南京中考数学解答题专项练习函数
中考数学题型归类与解析14---二次函数解答压轴题
中考数学题型归类与解析专题14 二次函数解答压轴题一、解答题1.(2021·北京中考真题)在平面直角坐标系xOy 中,点()1,m 和点()3n ,在抛物线()20y ax bx a =+>上.(1)若3,15m n ==,求该抛物线的对称轴;(2)已知点()()()1231,,2,,4,y y y -在该抛物线上.若0mn <,比较123,,y y y 的大小,并说明理由.2.(2021·江苏南京市·中考真题)已知二次函数2y ax bx c =++的图像经过()()2,1,2,3--两点.(1)求b 的值.(2)当1c >-时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m -<<时,结合函数的图像,直接写出a 的取值范围.3.(2021·安徽中考真题)已知抛物线221(0)y ax x a =-+≠的对称轴为直线1x =.(1)求a 的值;(2)若点M (x 1,y 1),N (x 2,y 2)都在此抛物线上,且110x -<<,212x <<.比较y 1与y 2的大小,并说明理由;(3)设直线(0)y m m =>与抛物线221y ax x =-+交于点A 、B ,与抛物线23(1)y x =-交于点C ,D ,求线段AB 与线段CD 的长度之比.4.(2021·浙江绍兴市·中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB 是抛物线的一部分,抛物线的顶点C 在y 轴上,杯口直径4AB =,且点A ,B 关于y 轴对称,杯脚高4CO =,杯高8DO =,杯底MN 在x 轴上.(1)求杯体ACB 所在抛物线的函数表达式(不必写出x 的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A CB ''所在抛物线形状不变,杯口直径//A B AB '',杯脚高CO 不变,杯深CD '与杯高OD '之比为0.6,求A B ''的长.5.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在平面直角坐标系中,四边形ABCD 为正方形,点A ,B 在x 轴上,抛物线2y x bx c =++经过点B ,()4,5D -两点,且与直线DC 交于另一点E .(1)求抛物线的解析式;(2)F 为抛物线对称轴上一点,Q 为平面直角坐标系中的一点,是否存在以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形.若存在,请求出点F 的坐标;若不存在,请说明理由; (3)P 为y 轴上一点,过点P 作抛物线对称轴的垂线,垂足为M ,连接ME ,BP .探究EM MP PB ++是否存在最小值.若存在,请求出这个最小值及点M 的坐标;若不存在,请说明理由.6.(2021·四川南充市·中考真题)如图,已知抛物线2()40y ax bx a =++≠与x 轴交于点A (1,0)和B ,与y 轴交于点C ,对称轴为52x =.(1)求抛物线的解析式;(2)如图1,若点P 是线段BC 上的一个动点(不与点B ,C 重合),过点P 作y 轴的平行线交抛物线于点Q ,连接OQ .当线段PQ 长度最大时,判断四边形OCPQ 的形状并说明理由.(3)如图2,在(2)的条件下,D 是OC 的中点,过点Q 的直线与抛物线交于点E ,且2DQE ODQ ∠=∠.在y 轴上是否存在点F ,使得BEF 为等腰三角形?若存在,求点F 的坐标;若不存在,请说明理由.7.(2021·四川广元市·中考真题)如图1,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,下表给出了这条抛物线上部分点(,)x y 的坐标值: x … 1- 0 1 2 3 …y 03 4 3 0 …(1)求出这条抛物线的解析式及顶点M 的坐标;(2)PQ 是抛物线对称轴上长为1的一条动线段(点P 在点Q 上方),求AQ QP PC ++的最小值; (3)如图2,点D 是第四象限内抛物线上一动点,过点D 作DF x ⊥轴,垂足为F ,ABD △的外接圆与DF 相交于点E .试问:线段EF 的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.8.(2021·湖北荆州市·中考真题)已知:直线1y x =-+与x 轴、y 轴分别交于A 、B 两点,点C 为直线AB 上一动点,连接OC ,AOC ∠为锐角,在OC 上方以OC 为边作正方形OCDE ,连接BE ,设BE t =.(1)如图1,当点C 在线段AB 上时,判断BE 与AB 的位置关系,并说明理由;(2)真接写出点E 的坐标(用含t 的式子表示);(3)若tan AOC k ∠=,经过点A 的抛物线()20y ax bx c a =++>顶点为P ,且有6320a b c ++=,POA 的面积为12k .当22t =时,求抛物线的解析式.9.(2021·四川资阳市·中考真题)抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,且()()1,0,0,3B C -.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,当:1:2PE BE =时,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,使点D 落在点D 处,且2DD CD '=,点M 是平移后所得抛物线上位于D 左侧的一点,//MN y 轴交直线OD '于点N ,连结CN .当55D N CN '+的值最小时,求MN 的长. 10.(2021·四川南充市·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y (元)与购进数量x (千克)之间的函数关系式. (3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z (元/千克)与一天销售数量x (千克)的关系为112100z x =-+.在(2)的条件下,要使超市销售苹果利润w (元)最大,求一天购进苹果数量.(利润=销售收入-购进支出)11.(2021·湖北十堰市·中考真题)已知抛物线25y ax bx =+-与x 轴交于点()1,0A -和()5,0B -,与y 轴交于点C ,顶点为P ,点N 在抛物线对称轴上且位于x 轴下方,连AN 交抛物线于M ,连AC 、CM .(1)求抛物线的解析式;(2)如图1,当tan 2ACM ∠=时,求M 点的横坐标;(3)如图2,过点P 作x 轴的平行线l ,过M 作MD l ⊥于D ,若3MD MN =,求N 点的坐标.12.(2021·湖北十堰市·中考真题)某商贸公司购进某种商品的成本为20元/kg ,经过市场调研发现,这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数,且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系,如下表:填空:(1)m 与x 的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x 的增大而增大,求n 的取值范围. 13.(2021·四川达州市·中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?14.(2021·湖南怀化市·中考真题)某超市从厂家购进A 、B 两种型号的水杯,两次购进水杯的情况如下表:进货批次 A 型水杯(个) B 型水杯(个) 总费用(元)一 100 200 8000二 200 300 13000(1)求A 、B 两种型号的水杯进价各是多少元?(2)在销售过程中,A 型水杯因为物美价廉而更受消费者喜欢.为了增大B 型水杯的销售量,超市决定对B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B 型水杯降价多少元时,每天售出B 型水杯的利润达到最大?最大利润是多少? (3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A 型水杯可获利10元,售出一个B 型水杯可获利9元,超市决定每售出一个A 型水杯就为当地“新冠疫情防控”捐b 元用于购买防控物资.若A 、B 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b 为多少?利润为多少?15.(2021·湖北黄冈市·中考真题)已知抛物线23y ax bx =+-与x 轴相交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点(,0)N n 是x 轴上的动点.(1)求抛物线的解析式;(2)如图1,若3n <,过点N 作x 轴的垂线交抛物线于点P ,交直线BC 于点G .过点P 作PD BC⊥于点D ,当n 为何值时,PDG BNG ≌;(3)如图2,将直线BC 绕点B 顺时针旋转,使它恰好经过线段OC 的中点,然后将它向上平移32个单位长度,得到直线1OB .①1tan BOB ∠=______;②当点N 关于直线1OB 的对称点1N 落在抛物线上时,求点N 的坐标.16.(2021·湖北黄冈市·中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.17.(2021·新疆中考真题)已知抛物线223(0)y ax ax a =-+≠. (1)求抛物线的对称轴;(2)把抛物线沿y 轴向下平移3a 个单位,若抛物线的顶点落在x 轴上,求a 的值;(3)设点()1,P a y ,()22,Q y 在抛物线上,若12y y >,求a 的取值范围.18.(2021·湖南长沙市·中考真题)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点()1,A r 与点(),4B s 是关于x 的“T 函数”()()240,0,0,.x x y tx x t t ⎧-<⎪=⎨⎪≥≠⎩是常数的图象上的一对“T 点”,则r =______,s =______,t =______(将正确答案填在相应的横线上);(2)关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”;如果不是,请说明理由;(3)若关于x 的“T 函数”2y ax bx c =++(0a >,且a ,b ,c 是常数)经过坐标原点O ,且与直线:l y mx n =+(0m ≠,0n >,且m ,n 是常数)交于()11,M x y ,()22,N x y 两点,当1x ,2x 满足()11211x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.19.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC 、BC .动点P从点A 出发,在线段AC 个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b 、c 的值;(2)在P 、Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少? (3)在线段AC 上方的抛物线上是否存在点M ,使MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.20.(2021·陕西中考真题)已知抛物线228y x x =-++与x 轴交于点A 、B (其中A 在点B 的左侧),与y 轴交于点C .(1)求点B 、C 的坐标;(2)设点C '与点C 关于该抛物线的对称轴对称在y 轴上是否存在点P ,使PCC '△与POB 相似且PC 与PO 是对应边?若存在,求点P 的坐标;若不存在,请说明理由.21.(2021·浙江杭州市·中考真题)在直角坐标系中,设函数21y ax bx =++(a ,b 是常数,0a ≠).(1)若该函数的图象经过()1,0和()2,1两点,求函数的表达式,并写出函数图象的顶点坐标.(2)写出一组a ,b 的值,使函数21y ax bx =++的图象与x 轴有两个不同的交点,并说明理由.(3)已知1a b ==,当,x p q =(p ,q 是实数,p q ≠)时,该函数对应的函数值分别为P ,Q .若2p q +=,求证6P Q +>.22.(2021·重庆中考真题)如图,在平面直角坐标系中,抛物线24(0)y ax bx a =+-≠与x 轴交于点()1,0A -,()4,0B ,与y 轴交于点C .(1)求该抛物线的解析式;(2)直线l 为该抛物线的对称轴,点D 与点C 关于直线l 对称,点P 为直线AD 下方抛物线上一动点,连接P A ,PD ,求PAD △面积的最大值;(3)在(2)的条件下,将抛物线24(0)y ax bx a =+-≠沿射线AD 平移2物线1y ,点E 为点P 的对应点,点F 为1y 的对称轴上任意一点,在1y 上确定一点G ,使得以点D ,E ,F ,G 为顶点的四边形是平行四边形,写出所有符合条件的点G 的坐标,并任选其中一个点的坐标,写出求解过程.23.(2021·四川遂宁市·中考真题)如图,已知二次函数的图象与x 轴交于A 和B (-3,0)两点,与y 轴交于C (0,-3),对称轴为直线1x =-,直线y =-2x +m 经过点A ,且与y 轴交于点D ,与抛物线交于点E ,与对称轴交于点F .(1)求抛物线的解析式和m 的值;(2)在y 轴上是否存在点P ,使得以D 、E 、P 为顶点的三角形与△AOD 相似,若存在,求出点P 的坐标;若不存在,试说明理由;(3)直线y =1上有M 、N 两点(M 在N 的左侧),且MN =2,若将线段MN 在直线y =1上平移,当它移动到某一位置时,四边形MEFN 的周长会达到最小,请求出周长的最小值(结果保留根号).24.(2021·四川泸州市·中考真题)如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:∠ACB =90° (2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F . ①求DE +BF 的最大值;②点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与AOG 相似,求点D 的坐标.25.(2021·云南中考真题)已知抛物线22y x bx c 经过点()0,2-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小.设r 是抛物线22yx bx c 与x 轴的交点(交点也称公共点)的横坐标,97539521601r r r r r m r r +-++-=+-. (1)求b 、c 的值:(2)求证:2242160r r r -+=;(3)以下结论:1,1,1m m m <=>,你认为哪个正确?请证明你认为正确的那个结论.26.(2021·山东泰安市·中考真题)二次函数2()40y ax bx a =++≠的图象经过点(4,0)A -,(1,0)B ,与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD x ⊥轴于点D .(1)求二次函数的表达式;(2)连接BC ,当2DPB BCO ∠=∠时,求直线BP 的表达式;(3)请判断:PQ QB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.27.(2021·江苏连云港市·中考真题)如图,抛物线()223(69)y mx m x m =++-+与x 轴交于点A 、B ,与y 轴交于点C ,已知(3,0)B .(1)求m 的值和直线BC 对应的函数表达式;(2)P 为抛物线上一点,若PBC ABC S S =△△,请直接写出点P 的坐标;(3)Q 为抛物线上一点,若45ACQ ∠=︒,求点Q 的坐标.28.(2021·重庆中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =++经过A (0,﹣1),B(4,1).直线AB 交x 轴于点C ,P 是直线AB 下方抛物线上的一个动点.过点P 作PD ⊥AB ,垂足为D ,PE ∥x 轴,交AB 于点E .(1)求抛物线的函数表达式;(2)当△PDE 的周长取得最大值时,求点P 的坐标和△PDE 周长的最大值;(3)把抛物线2y x bx c =++平移,使得新抛物线的顶点为(2)中求得的点P .M 是新抛物线上一点,N 是新抛物线对称轴上一点,直接写出所有使得以点A ,B ,M ,N 为顶点的四边形是平行四边形的点M 的坐标,并把求其中一个点M 的坐标的过程写出来.29.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元? 30.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品,A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg .生产该产品每盒需要A 原料2kg 和B 原料4kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润. 31.(2021·四川乐山市·中考真题)已知二次函数2y ax bx c =++的图象开口向上,且经过点30,2A ⎛⎫ ⎪⎝⎭,12,2B ⎛⎫- ⎪⎝⎭. (1)求b 的值(用含a 的代数式表示);(2)若二次函数2y ax bx c =++在13x ≤≤时,y 的最大值为1,求a 的值;(3)将线段AB 向右平移2个单位得到线段A B ''.若线段A B ''与抛物线241y ax bx c a =+++-仅有一个交点,求a 的取值范围.32.(2021·四川自贡市·中考真题)如图,抛物线(1)()y x x a =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C .(1)直接写出OCA ∠的度数和线段AB 的长(用a 表示);(2)若点D 为ABC 的外心,且BCD △与ACO △104,求此抛物线的解析式; (3)在(2)的前提下,试探究抛物线(1)()y x x a =+-上是否存在一点P ,使得CAP DBA ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由.。
2023年中考数学 解答题专项训练——二次函数
2022-2023学年数学 中考解答题专项训练——二次函数一、解答题1. 在同一坐标系内,画出函数y=2x 2和y=2(x-1)2+1的图象,并说出它们的相同点和不同点. 2.写出抛物线y =﹣x 2+4x 的开口方向、对称轴、顶点坐标和最大值.3.若二次函数y=x 2+bx+c 的图象经过点(0,1)和(1,﹣2)两点,求此二次函数的表达式. 4.求下列二次函数图象的对称轴和顶点坐标: 221221y x x =++ . 5.求抛物线y =12x 2﹣x +1在﹣2≤x≤2的最大值与最小值. 6.如图,二次函数 223y x x =-++ 的图象与x 轴交于A 、B 两点,与y 轴交于点C ,顶点为D ,求 BCD 的面积.7.已知关于x 的一元二次方程x 2+2x+12k -=0有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=x 2+2x+12k -的图象向下平移9个单位,求平移后的图象的表达式;(3)在(2)的条件下,平移后的二次函数的图象与x 轴交于点A ,B (点A 在点B 左侧),直线y=kx+b (k >0)过点B ,且与抛物线的另一个交点为C ,直线BC 上方的抛物线与线段BC 组成新的图象,当此新图象的最小值大于﹣5时,求k 的取值范围.8.若抛物线的顶点坐标为(12)-,,且过点(12)-,,求抛物线的解析式. 9.用配方法把二次函数y=﹣2x 2+6x+4化为y=a (x+m )2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.10.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x≤1).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为多少元,今年生产的这种玩具每件的出厂价为多少元.(2)求今年这种玩具的每件利润y 元与x 之间的函数关系式.(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.11.如果二次函数y=x 2﹣x+c 的图象过点(1,2),求这个二次函数的解析式,并求出该函数图象的顶点坐标.12.已知二次函数图象的顶点坐标是(1,-4),且与y 轴交于点(0,-3),求此二次函数的解析式 13.已知一条抛物线分别过点 (3,2)- 和 (0,1) ,且它的对称轴为直线 2x = ,试求这条抛物线的解析式.14.如图,直线y=﹣x+3与x 轴交于点C ,与y 轴交于点A ,点B 的坐标为(2,3)抛物线y=﹣x 2+bx+c 经过A 、C 两点.(1)求抛物线的解析式,并验证点B 是否在抛物线上;(2)作BD⊥OC ,垂足为D ,连接AB ,E 为y 轴左侧抛物线点,当⊥EAB 与⊥EBD 的面积相等时,求点E 的坐标;(3)点P 在直线AC 上,点Q 在抛物线y=﹣x 2+bx+c 上,是否存在P 、Q ,使以A 、B 、P 、Q 为顶点的四边形为平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.15.如图1,在平面直角坐标系中,二次函数y=﹣427x 2+12的图象与y 轴交于点A ,与x 轴交于B ,C 两点(点B 在点C 的左侧),连接AB ,AC .(1)点B的坐标为,点C的坐标为;(2)过点C作射线CD⊥AB,点M是线段AB上的动点,点P是线段AC上的动点,且始终满足BM=AP(点M不与点A,点B重合),过点M作MN⊥BC分别交AC于点Q,交射线CD于点N (点Q不与点P重合),连接PM,PN,设线段AP的长为n.①如图2,当n<12AC时,求证:⊥PAM⊥⊥NCP;②直接用含n的代数式表示线段PQ的长;③若PM97y=﹣427x2+12的图象经过平移同时过点P和点N时,请直接写出此时的二次函数表达式.答案解析部分1.【答案】解:如图,相同点:开口方向和开口大小相同;不同点:函数y=2(x-1)2+1的图象是由函数y=2x 2的图象向上平移1个单位长度, 再向右平移1个单位长度所得到的,位置不同.2.【答案】解: ()22424y x x x =-+=--+ ;∴抛物线的开口向下,对称轴是直线x=2,顶点坐标是(2,4),最大值是4.3.【答案】解:∵二次函数y=x 2+bx+c 的图象经过(0,1)和(1,-2)两点,∴1,21.c b c =⎧⎨-=++⎩解得 4,1.b c =-⎧⎨=⎩∴二次函数的表达式为y=x 2-4x+1.4.【答案】解: 221221y x x =++()2269921x x =++-+ ()2231821x =+-+ ()2233x =++∴对称轴为直线 3x =- ,顶点坐标为( 3- ,3).5.【答案】解:抛物线 y =12x 2﹣x +1, ∴ 抛物线的对称轴方程为:111222b x a -=-=-=⨯,102a =>, 则函数图象的开口向上,当1x =时,111122y =-+=最小值, 当2x =-时,()142152y =⨯--+=, 当2x =时,142112y =⨯-+=,而1152<<,所以抛物线y =12x 2﹣x +1在﹣2≤x≤2的最大值为5,最小值为1.26.【答案】解:延长DC 交x 轴于E ,依题意,可得y =−x 2+2x +3=−(x−1)2+4, ∴顶点D (1,4),令y =0,可得x =3或x =−1, ∴B (3,0), 令x =0,可得y =3, ∴C (0,3), ∴OC =3,∴直线DC 的解析式为y =x +3, 令y =0,可得x =-3, ∴E (-3,0), BE =6,∴S ⊥BCD =S ⊥BED −S ⊥BCE = 11646322⨯⨯-⨯⨯ =12-9=3. ∴⊥BCD 的面积为3.7.【答案】解:(1)∵关于x 的一元二次方程x 2+2x+12k -=0有实数根, ∴⊥=b 2﹣4ac=4﹣4×12k -≥0, ∴k ﹣1≤2, ∴k≤3,∵k为正整数,∴k的值是1,2,3;(2)∵方程有两个非零的整数根,当k=1时,x2+2x=0,不合题意,舍去,当k=2时,x2+2x+12=0,方程的根不是整数,不合题意,舍去,当k=3时,x2+2x+1=0,解得:x1=x2=﹣1,符合题意,∴k=3,∴y=x2+2x+1,∴平移后的图象的表达式y=x2+2x+1﹣9=x2+2x﹣8;(3)令y=0,x2+2x﹣8=0,∴x1=﹣4,x2=2,∵与x轴交于点A,B(点A在点B左侧),∴A(﹣4,0),B(2,0),∵直线l:y=kx+b(k>0)经过点B,∴函数新图象如图所示,当点C在抛物线对称轴左侧时,新函数的最小值有可能大于﹣5,令y=﹣5,即x2+2x﹣8=﹣5,解得:x1=﹣3,x2=1,(不合题意,舍去),∴抛物线经过点(﹣3,﹣5),当直线y=kx+b(k>0)经过点(﹣3,﹣5),(2,0)时,可求得k=1,由图象可知,当0<k<1时新函数的最小值大于﹣5.8.【答案】解:设抛物线解析式为2(1)2y a x =++,(12)-,代入得2(11)22a ⨯++=-,44a =-解得1a =-,即抛物线解析式为2(1)2y x =-++.9.【答案】解: 2264y x x =-++ ,= 29923442x x ⎛⎫--+++ ⎪⎝⎭ , = 22317317222222x x ⎡⎤⎛⎫⎛⎫--+=-+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,开口向下,对称轴为直线 32x =,顶点 317,22⎛⎫ ⎪⎝⎭. 10.【答案】解:(1)10+7x ;12+6x ;(2)y=(12+6x )﹣(10+7x ), ∴y=2﹣x (0<x≤1); (3)∵w=2(1+x )•y =2(1+x )(2﹣x ) =﹣2x 2+2x+4,∴w=﹣2(x ﹣0.5)2+4.5 ∵﹣2<0,0<x≤1, ∴w 有最大值,∴当x=0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.11.【答案】解:将x=1,y=2代入y=x 2﹣x+c 得:2=1﹣1+c ,即c=2,则二次函数解析式为y=x 2﹣x+2;∵y=x 2﹣x+2=(x ﹣12 )2+ 74 , ∴抛物线顶点坐标为( 12 , 74)12.【答案】解:设二次函数为y=a(x-1)2-4(a≠0),代入(0,-3)得-3= a(0-1)2-4 解得a=1∴二次函数为y= (x-1)2-4.13.【答案】解:∵抛物线的对称轴为 2x = ,∴可设抛物线的解析式为 2(2)y a x b =-+把 (3,2)- , (0,1) 代入解析式得 ()()2232=202=1a b a b ⎧-+-⎪⎨-+⎪⎩ , 解得 1a = , 3b =- ,∴所求抛物线的解析式为 2(2)3y x =--14.【答案】解:(1)在y=﹣x+3中,令x=0,得y=3;令y=0,得x=3, ∴A (0,3),C (3,0).∵抛物线y=﹣x 2+bx+c 经过A 、C 两点,∴3930c b c =⎧⎨-++=⎩, 解得23b c =⎧⎨=⎩,∴抛物线的解析式为y=﹣x 2+2x+3, 当x=2时,y=﹣22+2×2+3=3,∴点B(2,3)在抛物线上;(2)∵A(0,3),B(2,3),∴AO=BD=3,∵AO⊥OC,BD⊥OC,∴AO⊥BD,∴四边形AODB是平行四边形,∵⊥AOD=90°,∴平行四边形AODB是矩形,∴AB⊥AO.设E(x,﹣x2+2x+3),则S⊥EAB=12AB•[3﹣(﹣x2+2x+3)]=x2﹣2x,S⊥EBD=12BD•(2﹣x)=32(2﹣x),∵S⊥EAB=S⊥EBD,∴x2﹣2x=32(2﹣x),解得x1=﹣32,x2=2(舍去),∴点E的坐标为(﹣32,﹣94);(3)存在P、Q,使以A、B、P、Q为顶点的四边形为平行四边形.理由如下:设点P的坐标为(x,﹣x+3),分两种情况:①当AB为边时;⊥)如果四边形BAPQ为平行四边形,那么PQ⊥AB⊥x轴,且PQ=AB=2,∴Q点坐标为(x+2,﹣x+3),∵Q点在抛物线y=﹣x2+2x+3上,∴﹣x+3=﹣(x+2)2+2(x+2)+3,整理得x2+x=0,解得x1=﹣1,x2=0(舍去),∴点P的坐标为(﹣1,4);⊥)如果四边形BAQP为平行四边形,那么PQ⊥AB⊥x轴,且PQ=AB=2,∴Q点坐标为(x﹣2,﹣x+3),∵Q点在抛物线y=﹣x2+2x+3上,∴﹣x+3=﹣(x﹣2)2+2(x﹣2)+3,整理得x2﹣7x+8=0,解得x1717+x2717-,∴点P的坐标为(7172+,﹣7172+)或(7172,7172);②当AB为对角线时,则AB与PQ互相平分,∵A(0,3),B(2,3),∴AB中点坐标为(1,3),∵点P的坐标为(x,﹣x+3),∴点Q的坐标为(2﹣x,x+3),∵Q点在抛物线y=﹣x2+2x+3上,∴x+3=﹣(2﹣x)2+2(2﹣x)+3,整理得x2﹣x=0,解得x1=1,x2=0(舍去),∴点P的坐标为(1,2);综上所述,符合条件的点P坐标为(﹣1,4)或(7172+,﹣7172+)或(7172,717-)或(1,2).15.【答案】(1)答:(﹣9,0),(9,0).解:B、C为抛物线与x轴的交点,故代入y=0,得y=﹣427x2+12=0,解得x=﹣9或x=9,即B(﹣9,0),C(9,0).(2)①证明:∵AB⊥CN,∴⊥MAP=⊥PCN,∵MN⊥BC,∴四边形MBCN为平行四边形,∴BM=CN,∵AP=BM,∴AP=CN,∵BO=OC,OA⊥BC,∴OA垂直平分BC,∴AB=AC,∴AM=AB﹣BM=AC﹣AP=CP.在⊥PAM和⊥NCP中,,∴⊥PAM⊥⊥NCP(SAS).②解:1.当n<12AC时,如图1,,∵四边形MBCN为平行四边形,∴⊥MBC=⊥QNC,∵AB=AC,MN⊥BC,∴⊥MBC=⊥QCB=⊥NQC,∴⊥NQC=⊥QNC,∴CN=CQ,∵⊥MAP⊥⊥PCN,∴AP=CN=CQ,∵AP=n,22AO OC+22129+=15,∴PQ=AC﹣AP﹣QC=15﹣2n.2.当n=12AC时,显然P、Q重合,不符合题意.3.当n>12AC时,如图2,∵四边形MBCN 为平行四边形, ∴⊥MBC=⊥QNC ,BM=CN ∵AB=AC ,MN⊥BC , ∴⊥MBC=⊥QCB=⊥NQC , ∴⊥NQC=⊥QNC , ∴BM=CN=CQ , ∵AP=BM , ∴AP=CQ , ∵AP=n ,AC=15,∴PQ=AP+QC ﹣AC=2n ﹣15.综上所述,当n <12AC 时,PQ=15﹣2n ;当n >12AC 时,PQ=2n ﹣15. ③y=24164279x x -++或243212279x x -+-. 分析如下: 1.当n <12AC 时,如图3,过点P 作x 轴的垂线,交MN 于E ,交BC 于F . 此时⊥PEQ⊥⊥PFC⊥⊥AOC ,PQ=15﹣2n .∵PM=PN , ∴ME=EN=12MN=12BC=9, ∴22PM ME -9781-,∵OC :OA :AC=3:4:5,⊥PEQ⊥⊥PFC⊥⊥AOC , ∴PQ=5, ∴15﹣2n=5, ∴AP=n=5, ∴PC=10, ∴FC=6,PF=8,∵OF=OC ﹣FC=9﹣6=3,EN=9,EF=PF ﹣PE=8﹣4=4, ∴P (3,8),N (12,4). 设二次函数y=﹣427x 2+12平移后的解析式为y=﹣427(x+k )2+12+h , ∴()()22483122744121227k h k h ⎧=-+++⎪⎪⎨⎪=-+++⎪⎩,解得 683k h =-⎧⎪⎨=-⎪⎩,∴y=﹣427(x ﹣6)2+12﹣83=﹣427x 2+169x+4. 2.当n >12AC 时,如图4,过点P 作x 轴的垂线,交MN 于E ,交BC 于F .此时⊥PEQ⊥⊥PFC⊥⊥AOC ,PQ=2n ﹣15.∵PM=PN , ∴ME=EN=12MN=12BC=9, ∴22PM ME -9781-,∵OC :OA :AC=3:4:5,⊥PEQ⊥⊥PFC⊥⊥AOC , ∴PQ=5,∴2n ﹣15=5, ∴AP=n=10, ∴PC=5, ∴FC=3,PF=4,∵OF=OC ﹣FC=9﹣3=6,EN=9,EF=PF+PE=4+4=8, ∴P (6,4),N (15,8). 设二次函数y=﹣427x 2+12平移后的解析式为y=﹣427(x+k )2+12+h , ∴()()22446122748151227k h k h ⎧=-+++⎪⎪⎨⎪=-+++⎪⎩,解得 1283k h =-⎧⎪⎨=-⎪⎩,∴y=﹣427(x ﹣12)2+12﹣83=﹣427x 2+329x+4.。
南京市中考数学试卷含详细解版
江苏省南京市初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是()A. - 2B. 2C. - 8D. 8考点:有理数的加法;绝对值. 分析:先计算﹣5+3,再求绝对值即可. 解答:解:原式=|﹣2| =2. 故选B . 点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数. 2.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6 C. x ²y 9 D. -x ²y 9 考点:幂的乘方与积的乘方. 分析:根据幂的乘方和积的乘方的运算方法:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数);求出计算(﹣xy 3)2的结果是多少即可. 解答:解:(﹣xy 3)2 =(﹣x )2•(y 3)2 =x 2y 6,即计算(﹣xy 3)2的结果是x 2y 6. 故选:A . 点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn(m ,n 是正整数);②(ab )n =a n b n (n 是正整数).3.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()A. AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D. △ADE 的面积△ABC 的面积 = 13考点:相似三角形的判定与性质. 分析:第3题图DA CE由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.某市底机动车的数量是2×106辆,新增3×105辆.用科学记数法表示该市底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:底机动车的数量为:3×105+2×106=2.3×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.估计5 -12介于( )A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间考点:第6题图MGFE O CD BA N估算无理数的大小. 分析:先估算的范围,再进一步估算,即可解答.解答: 解:∵ 2.235, ∴﹣1≈1.235, ∴≈0.617,∴介于0.6与0.7之间,故选:C . 点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为() A. 133B. 92C.4313D.2 5考点:切线的性质;矩形的性质. 分析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,得到∠A=∠B=90°,CD=AB=4,由于AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE ,FBGO 是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果. 解答:解:连接OE ,OF ,ON ,OG , 在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点, ∴∠AEO=∠AFO=∠OFB=∠BGO=90°, ∴四边形AFOE ,FBGO 是正方形, ∴AF=BF=AE=BG=2, ∴DE=3,∵DM 是⊙O 的切线, ∴DN=DE=3,MN=MG , ∴CM=5﹣2﹣MN=3﹣MN ,在R t △DMC 中,DM 2=CD 2+CM 2, ∴(3+NM )2=(3﹣NM )2+42,∴NM=,∴DM=3=,故选A.点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.二.填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.考点:算术平方根;平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.若式子x+1在实数范围内有意义,则x的取值范围是.考点:二次根式有意义的条件.分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.计算5×153的结果是.考点:二次根式的乘除法.分析:直接利用二次根式的性质化简求出即可.解答:解:=×=5.故答案为:5. 点评:此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键. 10.分解因式(a - b )(a - 4b )+ab 的结果是 .考点:因式分解-运用公式法. 分析:首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可. 解答:解:(a ﹣b )(a ﹣4b )+ab =a 2﹣5ab+4b 2+ab =a 2﹣4ab+4b 2 =(a ﹣2b )2.故答案为:(a ﹣2b )2. 点评:此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .考点:解一元一次不等式组. 分析:分别解每一个不等式,再求解集的公共部分. 解答:解:,解不等式①得:x >﹣1, 解不等式②得:x <1,所以不等式组的解集是﹣1<x <1. 故答案为:﹣1<x <1. 点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 考点:根与系数的关系;一元二次方程的解. 分析:利用一元二次方程的根与系数的关系,两根的和是﹣m ,两个根的积是3,即可求解. 解答:解:设方程的另一个解是a ,则1+a=﹣m ,1×a=3,解得:m=﹣4,a=3.故答案是:3,﹣4.点评:本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A',再作点A'关于y轴的对称点,得到点A'',则点A''的坐标是( , ).考点:关于x轴、y轴对称的点的坐标.分析:分别利用x轴、y轴对称点的性质,得出A′,A″的坐标进而得出答案.解答:解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.点评:此题主要考查了关于x轴、y轴对称点的性质.(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.工种人数每人每月工资元电工 5 7000木工 4 6000瓦工 5 50001名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”).考点:方差.分析:利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大.解答:解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:增大.点评:此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键.15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= °.1y=考点:圆内接四边形的性质. 分析:连接CE ,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD ,然后求解即可. 解答:解:如图,连接CE ,∵五边形ABCDE 是圆内接五边形, ∴四边形ABCE 是圆内接四边形, ∴∠B+∠AEC=180°, ∵∠CED=∠CAD=35°, ∴∠B+∠E=180°+35°=215°. 故答案为:215.点评:本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .考点:反比例函数与一次函数的交点问题. 分析:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,由于点A 在反比例函数y 1=上,设A (a ,),求得点B 的坐标代入反比例函数的解析式即可求出结果. 解答:解:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D , ∵点A 在反比例函数y 1=上, ∴设A (a ,),∴OC=a ,AC=, ∵AC ⊥x 轴,BD ⊥x 轴, ∴AC ∥BD ,∴△OAC ∽△OBD , ∴,∵A 为OB 的中点, ∴=,∴BD=2AC=,OD=2OC=2a , ∴B (2a ,), 设y 2=, ∴k=2a •=4,∴y 2与x 的函数表达式是:y=. 故答案为:y=.点评:本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用. 三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来.考点: 解一元一次不等式;在数轴上表示不等式的解集. 分析:不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可. 解答:第17题图–1–2–31230解:去括号,得2x+2﹣1≥3x+2, 移项,得2x ﹣3x ≥2﹣2+1, 合并同类项,得﹣x ≥1, 系数化为1,得x ≤﹣1,这个不等式的解集在数轴上表示为:点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 18.(7分)解方程2x -3 = 3x考点:解分式方程. 专题: 计算题. 分析:观察可得最简公分母是x (x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程两边同乘以x (x ﹣3),得2x=3(x ﹣3). 解这个方程,得x=9.检验:将x=9代入x (x ﹣3)知,x (x ﹣3)≠0. 所以x=9是原方程的根. 点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.(7分)计算⎝⎛⎭⎫2a ²-b ² - 1a ² - ab ÷ aa +b考点:分式的混合运算. 分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可. 解答:解:(﹣)÷=[﹣]×=[﹣]×=×=.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD = CD BD. (1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.考点:相似三角形的判定与性质. 分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°. 解答:(1)证明:∵CD 是边AB 上的高, ∴∠ADC=∠CDB=90°,∵=.∴△ACD ∽△CBD ;(2)解:∵△ACD ∽△CBD , ∴∠A=∠BCD ,在△ACD 中,∠ADC=90°, ∴∠A+∠ACD=90°, ∴∠BCD+∠ACD=90°, 即∠ACB=90°. 点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.21.(8分)为了了解某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合抽样结果,得到下列统计图.第20题图A(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较与抽样学生50米跑成绩合格率情况,写出一条正确的结论.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.解答:解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与相比,该市大学生50米跑成绩合格率下降了5%(答案不唯一).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.考点:列表法与树状图法.专题:计算题.分析:(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.解答:解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.23.(8分)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km /h 和36km /h .经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 位,测得∠DBO=58°,此时B 处距离码头O 有多远?(参考数据:sin 58° ≈ 0.85,cos 58° ≈ 0.53,tan 58° ≈ 1.60)考点:解直角三角形的应用.分析:设B 处距离码头Oxkm ,分别在Rt △CAO 和Rt △DBO 中,根据三角函数求得CO 和DO ,再利用DC=DO ﹣CO ,得出x 的值即可.解答:解:设B 处距离码头Oxkm ,在Rt △CAO 中,∠CAO=45°, 东北O B A∴CO=AO •tan ∠CAO=(45×0.1+x )•tan45°=4.5+x ,在Rt △DBO 中,∠DBO=58°,∵tan ∠DBO=,∴DO=BO •tan ∠DBO=x •tan58°,∵DC=DO ﹣CO ,∴36×0.1=x •tan58°﹣(4.5+x ),∴x=≈=13.5.因此,B 处距离码头O 大约13.5km .点评:本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键.24.(8分)如图,AB ∥ CD ,点E 、F 分别在AB 、CD 上,连接EF ,∠AEF 、∠CFE 的平分线交于点G ,∠BEF 、∠DFE 的平分线交于点H .(1) 求证:四边形EGFH 是矩形.(2) 小明在完成(1)的证明后继续进行了探索.过G 作MN ∥ EF ,分别交AB 、CD 于点M 、N ,过H 作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.考点:菱形的判定;全等三角形的判定与性质;矩形的判定.分析:(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH 是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP 是菱形,只要证MN=NQ ,再证∠MGE=∠QFH 得出即可.解答:(1)证明:∵EH 平分∠BEF ,∴∠FEH=∠BEF ,∵FH 平分∠DFE ,小明的证明思路 由AB ∥CD ,MN ∥EF ,PQ ∥EF ,易证四边形MNQP 是平行四边形.要证▱MNQP 是菱形, 只要证NM=NQ .由已知条件 , MN ∥ EF ,可证NG = NF ,故只要证 GM = FQ ,即证△MGE ≌△QFH .易证 , , 故只要证 ∠MGE = ∠QFH ,∠QFH = ∠GEF ,∠QFH=∠EFH , 第24题图P H G A D C∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠EFG=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;(2)解:答案不唯一:由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证 GE=FH、∠GME=∠FGH.故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.点评:此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.25.(10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)DA考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A 为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.解答:解:满足条件的所有图形如图所示:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法.26.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB.(2)连接OE,交CD于点F,OE ⊥ CD.求证:△ABE是等边三角形.考点:圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.(第26题)EOCABD分析:(1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE ,然后利用等边对等角可得∠DCE=∠AEB ,进而可得∠A=∠AEB ;(2)首先证明△DCE 是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB ,可得△ABE 是等腰三角形,进而可得△ABE 是等边三角形.解答:证明:(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE ,∵DC=DE ,∴∠DCE=∠AEB ,∴∠A=∠AEB ;(2)∵∠A=∠AEB ,∴△ABE 是等腰三角形,∵EO ⊥CD ,∴CF=DF ,∴EO 是CD 的垂直平分线,∴ED=EC ,∵DC=DE ,∴DC=DE=EC ,∴△DCE 是等边三角形,∴∠AEB=60°,∴△ABE 是等边三角形.点评:此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义.(2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?x /kgy /元D B120 C 60 A考点:二次函数的应用.分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.解答:解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.点评:本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.。
2023年中考数学复习专项提升练习 二次函数(答案)
专项提升练习:二次函数(时间:60分钟 分数:100分)一、选择题(本题共8小题,共40分)1.将抛物线2(0)y ax bx c a =++≠向下平移两个单位,以下说法错误的是( ) A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变2.一次函数y =acx +b 与二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A .B .C .D .3.如图,二次函数2(2)y a x k =++的图象与x 轴交于A ,(), 10B −两点,则下列说法正确的是( )A .0a <B .点A 的坐标为()4,0−C .当0x <时,y 随x 的增大而减小D .图象的对称轴为直线2x =−4.将抛物线y =2(x ﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( ) A .y =2(x ﹣6)2B .y =2(x ﹣6)2+4 C .y =2x 2D .y =2x 2+45.(2022·甘肃兰州)已知二次函数2245y x x =−+,当函数值y 随x 值的增大而增大时,x 的取值范围是( )A .1x <B .1x >C .2x <D .2x >6.关于二次函数216274y x x a =−++,下列说法错误的是( ) A .若将图象向上平移10个单位,再向左平移2个单位后过点()4,5,则5a =− B .当12x =时,y 有最小值9a − C .2x =对应的函数值比最小值大7 D .当0a <时,图象与x 轴有两个不同的交点7.已知抛物线2(0)y ax bx c a =++≠与x 轴的交点为()1,0A 和()3,0B ,点()111,P x y ,()222,P x y 是抛物线上不同于,A B 的两个点,记1P AB △的面积为12,S PAB 的面积为2S .有下列结论:①当122x x >+时,12S S >;②当122x x <−时,12S S <;③当12221x x −>−>时,12S S >;④当12221x x −>+>时,12S S <.其中正确结论的个数是( ) A .1B .2C .3D .48.已知A 、B 两点的坐标分别为()3,4−、()0,2−,线段AB 上有一动点(),M m n ,过点M 作x 轴的平行线交抛物线2(1)2y a x =−+于()11,P x y 、()22,Q x y 两点.若12x m x <≤,则a 的取值范围为( ) A .342a −≤<−B .342a −≤≤−C .302a −≤< D .302a −<< 二、填空题(本题共5小题,每空3分,共15分)9.如图,对于抛物线211y x x =−++,2221y x x =−++,2331y x x =−++,给出下列结论:①这三条抛物线都经过点()0,1C ;②抛物线3y 的对称轴可由抛物线1y 的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线1y =的交点中,相邻两点之间的距离相等.其中正确结论的序号是_______________.10.如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于(1,0)A −,(3,0)B 两点,与y 轴的正半轴交于点C ,顶点为D ,则下列结论:①20a b +=;②23c b <;③当ABC是等腰三角形时,a 的值有2个;④当BCD 是直角三角形时,2a =−.其中正确的有_____________.11.将抛物线y=x 2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为_________.12.(2022·江苏盐城)若点(),P m n 在二次函数222=++y x x 的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.13.某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.三、解答题(本题共4小题,共45分)14.如图,抛物线y =x 2+bx +c 经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A ,B ,C ,它的对称轴为直线l .(1)求该抛物线的表达式;(2)P 是该抛物线上的点,过点P 作l 的垂线,垂足为D ,E 是l 上的点.要使以P 、D 、E 为顶点的三角形与△AOC 全等,求满足条件的点P ,点E 的坐标.15.某商贸公司购进某种商品的成本为20元/kg ,经过市场调研发现,这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数,且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系,如下表:填空:(1)m 与x 的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x 的增大而增大,求n 的取值范围.16.已知抛物线 y =ax 2−2ax +a −4(a >0) ,(1)直接写出该抛物线的对称轴及顶点坐标; (2)已知该抛物线经过 A(0,y 1),B(2,y 2) 两点, ①直接写出 y 1,y 2 的大小关系;②过B 点垂直于x 轴的直线交x 轴于点C ,若四边形AOCB 的面积小于或等于6,直接写出a 的取值范围.17.如图,已知顶点为C(0,−6)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,且OC= OB.(1)求点B的坐标;(2)求二次函数y=ax2+b(a≠0)的解析式;(3)作直线CB,问抛物线y=ax2+b(a≠0)上是否存在点M,使得∠MCB=15°.若存在,求出点M的坐标:若不存在,请说明理由.参考答案:1.D2.B3.D4.C5.B6.C7.A8.C9.①②④ 10.①③11.322−+=)(x y 12.110n ≤< 13.126414.(1)y =x2+2x ﹣3;(2)点P 的坐标为(2,5)或(﹣4,5);点E 的坐标为(﹣1,2)或(﹣1,8).15.(1)2144m x =−+;(2)第16天销售利润最大,最大为1568元;(3)02n <≤ 16.(1)∵y =ax 2−2ax +a −4(a >0) , ∴对称轴为直线x = −−2a 2a=1,∵4a(a−4)−(−2a)24a=-4,∴顶点坐标(1,-4).(2)①∵抛物线的对称轴为直线x=1,∴点A (0,y12,y1), ∵抛物线经过 A(0,y 1),B(2,y 2) 两点, ∴y 1=y 2 .②如图,∵A(0,y 1),B(2,y 2) , y 1=y 2 ,∴AB =2,AB//x 轴,∵BC⊥x轴,∴四边形ABCO为矩形,∴当矩形ABCO的面积为6时,AO=3,∴A(0,-3)或A(0,3),∵当x=0,y=a-4,∴当A(0,-3)时,a-4=-3,解得:a=1,当A(0,3)时,a-4=3,解得:a=7,∵四边形AOCB的面积小于或等于6,∴1≤a≤7.17.(1)解:∵C(0,-6)∴OC=6∵OC=OB∴OB=6∴点B的坐标为(6,0)(2)解:∵抛物线y=ax2+b(a≠0)经过点C(0,-6)和点B(6,0),∴{b=−636a+b=0,解得{a=16,b=−6∴该二次函数的解析式为y=16x2−6(3)解:存在①若点M在BC上方,设MC交x轴于点D,则∠ODC=45°+15°=60°.∴∠OCD=30°.∴设OD=x,则CD=2x.∵在Rt△OCD中,∠COD=90°,OC=6,∴CD2=OD2+OC2,即(2x)2=x2+36,解得x1=−2√3(舍),x2=2√3.∴点D的坐标为(2√3,0).设直线DC的函数解析式为y=kx−6∴0=2√3k−6,解得k=√3∴直线DC的函数解析式为y=√3x−6∴{y=√3x−6,y=16x2−6,解得{x1=0,y1=−6(舍),{x2=6√3,y2=12∴M1(6√3,12)②若点M在BC下方,设MC交x轴于点E,则∠OEC=45°-15°=30°.∵OC=6,则CE=12.∵在Rt△OCE中,∠COE=90°,∴OE2=CE2−OC2=108,∴OE=6√3.∴点E的坐标为(6√3,0).设直线EC的函数解析式为y=kx−6,∴0=6√3k−6,解得k=√33∴直线EC的函数解析式为y=√33x−6∴{y=√33x−6y=16x2−6,解得{x1=0y1=−6(舍),{x2=2√3y2=−4.∴M2(2√3,−4)综上所述,点M的坐标为(6√3,12)或(2√3,−4).。
江苏南京中考数学模拟测试题(6)
江苏南京中考数学模拟测试题(6)一.选择题(共6小题,满分12分,每小题2分)1.(2分)a的倒数为﹣3,则a等于()A.B.3C.﹣D.±32.(2分)下列运算正确的是()A.a2•a3=a6B.y12÷y3=y4C.(﹣2x)3=﹣8x3D.x3+x3=2x63.(2分)介于两个连续(相邻)的整数a与b之间,则a+b=()A.1B.3C.5D.74.(2分)在数轴上距离原点6个单位长度的点所表示的数是()A.6B.﹣6C.6或﹣6D.3或﹣35.(2分)如图,从一块半径为2m的圆形铁皮上剪出一个半径为2m的扇形,则此扇形围成的圆锥的侧面积为()A.2πm2B.C.πm2D.6.(2分)如图,将△ABC绕点P顺时针旋转得到△A'B'C',则点P的坐标为()A.(1,1)B.(1,2)C.(1,3)D.(1,4)二.填空题(共10小题,满分20分,每小题2分)7.(2分)式子有意义,则实数a的取值范围是.8.(2分)据统计永州市人口6316100人(数据来源2020年)将6316100用科学记数法表示为.9.(2分)已知a2﹣a﹣1=0,且,则x=.10.(2分)已知x1,x2是一元二次方程2x2+x﹣3=0的两个实数根,则x1+x2的值是.11.(2分)将一张长方形的纸对折如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次保持平行,连续对折三次后可以得到7条折痕,那么对折7次可以得到条折痕.12.(2分)刘伯伯家今年养了4000条鲤鱼,现在准备打捞出售,为估计鱼塘中鲤鱼的总质量,从鱼塘中捕捞了三次进行统计:(见表格)则估计鱼塘中鲤鱼的总质量为kg.序号条数总质量(kg)12541210173152713.(2分)如图,P A,PB是⊙O的切线,A,B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于度.14.(2分)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,若BD=2,AD=8,则=.15.(2分)如图,在平面直角坐标系中,Rt△OBC的顶点B在x轴的正半轴上,反比例函数y=(x>0)的图象与边OC交于点E,已知E为边OC的中点,则△OBC的面积为.16.(2分)已知点A(﹣3,y1),B(﹣1,y2),C(1,y3),D(2,y4)在二次函数y=ax2+2ax+6的图象上,若y1,y2,y3,y4,四个数中有且只有一个数小于零,则a的取值范围为.三.解答题(共11小题,满分88分)17.(7分)解不等式组,并写出它的所有整数解.18.(7分)计算下列各题.(1)﹣;(2)﹣;(3)÷(1﹣);(4)÷(m+2﹣).19.(8分)如图菱形ABCD的一个内角∠B=60°,E为BC的中点,F为CD的中点,连接AF、EF.(1)△AEF的形状如何?试证明;(2)若E为BC上的任意一点,F为CD上的点,且∠EAF=60°,△AEF的形状如何?试证明.20.(8分)某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100乙组:50,60,60,60,70,70,70,70,80,90组别平均分中位数方差合格率优秀率甲组68分a37690%30%乙组b c19690%10%(1)以上成绩统计分析表中a=分,b=分,c=分(2)小亮同学说:“这次竞赛我得了70分,在我们小组中属中游略偏上!”观察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由(3)如果你是该校数学竞赛的教练员,现在需要你选组同学代表学校参加复赛,你会选择哪一组?并说明理由21.(8分)为了方便业主合理、规范摆放机动车,小伟所住生活小区的管理人员在小区内部道路的一侧画出了一些停车位.如图,道路上有四个空停车位,标号分别为1,2,3,4,如果有两辆机动车要随机停在这四个停车位中的两个里边,请用列表或画树状图的方法求出这两辆机动车停在“标号是一个奇数和一个偶数”停车位的概率.22.(8分)如图,△ABC中,AB=AC,点D是BC中点,连接AD,过点A作AN∥BC.(1)尺规作图:过点C作直线CE⊥AN于点E(基本作图,保留作图痕迹不写作法,并标明字母);(2)求证:四边形ADCE是矩形.23.(8分)某快递公司有甲、乙两辆货车沿同一路线从A地到B地配送货物.某天两车同时从A地出发,驶向B地,途中乙车由于出现故障,停车修理了一段时间,修理完毕后,乙车加快了速度匀速驶向B地;甲车从A地到B地速度始终保持不变.如图所示是甲、乙两车之间的距离y(km)与两车出发时间x(h)的函数图象.根据相关信息解答下列问题:(1)点M的坐标表示的实际意义是什么?(2)求出MN所表示的关系式,并写出乙故障后的速度;(3)求故障前两车的速度以及a的值.24.(8分)在一次科技制作大赛中,小明用木板制作了一个带有卡槽的三角形手机架如图所示,卡槽的长度DF与内三角形ABC的边AB长相等.已知AC=20cm,BC=18cm,∠ACB=50°,一手机最长边为16.5cm,小明能否将此手机立放入卡槽内?请通过计算加以说明(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2).25.(8分)已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.26.(8分)画出y1=4x﹣12与y3=ax2﹣2ax﹣3a的所有可能的草图,并判断是否存在一个a值,使得无论x为任何实数,均有y3≥y1?说明你的理由.27.(10分)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k常数).将矩形ABCD沿GF 折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE 交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用在(2)的条件下,连接CP,当k=时,若,GF=2,求CP的长.。
中考数学《函数基础知识》专项练习题(带答案)
中考数学《函数基础知识》专项练习题(带答案)一、单选题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm2.若矩形的面积为125,则矩形的长y 关于宽x(x >0)的函数关系式为( )A .y =125xB .y =512xC .y =12x 5D .y =5x 123.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度 ℎ 与时间 t 之间的关系的图象是( )A .B .C .D .4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(m)与时间t(min)之间函数关系的图象大致是( )A .B .C.D.5.若代数式√x−1x−2有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠26.等腰三角形ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系的图象大致是()A.B.C.D.7.若直线y=kx上每一点都能在直线y=−6x上找到关于x轴对称的点,则它的解析式是()A.y=6x B.y=16x C.y=−6x D.y=−1 6x8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x⩽2B.x⩽2且x≠−1 C.x⩾2D.x⩾2且x≠−110.在下列四个图形中,能作为y是x的函数的图象的是()A.B.C.D.11.如图,小磊老师从甲地去往10千米的乙地,开始以一定的速度行驶,之后由于道路维修,速度变为原来的四分之一,过了维修道路后又变为原来的速度到达乙地.设小磊老师行驶的时间为x(分钟),行驶的路程为y(千米),图中的折线表示y与x之间的函数关系,则小磊老师从甲地到达乙地所用的时间是()A.15分钟B.20分钟C.25分钟D.30分钟12.下列图象中,y是x的函数的是()A.B.C.D.二、填空题13.如图1,在平面直角坐标系中,将▱ABCD(AB>AD)放置在第一象限,且AB∥x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为.14.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是. (填写序号)15.某商城为促进同一款衣服的销量,当同一个人购买件数达到一定数目的时候,超过的件数,每件打8折,现任意挑选5个顾客的消费情况制定表格,其中x表示购买件数,y表示消费金额,根据表格数据请写出一个y关于x的函数解析式是:.x(件)23456y(元)10015020024028016.函数y=2√x−1的自变量x的取值范围是.17.甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.18.如图,△O的半径为5,点P在△O上,点A在△O内,且PA=3,过点A作AP的垂线交△O于点B,C.设PB= x ,PC=y,则y与x之间的函数解析式为三、综合题19.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.行李的重量xkg快递费不超过1kg10元超过1kg但不超过5kg的部分3元/kg超过5kg但不超过15kg的部分5元/kg(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?20.小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶,若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系,如图所示,根据图象回答下列问题;(1)小汽车行驶小时后加油,中途加油升;(2)求加油前邮箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点300km,车速为80km/h,要到达目的地,油箱中的油是否够用请说明理由.21.一农民带了若干千克自产的萝卜进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出萝卜千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)降价前他每千克萝卜出售的价格是多少?(2)降价后他按每千克0.4元将剩余萝卜售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克萝卜?22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在“世界读书日”这周的周末,小张同学上午8时从家里出发,步行到公园锻炼了一段时间后以相同的速度步行到图书馆看书,看完书后直接回到了家里,如图是他离家的距离s(米)与时间t(时)的函数关系,根据图象回答下列问题:(1)小张同学家离公园的距离是多少米?锻炼身体用了多少分钟?在图书馆看了多少分钟的书?从图书馆回到家里用了多少分钟?(2)图书馆离小张同学的家多少米?(3)小张同学从图书馆回到家里的速度是多少千米/时?24.甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?参考答案1.【答案】B 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】D 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】8 14.【答案】①②③15.【答案】{y =50x(0≤x ≤4)y =40x +40(x >4)16.【答案】x >1 17.【答案】(1)770(2)818.【答案】y =30x19.【答案】(1)解:设托运费y 1(元)与行李重量xkg 的函数关系式为y 1=kx+b将(30,300)、(50,900)代入y 1=kx+b , {30k +b =30050k +b =900 ,解得: {k =30b =−600 ∴托运费y 1(元)与行李质量xkg 的函数关系式为y 1=30x ﹣600. 当y 1=30x ﹣600=0时,x =20.答:可携带的免费行李的最大重量为20kg . (2)解:根据题意得:当0<x≤1时,y 2=10; 当1<x≤5时,y 2=10+3(x ﹣1)=3x+7;当5<x≤15时,y 2=10+3×(5﹣1)+5(x ﹣5)=5x ﹣3.综上所述:快递费y 2(元)与行李重量xkg 的函数关系式为y 2= {10(0<x ≤1)3x +7(1<x ≤5)5x −3(5<x ≤15) .(3)解:当10≤m <20时,5<25﹣m≤15∴y =y 1+y 2=0+5×(25﹣m)﹣3=﹣5m+122. ∵10≤m <20 ∴22<y≤72;当20≤m <24时,1<25﹣m≤5∴y =y 1+y 2=30m ﹣600+3×(25﹣m)+7=27m ﹣518. ∵20≤m <24 ∴22≤y <130.综上可知:当m =20时,总费用y 的值最小,最小值为22.答:当托运20kg 、快递5kg 行李时,总费用最少,最少费用为22元.20.【答案】(1)3;24(2)解:设直线解析式为Q=kt+b ,把(0,36)和(3,6)代入得: {3k +b =6b =36解得 {k =−10b =36 ∴Q=-10t+36,(0≤t≤3);(3)解:根据题意,每小时耗油量为10升 ∵加油站到景点用时间为:300÷80=3.75(小时) ∴需要的油量为:3.75×10=37.5升>30升 故不够用.21.【答案】(1)解:设降价前每千克萝卜价格为k 元则农民手中钱y 与所售萝卜千克数x 之间的函数关系式为:y=kx+5 ∵当x=30时,y=20 ∴20=30k+5 解得k=0.5.答:降价前每千克萝卜价格为0.5元. (2)解:(26-20)÷0.4=15 15+30=45kg.所以一共带了45kg 萝卜.22.【答案】(1)解: 800÷10=80 (元 / 人)答:不打折的门票价格是80元 / 人; (2)解:设 y 1=10k 解得: k =48 ∴y 1=48x当0⩽x⩽10时,设y2=80x 当x>10时,设y2=mx+b则{10m+b=80020m+b=1440解得:m=64∴y2=64x+160∴y2={80x(0⩽x⩽10)64x+160(x>10);(3)解:设A旅游团x人,则B旅游团(50−x)人若0⩽x⩽10,则80x+48(50−x)=3040解得:x=20,与x⩽10不相符若x>10,则64x+160+48(50−x)=3040解得:x=30,与x>10相符,50−30=20(人)答:A旅游团30人,B旅游团20人.23.【答案】(1)解:观察图象得:小张同学8时离开家,8:10到达公园,小张同学家离公园的距离是500米∵小张同学8:10到达公园,9:10离开公园∴小张同学锻炼身体用了60分钟∵小张同学9:30到达图书馆,11:40离开图书馆∴小张同学在图书馆看了130分钟的书∵小张同学11:40离开图书馆,12时回到家∴小张同学从图书馆回到家里用了20分钟∴小张同学家离公园的距离是500米,锻炼身体用了60分钟,在图书馆看了130分钟的书,从图书馆回到家里用了20分钟;(2)解:∵小张同学8时离开家,8:10到达公园,距离500米,用时10分钟∴小张同学从家到公园的速度为500÷10=50(米/分)∵步行到公园锻炼了一段时间后以相同的速度步行到图书馆着书∴小张同学从公园到图书馆的速度为50米/分∵小张同学9:10离开公园,9:30到达图书馆∴公园离图书馆的距离为:50×20=1000(米)∴图书馆离小张同学的家的距离为:1000+500=1500(米)∴图书馆离小张同学的家1500米;(3)解:∵小张同学从图书馆到家的距离为1500米,即1.5千米,从图书馆回到家里用了20分钟,即时13小时 ∴小张同学从图书馆回到家里的速度是:1.5÷13=4.5千米/时 ∴小张同学从图书馆回到家里的速度是4.5千米/时.24.【答案】(1)解:由图象可知A 、B 两城之间距离是300千米;(2)解:由图象可知,甲的速度= 3005=60(千米/小时) 乙的速度= 3003=100(千米/小时) ∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)解:设乙车出发x 小时追上甲车由题意:60(x+1)=100x解得:x =1.5∴乙车出发1.5小时追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m 小时①当甲车在乙车前时得:60m ﹣100(m ﹣1)=40解得:m =1.5此时是上午6:30;②当甲车在乙车后面时100(m ﹣1)﹣60m =40解得:m =3.5此时是上午8:30;③当乙车到达B 城后300﹣60m =40解得:m = 133此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.。
中考数学总复习《二次函数》专项提升练习题(附答案)
中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。
第6章 一次函数(解答题中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优
第6章一次函数(解答题中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优专题练习(苏科版)一.函数的图象(共1小题)1.(2021•无锡)已知函数y=x﹣.(1)若点P(a,b)是函数图象上一点,则点P关于原点的对称点Q是否在该函数图象上?请说明理由.(2)设P(x1,y1)、Q(x2,y2)是该函数图象上任意两点,且x2>x1>0,求证:y2>y1.二.一次函数的应用(共16小题)2.(2023•淮安)快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用时30min,结束后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度为70km/h.两车之间的距离y(km)与慢车行驶的时间x(h)的函数图象如图所示.(1)请解释图中点A的实际意义;(2)求出图中线段AB所表示的函数表达式;(3)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.3.(2023•扬州)近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?4.(2023•苏州)某动力科学研究院实验基地内装有一段笔直的轨道AB,长度为1m的金属滑块在上面做往返滑动.如图,滑块首先沿AB方向从左向右匀速滑动,滑动速度为9m/s,滑动开始前滑块左端与点A重合,当滑块右端到达点B时,滑块停顿2s,然后再以小于9m/s的速度匀速返回,直到滑块的左端与点A重合,滑动停止.设时间为t(s)时,滑块左端离点A的距离为l1(m),右端离点B的距离为l2(m),记d=l1﹣l2,d与t具有函数关系,已知滑块在从左向右滑动过程中,当t=4.5s和5.5s时,与之对应的d 的两个值互为相反数;滑块从点A出发到最后返回点A,整个过程总用时27s(含停顿时间).请你根据所给条件解决下列问题:(1)滑块从点A到点B的滑动过程中,d的值 ;(填“由负到正”或“由正到负”)(2)滑块从点B到点A的滑动过程中,求d与t的函数表达式;(3)在整个往返过程中,若d=18,求t的值.5.(2023•连云港)目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如表的三个气量阶梯:阶梯年用气量销售价格备注第一阶梯0~400m3(含400)的部分2.67元/m3第二阶梯400~1200m3(含1200)的部分3.15元/m3第三阶梯1200m3以上的部分3.63元/m3若家庭人口超过4人的,每增加1人,第一、二阶梯年用气量的上限分别增加100m3、200m3.(1)一户家庭人口为3人,年用气量为200m3,则该年此户需缴纳燃气费用为 元;(2)一户家庭人口不超过4人,年用气量为x m3(x>1200),该年此户需缴纳燃气费用为y元,求y与x的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到1m3)6.(2022•南京)某蔬菜基地有甲,乙两个用于灌溉的水池,它们的最大容量均为3000m3,原有水量分别为1200m3,300m3,现向甲、乙同时注水,直至两水池均注满为止.已知每分钟向甲、乙的注水量之和恒定为100m3,若其中某一水池注满,则停止向该水池注水,改为向另一水池单独注水.设注水第x min时,甲、乙水池中的水量分别为y1m3,y2m3.(1)若每分钟向甲注水40m3,分别写出y1、y2与x之间的函数表达式;(2)若每分钟向甲注水50m3,画出y2与x之间的函数图象;(3)若每分钟向甲注水a m3,则甲比乙提前3min注满,求a的值.7.(2022•盐城)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发.两人离甲地的距离y(m)与出发时间x(min)之间的函数关系如图所示.(1)小丽步行的速度为 m/min;(2)当两人相遇时,求他们到甲地的距离.8.(2022•南通)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.9.(2022•苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m 千克甲种水果和3m 千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m 的最大值.10.(2021•连云港)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A 型消毒液和3瓶B 型消毒液共需41元,5瓶A 型消毒液和2瓶B 型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B 型消毒液的数量不少于A 型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.11.(2021•南京)甲、乙两人沿同一直道从A 地去B 地.甲比乙早1min 出发,乙的速度是甲的2倍.在整个行程中,甲离A 地的距离y1(单位:m )与时间x (单位:min )之间的函数关系如图所示.(1)在图中画出乙离A 地的距离y 2(单位:m )与时间x 之间的函数图象;(2)若甲比乙晚5min 到达B 地,求甲整个行程所用的时间.12.(2021•盐城)为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到图表:该地区每周接种疫苗人数统计表周次第1周第2周第3周第4周第5周第6周第7周第8周接种人数(万人)710121825293742根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点(3,12)、(8,42)作一条直线(如图所示,该直线的函数表达式为y=6x﹣6),那么这条直线可近似反映该地区接种人数的变化趋势.请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为 万人;该地区的总人口约为 万人;(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.①估计第9周的接种人数约为 万人;②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少a(a>0)万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果a=1.8,那么该地区的建议接种人群最早将于第几周全部完成接种?13.(2021•宿迁)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为 km/h,C点的坐标为 .(2)慢车出发多少小时后,两车相距200km.14.(2021•南通)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A超市的购物金额为:300×0.9+(500﹣300)×0.7=410(元);去B超市的购物金额为:100+(500﹣100)×0.8=420(元).(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.15.(2020•淮安)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为 千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.16.(2020•苏州)某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg .6月12日补充进货200kg ,成本价8.5元/kg .6月30日800kg 水果全部售完,一共获利1200元.17.(2020•无锡)小王毕业后自主创业,开店加工出售某食品.现小店每天的固定成本(房租、水电费等)为200元,该食品的加工成本为每斤5元.若每天加工的原材料超过100斤,则每天需增加人工成本300元,该食品市场售价为每斤35元.若每天购买原材料不超过100斤,则进货价为每斤20元;若每天购买原材料超过100斤,则进货价为每斤15元.为加强小店的促销力度,小王制定了如下促销方案:当某天购买原材料不超过100斤时,对超过60斤的部分实行八折优惠销售;当某天购买原材料超过100斤时,对全部食品实行八折优惠销售.若加工过程中无损耗,且每天购买原材料加工的食品,当天可以全部售完.设小店每天购买原材料x 斤(60≤x ≤180),每天的纯利润为W 元.(纯利润=销售收入﹣成本)(1)写出每天纯利润W 与每天购买原材料x 的函数表达式;(2)每天购买的原材料x 在什么范围内,当天的纯利润可以不低于460元.三.一次函数综合题(共1小题)18.(2022•泰州)定义:对于一次函数y 1=ax +b 、y 2=cx +d ,我们称函数y =m (ax +b )+n (cx +d )(ma +nc ≠0)为函数y 1、y 2的“组合函数”.(1)若m =3,n =1,试判断函数y =5x +2是否为函数y 1=x +1、y 2=2x ﹣1的“组合函数”,并说明理由;(2)设函数y 1=x ﹣p ﹣2与y 2=﹣x +3p 的图象相交于点P .①若m +n >1,点P 在函数y 1、y 2的“组合函数”图象的上方,求p 的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.第6章一次函数(解答题中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优专题练习(苏科版)参考答案与试题解析一.函数的图象(共1小题)1.(2021•无锡)已知函数y=x﹣.(1)若点P(a,b)是函数图象上一点,则点P关于原点的对称点Q是否在该函数图象上?请说明理由.(2)设P(x1,y1)、Q(x2,y2)是该函数图象上任意两点,且x2>x1>0,求证:y2>y1.【答案】(1)点P关于原点的对称点Q在该函数图象上,理由见解答;(2)见解答.【解答】解:(1)点P关于原点的对称点Q在该函数图象上,理由如下:∵P(a,b),∴b=a﹣,∴点P关于原点的对称点Q(﹣a,﹣a+),当x=﹣a时,y=﹣a﹣=,∴点P关于原点的对称点Q在该函数图象上;(2)证明:∵P(x1,y1)、Q(x2,y2)在数y=x﹣的图象上,∴,,∴y1﹣y2====,∵x2>x1>0,∴y1﹣y2<0,即y2>y1.二.一次函数的应用(共16小题)2.(2023•淮安)快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用时30min,结束后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度为70km/h.两车之间的距离y(km)与慢车行驶的时间x(h)的函数图象如图所示.(1)请解释图中点A的实际意义;(2)求出图中线段AB所表示的函数表达式;(3)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.【答案】(1)A点的实际意义是,出发3小时,快车到达乙地,此时快车与慢车相距120km;(2)线段AB所表示的函数表达式为y=﹣70x+330(3≤x≤3.5);(3)两车相遇后,如果快车以返回的速度继续向甲地行驶,到达甲地还需2.8h.【解答】解:(1)A点的实际意义是,出发3小时,快车到达乙地,此时快车与慢车相距120km;(2)∵点B的横坐标为:3+=3.5(h),点B的纵坐标为:120﹣×70=85(km),∴点B的坐标为(3.5,85),设线段AB所表示的函数表达式为y=kx+b,将A(3,120),B(3.5,85)代入得:,解得,∴线段AB所表示的函数表达式为y=﹣70x+330(3≤x≤3.5);(3)快车从返回到遇见慢车所用的时间为:4﹣3.5=0.5(h),∴快车从乙地返回甲地时的速度为:85÷0.5﹣70=100(km/h),∵4×70÷100=2.8(h),∴两车相遇后,如果快车以返回的速度继续向甲地行驶,到达甲地还需2.8h.3.(2023•扬州)近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲种头盔单价是65元,乙种头盔单价是54元;(2)购买14只甲种头盔时,总费用最小,最小费用为1976元.【解答】解:(1)设甲种头盔的单价为x元,乙种头盔的单价为y元,根据题意,得,解得,答:甲种头盔单价是65元,乙种头盔单价是54元;(2)设再次购进甲种头盔m只,总费用为w元,根据题意,得m≥(40﹣m),解得m≥,w=65×0.8m+(54﹣6)(40﹣m)=4m+1920,∵4>0,∴w随着m增大而增大,当m=14时,w取得最小值,即购买14只甲种头盔时,总费用最小,最小费用为14×4+1920=1976(元),答:购买14只甲种头盔时,总费用最小,最小费用为1976元.4.(2023•苏州)某动力科学研究院实验基地内装有一段笔直的轨道AB,长度为1m的金属滑块在上面做往返滑动.如图,滑块首先沿AB方向从左向右匀速滑动,滑动速度为9m/s,滑动开始前滑块左端与点A重合,当滑块右端到达点B时,滑块停顿2s,然后再以小于9m/s的速度匀速返回,直到滑块的左端与点A重合,滑动停止.设时间为t(s)时,滑块左端离点A的距离为l1(m),右端离点B的距离为l2(m),记d=l1﹣l2,d与t具有函数关系,已知滑块在从左向右滑动过程中,当t=4.5s和5.5s时,与之对应的d 的两个值互为相反数;滑块从点A出发到最后返回点A,整个过程总用时27s(含停顿时间).请你根据所给条件解决下列问题:(1)滑块从点A到点B的滑动过程中,d的值 由负到正 ;(填“由负到正”或“由正到负”)(2)滑块从点B到点A的滑动过程中,求d与t的函数表达式;(3)在整个往返过程中,若d=18,求t的值.【答案】(1)由负到正;(2)d=﹣12t+234;(3)t=6或18【解答】(1)解:∵d=l1﹣l2,当滑块在A点时,l1=0,d=﹣l2<0,当滑块在B点时,l2=0,d=l1>0,∴d的值由负到正.(2)设轨道AB的长为n,当滑块从左向右滑动时,∵l1+l2+1=n,∴l2=n﹣l1﹣1,:d=l1﹣l2=l1﹣(n﹣l1﹣2)=2l1﹣n+1=2×9t﹣n+1=18t﹣n+1∴d是t的一次函数,∵当t=4.5s和5.5s时,与之对应的d的两个值互为相反数;∴当t=5时,d=0,∴18×5﹣n+1=0,∴n=91,∴滑块从点A到点B所用的时间为(91﹣1)÷9=10(s),∵整个过程总用时27s(含停顿时间).当滑块右端到达点B时,滑块停顿2s,∴滑块从B返回到A所用的时间为27﹣10﹣2=15s.∴滑块返回的速度为:(91﹣1)÷15=6(m/s),∴当12≤t≤27时,l2=6(t﹣12),∴l1=91﹣1﹣l2=90﹣6(t﹣12)=162﹣6t,∴l1﹣l2=162﹣6t﹣6(t﹣12)=﹣12t+234,∴d与t的函数表达式为:d=﹣12t+234;(3)当d=18时,有两种情况:由(2)可得,①当0≤t≤10时,18t﹣90=18,∴t=6;②当12≤t≤27时,﹣12t+234=18,∴t=18.综上所述,当t=6或18时,d=18.5.(2023•连云港)目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如表的三个气量阶梯:阶梯年用气量销售价格备注第一阶梯0~400m3(含400)的部分2.67元/m3第二阶梯400~1200m3(含1200)的部分3.15元/m3第三阶梯1200m3以上的部分3.63元/m3若家庭人口超过4人的,每增加1人,第一、二阶梯年用气量的上限分别增加100m3、200m3.(1)一户家庭人口为3人,年用气量为200m3,则该年此户需缴纳燃气费用为 534 元;(2)一户家庭人口不超过4人,年用气量为x m3(x>1200),该年此户需缴纳燃气费用为y元,求y与x的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到1m3)【答案】(1)534;(2)y与x的函数表达式为y=3.63x﹣768(x>1200);(3)该年乙户比甲户多用约26立方米的燃气.【解答】解:(1)200×2.67=534(元),故答案为:534;(2)根据题意得:y=400×2.67+(1200﹣400)×3.15+3.63(x﹣1200)=3.63x﹣768,∴y与x的函数表达式为y=3.63x﹣768(x>1200);(3)∵400×2.67+(1200﹣400)×3.15=3588<3855,∴甲户该年的用气量达到了第三阶梯,由(2)知,当y=3855时,3.63x﹣768=3855,解得x=1273.6,又∵2.67×(100+400)+3.15×(1200+200﹣500)=4170>3855,且2.67×(100+400)=1335<3855.∴乙户该年的用气量达到第二阶梯,但未达到第三阶梯,设乙户年用气量为a m3则有2.67×500+3.15(a﹣500)=3855,解得a=1300,1300﹣1273.6=26.4≈26m3,答:该年乙户比甲户多用约26立方米的燃气.6.(2022•南京)某蔬菜基地有甲,乙两个用于灌溉的水池,它们的最大容量均为3000m3,原有水量分别为1200m3,300m3,现向甲、乙同时注水,直至两水池均注满为止.已知每分钟向甲、乙的注水量之和恒定为100m3,若其中某一水池注满,则停止向该水池注水,改为向另一水池单独注水.设注水第x min时,甲、乙水池中的水量分别为y1m3,y2m3.(1)若每分钟向甲注水40m3,分别写出y1、y2与x之间的函数表达式;(2)若每分钟向甲注水50m3,画出y2与x之间的函数图象;(3)若每分钟向甲注水a m3,则甲比乙提前3min注满,求a的值.【答案】(1)y1=1200+40x(0≤x≤45),y2=300+60x(0≤x≤45);(2)图象见解答;(3).【解答】解:(1)若每分钟向甲注水40m3,则注满甲需要(3000﹣1200)÷40=45(分),若每分钟向乙注水100﹣40=60(m3),则注满乙需要(3000﹣300)÷60=45(分),则按照每分钟向甲注水40m3,甲乙同时注满,∴y1=1200+40x(0≤x≤45),y2=300+60x(0≤x≤45);(2)若每分钟向甲注水50m3,则注满甲需要(3000﹣1200)÷50=36(分),若每分钟向乙注水100﹣50=50(m3),则注满乙需要(3000﹣300)÷50=54(分),则按照每分钟向甲注水50m3,甲在36分时注满,之后乙注水的量为每分钟100m3,(3000﹣300﹣36×50)÷100=9(分),36+9=45(分),y2=300+50x(0≤x≤36),y2=100x﹣1500(36≤x≤45);(3),解得a=,则a的值为.7.(2022•盐城)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发.两人离甲地的距离y(m)与出发时间x(min)之间的函数关系如图所示.(1)小丽步行的速度为 80 m/min;(2)当两人相遇时,求他们到甲地的距离.【答案】(1)80;(2)当两人相遇时,他们到甲地的距离是960m.【解答】解:(1)由图象可知,小丽步行的速度为=80(m/min),故答案为:80;(2)由图象可得,小华骑自行车的速度是=120(m/min),∴出发后需要=12(min)两人相遇,∴相遇时小丽所走的路程为12×80=960(m),即当两人相遇时,他们到甲地的距离是960m.8.(2022•南通)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.【答案】(1)图中点B表示的实际意义为当销量为60kg时,甲、乙两种苹果的销售额均为1200元;(2)甲种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y甲=20x(0≤x≤120);乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=;(3)a的值为80.【解答】解:(1)图中点B表示的实际意义为当销量为60kg时,甲、乙两种苹果的销售额均为1200元;(2)设甲种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y甲=kx(k≠0),把(60,1200)代入解析式得:1200=60k,解得k=20,∴甲种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y甲=20x (0≤x≤120);当0≤x≤30时,设乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=k′x(k′≠0),把(30,750)代入解析式得:750=30k′,解得:k′=25,∴y乙=25x;当30≤x≤120时,设乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=mx+n(m≠0),则,解得:,∴y乙=15x+300,综上,乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=;(3)①当0≤a≤30时,根据题意得:(20﹣8)a+(25﹣12)a=1500,解得:a =60>30,不合题意;②当30<a ≤120时,根据题意得:(20﹣8)a +(15﹣12)a +300=1500,解得:a =80,综上,a 的值为80.9.(2022•苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m 千克甲种水果和3m 千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m 的最大值.【答案】见试题解答内容【解答】解:(1)设甲两种水果的进价为每千克a 元,乙两种水果的进价为每千克b 元.由题意,得,解得,答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.(2)设第三次购进x 千克甲种水果,则购进(200﹣x )千克乙种水果.由题意,得12x +20(200﹣x )≤3360,解得x ≥80.设获得的利润为w 元,由题意,得w=(17﹣12)×(x ﹣m )+(30﹣20)×(200﹣x ﹣3m )=﹣5x ﹣35m+2000,∵﹣5<0,∴w随x的增大而减小,∴x=80时,w的值最大,最大值为﹣35m+1600,由题意,得﹣35m+1600≥800,解得m≤,∴m的最大整数值为22.10.(2021•连云港)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.【答案】见试题解答内容【解答】解:(1)设A型消毒液的单价是x元,B型消毒液的单价是y元,,解得,答:A型消毒液的单价是7元,B型消毒液的单价是9元;(2)设购进A型消毒液a瓶,则购进B型消毒液(90﹣a)瓶,费用为w元,依题意可得:w=7a+9(90﹣a)=﹣2a+810,∵k=﹣2<0,∴w随a的增大而减小,∵B型消毒液的数量不少于A型消毒液数量的,∴90﹣a≥a,解得a≤67,∴当a=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣a=23,答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元.11.(2021•南京)甲、乙两人沿同一直道从A地去B地.甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.(1)在图中画出乙离A地的距离y2(单位:m)与时间x之间的函数图象;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.【答案】(1)见解析;(2)甲整个行程所用的时间为12min.【解答】解:(1)如图:(2)设甲的速度是v m/min,乙整个行程所用的时间为t min,由题意得:2v•t=(t+1+5)v,解得:t=6,6+1+5=12(min),答:甲整个行程所用的时间为12min.12.(2021•盐城)为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到图表:该地区每周接种疫苗人数统计表周次第1周第2周第3周第4周第5周第6周第7周第8周接种人数(万人)710121825293742根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点(3,12)、(8,42)作一条直线(如图所示,该直线的函数表达式为y=6x﹣6),那么这条直线可近似反映该地区接种人数的变化趋势.请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为 22.5 万人;该地区的总人口约为 800 万人;(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.①估计第9周的接种人数约为 48 万人;②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少a(a>0)万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果a=1.8,那么该地区的建议接种人群最早将于第几周全部完成接种?。
2023南京市中考数学试卷
2023南京市中考数学试卷一、选择题(共6小题,每小题2分,共12分.)1.(2分)全国深入践行生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷.用科学记数法表示3830000是()A.63.8310⨯D.70.38310⨯⨯C.73.8310⨯B.60.383102.(2分)整数a满足1929a<<,则a的值为()A.3B.4C.5D.63.(2分)若一个等腰三角形的腰长为3,则它的周长可能是()A.5B.10C.15D.204.(2分)甲、乙两地相距100km,汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:)h与行驶速度v(单位:/)km h之间的函数图象是()A.B.C.D.5.(2分)我国南宋数学家秦九韶的著作《数书九章》中有一道问题:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何?”问题大意:如图,在ABC∆中,13AC=里,则ABC∆的面积是()AB=里,14BC=里,15A.80平方里B.82平方里C.84平方里D.86平方里6.(2分)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A .36cmB .40cmC .42cmD .45cm二、填空题(共10小题,每小题2分,共20分.)7.(2分)计算:|2|-=;2(2)-=.8.(2分)若式子12x -在实数范围内有意义,则x 的取值范围是.9.(212618-的结果是.10.(2分)分解因式2363a a -+的结果是.11.(2分)计算345124(8⨯⨯的结果是.12.(2分)某校九年级有8个班级,人数分别为37,a ,32,36,37,32,38,34.若这组数据的众数为32,则这组数据的中位数为.13.(2分)甲车从A 地出发匀速行驶,它行驶的路程y (单位:)km 与行驶的时间x (单位:)min 之间的函数关系如图所示.甲车出发20min 后,乙车从A 地出发沿同一路线匀速行驶.若乙车经过20~30min min 追上甲车,则乙车的速度v (单位:/)km min 的取值范围是.14.(2分)在平面直角坐标系中,点O 为原点,点A 在第一象限,且3OA =.若反比例函数k y x =的图象经过点A ,则k 的取值范围是.15.(2分)如图,O 与正六边形ABCDEF 的边CD ,EF 分别相切于点C ,F .若2AB =,则O 的半径长为.16.(2分)如图,在菱形纸片ABCD 中,点E 在边AB 上,将纸片沿CE 折叠,点B 落在B '处,CB AD '⊥,垂足为F .若4CF cm =,1FB cm '=,则BE =cm.三、解答题(共11小题,共88分.)17.(7分)计算293(1)x x x--÷.18.(8分)解不等式组210143x x x -<⎧⎪-⎨<⎪⎩,并写出它的整数解.19.(7分)如图,在ABCD 中,点M ,N 分别在边BC ,AD 上,且//AM CN ,对角线BD 分别交AM ,CN 于点E ,F .求证BE DF =.20.(8分)社会运转和日常生活离不开物流行业的发展,阅读以下统计图并回答问题.(1)下列结论中,所有正确结论的序号是.①2011~2022年社会物流总费用占GDP比重总体呈先下降后稳定的趋势;②2011~2016年社会物流总费用的波动比2017~2022年社会物流总费用的波动大;③2012~2022年社会物流总费用逐年增加,其中增加的幅度最大的一年是2021年.(2)请结合上图提供的信息,从不同角度写出两个与我国GDP相关的结论.21.(8分)某旅游团从甲、乙、丙、丁4个景点中随机选取景点游览.(1)选取2个景点,求恰好是甲、乙的概率;(2)选取3个景点,则甲、乙在其中的概率为.22.(8分)如图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口.温水的温度为30C ︒,流速为20/ml s ;开水的温度为100C ︒,流速为15/ml s .某学生先接了一会儿温水,又接了一会儿开水,得到一杯280ml 温度为60C ︒的水(不计热损失),求该学生分别接温水和开水的时间.物理常识开水和温水混合时会发生热传递,开水放出的热量等于温水吸收的热量,可以转化为开水的体积⨯开水降低的温度=温水的体积⨯温水升高的温度.23.(8分)如图,为了测量无人机的飞行高度,在水平地面上选择观测点A ,B .无人机悬停在C 处,此时在A 处测得C 的仰角为3652︒';无人机垂直上升5m 悬停在D 处,此时在B 处测得D 的仰角为6326︒'.10AB m =,点A ,B ,C ,D 在同一平面内,A ,B 两点在CD 的同侧.求无人机在C 处时离地面的高度.(参考数据:tan 36520.75︒'≈,tan 6326 2.00︒'≈.)24.(8分)如图,玻璃桌面与地面平行,桌面上有一盏台灯和一支铅笔,点光源O 与铅笔AB 所确定的平面垂直于桌面.在灯光照射下,AB 在地面上形成的影子为CD (不计折射),//AB CD .(1)在桌面上沿着AB 方向平移铅笔,试说明CD 的长度不变.(2)桌面上一点P 恰在点O 的正下方,且36OP cm =,18PA cm =,18AB cm =,桌面的高度为60cm .在点O 与AB 所确定的平面内,将AB 绕点A 旋转,使得CD 的长度最大.①画出此时AB 所在位置的示意图;②CD 的长度的最大值为cm .25.(8分)已知二次函数223(y ax ax a =-+为常数,0)a ≠.(1)若0a <,求证:该函数的图象与x 轴有两个公共点.(2)若1a =-,求证:当10x -<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x -<<<,则a 的取值范围是.26.(9分)如图,在ABC ∆中,AB AC =,O 是ABC ∆的外接圆,过点O 作AC 的垂线,垂足为D ,分别交直线BC , AC 于点E ,F ,射线AF 交直线BC 于点G .(1)求证AC CG =.(2)若点E 在CB 的延长线上,且EB CG =,求BAC ∠的度数.(3)当6BC =时,随着CG 的长度的增大,EB 的长度如何变化?请描述变化过程,并说明理由.27.(9分)在平面内,将一个多边形先绕自身的顶点A 旋转一个角度(0180)θθ︒<<︒,再将旋转后的多边形以点A 为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k ,称这种变换为自旋转位似变换.若顺时针旋转,记作(T A ,顺θ,)k ;若逆时针旋转,记作(T A ,逆θ,)k .例如:如图①,先将ABC ∆绕点B 逆时针旋转50︒,得到△11A BC ,再将△11A BC 以点B 为位似中心缩小到原来的12,得到△22A BC ,这个变换记作(T B ,逆50︒,1)2.(1)如图②,ABC ∆经过(T C ,顺60︒,2)得到△A B C '',用尺规作出△A B C ''.(保留作图痕迹)(2)如图③,ABC ∆经过(T B ,逆α,1)k 得到EBD ∆,ABC ∆经过(T C ,顺β,2)k 得到FDC ∆,连接AE ,AF .求证:四边形AFDE 是平行四边形.(3)如图④,在ABC ∆中,150A ∠=︒,2AB =,1AC =.若ABC ∆经过(2)中的变换得到的四边形AFDE 是正方形.Ⅰ.用尺规作出点D(保留作图痕迹,写出必要的文字说明);Ⅱ.直接写出AE的长.参考答案一、选择题(本大题共6小题,每小题2分,共12分.)1.(2分)全国深入践行生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷.用科学记数法表示3830000是()A .63.8310⨯B .60.38310⨯C .73.8310⨯D .70.38310⨯解:63830000 3.8310=⨯.故选:A .2.(2分)整数a a <<,则a 的值为()A .3B .4C .5D .6解: <<,5<<∴整数5a =,故选:C .3.(2分)若一个等腰三角形的腰长为3,则它的周长可能是()A .5B .10C .15D .20解: 等腰三角形的腰长为3,33∴-<等腰三角形的底长33<+,即0<等腰三角形的底长6<,6∴<等腰三角形的周长12<,故选:B .4.(2分)甲、乙两地相距100km ,汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (单位:)h 与行驶速度v (单位:/)km h 之间的函数图象是()A .B .C .D .解:根据题意有:100v t =⋅,所以100t v =,故v 与t 之间是反比例函数,其图象在第一象限.故选:D .5.(2分)我国南宋数学家秦九韶的著作《数书九章》中有一道问题:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何?”问题大意:如图,在ABC ∆中,13AB =里,14BC =里,15AC =里,则ABC ∆的面积是()A .80平方里B .82平方里C .84平方里D .86平方里解:如图,过点A 作AD BC ⊥于D ,设BD x =里,则(14)CD x =-里,在Rt ABD ∆中,22213AD x +=,在Rt ADC ∆中,22215(14)AD x =--,22221315(14)x x ∴-=--,2222131519628x x x -=-+-,解得5x =,在Rt ACD ∆中,2213512AD -=(里),ABC ∴∆的面积1114128422BC AD =⋅=⨯⨯=(平方里),故选:C .6.(2分)如图,不等臂跷跷板AB 的一端A 碰到地面时,另一端B 到地面的高度为60cm ;当AB 的一端B 碰到地面时,另一端A 到地面的高度为90cm ,则跷跷板AB 的支撑点O 到地面的高度OH 是()A .36cmB .40cmC .42cmD .45cm 解:如图:过点B 作BC AH ⊥,垂足为C ,OH AC ⊥ ,BC AC ⊥,90AHO ACB ∴∠=∠=︒,BAC OAH ∠=∠ ,AOH ABC ∴∆∆∽,∴OHAOBC AB =,∴60OHAOAB =,如图:过点A 作AD BH ⊥,垂足为D ,OH BD ⊥ ,AD BD ⊥,90OHB ADB ∴∠=∠=︒,ABD OBH ∠=∠ ,ABD OBH ∴∆∆∽,∴OH OB AD AB =,∴90OH OB AB =,∴6090OH OH AO OB AB AB +=+,∴6090OH OH AB AB +=,∴16090OH OH +=,解得:36OH =,∴跷跷板AB 的支撑点O 到地面的高度OH 是36cm ,故选:A .二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)计算:|2|-=2;=.解:|2|2-=2=,故答案为:2,2.8.(2分)若式子12x -在实数范围内有意义,则x 的取值范围是2x ≠.解: 式子12x -在实数范围内有意义,20x ∴-≠.2x ∴≠.故答案为:2x ≠.9.(2-的结果是=-=故答案为:.10.(2分)分解因式2363a a -+的结果是23(1)a -.解:2363a a -+23(21)a a =-+23(1)a =-.故答案为:23(1)a -.11.(2分)计算345124(8⨯⨯的结果是116.解:345124(8⨯⨯333211[24()]4()88=⨯⨯⨯⨯311(24)4864=⨯⨯⨯⨯311464=⨯⨯11464=⨯⨯116=.故答案为:116.12.(2分)某校九年级有8个班级,人数分别为37,a ,32,36,37,32,38,34.若这组数据的众数为32,则这组数据的中位数为35.解: 一组数据37,a ,32,36,37,32,38,34的众数为32,32a ∴=,把这组数据从小到大排列为32,32,32,34,36,37,37,38,排在中间的两个数分别为34,36,所以这组数据的中位数为3436352+=.故答案为:35.13.(2分)甲车从A 地出发匀速行驶,它行驶的路程y (单位:)km 与行驶的时间x (单位:)min 之间的函数关系如图所示.甲车出发20min 后,乙车从A 地出发沿同一路线匀速行驶.若乙车经过20~30min min 追上甲车,则乙车的速度v (单位:/)km min 的取值范围是3925v .解:根据图象,得甲车的速度为91820(/)10km min ÷=,设甲车出发t min 后乙车追上甲车,根据题意,4050t .则9(20)10t v t =-,得0.9992002010(20)10t t v t t t===---,v ∴随t 的增大而减小.当50t =时,v 取最小值,32v =;当40t =时,v 取最大值,95v =,∴3925v ,故答案为:3925v .14.(2分)在平面直角坐标系中,点O 为原点,点A 在第一象限,且3OA =.若反比例函数k y x =的图象经过点A ,则k 的取值范围是902k < .解:由题意可知A 为反比例函数k y x =的图象与直线y x =的交点时,k 的值最大3OA = ,A ∴在直线y x =上时,32(A 32,∴此时32329222k ==, 点A 在第一象限,0k ∴>,k ∴的取值范围是902k < ,故答案为:902k < .15.(2分)如图,O与正六边形ABCDEF的边CD,EF分别相切于点C,F.若2AB=,则O的半径长为433.解:连接CF,OC,OF,过D作DG CF⊥于G,过E作EH CF⊥于H,//EH DG∴,EF,CD是O的切线,90OFE OCD∴∠=∠=︒,多边形ABCDEF是正六边形,120FED CDE∴∠=∠=︒,120COF∴∠=︒,OC OF=,30OCF OFC∴∠=∠=︒,90EFH DCG∴∠=∠=︒,90EHF DGC∠=∠=︒,CD EF=,()CDG FEH AAS∴∆≅∆,FH CG∴=,EH DG=,∴四边形EHGD是矩形,2HG DE∴==,2EF CD == ,60DCG EFH OFE OFH ∠=∠=∠-∠=︒,112FH CG EF ∴===,4CF ∴=,过O 作OM CF ⊥于M ,122CM CF ∴==,cos30CM OC ∴==︒O ∴的半径长为3,故答案为:3.16.(2分)如图,在菱形纸片ABCD 中,点E 在边AB 上,将纸片沿CE 折叠,点B 落在B '处,CB AD '⊥,垂足为F .若4CF cm =,1FB cm '=,则BE =257cm.解:作EH BC ⊥于点H ,则90BHE CHE ∠=∠=︒,4CF cm = ,1FB cm '=,415()B C CF FB cm ∴'=+'=+=,由折叠得5BC B C cm ='=,BCE B CE ∠=∠',四边形ABCD 是菱形,//BC AD ∴,5DC BC cm ==,B D ∠=∠,CB AD '⊥ 于点F ,90BCB CFD ∴∠'=∠=︒,11904522BCE B CE BCB ∴∠=∠'=∠'=⨯︒=︒,3()DF cm ===,45HEC BCE ∴∠=∠=︒,CH EH ∴=, 4sin sin 5EH CF B D BE DC ====,3cos cos 5BH DF B D BE DC ====,45CH EH BE ∴==,35BH BE =,∴43555BE BE +=,257BE cm ∴=,故答案为:257.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算293(1)x x x--÷.解:293(1x x x --÷2293x x x x -=⋅-2(3)(3)3x x x x x +-=⋅-3x x+=.18.(8分)解不等式组210143x x x -<⎧⎪-⎨<⎪⎩,并写出它的整数解.解:210143x x x -⎧⎪⎨-⎪⎩①②,由①得:12x <,由②得:3x >-,∴不等式组的解集为132x -<<,则原不等式组的整数解是2-,1-,0.19.(7分)如图,在ABCD 中,点M ,N 分别在边BC ,AD 上,且//AM CN ,对角线BD 分别交AM ,CN 于点E ,F .求证BE DF =.【解答】证明:连接AC 交BD 于O ,四边形ABCD 是平行四边形,AO OC ∴=,BO DO =,//AM CN ,EAC FCA ∴∠=∠,在AEO ∆与CFO ∆中,EAC FCO AO CO AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOE COF ASA ∴∆≅∆,OE OF ∴=,BO OE OD OF ∴-=-,BE DF ∴=.20.(8分)社会运转和日常生活离不开物流行业的发展,阅读以下统计图并回答问题.(1)下列结论中,所有正确结论的序号是①③.①2011~2022年社会物流总费用占GDP比重总体呈先下降后稳定的趋势;②2011~2016年社会物流总费用的波动比2017~2022年社会物流总费用的波动大;③2012~2022年社会物流总费用逐年增加,其中增加的幅度最大的一年是2021年.(2)请结合上图提供的信息,从不同角度写出两个与我国GDP相关的结论.解:(1)2011~2022年社会物流总费用占GDP比重总体呈先下降后稳定的趋势,故①正确;2011~2016年社会物流总费用的波动范围为2.7,2017~2022年社会物流总费用的波动范围为5.7,故2011~2016年社会物流总费用的波动比2017~2022年社会物流总费用的波动小,故②错误;2012~2022年社会物流总费用逐年增加,其中增加的幅度最大的一年是2021年,故③正确.故正确的结论序号为:①③.故答案为:①③;(2)根据统计图可得,从2011年到2022年我国的GDP逐年稳步增加;GDP的循环规律是5到7年增长,2年持平或衰退.21.(8分)某旅游团从甲、乙、丙、丁4个景点中随机选取景点游览.(1)选取2个景点,求恰好是甲、乙的概率;(2)选取3个景点,则甲、乙在其中的概率为12.解:(1)画树状图如下:共有12种等可能的结果,其中恰好是甲、乙的结果有2种,∴恰好是甲、乙的概率21126==;(2)画树状图如下:共有24种等可能的结果,其中甲、乙在其中的结果有12种,∴甲、乙在其中的概率为121242=,故答案为:12.22.(8分)如图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口.温水的温度为30C ︒,流速为20/ml s ;开水的温度为100C ︒,流速为15/ml s .某学生先接了一会儿温水,又接了一会儿开水,得到一杯280ml 温度为60C ︒的水(不计热损失),求该学生分别接温水和开水的时间.物理常识开水和温水混合时会发生热传递,开水放出的热量等于温水吸收的热量,可以转化为开水的体积⨯开水降低的温度=温水的体积⨯温水升高的温度.解:设该学生接温水的时间为x s,根据题意可得:20(6030)(28020)(10060)⨯-=-⨯-,x x解得8x=,ml∴⨯=,208160()-=,ml280160120()∴÷=,120158()s∴该学生接温水的时间为8s,接开水的时间为8s.23.(8分)如图,为了测量无人机的飞行高度,在水平地面上选择观测点A,B.无人机悬停在C处,此时在A处测得C的仰角为3652︒';无人机垂直上升5m悬停在D处,此时在B处测得D的仰角为6326=,点A,B,C,D在同一平面内,A,B两点在AB m︒'.10CD的同侧.求无人机在C处时离地面的高度.(参考数据:tan36520.75︒'≈.)︒'≈,tan6326 2.00解:延长DC交AB于点E,由题意得:DE AB⊥,5CD m=,设BE x=m,10,=AB m∴=+=+,AE AB BE x m(10)在Rt ACE∠=︒',∆中,3652CAE∴=⋅︒'≈+,CE AE x mtan36520.75(10)在Rt BDE∠=︒',∆中,6326DBE∴=⋅︒'≈,tan63262()DE BE x m,+=DC CE DE∴++=,50.75(10)2x x解得:10x=,CE x m∴=+=,0.75(10)15()∴无人机在C处时离地面的高度约为15m.24.(8分)如图,玻璃桌面与地面平行,桌面上有一盏台灯和一支铅笔,点光源O与铅笔AB 所确定的平面垂直于桌面.在灯光照射下,AB在地面上形成的影子为CD(不计折射),AB CD.//(1)在桌面上沿着AB方向平移铅笔,试说明CD的长度不变.(2)桌面上一点P恰在点O的正下方,且36=,桌面的高=,18AB cmOP cm=,18PA cm度为60cm.在点O与AB所确定的平面内,将AB绕点A旋转,使得CD的长度最大.①画出此时AB所在位置的示意图;②CD的长度的最大值为80cm.解:(1)设AB平移到EF,EF在地面上形成的影子为MN.//AB CD ,~OAB OCD ∴∆∆,~OEF OMN ∆∆,~OEB OMD ∆∆,∴AB OB CD OD =,EF OE MN OM =,OB OE OD OM =,∴EF AB MN CD=,EF AB = ,MN CD ∴=,∴沿着AB 方向平移时,CD 长度不变.(2)①以A 为圆心,AB 长为半径画圆,当OQ 与A 相切于H 时,此时CD 最大为CQ .此时AB 所在位置为AH .②HGA PGO ∠=∠ ,90AHG OPG ∠=∠=︒,~GHA GPO ∴∆∆,∴181362GA AH GO OP ===,∴设GA x =,则2GO x =,在Rt OPG ∆中,222OP PG OG +=,22236(18)(2)x x ∴++=,2125400x x ∴--=,130x ∴=,218x =-(舍去),30AG ∴=,由①OP AG OR CQ =,∴36303660CQ=+,80CQ ∴=,即CD 的长度的最大值为80cm .25.(8分)已知二次函数223(y ax ax a =-+为常数,0)a ≠.(1)若0a <,求证:该函数的图象与x 轴有两个公共点.(2)若1a =-,求证:当10x -<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x -<<<,则a 的取值范围是3a >或1a <-.【解答】证明:(1)因为22(2)43412a a a a --⨯⨯=-,又因为0a <,所以40a <,30a -<,所以24124(3)0a a a a -=->,所以该函数的图象与x 轴有两个公共点.(2)将1a =-代入函数解析式得,2223(1)4y x x x =-++=--+,所以抛物线的对称轴为直线1x =,开口向下.则当10x -<<时,y 随x 的增大而增大,又因为当1x =-时,0y =,所以0y >.(3)因为抛物线的对称轴为直线212a x a-=-=,且过定点(0,3),又因为该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x -<<<,所以当0a >时,230a a -+<,解得3a >,故3a >.当0a <时,230a a ++<,解得1a <-,故1a <-.综上所述,3a >或1a <-.故答案为:3a >或1a <-.26.(9分)如图,在ABC ∆中,AB AC =,O 是ABC ∆的外接圆,过点O 作AC 的垂线,垂足为D ,分别交直线BC , AC 于点E ,F ,射线AF 交直线BC 于点G .(1)求证AC CG =.(2)若点E 在CB 的延长线上,且EB CG =,求BAC ∠的度数.(3)当6BC =时,随着CG 的长度的增大,EB 的长度如何变化?请描述变化过程,并说明理由.【解答】(1)证明:过A 作直径AM ,AB AC = ,90E EOM ∴∠+∠=︒,AC EF ⊥ ,90OAD AOD ∴∠+∠=︒,E OAD ∴∠=∠,OA OF = ,OAD DAF AFO E G ∴∠+∠=∠=∠+∠,DAF G ∴∠=∠,AC CG =;(2)解:BAG AB AC == ,AM BC ⊥,BAM CAM ∴∠=∠,设2BAM CAM α∠=∠=,1(180)9022ABC ACB BAC α∴∠=∠=︒-∠=︒-,AC CG = ,45CAG CGA α∴∠=∠=︒-,2245453BAG αααα∴∠=++︒-=︒+,如图:连AE ,EF AC ⊥ ,又EF 过圆心,EF ∴垂直平分AC ,EC AE ∴=,BH HC = ,又EB CG =,HE HG ∴=,AM ∴垂直平分EG ,AE AG ∴=,EC AG ∴=,EB CG = ,EB BC BC CG ∴+=+,EC BG ∴=,BAG ABG ∴∠=∠,453902αα∴︒+=︒-,9α∴=︒,436BAC α∴∠==︒;(3)答:当6CG =,0BE =;当6CG 时,BE 随CG 的增大而增大;当36CG <<时,BE 随CG 的增大而减小.说明:①当0BE =时,即点E 与B重合,在BOH ∆和AOD ∆中,BHO ADO BOH AOD OB OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BOH AOD AAS ∴∆≅∆,3AD BH ∴==,26AC AD ∴==,6AB AC BC ∴===,ABC ∴∆为等边三角形,60BAC ACB ∴∠=∠=︒,30CAG ∴∠=︒,60CAG G ∠+∠=︒,30G CAG ∴∠=︒=∠,6CA CG ∴==;②当6CG 时,如图:E CAH∠=∠,90EDC AHC∠=∠=︒,~ACH ECD∴∆∆,∴HC CD AC EC=,∴32AC AC EC=,∴326CG CG BE=+,2166BE CG∴=-,BE∴随CG的增大而增大.③当36CG<<时,如图,ACM DCE∠=∠,90EDC AMC∠=∠=︒,~AMC EDC∴∆∆,∴MC CD AC CE=,∴32ACAC BC BE=-,∴326CG CG BE=-,2166BE CG∴=-+,BE∴随CG的增大而减小.综上所述:当6CG =,0BE =;当6CG 时,BE 随CG 的增大而增大;当36CG <<时,BE 随CG 的增大而减小.27.(9分)在平面内,将一个多边形先绕自身的顶点A 旋转一个角度(0180)θθ︒<<︒,再将旋转后的多边形以点A 为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k ,称这种变换为自旋转位似变换.若顺时针旋转,记作(T A ,顺θ,)k ;若逆时针旋转,记作(T A ,逆θ,)k .例如:如图①,先将ABC ∆绕点B 逆时针旋转50︒,得到△11A BC ,再将△11A BC 以点B 为位似中心缩小到原来的12,得到△22A BC ,这个变换记作(T B ,逆50︒,1)2.(1)如图②,ABC ∆经过(T C ,顺60︒,2)得到△A B C '',用尺规作出△A B C ''.(保留作图痕迹)(2)如图③,ABC ∆经过(T B ,逆α,1)k 得到EBD ∆,ABC ∆经过(T C ,顺β,2)k 得到FDC ∆,连接AE ,AF .求证:四边形AFDE 是平行四边形.(3)如图④,在ABC ∆中,150A ∠=︒,2AB =,1AC =.若ABC ∆经过(2)中的变换得到的四边形AFDE 是正方形.Ⅰ.用尺规作出点D (保留作图痕迹,写出必要的文字说明);Ⅱ.直接写出AE 的长.【解答】(1)解:如图1,1.以B 为圆心,BC 为半径画弧,以C 为圆心,BC 为半径画弧,两弧在BC 的上方交于点D ,分别以A ,C 为圆心,以AC 为半径画弧,两弧交于点E ,2.延长CD 至B ',使DB CD '=,延长CE 至A ',使A E CE '=,连接A B '',则△A B C ''就是求作的三角形;(2)证明:EBD ∆ 和ABC ∆位似,FDC ∆与ABC ∆位似,EBD ABC ∴∠=∠,BE BD AB BC =,DF AB CD BC =,EBA DBC ∴∠=∠,EBA DBC ∴∆∆∽,∴AE AB CD BC =,∴AE DF CD CD=,AE DF ∴=,同理可得:DE AF =,∴四边形AFDE 是平行四边形;(3)解:如图2,1.以BC 为边在BC 上方作等边三角形GBC ,2.作等边三角形BCG 的外接圆O ,作直径BD ,连接CD ,3.作DBE ABC ∠=∠,BDE ACB ∠=∠,延长BA ,交O 于F ,连接CF ,DF ,则四边形AFDE 是正方形,证明:由上知:EBA DBC ∆∆∽,FAC DBC ∆∆∽,BAE DCB ∴∠=∠,FAC DBC ∠=∠,2AE AB CD BC BC ==,1AF AC BD BC BC==,BAE FAC DBC DBC ∴∠+∠=∠+∠,要使AFDE 是正方形,应使90EAF ∠=︒,AE AF =,270BAE FAC BAC ∴∠+∠+∠=︒,2BD CD =,270270150120BAE FAC BAC ∴∠+∠=︒-∠=︒-︒=︒,120DBC DCB ∴∠+∠=︒,60BDC ∴∠=︒,∴作等边BCG ∆,保证60BDC G ∠=∠=︒,作直径BD ,保证2BD CD =,这样得出作法;30ABE DBC ∠=∠=︒ ,90AEB BCD ∠=∠=︒,2AB =,AE ∴==。
2019-2020年中考数学专题训练二次函数与反比例函数1
2019-2020年中考数学专题训练二次函数与反比例函数1一、选择题1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)2.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.43.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧4.二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣25.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣16.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<07.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数 C.反比例函数D.二次函数9.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小10.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)211.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<012.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.13.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()A .B .C .D .14.数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x 2+1与y=的交点的横坐标x 0的取值范围是( )A .0<x 0<1B .1<x 0<2C .2<x 0<3D .﹣1<x 0<015.已知二次函数y=a (x ﹣1)2﹣c 的图象如图所示,则一次函数y=ax+c 的大致图象可能是( )A .B .C .D .16.下列三个函数:①y=x+1;②;③y=x 2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 17.在同一直角坐标系中,函数y=mx+m 和y=﹣mx 2+2x+2(m 是常数,且m ≠0)的图象可能是( )A .B .C .D .18.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0二、填空题19.抛物线y=x2+2x+3的顶点坐标是.20.已知二次函数y=(x﹣2)2+3,当x 时,y随x的增大而减小.21.二次函数y=x2+2x的顶点坐标为,对称轴是直线.22.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.23.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).24.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.25.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx (x<0)中,y的值随x的值增大而增大的函数有个.26.二次函数y=x2﹣2x+3图象的顶点坐标为.27.二次函数y=x2﹣4x﹣3的顶点坐标是(,).三、解答题28.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.29.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.30.已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x ﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.2019-2020年中考数学专题训练二次函数与反比例函数21.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.2.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?3.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B 点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.5.如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.6.如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.7.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连接AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.8.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P 的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.9.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.10.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.11.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.12.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.13.如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?15.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y 轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB 于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.16.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.17.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.18.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.19.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P 为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.20.如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C 为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线AC的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E 点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求出P点的坐标,若不存在,请说明理由.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.22.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?。
2021年江苏省南京市中考数学总复习:二次函数(附答案解析)
C.b2(c﹣a)=c2(b﹣a)D.
7.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc>0;②4a+2b+c>0;③9a﹣b+c=0;④若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8.其中正确的结论有( )个
①abc<0;
②b2﹣4ac>0;
③2a﹣b=0;
④a+b+c<0.
其中正确的结论有( )
A.1个B.2个C.3个D.4个
3.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出以下结论:
①abc>0;②b+2a=0;③9a﹣3b+c=0;④a﹣b+c≤am2+bm+c(m为实数)
A.1个B.2个C.3个D.4个
10.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),抛物线与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①a+b+c>0;②对于任意实数m,a+b≥am2+bm总成立;③关于x的方程ax2+bx+c=n有两个相等的实数根;④﹣1≤a ,其中结论正确个数为( )
(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是 m<0.
A.1B.2C.3D.4
22.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( )
中考数学总复习《函数》专项测试卷-附参考答案
中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。
2024年中考数学-押江苏南京卷第25-26题(二次函数的综合、三角形旋转问题)(解析版)
押江苏南京卷第25-26题押题方向一:二次函数的综合3年江苏南京卷真题考点命题趋势2023年江苏南京卷第26题二次函数的综合从近年江苏南京中考来看,二次函数的综合的考查,难度较大,综合性比较强;预计2024年江苏南京卷还将继续重视对二次函数的综合问题的考查。
2022年江苏南京卷第26题二次函数的综合2021年江苏南京卷第26题二次函数的综合1.(2023·江苏南京·中考真题)已知二次函数223(y ax ax a =-+为常数,0)a ≠.(1)若0a <,求证:该函数的图象与x 轴有两个公共点.(2)若1a =-,求证:当10x -<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x -<<<,则a 的取值范围是3a >或1a <-.【分析】(1)证明240b ac ->即可解决问题.(2)将1a =-代入函数解析式,进行证明即可.(3)对0a >和0a <进行分类讨论即可.【解答】证明:(1)因为22(2)43412a a a a --⨯⨯=-,又因为0a <,所以40a <,30a -<,所以24124(3)0a a a a -=->,所以该函数的图象与x 轴有两个公共点.(2)将1a =-代入函数解析式得,2223(1)4y x x x =-++=--+,所以抛物线的对称轴为直线1x =,开口向下.则当10x -<<时,是AB 上的动点,连接EF ,G 是EF 上一点,且GFk EF=(k 为常数,0k ≠),分别过点F 、G 作AB 、EF 的垂线相交于点P ,设AF 的长为x ,PF 的长为y .(1)若12k =,4x =,则y 的值为________;(2)求y 与x 之间的函数表达式;(3)在点F 从点A 到点B 的整个运动过程中,若线段CD 上存在点P ,则k 的值应满足什么条件?直接写出k 的取值范围.两点.(1)求b 的值.(2)当1c >-时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m -<<时,结合函数的图像,直接写出a 的取值范围.即1410 93410 a aa a+-->⎧⎨---<⎩,解得a<0;②如图,当0a>时,当=1x -时,14y a =+-∴当3x =时,93y a =--解得45a >,综上,a 的取值范围为a<【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(一、二次函数的图象1.二次函数2ax y =(0≠a )的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点.当0>a 时,抛物线开口向上,顶点是抛物线的最低点;当0<a 时,抛物线开口向下,顶点是抛物线的最高点.2.二次函数()2m x a y -=(0≠a )的图象的顶点坐标是(m,0),对称轴是直线m x =.图象的开口方向:当0>a 时,开口向上;当0<a 时,抛物线开口向下.3.二次函数()k m x a y +-=2(0≠a )的图象的顶点坐标是(m,k),对称轴是直线m x =.图象的开口方向:当0>a 时,开口向上;当0<a 时,抛物线开口向下.4.二次函数c bx ax y ++=2(0≠a )的图象是一条抛物线,它de 对称轴是直线2bx a=-,顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭,当0>a 时,抛物线开口向上,顶点是抛物线上的最低点;当0<a 时,抛物线开口向下,顶点是抛物线上的最高点.二、二次函数的图象与系数的关系二次函数c bx ax y ++=2(0≠a )的系数与图象的关系(1)a 的符号由抛物线c bx ax y ++=2的开口方向决定:0>⇔a 开口向上,0>⇔a 开口向上;(2)b 的符号由抛物线c bx ax y ++=2的对称轴的位置及a 的符号共同决定:对称轴在y 轴左侧b a ,⇔同号,对称轴在y 轴右侧b a ,⇔异号;(3)c 的符号由抛物线c bx ax y ++=2与y 轴的交点的位置决定:与y 轴正半轴相交0>⇔c ,与y 轴正半轴相交0<⇔c 三、二次函数的图象与几何变换1.二次函数的平移(1)平移步骤:①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;②保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位(2)平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.2.二次函数图象的对称(1)关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;(2)关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;(3)关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4.关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.1.已知二次函数()244y x a x a =-++(a 为常数且4a ≠).(1)求证:不论a 为何值,该函数的图像与x 轴总有两个公共点(2)设该二次函数的图象与x 轴的两个交点分别记为A 、B ,线段AB (含端点)上有若干个横坐标为整数的点,且这些点的横坐标之和为9.①直接写出a 的取值范围;②若a 为负整数,则函数()244y x a x a =-++的图像与函数y x b =+的图像的交点个数随b 的值变化而变化,直接写出交点个数及对应的b 的取值范围.第二种情况:4b <-时,函数(2y x a =-+第三种情况:直线y x b =+经过(),0a 时,则第四种情况:当4b a -<<-时,有2个交点,如图示:当直线y x b =+与函数()244y x a x =-++联立直线y x b =+与函数()24y x a =-++得()244y x b y x a x a =+⎧⎨=-++-⎩,∴()2340x a x b a -+++=,由()2Δ3a =+∴第五种情况:21094a ab -+=时,直线第七种情况:当21094a ab -+>时,有2个交点,如图示:综上,当4a <时,当4b <-时,函数()244y x a x a =-++的图像与函数当4b =-时,函数()244y x a x a =-++的图像与函数当4b a -<<-或21094a ab -+≥时,函数当=-b a 时,函数()244y x a x a =-++的图像与函数当21094a a ab -+-<<时,函数(2y x =-中曲线AB 为反比例函数图像的一部分,BC 为一次函数图像的一部分.(1)求y 与x 之间的函数表达式;(2)已知每年该产品的研发费用为40万元,该产品成本价为4元/件,设销售产品年利润为w (万元),当销售单价为多少元时,年利润最大?最大年利润是多少?(说明:年利润=年销售利润-研发费用)(1)求证:该函数的图像与x 轴总有两个公共点;(2)若该函数图像与x 轴的两个交点坐标分别为()(),0,0x x ₁,₂,且2x x =-₁₁,求证²0a b +=;(3)若()1,A k y ,()26,B y ,()14,C k y +都在该二次函数的图像上,且212y y <<,结合函数的图像,直接写出k 的取值范围.或此时B 的横坐标小于0,不符合题意,舍去;当20k +>,即2k >-时,∵212y y <<,∴画出草图,如下:∴6262k k k k >⎧⎨+->+-⎩,解得6k >;或∴466242622k k k k k k +<⎧⎪-->+--⎨⎪--<+⎩,解得12k <<,综上,12k <<或6k >.【点睛】本题考查了二次函数与一元二次方程,二次函数的图象与性质,一元二次方程根与系数的关系以及根的判别式等知识,明确题意,合理分类讨论,画出函数图象,数形结合列出不等式组是解答第(3)的关键.4.在二次函数221y x mx m =++-中.(1)求证:不论m 取何值,该函数图像与x 轴总有两个公共点(2)当03x ≤≤时,y 的最小值为3-,则m 的值为________.(3)当0m <时,点()2,A n a -,()4,B b ,(),C n a 都在这个二次函数的图象上,且1a b m <<-.则n 的取值范围是________.5.若一次函数y mx n =+与反比例函数k y x=同时经过点(,)P x y 则称二次函数2y mx nx k =+-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =-与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++--,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.(m 为常数).(1)求证:不论m 为何值,该函数的图象与x 轴总有公共点.(2)不论m 为何值,该函数的图象经过的定点坐标是.(3)在22x -≤≤的范围中,y 的最大值是2,直接写出m 的值.为常数).(1)若4m =,3n =,求该函数图像与x 轴的两个交点之间的距离;(2)若函数2y x mx n =++的图象与x 轴有两个交点,将该函数的图像向右平移()0k k >个单位长度得到新函数y '的图象,且这两个函数图象与x 轴的四个交点中任意相邻两点之间的距离都相等.①若函数2y x mx n =++的图象如图所示,直接写出新函数y '的表达式;②若函数2y x mx n =++的图象经过点()1,3,当1k =时,求m n ,的值.押题方向二:三角形的旋转3年江苏南京卷真题考点命题趋势2023年江苏南京卷第27题三角形的旋转从近年江苏南京中考来看,三角形的旋转的考查,难度较大,常常与全等和相似三角形结合一起考查,综合性比较强;预计2024年江苏南京卷还将继续重视对三角形的旋转的综合问题的考查。
中考数学专题复习:函数基础知识练习题(含答案)
中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。
中考数学复习《一次函数的应用练习题(解答题)》专项检测卷(附带答案)
中考数学复习《一次函数的应用练习题(解答题)》专项检测卷(附带答案) 1.蓄电池发展水平是制约新能源汽车发展的关键要素.小明爸爸根据自家电动汽车仪表显示,感觉蓄电池充满电后,用前半部分电量所行驶的路程,总要比用后半部分电量行驶的路程更远一些.于是小明细心观察了充满电后汽车的行驶情况,并将蓄电池剩余电量y(千瓦时)和已行驶路程x(千米)的相关数据,用函数图象表示如下.(1)根据图象,直接写出剩余电量为35千瓦时时,汽车已行驶的路程为千米;(2)求该汽车剩余电量为30千瓦时时,已行驶的路程是多少?(3)根据小明提供的数据,这辆汽车用前半部分电量比用后半部分电量,能多行驶千米.2.如图,l1反映了某品牌手机一天的销售收入与销售量之间的函数关系,l2反映了该品牌手机一天的销售成本与销售量之间的函数关系,请根据图象回答下列问题:(1)分别求出l1与l2所对应的函数解析式;(2)当销售量为20部时,该品牌手机所获利润为多少元?(利润=销售收入﹣销售成本)3.为鼓励实习员工工作积极性,某公司提供了两种实习员工月工资方案,方案一如图所示,方案二每生产一件产品25元,实习员工可以任选一种方案与公司签订合同.(1)方案一中,当x≥30时,求月工资y(元)与生产产品x(件)的关系式;(2)某实习员工发现,当月选择方案一比选择方案二月工资多450元,求该实习员工生产产品的件数.4.某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学.上午8:00,军车在离营地60km的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程s(km)与所用时间t(h)的函数关系如图2所示.(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值.(2)求部队官兵在仓库领取物资所用的时间.5.一辆巡逻车从A地出发沿一条笔直的公路匀速驶向B地,小时后,一辆货车从A地出发,沿同一路线每小时行驶80千米匀速驶向B地,货车到达B地填装货物耗时15分钟,然后立即按原路匀速返回A地.巡逻车、货车离A地的距离y(千米)与货车出发时间x(小时)之间的函数关系如图所示,请结合图象解答下列问题:(1)A,B两地之间的距离是千米,a=;(2)求线段FG所在直线的函数解析式;(3)货车出发多少小时两车相距15千米?(直接写出答案即可)6.2023年,哈尔滨的“冰雪大世界”吸引了众多游客,小明的爸爸将容量为60升的私家车油箱加满后,带着全家从大连自驾到哈尔滨游玩.行驶过程中,车离哈尔滨的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量不超过10升时,车会自动显示加油提醒.设车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出大连到哈尔滨的路程千米;(2)求s关于t的函数表达式;(3)当车显示加油提醒后,问行驶时间t在怎样的范围内车应进站加油?7.2023年12月18日,甘肃积石山县发生6.2级地震,全国各地连夜出发实施紧急救援.一辆货车先从甲地出发运送赈灾物资到灾区,稍后一辆轿车从甲地急送医疗团队到灾区,已知甲地与灾区的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达灾区?8.小强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系.根据记录的数据,画函数图象如图.(1)求乙壶中水温y关于加热时间x的函数解析式;(2)当甲壶中水温刚达到80℃时,求此刻乙壶中水的温度?9.“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系式如图中折线段AB﹣BC﹣CD所示.(1)小丽与小明出发min相遇;(2)在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度各是多少?②计算出点C的坐标,并解释点C的实际意义.10.洛阳牡丹饼是河南省洛阳市的一道传统小吃,入口酥松绵软,而且具有促进人体代谢,降低胆固醇及防止细胞老化功能,深受老百姓喜爱.刘小姐假期去洛阳游玩,准备回去时带点牡丹饼给家人和朋友品尝.已知甲、乙两家超市都以20元/盒的价格销售同一种牡丹饼,并且同时在做促销活动:甲超市:办理本超市会员卡(卡费50元),食品全部打七折销售;乙超市:购买同种商品超过一定数量后,超过的部分打折销售.活动期间,若刘小姐购买牡丹饼x袋,在甲、乙超市所需费用分别为y1元、y2元,y2与x之间的函数图象如图所示,回答下列问题:(1)分别求出y1、y2与x之间的函数关系式;(2)当x的值为多少时,在两家超市购买的费用一样?(3)若刘小姐准备购买20盒牡丹饼,你认为在哪家超市购买更划算?参考答案1.解:(1)由图象可知,B点表示充满电后行驶150千米时,剩余电量为35千瓦时;故答案为:150;(2)当150≤x≤200时,设y关于x的函数表达式y=kx+b(k≠0),把点(150,35),(200,10)代入得,∴∴y=﹣0.5x+110即当150≤x≤200时,函数表达式为y=﹣0.5x+110当x=30时,﹣0.5x+110=30,解得x=160答:该汽车剩余电量为30千瓦时时,已行驶的路程是160千米;(3)当y=0时,﹣0.5x+110=0,解得x=220160﹣(220﹣160)=100(千米)即这辆汽车用前半部分电量比用后半部分电量,能多行驶100千米.故答案为:100.2.解:(1)设l1所对应的函数解析式为y=k1x(k1为常数,且k1≠0).将坐标(5,1000)代入y=k1x得5k1=1000解得k1=200∴l1所对应的函数解析式为y=200x;设l2所对应的函数解析式为y=k2x+b(k2、b为常数,且k2≠0).将坐标(0,800)和(5,1000)代入y=k2x+b得,解得∴l2所对应的函数解析式为y=40x+800.(2)当x=20时,y=200x=200×20=4000;当x=20时,y=40x+800=40×20+800=1600;4000﹣1600=2400(元)∴销售20部分该品牌的手机获利润为2400元.3.解:(1)方案一中,当x≥30时,设月工资y(元)与生产产品x(件)的关系式为y=kx+b(k ≠0)将A(30,600),(50,1400)代入y=kx+b得:,解得:∴方案一中,当x≥30时,月工资y(元)与生产产品x(件)的关系式为y=40x﹣600;(2)根据题意得:40x﹣600﹣25x=450解得:x=70∴该实习员工生产产品的件数为70件.4.解:(1)由函数图象可得,大巴速度为=40(km/h)∴s=20+40t;当s=100时,100=20+40t解得t=2∴a=2;∴大巴离营地的路程s与所用时间t的函数表达式为s=20+40t,a的值为2;(2)由函数图象可得,军车速度为60÷1=60(km/h)设部队官兵在仓库领取物资所用的时间为x h根据题意得:60(2﹣x)=100解得:x=答:部队官兵在仓库领取物资所用的时间为h.5.解:(1)∵80×=60(千米)∴A,B两地之间的距离是60千米;∵货车到达B地填装货物耗时15分钟∴a=+=1故答案为:60,1;(2)设线段FG所在直线的解析式为y=kx+b(k≠0),将F(1,60),G(2,0)代入得:,解得∴线段FG所在直线的函数解析式为y=﹣60x+120;(3)巡逻车速度为60÷(2+)=25(千米/小时)∴线段CD的解析式为y=25x+25×=25x+10(0≤x≤2)当货车第一次追上巡逻车后,80x﹣(25x+10)=15解得x=;当货车返回与巡逻车未相遇时,(﹣60x+120)﹣(25x+10)=15解得x=;当货车返回与巡逻车相遇后,(25x+10)﹣(﹣60x+120)=15解得x=;综上所述,货车出发小时或小时或小时,两车相距15千米.6.解:(1)由图象,得t=0时,s=900工厂离目的地的路程为900千米答:工厂离目的地的路程为900千米;故答案为:900;(2)设s=kt+b(k≠0)将(0,900)和(4,600)代入解得:∴s关于t的函数表达式:s=﹣75t+900(0≤x≤12)答:s关于t的函数表达式:s=﹣75t+900(0≤t≤12);(3)当油箱中剩余油量为10升时s=900﹣(60﹣10)÷0.1=400(千米)∴400=﹣75t+900解得:t=(小时)当油箱中剩余油量为0升时s=900﹣60÷0.1=300(千米)300=﹣75t+900解得:t=8∵k=﹣75<0∴s随t的增大而减小∴t的取值范围为≤t<8.7.解:(1)∵货车的速度是60km/h∴a==1.5(h);(2)由图象可得点(1.5,0),(3,150)设直线的表达式为s=kt+b,把(1.5,0),(3,150)代入得:,解得∴s=100t﹣150(1.5≤t≤4.8);(3)由图象可得货车走完全程需要+0.5=6(h)∴货车到达乙地需6h∵s=100t﹣150,s=330解得t=4.8∴两车相差时间为6﹣4.8=1.2(h)∴货车还需要1.2h才能到达即轿车比货车早1.2h到达灾区.8.解:(1)设乙壶中水温y关于加热时间x的函数解析式为y=kx+b将(0,20),(160,80)代入y=kx+b得,解得∴y=x+20.(2)甲水壶的加热速度为(60﹣20)÷80=℃/s∴甲水壶中温度为80℃时,加热时间为(80﹣20)÷=120s将x=120代入y=x+20得y=65即此刻乙壶中水的温度为65℃.9.解:(1)由图象可得小丽与小明出发30min相遇故答案为:30;(2)①设小丽步行的速度为V1m/min,小明步行的速度为V2m/min,且V2>V1 则,解得:答:小丽步行的速度为80m/min,小明步行的速度为100m/min;②解法一:设点C的坐标为(x,y)则可得方程(100+80)(x﹣30)+80(67.5﹣x)=5400解得x=54,y=(100+80)(54﹣30)=4320m解法二:5400÷100=54,54×80=4320∴点C(54,4320)点C表示:两人出发54min时,小明到达甲地,此时两人相距4320m.10.解:(1)根据题意得:y1=50+20×0.7x=14x+50;当0≤x≤10时,y2=20x;当x>10时,y2=200+(x﹣10)=12x+80;∴y1=14x+50;y2=;(2)当x≤10时,14x+50=20x解得:x=(不符合题意,舍去);当x≥10时,14x+50=12x+80解得:x=15∴x的值为15时,在两家超市购买的费用一样;(3)当x=20时,y1=14×20+50=330,y2=12×20=80=320 ∵330>320∴在乙超市购买更划算.。
南京中考数学解答题专项练习——函数
解答题专项练习——函数1、我市某医药公司要把药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元.(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?2、国家和地方政府为了提高农民种粮的积极性,每亩地每年发放种粮补贴120元,种粮大户老王今年种了150亩地,计划明年再承租50~150亩土地种粮以增加收入,考虑各种因素,预计明年每亩种粮成本y(元)与种粮面积x(亩)之间的函数关系如图所示:(1)今年老王种粮可获得补贴多少元?(2)根据图象,求y与x之间的函数关系式;(3)若明年每亩的售粮收入能达到2140元,求老王明年种粮总收入W(元)与种粮面积x(亩)之间的函数关系式,当种粮面积为多少亩时,总收入最高?并求出最高总收入。
3、请你编一个故事,使故事情境中出现的一对变量x 、y 满足图示的函数关系式,要求①指出x 、y 的含义;②利用图中数据说明这对变量变化过程的实际意义,其中需设计“速度”这个量4、甲、乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA 表示货车离甲地距离y (km)与时间x (h)之间的函数关系,折线BCDE 表示轿车离甲地距离y (km)与时间x (h)之间的函数关系.请根据图象,解答下列问题:(1)线段CD 表示轿车在途中停留了 h ; (2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.5、甲、乙两车从A 地将一批物品匀速运往B 地,甲出发0.5h 后乙开始出发,结果比甲早1h 到达B 地.如图,线段OP 、MN 分别表示甲、乙两车离A 地的距离S (km)与时间t (h)的关系,a 表示A 、B 两地之间的距离.请结合图中的信息解决如下问题:yx15115(1)分别计算甲、乙两车的速度与a 的值;(2)乙车到达B 地后以原速立即返回,请问甲车到达B 地后以多大的速度立即匀速返回,才能与乙车同时回到A 地?并在图中画出甲、乙两车在返回过程中离A 地的距离S (km)与时间t (h)的函数图象.6、一列快车上午10∶00由甲地出发,匀速开往乙地,它与乙地的距离y (km )和行驶时间x (h )之间的部分函数关系如图所示.(1)求y 与x 之间的函数关系式;(2)一列慢车当天上午11∶00由乙地出发,以100 km/h 的速度匀速开往甲地,当快车到达乙地时,求慢车与快车之间的距离.7、甲船从A 港出发顺流匀速驶向B 港,乙船同时从B 港出发逆流匀速驶向A 港.甲船1 2 3 4 5 6 7 8 9 10 11O xy 300600 900行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B 港.已知甲、乙两船在静水中的速度相同,救生圈落入水中漂流的速度和水流速度都等于1.5km/h .甲、乙两船离A 港的距离y 1、y 2(km )与行驶时间x (h)之间的函数图象如图所示.(1)甲船在顺流中行驶的速度为 km/h ,m = ; (2)①当0≤x ≤4时,求y 2与x 之间的函数关系式;② 甲船到达B 港时,乙船离A 港的距离为多少?(3)救生圈在水中共漂流了多长时间?8、一辆货车从A 地出发以每小时100km 的速度匀速驶往B 地,一段时间后,一辆轿车从B 地出发沿同一条路匀速驶往A 地.货车行驶1.8小时后,在距B 地120km 处与轿车相遇.图中线段表示货车离B 地的距离y 1与所用时间x 的关系.根据函数图象探究:(1)求y 1与x 之间的函数关系式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离B 地的距离y 2与所用时间x 的关系的图象,用文字说明该图象与x 轴交点所表示的实际意义.9、在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示.根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y 与x 之间的函数表达式;x ∕hy ∕km1.8O120(3)求这辆汽车从甲地出发4h 时与甲地的距离.10、如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲、乙两辆汽车分别从B 、C 两地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙两车到A 地的距离1y 、2y (千米)与行驶时间 x (时)的关系如图②所示. 根据图象进行以下探究:⑴请在图①中标出 A 地的位置,并作简要的文字说明; ⑵求图②中M 点的坐标,并解释该点的实际意义;⑶在图②中补全甲车到达C 地的函数图象,求甲车到 A 地的距离1y 与行驶时间x 的函数关系式;⑷A 地设有指挥中心,指挥中心与两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.11、一辆货车将一批货物从甲地运往乙地,到达乙地卸货后返回.已知货车从乙地返回甲的速度比运货从甲到乙的速度快20km/h .设货车从甲地出发x (h)时,货车离甲地的路程为y (km),y 与x 的函数关系如图所示.(1)货车从甲地到乙地时行驶速度为 km/h ,a = ;(2)求货车从乙到甲返程中y 与x(3)求货车从甲地出发3h12、一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过m (吨)时,超过部分每吨加收环境保护费100m元.下图反映了每月收取的水费y (元)与每月用水量x (吨)之间的函数关系.请你解答下列问题:(1)将m 看作已知量,分别写出当0<x <m 和x >m 时,y 与x 之间的函数关系式; (2)按上述方案,一家酒店四、五两月用水量与缴费情况如下表所示,则,这家酒店m 的值.)13、甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?14、某农科院实验田里种有甲、乙两种植物,甲种植物每天施A种肥料,该种肥料的价格是3元/kg,乙种植物每天施B种肥料,该种肥料的价格是1.2元/kg.已知两种植物每天的施肥量y(kg)与时间x(天)之间都是一次函数关系.(1)根据表中提供的信息,分别求出甲、乙两种植物每天的施肥量y(kg)与施肥时间x(天)之间的函数关系式;每天的施肥量y (kg )种时间x(2)通过计算说明第几天使用的A 种肥料与B 种肥料的费用相等?15、某种形如长方体的2000毫升盒装果汁,其盒底面是边长为10cm 的正方形。
江苏省南京市中考数学试题分类解析 专题6 函数的图像与性质
江苏省南京市中考数学试题分类解析 专题6 函数的图像与性质一、选择题1. (江苏省南京市2002年2分)反比例函数()2k y=k 0x≠的图象的两个分支分别位于【 】A 、第一、二象限B 、第一、三象限C 、第二、四象限D 、第一、四象限2. (江苏省南京市2003年2分)抛物线()2y x 11=-+的顶点坐标是【 】. (A ) (1,1) (B )(-1,l ) (C )(1,-1) (D )(-1,-1)3. (江苏省南京市2004年2分)抛物线y=(x ﹣2)2的顶点坐标是【 】A 、(2,0)B 、(﹣2,0)C 、(0,2)D 、(0,﹣2)4.(江苏省南京市2005年2分)反比例函数y = -2x的图象位于【 】 A 、第一、二象限 B 、第一、三象限 C 、第二、三象限 D 、第二、四象限 【答案】D 。
【考点】反比例函数的性质。
【分析】对于反比例函数()ky=k 0x≠,当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限。
因此,∵k=-2<0,∴图象两个分支分别位于第二、四象限。
故选D 。
5.(江苏省南京市2005年2分)二次函数2y (x 1)2=-+的最小值是【 】 A 、-2 B 、2 C 、-1 D 、16. (江苏省南京市2007年2分)反比例函数2k y x=-(k 为常数,0k ≠)的图象位于【 】 A.第一、二象限 B.第一、三象限 C.第二、四角限D.第三、四象限7. (江苏省南京市2008年2分)已知反比例函数的图象经过点P (-2,1),则这个函数的图象位于【 】 A .第一、三象限 B .第二、三象限 C .第二、四象限D .第三、四象限8. (江苏省南京市2011年2分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a >2),半径为2,函数y x=的图象被⊙P的弦AB的长为23,则a的值是【】9.(2012江苏南京2分)若反比例函数kyx=与一次函数y x2=+的图像没有..交点,则k的值可以是【】A. -2B. -1C. 1D. 2【答案】A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解答题专项练习——函数1、我市某医药公司要把药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元.(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?2、国家和地方政府为了提高农民种粮的积极性,每亩地每年发放种粮补贴120元,种粮大户老王今年种了150亩地,计划明年再承租50~150亩土地种粮以增加收入,考虑各种因素,预计明年每亩种粮成本y(元)与种粮面积x(亩)之间的函数关系如图所示:(1)今年老王种粮可获得补贴多少元?(2)根据图象,求y与x之间的函数关系式;(3)若明年每亩的售粮收入能达到2140元,求老王明年种粮总收入W(元)与种粮面积x(亩)之间的函数关系式,当种粮面积为多少亩时,总收入最高?并求出最高总收入。
3、请你编一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系式,要求①指出x、y的含义;②利用图中数据说明这对变量变化过程的实际意义,其中需设计“速度”这个量4、甲、乙两地相距300km,一辆货车和一辆轿车先后从甲yx15115地出发向乙地.如图,线段OA 表示货车离甲地距离y (km )与时间x (h )之间的函数关系,折线BCDE 表示轿车离甲地距离y (km )与时间x (h )之间的函数关系.请根据图象,解答下列问题:(1)线段CD 表示轿车在途中停留了 h ; (2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.5、甲、乙两车从A 地将一批物品匀速运往B 地,甲出发0.5h 后乙开始出发,结果比甲早1h 到达B 地.如图,线段OP 、MN 分别表示甲、乙两车离A 地的距离S (km )与时间t (h )的关系,a 表示A 、B 两地之间的距离.请结合图中的信息解决如下问题: (1)分别计算甲、乙两车的速度及a 的值;(2)乙车到达B 地后以原速立即返回,请问甲车到达B 地后以多大的速度立即匀速返回,才能与乙车同时回到A 地?并在图中画出甲、乙两车在返回过程中离A 地的距离S (km )与时间t (h )的函数图象.6、一列快车上午10∶00由甲地出发,匀速开往乙地,它与乙地的距离y (km )和行驶时间x (h )之间的部分函数关系如图所示.(1)求y 与x 之间的函数关系式;(2)一列慢车当天上午11∶00由乙地出发,以100 km/h 的速度匀速开往甲地,当快车到达乙地时,求慢车与快车之间的距离.7、甲船从A 港出发顺流匀速驶向B 港,乙船同时从B 港出发逆流匀速驶向A 港.甲船行至某处,发现船上1 2 3 4 5 6 7 8 9 10 11O xy 300600 900一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B 港.已知甲、乙两船在静水中的速度相同,救生圈落入水中漂流的速度和水流速度都等于1.5km/h .甲、乙两船离A 港的距离y 1、y 2(km )与行驶时间x (h)之间的函数图象如图所示.(1)甲船在顺流中行驶的速度为 km/h ,m = ; (2)①当0≤x ≤4时,求y 2与x 之间的函数关系式;② 甲船到达B 港时,乙船离A 港的距离为多少? (3)救生圈在水中共漂流了多长时间?8、一辆货车从A 地出发以每小时100km 的速度匀速驶往B 地,一段时间后,一辆轿车从B 地出发沿同一条路匀速驶往A 地.货车行驶1.8小时后,在距B 地120km 处与轿车相遇.图中线段表示货车离B 地的距离y 1与所用时间x 的关系.根据函数图象探究: (1)求y 1与x 之间的函数关系式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离B 地的距离y 2与所用时间x 的关系的图象,用文字说明该图象与x 轴交点所表示的实际意义.9、在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示.根据图像信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y 与x 之间的函数表达式; (3)求这辆汽车从甲地出发4h 时与甲地的距离.10、如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲、乙两辆汽车分别从B 、x ∕h y ∕km1.8 O 120C 两地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙两车到A 地的距离1y 、2y (千米)与行驶时间 x (时)的关系如图②所示. 根据图象进行以下探究: ⑴请在图①中标出 A 地的位置,并作简要的文字说明; ⑵求图②中M 点的坐标,并解释该点的实际意义;⑶在图②中补全甲车到达C 地的函数图象,求甲车到 A 地的距离1y 与行驶时间x 的函数关系式;⑷A 地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.11、一辆货车将一批货物从甲地运往乙地,到达乙地卸货后返回.已知货车从乙地返回甲的速度比运货从甲到乙的速度快20km/h .设货车从甲地出发x (h )时,货车离甲地的路程为y (km ),y 与x 的函数关系如图所示. (1)货车从甲地到乙地时行驶速度为 km/h ,a = ; (2)求货车从乙到甲返程中y 与x 的函数关系式; (3)求货车从甲地出发3h 时离乙地的路程.12、一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过my /kmx /hO2 1202.5a(吨)时,超过部分每吨加收环境保护费100m元.下图反映了每月收取的水费y (元)与每月用水量x (吨)之间的函数关系.请你解答下列问题:(1)将m 看作已知量,分别写出当0<x <m 和x >m 时,y 与x 之间的函数关系式;(2)按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出m 的值.13、甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)的函数图象如图所示.(1)求甲组加工零件的数量y 与时间x 之间的函数关系式. (2)求乙组加工零件总量a 的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?14、某农科院实验田里种有甲、乙两种植物,甲种植物每天施A 种肥料,该种肥料的价格是3元/kg ,乙种植物每天施B 种肥料,该种肥料的价格是1.2元/kg .已知两种植物每天的施肥量y (kg )与时间x (天)之间都是一次函数关系.月份 用水量x (吨) 水费y (元)四月 35 59.5 五月8015117 O10mx (吨)y (元)每天的施肥量y (kg )种类时间x (天)(1)根据表中提供的信息,分别求出甲、乙两种植物每天的施肥量y (kg )与施肥时间x (天)之间的函数关系式;(2)通过计算说明第几天使用的A 种肥料与B 种肥料的费用相等?15、某种形如长方体的2000毫升盒装果汁,其盒底面是边长为10cm 的正方形。
现从盒中倒出果汁,盒中剩余汁的体积y (ml )与果汁下降高度x (cm )之间的函数系如图所示(盒子的厚度不计). (1)求出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若将满盒果汁倒出一部分,下降的高度为15cm ,剩余的果汁是否能够倒满每个容积为 180 ml 的3个纸杯吗?请计算说明.16、小明的爸爸骑自行车从家出发,沿一条直路到相距2400m 的风景区送货,他出发的同时,小明以80m /min 速度从风景区沿同一条道路步行回家,设他们出发后经过t min 时,小明的爸爸与家之间的距离为s 1 m ,小明与家之间的距离为s 2 m ,图中折线OABD 、线段EF 分别表示s 1、s 2与t 之间函数关系的图象. (1)求s 2与t 之间的函数关系式;(2)小明的爸爸在风景区停留2min 后沿原路返回,并计划比小明早6 min 到家为小明准备洗澡水,请你帮助小明的爸爸确定返回时的骑车速度,并计算距离家还有多远时小明的爸爸在返回途中追上小明17、销售甲、乙两种商品所得利润分别为y 1(万元)和y 2(万元),它们与投入资金u 的关系式为y 1=u 53,y 2=51u .如果将3万元资金投入经营甲、乙两种商品,其中对甲商品的投资为x (万元).第1天 第2天 第3天 … 甲种植物 38 36 34 … 乙种植物111213…果汁 5 10 15 20 500 1000 1500 2000 Ox y(1)求经营甲、乙两种商品的总利润y (万元)与x 的函数关系式,并直接写出自变量x 的取值范围; (2)设x =t ,试写出y 关于t 的函数关系式,并求出经营甲、乙两种商品各投入多少万元时使得总利润最大.18、已知正比例函数kx y =1 (k ≠0)和反比例函数xmy =2的图象都经过点(-2,1). (1)求这两个函数的表达式; (2)试说明当x 为何值时,?21y y >19、反比例函数y 1=kx图象上的一些点的坐标如下表所示:(1)这个反比例函数的表达式是 ;(2)一次函数的表达式是y 2=mx -1(其中,m 是常数,且m ≠0). ①求证:不论m 为何值,该一次函数的图象都经过一个定点;②已知一次函数的图象与反比例函数图象交于点(-6,1)和点(3,-2),请你直接写出使式子kx >mx -1成立的x 的取值范围.20、已知二次函数m x x y ++=22的图象与x 轴有且只有一个公共点. (1)求该二次函数的图象的顶点坐标;(2)若P (n ,y 1),Q (n +2,y 2)是该二次函数的图象上的两点,且y 1>y 2,求实数n 的取值范围.21、已知P (-3,m )和Q (1,m )是二次函数y =2x 2+bx +1图象上的两点. (1)求b 的值;(2)将二次函数y =2x 2+bx +1的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.22、已知二次函数122+-+=m mx x y (m 为常数).(1)求证:不论m 为何值,该二次函数图象的顶点P 都在函数12++-=x x y 的图象上; (2)若顶点P 的横、纵坐标相等,求P 点坐标.23、(1)如果二次函数y =x 2+bx +3的图象经过点(1,2),求这个二次函数的关系式,并写出该函数图象的顶点和对称轴;(2)图象的对称轴是y 轴的二次函数有无数个.试写出两个不同的二次函数关系式,使这两个函数图象的对称轴是y 轴.24、已知二次函数y =ax 2-ax (a 是常数,且a ≠0)图象顶点是A ,二次函数y =x 2-2x +1图象的顶点是B . (1)判断点B 是否在函数y =ax 2-ax 的图象上,为什么? (2)如果二次函数y =x 2-2x +1的图象经过点A ,求a 的值.25、如图,点A (-1,0)为二次函数y =12x 2+bx -2的图象与x 轴的一个交点.(1)求该二次函数的表达式,并说明当x >0时,y 值随x 值变化而变化的情况;(2)将该二次函数图象沿x 轴向右平移1个单位,请直接写出平移后的图象与x 轴的交点坐标.26、如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,二次函数c bx x y ++-=232的图象经过B 、C 两点. (1)求该二次函数的解析式;(2)结合函数的图象探索:当y >0时x 的取值范围.y CB27、二次函数2y=x +bx+c 的图象经过点(4,3),(3,0)。