2014-2015学年浙教版七年级数学下册第4章因式分解单元测试

合集下载

浙教版七年级下《第4章因式分解》单元培优试题有答案-(数学)

浙教版七年级下《第4章因式分解》单元培优试题有答案-(数学)

浙教版七下数学第4章《因式分解》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三大题23小题,满分120分,考试时间120分钟.一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10C﹒x2-8x+16=(x-4)2D﹒6ab=2a·3b2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1B﹒a2+a-2C﹒a2+a D﹒(a-2)2-2(a+2)+13﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2C﹒5m2n D﹒5mn24﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b)B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x)D﹒a3-4a2=a2(a-4)5﹒下列各式中,能用完全平方公式分解的是()C﹒9-6y+y2D﹒x2-2xy-A﹒a2-2ab+4b2B﹒4m2-m+14y26﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5B﹒5C﹒1D﹒-18﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1B﹒1 C﹒-2D﹒29﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490B﹒245C﹒140D﹒196010.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0B﹒1C﹒2D﹒3二、填空题(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒12.用简便方法计算:20172-34×2017+289=_________﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=___________﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(8分)分解因式:(1)-18a3b2-45a2b3+9a2b2﹒(2)5a3b(a-b)3-10a4b2(b-a)2﹒18.(10分)分解因式:(1)(x2+16y2)2-64x2y2﹒(2)9(x-y)2-12x+12y+4﹒19.(10分)分解因式:(1)ac-bc-a2+2ab-b2﹒(2)1-a2-4b2+4ab﹒20.(8分)已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒21.(8分)如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒22.(10分)设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2?若能,请求所有满足条件的k的值;若不能,请说明理由﹒23.(12分)如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?浙教版七下数学第4章《因式分解》单元培优测试题参考答案Ⅰ﹒答案部分:一、选择题11﹒答案不唯一,如:4a2-16=4(a+2)(a-2)﹒12﹒4000000﹒13﹒7﹒14﹒1﹒15﹒a2015(a-2)2﹒16﹒2a+b,a+b 4﹒三、解答题17.(1)解:-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)解:5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.(1)解:(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)解:9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.(1)解:ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)解:1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.解:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.解:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.解:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.解:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒Ⅱ﹒解答部分:一、选择题1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10C﹒x2-8x+16=(x-4)2D﹒6ab=2a·3b解答:A﹒右边2x(x+4)-1不是积的形式,故A项错误;B﹒(x+5)(x-2)=x2+3x-10,是多项式乘法,不是因式分解,故B项错误;C﹒x2-8x+16=(x-4)2,运用了完全平方公式,符合因式分解的定义,故C正确;D﹒6ab=2a·3b,左边不是多项式,故D错误﹒故选:C﹒2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1B﹒a2+a-2C﹒a2+a D﹒(a-2)2-2(a+2)+1解答:因为A﹒a2-1=(a+1)(a-1);B﹒a2+a-2=(a+2)(a-1);C﹒a2+a=a(a+1);D﹒(a-2)2-2(a+2)+1=(a+2-1)2=(a+1)2,所以结果中不含有因式a+1的选项是B﹒故选:B﹒3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2C﹒5m2n D﹒5mn2解答:多项式15m3n2+5m2n-20m2n3中,各项系数的最大公约数是5,各项都含有相同字母m,n,字母m的指数最低是2,字母n的指数最低是1,所以多项式的公因式是5m2n﹒故选:C﹒4﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b)B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x)D﹒a3-4a2=a2(a-4)解答:A﹒-a2-b2=-(a2+b2),不能进行因式分解,故A项错误;B﹒多项式x2+9不能进行因式分解,故B项错误;C﹒1-4x2=(1+2x)(1-2x),故C项错误;D﹒a3-4a2=a2(a-4),故D项正确﹒故选:D﹒5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2B﹒4m2-m+14C﹒9-6y+y2D﹒x2-2xy-y2解答:A﹒a2-2ab+4b2中间乘积项不是这两数的2倍,故A项错误;B﹒4m2-m+14中间乘积项不是这两数的2倍,故B项错误;C﹒9-6y+y2=(3-y)2,故C项正确;D ﹒x2-2xy-y2不是两数的平方和,不能用完全平方公式,故D项错误﹒故选:C.6﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定解答:∵M=x2+y2,N=2xy,∴M-N=x2+y2-2xy=(x+y)2≥0,则M≥N.故选:B.7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5B﹒5C﹒1D﹒-1解答:∵(x+1)(x-3)=x2-3x+x-3=x2-2x-3,∴x2+ax+b=x2-2x-3,∴a=-2,b=-3,∴a+b=-5,故选:A﹒8﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1B﹒1 C﹒-2D﹒2解答:∵x2-x-1=0,∴x2-x=1,∴x3-2x+1=x3-x2+x2-2x+1=x(x2-x)+x2-2x+1=x+x2-2x+1=x2-x+1=1+1=2﹒故选:D﹒9﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490B﹒245C﹒140D﹒1960解答:由题意,知:a+b=7,ab=10,则a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=10×49=490﹒故选:A.10.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0B﹒1C﹒2D﹒3解答:∵a=2017x+2015,b=2017x+2016,c=2017x+2017,∴a-b=-1,b-c=-1,a-c=-2,∴a2+b2+c2-ab-ac-bc=12[( a-b)2+( b-c)2+( a-c)2]=12×(1+1+4)=3﹒故选:D.二、填空题11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒解答:答案不唯一,如:4a2-16=4(a+2)(a-2),故答案为:4a2-16=4(a+2)(a-2)﹒12.用简便方法计算:20172-34×2017+289=_________﹒解答:20172-34×2017+289=20172-2×17×2017+172-172+289=(2017-17)2=20002=4000000,故答案为:4000000﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒解答:∵m-n=2,∴2m2-4mn+2n2-1=2(m2-2mn+n2)-1=2(m-n)2-1=2×4-1=7﹒故答案为:7﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=_______﹒解答:∵x2-2xy+2y2+4y+4=x2-2xy+ y2+y2+4y+4=(x-y)2+(y+2)2=0,∴20x yy-=⎧⎨+=⎩,解得:22xy=-⎧⎨=-⎩,∴y x=(-2)-2=14,故答案为:14﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒解答:a2017-4a2016+4a2015=a2015·a2-a2015·4a+4a2015=a2015(a2-4a+4)=a2015(a-2)2,故答案为:a2015(a-2)2﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒解答:所画示意图如下,∵2a2+3ab+b2=a2+2ab+b2+a2+ab=(a+b)2+a(a+b)=(a+b)(a+b+a)=(a+b)(2a+b),∴所画长方形的长为2a+b,宽为a+b;故答案为:2a+b,a+b﹒三、解答题17.分解因式:(1)-18a3b2-45a2b3+9a2b2(2)5a3b(a-b)3-10a4b2(b-a)2解答:(1)-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.分解因式:(1)(x2+16y2)2-64x2y2(2)9(x-y)2-12x+12y+4解答:(1)(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.分解因式:(1)ac-bc-a2+2ab-b2(2)1-a2-4b2+4ab解答:(1)ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒解答:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒解答:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2?若能,请求所有满足条件的k的值;若不能,请说明理由﹒解答:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?解答:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒。

浙教版七年级下数学《第四章因式分解》单元检测试卷含答案 (2).doc

浙教版七年级下数学《第四章因式分解》单元检测试卷含答案 (2).doc

浙教版七年级下数学《第四章因式分解》单元检测试卷含答案第四章因式分解单元检测卷姓名: __________ 班级: __________题号一二三评分一、选择题(共11 题;每小题 3 分 ,共 33 分)1.代数式 15ax2﹣ 15a 与 10x2+20x+10 的公因式是()A. 5 ( x+1)B. 5a( x+1 )C. 5a( x﹣1)D. 5( x﹣ 1)2.下列因式分解完全正确的是()A. ﹣ 2a2+4a= ﹣ 2a( a+2)B. ﹣ 4x2﹣ y2=﹣( 2x+y )2C. a2﹣8ab+16b2=(a+4b)2D. 2x 2+xy ﹣ y2=( 2x﹣ y)( x+y )3.下列各式从左边到右边的变形是因式分解的是()A. (a + 1)(a-1)= a 2- 1B. a 2- 6a+ 9= (a- 3)2C. x2+2x+ 1 =x(x + 2)+ 1D. -18x 4y3=-6x 2 y2?3x2y4.下列各式能用完全平方公式进行分解因式的是()A. x 2+1B. x 2+2x ﹣1C. x 2+x+1D. x 2+4x+42)5.分解因式 a ﹣9a 的结果是(A. a( a﹣ 9)B. ( a﹣ 3)( a+3)C. ( a﹣ 3a)( a+3a)D. ( a﹣3)26.将 x2﹣ 16 分解因式正确的是()A. ( x﹣ 4)2B. ( x﹣4)( x+4)C. ( x+8 )( x﹣ 8)D. ( x﹣4)2+8x7.下列各组多项式没有公因式的是()A. 2x ﹣ 2y 与 y﹣xB. x 2﹣xy 与 xy﹣ x2C. 3x+y 与 x+3yD. 5x+10y 与﹣ 2y﹣ x8.已知 a 为实数,且a3+a2-a+2=0 ,则( a+1)2008+(a+1)2009+( a+1 )2010的值是()A. -3B. 3C. -1D. 19.下列式子中,从左到右的变形是因式分解的是()A. ( x﹣ 1)( x﹣ 1) =x 2﹣ 2x+1B. 4x 2﹣ 9y2 =( 2x﹣ 3y)( 2x+3y )C. x2+4x+4=x (x﹣ 4) +4D. x 2+y 2=( x+y )( x﹣y)10.分解因式- 2xy2 +6x3y2- 10xy 时,合理地提取的公因式应为()A. - 2xy 2B. 2xyC. - 2xyD. 2x 2y11.下列多项式在有理数范围内能用平方差公式进行因式分解的是()A. x 2+y 2B. ﹣ x2+y2C. ﹣ x2﹣ y2D. x 2﹣ 3y二、填空题(共10 题;共 40 分)2 212.若 x+y+z=2 , x ﹣( y+z) =8时, x﹣ y﹣ z=________.2y3z+9x 3y3z﹣ 6x 4yz2的公因式是 ________.13. 多项式﹣ 3x14. 计算:(﹣2)100+(﹣2)99=________15. 分解因式:18b( a﹣ b)2﹣ 12 (a﹣ b)3=________ .16. 如果 x﹣3 是多项式2x2﹣ 11x+m 的一个因式,则 m 的值 ________17. 多项式﹣ 5mx 3+25mx 2﹣ 10mx 各项的公因式是 ________.18.因式分解: xy 3﹣ x3y=________ .3 2 2 319.9x y +12x y中各项的公因式是________ .20.分解因式:9x3﹣ 18x2 +9x=________ .3 2 3 24 2 4 321.多项式 12x y z +18x y z ﹣ 30x yz各项的公因式是 ________ .三、解答题(共 3 题;共 27 分)22.因式分解:(1) x( x﹣ y)﹣ y( y﹣ x);(2) a2x2y﹣ axy2.23.我们知道,多项式a2+6a+9 可以写成( a+3)2的形式,这就是将多项式a2+6a+9 因式分解,当一个多项式(如 a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2 +6a+8=a2+6a+9﹣ 1=( a+3)2﹣ 1=[ ( a+3) +1][ ( a+3)﹣ 1]=( a+4)( a+2)请仿照上面的做法,将下列各式分解因式:(1) x2﹣ 6x﹣27(2) x2﹣ 2xy﹣ 3y 2.24.当 a 为何值时,多项式x2+7xy+ay 2﹣ 5x+43y ﹣ 24 可以分解为两个一次因式的乘积.参考答案一、选择题A DB D A BCD B C B二、填空题12. 42 99 2)13. ﹣ 3x yz 14. 2 15. 6( a﹣ b)( 3﹣ 2a+2b16. 15 17. 5mx 18. xy ( x+y )( x﹣ y)19. 2 220. 9x ( x﹣ 1)2 2 23x y 21. 6x yz三、解答题22.解:( 1) x( x﹣ y)﹣ y( y﹣ x)=x ( x﹣ y) +y ( x﹣ y)=( x+y )( x﹣ y);(2) a2x2y﹣ axy2=axy( ax﹣ y)23.解:( 1)原式 =x 2﹣6x+9 ﹣ 36=( x﹣ 3)2﹣ 36= ( x﹣ 3+6 )( x﹣ 3﹣ 6)=( x+3 )( x﹣ 9);( 2)原式 =x 2﹣ 2xy+y 2﹣4y2=( x﹣ y)2﹣4y2=( x﹣ y+2y )( x﹣ y﹣ 2y )=( x+y )( x﹣ 3y ).24. 解:多项式的第一项是x2,因此原式可分解为:(x+ky+c )( x+ly+d ),∵( x+ky+c )( x+ly+d )=x 2+( k+l ) xy+kly 2+( c+d) x+ ( cl+dk ) y+cd,∴cd=﹣ 24,c+d= ﹣ 5,∴c=3, d=﹣8,∵cl+dk=43 ,∴ 3l ﹣8k=43 ,∵k+l=7 ,∴k= ﹣ 2,l=9 ,∴a=kl= ﹣ 18,.即当 a=﹣ 18 时,多项式x2+7xy+ay 2﹣ 5x+43y ﹣24 可以分解为两个一次因式的乘积.。

七年级数学下册第4章因式分解检测卷(新版)浙教版

七年级数学下册第4章因式分解检测卷(新版)浙教版

如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!第4章检测卷(时间:90分钟满分:100分)一、选择题(共10小题,每小题3分,共30分)1. 下列多项式中,能够因式分解的是()A.x²-4y B.x²-xy+y² C.x²+y² D.x²+2xA2. 下列式子从左到右变形是因式分解的是()A.a²+4a-21=a(a+4)-21 B.a²+4a-21=(a-3)(a+7)C.(a-3)(a+7)=a²+4a-21 D.a²+4a-21=(a+2)2-253. 把代数式2x3-18x因式分解,结果正确的是()A. 2x(x2-9) B. 2x(x-3)²C. 2x(x+3)(x-3) D. 2x(x+9)(x-9)4. 下列各式是完全平方式的是()A. x²-xB. 1+x²C. x+xy+1D. x²+2x-15. 下列多项式能用平方差公式分解因式的是()A.4x²+y² B.-4x2-y² C.-4x²+y² D.-4x+y²6.若a-b=5,ab=24,则ab²-a²b的值为() A. 19 B. 120 C. 29 D. -1207. 下列因式分解中,正确的有()①4a-a³b²=a(4-a²b²)②x²y-2xy²+xy=xy(x-2y)③-a+ab-ac=-a(a-b-c)④9abc-6a2b=3abc(3-2a)⑤ x²y+ xy²= xy(x+y)A. 0个B. 1个C. 2个D. 5个8.下列等式中,能用右图解释因式分解正确的是()A.x²+3xy+2y²=(x+y)(x+2y) B.x²+3xy+3y²=(x+y)(x+3y)C.(x+y)(x+2y)=x²+2xy-2y² D.(x+y)(x-2y)=x²-2xy+3y²9. 不论a为何实数,代数式a²+4a+5的值一定是()A.正数 B.负数 C.零 D.不能确定10. 利用因式分解计算:16220-15220=()A. 1B. 2C.16220D.15220二、填空题(共8小题,每小题3分,共24分)11. 多项式3x3y4+12x2y的公因式是 .12. 分解因式:2x2-12xy+18y 2= .13. 多项式x2+mx+5因式分解得(x+5)(x+n),则m= ,n= .14. 如果m=1008,n=1007,那么代数式m2-n2的值是.15. 已知正方形的面积为9x2+30xy+25y2(x>0,y>0),利用因式分解,可以求出正方形的边长为 .16.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a-b的值是.17. 若x2+y2-4x+6y+13=0,则2x+3y的值为.18. 要使二次三项式x2-2x+m在整数范围内能进行因式分解,那么整数m可取的值是(写出两个符号条件的即可).三、解答题(共6小题,共46分)19. (8分)分解因式:(1)3a³-6a²+3a;(2)a²(x-y)+b²(y-x);(3)81(a+b)²-25(a-b)²;(4)m²-2m+mn-2n.20. (6分)利用分解因式计算:(1)5×78²-22²×5;(2)2016²-403²×1016+1016².21. (6分)对于任意自然数n,(n+7)²-(n-5)²能否被24整除,为什么?22. (8分)已知a+b=5,ab=3,求:(1)a²b+ab²;(2)a²+b².23.(8分)给出三个多项式:①2x2+4x-4;②2x2+12x+4;③2x2-4x,请把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.24.(10 分)(1)如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,则阴影部分的面积为(写成两数平方差的形式);若将图1中的剩余纸片沿线段AB 剪开,再把剪成的两张纸片拼成如图2的长方形,则长方形的面积是(写成两个多项式相乘的形式);比较两图阴影部分的面积,可以得到一个公式:.(2)由此可知,通过图形的拼接可以验证一些等式.现在给你两张边长为a的正方形纸片、三张长为a宽为b的长方形纸片和一张边长为b的正方形纸片(如图3所示),请你用这些纸片拼出一个长方形(所给纸片要用完),并写出它所验证的等式:.参考答案一、1—5. DBCAC 6—10. DBAAC二、11. 3x2y 12. 2(x-3y)2 13. 6 1 14. 2015 15. 3x+5y16. -317. -5 18. 1,-3,-8三、19. (1)3a(a-1)2;(2)(x-y)(a+b)(a-b );(3)4(2a+7b)(7a+2b);(4)(m-2)∙(m+n)20. (1)28000 (2)100 000021. (n+7 )2-(n-5)2=[(n+7)+(n-5)][(n+7)-(n-5)]=(2n+2)×12=2(n+1)×12=24(n+1),∴(n+7)2-(n-5 )2能被24整除.22. (1)a2b+ab2=ab(a+b)=3×5=15(2)a2+b2=(a+b)2-2ab=52-2×3=1923. ①+②,2x2+4x-4+2x2+12x+4=4x2+16x=4x(x+4)①+③,2x2+4x-4+2x2-4x=4x2-4=4(x+1)(x-1)②+③,2x2+12x+4+2x2-4x=4x2+8x+4=4(x+1)224. (1)a2-b2 (a+b)(a-b)(a+b)(a-b)=a2-b2(2)画图:(第24题答图)(2a+b)(a+b)=2a²+3ab+b²。

浙教版七年级下册数学第四章 因式分解单元测试卷及答案

浙教版七年级下册数学第四章 因式分解单元测试卷及答案

浙教版初中数学七年级下册第四章因式分解单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各式属于因式分解的是()A.(3x+1)(3x﹣1)=9x2﹣1B.x2﹣2x+4=(x﹣2)2C.a4﹣1=(a2+1)(a+1)(a﹣1)D.9x2﹣1+3x=(3x+1)(3x﹣1)+3x2.(3分)下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣63.(3分)若多项式﹣6ab+18abx+24aby的一个因式是﹣6ab,那么另一个因式是()A.1﹣3x﹣4y B.﹣1﹣3x﹣4y C.1+3x﹣4y D.﹣1﹣3x+4y4.(3分)若(a﹣b﹣2)2+|a+b+3|=0,则a2﹣b2的值是()A.﹣1B.1C.6D.﹣65.(3分)若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2B.1C.﹣2D.﹣16.(3分)下列各式:①4x2﹣y2;②2x4+8x3y+8x2y2;③a2+2ab﹣b2;④x2+xy﹣6y2;⑤x2+2x+3其中不能分解因式的有()A.1个B.2个C.3个D.4个7.(3分)多项式x2+7x﹣18因式分解的结果是()A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)8.(3分)把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是()A.(4x2﹣y)﹣(2x+y2)B.(4x2﹣y2)﹣(2x+y)C.4x2﹣(2x+y2+y)D.(4x2﹣2x)﹣(y2+y)9.(3分)下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣110.(3分)已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.3二.填空题(共6小题,满分24分,每小题4分)11.(4分)多项式15m3n2+5m2n﹣20m2n的公因式是.12.(4分)已知x+y=8,xy=2,则x2y+xy2=.13.(4分)若多项式x2﹣mx﹣21可以分解为(x+3)(x﹣7),则m=.14.(4分)通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:a2+3ab+2b2=.15.(4分)因式分解:a2b2﹣a2﹣b2+1=.16.(4分)已知a2+a﹣1=0,则a3+2a2+2018=.三.解答题(共8小题,满分66分)17.(6分)把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),求c.18.(6分)已知ab2=﹣1,求(﹣ab)(a3b7﹣ab3﹣b)的值?19.(8分)分解因式:(1)x2y﹣9y;(2)﹣m2+4m﹣4.20.(8分)已知x+y=8,xy=12,求:①x2y+xy2;②x2﹣xy+y2;③x﹣y的值.21.(8分)阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.22.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23.(10分)(1)请用两种不同的方法列代数式表示图1的面积方法1,方法2;(2)若a+b=7,ab=15,根据(1)的结论求a2+b2的值;(3)如图2,将边长为x和x+2的长方形,分成边长为x的正方形和两个宽为1的小长方形,并将这三个图形拼成图3,这时只需要补一个边长为1的正方形便可以构成一个大正方形.①若一个长方形的面积是216,且长比宽大6,求这个长方形的宽.②把一个长为m,宽为n的长方形(m>n)按上述操作,拼成一个在一角去掉一个小正方形的大正方形,则去掉的小正方形的边长为.24.(10分)若一个正整数a可以表示为连续的两个奇数的平方差的形式,如:8=32﹣12,16=52﹣32,24=72﹣52,……,我们则称形如8,16,24这样的正整数a为“奇特数”.(1)请写出最小的三位“奇特数”,并表示成连续的两个奇数的平方差的形式;(2)求证:任意一个“奇特数”都是8的倍数;(3)若一个三位数b为“奇特数”,其百位和个位上的数字相同,十位上的数字比个位上的数字大m(m为正整数),求满足条件的所有三位“奇特数”.参考答案一.选择题(共10小题,满分30分,每小题3分)1.C2.B3.A4.D5.A6.B7.D8.B9.D10.D 二.填空题(共6小题,满分24分,每小题4分)11.5m2n12.1613.414.(a+2b)(a+b)15.(a+1)(a﹣1)(b+1)(b﹣1)16.2019三.解答题(共8小题,满分66分)17.解:(x+1)(x+2)=x2+3x+2,∴c=2.18.解:原式=﹣a4b8+a2b4+ab2=﹣(ab2)4+(ab2)2+ab2,当ab2=﹣1时,原式=﹣(﹣1)3+(﹣1)2﹣1=1.19.解:(1)原式=y(x2﹣32)=y(x+3)(x﹣3).(2)原式=﹣(m2﹣4m+4)=﹣(m﹣2)2.20.解:①∵x+y=8,xy=12,∴原式=xy(x+y)=96;②∵x+y=8,xy=12,∴原式=(x+y)2﹣3xy=64﹣36=28;③(x﹣y)2=(x+y)2﹣4xy=64﹣48=16,∴x﹣y=±4.21.解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)22.解:(1)∵(x2﹣4x+4)2=(x﹣2)4,∴该同学因式分解的结果不彻底.(2)设x2﹣2x=y原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2﹣2x+1)2=(x﹣1)4.故答案为:不彻底.23.解:(1)方法1,图1可看作是边长为(a+b)的正方形面积,即(a+b)2方法2,图1可看作是边长分别为a和b的2个正方形面积加上2个长为a宽为b的矩形面积,即a2+2ab+b2故答案为:(a+b)2;a2+2ab+b2(2)∵a+b=7∴(a+b)2=49,即a2+2ab+b2=49又∵ab=15∴a2+b2=49﹣2ab=19故答案为:19(3)①设宽为x,由题意可得:(x+3)2=216+32因为x>0,解得x=12.故答案为:12②由题可知:去掉小正方形的边长是原长方形长与宽差的一半故答案为:24.(1)解:最小的三位奇特数是:104104=(2)证明:设m=∵m=8k+8∴m =8(k +1)∴r 任意一个“奇特数”都是8的倍数(3)设个位上的数字为:x ,则十位数字为:(m +x ),百位数字为:x 则b =100x +10(m +x )+x =100x +10m +10x +x =111x +10m ∵b 为奇特数∴b 是8的倍数=13x +m +又∵ 是整数 ∴也是整数且1≤x <10,1≤(x +m )<10∴,,(舍),(舍)(舍)∴b 的值为:232 464 696。

浙教版七下数学第四章《因式分解》单元培优测试题

浙教版七下数学第四章《因式分解》单元培优测试题
最新浙教版初中数学七年级下册第四章《因式分解》
单元培优测试题及答案
考试时间:120 分钟 满分:120 分
一、选择题(本大题有 10 小题,每小题 3 分,共 30 分) 下面每小题给出的四个选项中,只有一个是正确的.
1.下列由左到右的变形,属于因式分解的是( )
A. (x+2)(x-2)=x2-4
一、单选题 1、 C 2、 A 3、 D 6、 D 7、C 8、 B 二、填空题 11、 8ab 12、 (a+b)(a-3b)
4、 A 9、 D
答案
5、 A 10、C
13、
14、3 15、0 16、1 三、简答题 17、解:(1)﹣8a2b+2a3+8ab2=2a(﹣4ab+a2+4b2)=2a(a﹣2b)2; (2)(x+y)2+2(x+y)+1=(x+y+1)2; (3)x2(x﹣y)+(y﹣x)=x2(x﹣y)﹣(x﹣y)=(x﹣y)(x+1)(x﹣1); (4)x2﹣2xy+y2﹣9=(x﹣y)2﹣32=(x﹣y﹣3)(x﹣y+3).
B. x2+4x-2=x(x+4)-2
C. x2-4=(x+2)(x-2)
D. x2-4+3x=(x+2)(x-2)+3x
2.多项式①2x2﹣x,②(x﹣1)2﹣4(x﹣1)+4,③(x+1)2﹣4x(x+1)+4,④﹣4x2﹣1+4x;分解
因式后,结果含有相同因式的是( )
A. ①④
B. ①②
C. ③④
D. ②③
3.当 a,b 互为相反数时,代数式 a2+ab﹣4 的值为( )

浙教版初中数学七年级下册《第4章 因式分解》单元测试卷

浙教版初中数学七年级下册《第4章 因式分解》单元测试卷

浙教新版七年级下学期《第4章因式分解》单元测试卷一.选择题(共20小题)1.多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0B.10C.12D.222.将3x(a﹣b)﹣9y(b﹣a)因式分解,应提的公因式是()A.3x﹣9y B.3x+9y C.a﹣b D.3(a﹣b)3.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)4.a、b、c是三角形的三条边长,则代数式a2﹣2ab+b2﹣c2的值()A.大于零B.小于零C.等于零D.与零的大小无关5.如果257+513能被n整除,则n的值可能是()A.20B.30C.35D.406.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+97.已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a2+b2+c2﹣ab﹣bc﹣ca的值为()A.0B.1C.2D.38.分解因式(2x+3)2﹣x2的结果是()A.3(x2+4x+3)B.3(x2+2x+3)C.(3x+3)(x+3)D.3(x+1)(x+3)9.计算(﹣2)100+(﹣2)99的结果是()A.2B.﹣2C.﹣299D.29910.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1B.b=﹣6,c=2C.b=﹣6,c=﹣4D.b=﹣4,c =﹣611.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个12.多项式15m3n2+5m2n﹣20m2n3的公因式是()A.5mn B.5m2n2C.5m2n D.5mn213.若x2﹣4x+3与x2+2x﹣3的公因式为x﹣c,则c之值为何?()A.﹣3B.﹣1C.1D.314.如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4B.5C.6D.815.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1B.a2+aC.a2+a﹣2D.(a+2)2﹣2(a+2)+116.下列因式分解正确的是()A.a4b﹣6a3b+9a2b=a2b(a2﹣6a+9)B.x2﹣x+=(x﹣)2C.x2﹣2x+4=(x﹣2)2D.4x2﹣y2=(4x+y)(4x﹣y)17.把多项式4x2y﹣4xy2﹣x3分解因式的结果是()A.4xy(x﹣y)﹣x3B.﹣x(x﹣2y)2C.x(4xy﹣4y2﹣x2)D.﹣x(﹣4xy+4y2+x2)18.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1B.x+1C.x2﹣1D.(x﹣1)2 19.下列二次三项式在实数范围内不能因式分解的是()A.6x2+x﹣15B.3y2+7y+3C.x2﹣2x﹣4D.2y2﹣4y+5 20.如图,长方形的长、宽分别为a、b,且a比b大5,面积为10,则a2b﹣ab2的值为()A.60B.50C.25D.15二.填空题(共10小题)21.设a=192×918,b=8882﹣302,c=10532﹣7472,则数a,b,c按从小到大的顺序排列,结果是<<.22.如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8=.23.分解因式:a4﹣4a3+4a2﹣9=.24.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n=.25.已知a+b=2,则a2﹣b2+4b的值为.26.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.27.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=.28.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2=.29.分解因式:a4﹣16a2=.30.在实数范围内因式分解:2x2﹣3x﹣4=.三.解答题(共20小题)31.设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).32.当a为何值时,多项式x2+7xy+ay2﹣5x+43y﹣24可以分解为两个一次因式的乘积.33.阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),②∴c2=a2+b2,③∴△ABC为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号;(2)该步正确的写法应是;(3)本题正确的结论应是.34.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数.例如=213时,则:21336(23+13+33=36)243(33+63=243).数字111经过三次“F”运算得,经过四次“F”运算得,经过五次“F”运算得,经过2016次“F”运算得.(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).35.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.36.分解因式:3x2﹣11xy+6y2﹣xz﹣4yz﹣2z2.37.把下列各式分解因式:(1)(a2+a+1)(a2﹣6a+1)+12a2;(2)(2a+5)(a2﹣9)(2a﹣7)﹣91;(3);(4)(x4﹣4x2+1)(x4+3x2+1)+10x4;(5)2x3﹣x2z﹣4x2y+2xyz+2xy2﹣y2z.38.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=.(2)因式分解:(a+b)(a+b﹣4)+4(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.39.观察并验证下列等式:13+23=(1+2)2=9,13+23+33=(1+2+3)2=36,13+23+33+43=(1+2+3+4)2=100,(1)续写等式:13+23+33+43+53=;(写出最后结果)(2)我们已经知道1+2+3+…+n=n(n+1),根据上述等式中所体现的规律,猜想结论:13+23+33+…+(n﹣1)3+n3=;(结果用因式乘积表示)(3)利用(2)中得到的结论计算:①33+63+93+…+573+603②13+33+53+…+(2n﹣1)3(4)试对(2)中得到的结论进行证明.40.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.41.已知A=a+2,B=a2﹣a+5,C=a2+5a﹣19,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.42.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9),另一位同学因看错了常数项而分解成2(x﹣2)(x﹣4),请将原多项式分解因式.43.简便计算:①1.992+1.99×0.01②20132+2013﹣20142.44.分解因式:(1)2x2﹣7x+3(2)(x2+2x)2﹣7(x2+2x)﹣8(3)x2+2x﹣15﹣ax﹣5a.45.给出三个多项式:①2x2+4x﹣4;②2x2+12x+4;③2x2﹣4x请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.46.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+7x﹣18=启发应用(2)利用因式分解法解方程:x2﹣6x+8=0;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是.47.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)48.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.49.将下列各式因式分解:(1)x2﹣9(2)﹣3ma2+12ma﹣9m(3)4x2﹣3y(4x﹣3y)(4)(a+2b)2+2(a+2b﹣1)+3.50.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.浙教新版七年级下学期《第4章因式分解》单元测试卷参考答案与试题解析一.选择题(共20小题)1.多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0B.10C.12D.22【分析】首先利用十字交乘法将77x2﹣13x﹣30因式分解,继而求得a,b,c的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选:C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).2.将3x(a﹣b)﹣9y(b﹣a)因式分解,应提的公因式是()A.3x﹣9y B.3x+9y C.a﹣b D.3(a﹣b)【分析】原式变形后,找出公因式即可.【解答】解:将3x(a﹣b)﹣9y(b﹣a)=3x(a﹣b)+9y(a﹣b)因式分解,应提的公因式是3(a﹣b).故选:D.【点评】此题考查了因式分解﹣提取公因式法,熟练掌握分解因式的方法是解本题的关键.3.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)【分析】首先提取公因式a,进而利用十字相乘法分解因式得出即可.【解答】解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故选:A.【点评】此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.4.a、b、c是三角形的三条边长,则代数式a2﹣2ab+b2﹣c2的值()A.大于零B.小于零C.等于零D.与零的大小无关【分析】根据三角形中任意两边之和大于第三边.把代数式a2﹣2ab+b2﹣c2分解因式就可以进行判断.【解答】解:a2﹣2ab+b2﹣c2=(a﹣b)2﹣c2=(a+c﹣b)[a﹣(b+c)].∵a,b,c是三角形的三边.∴a+c﹣b>0,a﹣(b+c)<0.∴a2﹣2ab+b2﹣c2<0.故选:B.【点评】此题考查了利用完全平方公式配方,利用平方差公式因式分解,三角形的三边关系,利用完全平方公式配方整理成两个因式乘积的形式是解题的关键.5.如果257+513能被n整除,则n的值可能是()A.20B.30C.35D.40【分析】先把把257转化成514,再提取公因式513,最后把513化成512×5,即可求出答案.【解答】解:257+513=514+513=513×(5+1)=513×6=512×30,则n的值可能是30;故选:B.【点评】此题考查了因式分解的应用,解题的关键是把257转化成514,再提取公因式进行因式分解即可.6.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.7.已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a2+b2+c2﹣ab﹣bc﹣ca的值为()A.0B.1C.2D.3【分析】先求出(a﹣b)、(b﹣c)、(a﹣c)的值,再把所给式子整理为含(a﹣b)2,(b﹣c)2和(a﹣c)2的形式,代入求值即可.【解答】解:∵a=2002x+2003,b=2002x+2004,c=2002x+2005,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=×(1+1+4),=3.故选:D.【点评】本题主要考查公式法分解因式,达到简化计算的目的,对多项式扩大2倍是利用完全平方公式的关键.8.分解因式(2x+3)2﹣x2的结果是()A.3(x2+4x+3)B.3(x2+2x+3)C.(3x+3)(x+3)D.3(x+1)(x+3)【分析】直接利用平方差公式分解因式,进而得出答案.【解答】解:(2x+3)2﹣x2=(2x+3﹣x)(2x+3+x)=(x+3)(3x+3)=3(x+3)(x+1).故选:D.【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.9.计算(﹣2)100+(﹣2)99的结果是()A.2B.﹣2C.﹣299D.299【分析】根据提公因式法,可得负数的奇数次幂,根据负数的奇数次幂是负数,可得答案.【解答】解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299,故选:D.【点评】本题考查了因式分解,提公因式法是解题关键,注意负数的奇数次幂是负数,负数的偶数次幂是正数.10.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1B.b=﹣6,c=2C.b=﹣6,c=﹣4D.b=﹣4,c =﹣6【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:由多项式2x2+bx+c分解因式为2(x﹣3)(x+1),得2x2+bx+c=2(x﹣3)(x+1)=2x2﹣4x﹣6.b=﹣4,c=﹣6,故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.11.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个【分析】分别利用完全平方公式分解因式得出即可.【解答】解:①x2﹣10x+25=(x﹣5)2,不符合题意;②4a2+4a﹣1不能用完全平方公式分解;③x2﹣2x﹣1不能用完全平方公式分解;④=﹣(m2﹣m+)=﹣(m﹣)2,不符合题意;⑤不能用完全平方公式分解.故选:C.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.12.多项式15m3n2+5m2n﹣20m2n3的公因式是()A.5mn B.5m2n2C.5m2n D.5mn2【分析】找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:多项式15m3n2+5m2n﹣20m2n3中,各项系数的最大公约数是5,各项都含有的相同字母是m、n,字母m的指数最低是2,字母n的指数最低是1,所以它的公因式是5m2n.故选:C.【点评】本题考查了公因式的确定,熟练掌握找公因式有三大要点是求解的关键.13.若x2﹣4x+3与x2+2x﹣3的公因式为x﹣c,则c之值为何?()A.﹣3B.﹣1C.1D.3【分析】首先将原式分解因式,进而得出其公因式即可.【解答】解:∵x2﹣4x+3=(x﹣1)(x﹣3)与x2+2x﹣3=(x﹣1)(x+3),∴公因式为x﹣c=x﹣1,故c=1.故选:C.【点评】此题主要考查了分解因式的应用,正确分解因式是解题关键.14.如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4B.5C.6D.8【分析】先把12分成2个因数的积的形式,共有6总情况,所以对应的p值也有6种情况.【解答】解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选:C.【点评】主要考查了分解因式的定义,要熟知二次三项式的一般形式与分解因式之间的关系:x2+(m+n)x+mn=(x+m)(x+n),即常数项与一次项系数之间的等量关系.15.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1B.a2+aC.a2+a﹣2D.(a+2)2﹣2(a+2)+1【分析】先把各个多项式分解因式,即可得出结果.【解答】解:∵a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;故选:C.【点评】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.16.下列因式分解正确的是()A.a4b﹣6a3b+9a2b=a2b(a2﹣6a+9)B.x2﹣x+=(x﹣)2C.x2﹣2x+4=(x﹣2)2D.4x2﹣y2=(4x+y)(4x﹣y)【分析】原式各项分解得到结果,即可做出判断.【解答】解:A、原式=a2b(a2﹣6a+9)=a2b(a﹣3)2,错误;B、原式=(x﹣)2,正确;C、原式不能分解,错误;D、原式=(2x+y)(2x﹣y),错误,故选:B.【点评】此题考查了因式分解﹣运用公式法,以及提公因式法,熟练掌握因式分解的方法是解本题的关键.17.把多项式4x2y﹣4xy2﹣x3分解因式的结果是()A.4xy(x﹣y)﹣x3B.﹣x(x﹣2y)2C.x(4xy﹣4y2﹣x2)D.﹣x(﹣4xy+4y2+x2)【分析】先提公因式﹣x,再运用完全平方公式进行分解即可得到答案.【解答】解:4x2y﹣4xy2﹣x3=﹣x(x2﹣4xy+4y2)=﹣x(x﹣2y)2,故选:B.【点评】本题考查的是因式分解的知识,掌握提公因式法和公式法进行因式分解是解题的关键.18.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1B.x+1C.x2﹣1D.(x﹣1)2【分析】分别将多项式mx2﹣m与多项式x2﹣2x+1进行因式分解,再寻找它们的公因式.【解答】解:mx2﹣m=m(x﹣1)(x+1),x2﹣2x+1=(x﹣1)2,多项式mx2﹣m与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.【点评】本题主要考查公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式.19.下列二次三项式在实数范围内不能因式分解的是()A.6x2+x﹣15B.3y2+7y+3C.x2﹣2x﹣4D.2y2﹣4y+5【分析】利用一元二次方程根的判别式判断即可.【解答】解:6x2+x﹣15=0△=1+4×6×15=361>0,A在实数范围内能因式分解;3y2+7y+3=0△=49﹣4×3×3=13>0,B在实数范围内能因式分解;x2﹣2x﹣4=0△=4+4×1×4=20>0,C在实数范围内能因式分解;2y2﹣4y+5=0△=16y2﹣4×2×5y2=﹣24y2<0,D在实数范围内不能因式分解;故选:D.【点评】本题考查的是二次三项式的因式分解,掌握一元二次方程的解法是解题的关键.20.如图,长方形的长、宽分别为a、b,且a比b大5,面积为10,则a2b﹣ab2的值为()A.60B.50C.25D.15【分析】直接利用提取公因式法分解因式,进而得出把已知代入即可.【解答】解:由题意可得:a﹣b=5,ab=10,则a2b﹣ab2=ab(a﹣b)=50.故选:B.【点评】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.二.填空题(共10小题)21.设a=192×918,b=8882﹣302,c=10532﹣7472,则数a,b,c按从小到大的顺序排列,结果是a<c<b.【分析】运用平方差公式进行变形,把其中一个因数化为918,再比较另一个因数,另一个因数大的这个数就大.【解答】解:a=192×918=361×918,b=8882﹣302=(888﹣30)×(888+30)=858×918,c=10532﹣7472=(1053+747)×(1053﹣747)=1800×306=600×918,所以a<c<b.故答案为:a<c<b.【点评】本题主要考查了因式分解的应用,解题的关键是运用平方差公式进行化简得出一个因数为918.22.如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8=0.【分析】4项为一组,分成2组,再进一步分解因式求得答案即可.【解答】解:∵1+a+a2+a3=0,∴a+a2+a3+a4+a5+a6+a7+a8,=a(1+a+a2+a3)+a5(1+a+a2+a3),=0+0,=0.故答案是:0.【点评】此题考查利用因式分解法求代数式的值,注意合理分组解决问题.23.分解因式:a4﹣4a3+4a2﹣9=(a﹣3)(a+1)(a2﹣2a+3).【分析】本题有a的四次项、a的三次项,a的二次项,有常数项,所以首要考虑的就是三一分组,前三项提取公因式后可以利用完全平方公式分解因式,然后还可以与第四项继续利用平方差公式分解因式.【解答】解:a4﹣4a3+4a2﹣9,=(a4﹣4a3+4a2)﹣9,=a2(a﹣2)2﹣32,=(a2﹣2a﹣3)(a2﹣2a+3),=(a﹣3)(a+1)(a2﹣2a+3).【点评】本题考查了分组分解法,十字相乘法分解因式,难点是采用两两分组还是三一分组,要考虑分组后还能进行下一步分解,利用平方差公式分解后还要继续利用十字相乘法分解因式,注意分解因式要彻底.24.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n=4.【分析】利用多项式乘法去括号,得出关于n的关系式进而求出n的值.【解答】解:∵x2+x+m=(x﹣3)(x+n),∴x2+x+m=x2+(n﹣3)x﹣3n,故n﹣3=1,解得:n=4.故答案为:4.【点评】此题主要考查了多项式乘以多项式,正确去括号得出是解题关键.25.已知a+b=2,则a2﹣b2+4b的值为4.【分析】把所给式子整理为含(a+b)的式子的形式,再代入求值即可.【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.【点评】本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b的形式是求解本题的关键,同时还隐含了整体代入的数学思想.26.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为﹣2或8.【分析】利用完全平方公式的特征判断即可求出m的值.【解答】解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式,∴2(3﹣m)=±10解得:m=﹣2或8.故答案为:﹣2或8.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.27.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=15.【分析】由题意分析a,b是相互独立的,互不影响的,在因式分解中,b决定因式的常数项,a决定因式含x的一次项系数;利用多项式相乘的法则展开,再根据对应项系数相等即可求出ab的值.【解答】解:分解因式x2+ax+b,甲看错了b,但a是正确的,他分解结果为(x+2)(x+4)=x2+6x+8,∴a=6,同理:乙看错了a,分解结果为(x+1)(x+9)=x2+10x+9,∴b=9,因此a+b=15.故答案为:15.【点评】此题考查因式分解与多项式相乘是互逆运算,利用对应项系数相等是求解的关键.28.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2=(a+b)(a+b+c).【分析】首先进行合理分组,然后运用提公因式法和公式法进行因式分解.【解答】解:原式=(a2+2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c).故答案为(a+b)(a+b+c).【点评】此题考查了因式分解法,要能够熟练运用分组分解法、提公因式法和完全平方公式.29.分解因式:a4﹣16a2=a2(a+4)(a﹣4).【分析】先提取公因式a2,再对余下的多项式利用平方差公式继续因式分解.【解答】解:a4﹣16a2,=a2(a2﹣16),=a2(a+4)(a﹣4).故答案为:a2(a+4)(a﹣4).【点评】本题考查了提公因式法与公式法分解因式,注意提取公因式后还可以利用平方差公式继续分解因式,因式分解一定要彻底.30.在实数范围内因式分解:2x2﹣3x﹣4=2(x﹣)(x﹣).【分析】令原式为0求出x的值,即可确定出因式分解的结果.【解答】解:令2x2﹣3x﹣4=0,这里a=2,b=﹣3,c=﹣4,∵△=16+8=41,∴x=,则2x2﹣3x﹣4=2(x﹣)(x﹣),故答案为:2(x﹣)(x﹣).【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.三.解答题(共20小题)31.设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).【分析】(1)利用平方差公式,将(2n+1)2﹣(2n﹣1)2化简,可得结论;(2)理解完全平方数的概念,通过计算找出规律.【解答】解:(1)∵a n=(2n+1)2﹣(2n﹣1)2=4n2+4n+1﹣4n2+4n﹣1=8n,(3分)又n为非零的自然数,∴a n是8的倍数.(4分)这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数(5分)说明:第一步用完全平方公式展开各(1),正确化简(1分).(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.(7分)n为一个完全平方数的2倍时,a n为完全平方数(8分)说明:找完全平方数时,错一个扣(1),错2个及以上扣(2分).【点评】本题考查了公式法分解因式,属于结论开放性题目,通过一系列的式子,找出一般规律,考查了同学们的探究发现的能力.32.当a为何值时,多项式x2+7xy+ay2﹣5x+43y﹣24可以分解为两个一次因式的乘积.【分析】设原式可分解为(x+ky+c)(x+ly+d),展开后得出x2+(k+l)xy+kly2+(c+d)x+(cl+dk)y+cd,推出cd=﹣24,c+d=﹣5,cl+dk=43,k+l=7,a =kl,求出即可.【解答】解:多项式的第一项是x2,因此原式可分解为:(x+ky+c)(x+ly+d),∵(x+ky+c)(x+ly+d)=x2+(k+l)xy+kly2+(c+d)x+(cl+dk)y+cd,∴cd=﹣24,c+d=﹣5,∴c=3,d=﹣8,∵cl+dk=43,∴3l﹣8k=43,∵k+l=7,∴k=﹣2,l=9,∴a=kl=﹣18,.即当a=﹣18时,多项式x2+7xy+ay2﹣5x+43y﹣24可以分解为两个一次因式的乘积.【点评】本题考查了因式分解的意义的应用,解此题的关键是根据题意得出cd =﹣24,c+d=﹣5,cl+dk=43,k+l=7,a=kl,题目比较好,但是一道比较容易出错的题目.33.阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),②∴c2=a2+b2,③∴△ABC为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号③;(2)该步正确的写法应是当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;(3)本题正确的结论应是△ABC为直角三角形或等腰三角形或等腰直角三角形.【分析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以a2﹣b2,没有考虑a2﹣b2是否为0;(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【解答】解:(1)上述解题过程,从第③步开始出现错误;(2)正确的写法为:c2(a2﹣b2)=(a2+b2)(a2﹣b2),移项得:c2(a2﹣b2)﹣(a2+b2)(a2﹣b2)=0,因式分解得:(a2﹣b2)[c2﹣(a2+b2)]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.故答案为:(1)③;(2)当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.【点评】此题考查了因式分解的应用,勾股定理的逆定理,以及等腰三角形的判定,找出阅读材料中解题过程中的错误是解本题的关键.34.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数.例如=213时,则:21336(23+13+33=36)243(33+63=243).数字111经过三次“F”运算得351,经过四次“F”运算得153,经过五次“F”运算得153,经过2016次“F”运算得153.(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).【分析】(1)根据“F运算”的定义得到111经过三次“F运算”的结果,经过四次“F运算”的结果,经过五次“F运算”的结果,经过2016次“F运算”的结果即可;(2)首先根据题意可设a+b+c+d=3e,则此四位数1000a+100b+10c+d可表示为999a+99b+9c+a+b+c+d,即3(333a+33b+3c)+3e,所以可得这个四位数就可以被3整除.【解答】(1)解:1113(13+13+13=3)27(33=27)351(23+73=351)153(33+53+13=153)153(13+53+33=153)153(33+53+13=153).故数字111经过三次“F”运算得351,经过四次“F”运算得153,经过五次“F”运算得153,经过2016次“F”运算得153.(2)证明:设a+b+c+d=3e(e为整数),这个四位数可以写为:1000a+100b+10c+d,∴1000a+100b+10c+d=999a+99b+9c+a+b+c+d=3(333a+33b+3c)+3e,∴=333a+33b+3c+e,∵333a+33b+3c+e是整数,∴1000a+100b+10c+d可以被3整除.故答案为:351,153,153,153.【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想是解决这类问题的方法.同时考查了数的整除性问题.注意四位数的表示方法与整体思想的应用.35.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.【分析】(1)加1再减1,可以组成完全平方式;(2)①加2ab再减2ab可以组成完全平方式;②在①得基础上,加2a2b2再减2a2b2,可以组成完全平方式;(3)把所给的代数式进行配方,然后比较即可.【解答】解:(1)a2﹣6a+8,=a2﹣6a+9﹣1,=(a﹣3)2﹣1,=(a﹣3﹣1)(a﹣3+1),=(a﹣2)(a﹣4);(2)a2+b2,=(a+b)2﹣2ab,=52﹣2×6,=13;(2分)a4+b4=(a2+b2)2﹣2a2b2,=132﹣2×62,=97;(2分)(3)∵x2﹣4x+5,=x2﹣4x+4+1,=(x﹣2)2+1≥1>0(2分)﹣x2+4x﹣4,=﹣(x2﹣4x+4),=﹣(x﹣2)2≤0(2分)∴x2﹣4x+5>﹣x2+4x﹣4.(1分)(若用”作差法”相应给分)【点评】本题考查十字相乘法分解因式,三道题都是围绕配方法作答,配方法是数学习题里经常出现的方法,应熟练掌握,(1)实质上是十字相乘法分解因式.36.分解因式:3x2﹣11xy+6y2﹣xz﹣4yz﹣2z2.【分析】多项式项数较多,不可能分组后有公因式或者分组后能用公式,考虑十字相乘法.由于3x2﹣xz﹣2z2、3x2﹣11xy+6y2、6y2﹣4yz﹣2z2能因式分解,先把它们分组分解,再和6y2、﹣2z2、3x2十字相乘.【解答】解:原式=(3x2﹣xz﹣2z2)﹣(11xy+4yz)+6y2=(3x+2z)(x﹣z)﹣y(11x+4z)+6y2=(3x+2z﹣2y)(x﹣z﹣3y)【点评】本题考查了因式分解的分组法和十字相乘法.观察题目特点,灵活运用十字相乘法是关键.37.把下列各式分解因式:(1)(a2+a+1)(a2﹣6a+1)+12a2;(2)(2a+5)(a2﹣9)(2a﹣7)﹣91;(3);(4)(x4﹣4x2+1)(x4+3x2+1)+10x4;(5)2x3﹣x2z﹣4x2y+2xyz+2xy2﹣y2z.【分析】(1)令a2+1=b,先把式子整理,可知是将一个三项式进行因式分解,考虑运用十字相乘法,再将b=a2+1回代,继续分解即可;(2)先将a2﹣9分解为(a﹣3)(a+3),把(a﹣3)与(2a+5)结合,(a+3)与(2a﹣7)结合,整理之后,运用十字相乘法分解;(3)设x+y=a,xy=b,代入原式,先把式子整理,可知是将一个四项式进行因式分解,考虑运用分组分解法.此时b2+2b+1可组成完全平方公式,可把此三项分为一组,再运用平方差公式分解;(4)令x4+1=a,先把式子整理,可知是将一个三项式进行因式分解,考虑运用十字相乘法,再将a=x4+1回代,继续分解即可;(5)可将一二项作为第一组,三四项作为第二组,五六项作为第三组,提取公因式2x﹣z以后,将余下的多项式运用完全平方公式继续分解.【解答】解:(1)令a2+1=b,则原式=(b+a)(b﹣6a)+12a2=b2﹣5ab﹣6a2+12a2=b2﹣5ab+6a2=(b﹣2a)(b﹣3a)=(a2+1﹣2a)(a2+1﹣3a)=(a﹣1)2(a2﹣3a+1);(2)原式=[(2a+5)(a﹣3)][(a+3)(2a﹣7)]﹣91=(2a2﹣a﹣15)(2a2﹣a﹣21)﹣91=(2a2﹣a)2﹣36(2a2﹣a)+224=(2a2﹣a﹣28)(2a2﹣a﹣8)=(a﹣4)(2a+7)(2a2﹣a﹣8);(3)设x+y=a,xy=b,则原式=b(b+1)+(b+3)﹣2(a+)﹣(a﹣1)2=(b2+2b+1)﹣a2=(b+1+a)(b+1﹣a)=(xy+1+x+y)(xy+1﹣x﹣y);(4)令x4+1=a,则原式=(a﹣4x2)(a+3x2)+10x4=a2﹣x2a﹣2x4=(a﹣2x2)(a+x2)=(x4+1﹣2x2)(x4+1+x2)=(x+1)2(x﹣1)2(x2+x+1)(x2﹣x+1);(5)原式=(2x3﹣x2z)+(﹣4x2y+2xyz)+(2xy2﹣y2z)=x2(2x﹣z)﹣2xy(2x﹣z)+y2(2x﹣z)=(2x﹣z)(x2﹣2xy+y2)=(2x﹣z)(x﹣y)2.【点评】本题考查了平方差公式,完全平方公式,十字相乘法,分组分解法分解因式.如果题目给出的不是一个多项式的形式,需要先把式子整理,再分解因式.本题属于竞赛题型,有一定难度.38.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2.。

浙教版数学七年级下册第4章《因式分解》单元测试【精编】

浙教版数学七年级下册第4章《因式分解》单元测试【精编】

因式分解单元综合测试题2(时间:90分钟,满分:120分)一、选择题(每小题3分,共30分)1、下列分解因式正确的有( )个.(1)x 2+(-y )2=(x+y )(x -y );(2)4a 2-1=(4a+1)(4a -1);(3)-9+4x 2=(3+2x )(2x -3);(4)a 2-b 2=(a -b )(a+b ).A 、1B 、2C 、3D 、42、-(a+3)(a -3)是多项式( )分解因式的结果.A 、a 2-9B 、a 2+9C 、-a 2-9D 、-a 2+93、-1+0.09x 2分解因式的结果是( ).A 、(-1+0.3x )2B 、(0.3x +1)(0.3x -1)C、(0.09x +1)(0,09x -1) D、不能进行4、下列各式中能用完全平方公式分解因式的有 ( ).(1)a 2+2a+4;(2)a 2+2a -1;(3)a 2+2a +1;(4)-a 2+2a +1;(5)-a 2-2a -1;(6)a 2-2a -1.A、2个 B、3个 C、4个 D、5个5、下列分解因式不正确的是( ).A、4y 2-1=(4y +1)(4y -1) B、a 4+1-2a 2=(a -1)2(a+1)2 C 、2291314923x x x ⎛⎫-+=- ⎪⎝⎭D 、-16+a 4=(a 2+4)(a -2)(a +2) 6、若64x 2+axy+y 2是一个完全平方式,那么a 的值应该是( ).A 、8B 、16C 、-16D 、16或-167、已知54-1能被20~30之间的两个整数整除,则这两个整数是( )A 、25,27B 、26,28C 、24,26D 、22,248、64-(3a -2b )2分解因式的结果是( ).A 、(8+3a -2b )(8-3a -2b )B 、(8+3a+2b )(8-3a -2b )C 、(8+3a+2b )(8-3a+2b )D 、(8+3a -2b )(8-3a+2b )9、若4a 2+18ab+m 是一个完全平方式,则m 等于( ).A 、9b 2B 、18b 2C 、81b 2D 、481 b 2 10、下列各多项式中: ① x 2-y 2,② x 3 +2,③ x 2+4x ,④ x 2-10x+25,其中能直接运用公式法分解因式的个数是( )A 、1B 、2C 、3D 、4二、填空题(每小题3分,共30分)11、分解因式0.81x 2-16y 2=(0.9x+4y )(__). 12、将9(a+b )2-64(a -b )2分解因式为____________.13、分解因式4x 3-x=____________.14、分解因式 5x 2-10x+5=__________.15、一个正方形的面积是(a 2+8a+16) cm 2,则此正方形的边长是__________cm.16、一块边长为 a m 的正方形广场,扩建后的正方形边长比原来长2 m ,则扩建后面积增大了m 2. 在括号内填入适当的代数式,使下列三项式可以写成完全平方的形式:17、100m 2+(_________)mn 2+49n 4=(____________)2.18、9a 2+36ab+(_________)=(_____________)2.19、分解因式:a 2-a+41=____________. 20、x 2+6x+9当x=___________时,该多项式的值最小,最小值是_____________.三、解答题(共60分)21、(8分)将下列各式分解因式(1)16a 2b 2-1; (2)811x 2-0.16y 2;(3)(a+2)2-(a+3)2; (4)12ab -6(a 2+b 2).22、(8分)(每小题5分,共10分)用简便方法计算(1)20112-20102; (2)172+2×17×13+132.23、(5分)已知(a +b )(a+b -8)+16=0,求2(a+b )的值.24、(6分)幸福小区里有一块边长为25.75 m 的正方形休闲区域,其中有一座正方形儿童 滑梯,占地约为4.252 m 2,那么余下的面积为多少?25、(6分)已知a -2b=21,ab=2,求-a 4b 2+4a 3b 3-4a 2b 4的值.26、(5分)一个正方形的边长增加3cm ,它的面积就增加39cm 2,则这个正方形的边长是多少?27、(8分)如果两个正方形的周长相差8cm ,它们的面积相差36cm 2,则这两个正方形的边长分别是多少?28、(6分)证明:无论a 、b 为何值时,代数式(a+b )2+2(a+b )+2的值均为正值.29、(10分)按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:(2)你发现的规律是____________.(3)用简要过程说明你发现的规律的正确性。

浙教版七年级数学下册 第4章 因式分解 单元测试题

浙教版七年级数学下册 第4章 因式分解 单元测试题

第4章因式分解.第Ⅰ卷(选择题共30分)一、选择题(本题有10小题,每小题3分,共30分)1.下列等式从左到右的变形是因式分解的是( )A.6a3b=3a2·2abB.(x+2)(x-2)=x2-4C.2x2+4x-3=2x(x+2)-3D.ax-ay=a(x-y)2.下列各多项式中,能用公式法分解因式的是( )A.a2-b2+2ab B.a2+b2+abC.4a2+12a+9 D.25n2+15n+93.计算101×1022-101×982的结果是( )A.404 B.808C.40400 D.808004.下列因式分解正确的是( )A.2x2-2=2(x+1)(x-1)B.x2+2x-1=(x-1)2C.x2+1=(x+1)2D.x2-x+2=x(x-1)+25.把多项式m2(a-2)+m(2-a)分解因式,结果正确的是( )A.m(a-2)(m+1) B.m(a-2)(m-1)C.m(2-a)(m-1) D.m(2-a)(m+1)6.把x2+3x+c分解因式得x2+3x+c=(x+1)(x+2),则c的值为( )A.2 B.3C.-2 D.-37.若多项式x2+mx+9能用完全平方公式分解因式,则m的值为( )A.3 B.±3C.±6 D.68.小明在抄分解因式的题目时,不小心漏抄了二项式x2-□y2(“□”表示漏抄的式子)中y2前的式子,且该二项式能分解因式,那么他漏抄在作业本上的式子不可能是下列中的( )A.x B.4C.-4 D.99.下列关于2300+(-2)301的计算结果正确的是( )A.2300+(-2)301=(-2)300+(-2)301=(-2)601B.2300+(-2)301=2300-2301=2-1C.2300+(-2)301=2300-2301=2300-2×2300=-2300D.2300+(-2)301=2300+2301=260110.如果x2+x-1=0,那么代数式x3+2x2-7的值为( )A.6 B.8C.-6 D.-8第Ⅱ卷 (非选择题 共90分)二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:x 2+6x =________.12.分解因式:3x 2-18x +27=____________.13.填空:x 2-x +____________=⎝ ⎛⎭⎪⎫x -122; 14x 4+() +49y 2=()2.14.一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含有x 的整式表示它的宽为________米.15.若多项式x 2-mx +n(m ,n 是常数)分解因式后,其中一个因式是x -3,则3m -n 的值为________.16.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的长方形可拼成一个正方形(如图1所示),从而可得到的因式分解的公式为__________________________.图1三、解答题(本题有8小题,共66分) 17.(8分)分解因式:(1)a 2-6a +9; (2)9a 2+12ab +4b 2;(3)(y +2x)2-(x +2y)2;(4)(x +y)2+2(x +y)+1.18.(6分)用简便方法计算:1.42×16-2.22×4.19.(6分)已知a -2b =12,ab =2,求-a 4b 2+4a 3b 3-4a 2b 4的值.20.(8分)分解因式x 2+ax +b 时,甲看错a 的值,分解的结果是(x +6)(x -1),乙看错b 的值,分解的结果是(x -2)(x +1),求a +b 的值.21.(8分)如图2,在边长为a 厘米的正方形的四个角各剪去一个边长为b 厘米的小正方形.(1)用代数式表示剩余部分的面积;(2)当a =8.68,b =0.66时,求剩余部分的面积.图222.(10分)已知x3+y3=(x+y)(x2-xy+y2)称为立方和公式,x3-y3=(x-y)(x2+xy +y2)称为立方差公式,据此,试将下列各式分解因式:(1)a3+8;(2)27a3-1.23.(10分)由多项式的乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)尝试分解因式:x2+6x+8=(x+________)(x+________);(2)应用请用上述方法解方程:x2-3x-4=0.24.(10分)设a1=32-12,a2=52-32,…,a n=(2n+1)2-(2n-1)2 (n为大于0的自然数).(1) 探究a n是不是8的倍数,并用文字语言表述你所获得的结论;(2) 若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n是完全平方数(不必说明理由).详解详析1.D 2.C 3.D 4.A 5.B 6.A 7.C 8.C 9.C 10.C 11.x (x +6) 12.3(x -3)213.14 ±23x 2y 12x 2±23y14.(x -3)15.[答案] 9[解析] 设另一个因式为x +a ,则(x +a )(x -3)=x 2+(-3+a )x -3a , ∴-m =-3+a ,n =-3a , ∴m =3-a ,∴3m -n =3(3-a )-(-3a )=9-3a +3a =9. 故答案为9.16.a 2+2ab +b 2=(a +b )217.解:(1)a 2-6a +9=(a -3)2.(2)9a 2+12ab +4b 2=(3a +2b )2.(3)(y +2x )2-(x +2y )2=[(y +2x )+(x +2y )][(y +2x )-(x +2y )]=(3x +3y )(x -y )=3(x + y )(x -y ).(4)原式=(x +y +1)2.18.解:1.42×16-2.22×4=1.42×42-2.22×22=(1.4×4)2-(2.2×2)2=5.62-4.42= (5.6+4.4)×(5.6-4.4)=10×1.2=12.19.∵a -2b =12,ab =2,∴-a 4b 2+4a 3b 3-4a 2b 4=-a 2b 2(a 2-4ab +4b 2)=-a 2b 2(a -2b )2=-22(12)2=-1.20.解:甲分解因式得x 2+ax +b =(x +6)(x -1)=x 2+5x -6,由于甲看错a 的值, ∴b =-6.乙分解因式得x 2+ax +b =(x -2)(x +1)=x 2-x -2,由于乙看错b 的值,∴a =-1. ∴a +b =-7.21.解:(1)剩余部分的面积为(a 2-4b 2)平方厘米.(2)a 2-4b 2=(a +2b )(a -2b )=(8.68+2×0.66)×(8.68-2×0.66)=10×7.36=73.6(厘米2).答:当a =8.68,b =0.66时,剩余部分的面积为73.6平方厘米.22.解:(1)a 3+8=(a +2)(a 2-2a +4).(2)27a 3-1=(3a -1)(9a 2+3a +1). 23.解:(1)2 4(2)x 2-3x -4=(x -4)(x +1)=0,所以x -4=0或x +1=0,即x =4或x =-1.24.解:(1)∵a n =(2n +1)2-(2n -1)2=[(2n +1)+(2n -1)][(2n +1)-(2n -1)]=(2n + 1+2n -1)(2n +1-2n +1)=8n .∵n 为大于0的自然数,∴a n 是8的倍数,这个结论用语言表述为:两个连续奇数的平方差是8的倍数.(2)a 2=16,a 8=64,a 18=144,a 32=256.当n 为一个完全平方数的2倍时,a n 是完全平方数.。

浙教版七年级数学下册 第四章 因式分解 单元测试(无答案)

浙教版七年级数学下册  第四章 因式分解 单元测试(无答案)

第四章 因式分解一、仔细选一选(本题有10小题,每小题3分,共30分) 1.下列等式从左到右的变形,属于因式分解的是( ) A.ay ax y x a -=-)( B.1)2(122++=++x x x xC.34)3)(1(2++=++x x x xD.)1)(1(3-+=-x x x x x2.多项式n m n m y x y x 31128--的公因式是( ) A.nmy xB.1-n m yx C.nmy x 4 D.14-n m yx3.下列各式中能用完全平方公式进行因式分解的是( ) A.12++x xB.122-+x xC.12-xD.962+-x x4.把a a a 28823+-进行因式分解,结果正确的是( ) A.)144(22+-a a aB.)1(82-a aC.2)12(2-a aD.2)12(2+a a5.下列分解因式不正确的是( ) A.)14)(14(142-+=-y y yB.2224)1()1(21+-=-+a a a aC.22)3123(9149-=+-x x x D.)2)(2)(4(1624+-+=+-a a a a6下列各多项式中:①22y x -,②23+x ,③x x 42+,④25102+-x x ,其中能直接运用公式法分解因式的个数是( )A.1B.2C.3D.47.若)2)(12(242-+=-+x x px x ,则p 的值是( ) A.10B.10-C.14+D.14-8.下列四个多项式中,能因式分解的是( ) A.12+aB.962+-a aC.y x 52+D.y x 52-9.下列说法中正确的是( ) A.n n a a )(--和一定是互为相反数B.n n a a n )(--和为奇数时,当相等 C.n n a a n )(--和为整数时,当相等D.nn a a )(--和一定不相等10.如图,若整数b a ,是矩形的两条邻边,且满足8422=+ab b a ,则这个矩形的周长为( )A.12B.21C.24D.14二、认真填一填(本题有6小题,每小题4分,共24分)11.若22)(1n x mx x +=++,且0>m ,则n 的值是 .12.若1=-b a ,则代数式b b a 222--的值为 . 13.多项式52++mx x 因式分解得))(5(n x x ++,则=m ,=n .14.把多项式a a a +-232分解因式的结果是 . 15.计算:=+⨯+2217348383 .16.阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)))(()()()()(n m b a b a n b a m bn an bm am bn bm an am ++=+++=+++=+++(2))1)(1()1()12(12222222--++=+-=++-=---y x y x y x y y x y y x试用上述方法分解因式=++++222b bc ac ab a . 三、全面答一答(本题有7小题,共66分)17.(8分)因式分解:(1)xy x +2 (2)22my mx -(3)a a a 88223+- (4)22216)4(x x -+第10题七年级数学 第3页七年级数学 第 4 页2 18.(8分)计算:(1)222514.37514.3⨯-⨯ (2)2298196202202+⨯+19.(8分)已知多项式m x x +-232有一个因式是12+x ,求m 的值.20.(10分)边长为b a ,的矩形,它的周长为14,面积为10,求ab ab b a ++22的值.21.(10分)利用因式分解计算: (1)222,52,3ab b a b a ab -=-=求的值.(2)已知22)32()3281,31y x y x y x --+==,求(的值.22.(10分)计算:已知)2)(2()4(0222b a b a b a a b ab a -+-+=++,求代数式的值.23.(12分)下面是某同学对多项式4)64)(24(22++-+-x x x x 进行因式分解的过程. 解:设y x x =-42,则原式4)6)(2(+++=y y (第一步) 1682++=y y (第二步)2)4(+=y (第三步) 22)44(+-=x x (第四步)回答下列问题:①该同学第二步到第三步运用了因式分解的 .(填字母) A.提取公因式 B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式②该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果: . ③请模仿以上方法尝试对多项式1)22)(2(22++--x x x x 进行因式分解. (2)利用因式分解的方法,试说明)39(2413-必能被8整除.。

浙教版初中数学七年级下册第四单元《因式分解》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级下册第四单元《因式分解》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级下册第四单元《因式分解》单元测试卷(标准难度)(含答案解析)考试范围:第四单元;   考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列等式从左边到右边的变形,属于因式分解的是( )A. 2ab(a−b)=2a2b−2ab2.B. x2+1=x(x+1).xC. x2−4x+3=(x−2)2−1.D. a2−b2=(a+b)(a−b).2. 下面各式从左到右的变形,属于因式分解的是( )A. x2−x−1=x(x−1)−1B. x2−1=(x−1)2C. x2−x−6=(x−3)(x+2)D. x(x−1)=x2−x3. 已知多项式ax2+bx+c分解因式后的结果为2(x−3)(x+1),则b,c的值分别为( )A. b=3,c=−1B. b=−6,c=2C. b=−6,c=−4D. b=−4,c=−64. 若m−n=−2,mn=1,则m3n+mn3=( )A. 6B. 5C. 4D. 35. 将多项式a n−a3n+a n+2分解因式的结果是( )A. a n(1−a3+a2)B. a n(1−a2n+a2)C. a n(−a2n+a2)D. a n(1−a3+a n)6. 多项式3x2y2−12x2y4−6x3y3的公因式是.( )A. 3xyB. x+y2C. 3x2y2D. 3x3y27. 下列因式分解正确的是( )A. (x−y)3−(x−y)=(x−y)(x−y)2B. (x−y)2−(x−y)3=(x−y)2(x−y+1)C. (x−y)2−(y−x)=(x−y)(x−y+1)D. (x−y)2−(y−x)=(x−y)(x−y−0)=(x−y)28. 将a3b−ab进行因式分解,正确的是( )A. a(a2b−b)B. ab(a−1)2C. ab(a+1)(a−1)D. ab(a2−1)9. 将多项式4x2y−4xy2−x3分解因式的结果是( )A. 4xy(x−y)−x3B. −x(x−2y)2C. x(4xy−4y2−x2)D. −x(−4xy+4y2+x2)10. 已知m2=3n+a,n2=3m+a,m≠n,则m2+2mn+n2的值为( )A. 9B. 6C. 4D. 无法确定11. 多项式x2−4xy−2y+x+4y2分解因式后有一个因式是x−2y,另一个因式是( )A. x+2y+1B. x+2y−1C. x−2y+1D. x−2y−112. 如果二次三项式x2−ax−9(a为整数)在整数范围内可以分解因式,那么a可取值的个数是( )A. 2个B. 3个C. 4个D. 无数个第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 在分解因式x2+ax+b时,甲看错了a的值,分解的结果为(x+6)(x−1);乙看错了b的值,分解的结果为(x−2)(x+1),则a+b=.14. 若x2+x=1,则3x4+3x3+3x+1的值为.15. 已知x+y=10,xy=1,则代数式x2y+xy2的值为.16. 若a+b=4,a−b=1,则(a+1)2−(b−1)2的值为.三、解答题(本大题共9小题,共72.0分。

浙教版 七年级下册 第4章 《因式分解》单元练习题 解析版

浙教版 七年级下册 第4章 《因式分解》单元练习题    解析版

第4章 因式分解 单元训练一、选择题(共10小题).1.下列因式分解正确的是( )A .x 2﹣3x +1=x (x ﹣3)B .x 2﹣6=(x ﹣2)(x +3)C .(x +1)(x ﹣1)=x 2﹣1D .a 2﹣4ab +4b 2=(a ﹣2b )2 2.下列各式中,从左到右的变形是因式分解的是( )A .x 2+2x +3=(x +1)2+2B .(x +y )(x -2y )=x 2 - xy - 2y 2C .-3x 2+ 12y 2= -3(x + 2y )(x -2y )D .2(x +y )=2x +2y3.下列多项式中,在实数范围不能分解因式的是( )A .2222x y x y +++ B .2222x y xy ++- C .2244x y x y -++ D .2244x y y -+- 4.下列各式:①﹣x 2﹣y 2;②﹣14a 2b 2+1; ③a 2+ab +b 2; ④﹣x 2+2xy ﹣y 2;⑤14﹣mn +m 2n 2,用公式法分解因式的有( )A .2个B .3个C .4个D .5个 5.多项式24ax a -与多项式244x x ++的公因式是( )A .2x +B .2x -C .22x -D .()22x - 6.下列各式是完全平方式的是( )A .x 2-x +14B .1-x 2C .x 2+2xy +1D .x 2+2xy -y 2 7.计算20202021(2)(2)-+-所得的结果是( ).A .20202-B .20212-C .20202D .-2 8.若因式分解()()231x ax x x b +-=-+,则a 的值是( )A .3-B .2-C .2D .49.若3m n +=,则222425m mn n ++-的值为( )A .13B .18C .5D .110.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此 4,12,20 都是“神秘数”,则下面哪个数是“神秘数”( )A .56B .60C .62D .88二、填空题(共4小题).11.分解因式:2164x _________.12.分解因式:2x 2﹣2x +12=_____. 13.已知12xy =,3x y -=-,则22x y xy -=______. 14.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=______.三、解答题15.因式分解(1)29x - (2)2(1)22x x --+16.将下列各式因式分解:(1)24()()x x y y x -+- (2)2215x x +-17.把下列多项式分解因式:(1)22442a ab b ac bc ++-- (2)222ax bx bx ax cx cx +++++(3)222222a b x y ay bx --+-+ (4)()()()222241211y x y x y +--+-18.已知221x x ++是多项式32x x ax b -++的一个因式,求a ,b 的值,并将该多项式因式分解.19.如图,用一张如图甲的正方形纸片、三张如图乙的长方形纸片、两张如图丙的正方形纸片拼成一个长方形(如图丁).(1)请用不同的式子表示图丁的面积(写出两种即可);(2)根据(1)所得结果,写出一个表示因式分解的等式.20.若一个正整数a 可以表示为(1)(2)a b b =+-,其中b 为大于2的正整数,则称a 为“十字数”,b 为a 的“十字点”.例如28(61)(62)74=+⨯-=⨯.(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;(2)若b 是a 的“十字点”,且a 能被(1)b -整除,其中b 为大于2的正整数,求a 的值; (3)m 的“十字点”为p ,n 的“十字点”为q ,当18m n -=时,求p q +的值.参考答案1.D【详解】解:A 、原式不能分解,不符合题意;B 、原式=(x )(x ),不符合题意;C 、原式=x 2﹣1,不是分解因式,不符合题意;D 、原式=(a ﹣2b )2,符合题意.故选:D .2.C【详解】解:A 、该选项等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意; B 、该选项是整式乘法,不是因式分解,故此选项不符合题意;C 、是因式分解,故此选项符合题意;D 、该选项是整式乘法,不是因式分解,故此选项不符合题意.故选C .【点睛】本题主要考查了因式分解的定义,掌握因式分解的定义即:等式的左边是一个多项式,等式的右边是几个整式的积.3.A【分析】根据因式分解的方法与步骤进行判断即可【详解】解:A .原式不能分解,符合题意;B .原式2()2(x y x y x y =+-=++-,不符合题意;C .原式()()4()()(4)x y x y x y x y x y =+-++=+-+,不符合题意;D .原式22(2)(2)(2)x y x y x y =--=+--+,不符合题意;故选:A .【点睛】本题考查因式分解、平方差公式、完全平方公式,熟练掌握提公因式法和公式法分解因式是解答的关键,注意实数范围内分解因式时2要写成2.4.B【分析】根据每个多项式的特征,结合平方差公式、完全平方公式的结构特征,综合进行判断即可.【详解】解:①-x 2-y 2=-(x 2+y 2),因此①不能用公式法分解因式;②-14a 2b 2+1=1-(12ab )2=(1+12ab )(1-12ab ),因此②能用公式法分解因式; ③a 2+ab +b 2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x 2+2xy ﹣y 2=-(x 2﹣2xy +y 2)=-(x -y )2,因此④能用公式法分解因式; ⑤14-mn +m 2n 2=(12-mn )2,因此⑤能用公式法分解因式; 综上所述,能用公式法分解因式的有②④⑤,故选:B .5.A【分析】分别将多项式24ax a -与多项式244x x ++进行因式分解,再寻找他们的公因式是2x +.【详解】解:∵()()224(4)22ax a a x a x x -=-=+- 又∵()22442x x x ++=+∴多项式24ax a -与多项式244x x ++的公因式是2x +.故选A .【点睛】本题主要考查的是公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公因式.6.A【分析】根据完全平方公式:(a ±b )2=a 2±2ab +b 2,对比公式逆用即可. 【详解】 解:A 选项中x 2-x +211=42x ⎛⎫- ⎪⎝⎭,B ,C ,D 选项中的多项式均不符合完全平方公式的结构故选:A【点睛】本题考查利用完全平方公式进行因式分解,关键是对完全平方公式的熟练掌握. 7.A【分析】直接找出公因式进而提取公因式再计算即可.【详解】(−2)2020+(−2)2021=(−2)2020×(1−2) =−22020 .故选:A .【点睛】本题主要考查了因式分解的应用,正确找出公因式、提取公因式是解题关键.8.C【分析】根据因式分解的定义可直接进行求解.【详解】解:由()()231x ax x x b +-=-+可得:()2231x ax x b x b +-=+--, ∴1,3a b b =-=,∴2a =;故选C .【点睛】本题主要考查因式分解的定义,熟练掌握因式分解是解题的关键.9.A【分析】先将代数式前三项利用完全平方公式适当变形,然后将3m n +=代入计算即可.【详解】解:222425m mn n ++-()22=225m mn n ++-()2=2+5m n -∵3m n +=∴原式223-5=13=⨯【点睛】本题考查代数式求值,完全平方公式.做此类题,首先必须做到心中牢记公式的“模型”,在此前提下认真地对具体题目进行观察,想方设法通过调整项的位置和添括号等变形技巧,把式子凑成公式的“模型”,然后就可以应用公式进行计算了.10.B【分析】设这两个连续偶数分别2m、2m+2(m为自然数),则“神秘数”=(2m+2)2-(2m)2=(2m+2+2m)(2m+2-2m)=4(2m+1),因为m是自然数,要判断一个数是否是“神秘数”,只需根据该数=4(2m+1)列方程求解即可,若解出m是自然数就符合,否则不符合.【详解】解:设这两个连续偶数分别2m、2m+2(m为自然数),∴“神秘数”=(2m+2)2-(2m)2=(2m+2+2m)(2m+2-2m)=4(2m+1),A、若4(2m+1)=56,解得m=132,错误;B、若4(2m+1)=60,解得m=7,正确;C、若4(2m+1)=62,解得m=294,错误;D、若4(2m+1)=88,解得m=212,错误;故选:B.【点睛】此题考查了利用平方差公式进行因式分解,熟练掌握平方差公式以及对题中新定义的理解是解题的关键.11.4(2x+1)(2x-1).【分析】首先提取公因式,再根据平方差公式分解.【详解】解:原式=4(4x2-1)=4(2x+1)(2x-1),故答案为4(2x+1)(2x-1).本题考查因式分解的应用,熟练掌握各种因式分解的方法并灵活运用是解题关键. 12.2(x ﹣12)2. 【分析】直接提取公因式2,再利用公式法分解因式即可.【详解】解:2x 2﹣2x +12 =2(x 2﹣x +14) =2(x ﹣12)2. 故答案为:2(x ﹣12)2. 【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 13.32- 【分析】提取22x y xy -的公因式因式分解,再代入求值即可.【详解】解:22()x y xy xy x y -=-, 将12xy =,3x y -=-代入()xy x y -, ∴13()=(3)22xy x y -⨯-=-, 故答案为:32-. 【点睛】本题考查了整式的化简求值;能提取公因式将整式化简是解决本题的关键.14.()()2a b a b ++.【分析】根据图形中的正方形和长方形的面积,以及整体图形的面积进而得出恒等式.【详解】解:由面积可得:()()22a 3ab 2b a 2b a b ++=++. 故答案为()()a 2b a b ++.【点睛】此题主要考查了十字相乘法分解因式,正确利用面积得出等式是解题关键.15.(1)()()33x x +-;(2)()()13x x --【分析】(1)直接利用平方差分解因式得出答案;(2)将括号展开,合并同类项,再利用十字相乘法分解因式得出答案.【详解】解:(1)29x -=()()33x x +-;(2)2(1)22x x --+=21222x x x +--+=243x x -+=()()13x x --【点睛】此题主要考查了公式法以及十字相乘法分解因式,正确应用公式是解题关键. 16.(1)()(21)(21)x y x x -+-;(2)(5)(3)x x +-【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用十字相乘法分解即可.【详解】解:(1)24()()x x y y x -+-24()()x x y x y =---2()41x y x ⎡⎤=--⎣⎦()(21)(21)x y x x =-+-;(2)2215x x +-(5)(3)x x =+-【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.(1)()()22a b c a b +-+;(2)()()1x x a b c +++;(3)()()x a b y x a b y ---++--;(4)()2221x y x y -++【分析】(1)(2)(3)利用分组分解法分解即可;(4)利用完全平方公式分解即可.【详解】解:(1)22442a ab b ac bc ++--=()()222a b c a b +-+=()()22a b c a b +-+;(2)222ax bx bx ax cx cx +++++=()()222ax bx cxax bx cx +++++ =()()2a b c x a b c x +++++=()()1x x a b c +++;(3)222222a b x y ay bx --+-+=()222222a ay y b x bx -+-+-=()()22a y b x ---=()()()()a y b x a y b x -+----⎡⎤⎡⎤⎣⎦⎣⎦=()()x a b y x a b y ---++--;(4)()()()222241211y x y x y +--+-=()()()()222412111y x y y x y +-+-+-=()()2211y x y ⎡⎤+--⎣⎦ =()2221x y x y -++【点睛】本题考查了因式分解,解题的关键是根据所给代数式的形式灵活选择方法.18.5a =-,3b =-,()()213x x +- 【分析】由题意可假设多项式x 3−x 2+ax +b =(x 2+2x +1)(x +m ),则将其展开、合并同类项,并与x 3− x 2+ax +b 式子中x 的各次项系数对应相等,依次求出m 、b 、a 的值,那么另外一个因式即可确定.【详解】解:设()()32221x x ax b x x x m -++=+++, 则()()3232221x x ax b x m x m x m -++=+++++, 所以21m +=-,21m a +=,m b =,解得3m =-,5a =-,3b =-.所以 ()()()()23225321313x x x x x x x x ---=++-=+-.【点睛】本题考查了因式分解的应用,用待定系数法来解较好.19.(1)①2232S x xy y ++=,②()2()S x x y y x y +++=;(2)2232(2)()x xy y x y x y ++=++或()2()(2)()x x y y x y x y x y +++=++..【分析】(1)①图丁是由1个甲,3个乙,2个丙组成,把面积相加即可得出答案;②图丁可以看作由长为()x y +,宽为x 的长方形和长为()x y +,宽为2y 的长方形组成,把两个长方形面积相加即可得出答案;(2)由(1)中2232x xy y ++十字相乘或()2()x x y y x y +++提取公因式()x y +即可得出答案.解:(1)①2232S x xy y ++=,②()2()S x x y y x y =+++;(2)2232(2)()x xy y x y x y ++=++或()2()(2)()x x y y x y x y x y +++=++.【点睛】本题考查列代数式以及因式分解,掌握正方形和长方形的面积公式以及灵活运用因式分解是解答本题的关键.20.(1)40,12;(2)4;(3)10【分析】(1)根据十字点的定义(1)(2)a b b =+-计算即可;(2)先根据(1)(2)a b b =+-得出()()2(12)(11)=b 1+b 12=-+-----a b b ,再根据a 能被(1)b -整除,得出b 的值,即可求出a 的值;(3)根据已知得出m (p 1)(p 2)=+-(p >2且为正整数),n (q 1)(q 2)=+-(q >2且为正整数),再根据18m n -=得出()()p q-1p q =18+-,从而得出163p q p q +-=⎧⎨-=⎩ 或192p q p q +-=⎧⎨-=⎩,解之即可得出a 、b ,继而得出答案. 【详解】解:(1)“十字点”为7的“十字数”(71)(72)=85=40=+-⨯a ,∵130(121)(122)=1310=+-⨯,∴130的“十字点”为12;(2)∵b 是a 的“十字点”,∴(1)(2)a b b =+-(b >2且为正整数),∴()()2(12)(11)=b 1+b 12=-+-----a b b ,∵a 能被(1)b -整除,∴(1)b -能整除2,∴b -1=1或b -1=2,∴b =3,∴(31)(32)=4=+-a ; (3)∵m 的“十字点”为p , ∴m (p 1)(p 2)=+-(p >2且为正整数), ∵n 的“十字点”为q ,∴n (q 1)(q 2)=+-(q >2且为正整数), ∵18m n -=,∴(p 1)(p 2)(q 1)(q 2)=18+--+-, ∴22p -p-2-q +q+2=18, ∴(p q)(p q)(p-q)=18+--, ∴()()p q-1p q =18+-, ∵180>-=m n ,p >2,q >2且p 、q 为正整数; ∴p >q ,p+q >4;∴p+q -1>3;∵18=3×6=2×9,∴163p q p q +-=⎧⎨-=⎩ 或192p q p q +-=⎧⎨-=⎩; 解得:52p q =⎧⎨=⎩(不合题意舍去),64p q =⎧⎨=⎩; ∴=10+p q。

初中数学浙教版七年级下册第四章 因式分解单元测验(含解析)

初中数学浙教版七年级下册第四章  因式分解单元测验(含解析)

第四章因式分解综合考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡第Ⅰ卷客观题第Ⅰ卷的注释阅卷人得分一、单选题1.下列各式中,从左到右的变形是因式分解的是( )A.x2+2x+3=x(x+2)+3B.(x+y)(x−2y)=x2−xy−2y2 C.3x2−12y2=3(x+2y)(x−2y)D.2(x+y)=2x+2y2.多项式−4a2b2+12a2b2−8a3b2c的公因式是( ).A.−4a2b2c B.−a2b2C.−4a2b2D.−4a3b2c 3.下列分解因式正确的是( )A.a2−9=(a−3)2B.6a2+3a=a(6a+3)C.a2+6a+9=(a+3)2D.a2−2a+1=a(a−2)+14.若x2+mx+16是完全平方式,则m的值等于( )A.2B.4或-4C.2或-2D.8或-8 5.下列多项式中,是完全平方式的为( )A.x2−x+14B.x2+12x+14C.x2+14x−14D.x2−14x+146.若x=1,y=12,则x2+4xy+4y2的值是( )A.2B.4C.32D.127.若m+ 1m =5,则m2+ 1m2的结果是( )A.23B.8C.3D.7 8.把二次三项式2x2﹣8xy+5y2因式分解,下列结果中正确的是( )A.(x﹣4+62y)(x﹣4−62y)B.(2x﹣4y+ 6y)(x﹣4+62y)C.(2x﹣4y+ 6y)(x﹣4−62y)D.2(x﹣4−62y)(x﹣4+62y)9.若m2=n+2022,n2=m+2022(m和n不相等),那么式子m3−2mn+n3的值为( )A.2022B.−2022C.2023D.−202310.已知x,y,z都是正整数,其中x>y,且x2−xz−xy+yz=23,设a=x−z,则[(3a−1)(a+2)−5a+2]÷a=( )A.3B.69C.3或69D.2或46阅卷人得分二、填空题11.将a3b -ab 进行因式分解的结果是 .12.把多项式因式分解a2b−2ab+b的结果是 .13.已知x2+mx+ 19是完全平方式,则m= .14.已知正实数a、b、c满足a2+b2+c2−ac−bc=1.则c的最大值是 .15.已知实数a,b,c满足a2+b2-4a≤1,b2+c2-8b≤-3,且c2+a2-12c≤-26,则(a+b)c的值为 .16.若一个四位数M的个位数字与十位数字的和与它们的差之积恰好是M去掉个位数字与十位数字后得到的两位数,则这个四位数M称为“和差数”,令M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=dc,且P(M)=Mc+d,则G(1224)P(1224)= ;当G(M),P(M)均为整数时,M的最大值为 .阅卷人得分三、解答题17.如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6 cm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的方法帮助小刚计算吗?请写出求解的过程(π取3).18.已知4m+n=40,2m-3n=5.求(m+2n)2-(3m-n)2的值.19.仔细阅读下面的例题,仿照例题解答问题,例题:已知二次三项式x2−4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2−4x+m=(x+3)(x+n)化简得x2−4x+m=x2+nx+3x+3n整理得x2−4x+m=x2+(n+3)x+3n于是有{n+3=−4m=3n解得{m=−21 n=−7因此另一个因式是(x−7),m的值为21.问题:已知二次三项式3x2+5x−k有一个因式是(3x−1),求另一个因式以及k的值.20.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.21.现有若干张长方形和正方形卡片,如图所示.请运用拼图的方法,选取图中相应的种类和一定数量的卡片拼成一个大长方形,使它的面积等于a2+4ab+3b2,并根据拼成图形的面积,把多项式a2+4ab+3b2因式分解.22.认真阅读下列因式分解的过程,再回答问题:1+x+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)2(1+x)=(1+x)³.(1)上述因式分解的方法是.(2)分解因式::1+x+x(1+x)+x(1+x)2+x(1+x)³.(3)猜想1+x+x(1+x)+x(1+x)2+⋯+x(1+x)"分解因式的结果.阅卷人四、实践探究题得分23.先阅读材料:分解因式:(a+b)2+2(a+b)+1.解:令a+b=M,则(a+b)2+2(a+b)+1=M2+2M+1=(M+1)2所以(a+b)2+2(a+b)+1=(a+b+1)2.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:1−2(x+y)+(x+y)2= ;(2)分解因式:(m+n)(m+n−4)+4;(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.答案解析部分1.【答案】C【解析】【解答】解:A.等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:C.【分析】把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式,据此判断即可.2.【答案】C【解析】【解答】解:∵−4a2b2+12a2b2−8a3b2c=−4a2b2(1−3+2ac),∴公因式为:−4a2b2,故答案为:C.【分析】利用公因式的定义求解即可.3.【答案】C【解析】【解答】A. a2−9=(a−3)(a−3),故不符合题意;B. 6a2+3a=3a(2a+1),故不符合题意;C. a2+6a+9=(a+3)2,符合题意;D. a2−2a+1=(a−1)2,故不符合题意;故答案为:C.【分析】运用因式分解的定义逐项判断即可;4.【答案】D【解析】【解答】解:∵x2+mx+16=x2+mx+42,∴mx=±2•x•4,解得m=8或﹣8.故答案为:D.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的这两数乘积二倍项即可确定m的值.5.【答案】A【解析】【解答】A. x2−x+14= (x−12)2,故符合题意B. x 2+12x +14 = (x +14)2+316 ,故不符合题意C. x 2+14x−14 = (x +116)2−65256 ,故不符合题意D. x 2−14x +14 = (x−116)2+63256 ,故不符合题意故答案为:A【分析】利用配方法分别转化为完全平方式的形式即可求解.6.【答案】B【解析】【解答】解:原式=(x+2y )2=(1+2× 12)2=4.故答案为:B【分析】根据完全平方公式a 2±2ab+b 2=(a ±b )2,分解因式x 2+4xy+4y 2=(x+2y )2,把x 、y 的值代入,求出代数式的值.7.【答案】A【解析】【解答】因为m+1m =5,所以m 2+ 1m2 =(m+ 1m )2﹣2=25﹣2=23.故答案为:A .【分析】两边平方可得m 2+1m 2=(m +1m )2−2。

_浙教版七年级数学下册第4章《因式分解》检测卷

_浙教版七年级数学下册第4章《因式分解》检测卷

第4章 检测卷一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为( )A .x (a -b )=ax -bxB .x 2-1+y 2=(x -1)(x +1)+y 2C .x 2-1=(x +1)(x -1)D .x 2+1=x ⎝ ⎛⎭⎪⎫x +1x 2.下列四个多项式,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +93.下列因式分解中,正确的是( )A .x 2-4y 2=(x -4y )(x +4y )B .ax +ay +a =a (x +y )C .x 2+2x -1=(x -1)2D .14x 2+2x +4=⎝ ⎛⎭⎪⎫12x +22 4.因式分解x 3-2x 2+x 正确的是( )A .(x -1)2B .x (x -1)2C .x (x 2-2x +1)D .x (x +1)25.多项式①16x 2-x ;②(x -1)2-4(x -1);③(x +1)2-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果中含有相同因式的是( )A .①和②B .③和④C .①和④D .②和③6.若多项式x 2+mx -28可因式分解为(x -4)(x +7),则m 的值为( )A .-3B .11C .-11D .37.已知a +b =2,则a 2-b 2+4b 的值是( )A .2B .3C .4D .68.已知三角形ABC 的三边长为a ,b ,c ,且满足a 2+b 2+c 2=ab +ac +bc ,则三角形ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9.不论x ,y 为什么实数,代数式x 2+y 2+2x -4y +7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是()(第10题)A.①②B.②③C.①③D.①②③二、填空题(每题3分,共24分)11.因式分解:a3-ab2=______________.12.一个正方形的面积为x2+4x+4(x>0),则它的边长为________.13.若m-n=-2,则m2+n22-mn的值是________.14.两名同学将同一个二次三项式分解因式,甲因看错了一次项系数而分解成(x+1)(x+9);乙因看错了常数项而分解成(x-2)(x-4),则将原多项式因式分解后的正确结果应该是________.15.如果x2+kx+64是一个整式的平方,那么常数k的值是________.16.已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y =________.17.如图是两邻边长分别为a,b的长方形,它的周长为14,面积为10,则a2b +ab2的值为________.(第17题)18.如果对于大于1的整数w,存在两个正整数x,y,使得w=x2-y2,那么这个数w叫做智慧数.把所有的智慧数按从小到大排列,那么第2 016个智慧数是________.三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分) 19.分解因式:(1)a2b-abc; (2)3a(x-y)+9(y-x);(3)(2a -b )2+8ab ; (4)(m 2-m )2+12(m 2-m )+116.20.计算:(1)29×20.18+72×20.18+13×20.18-14×20.18;(2)1002-992+982-972+…+42-32+22-12.21.先因式分解,再求值:(1)4a2(x+7)-3(x+7),其中a=-5,x=3;(2)(2x-3y)2-(2x+3y)2,其中x=16,y=18.22.已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.23.已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b+13=0,求这个等腰三角形的周长.24.阅读下列材料,然后解答问题:分解因式:x 3+3x 2-4.解答:把x =1代入多项式x 3+3x 2-4,发现此多项式的值为0,由此确定多项式x 3+3x 2-4中有因式(x -1),于是可设x 3+3x 2-4=(x -1)(x 2+mx +n ),分别求出m ,n 的值,再代入x 3+3x 2-4=(x -1)(x 2+mx +n ),就容易分解多项式x 3+3x 2-4.这种分解因式的方法叫“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:x 3+x 2-16x -16.答案一、1.C 2.D 3.D 4.B 5.D 6.D7.C 点拨:a 2-b 2+4b =(a +b )(a -b )+4b =2(a -b )+4b =2a +2b =2(a +b )=4.8.D 9.A10.D 点拨:图①中,左阴影S =a 2-b 2,右阴影S =(a +b )(a -b ),故能验证.图②中,左阴影S =a 2-b 2,右阴影S =12(2b +2a )(a -b )=(a +b )(a -b ),故能验证.图③中,左阴影S =a 2-b 2,右阴影S =(a +b )(a -b ),故能验证. 二、11.a (a +b )(a -b )12.x +213.2 点拨:m 2+n 22-mn =m 2+n 2-2mn 2=(m -n )22=(-2)22=2. 14.(x -3)215.±1616.2 点拨:∵P =3xy -8x +1,Q =x -2xy -2,∴3P -2Q =3(3xy -8x +1)-2(x -2xy -2)=7.∴9xy -24x +3-2x +4xy +4=7.∴13xy -26x =0,即13x (y -2)=0.∵x ≠0,∴y -2=0.∴y =2.17.70 点拨:由题意知,ab =10,a +b =142=7,故a 2b +ab 2=ab (a +b )=10×7=70.18.2 691 点拨:由计算可得智慧数按从小到大排列依次为3,5,7,8,9,11,12,13,15,16,17,19,20,…,∴以3个数为一组,从第2组开始每组第一个数都是4的倍数,∴2 016÷3=672,∴第2 016个智慧数是第672组的最后一个数,∴4×672+3=2 691.三、19.解:(1)原式=ab (a -c ).(2)原式=(x -y )(3a -9)=3(x -y )(a -3).(3)原式=4a 2-4ab +b 2+8ab =4a 2+4ab +b 2=(2a +b )2.(4)原式=(m 2-m )2+2·(m 2-m )·14+⎝ ⎛⎭⎪⎫142=(m 2-m +14)2=⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫m -1222=(m -12)4.20.解:(1)原式=(29+72+13-14)×20.18=100×20.18=2 018;(2)原式=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1) =100+99+98+… +3+2+1=101×50=5 050.21.解:(1)原式=(x +7)(4a 2-3).当a =-5,x =3时,(x +7)(4a 2-3)=(3+7)×[4×(-5)2-3]=970.(2)原式=[(2x -3y )+(2x +3y )]·[(2x -3y )-(2x +3y )]=-24xy .当x =16,y =18时,-24xy =-24×16×18=-12.22.解:∵a 2+b 2+2a -4b +5=0,∴(a 2+2a +1)+(b 2-4b +4)=0,即(a +1)2+(b -2)2=0.∴a +1=0且b -2=0.∴a =-1,b =2.∴2a 2+4b -3=2×(-1)2+4×2-3=7.23.解:a 2+b 2-4a -6b +13=(a -2)2+(b -3)2=0,故a =2,b =3.当腰长为2时,则底边长为3,周长=2+2+3=7;当腰长为3时,则底边长为2,周长=3+3+2=8.所以这个等腰三角形的周长为7或8.24.解:(1)原式=(x -1)(x 2+mx +n )=x 3+mx 2+nx -x 2-mx -n =x 3+(m -1)x 2+(n -m )x -n ,根据题意得⎩⎨⎧m -1=3,n -m =0,-n =-4,解得⎩⎨⎧m =4,n =4. (2)把x =-1代入,发现多项式的值为0,∴多项式x 3+x 2-16x -16中有因式(x +1),于是可设x 3+x 2-16x -16=(x +1)(x 2+mx +n ),可化为x 3+mx 2+nx +x 2+mx +n =x 3+(m +1)x 2+(m +n )x +n ,可得⎩⎨⎧m +1=1,m +n =-16,n =-16,解得⎩⎨⎧n =-16,m =0,∴x 3+x 2-16x -16=(x +1)(x 2-16)=(x +1)(x +4)(x -4).。

2015春浙教版数学七下第4章《因式分解》单元测试

2015春浙教版数学七下第4章《因式分解》单元测试

浙教版七年级下册期末复习(第四章:因式分解)姓名__________一:选择题1、下列由左到右的变形中,就是因式分解的就是( )、A 、ax +bx +c =()c b a x ++B 、()()1112-=-+a a aC 、()22444-=+-x x xD 、()22112-=+-m m m 2、下列由左边到右边的变形中,不就是分解因式的就是( )。

A 、()ay ax y x a +=+B 、()1255102-=-x x x xC 、()22244-=+-y y y D 、()()t t t t t 3443162+-+=+- 3、下列分解因式中,正确的就是( )、A 、()()y x y x y x -+=+22B 、()()y x y x y x -+=-22C 、()()y x y x y x --+-=+-22D 、()()y x y x y x -+-=--224、下列多项式中, 有( )个就是完全平方式、 ①412+-x x ②16922+-ab b a ③2293n mn m ++ ④25102--x x A 、1个 B 、2个 C 、3个 D 、4个5、某多项式分解因式结果为()()y x y x 22-+,那么这个多项式就是( )、A 、224y x -B 、224y x -C 、224y x +D 、224y x +6、下列各式中,能运用平方差分式分解因式的就是( )、A 、21x +-B 、22y x +C 、42--xD 、()22b a --- 7、若m x x +-82就是一个完全平方式, 则m 的值为( )、A 、4B 、8C 、16D 、328、若m +n =3,则222426m mn n ++-的值为( )A、12 B、6 C、3 D、09、下列分解因式正确的就是( )。

A 、()()y x y x y x 94949422-+=- B 、()222242y x y xy x -=+-C 、()()y x y x y x -+=-22D 、()2225353b a a a b a +-=+-10、若多项式162++kx x 就是一个完全平方式, 则k 的值为( )、A 、-4B 、4C 、±8D 、±411、 已知a+b=2014,a-b=1,a 2-b 2 =( )A 、2014B 、-2014C 、2013D 、112、对18162++x x 分解因式, 结果正确的就是( )、A 、()2116+xB 、()2116-xC 、()214+xD 、()214+x 二、填空题:1、分解因式:x 2-3x=____________,a 2-b 2=________________、2、()=--22n n m 、 3、把下列各式分解因式, 要求直接写出答案:① ()()323-+-x b x a = 、②()()=-+-x y b y x a 、③21625x -= 、④=-x x 823 、⑤=+-2232xy y x x 、⑥ ()()=++-+962n m n m 4、42+-kx x 就是一个完全平方式,则k=___________。

浙教版七年级数学下册第四章因式分解单元检测试题

浙教版七年级数学下册第四章因式分解单元检测试题

浙教版七年级数学下册第四章因式分解单元检测试题姓名:__________ 班级:__________一、单选题(共10题;共30分)1.下列各式从左到右的变形,是因式分解的是()A. x2-8x+16=(x-4)2B. ( x+5)(x-2)=x2+3x-10C. x2-9+6x=(x+3)(x-3)+6xD. 6ab=2a×3b2.分解因式-4x2y+2xy2-xy的结果是()A. -4(x2+2xy2-xy)B. -xy(-4x+2y-1)C. -xy(4x-2y+1)D. -xy(4x-2y)3.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是( )A. 2B. 4C. 6D. 84.下列各组多项式中没有公因式的是()A. 3x﹣2与6x2﹣4xB. 3(a﹣b)2与11(b﹣a)3C. mx﹣my与ny﹣nxD. ab﹣ac与ab﹣bc5.多项式a﹣b+c(a﹣b)因式分解的结果是()A. (a﹣b)(c+1)B. (b﹣a)(c+1)C. (a﹣b)(c﹣1)D. (b﹣a)(c﹣1)6.对于算式,下列说法不正确的是()A. 能被2016整除B. 能被2017整除C. 能被2018整除D. 不能被2015整除7.多项式6ab2c﹣3a2bc+12a2b2的公因式是()A. abcB. 3a2b2C. 3a2b2cD. 3ab8.分解因式(2x+3)2﹣x2的结果是()A. 3(x2+4x+3)B. 3(x2+2x+3)C. (3x+3)(x+3)D. 3(x+1)(x+3)9.下列多项式中能用提公因式法分解的是()A. x2+y2B. x2-y2C. x2+2x+1D. x2+2x10.已知a为实数,且a³+a²-a+2=0,则(a+1)2008+(a+1)2009+(a+1)2010的值是()A. -3B. 3C. -1D. 1二、填空题(共8题;共24分)11.分解因式:4x2﹣8x+4=________.12.分解因式:(2a﹣1)2﹣a2=________13.分解因式:a3-16a=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级_____________________ 姓名____________________ 考场号____________ 考号___________
----------------------------------------------------密--------------------------------封--------------------------------线-----------------------------------------------因式分解综合测试
一、选择题
1. (2012 云南省昆明市) 若2211
42
a b a b -=-=,,则a b +的值为( ).
(A )12- (B )1
2
(C )1 (D )2
2. (2013 湖南省张家界市) 下列各式中能用完全平方公式进行因式分解的是( ) (A )21x x ++ (B )221x x +- (C )21x - (D )269x x -+
3. (2014 河北省) 计算:221585-=( )
A .70
B .700
C .4900
D .7000
4. (2014 海南省) 下列式子从左到右变形是因式分解的是( )
A .a 2+4a-21=a (a+4)-21
B .a 2+4a-21=(a-3)(a+7)
C .(a-3)(a+7)=a 2+4a-21
D .a 2+4a-21=(a+2)2-25
5. (2014 湖南省衡阳市) 下列因式分解中正确的个数为 ①()3222x xy x x x y ++=+; ②()
2
2442x x x ++=+; ③
()()22x y x y x y -+=+-。

A .3个
B .2个
C .1个
D .0个
6. (2014 湖南省岳阳市) 下列因式分解正确的是( ) A .x 2-y 2= (x -y ) 2 B .a 2+a +1=(a +1) 2 C .xy -x =x (y -1) D .2x +y = 2(x +y )
7. (2014 山东省威海市) 将下列多项式分解因式,结果中不含因式1x -的是( ) A .2
1x -
B .(2)(2)x x x -+-
C .2
21x x -+
D .2
21x x ++
8. (2014 浙江省金华市) 把代数式2218x -分解因式,结果正确的是( ▲ )
A .22(9)x -
B .22(3)x -
C .2(3)(3)x x +-
D .2(9)(9)x x +-
9. (2014 安徽省)
10. (2014 福建省漳州市)
若代数式x 2+ax 可以分解因式,则常数a 不可以取( ) A . ﹣1 B . 0 C . 1 D . 2 二、填空题
11. (2014 江苏省连云港市) ab =3,a -2b =5,则a 2b -2ab 2的值是 .
12. (2014 辽宁省大连市) 当a=9时,代数式a 2+2a+1的值为 .
13. (2014 四川省乐山市) 若a=2,a ﹣2b=3,则2a2﹣4ab 的值为 12 .
14. (2014 广西南宁市) 因式分解:a a 622-=
15. (2014 辽宁省锦州市) 分解因式2242x x -+ 的结果是__________.
16. (2014 山东省淄博市) 分解因式:=-+a a 16)1(82 . 三、计算题
17. (2010 湖南省益阳市) 已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.
班级_____________________ 姓名____________________ 考场号____________ 考号___________
----------------------------------------------------密--------------------------------封--------------------------------线-----------------------------------------------
18. (2010 江苏省苏州市) 先化简,再求值:()()2
2a a b a b +-+,
其中a b ==
19. (2011 江苏省宿迁市) 已知实数a 、b 满足1ab =,2a b +=,求代数式22a b ab +的值.
20. (2011 福建省南平市) 先化简,再求值:x (x +1)-(x -1)(x +1),其中x =-1.
21. (2011 海南省) ()()2
11a a a +--
四、复合题
22. (2011 青海省西宁市) 给出三个整式22a b ,和2ab . (1)当34a b ==,时,求222a b ab ++的值;
(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.
班级_____________________ 姓名____________________ 考场号____________ 考号___________
----------------------------------------------------密--------------------------------封--------------------------------线-----------------------------------------------参考答案 一、选择题 1. B
2. D
3. D
4. B
5. C
6. C
7. D .
8. C
9. B
10. B .
二、填空题 11. 15
12. 100
13. 12
14. )3(2-a a
15. 2
2(1x -)
16. 2)1(8-a .
三、计算题
17. 解法一:原式=2)21(-+x ……………………………2分 =2)1(-x ……………………………4分 当31=-x 时
原式= 2)3( ……………………………6分 =3 ……………………………8分 解法二:由31=-x 得13+=x ……………………………1分
化简原式=444122+--++x x x ……………………………3分
=122+-x x ……………………………4分 =1)13(2)13(2++-+ …………………………5分
=12321323+--++ …………………………7分 =3 ……………………………8分
18. 解法一:原式=()22222222.a ab a ab b a b +-++=-
当a b ==时,原式= 2.-
解法二:原式=()()()()222.a b a a b a b a b a b +--=+-=-
当a b ==时,原式= 2.-
19. 解:方法一:22()a b ab ab a b +=+ 因为1ab =,2a b +=, 所以原式122=⨯=.
方法二:由已知2a b +=,得2b a =-,
代入1ab =,得(2)1a a -=,即2(1)0a -=,所以1a =, 于是2211b a =-=-=, 所以222211112a b ab +=⨯+⨯=.
班级_____________________ 姓名____________________ 考场号____________ 考号___________
----------------------------------------------------密--------------------------------封--------------------------------线-----------------------------------------------20. 解法一:原式=()221x x x +--
=221x x x +-+=x +1
当1x =-时,原式=-1+1=0
解法二:原式=()()11x x x +--⎡⎤⎣⎦
=()()11x x x +-+
=1x +
当1x =-时,原式0=.
21. 原式=22212a a a ++-+
=31a +
四、复合题
22. 解:(1)当34a b ==,
()2
222a b ab a b ++=+
=49.
(2)(答案不惟一)例:()()22a b a b a b -=+-。

相关文档
最新文档