台湾宜兰大学 VoIP
voip解决方案
voip解决方案随着科技的不断发展,基于互联网的通信技术也在不断革新。
其中,Voice over Internet Protocol(VoIP)通过将音频转换为数字信号,利用互联网来传输语音通信,成为一种越来越受欢迎的通信方式。
本文将介绍VoIP解决方案,涵盖其基本原理、应用领域以及优势等内容。
一、基本原理VoIP解决方案的基本原理是将语音信号转换为数字信号,并通过网络进行传输。
在VoIP系统中,用户的声音会被数字化处理,转化为数字音频流。
这些数字音频流可以通过网络传输到接收方,在接收方处,数字信号再次转化为模拟语音信号,使用户能够听到清晰的语音。
二、应用领域1. 企业通信VoIP解决方案在企业通信中具有广泛的应用。
它可以用于企业内部的办公电话系统,实现员工之间的免费通话。
此外,借助VoIP技术,企业可以轻松搭建统一的通信平台,包括语音通话、视频会议、即时消息等功能,提高办公效率。
2. 跨地域通信VoIP解决方案的另一个应用领域是跨地域通信。
对于跨国或跨地区的企业来说,传统电话通信费用昂贵且管理复杂,而VoIP可以通过互联网实现低成本、高效率的通信。
无论是语音通话还是视频会议,VoIP解决方案为企业提供了跨越地域的便利。
3. 个人用户通信随着VoIP技术的普及,个人用户也开始使用VoIP解决方案进行通信。
通过使用VoIP应用程序或VoIP电话,用户可以在任何有互联网连接的地方轻松进行语音通话。
此外,用户还可以享受更多增值服务,如语音信箱、来电显示等。
三、VoIP解决方案的优势1. 成本效益相比传统电话系统,VoIP解决方案具有明显的成本优势。
传统电话通信需要建立专线连接,而VoIP利用现有的互联网基础设施进行通信,无需额外的线路费用。
此外,VoIP还可以实现跨国通信的长途费用节省。
2. 便捷性VoIP解决方案的便捷性是它的重要优势之一。
用户只需拥有互联网连接和VoIP设备(如软电话、VoIP电话),即可实现全球范围内的低成本通信。
VOIP的发展优势及其技术发展的方向
VOIP的发展优势及其技术发展的方向
一、VoIP的发展优势
(一)成本优势
(二)技术优势
VoIP通信技术实质上是将数据经过预处理后以IP数据形式发送出去,因此传输的过程中可以使用IP网络进行传输,具有相对较强的抗干扰能力,并且在路由分发的过程中可以进行负载均衡,使得VoIP的传输和接
收效率都有很大的提高,抗干扰能力也有大大的提升,传输的质量也得到
了很大的保证。
(三)灵活性优势
VoIP的传输使用的是一种标准的数据格式,这使得VoIP可以适用于
多种不同的网络环境,可以通过IP和其他无线网络实现互联,使得VoIP
具有相当强的灵活性和可扩展性,可以满足多种不同的应用场景,使得VoIP可以有效的满足用户不同的使用需求。
(一)智能化
VoIP技术未来的发展方向将是智能化,例如现在新出现的聊天机器
人就可以以聊天为形式,为用户提供必要的服务和信息,这种技术的应用
将大大提升VoIP的智能化程度。
VoIP技术详细解析
/166/a478206.html1、什么是VPN?VPN(Virtual Private Network):虚拟专用网络,是一门网络新技术,为我们提供了一种通过公用网络安全地对企业内部专用网络进行远程访问的连接方式。
我们知道一个网络连接通常由三个部分组成:客户机、传输介质和服务器。
VPN同样也由这三部分组成,不同的是VPN连接使用隧道作为传输通道,这个隧道是建立在公共网络或专用网络基础之上的,如:Internet 或Intranet。
要实现VPN连接,企业内部网络中必须配置有一台基于Windows NT或Windows2000 Server的VPN服务器,VPN服务器一方面连接企业内部专用网络,另一方面要连接到Internet,也就是说VPN 服务器必须拥有一个公用的IP地址。
当客户机通过VPN连接与专用网络中的计算机进行通信时,先由ISP (Internet服务提供商)将所有的数据传送到VPN服务器,然后再由VPN 服务器负责将所有的数据传送到目标计算机。
VPN使用三个方面的技术保证了通信的安全性:隧道协议、身份验证和数据加密。
客户机向VPN服务器发出请求,VPN服务器响应请求并向客户机发出身份质询,客户机将加密的响应信息发送到VPN服务器,VPN服务器根据用户数据库检查该响应,如果账户有效,VPN服务器将检查该用户是否具有远程访问权限,如果该用户拥有远程访问的权限,VPN服务器接受此连接。
在身份验证过程中产生的客户机和服务器公有密钥将用来对数据进行加密。
VPN产主的背景及其优势产生背景●近年来,全球企业并购重组之风愈演愈烈,而企业本身也向跨地区、跨国化发展,这就导致企业的各分支机构遍布全球各地,它们之间的网络基础设施之间互不兼容的问题也变得更为普遍、突出。
●企业间的合作、企业与客户间的联系愈来愈广泛、紧密,这也需要更方便、经济的网络支持。
●经过这次全球金融风暴的无情洗礼后,许多企业受到不同程度的冲击,能够继续生存的无不费尽心机想提高其竞争力。
VoIP网络电话的工作原理
V oIP网络电话的工作原理如果您从未听说过V oIP网络电话,那么请准备好,本文会转变您对长途电话的认识。
V oIP(V oice over Internet Protocol)系统能够采集模拟音频信号(如在电话中听到的语音信号),并将这些信号转换为可在互联网上传输的数字数据。
这种转换有何用处?V oIP使标准的互联网连接具有拨打免费电话的功能。
实际结果是,使用一些可拨打网络电话的免费V oIP软件,即可完全绕过电话公司进行通话(自然也不必交纳电话费了)。
V oIP是一项革命性的技术,有望使全世界的电话系统发生翻天覆地的变化。
现在已经有了一些V oIP提供商(如V onage),它们虽然出现不久,但正在稳步成长。
包括A T&T 在内的一些主要电信运营商已经开始在美国若干市场筹划V oIP电话业务,FCC(美国联邦通信委员会)也在密切关注V oIP服务的潜在发展方向。
最重要的是,从根本上说,V oIP是一项富于智慧的全新技术。
本文将探讨V oIP的基本原理、应用,以及这项新技术的发展前景。
有朝一日它很可能完全取代传统电话系统。
有意思的是,拨打V oIP电话的方法不止一种。
现在常用的V oIP服务有三种类型:A TA――最简单也最常用的方法,使用A TA(模拟电话适配器)设备。
通过A TA可将标准电话连接到计算机或互联网上,以便使用V oIP。
A TA是一种模数转换器。
它从传统电话中采集模拟信号,然后将其转换为数字数据,以便在互联网上传输。
V onage和A T&T CallV antage等提供商在其服务中附赠了A TA。
您只需从盒子中取出A TA,将原本接入墙上插座的电话线接入A TA,就可以拨打V oIP电话了。
有些A TA可能另外附带软件,您需要将这些软件安装到主机进行配置;当然,安装过程是非常简单的。
IP电话――这些专用电话看起来与普通电话没什么两样,也有听筒、托架和按键。
VoIP在空管通信系统的应用和发展
VoIP在空管通信系统的应用和发展摘要:空中交通管理系统的语音通信(无论是空对地还是地对地)主要通过基于TDM的空管网络进行。
基于IP的语音通信(简称VoIP)技术是空管十三五规划的重要内容,也是国际民航通信技术的重要发展方向之一。
关键词:VoIP语音交换系统甚高频0引言随着我国民航事业的飞速发展,航空运输量也随之增加,对空管的要求也越来越高。
甚高频地空通信系统与语音交换系统作为民航空管通信的重要组成部分,它们直接影响着空管的正常运行和发展。
传统的甚高频地空通信系统以及语音交换系统在通信上、传输方式上以及资源共享上都有一定的落后,而VoIP技术的出现,对民航空管的发展有很大的促进作用。
将甚高频地空通信系统与语音交换系统协同 VoIP技术协同发展,将是未来民航空中交通管理系统中不可或缺的一部分。
1 VoIP基本概念和原理VoIP( Voice over Internet Protocol )即网络电话,将模拟的声音数字化,经过压缩与封包之后,以数据包形式在IP网络实时传输,通俗来说也就是互联网电话或IP电话。
VoIP是基于网络之间互联协议的语音通信,基本原理是通过语音压缩设备将模拟声音信号(Voice)进行压缩编码处理,然后再将经过压缩编码处理过的语音数据根据相关的协议进行打包(数据封包),通过分组网络将数据包传送到接收端,经过数据拆包,解压解码等操作后,获得原始的语音信号,从而在IP数据网络上做实时传递。
其基本原理可以分以下五个步骤来诠释。
(1)模数转换及语音编码模拟信号需要经过采样、量化及编码三个步骤转化为数字信号。
编码器的种类为:波形编码、参数编码、混合编码,一般在保证话音质量的条件下,尽可能降低信源编码的比特率。
(2)原数据到IP数据运用网络协议打包数据, 将数据封装为IP数据包格式。
(3)IP数据传输采用分组交换技术,将数据从源地址传输到目的P地址。
将报文分成若干短的、规格化的“分组”或称包,采用路由“储存-转发”的方式,进行交换和传输。
VoIP
VoIP背景
VoIP基本原理 VoIP优缺点分 析 VoIP的市场前 景
VoIP术语解释
经历阶段
在技术上大致经历这样几个阶段: 一、技术突破期(1995-1996) 二、发展期(1996-1999) 三、成熟期(2000至今)
VoIP背景
VoIP基本原理 VoIP优缺点分 析 VoIP的市场前 景
VoIP背景
VoIP基本原理 VoIP优缺点分 析 VoIP的市场前 景
VoIP术语解释
产生背景
IP电话的产生是Internet商业化以后,在全世界,特别是发达国家迅速发 展起来。在一些国家(如美国)本地电话Internet接入采用包月制,不限时限 量,因此Internet是近乎免费的(Free)的,人们都希望能通过这近乎免费的网 络进行传统的电话和传真服务。1995年2月以色列VocalTec公司研制出可以 通过Internet网打长途电话的软件产品"Internet Phone"。用户只要在多媒体 PC机上安装该软件,就可以通过Internet网和任何地方安装同样软件的联机 用户进行通话。这项技术上的突破引起全世界的瞩目,其背后的无限商机也 使许多公司进行此项技术的研究,从而使IP电话技术得到迅速发展,人们把 这种在Internet上实现电话业务称为Internet电话,应该说是IP电话的雏形。经 过五年的发展,IP电话成为信息技术进步带来的一项新型电话业务在全世界 开展,并对传统电话业务形成越来越大的威胁。IP电话从当初的PC到PC发展 到今天的PC到PC、PC电话、电话到电话等多种业务形式,但不论是现在还 是将来,电话到电话的应用将拥有最大的市场,IP电话承载网络可以是 Internet ,更多的是遵循TCP/IP协议的专用网Internet.因此对我们来说,IP电话 /传真就是就是通过IP网络传送电话/传真业务。IP网泛指基TCP/IP协议的网络, 包括因特网Internet和企业网Internet。
虚拟运营商VoIP组网解决方案
虚拟运营商VoIP组网解决方案标题:虚拟运营商VoIP组网解决方案引言概述:随着互联网技术的飞速发展,虚拟运营商VoIP(Voice over Internet Protocol)组网解决方案越来越受到关注。
虚拟运营商VoIP组网解决方案是指通过互联网协议传输语音通信的技术,为企业提供了更加灵活、高效的通信方式。
本文将详细介绍虚拟运营商VoIP组网解决方案的相关内容。
一、VoIP技术的基本原理1.1 VoIP技术的概念和特点VoIP技术是一种利用互联网协议传输语音通信的技术,将模拟语音信号数字化并通过网络传输,实现了语音通信的实时传输。
VoIP技术具有成本低、通话质量高、功能丰富等特点,可以满足企业通信需求。
1.2 VoIP技术的工作原理VoIP技术通过将语音信号数字化、压缩、封装成数据包,并通过网络传输到目的地,再解包还原成语音信号,实现了语音通信的传输。
VoIP技术需要网络带宽支持,保障数据包的实时传输和通话质量。
1.3 VoIP技术的应用场景VoIP技术广泛应用于企业通信、远程办公、在线会议等场景,为企业提供了更加灵活、高效的通信方式。
VoIP技术还可以与其他通信技术结合,实现多种通信方式的互联互通,提升企业通信效率。
二、虚拟运营商VoIP组网解决方案的优势2.1 成本效益虚拟运营商VoIP组网解决方案可以通过互联网传输语音通信,减少了传统电话线路的使用成本,降低了通信费用。
虚拟运营商VoIP组网解决方案还可以实现全球通话,避免了国际长途通话费用的支出。
2.2 灵活性虚拟运营商VoIP组网解决方案可以实现多种通信方式的互联互通,如语音通话、视频通话、短信等,提升了通信的灵活性和便捷性。
虚拟运营商VoIP组网解决方案还可以实现移动办公,随时随地实现远程办公和在线会议。
2.3 安全性虚拟运营商VoIP组网解决方案采用加密传输技术,保障通话内容的安全性和隐私性,防止信息泄露和窃听。
虚拟运营商VoIP组网解决方案还可以实现通话录音、通话监控等功能,提升通信安全性和管理效率。
VoIP基本原理与发展历程(1)
VoIP(Voice Over Internet Protocol),即IP上传送语音,简单地说,就是实现了语音在IP上的实时传送,为了有效地利用IP带宽资源,通常在传送之前先要对语音数据进行压缩处理。
真正的快速发展是在90年代以后,IP分组语音话音通信技术获得了突破性的进展和实际应用。
1996年,ITU-T通过了著名的H.323协议,这一协议的推出,成为了VoIP的公共规范,极大地推动了VoIP的发展。
随后,1999年IETF完成了MGCP协议(RFC2705)和SIP协议 (RFC2543);2000年ITU-T和IETF共同推出了H.248/Megaco协议。
VoIP是通过语音分组实现的,在VoIP 中,数字信号处理器DSP (Digital Signal Processor)将语音信号封装成帧并储存在分组包中再进行传输。
VoIP主要是一种软件解决方案,但需要在路由器上加装语音接口卡或语音模块提供语音接口来实现。
目前,主要利用IP 电话网关来实现PSTN 和Internet 互通,同时PC到电话、电话到PC、电话到电话的技术已经成熟,话音的质量也大大得到改善,因此VoIP完全能够满足商用的要求。
2.1 基本原理传统的电话、传真业务,一般是通过接入电信局提供的PSTN 实现的。
这种类型的接入方式使用的是线路交换的方式,独占通信线路。
当使用长途业务时,费用很高,如图2所示。
图2 传统电话网络示意图而我们的VoIP应用是使用IP网络取代其中一部分的PSTN网络功能进行语音数据的传输,使用的是包交换技术。
下图3所示所示的就是基于H.232协议组构建的VoIP网络,在该架构中,总体框图如图?所示。
由图2可知,接入网络中的H.323系统的组成部件称为 H.323实体(entiy),它包括H.232终端、网关、网守、多点控制器(MC)、多点处理器(MP)和多点控制单元(MCU Muhipoint Control Unit)。
宜兰大学校庆机器人趣味打擂台
宜蘭大學校慶機器人趣味打擂台更新日期:2008/05/1018:00大學今天舉行82週年校慶活動,學校安排校慶系列活動,最特別的是舉行創意機器人操演展示暨機器人趣味擂台賽。
國立宜蘭大學生物機電工程學系學生,日前參加TDK盃第十一屆全國大專院校機器人「創思設計與製作競賽」自動組比賽,除順利進入決賽外,並榮獲"創意獎"、"TDK獎"、以及"最佳工作團隊紀律獎",學校特別安排在校慶展出學生得獎作品,有創意機器人實際操演,並提供學生創作的機器人供來賓進行趣味擂台賽,在機器人上綁汽球,看誰的機器人扎破對方汽球數多者獲勝,相當有趣!中國時報2008.05.11宜蘭大學校慶機器人打擂台林美忠/宜蘭報導科技感▲為慶祝校慶,宜蘭大學同學們擺出「機器人擂台賽」,既科技又有趣,充分發揮寓教於樂的效果。
(林美忠攝)宜蘭大學昨日慶祝82歲生日,活動在體育館熱鬧登場,除靜態的教學成果等展示之外,還安排由學生創作的機器人,上場打擂台賽,生動有趣,更是科技對決,成為矚目的焦點。
該校生物電機工程系研發的「急速大閘蟹」機器人,利用簡單機構及感測器,自動循跡定位,克服行走、夾球、放球等困難,以巧思設計、用心製作,發揮寓教於樂的目的。
操作的同學表示,機器人的行進路線,是感應地面上的黑線,照黑線走著,不但要上下坡、轉彎,還得通過一段沒有黑線的「隧道」,以考驗設計精密度和操作者的功夫。
為增加趣味和刺激性,昨日在展場上設了擂台,由4個機器人各占一方,每個身上都掛了10個氣球,接近時展開「肉搏戰」,用前方不斷揮動的大刀、電鋸等,將對方的氣球弄破,一場激烈戰鬥後,誰剩的氣球多,就是贏家。
【聯合報╱記者羅建旺/宜蘭報導】2008.05.1103:22am 宜蘭大學昨天校慶,學生自製機器人打擂台,鱷魚造型的「真皮Lacost 」與小車外型的「Bubuchacha 」戰成PK ,「狂暴螯蝦」力戰「急速大閘蟹」,讓來賓看了樂翻天。
VOIP课程实验总结报告
VOIP实验课总结报告一、voip概述1、VOIP定义V oIP即V oice Over IP,是把话音或传真转换成数据,然后与数据一起共享同一个IP网络(Internet互联网)。
由于话音和传真在Internet上免费搭乘了"顺风车",所以点对点(网关---网关)国际或国内长途通讯是完全免费的。
IP网络可以是Internet、IPLC(国际专线)、无线网络等,只要是采用IP协议( Internet Protocol ) 就可以了。
VOIP系统就是把传统的电话网与互联网组合搭配在一起。
2、发展情况国际VOIP/软交换行业的特点欧美、日本是VOIP开始较早的国家,目前欧洲的VOIP已经影响到传统基础电信运营商的市场份额。
SONUS、A V AYA、CISCO等公司的VOIP系统,被大量的客户使用。
尽管"互联网要担当起通讯大任"的声音不绝于耳,尽管存在已达百年的传统电话服务,在网络电话来势汹汹的挑战面前,已经显露出陈旧、乏味和呆板的疲态。
可以肯定的是,在宽带接入日益增加的今天,将有越来越多公司推出网络电话服务,而VOIP技术与传统电话的竞争,也将在2005年达到白热化。
2004年底美国的家庭网络电话用户为100万户,预计今年网络电话用户可能增至三倍。
日本现有490万户家庭安装了网络电话,韩国用户在电话号码前加拨070即可拨打网络电话。
此外,美国有线网络电话用户大增,在2004年从少于5万用户增加至将近50万用户,大幅增长900%。
预计这一增长趋势在2007年将达15%。
在欧洲,VOIP电话已经成为能够和传统PSTN分庭抗争的重要固定语音通信方式。
可以预见,未来的电信业务将呈现多元化格局。
同样是话音业务,可能是PSTN网络(传统电话网)提供的,可能是Internet提供的,还可能是有线电视网络,甚至电力网、煤气管道网提供的。
而用户的选择也将包括电脑与电脑、电脑与电话、电话与电话、电话与(智能)手机等通话方式。
voip网络电话系统搭建
VOIP网络电话系统搭建1. 简介Voice over Internet Protocol (VoIP) 是一种通过互联网传输音频和视频数据的通信协议。
VOIP网络电话系统搭建是指在企业环境中利用VoIP技术建立内部通信系统。
这样的系统可以大大减少通信成本,并提供更高的灵活性和便利性。
本文将介绍VOIP网络电话系统的搭建过程和所需的硬件和软件配置。
我们将讨论必要的设备和网络需求,并提供详细的安装和设置步骤。
2. 硬件需求在搭建VOIP网络电话系统之前,我们需要准备以下硬件设备:•VoIP电话:这是一个支持VoIP协议的电话设备,可以通过互联网进行语音通话。
我们可以选择传统的基于硬件的电话设备,也可以选择软电话或手机应用程序作为替代方案。
•IP PBX服务器:IP PBX (Internet Protocol Private Branch Exchange) 是VOIP网络电话系统的核心组件。
它负责电话呼叫路由、语音信号转换和其他电话管理功能。
在选择IP PBX服务器时,需要考虑同时支持所需电话数量和特定功能的性能。
•网络设备:除了IP PBX服务器和VoIP电话之外,我们还需要路由器、交换机和防火墙等网络设备来构建稳定的内部网络。
3. 软件需求为了搭建VOIP网络电话系统,我们还需要以下软件:•IP PBX软件:由于IP PBX服务器是系统的核心,我们需要选择合适的IP PBX软件来安装在服务器上。
常见的IP PBX软件包括Asterisk、FreeSWITCH和3CX等。
•SIP协议:SIP (Session Initiation Protocol) 是一种用于建立、修改和终止音视频通信会话的协议。
它是VoIP通信的基础。
我们需要确保选择的IP PBX软件支持SIP协议,并相应地配置。
•呼叫路由:在VOIP网络电话系统中,呼叫路由非常重要。
它负责将呼叫从一个终端路由到另一个终端。
我们需要在IP PBX软件中设置呼叫路由规则,以确保呼叫能够正确地被路由到目标终端。
基于VoIP语音通信系统的时间性能测试分析
信息通信INFORMATION&COMMUNICATIONS2020 (Sum.No212)2020年第8期(总第212期)基于VoIP语音通信系统的时间性能测试分析周至凯(中国民用航空中南地区空中交通管理局设备维修中心,广东广州510405)摘要:飞速发展且日益成熟的网络协议技术由于支持业务灵活、建设方便快捷等优点,逐渐成为民航未来地空通信的发展方向。
民航空中管制服务对通信的实时性要求严格,因此对于采用V6IP技术所带来的延时需要予以特别关注。
文章以中电28所VCCS-3000型语音交换系统为例,对地空通信、地地通信、席位语音等时间性能指标的测试方法进行介绍和分析。
关键词:VoIP;语音通信系统;时延测试中图分类号:V355.1文献标识码:A文章编号:1673-1131(2019)08-0280-030引言目前在民航领域使用的语音通信系统设备多使用时分多址和脉冲编码技术。
随着电信服务商淘汰TDM服务以及不断增长的航班量带来的空中交通管制服务互操作性要求的提高,飞速发展且日益成熟的网络协议(Internet Protocol,IP)技术由于支持业务灵活、建设方便快捷等优点,逐渐被民航语音通信系统所釆用。
大多数设备制造商已推出相关产品,如德国R&S公司的VCS-4G语音通信系统、美国Harris公司的VCS-21语音通信系统、意大利SITTI公司的M800IP语音通信系统,我国中电28所VCCS-3000型语音交换系统等。
国际民航组织在全球空中航行计划的“航空系统组块升级”(Aviation System Block Upgrade,ASBU)中,提出了指导未来15年全球空中航行系统发展的一整套工程化方法,其中明确了民航地空语音通信从原有的模拟方式和数字方式,逐渐向网络语音(Voice over Internet Protocol,VoIP)过渡和迁移的路径"”欧洲民航装备组织(European Organization for Civil Aviation Equipment,EUROCAE)针对VoIP的性能、互联互通、网络要求等方面依次发布了ED-136、ED-137、ED-138等规范性文件(现已更新至C版本),为VoIP技术未来在民航语音通信领域的发展指明了方向。
Fanvil BW320 说明书
7. 请依照本说明书指示方法使用,否则可能因此导致本产品受损。
2
目录
1. 欢迎使用 BW320 话机 .............................................................................................................5
1.1. 产品包装内容 .......................................................................................................................5
2. 认识 BW320 ...............................................................................................................................6
Gigabit Ethernet--千兆以太网技术
Gigabit EthernetVijay Moorthy,(moorthy@)Ethernet is the world's most pervasive networking technology. Gigabit Ethernet is the latest version of Ethernet. It offers 1000 Mbps ( 1 Gbps ) raw bandwidth, that is 100 times faster than the original Ethernet, yet is compatible with existing Ethernets, as it uses the same CSMA/CD and MAC protocols. When Gigabit Ethernet enters the market it will compete directly with ATM. This paper presents a survey of Gigabit Ethernet technology.Other Reports on Recent Advances in NetworkingBack to Raj Jain's Home PageTable of Contents1.Introduction1.1 History of Ethernet1.2 Gigabit Ethernet Alliance2.Physical Layer2.1 1000Base-X2.2 1000Base-TMAC Layer3.3.1 Carrier Extension3.2 Packet BurstingGMII ( Gigabit Media Independent Interface )4.4.1 PCS (Physical Coding Sublayer)4.2 PMA (Physical Medium Attachment)4.3 PMD (Physical Medium Dependent)Buffered Distributor5.6.Topologies6.1 Upgrading server-switch connections6.2 Upgrading switch-switch connections6.3 Upgrading a Fast Ethernet backbone6.4 Upgrading a Shared FDDI Backbone6.5 Upgrading High Performance Workstations7.ATM vs. Gigabit EthernetSummary8.9.Bibliography and Links1. IntroductionEthernet is the world's most pervasive networking technology , since the 1970's. It is estimated that in 1996, 82% of all networking equipment shipped was Ethernet. In 1995 ,the Fast Ethernet Standard was approved by the IEEE. Fast Ethernet provided 10 times higher bandwidth, and other new features such as full-duplex operation, and auto-negotiation. This established Ethernet as a scalable technology. Now, with the emerging Gigabit Ethernet standard, it is expected to scale even further.The Fast Ethernet standard was pushed by an industry consortium called the Fast Ethernet Alliance. A similar alliance, called the Gigabit Ethernet Alliance was formed by 11 companies in May 1996 , soon after IEEE announced the formation of the 802.3z Gigabit Ethernet Standards project. At last count, there were over 95 companies in the alliance from the networking, computer and integrated circuit industries.A draft 802.3z standard was issued by IEEE in July 1997. The last technical changes are expected to be resolved by September. The standard is expected to be adopted by March 1998.The new Gigabit Ethernet standards will be fully compatible with existing Ethernet installations. It will retain Carrier Sense Multiple Access/ Collision Detection (CSMA/CD) as the access method. It will support full-duplex as well as half duplex modes of operation. Initially, single-mode and multi mode fiber and short-haul coaxial cable will be supported. Standards for twisted pair cables are expected by 1999. The standard uses physical signalling technology used in Fiber Channel to support Gigabit rates over optical fibers.Initially, Gigabit Ethernet is expected to be deployed as a backbone in existing networks. It can be used to aggregate traffic between clients and "server farms", and for connecting Fast Ethernet switches. It can also be used for connecting workstations and servers for high - bandwidth applications such as medical imaging or CAD.1.1 History of EthernetToday, Ethernet is synonymous with the IEEE 802.3 standard for a "1-persistent CSMA/CD LAN". The 802.3 standard has an interesting history. The beginning, is generally considered to be the University of Hawaii ALOHA network. This system is the ancestor of all shared media networks. The original Ethernet, developed by Xerox was based on the ALOHA system. It was a 2.94 Mbps CSMA/CD system and was used to connect over 100 personal workstations on a 1 Km cable. It was so successful, that Xerox, DEC and Intel came up with a 10 Mbps standard. The IEEE 802.3 standard was based on the 10 Mbps Ethernet.CSMA/CD refers to the protocol used by stations sharing the medium, to arbitrate use of the medium. A sender has to "listen" to the medium. If no one else is transmitting, then the sender may transmit. If two senders start transmitting at the same time, then a collision is said to have occurred. Transmitting stations, therefore, have to listen to the medium for collisions while transmitting, and retransmit a packet after some time, if a collision occurs.The original 802.3 standard was published in 1985. Originally two types of coaxial cables were used called Thick Ethernet and Thin Ethernet. Later unshielded copper twisted pair (UTP) , used for telephones, was added.In 1980, when Xerox, DEC and Intel published the DIX Ethernet standard, 10 Mbps was a lot of bandwidth. Since then, as computing technology improved, network bandwidth requirements also increased. In 1995, IEEE adopted the 802.3u Fast Ethernet standard. Fast Ethernet is a 100 Mbps Ethernet standard. Fast Ethernet established Ethernet scalability. With Fast Ethernet came full-duplex Ethernet. Until, now, all Ethernets worked in half-duplex mode, that is, if there were only two station on a segment, both could not transmit simultaneously. With full-duplex operation, this was now possible.The next step in the evolution of Ethernet is Gigabit Ethernet. The standard is being developed by the IEEE 802.3z committee. 1.2 The Gigabit Ethernet Alliance (GEA)In March 1996, the IEEE 802.3 committee approved the 802.3z Gigabit Ethernet Standardization project. At that time as many as 54 companies expressed there intent to participate in the standardization project. The Gigabit Ethernet Alliance was formed in May 1996 by 11 companies : 3Com Corp., Bay Networks Inc., Cisco Systems Inc., Compaq Computer Corp., Granite Systems Inc., Intel Corporation, LSI Logic, Packet Engines Inc., Sun Microsystems Computer Company, UB Networks and VLSI Technology. The Alliance represents a multi-vendor effort to provide open and inter-operable Gigabit Ethernet products. The objectives of the alliance are :supporting extension of existing Ethernet and Fast Ethernet technology in response to demand for higher network qbandwidth.developing technical proposals for the inclusion in the standardqestablishment of inter-operability test procedures and processesqCurrently membership of the alliance is over 95 companies. This indicates that the emerging standard will be backed by the industry. The alliance is pushing for speedy approval of the standard. So far, the standardization is proceeding without any delays, and is expected to be approved by March 1998.Contents,2. Physical LayerThe Physical Layer of Gigabit Ethernet uses a mixture of proven technologies from the original Ethernet and the ANSI X3T11 Fibre Channel Specification. Gigabit Ethernet is finally expected to support 4 physical media types . These will be defined in 802.3z (1000Base-X) and 802.3ab (1000Base-T).2.1 1000Base-XThe 1000Base-X standard is based on the Fibre Channel Physical Layer. Fibre Channel is an interconnection technology for connecting workstations, supercomputers, storage devices and peripherals. Fibre Channel has a 4 layer architecture. The lowest two layers FC-0 (Interface and media) and FC-1 (Encode/Decode) are used in Gigabit Ethernet. Since Fibre Channel is a proven technology, re-using it will greatly reduce the Gigabit Ethernet standard development time.Three types of media are include in the 1000Base-X standard :1000Base-SX 850 nm laser on multi mode fiber.q1000Base-LX 1300 nm laser on single mode and multi mode fiber.q1000Base-CX Short haul copper "twinax" STP (Shielded Twisted Pair) cableqThe cabling distances to be supported are given in Table 1 :Table 1. Cabling Types and DistancesCable Type DistanceSingle-mode Fiber (9 micron)3000 m using 1300 nm laser (LX)Multi mode Fiber (62.5 micron)300 m using 850 nm laser (SX) 550 m using 1300 nm laser (LX)Multi mode Fiber (50 micron)550 m using 850nm laser (SX) 550 m using 1300 nm laser (LX)Short-haul Copper25 mSource : Sun Microsystems (Sun and Gigabit Ethernet White Paper)2.2 1000Base-T1000Base-T is a standard for Gigabit Ethernet over long haul copper UTP. The standards committee's goals are to allow up to 25-100 m over 4 pairs of Category 5 UTP. This standard is being developed by the 802.3ab task force and is expected to be completed by early 1999.Back to Table of Contents3. MAC LayerThe MAC Layer of Gigabit Ethernet uses the same CSMA/CD protocol as Ethernet. The maximum length of a cable segment used to connect stations is limited by the CSMA/CD protocol. If two stations simultaneously detect an idle medium and start transmitting, a collision occurs.Ethernet has a minimum frame size of 64 bytes. The reason for having a minimum size frame is to prevent a station from completing the transmission of a frame before the first bit has reached the far end of the cable, where it may collide with another frame. Therefore, the minimum time to detect a collision is the time it takes for the signal to propagate from one end of the cable to the other. This minimum time is called the Slot Time. ( A more useful metric is Slot Size, the number of bytes that can be transmitted in one Slot Time. In Ethernet, the slot size is 64 bytes, the minimum frame length.)The maximum cable length permitted in Ethernet is 2.5 km (with a maximum of four repeaters on any path). As the bit rate increases, the sender transmits the frame faster. As a result, if the same frames sizes and cable lengths are maintained, then a station may transmit a frame too fast and not detect a collision at the other end of the cable. So, one of two things has to be done : (i) Keep the maximum cable length and increase the slot time ( and therefore, minimum frame size) OR (ii) keep the slot time same and decrease the maximum cable length OR both. In Fast Ethernet, the maximum cable length is reduced to only 100 meters, leaving the minimum frame size and slot time intact.Gigabit Ethernet maintains the minimum and maximum frame sizes of Ethernet. Since, Gigabit Ethernet is 10 times faster than Fast Ethernet, to maintain the same slot size, maximum cable length would have to be reduced to about 10 meters, which is not very useful. Instead, Gigabit Ethernet uses a bigger slot size of 512 bytes. To maintain compatibility with Ethernet, the minimum frame size is not increased, but the "carrier event" is extended. If the frame is shorter than 512 bytes, then it is padded with extension symbols. These are special symbols, which cannot occur in the payload. This process is called Carrier Extension.3.1 Carrier ExtensionGigabit Ethernet should be inter-operable with existing 802.3 networks. Carrier Extension is a way of maintaining 802.3 minimum and maximum frame sizes with meaningful cabling distances.For carrier extended frames, the non-data extension symbols are included in the "collision window", that is, the entire extended frame is considered for collision and dropped. However, the Frame Check Sequence (FCS) is calculated only on the original (without extension symbols) frame. The extension symbols are removed before the FCS is checked by the receiver. So the LLC (Logical Link Control) layer is not even aware of the carrier extension. Fig. 1 shows the ethernet frame format when Carrier Extension is used.3.2 Packet BurstingCarrier Extension is a simple solution, but it wastes bandwidth. Up to 448 padding bytes may be sent for small packets. This results in low throughput. In fact, for a large number of small packets, the throughput is only marginally better than Fast Ethernet. Packet Bursting is an extension of Carrier Extension. Packet Bursting is "Carrier Extension plus a burst of packets". When a station has a number of packets to transmit, the first packet is padded to the slot time if necessary using carrier extension. Subsequent packets are transmitted back to back, with the minimum Inter-packet gap (IPG) until a burst timer (of 1500 bytes) expires. Packet Bursting substantially increases the throughput. Fig. 2. shows how Packet Bursting works.Back to Table of Contents4. GMII ( Gigabit Media Independent Interface )The various layers of the Gigabit Ethernet protocol architecture are shown in Fig. 3. The GMII is the interface between the MAC layer and the Physical layer. It allows any physical layer to be used with the MAC layer. It is an extension of the MII ( Media Independent Interface ) used in Fast Ethernet. It uses the same management interface as MII. It supports 10, 100 and 1000 Mbps data rates. It provides separate 8-bit wide receive and transmit data paths, so it can support both full-duplex as well as half-duplex operation.The GMII provides 2 media status signals : one indicates presence of the carrier, and the other indicates absence of collision. The Reconciliation Sublayer (RS) maps these signals to Physical Signalling (PLS) primitives understood by the existing MAC sublayer. With the GMII, it is possible to connect various media types such as shielded and unshielded twisted pair, andsingle-mode and multi mode optical fibre, while using the same MAC controller.The GMII is divided into three sublayers : PCS, PMA and PMD.4.1 PCS (Physical Coding Sublayer)This is the GMII sublayer which provides a uniform interface to the Reconciliation layer for all physical media. It uses 8B/10B coding like Fibre Channel. In this type of coding, groups of 8 bits are represented by 10 bit "code groups". Some code groups represent 8 bit data symbols. Others are control symbols. The extension symbols used in Carrier Extension are an example of control symbols.Carrier Sense and Collision Detect indications are generated by this sublayer. It also manages the auto-negotiation process by which the NIC (Network Interface) communicates with the network to determine the network speed (10,100 or 1000 Mbps) and mode of operation (half-duplex or full-duplex).4.2 PMA (Physical Medium Attachment)This sublayer provides a medium-independent means for the PCS to support various serial bit-oriented physical media. This layer serializes code groups for transmission and deserializes bits received from the medium into code groups.4.3 PMD (Physical Medium Dependent)This sublayer maps the physical medium to the PCS. This layer defines the physical layer signalling used for various media. The MDI ( Medium Dependent Interface), which is a part of PMD is the actual physical layer interface. This layer defines the actual physical attachment, such as connectors, for different media types.Back to Table of Contents5. Buffered DistributorEthernet today supports full-duplex media, physical layer as well MAC layer. However it still supports half-duplex operation to maintain compatibility. A new device has been proposed which provides hub functionality with full duplex mode of operation. It is called various names such as Buffered Distributor, Full Duplex Repeater and Buffered Repeater.The term "Buffered Distributor" is used for all these devices in the following discussion.The basic principle is that CSMA/CD is used as the access method to the network and not to the link. A Buffered Distributor is a multi-port repeater with full-duplex links.Each port has an input FIFO queue and an output FIFO queue. A frame arriving to an input queue is forwarded to all output queues, except the one on the incoming port. Within the distributor, CSMA/CD arbitration is done to forward the frames to output queues.Since collisions can no longer occur on links, the distance restrictions no longer apply. The only restriction on cabling distances is the characteristics of the physical medium, and not the CSMA/CD protocol.Since the sender can flood the FIFO, frame based flow control is used between the port and the sending station. This is defined in the 802.3x standard and already used in Ethernet switches.The motivation behind development of the Buffered Distributor is it's cost compared to a Gigabit switch and not a need to accommodate half duplex media. The Buffered Distributor provides full duplex connectivity, just like a switch, yet it is not so expensive, because it is just an extension of a repeater.Back to Table of Contents6. TopologiesThis section discusses the various topologies in which Gigabit Ethernet may be used. Gigabit Ethernet is essentially a "campus technology", that is , for use as a backbone in a campus-wide network. It will be used between routers, switches and hubs. It can also be used to connect servers, server farms ( a number of server machines bundled together), and powerful workstations. Essentially, four types of hardware are needed to upgrade an exiting Ethernet/Fast Ethernet network to Gigabit Ethernet : Gigabit Ethernet Network Interface Cards (NICs)qAggregating switches that connect a number of Fast Ethernet segments to Gigabit EthernetqGigabit Ethernet switchesqGigabit Ethernet repeaters ( or Buffered Distributors)qThe five most likely upgrade scenarios are given below :6.1 Upgrading server-switch connectionsMost networks have centralized file servers and compute servers A server gets requests from a large number of clients. Therefore, it needs more bandwidth. Connecting servers to switches with Gigabit Ethernet will help achieve high speed access to servers. . This is perhaps the simplest way of taking advantage of Gigabit Ethernet.6.2 Upgrading switch-switch connectionsAnother simple upgrade involves upgrading links between Fast Ethernet switches to Gigabit Ethernet links between 100/1000 Mbps switches.6.3 Upgrading a Fast Ethernet backboneA Fast Ethernet backbone switch aggregates multiple 10/100 Mbps switches. It can be upgraded to a Gigabit Ethernet switch which supports multiple 100/1000 Mbps switches as well as routers and hubs which have Gigabit Ethernet interfaces. Once the backbone has been upgraded, high performance servers can be connected directly to the backbone. This will substantially increase throughput for applications which require high bandwidth.6.4 Upgrading a Shared FDDI BackboneFiber Distributed Data Interface (FDDI) is a common campus or building backbone technology. An FDDI backbone can be upgraded by replacing FDDI concentrators or Ethernet-to-FDDI routers by a Gigabit Ethernet switch or repeater.6.5 Upgrading High Performance WorkstationsAs workstations get more and more powerful, higher bandwidth network connections are required for the workstations. Current high-end PCs have buses which can pump out more than 1000 Mbps. Gigabit Ethernet can be used to connect such high speed machines.Back to Table of Contents7. ATM vs. Gigabit EthernetWhen ATM (Asynchronous Transfer Mode) was introduced, it offered 155 Mbps bandwidth, which was 1.5 times faster than Fast Ethernet. ATM was ideal for new applications demanding a lot of bandwidth, especially multimedia. Demand for ATM continues to grow for LAN's as well as WAN's.On the one hand , proponents of ATM try to emulate Ethernet networks via LANE ( LAN Emulation) and IPOA ( IP over ATM). On the other, proponents of Ethernet/IP try to provide ATM functionality with RSVP( Resource Reservation Protocol ) and RTSP ( Real-time Streaming Transport Protocol ). Evidently, both technologies have their desirable features, and advantages over the other. It appears that these seemingly divergent technologies are actually converging.ATM was touted to be the seamless and scaleable networking solution - to be used in LANs, backbones and WANs alike. However, that did not happen. And Ethernet, which was for a long time restricted to LANs alone, evolved into a scalable technology.As Gigabit Ethernet products enter the market, both sides are gearing up for the battle. Currently, most installed workstations and personal computers do not have the capacity to use these high bandwidth networks. So, the imminent battle is for the backbones, the network connections between switches and servers in a large network.Gigabit Ethernet seems to be ready to succeed. It is backed by the industry in the form of the Gigabit Ethernet Alliance. The standardization is currently on schedule. Pre-standard products with claims of inter-operability with standardized products have already hit the market. Many Fast Ethernet pre-standard products were inter-operable with the standard. So it is expected that most pre-standard Gigabit Ethernet products will also be compatible with the standard. This is possible because many of the companies that have come out with products are also actively participating in the standardization process.ATM still has some advantages over Gigabit Ethernet :ATM is already there. So it has a head start over Gigabit Ethernet. Current products may not support gigabit speeds,but qfaster versions are in the pipeline.ATM is better suited than Ethernet for applications such as video, because ATM has QOS ( Quality of Service) and different qservices available such as CBR (constant bit rate) which are better for such applications. Though the IETF (InternetEngineering Task Force, the standards body for internet protocols) is working on RSVP which aims to provide QOS on Ethernet, RSVP has it's limitations. It is a "best effort" protocol, that is , the network may acknowledge a QOS request but not deliver it. In ATM it is possible to guarantee QOS parameters such as maximum delay in delivery.Gigabit Ethernet has its own strengths :The greatest strength is that it is Ethernet. Upgrading to Gigabit Ethernet is expected to be painless. All applications that qwork on Ethernet will work on Gigabit Ethernet. This is not the case with ATM. Running current applications on ATM requires some amount of translation between the application and the ATM layer, which means more overhead.Currently, the fastest ATM products available run at 622 Mbps. At 1000 Mbps, Gigabit Ethernet is almost twice as fast.qIt is not clear whether any one technology will succeed over the other. It appears that sooner or later, ATM and Ethernet will complement each other and not compete.Back to Table of Contents8. SummaryGigabit Ethernet is the third generation Ethernet technology offering a speed of 1000 Mbps. It is fully compatible with existing Ethernets, and promises to offer seamless migration to higher speeds. Existing networks will be able to upgrade their performance without having to change existing wiring, protocols or applications. Gigabit Ethernet is expected to give existing high speed technologies such as ATM and FDDI a run for their money. The IEEE is working on a standard for Gigabit Ethernet, which is expected to be out by the beginning of 1998. A standard for using Gigabit Ethernet on twisted pair cable is expected by 1999. Back to Table of Contents9. Bibliography and LinksAnnotated BibliographyIEEE Draft P802.3z/D3 "Media Access Control (MAC) Parameters, Physical Layer, Repeater and Management Parameters1.for 1000 Mb/s operation", June 1997This is the draft document of the 802.3z standard. It is available from IEEE on request. The IEEE standards site hasinformation on ordering IEEE standards and draft documents at /faqs/order.html2.Gigabit Ethernet Alliance "Gigabit Ethernet : White Paper", Aug 1996,/technology/whitepapers/gige/A whitepaper from the GEA. Gives comparison of technologies like FDDI and ATM with Gigabit Ethernet.Joe Skorupa, George Prodan, "Battle of the Backbones: ATM vs. Gigabit Ethernet", Data Communications, April 1997,3./tutorials/backbones.htmlThis article features arguments for and against Gigabit Ethernet vs. ATM.4.Michelle Rae McLean, "Gigabit Speeds Mandate Fix", LAN Times, Sep 1996,/96sep/609c029a.htmlThis article discusses problems in migrating to Gigabit Ethernet.Gigabit Ethernet Related WWW Links/1.Gigabit Ethernet Alliance Home Page.2./Gigabit_Ethernet.htmGigabit Ethernet page at PC Webopaedia. Contains Definitions and Links:8080/ethernet/gigabit.html3.This page contains some Gigabit Ethernet information and links.Back to Table of ContentsVijay Moorthy, Aug 14, 1997。
我校在东北地区率先开通CERNET-VOIP语音系统
我校在东北地区率先开通CERNET-VOIP语音系统
我校和赛尔公司合作,由赛尔公司投入近200万元,建设CERNET-VOIP系统(CERNET网络语音传输系统),全部工程于2005年7月1日竣工。
VoIP技术作为网络应用的扩展,在国内才刚刚起步,赛尔公司作为CERNET 的运营商,具有多年成熟的网络运营经验,和我校合作VoIP语音系统,在技术保障方面值得我们依赖。
通过这种合作,能充分利用学校现有的网络资源,极大地推动学校校园信息化建设,同时又为师生提供了便利、廉价的网络语音服务。
我校作为东北地区第一所使用VOIP语音系统的学校,希望通过我校良好的应用,将VOIP语音系统在东北地区普及开来,让更多的高校加入到这个系统中来,使得学校师生都得到最大的便利。
CERNET-VOIP系统,是CERNET为向各教育机构以及高等院校广大教职员工和学生提供更广泛的语音服务,基于自己独特的宽带网络环境和IP 地址优势,投资建设的基于宽带互联网纯IP技术的语音传输系统。
该系统完全抛弃传统语音交换系统的多级交换结构,基于CERNET IP网的网络基础,根据互联网的结构特点,采用完全无级的体系结构,直接完成端到端寻址,从而大大利用了互联网的独特优势,具有大幅度降低语音成本,功能灵活多样等特点。
VoIP+服务器搭建(2024)
引言概述:本文将详细介绍VoIP(VoiceoverInternetProtocol)+服务器搭建的方法和步骤。
VoIP技术可以将语音信号转化为数字信号,并通过互联网传输,相比传统方式系统具有更高的灵活性和成本效益。
在本文中,我们将着重介绍如何搭建VoIP服务器的技术和配置要点,以便读者能够轻松地搭建自己的VoIP网络。
正文内容:1.选择合适的服务器硬件:考虑服务器的处理能力和性能要求。
选择支持大容量存储和高速网络接口的服务器。
考虑是否需要冗余配置以提高可靠性。
2.选择适当的操作系统:为了实现VoIP服务,我们建议选择Linux操作系统,如CentOS或Ubuntu等。
Linux操作系统具有良好的稳定性和安全性,并且有许多适用于VoIP的开源软件和工具。
3.安装和配置软件:安装Asterisk软件,它是一款开源的VoIP软交换机。
配置Asterisk软件以实现基本的方式功能,如呼叫转移、拨号计划等。
安装并配置其他附加组件和模块,如GSM编解码器和语音识别引擎等。
4.网络配置:配置服务器的网络接口,包括IP地质、子网掩码和网关等。
配置路由器和防火墙,以确保VoIP流量的安全和稳定传输。
配置QoS(QualityofService)以优化网络性能,确保语音流量的实时传输。
5.安全性和权限管理:建立强密码和用户访问控制机制,以确保服务器的安全性。
配置防火墙规则和访问控制列表,限制非授权访问。
定期更新和升级服务器软件和补丁,以修复安全漏洞。
小结:通过本文,我们详细介绍了VoIP+服务器搭建的方法和步骤,包括选择合适的服务器硬件、操作系统、安装和配置软件、网络配置以及安全性和权限管理。
搭建自己的VoIP网络可以节省通信成本并提高通信灵活性,为企业和个人提供一个高效的通信解决方案。
但是,搭建VoIP网络需要一定的技术知识和经验,建议在搭建前先进行相关的学习和准备。
希望本文对读者能够有所帮助,能够成功搭建自己的VoIP网络。
Avaya one-X Deskphone SIP 9620 IP 电话 说明书
设置电话会议..............................................................19 将处于保持状态的人士添加到电话会议........................................20 保持电话会议..............................................................20
使呼叫静音........................................................18
保持呼叫..........................................................18
2 Avaya one-X™ Deskphone SIP 用于 9620 IP 电话 用户指南
Avaya one-X™ Deskphone SIP 用于 9620 IP 电话 用户指南
16-601945 第2期
2007 年 12 月
目录
目录
声明...............................................................5
9620 SIP IP 电话简介...............................................6
呼叫记录..........................................................23
查看呼叫记录..............................................................23 查看呼叫记录详细信息......................................................23 从呼叫记录向 Contacts(联系人)名单添加条目...............................23 从呼叫记录中删除条目......................................................23 清除呼叫记录中的所有条目..................................................23 关闭呼叫记录..............................................................24
VoIP蚕食传统通信业务市场 运营商紧抓统一通信稻草——对话中国电信协同通信运营支撑中心总经理高智敏
3C ommun icatio ns World WeeklyV oI P 蚕食传统通信业务市场运营商紧抓统一通信稻草——对话中国电信协同通信运营支撑中心总经理高智敏理念不同,融合集成是纽带《通信世界周刊》:作为运营商,中国电信目前是怎样对统一通信进行定位的?统一通信领域产品主要服务对象是谁?高智敏:业界对统一通信定义不尽相同,如统一通信、协同通信、统一沟通、企业通信、综合通信等。
综合各方观点,统一通信的内涵为:V o I P 、IM 、通讯录、状态感知、短信、传真、音频/视频会议、移动办公、E-m ail 、We b 应用与桌面软件、IT 应用、业务系统、互联网应用如微博、SNS 等有机集成的融合业务。
融合通信的特征是基于IP 系统、统一平台,面向各种终端和接入方式,集成各种通信功能和互联网应用的新一代通信业务。
中国电信将协同通信ECP 作为统一通信的载体和云通信能力的整合者,以互联网、移动互联网为载体,基于通讯录,提供多媒体消息、短信、多方通话、视频会议、传真等融合通信服务;同时构建了中国电信的通信能力开放平台,将ECP 通信能力开放给合作伙伴,形成各种具有差异性的融合通信产品。
协同通信ECP 可以在各种有线、无线W i-Fi 、3G 网络模式完成接入,确保任何地点、任何时间都可以享有协同通信系统的各种服务,同时覆盖电脑、手机、D ,实现无缝连接、多屏互动,真正实现了通信能力互联网化。
目前协同通信客户市场主要分为政企客户和公众客户两大块。
从目前国际上来看,一个企业要配置一套统一通信产品,动辄几百万、上千万的投资,投资成本非常高,令大多数想提高管理水平,降低成本、提高运营效率的中小企业和有融合通信需求的个人用户望而却步。
协同通信ECP 充分利用了中国电信已有的网络资源,在融合现有优质资源的基础上再添加了专用的设备应用系统,使用单位无需投入昂贵的软件、硬件设备,使得用户的使用成本大大降低,产品从贵族化走向平民化,有效地降低了门槛,利于全面普及。