T T =,T ,2T ,采样点数用p s T f 计算.图5.1 R(t>地波形及其幅度特性对3()cos8cos16cos 20x t t t t πππ=++,选择采用频率64s f Hz =,采样点数为16,32,64. 3. 分别对它们转换成序列,按顺序用123(),(),()x n x n x n 表示.4. 分别对它们进行FFT.如果采样点数不满足2地整数幂,可以通过序列尾部加0满足.5. 计算幅度特性并进行打印.五、实验过程原始记录<数据、图表、计算等)(一> 离散信号%14()()x n R n = n=0:1:10。
数字信号处理--实验五-用DFT(FFT)对信号进行频谱分析
学生实验报告开课学院及实验室:电子楼3172013年4月29日、实验目的学习DFT 的基本性质及对时域离散信号进行频谱分析的方法,进一步加深对频域概念和数字频率的理解,掌握 MATLAB 函数中FFT 函数的应用。
二、实验原理离散傅里叶变换(DFT)对有限长时域离散信号的频谱进行等间隔采样,频域函数被离散化了, 便于信号的计算机处理。
设x(n)是一个长度为 M 的有限长序列,x(n)的N 点傅立叶变换:X(k)N 1j 三 knDFT[x(n)]N x(n)e N0 k N 1n 0其中WNe.2 jN,它的反变换定义为:1X(n)NkN 1nkX(k)W N0 令z W N k,X(zz WN k则有:N 1x( n)Wj kn 0可以得到,X(k)X(Z)Z WN kZ W N*是Z 平面单位圆上幅角为2kN 的点,就是将单位圆进行N 等分以后第 K 个点。
所以, X(K)是Z 变换在单位圆上的等距采样,或者说是序列傅立叶变换的等距采样。
时域采样在满足Nyquist 定理时,就不会发生频谱混叠。
DFT 是对序列傅立叶变换的等距采样,因此可以用于序列的频谱分析。
如果用FFT 对模拟信号进行谱分析,首先要把模拟信号转换成数字信号,转换时要求知道模拟 信号的最高截至频率,以便选择满足采样定理的采样频率。
般选择采样频率是模拟信号中最高频率的3~4倍。
另外要选择对模拟信号的观测时间,如果采样频率和观测时间确定,则采样点数也确定 了。
这里观测时间和对模拟信号进行谱分析的分辨率有关,最小的观测时间和分辨率成倒数关系。
最小的采样点数用教材相关公式确定。
要求选择的采样点数和观测时间大于它的最小值。
如果要进行谱分析的模拟信号是周期信号,最好选择观测时间是信号周期的整数倍。
如果不知道■ 厂1*1IE向i1A I1f Ii i 0r 1 疋0Jfb-4W0 70000图5.1 R(t)的波形及其幅度特性xn=[on es(1,4),zeros(1,7)];%输入时域序列向量 xn=R4( n)%计算xn 的8点DFTXk16=fft(x n,16);%计算xn 的16点DFTXk32=fft(x n,32); %计算xn 的32点DFTk=0:7;wk=2*k/8;对 x 3(t) cos8 t cos16 t cos20 t ,选择采用频率 f s 64Hz ,采样点数为 16 , 32 , 64。
数字信号处理实验5
实验五连续时间信号的数字处理实验室名称:计算机基础实验室(信息学院2202)实验时间:2015 年10 月31日姓名:王凤琼学号:专业:电子信息工程指导教师:一、实验目的1、了解认识信号的抽样;2、了解认识时域混叠效果;3、了解认识频域混叠效果;4. 通过对时间信号的时域和频域分析,学习连续信号的一些基本性质,及对它的处理方法5. 通过实验了解到滤波器的一些基本原理及其应用,并且学会如何设计滤波器6. 学习和理解采样定理 .二、实验内容Q5.1 运行程序P5.1,产生连续时间信号及其抽样形式,并显示它们。
Q5.2 正弦信号的频率是多少赫兹?抽样周期是多少秒?Q5.4以比在程序P5.1中列出的抽样周期低于两个抽样周期和高的两个抽样周期的四个其他值,运行P5.1。
评论你的结果。
Q5.6运行程序P5.2,产生离散时间信号x[n]及其连续时间等效Ya(t),并显示它们。
Q5.7 在程序P5.2中,t的范围和时间增量的值是什么?在图中,t的范围是什么?改变t的范围,显示上述程序所计算的全范围Ya(t)并再次运行程序P5.2。
评论这种改变后产生的曲线。
答:t的范围=-0.5:1.5;时间增量的值=。
图中t的范围无显示,无法从图中看出。
Q5.9 在程序P5.3中,连续时间函数xa(t)是什么?xa(t)的连续时间傅里叶变换是如何计算的?答:即为指数衰减的连续时间信号;傅里叶变换Q5.10 运行程序P5.3,产生并显示离散时间信号及其连续时间等效,以及它们各自的傅里叶变换。
有何明显的混叠影响吗?答:可知有明显的混叠现象,比较x和|Xa|在0.5的值可知发生混叠现象。
Q5.13在程序P5.4中,通带波纹RP和最小阻带衰减Rs是多少dB?通带及阻带边界频率是多少Hz?Q5.14运行程序P5.4并显示增益响应。
所设计的滤波器满足给定的指标吗?所设计的滤波器的阶数N和单位为Hz的3dB截止频率是多少?Q5.15用cheb1ord和cheby1修改程序P5.4,以设计程序P5.4有着相同指标的一个切比雪夫1型低通滤波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五基于MATLAB的IIR数字滤波器设计
一、实验目的:
1.加深对IIR数字滤波器常用指标的理解;
2.学会设计IIR数字滤波器;
3.根据指标要求设计数字滤波器,并进行信号的处理。
二、实验原理:
补充:(1)filter函数用来实现数字滤波器对数据的滤波,函数调用格式为:
y=filter(b,a,x)
其中,b,a分别为滤波器系统函数H(z)的分子和分母多项式的系数,x为滤波器的输入,y为滤波器的输出,y与x具有相同大小的向量。
(2)filtfilt函数实现零相位前后与后向结合滤波,其调用格式为:
y=filtfilt(b,a,x)
其中,b,a分别为滤波器系统函数H(z)的分子和分母多项式的系数,x为滤波器的输入,y为滤波器的输出,y与x具有相同大小的向量,这个函数实现的滤波后其输出信号与输入信号的相位一致,也就是没有改变信号波形形状。
但filter函数滤波后有一些延迟,改变了信号的形状。
三、作业:
1.假设一个信号x(t)= sin(2*pi*f1*t)+0.5cos(2*pi*f2*t),其中f1=5Hz,f2=30Hz。
请设计
一个数字滤波器能把f2滤除掉,请写出程序,并画出原信号波形以及原信号通过该数字滤波器后输出信号的波形。
程序为
clear all
wp=6*pi;
ws=25*pi;
Ap=1;
As=20;
Fs=50;
N=buttord(wp,ws,Ap,As,'s');
wc=wp/(10^(0.1*Ap)-1)^(1/2/N)
[b,a]=butter(N,wc,'s');
[numd,dend]=impinvar(b,a,Fs);
w=linspace(0,pi,512);
H=freqs(b,a,w);
norm=max(abs(H));
numd=numd/norm;
figure(1)
plot(w/pi,20*log10(abs(H)/norm));
grid on;
dt=1/50;
f1=5;f2=30;
t=0:dt:3;
x=sin(2*pi*f1*t)+0.5*cos(2*pi*f2*t);
y=filter(numd,dend,x);
figure(2)
subplot(2,1,1)
plot(t,x);
title('输入信号');
subplot(2,1,2)
plot(t,y);
xlabel('时间/s');
title('输出信号');
输出图像为
00.10.20.30.40.50.60.70.80.91
-2.5-2
-1.5
-1
-0.5
0x 10
-5
00.51 1.5
2 2.53
-1-0.5
0.5
1
1.5
输入信号
00.51 1.5
2 2.53-0.50
0.5
1
时间/s 输出信号
四.实验总结
通过本次试验的学习我加深对IIR 数字滤波器常用指标的理解;学会设计IIR 数字滤波器;对MATLAB 的便利性和功能了解的更多。