河南省驻马店市确山县九年级(上)期末数学试卷

合集下载

九年级上册驻马店数学期末试卷测试卷(解析版)

九年级上册驻马店数学期末试卷测试卷(解析版)

九年级上册驻马店数学期末试卷测试卷(解析版)一、选择题1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .32.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y <<B .123y y <<C .213y y <<D .213y y <<3.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°4.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒ 5.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=06.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部7.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( ) A .摸出黑球的可能性最小 B .不可能摸出白球 C .一定能摸出红球D .摸出红球的可能性最大8.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .3B .234C 1433D 22339.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 10.二次函数y =x 2﹣2x +1与x 轴的交点个数是( ) A .0B .1C .2D .311.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 12.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C 10D 310二、填空题13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.14.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).15.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.16.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.17.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 18.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.19.若32x y =,则x y y+的值为_____. 20.一组数据3,2,1,4,x 的极差为5,则x 为______.21.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.22.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.23.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.24.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.三、解答题25.如图1,AB 、CD 是圆O 的两条弦,交点为P .连接AD 、BC .OM ⊥ AD ,ON ⊥BC ,垂足分别为M 、N.连接PM 、PN.图1 图2 (1)求证:△ADP ∽△CBP ;(2)当AB ⊥CD 时,探究∠PMO 与∠PNO 的数量关系,并说明理由; (3)当AB ⊥CD 时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON 的面积. 26.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______; ②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O 与矩形ABCD 的一边相切,求O 的半径.︒):27.下表是某地连续5天的天气情况(单位:C日期1月1日1月2日1月3日1月4日1月5日最高气温57684最低气温-20-213︒(1)1月1日当天的日温差为______C(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.28.在矩形ABCD中,AB=3,AD=5,E是射线..DC上的点,连接AE,将△ADE沿直线AE 翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.29.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;30.已知函数y=ax2+bx+c(a≠0,a、b、c为常数)的图像经过点A(-1,0)、B(0,2).(1)b=(用含有a的代数式表示),c=;(2)点O是坐标原点,点C是该函数图像的顶点,若△AOC的面积为1,则a=;(3)若x>1时,y<5.结合图像,直接写出a的取值范围.31.对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n为这个代数式的不变值.例如:对于代数式x2,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=0.(1)代数式x2﹣2的不变值是,A=.(2)说明代数式3x2+1没有不变值;(3)已知代数式x2﹣bx+1,若A=0,求b的值.32.已知二次函数y=x2+bx+c的函数值y与自变量x之间的对应数据如表:x…﹣101234…y…1052125…(1)求b、c的值;(2)当x取何值时,该二次函数有最小值,最小值是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】x x-=的两根,再利用韦达定理即可求解.根据题干可以明确得到p,q是方程2330【详解】x x-=的两根,解:由题可知p,q是方程2330∴3,故选B. 【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.2.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.3.D解析:D 【解析】 【分析】根据三角形的内接圆得到∠ABC=2∠IBC ,∠ACB=2∠ICB ,根据三角形的内角和定理求出∠IBC+∠ICB ,求出∠ACB+∠ABC 的度数即可; 【详解】解:∵点I 是△ABC 的内心, ∴∠ABC =2∠IBC ,∠ACB =2∠ICB , ∵∠BIC =130°,∴∠IBC +∠ICB =180°﹣∠CIB =50°, ∴∠ABC +∠ACB =2×50°=100°,∴∠BAC =180°﹣(∠ACB +∠ABC )=80°. 故选D . 【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.4.C解析:C 【解析】 【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.5.C解析:C 【解析】 【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可. 【详解】 A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意; B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意; C 、x 2﹣2x+1=0, △=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意; D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意; 故选:C . 【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.6.D解析:D【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r 时,点在圆内.7.D解析:D【解析】【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,∴摸出黑球的概率是2 23,摸出白球的概率是1 23,摸出红球的概率是20 23,∵123<223<2023,∴从中任意摸出1个球,摸出红球的可能性最大;故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.8.C解析:C【解析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题. 【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点, ∴易证AE ⊥BC , ∵A 、C 关于BD 对称, ∴PA =PC , ∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长. 观察图象可知,当点P 与B 重合时,PE +PC =6, ∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a = ∵BC ∥AD , ∴AD PDBE PB= =2,∵BD =∴PD =23⨯=∴点H 的横坐标b ,∴a +b =33=; 故选C . 【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.C解析:C 【解析】 【分析】根据抛物线顶点的变换规律作出正确的选项. 【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,),所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.10.B解析:B【解析】由△=b 2-4ac=(-2)2-4×1×1=0,可得二次函数y=x 2-2x+1的图象与x 轴有一个交点.故选B .11.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A 、方程2x ﹣3=x 为一元一次方程,不符合题意;B 、方程2x +3y =5是二元一次方程,不符合题意;C 、方程2x ﹣x 2=1是一元二次方程,符合题意;D 、方程x +1x=7是分式方程,不符合题意, 故选:C .【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.12.C解析:C【解析】【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.【详解】tan A =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB =10, 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.二、填空题13.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 14.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.15.720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019 解析:720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x ,则2018的全年收入为:720×(1+x )2019的全年收入为:720×(1+x )2.那么可得方程:720(1+x )2=845.故答案为:720(1+x )2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).16.46°【解析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.17.【解析】【分析】根据抛物线平移的规律计算即可得到答案.根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 18.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC ,∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB ,故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.19..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.解析:52.【解析】【分析】根据比例的合比性质变形得:325.22 x yy++==【详解】∵32xy=,∴325.22 x yy++==故答案为:5 2 .【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.20.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键. 解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.22.8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.23.7【解析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 24.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG =DH =PE =QE =FN =FM =1,则有矩形DEPG 、矩形EQNF 、矩形DFMH ,∴DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN,∠PEF =90°又∵∠CPE =∠CQE =90°, PE =QE =1∴四边形CPEQ 是正方形,∴PC =PE =EQ =CQ =1,∵⊙O 的半径为1,且圆心O 运动的路径长为18,∴DE +EF +DF =18,∵DE ∥AC ,DF ∥AB ,EF ∥BC ,∴∠DEF =∠ACB ,∠DFE =∠ABC ,∴△DEF ∽△ABC ,∴DE:EF:DF=AC:BC:AB=3:4:5,设DE=3k(k>0),则EF=4k,DF=5k,∵DE+EF+DF=18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB=AH+HM+BM=x+152+y=x+y+7.5,∵AC:BC:AB=3:4:5,∴(x+5.5):(y+7):(x+y+7.5)=3:4:5,解得x=2,y=3,∴AC=7.5,BC=10,AB=12.5,∴AC+BC+AB=30.所以△ABC的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.三、解答题25.(1)证明见解析;(2)∠PMO=∠PNO,理由见解析;(3)S平行四边形PMON【解析】【分析】(1)利用同弧所对的圆周角相等即可证明相似,(2)由OM⊥ AD,ON⊥BC得到M、N为AB、CD的中点,再由直角三角形斜边中线等于斜边一半即可解题,(3)由三角形中位线性质得∠QBC=90°,进而证明∠QCB=∠PBD,得到四边形MONP为平行四边形即可解题.【详解】(1)因为同弧所对的圆周角相等,所以∠A=∠C, ∠D=∠B,所以△ADP∽△CBP.(2)∠PMO=∠PNO因为OM⊥ AD,ON⊥BC,所以点M、N为AB、CD的中点,又AB ⊥CD ,所以PM=12AD,PN=12BC , 所以,∠A=∠APM ,∠C=∠CPN ,所以∠AMP=∠CNP ,得到∠PMO 与∠PNO.(3)连接CO 并延长交圆O 于点Q ,连接BD.因为AB ⊥CD ,AM=12AD,CN=12BC , 所以PM=12AD,PN=12BC. 由三角形中位线性质得,ON=1BQ 2. 因为CQ 为圆O 直径,所以∠QBC=90°,则∠Q+∠QCB=90°,由∠DPB=90°,得∠PDB+∠PBD=90°,而∠PDB=∠Q ,所以∠QCB=∠PBD,所以BQ=AD ,所以PM=ON.同理可得,PN=OM.所以四边形MONP 为平行四边形.S 平行四边形3【点睛】本题考查了相似三角形的判定和性质,圆的基本知识,圆周角的性质,直角三角形的性质,平行四边形的判定,综合性强,熟悉圆周角的性质是求解(1)的关键,利用斜边中线等于斜边一半这一性质是求解(2)的关键,证明四边形MONP 为平行四边形是求解(3)的关键.26.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、255,35630、5. 【解析】【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ是直径,E在圆上,∴∠PEQ=90°,∴PE⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴BP BQ BQ BA,∴3 36 BP,∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt △OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P 作PS ⊥NL 于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 23x(舍去),225 23x,∴ON=25 53,∴O 半径为25 5.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x(舍去),263032x,∴OM=35630,∴O半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O 半径为5.综上所述,若O 与矩形ABCD的一边相切,为O的半径53,255,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.27.(1)7;(2)日最低气温波动大.【解析】【分析】(1)根据温差=最高温度-最低温度,再根据有理数的减法进行计算即可得出答案(2)利用方差公式直接求出最高气温与最低气温的方差,再进行比较即可.【详解】解:(1)5-(-2)=5+2=7所以1月1日当天的日温差为7℃(2)最高气温的平均数:5768465x++++==高最高气温的方差为:()()()()()222222567666864625S-+-+-+-+-==高同理得出,最低气温的平均数:0x =低最低气温的方差为:2 3.6S =低∵22S S <低高∴日最低气温波动大.【点睛】本题考查的知识点是求数据的平均数与方差,熟记方差公式是解题的关键.28.(1)证明见解析;(2)513;(3)53、5、15 【解析】【分析】(1)利用同角的余角相等,证明∠CEF =∠AFB ,即可解决问题;(2)过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H,由△FGE ∽△AHF 得出AH=5GF ,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD 中,∠B =∠C =∠D =90°由折叠可得:∠D =∠EFA =90°∵∠EFA =∠C =90°∴∠CEF +∠CFE =∠CFE +∠AFB =90°∴∠CEF =∠AFB在△ABF 和△FCE 中∵∠AFB =∠CEF ,∠B =∠C =90°△ABF ∽△FCE(2)解:过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H ,则∠EGF =∠AHF =90°在矩形ABCD 中,∠D =90°由折叠可得:∠D =∠EFA =90°,DE =EF =1,AD =AF =5∵∠EGF =∠EFA =90°∴∠GEF +∠GFE =∠AFH +∠GFE =90°∴∠GEF =∠AFH在△FGE 和△AHF 中∵∠GEF =∠AFH ,∠EGF =∠FHA =90°∴△FGE ∽△AHF ∴EF AF =GF AH ∴15=GF AH∴AH =5GF在Rt △AHF 中,∠AHF =90°∵AH 2+FH 2=AF 2∴(5 GF )2+(5 -GF )2=52∴GF =513∴△EFC 的面积为12×513×2=513 ;(3)解:①当∠EFC=90°时,A 、F 、C 共线,如图所示:设DE=EF=x,则CE=3-x,∵AC=22223534AD CD +=+=,∴CF=34-x, ∵∠CFE=∠D=90°, ∠DCA=∠DCA,∴△CEF ∽△CAD, ∴CE EF CA AD =,即534x =,解得:ED=x=5(345)-; ②当∠ECF=90°时,如图所示:∵AD=1AF =5,AB=3, ∴1BF 221AF AB -设1DE =x,则1E C =3-x,∵∠DCB=∠ABC=90°, 111CF E F AB ∠=∠∴11CE F ∽1BF A ,∴11111E C E F F B F A =,即345x x -=,解得:x=1E D =53; 由折叠可得 :222E F E D = ,设2E C x =,则2223E F DE x ==+,2549CF =+=, 在RT △22E F C 中,∵2222222CF CE E F +=,即9²+x²=(x+3)²,解得x=2E C =12, ∴231215DE =+=;③当∠CEF=90°时,AD=AF,此时四边形AFED 是正方形,∴AF=AD=DE=5,综上所述,DE 的长为:53、5、155(345)-. 【点睛】 本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.29.(1)y =(x -1)2-4或y =x 2-2x -3;(2)y =-(x -1)2+4【解析】【分析】(1)由表格中的数据,得出顶点坐标,设出函数的顶点式,将(0,-3)代入顶点式即可;(2)由(1)得顶点坐标和顶点式,再根据关于x 轴对称的点的横坐标相同,纵坐标互为相反数求出抛物线的顶点坐标,然后根据新抛物线与原抛物线形状相同,开口方向向下写出解析式即可.【详解】(1)根据题意,二次函数图像的顶点坐标为(1,-4),设二次函数的表达式为 y =a (x -1)2-4把(0,-3)代入y =a (x -1)2-4得,a =1∴y =(x -1)2-4或y =x 2-2x -3(2)解:∵y= y =(x -1)2-4,∴原函数图象的顶点坐标为(1,-4),∵描出的抛物线与抛物线y =x 2-2x -3关于x 轴对称,∴新抛物线顶点坐标为(1,4),∴这条抛物线的解析式为y =-(x -1)2+4,故答案为:y =-(x -1)2+4.【点睛】本题考查了本题考查了待定系数法求二次函数解析式、二次函数的图象、二次函数的性质以及二次函数图象与几何变换,根据顶点的变化确定函数的变化,根据关于x轴对称的点的坐标特征求出描出的抛物线的顶点坐标是解题的关键.30.(1)a+2;2;(2)-2或6±3)8a≤--【解析】【分析】(1)将点B的坐标代入解析式,求得c的值;将点A代入解析式,从而求得b;;(2)由题意可得AO=1,设C点坐标为(x,y),然后利用三角形的面积求出点C的纵坐标,然后代入顶点坐标公式求得a的值;(3)结合图像,若x>1时,y<5,则顶点纵坐标大于等于5,根据顶点纵坐标公式列不等式求解即可.【详解】解:(1)将B(0,2)代入解析式得:c=2将A(-1,0)代入解析式得: a×(-1)2+b×(-1)+c=0∴a-b+2=0∴b=a+2故答案为:a+2;2(2)由题意可知:AO=1设C点坐标为(x,y)则111 2y⨯⨯=解得:2y=±当y=2时,242 4ac ba-=由(1)可知,b=a+2;c=2∴242(2)24a aa⨯-+=解得:a=-2当y=-2时,242 4ac ba-=-由(1)可知,b=a+2;c=2∴242(2)24a aa⨯-+=-解得:6a=±∴a的值为-2或6±(3)若x>1时,y<5,又因为图像过点A(-1,0)、B(0,2)∴图像开口向下,即a<0则该图像顶点纵坐标大于等于5。

九年级上册驻马店数学全册期末复习试卷测试卷(解析版)

九年级上册驻马店数学全册期末复习试卷测试卷(解析版)

九年级上册驻马店数学全册期末复习试卷测试卷(解析版)一、选择题1.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为()A.7 : 12 B.7 : 24 C.13 : 36 D.13 : 722.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧BC上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º3.下列是一元二次方程的是()A.2x+1=0 B.x2+2x+3=0 C.y2+x=1 D.1x=14.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-25.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为()A.8,10 B.10,9 C.8,9 D.9,106.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是()A.23B.1.15C.11.5D.12.57.已知反比例函数kyx=的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限8.方程2x x=的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-1 9.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小B.不可能摸出白球C.一定能摸出红球D.摸出红球的可能性最大10.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 11.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .12.一元二次方程x 2﹣3x =0的两个根是( ) A .x 1=0,x 2=﹣3 B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣313.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个14.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1215.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A.点B.点C.点D.点二、填空题16.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是_____.17.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.18.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x…-10123…y…-3-3-139…关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.19.如图,利用标杆BE测量建筑物的高度,已知标杆BE高1.2m,测得1.6,12.4==,则建筑物CD的高是__________m.AB m BC m20.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,x 6.17 6.18 6.19 6.20 y﹣0.03﹣0.010.020.04则方程ax 2+bx+c =0的一个解的范围是_____.21.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.22.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).23.如图,正方形ABCD 的顶点A 、B 在圆O 上,若23AB =cm ,圆O 的半径为2cm ,则阴影部分的面积是__________2cm .(结果保留根号和π)24.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.25.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__.26.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.27.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .28.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.29.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________ 30.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题31.(1)如图①,在△ABC 中,AB =m ,AC =n (n >m ),点P 在边AC 上.当AP = 时,△APB ∽△ABC ;(2)如图②,已知△DEF (DE >DF ),请用直尺和圆规在直线DF 上求作一点Q ,使DE 是线段DF 和DQ 的比例项.(保留作图痕迹,不写作法)32.如图,已知菱形ABCD ,对角线AC 、BD 相交于点O ,AC =6,BD =8.点E 是AB 边上一点,求作矩形EFGH ,使得点F 、G 、H 分别落在边BC 、CD 、AD 上.设 AE =m .(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.33.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.34.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?35.如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,求证:△EAF∽△CBA;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.四、压轴题36.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.37.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.38.如图,已知矩形ABCD 中,BC =2cm ,AB 3,点E 在边AB 上,点F 在边AD 上,点E 由A 向B 运动,连结EC 、EF ,在运动的过程中,始终保持EC ⊥EF ,△EFG 为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.39.如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 40.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点,∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDS S =四边形, ∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.2.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C、方程y2+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.4.D解析:D【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.5.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.6.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..7.B解析:B【解析】【分析】【详解】解:将点(m,3m)代入反比例函数kyx得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.9.D解析:D【解析】【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,∴摸出黑球的概率是2 23,摸出白球的概率是1 23,摸出红球的概率是20 23,∵123<223<2023,∴从中任意摸出1个球,摸出红球的可能性最大;故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.11.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.12.B解析:B【解析】【分析】利用因式分解法解一元二次方程即可.【详解】x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,x1=0,x2=3.故选:B.【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).13.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=12AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得BC=12AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 14.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.15.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.二、填空题16.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.17.【解析】试题分析:连接BC,∴∠D=∠A,∵A B是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.18.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-3≤−1−2≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式. 19.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案. 【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 20.18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19解析:18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,∴当y =0时,相应的自变量x 的取值范围为6.18<x <6.19,故答案为:6.18<x <6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.21.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=25510BD AB ==.22.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧. 23.【解析】【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF 为圆的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求解析:412333π-- 【解析】 【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE ,根据90°的圆周角对应的弦是直径,可得AF 为圆O 的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求出∠AFB 和BF ,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG 、AG 和∠EOF ,最后利用S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF 计算即可.【详解】解:设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE∵四边形ABCD 是正方形∴∠ABF=90°,AD ∥BC ,BC=CD=AD=23AB =∴AF 为圆O 的直径∵23AB =cm ,圆O 的半径为2cm ,∴AF=4cm在Rt △ABF 中sin ∠AFB=3AB AF ,BF=222AF AB -= ∴∠AFB=60°,FC=BC -BF=()232cm∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt △AOG 中,OG=sin ∠EAF ·3cm ,AG= cos ∠EAF ·AO=1cm根据垂径定理,AE=2AG=2cm∴S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF =()21112022360OE CD FC AD AE OG π•+-•-=(21112022222360π•⨯+-⨯=24123cm π⎛⎫- ⎪⎝⎭故答案为:4123π-. 【点睛】 此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键.24.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD 是等腰直角三角形,进而可得Rt△ACF 是等腰直角三角形,求出CF ,再根据△ACE∽△BDE 的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt △ABD 是等腰直角三角形,进而可得Rt △ACF 是等腰直角三角形,求出CF ,再根据△ACE ∽△BDE 的相似比为1:3,根据勾股定理求出CD 的长,从而求出CE ,最后根据锐角三角函数的意义求出结果即可.【详解】过点C 作CF ⊥AE ,垂足为F ,在Rt △ACD 中,CD =由网格可知,Rt △ABD 是等腰直角三角形,因此Rt △ACF 是等腰直角三角形,∴CF =AC •sin45°=2, 由AC ∥BD 可得△ACE ∽△BDE , ∴13CE AC DE BD ==,∴CE =14CD =4,在Rt △ECF 中,sin ∠AEC =25CF CE ==,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.25.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公 解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.26.相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离27.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.28.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.29.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b处于直线m的位置时,此时直线和新图象只有一个交点A,当直线处于直线n的位置时,此时直线n过点B(4,0)与新图象有三个交点,当直线y=-2x+b处于直线m、n之间时,与该新图象有两个公共点,当直线处于直线m的位置:联立y=-2x+b与y=x2-4x并整理:x2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B时,将点B的坐标代入直线表达式得:0=-8+b,解得:b=8,故-1<b<8;故答案为:-1<b<8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A、B两个临界点,进而求解.30.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE =AB=5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=209;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt △ABC 中,∠ACB =90°,BC =3,tan A =BC AC =34, ∴AC =4,AB =5, 将Rt △ABC 绕点C 顺时针旋转90°得到△DEC , ∴∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4, ∵FH ⊥AC ,CD ⊥AC ,∴FH ∥CD ,∴△EFH ∽△EDC ,∴FH CD =EF DE , ∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH, ∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题31.(1)2mn;(2)见解析.【解析】【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB∽△ABC成立,∠A是公共角,则AB ACAC AP=,即m nn AP=,∴AP=2mn.(2)解:作∠DEQ=∠F,如图点Q就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.32.(1)见解析;(2)①当m=0时,存在1个矩形EFGH;②当0<m<95时,存在2个矩形EFGH;③当m=95时,存在1个矩形EFGH;④当95<m≤185时,存在2个矩形EFGH;⑤当185<m<5时,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【解析】【分析】(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.【详解】(1)如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)(2)∵O到菱形边的距离为125,当⊙O与AB相切时AE=95,当过点A,C时,⊙O与AB交于A,E两点,此时AE=95×2=185,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<95时,如图,存在2个矩形EFGH;③当m=95时,如图,存在1个矩形EFGH;④当95<m≤185时,如图,存在2个矩形EFGH;⑤当185<m <5时,如图,存在1个矩形EFGH ;⑥当m =5时,不存在矩形EFGH . 【点睛】本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O 与菱形的边的交点个数,综合性较强.33.(1)证明见解析;(22933()22cm . 【解析】【分析】(1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可. (2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°. ∴∠DOP=180°﹣120°=60°. ∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°. ∴OD ⊥DP . ∵OD 为半径, ∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm , ∴OP=6cm ,由勾股定理得:DP=33cm . ∴图中阴影部分的面积221603933333()236022ODPDOBS SS cm 扇形 34.38【解析】 【分析】本题先利用树状图,求出医院某天出生了3个婴儿的8中等可能性,再求出出现1个男婴、2个女婴有三种,概率为38. 【详解】解:用树状图来表示出生婴儿的情况,如图所示.在这8种情况中,一男两女的情况有3种,则概率为38.【点睛】本题利用树状图比较合适,利用列表不太方便.一般来说求等可能性,只有两个层次,既可以用树状图,又可以用列表;有三个层次时,适宜用树状图求出所有的等可能性.用到的知识点为:概率=所求情况数与总情况数之比.35.(1)证明见解析;(2)证明见解析;(3). 【解析】 【分析】(1)连接CD ,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC ,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线; (2)连接BC ,根据直径的性质得出∠ABC=90°,根据B 是EF 的中点得出AB=EF ,即∠BAC=∠AFE ,则得出三角形相似; (3)根据三角形相似得出AB ACAF EF=,根据AF 和CF 的长度得出AC 的长度,然后根据EF=2AB 代入AB ACAF EF=求出AB 和EF 的长度,最后根据Rt △AEF 的勾股定理求出AE 的长度. 【详解】解:(1)如答图1,连接CD , ∵AC 是⊙O 的直径,∴∠ADC=90° ∴∠ADB+∠EDC=90° ∵∠BAC=∠EDC ,∠EAB=∠ADB , ∴∠BAC=∠EAB+∠BAC=90° ∴EA 是⊙O 的切线; (2)如答图2,连接BC ,∵AC 是⊙O 的直径,∴∠ABC=90°. ∴∠CBA=∠ABC=90° ∵B 是EF 的中点,∴在Rt △EAF 中,AB=BF ∴∠BAC=∠AFE ∴△EAF ∽△CBA . (3)∵△EAF ∽△CBA ,∴AB ACAF EF= ∵AF=4,CF=2, ∴AC=6,EF=2AB . ∴642AB AB=,解得∴∴。

2022-2023学年河南省驻马店市九年级上学期期末考试数学试卷含答案

2022-2023学年河南省驻马店市九年级上学期期末考试数学试卷含答案

2022-2023学年度上期九年级质量监测试题数学一、选择题(本大题共10小题,共30分)1a 的值是( )A .0B .1C .2D .3 2.当b +c =5时,关于x 的一元二次方程230x bx c +-=的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .无法确定 3.式子2cos30tan 45︒-︒的值是( )A .12-B .0C 1D 24.从背面朝上的分别画有等腰三角形、平行四边形、矩形、圆的四张形状、大小相同的卡片中,随机抽取一张,则所抽得的图形既是中心对称图形又是轴对称图形的概率为( )A .14B .12C .34D .1 5.如图.在△ABC 中,DE BC ∥,∠B =∠ACD ,则图中相似三角形有( )A .2对B .3对C .4对D .5对 6.已知等腰三角形的两边长分别是一元二次方程27100x x -+=的两根,则该等腰三角形的周长为( )A .9B .12C .2或5D .9或127.如图,在4×4正方形网格中,点A ,B ,C 为网格交点,AD ⊥BC ,垂足为D ,则sin BAD ∠的值为( )A .12B .34C .35D .458.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,OH =4,则菱形ABCD 的面积为( )A .B .48C .72D .969.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到A B C ''△,此时点A '恰好在AB 边上,则点B '与点B 之间的距离为( )A .12B .6C .D .10.如图,在平面直角坐标系中,菱形OABC 中,已知A (4,0),∠OAB =120°,对角线AC 、BO 交点D ,将菱形OABC 绕点O 逆时针方向旋转,每次旋转60°,若旋转n 次后,点D 的坐标是(,则n 的值可能是( )A .2019B .2020C .2021D .2022 二、填空题(本大题共5小题,共15分)11.已知a ,b 是方程230x x +-=的两个根,则20222022ab a b --的值是______.12.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若AB =4,AD =3,则CF 的长为______.13.在△ABC 中,若21sin cos 02A B ⎛⎫+-= ⎪⎝⎭,则∠C 的度数是______. 14.如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是______.15.如图,在Rt △ABC 中,∠ACB =90°,AB =4,BC =2,点E 、F 分别是AB 、BC 上的动点,沿EF 所在直线折叠△ABC ,使点B 落在AC 上的点B '处,当AEB '△是直角三角形时,AB '的长为______.三、解答题(本大题共7小题,共75分)16.(每小题4分,共8分)(1)解方程:254120x x --=.(2)求值:sin30tan302cos604tan 45︒⋅︒+︒-︒.17.(9分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x ,再从乙袋中随机取出1个小球,记录标有的数字为y ,这样确定了点M 的坐标(x ,y ).(1)写出点M 所有可能的坐标;(2)求点M 在直线y =-x +3上的概率.18.(9分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37°,旗杆底部B 点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)19.(9分)如图,AD 是Rt △ABC 斜边上的高,若AB =4cm ,BC =10cm ,求BD 的长.20.(9分)如图,点C 在△ADE 的边DE 上,AD 与BC 相交于点F ,∠1=∠2,AB AD AC AE=. 试说明:AF DF BF CF ⋅=⋅.21.(10分)某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.按照物价部门规定,销售单价不低于成本且不高于95元,市场调研发现,在一段时间内,每天销售数量y (个)与销售单价x (元)符合一次函数关系,如图所示.(1)求出y 与x 的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元?(3)销售单价为多少元时,每天获得的利润最大?最大利润是多少元?22.(10分)如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A 、点B ,直线CD 与x 轴、y 轴分别交于点C 、点D ,AB 与CD 相交于点E ,线段OA 、OC 的长是一元二次方程218720x x -+=的两根(OA OC >),5BE =,43OB OA =.(1)求点A 、点C 的坐标;(2)求直线CD 的解析式;(3)在x 轴上是否存在点P ,使点C 、点E 、点P 为顶点的三角形与△DCO 相似?若存在,请求出点P 的坐标;如不存在,请说明理由.23.(11分)如图所示,在平面直角坐标系中,O 为坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),点C 在x 轴正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .(1)求直线AC 的函数解析式及MH 的长;(2)连接BM ,动点P 从点A 出发,沿折线A →B →C 方向以每秒1个单位的速度向终点C 匀速运动,设△PMB 的面积为()0S S ≠,点P 的运动时间为t 秒,求S 与t 之间的函数关系式,并写出自变量t 的取值范围;(3)在(2)的情况下,当点P 在线段AB 上运动时,是否存在以BM 为腰的等腰三角形?如存在,直接写出t 的值;如不存在,说明理由.2022-2023学年度上期九年级质量监测试题数 学参考答案一、选择题1. C2. A3. C4. B5.C6. B7. C8. B9. D 10. D二、填空题11.2019 12. 103 13. 75° 14.12 15. 4√33或4(√3−1) 三、解答题【参考答案】16. (1)解:Δ=(−4)2−4×5×(−12)=16×16>0,x =−b±√b 2−4ac 2a =4±162×5=2±85,所以x 1=2,x 2=−65;(2) 解:原式=12×√33+2×12−4×1 =√36+1−4=√36−3.17. 解:(1)列表如下:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).(2)当x =0时,y =−0+3=3,当x =1时,y =−1+3=2,当x =2时,y =−2+3=1,由(1)可得点M 坐标总共有九种可能情况,点M 落在直线y =−x +3上(记为事件A)有3种情况.∴P(A)=39=13. 18. 解:在Rt △BCD 中,BD =9米,∠BCD =45°,则BD =CD =9米.在Rt△ACD中,CD=9米,∠ACD=37°,则AD=CD⋅tan37°≈9×0.75=6.75(米).所以,AB=AD+BD=15.75米,整个过程中旗子上升高度是:15.75−2.25=13.5(米),因为耗时45s,所以上升速度v=13.545=0.3(米/秒).答:国旗应以0.3米/秒的速度匀速上升.19.解:∵AD是Rt△ABC斜边上的高,∴∠BDA=∠BAC=90°,∵∠B=∠B,∴△ABD∽△CBA,∴AB BC =BDAB,∴BD=AB 2BC =4210=1.6(cm).20.证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,∵AB AC =ADAE,∴AB AD =ACAE,∴△ABC∽△ADE;∴∠B=∠D,∵∠BFA=∠DFC,∴△ABF∽△CDF,∴BF DF =AFCF,∴AF⋅DF=BF⋅CF.21.解:(1)设y=kx+b(k≠0,b为常数),将点(50,160),(80,100)代入得:{160=50k+b100=80k+b,解得{k =−2b =260. ∴y 与x 的函数关系式为:y =−2x +260.(2)由题意得:(x −50)(−2x +260)=3000,化简得:x 2−180x +8000=0,解得:x 1=80,x 2=100.x 2=100>95(不符合题意,舍去).答:销售单价为80元.(3)设每天获得的利润为w 元,由题意得,w =(x −50)(−2x +260),=−2x 2+360x −13000=−2(x −90)2+3200.∵a =−2<0,抛物线开口向下,∴w 有最大值,当x =90时,w 最大值=3200.答:销售单价为90元时,每天获得的利润最大,最大利润是3200元. 22. 解:(1)x 2−18x +72=0即(x −12)(x −6)=0,则x −12=0,x −6=0,解得:x =12或x =6,又∵OA >OC ,∴OA =12,OC =6,∴A 的坐标是(12,0),C 的坐标是(−6,0).(2)∵OB =43OA ,∴OB =43OA =16,则B 的坐标是(0,16),AB =√OA 2+OB 2=√122+162=20,如图,作EF ⊥x 轴于点F ,则△AEF∽△ABO ,∴AF OA =EF OB =AE AB =1520=34, ∴AF 12=34,EF 16=34∴AF =9,EF =12,则OF =12−9=3,则E 的坐标是(3,12);设直线CD 的解析式是y =kx +b ,则:{−6k +b =03k +b =12, 解得:{k =43b =8, 则直线CD 的解析式是y =43x +8; (3)存在,理由:设P 的坐标是(p,0),则PC =p +6. 由一次函数解析式可得D 点坐标为(0,8), ∴OC =6,OD =8,CD =√62+82=10, CE =√CF 2+EF 2=15,当△COD∽△CEP 时,CD CP =OC CE ,即10p+6=615,解得:p =19,则P 的坐标是(19,0);当△COD∽△CPE 时,OC CP =CD CE ,即6p+6=1015,解得:p =3,则P 的坐标是(3,0).综上所述,点P 的坐标是(19,0)和(3,0). 23. 解:(1)∵点A 的坐标为(−3,4), ∴OA =5,即C 点的坐标为(5,0),设直线AC 的解析式为y =kx +b ,则{−3k +b =45k +b =0, 解得{k =−12b =52,∴直线AC的解析式为:y=−12x+52,令x=0得:y=52,即OM=52,∴MH=4−52=32;(2)设点M到BC的距离为ℎ,由S△ABC=S△ABM+S△BCM,即12×5×4=12×5×32+12×5×ℎ,∴ℎ=52,①当P在直线AB上运动时△PBM的面积为S与P的运动时间为t秒关系为:S=12(5−t)×32,即S=−34t+154(0⩽t<5);②当P运动到直线BC上时△PMB的面积为S与P的运动时间为t秒关系为:S=12×52×(t−5),即S=54t−254(5<t⩽10);(3)1或52。

2023-2024学年河南省驻马店市市区学校九年级(上)期末数学试卷(含解析)

2023-2024学年河南省驻马店市市区学校九年级(上)期末数学试卷(含解析)

2023-2024学年河南省驻马店市市区学校九年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列函数:①y=3−3x2;②y=2x2;③y=x(3−5x);④y=(1+2x)(1−2x),是二次函数的有( )A. 1个B. 2个C. 3个D. 4个2.下列运算正确的是( )A. 3+4=7B. 12=32C. (−2)2=−2D. 146=2133.如图,AB是⊙O的直径,点D在⊙O上,若∠AOC=120°,则∠D的度数是( )A. 20°B. 30°C. 40°D. 45°4.如图,在Rt△ABC中,∠ACB=90°,如果AC=4,cosB=35,那么BC等于( )A. 3B. 4C. 5D. 65.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A. y=(x+2)2−3B. y=(x+2)2+3C. y=(x−2)2+3D. y=(x−2)2−36.如图,弦AB⊥OC,垂足为点C,连接OA,若OC=4,AB=6,则sinA等于( )A. 22B. 32C. 45D. 357.一元二次方程(x+1)(x−1)=2x−2的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是( )A. 2B. 3C. 4D. 59.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=( )A. 2:5B. 3:5C. 2:3D. 3:210.如图,已知抛物线l1:y=−x2+2x与x轴分别交于A、O两点,顶点为M.将抛物线l1关于y轴对称得到抛物线l2.则抛物线l2过点O,与x轴的另一个交点为B,顶点为N,连接AM、MN、NB,则四边形AMNB的面积( )A. 3B. 6C. 8D. 10二、填空题:本题共5小题,每小题3分,共15分。

2023-2024学年河南省驻马店市九年级上学期期末考试数学试题

2023-2024学年河南省驻马店市九年级上学期期末考试数学试题

2023-2024学年河南省驻马店市九年级上学期期末考试数学试题1.的倒数是()A.B.C.D.2.如图,C,D是线段上的两点,且C是线段的中点,若,则的长为()A.7B.6C.5D.33.有下列式子:①;②;③;④;⑤;⑥.其中不等式的个数是()A.2B.3C.4D.54.如图,如果,则下列各式错误的是()A.B.C.D.5.将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A的边长为5,正方形的边长为3,则正方形的面积为()A.16B.25C.30D.346.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流与电阻成反比例函数的图象,该图象经过点.根据图象可知,下列说法正确的是()A.当时,B.I与R的函数关系式是C.当时,D.当时,I的取值范围是7.如图是由4个相同的小正方体组成的几何体,从上面看这个几何体得到的平面图形是()A.B.C.D.8.如图,在菱形中,,,,分别是,的中点,,相交于点,连接,,有下列结论:①;②;③;④,其中正确的结论有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,矩形的顶点O在坐标原点,边在x轴上,在y轴上,如果矩形与矩形关于点O位似,且矩形的面积等于矩形面积的,那么点的坐标是()A.B.或C.D.或10.如图,在矩形中,,,E是边上一点,连接,沿翻折,得到,连接.当长度最小时,的面积是()A.B.C.D.211.某市今年1月份某天的最高气温为,最低气温为,则该市这天的最高气温比最低气温高_________℃.12.如图,三角形的面积为______.13.把一张长方形纸片沿对角线折叠,使折叠后的图形如图所示.若,则_____________°.14.用表格表示反比例函数如下,则与的大小关系为:_________.x…24…y…4…15.如图,在平面直角坐标系中,O为原点,点A在第一象限,点B是x轴正半轴上一点,,双曲线过点A,交AB于点C,连接OC,若,则的值是______.16.计算:.17.某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组(每组20人)进行“引体向上”体能测试,根据测试成绩绘制出下面的统计表和统计图.甲组成绩统计表成绩78910人数1955乙组成绩统计图请根据上面的信息,解答下列问题:(1)甲组成绩的中位数是,乙组成绩的众数是;(2)请求出乙组成绩的平均数;(3)已知甲组成绩的方差为,请求乙组成绩的方差,并判断哪个小组的成绩更加稳定.18.如图,已知是的一条对角线,于点,于点.求证:(1);(2)四边形为平行四边形.19.一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.20.在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S()的反比例函数,其图象如图.(1)求p与S之间的函数关系式.(2)求当时物体承受的压强p.(3)若要获得2500Pa的压强,变力面积应为多少?21.如图,在中,cm,cm,点P从A出发,以的速度向B运动,同时点Q从C出发,以的速度向A运动,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为t.(1)用含t的代数式表示:________,(2)当以A,P,Q为顶点的三角形与相似时,求运动时间是多少.22.如图,在△ABC中,AB=AC,AD⊥BC于D点,BE⊥AC于E点,AD=BC,BE=4.求:(1)tanC的值;(2)AD的长.23.如图,二次函数y=ax2+bx+c的图像交x轴于A(-2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.。

2022-2023学年河南省驻马店确山县联考九年级数学第一学期期末达标测试试题含解析

2022-2023学年河南省驻马店确山县联考九年级数学第一学期期末达标测试试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.如图,已知矩形ABCD 和矩形EFGO 在平面直角坐标系中,点B ,F 的坐标分别为(-4,4),(2,1).若矩形ABCD 和矩形EFGO 是位似图形,点P (点P 在GC 上)是位似中心,则点P 的坐标为( )A .(0,3)B .(0,2.5)C .(0,2)D .(0,1.5)2.学校要举行“读书月”活动,同学们设计了如下四种“读书月”活动标志图案,其中是中心对称图形的是( )A .B .C .D .3.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( )A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+D .()2241y x =++4.如图,已知二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于点A (﹣1,0),对称轴为直线x=1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论: ①当x >3时,y <0; ②3a+b <0;③213a -≤≤-; ④248ac b a ->; 其中正确的结论是( )A .①③④B .①②③C .①②④D .①②③④5.如图,在四边形ABCD 中,AB CD ∥,对角线AC 、BD 交于点O 有以下四个结论其中始终正确的有( )①AOB COD ∆∆∽; ②AOD ACB ∆∆∽;③::DOC AOD S S DC AB ∆∆=; ④AOD BOC S S ∆∆= A .1个B .2个C .3个D .4个6.已知一个单位向量e ,设a 、b 是非零向量,那么下列等式中正确的是( ).A .1a e a=;B .e a a =;C .b e b =;D .11a b ab=.7.二次函数2y ax b =+(b >0)与反比例函数ay x=在同一坐标系中的图象可能是( ) A . B . C . D .8.已知点()11,A y 、()22,B y -、()32,C y -在函数()21212y x =+-上,则1y 、2y 、3y 的大小关系是( ).(用“>”连结起来) A .321y y y >>B .123y y y >>C .312y y y >>D .132y y y >>9.如图是二次函数y =ax 1+bx+c (a≠0)图象的一部分,对称轴是直线x =﹣1.关于下列结论:①ab <0;②b 1﹣4ac >0;③9a ﹣3b+c >0;④b ﹣4a =0;⑤方程ax 1+bx =0的两个根为x 1=0,x 1=﹣4,其中正确的结论有( )A .1个B .3个C .4个D .5个10.在Rt ABC ∆中,90C ∠=︒,40B ∠=︒,10AB =,则直角边BC 的长是( ) A .10sin 40︒B .10cos40︒C .10tan 40︒D .10sin 40︒二、填空题(每小题3分,共24分)11.抛物线223y x x =--的顶点坐标是___________.12.已知抛物线y=ax 2+bx+c 开口向上,一条平行于x 轴的直线截此抛物线于M 、N 两点,那么线段MN 的长度随直线向上平移而变_____.(填“大”或“小”)13.如图,是某同学制作的一个圆锥形纸帽的示意图,则围成这个纸帽的纸的面积为______.14.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为______.15.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____ 16.如果抛物线231y x x m =-+-+经过原点,那么m =______.17.已知点B 位于点A 北偏东30°方向,点C 位于点A 北偏西30°方向,且AB =AC =8千米,那么 BC =________千米.18.若a 、b ()a b <是关于x 的一元二次方程()()20x m x n ---=的两个根,且m n <,则a ,b ,m ,n 的大小关系是_____________. 三、解答题(共66分)19.(10分)如图,在△ABC 中,∠B =45°,AC =5,cosC =35,AD 是BC 边上的高线. (1)求AD 的长; (2)求△ABC 的面积.20.(6分) (1)如图1,在平行四边形ABCD 中,点E 1,E 2是AB 三等分点,点F 1,F 2是CD 三等分点,E 1F 1,E 2F 2分别交AC 于点G 1,G 2,求证:AG 1=G 1G 2=G 2C .(2)如图2,由64个边长为1的小正方形组成的一个网格图,线段MN 的两个端点在格点上,请用一把无刻度的尺子,画出线段MN 三等分点P ,Q .(保留作图痕迹)21.(6分)已知x =1是一元二次方程(a ﹣2)x 2+(a 2﹣3)x ﹣a +1=0的一个根,求a 的值.22.(8分)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB =20米,顶点M 距水面6米(即MO =6米),小孔水面宽度BC =6米,顶点N 距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.23.(8分)如图,是两棵树分别在同一时刻、同一路灯下的影子. (1)请画出路灯灯泡的位置(用字母O 表示) (2)在图中画出路灯灯杆(用线段OC 表示);(3)若左边树AB 的高度是4米,影长是3米,树根B 离灯杆底的距离是1米,求灯杆的高度.24.(8分)女本柔弱,为母则刚,说的是母亲对子女无私的爱,母爱伟大,值此母亲节来临之际,某花店推出一款康乃馨花束,经过近几年的市场调研发现,该花束在母亲节的销售量y (束)与销售单价x (元)之间满足如图所示的一次函数关系,已知该花束的成本是每束100元.(1)求出y 关于x 的函数关系式(不要求写x 的取值范围);(2)设该花束在母亲节盈利为w 元,写出w 关于x 的函数关系式:并求出当售价定为多少元时,利润最大?最大值是多少?(3)花店开拓新的进货渠道,以降低成本.预计在今后的销售中,母亲节期间该花束的销售量与销售单价仍存在(1)中的关系.若想实现销售单价为200元,且销售利润不低于9900元的销售目标,该花束每束的成本应不超过多少元.25.(10分)解方程:2240x x --=;26.(10分)如图,在ABC ∆中12,15,18,AC AB BC D BC ===是边上一点,2•AC BC CD = ,连接AD ,点E ,F分别是,BC AB 的点(点F 不与点,A B 重合),CFE B ∠=∠,CF AD 与相交于点G . (1)求AD ,BD 的长; (2)求证:BEF ∆~AFG ∆;(3)当EF FG =时,请直接写出AG 的长.参考答案一、选择题(每小题3分,共30分) 1、C【分析】如图连接BF 交y 轴于P ,由BC ∥GF 可得GP PC =GFPC,再根据线段的长即可求出GP ,PC ,即可得出P 点坐标.【详解】连接BF 交y 轴于P ,∵四边形ABCD 和四边形EFGO 是矩形,点B ,F 的坐标分别为(-4,4),(2,1), ∴点C 的坐标为(0,4),点G 的坐标为(0,1), ∴CG =3, ∵BC ∥GF , ∴GP PC =GF PC =12, ∴GP =1,PC =2, ∴点P 的坐标为(0,2), 故选C.【点睛】此题主要考查位似图形的性质,解题的关键是根据位似图形的对应线段成比例. 2、C【分析】根据中心对称图形的概念作答.在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:A 、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;B 、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;C 、图形中心绕旋转180°以后,能够与它本身重合,故是中心对称图形,符合题意;D 、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意. 故选:C . 【点睛】本题考查了中心对称图形的概念.特别注意,中心对称图形是要寻找对称中心,旋转180°后两部分重合. 3、B【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B . 【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 4、B【分析】①由抛物线的对称性可求得抛物线与x 轴令一个交点的坐标为(3,1),当x >3时,y <1,故①正确;②抛物线开口向下,故a <1,∵12bx a=-=,∴2a+b=1.∴3a+b=1+a=a <1,故②正确; ③设抛物线的解析式为y=a (x+1)(x ﹣3),则223y ax ax a =--,令x=1得:y=﹣3a .∵抛物线与y 轴的交点B 在(1,2)和(1,3)之间,∴233a ≤-≤.解得:213a -≤≤-,故③正确; ④.∵抛物线y 轴的交点B 在(1,2)和(1,3)之间,∴2≤c≤3,由248ac b a ->得:248ac a b ->,∵a <1,∴224b c a-<,∴c ﹣2<1,∴c <2,与2≤c≤3矛盾,故④错误.【详解】解:①由抛物线的对称性可求得抛物线与x 轴令一个交点的坐标为(3,1), 当x >3时,y <1, 故①正确;②抛物线开口向下,故a <1, ∵12bx a=-=, ∴2a+b=1. ∴3a+b=1+a=a <1, 故②正确;③设抛物线的解析式为y=a (x+1)(x ﹣3),则223y ax ax a =--,令x=1得:y=﹣3a .∵抛物线与y 轴的交点B 在(1,2)和(1,3)之间, ∴233a ≤-≤. 解得:213a -≤≤-, 故③正确;④.∵抛物线y 轴的交点B 在(1,2)和(1,3)之间, ∴2≤c≤3,由248ac b a ->得:248ac a b ->, ∵a <1,∴224b c a-<,∴c ﹣2<1,∴c <2,与2≤c≤3矛盾, 故④错误.故选B . 【点睛】本题考查二次函数图象与系数的关系,结合图像,数形结合的思想的运用是本题的解题关键.. 5、C【分析】根据相似三角形的判定定理、三角形的面积公式判断即可. 【详解】解:∵AB∥CD,∴△AOB∽△COD,①正确;∵∠ADO 不一定等于∠BCO,∴△AOD 与△ACB 不一定相似,②错误; ∴:::DOC AOD S S CO AO DC AB ∆∆==,③正确; ∵△ABD 与△ABC 等高同底, ∴ABD ABC S S ∆∆=,∵ABD AOB ABC AOB S S S S ∆∆∆∆-=-, ∴AOD BOC S S ∆∆=,④正确; 故选C.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键. 6、B【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误.故选:B . 【点睛】本题考查了向量的性质. 7、B【解析】试题分析:先根据各选项中反比例函数图象的位置确定a 的范围,再根据a 的范围对抛物线的大致位置进行判断,从而对各选项作出判断: ∵当反比例函数a y x=经过第二、四象限时, a <0,∴抛物线2y ax b =+(b >0)中a <0,b >0, ∴抛物线开口向下. 所以A 选项错误. ∵当反比例函数a y x=经过第一、三象限时, a >0,∴抛物线2y ax b =+(b >0)中a >0,b >0, ∴抛物线开口向上,抛物线与y 轴的交点在x 轴上方. 所以B 选项正确,C ,D 选项错误. 故选B .考点:1.二次函数和反比例函数的图象与系数的关系;2.数形结合思想的应用. 8、D【分析】抛物线开口向上,对称轴为x= -1.根据三点横坐标离对称轴的距离远近来判断纵坐标的大小. 【详解】解:由函数()21212y x =+-可知: 该函数的抛物线开口向上,且对称轴为x=-1.∵()11,A y 、()2B y 、()32,C y -在函数()21212y x =+-上的三个点, 且三点的横坐标距离对称轴的远近为:()11,A y 、()32,C y -、()2B y∴132y y y >>. 故选: D . 【点睛】主要考查二次函数图象上点的坐标特征.也可求得()1 1, A y 的对称点()13, y -,使三点在对称轴的同一侧. 9、C【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:∵抛物线开口向下, ∴a <0, ∵22ba-=-, ∴b =4a ,ab >0, ∴b ﹣4a =0, ∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 1﹣4ac >0,方程ax 1+bx =0的两个根为x 1=0,x 1=﹣4,∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b+c >0,∴③正确,故正确的有②③④⑤.故选:C .【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求1a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用10、B【分析】根据余弦的定义求解.【详解】解:∵在Rt △ABC 中,∠C=90°,cosB=BC AB , ∴BC=10cos40°.故选:B .【点睛】本题考查解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.二、填空题(每小题3分,共24分)11、(1,﹣4).【解析】解:∵原抛物线可化为:y =(x ﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4).12、大【解析】因为二次函数的开口向上,所以点M ,N 向上平移时,距离对称轴的距离越大,即MN 的长度随直线向上平移而变大,故答案为:大.13、2300cm【分析】根据已知得出圆锥的底面半径为10cm ,圆锥的侧面积=π×底面半径×母线长,即可得出答案.【详解】解:底面圆的半径为10,则底面周长=10π,侧面面积=12×10π×30=300πcm 1. 故答案为:300πcm 1.【点睛】本题主要考查了圆锥的侧面积公式,掌握圆锥侧面积公式是解决问题的关键,此问题是中考中考查重点.14、 (6,0)【详解】解:过点P 作PM ⊥AB 于M ,则M 的坐标是(4,0)∴MB=MA=4-2=2,∴点B 的坐标为(6,0)15、8个【解析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【详解】袋中小球的总个数是:2÷14=8(个).故答案为8个.【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.16、1【分析】把原点坐标代入231y x x m =-+-+中得到关于m 的一次方程,然后解一次方程即可.【详解】∵抛物线231y x x m =-+-+经过点(0,0),∴−1+m =0,∴m =1.故答案为1.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.17、8【解析】因为点B 位于点A 北偏东30°方向,点C 位于点A 北偏西30°方向,所以∠BAC =60°,因为AB =AC ,所以△ABC 是等边三角形,所以BC=AB=AC =8千米,故答案为:8.18、a m n b <<<【分析】根据题意和二次函数性质,可以判断出a b m n 、、、的大小关系,本题得以解决.【详解】令()()y x m x n =--,则该函数的图象开口向上,当0y =时,12x m x n ==,,当2y =时,()()2x m x n =--,即()()20x m x n ---=,∵()a b a b <、是关于x 的方程()()20x m x n ---=的两根,且m n <,∴a m n b <<<,故答案为:a m n b <<<.【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题(共66分)19、(1)AD=2;(2)S △ABC =1.【分析】(1)由高的定义可得出∠ADC =∠ADB =90°,在Rt △ACD 中,由AC 的长及cosC 的值可求出CD 的长,再利用勾股定理即可求出AD 的长;(2)由∠B ,∠ADB 的度数可求出∠BAD 的度数,即可得出∠B =∠BAD ,利用等角对等边可得出BD 的长,再利用三角形的面积公式即可求出△ABC 的面积.【详解】解:(1)∵AD ⊥BC ,∴∠ADC =∠ADB =90°.在Rt △ACD 中,AC =5,cosC =35, ∴CD =AC•cosC =3,∴AD 2.(2)∵∠B =25°,∠ADB =90°,∴∠BAD =90°﹣∠B =25°,∴∠B =∠BAD ,∴BD =AD =2,∴S △ABC =12AD•BC =12×2×(2+3)=1. 【点睛】本题考查了解直角三角形、勾股定理、等腰三角形的性质以及三角形的面积,解题的关键是:(1) 通过解直角三角形及勾股定理,求出CD 、AD 的长;(2) 利用等腰三角形的性质,找出BD 的长.20、(1)见解析;(2)见解析【分析】(1)利用平行线分线段成比例定理证明即可.(2)利用(1)中结论,构造平行四边形解决问题即可.【详解】解:(1)证明:如图1中,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD∥BC,∵DF1=13CD,AE1=13AB,∴DF1=AE1,∴四边形ADF1E1是平行四边形,∴AD∥E1F1,∴E1G1∥BC,∴11 3AG AEAC AB==,同法可证:221 3CG CFCA CD==,∴AG1=CG2=13 AC,∴AG1=G1G2=G2C.(2)如图,点P,Q即为所求.【点睛】本题主要考查了平行四边形的性质,平行线分线段成比例定理,掌握平行四边形的性质,平行线分线段成比例定理是解题的关键.21、a =﹣2【分析】根据一元二次方程的解的定义将x =1代入方程即可求出答案.【详解】解:将x =1代入(a ﹣2)x 2+(a 2﹣3)x ﹣a+1=0,得(a ﹣2)+(a 2﹣3)﹣a+1=0,∴a 2﹣4=0,∴a =±2, 由于a ﹣2≠0,故a =﹣2.【点睛】本题考查一元二次方程的解,解题的关键是熟练运用一元二次方程的解的定义,本题属于基础题型.22、(1)巡逻船能安全通过大孔,理由见解析;(2)小船不能安全通过小孔,理由见解析.【分析】(1)设大孔所在的抛物线的解析式为26y ax =+,求得大孔所在的抛物线的解析式为23650y x =-+,当2x =时,得到2326 5.76550y =-⨯+=>,于是得到结论; (2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为2 4.5z mx =+,求得小孔所在的抛物线的解析式为21 4.52z x =-+,当 1.5x =时,得到 3.375 3.5z =<,于是得到结论. 【详解】解:(1)设大孔所在的抛物线的解析式为26y ax =+,由题意得,0()10,A -,2(10)60a ∴-+=,350a ∴=-, ∴大孔所在的抛物线的解析式为23650y x =-+, 当2x =时,2326 5.76550y =-⨯+=>, ∴该巡逻船能安全通过大孔;(2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为2 4.5z mx =+,由题意得,(3,0)C ,23 4.50m ∴⨯+=,12m ∴=-, ∴小孔所在的抛物线的解析式为214.52z x =-+,当 1.5x =时, 3.375 3.5z =<,∴小船不能安全通过小孔.【点睛】本题考查了二次函数的应用以及二次函数图象上点的坐标特征,结合函数图象及二次函数图象上点的坐标特征找出关于a 的一元一次方程是解题的关键.23、(1)见解析;(2)见解析;(3)灯杆的高度是163米 【分析】(1)直接利用中心投影的性质得出O 点位置;(2)利用O 点位置得出OC 的位置;(3)直接利用相似三角形的性质得出灯杆的高度.【详解】解:(1)如图所示:O 即为所求; (2)如图所示:CO 即为所求;(3)由题意可得:△EAB ∽△EOC ,则EB AB EC CO=, ∵EB=3m ,BC=1m ,AB=4m ,∴344CO=, 解得:CO=163, 答:灯杆的高度是163米. 【点睛】此题主要考查了相似三角形的应用,正确得出O 点位置是解题关键.24、(1)11902y x =-+;(2)21(240)98002w x =--+,240,9800;(3)1. 【分析】(1)根据题目中所给的图象,确定一次函数图象经过点(180,100),(220,80),再利用待定系数法求出y 关于x 的函数关系式即可;(2)根据“总利润=单件的利润×销售量”列出W 与x 的二次函数关系式,再利用二次函数的性质求解即可;(3)根据题意可以列出相应的不等式,从而可以解得该花束每束的成本.【详解】解:(1)设一次函数关系式为y kx b =+,由题图知该函数图象过点(180,100),(220,80),则180********k b k b +=⎧⎨+=⎩, 解得12190k b ⎧=-⎪⎨⎪=⎩,∴y 关于x 的函数关系式为11902y x =-+ (2)由题知22111(100)19024019000(240)9800222w x x x x x ⎛⎫=--+=-+-=--+ ⎪⎝⎭, ∴当240x =时,w 有最大值,最大值为9800元;(3)设该花束每束的成本为m 元, 由题意知1(200)20019099002m ⎛⎫--⨯+ ⎪⎝⎭, 解得90m .答:该花束每束的成本应不超过1元.【点睛】本题考查二次函数的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题 需要的条件,利用函数和数形结合的思想解答.25、【详解】22215,(1)5,1x x x x -+=-=-=26、(1)AD=10,BD=10;(2)见解析;(3) 【分析】(1)由2•AC BC CD =可证明△ABC ∽△DAC ,通过相似比即可求出AD ,BD 的长;(2)由(1)可证明∠B=∠DAB ,再根据已知条件证明∠AFC=∠BEF 即可;(3)过点C 作CH ∥AB ,交AD 的延长线于点H ,根据平行线的性质得到CH CD HD AB BD AD==,计算出CH 和AH 的值,由已知条件得到BEF ∆≌AFG ∆,设AG=x ,则AF=15-x ,HG=18-x ,再由平行线的性质得到CH HG AF AG=,表达出即可解出x ,即AG 的值.【详解】解:(1)∵2•AC BC CD =, ∴ACBCCD AC =,又∵∠ACB=∠DCA ,∴△ABC ∽△DAC , ∴ACBC AB CD AC AD ==,即12181512CD AD ==,解得:CD=8,AD=10,∴BD=BC-CD=18-8=10,∴AD=10,BD=10;(2)由(1)可知,AD=BD=10,∴∠B=∠DAB ,∵∠AFE=∠B+∠BEF ,∴∠AFC+∠CFE=∠B+∠BEF ,∵CFE B ∠=∠,∴∠AFC=∠BEF ,又∵∠B=∠DAB ,∴BEF ∆~AFG ∆;(3)如图,过点C 作CH ∥AB ,交AD 的延长线于点H , ∴CHCDHDAB BD AD ==, 即8151010CH HD==,解得:CH=12,HD=8,∴AH=AD+HD=18,若EF FG =,则BEF ∆≌AFG ∆;∴BF=AG ,设AG=x ,则AF=15-x ,HG=18-x ,∵CH ∥AB , ∴CH HG AF AG =,即121815x x x-=-, 解得:14531052x -=,24531052x +=(舍去) ∴AG=4531052-. 【点睛】本题考查了相似三角形的判定与性质以及平行线分线段成比例,解题的关键是熟悉相似三角形的判定,并灵活作出辅助线.。

2023-2024学年河南省驻马店市学校九年级上学期期末数学试题

2023-2024学年河南省驻马店市学校九年级上学期期末数学试题

2023-2024学年河南省驻马店市学校九年级上学期期末数学试题1.下列函数:①;②;③;④,是二次函数的有:A.1个B.2个C.3个D.4个2.下列运算正确的是()A.B.C.D.3.如图,是的直径,点D在上,若,则的度数是()A.20°B.30°C.40°D.45°4.如图,在中,,如果,,那么等于()A.3B.4C.5D.65.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.B.C.D.6.如图,弦AB⊥OC,垂足为点C,连接OA,若OC=4,AB=6,则sinA等于()A.B.C.D.7.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A.2B.3C.4D.59.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=【】A.2:5B.2:3C.3:5D.3:210.如图,已知抛物线与x轴分别交于A、两点,顶点为M.将抛物线关于y轴对称得到抛物线,则抛物线过点,与x轴的另一个交点为B,顶点为N,连接AM、MN、NB,则四边形AMNB的面积为()A.3B.6C.8D.1011.如图,在中,,,是边上的中线,则的值是______.12.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.13.中,,,,则的外接圆半径长是________.14.如图,P是抛物线y=x2﹣2x﹣3在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为______.15.如图,在矩形中,,,点是边上的一个动点,把沿折叠,点落在处,如果恰在矩形的对角线上,则的长为______.16.已知抛物线经过点和点.(1)求这条抛物线所对应的二次函数的关系式;(2)直接写出它的开口方向、对称轴、顶点坐标和最大值(或最小值).17.(1)计算:.(2)计算:.(3)解方程:;18.木盒里有红球和白球,共4个,每个球除了颜色外其他都相同.从盒子里先摸出一个球,放回去摇匀后,再摸出一个球,继续放回去摇匀后,再摸第3次、第4次…(1)甲同学摸球10次,都没有摸到红球,于是他就判断“摸到红球”是“不可能事件”.他的判断正确吗?(2)如果盒子里有3个红球、1个白球,乙同学按照摸球的规则,摸球2次,那么摸到一个红球和1个白球的概率是多少?(用列表展现所有等可能的结果)19.如图,为等边三角形,点D在线段CB的延长线上.点E在线段AC的延长线上,连接AD,DE,.(1)求证:;(2)若,,求CE的长.20.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为,测得点C处的俯角为.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:)21.如图,在中,,点D是边上一点,以为直径的与边相切于点E,与边交于点F,过点E作于点H,连接.(1)求证:;(2)若,,求的长.22.如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.23.抛物线与轴交于,两点,且,抛物线的顶点为.(1)求点的坐标;(用只含的代数式表示)(2)若,求面积的最大值;(3)当时,把抛物线位于轴下方的部分沿轴向上翻折,其余部分保持不动,得到新的函数图象.若直线与新的函数图象至少有3个不同的交点,求的取值范围.。

2022年河南省驻马店数学九年级第一学期期末达标测试试题含解析

2022年河南省驻马店数学九年级第一学期期末达标测试试题含解析

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题3分,共30分)1.观察下列等式:①211=②22343++=③2345675++++=④2456789107++++++=…请根据上述规律判断下列等式正确的是( )A .21009101030262017+++= B .21008101030272018+++= C .21010101130282019+++= D .21010101130292020+++=2.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数2y x =(0x >)与8y x=-(0x <)的图象上.则下列等式成立的是( )A .5sin BAO ∠=B .5cos BAO ∠=C .tan 2BAO ∠=D .1sin 4ABO ∠= 3.点P (﹣1,2)关于原点对称的点Q 的坐标为( )A .(1,2)B .(﹣1,﹣2)C .(1.﹣2)D .(﹣1,﹣2)4.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为2.25%,今小王取出一年到期的本金和利息时,交纳利息税4.5元,则小王一年前存入银行的钱为( ).A .1000元B .977.5元C .200元D .250元5.下列二次根式中,与2是同类二次根式的是( ) A .8 B .3- C .12 D .486.若关于x 的一元二次方程20x bx c ++=的两个实数根分别为121,2x x =-=,那么抛物线2y x bx c =++的对称轴为直线( )A .1x =B .12x = C .32x = D .12x =-7.如图所示的图案是按一定规律排列的,照此规律,在第1至第2018个图案中“♣”共有( )个.A .504B .505C .506D .5078.如图,在平面直角坐标系中,将ABC ∆绕A 点逆时针旋转90︒后,B 点对应点的坐标为( )A .()1,3B .()0,3C .()1,2D .()0,29.下列事件中,是必然事件的是( )A .掷一枚质地均匀的骰子,向上一面的点数为偶数B .三角形的内角和等于180°C .不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球D .抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”10.一个正比例函数的图象过点(2,﹣3),它的表达式为( )A .32y x =- B .23y x =- C .32y x = D .23y x =二、填空题(每小题3分,共24分)11.抛物线223y x x =--的顶点坐标是___________.12.抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是____.13.观察下列各式:2(1)(1)1x x x -+=-; 23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-; 4325(1)(1)1x x x x x x -++++=-则2019201820172222...221++++++=_______________________.14.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是____.15.若m+1m =3,则m 2+21m=_____. 16.如图,扇形AOB 的圆心角是为90︒,四边形OCDE 是边长为1的正方形,点,C E 分别在,,OA OB D 在弧AB 上,那么图中阴影部分的面积为__________.(结果保留π)17.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是 .18.小强同学从0,1,2,3这四个数中任选一个数,满足不等式12x +<的概率是__________.三、解答题(共66分)19.(10分)在平面直角坐标系中,已知5AO AB ==,(6,0)B .(1)如图1,求sin AOB ∠的值.(2)把OAB ∆绕着点B 顺时针旋转,点O 、A 旋转后对应的点分别为M 、N .①当M 恰好落在BA 的延长线上时,如图2,求出点M 、N 的坐标.②若点C 是OB 的中点,点P 是线段MN 上的动点,如图3,在旋转过程中,请直接写出线段CP 长的取值范围.20.(6分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?21.(6分)如图,在矩形ABCD中,M是BC中点,请你仅用无刻度直尺按要求作图.(1)在图1中,作AD的中点P;(2)在图2中,作AB的中点Q.22.(8分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:2≈1.41,3≈1.73)23.(8分)如图,已知反比例函数y=kx的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=kx的图象上,当-3≤x≤-1时,求函数值y的取值范围.24.(8分)如图,在Rt△ABC中,∠ACB 90°,∠ABC的平分线BD交AC于点D.(1)求作⊙O,使得点O在边AB上,且⊙O经过B、D两点(要求尺规作图,保留作图痕迹,不写作法);(2)证明AC与⊙O相切.25.(10分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°, 使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?26.(10分)有甲乙两个不透明的布袋,甲布袋装有2个形状和重量完全相同的小球,分别标有数字1和2;乙布袋装有3个形状和重量完全相同的小球,分别标有数字3-,1-和0.先从甲布袋中随机取出一个小球,将小球上标有的数字记作x ;再从乙布袋中随机取出一个小球,再将小球标有的数字记作y .(1)用画树状图或列表法写出两次摸球的数字可能出现的所有结果;(2)若从甲、乙两布袋中取出的小球上面的数记作点的坐标(),x y ,求点(),x y 在一次函数21y x =-+图象上的概率是多少?参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题目中各个式子的变化规律,可以判断各个选项中的等式是否成立,从而可以解答本题.【详解】解:由题意可得,22100930251009101030263026201730262+⎛⎫+++=+=+ ⎪⎝⎭,选项A 错误; 22100830261008101030273027201730272+⎛⎫+++=+=+ ⎪⎝⎭,选项B 错误; 221010302810101011302820192+⎛⎫+++== ⎪⎝⎭,选项C 正确;22101030281010101130293029201930292+⎛⎫+++=+=+ ⎪⎝⎭,选项D 错误. 故选:C . 【点睛】 本题考查的知识点是探寻数式的规律,从题目中找出式子的变化规律是解此题的关键.2、C【解析】 【分析】过A 作AF 垂直x 轴,过 B 点作BE 垂直与x 轴,垂足分别为F , E ,得出90AOB BEO AFO ∠=∠=∠=︒ ,可得出BEOOFA ,再根据反比例函数的性质得出两个三角形的面积,继而得出两个三角形的相似比,再逐项判断即可. 【详解】解:过A 作AF 垂直x 轴,过 B 点作BE 垂直与x 轴,垂足分别为F , E ,由题意可得出90AOB BEO AFO ∠=∠=∠=︒ ,继而可得出BEO OFA顶点A ,B 分别在反比例函数2y x =(0x >)与8y x =- (0x <)的图象上 ∴4,1BEO AFO S S== ∴21()4AFO BEO S AO SOB == ∴ 12AO BO = ∴5AB =A. 25sin 55BO BAO AB ∠=== ,此选项错误, B. 5cos 5AO BAO AB ∠=== ,此选项错误; C. tan 2BO BAO AO ∠== ,此选项正确; D. 5sin AO ABO AB ∠== ,此选项错误;【点睛】本题考查的知识点是反比例函数的性质以及解直角三角形,解此题的关键是利用反比例函数的性质求出两个三角形的相似比.3、C【分析】根据关于原点对称两个点坐标关系:横、纵坐标均互为相反数可得答案.【详解】解:点P(﹣1,2)关于原点对称的点Q的坐标为(1,﹣2),故选:C.【点睛】此题考查的是求一个点关于原点对称的对称点,掌握关于原点对称两个点坐标关系:横、纵坐标均互为相反数是解决此题的关键.4、A【分析】利息问题是一个难点,要把握好利息、本金、利息税的概念,由利息税可求得利息为4.5÷20%=22.5元,根据年利率又可求得本金.【详解】解:据题意得:利息为4.5÷20%=22.5元本金为22.5÷2.25%=1000元.故选:A.【点睛】本题考查利息问题,此题关系明确,关键是分清利息、本金、利息税的概念.5、A是同类二次根式,所以A正确;因为不是同类二次根式,所以B=不是同类二次根式,所以B=不是同类二次根式,所以B错误;故选A.考点:同类二次根式6、B【分析】根据方程的两根即可得出抛物线与x轴的两个交点坐标,再利用抛物线的对称性即可得出抛物线的对称轴.【详解】∵方程x2+bx+c=0的两个根分别为x1=-1,x2=2,∴抛物线y=x2+bx+c与x轴的交点坐标为(-1,0)、(2,0),∴抛物线y=x2+bx+c的对称轴为直线x12122 -+==.故选:B.本题考查了抛物线与x轴的交点以及二次函数的性质,根据抛物线与x轴的交点横坐标找出抛物线的对称轴是解答本题的关键.7、B【分析】根据题意可知所示的图案每四个为一组,交替出现,从而可以计算出在第1至第2018个图案中“♣”共有多少个,进行分析即可求解.【详解】解:由图可知,所示的图案每四个为一组,交替出现,∵2018÷4=504…2,∴在第1至第2018个图案中“♣”共有504+1=505(个).故选:B.【点睛】本题考查图形的变化类,解答本题的关键是明确题意以及发现题目中图形的变化规律并利用数形结合的思想进行分析解答.8、D【分析】根据旋转变换只改变图形的位置不改变图形的形状和大小作出旋转后的图形,即可得出答案.【详解】如图,△ABC绕点A逆时针旋转90°后,B点对应点的坐标为(0,2),故答案选择D.【点睛】本题考查的是坐标与图形的变化——旋转,记住旋转只改变图形的位置不改变图形的形状和大小.9、B【分析】根据事件发生的可能性大小判断相应事件的类型.【详解】解:A、掷一枚质地均匀的骰子,向上一面的点数为偶数是随机事件;B、三角形的内角和等于180°是必然事件;C 、不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球是随机事件;D 、抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”是随机事件;故选:B .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 10、A【分析】根据待定系数法求解即可.【详解】解:设函数的解析式是y =kx ,根据题意得:2k =﹣3,解得:k =﹣32. 故函数的解析式是:y =﹣32x . 故选:A .【点睛】本题考查了利用待定系数法求正比例函数的解析式,属于基础题型,熟练掌握待定系数法求解的方法是解题关键.二、填空题(每小题3分,共24分)11、(1,﹣4).【解析】解:∵原抛物线可化为:y =(x ﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4). 12、14【解析】试题分析:列举出所有情况,看所求的情况占总情况的多少即可.共有正反,正正,反正,反反4种可能,则2次抛掷的结果都是正面朝上的概率为14. 故答案为14. 考点:概率公式.13、202021-【分析】由所给式子可知,(1x -)(122...1n n n x x x x x --++++++)=11n x +-,根据此规律解答即可.【详解】由题意知(21-)(2019201820172222...221++++++)=202021-,∴20192018201722020222...22121++++++=-.故答案为202021-.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14、716【解析】本题应分别求出正方形的总面积和阴影部分的面积,用阴影部分的面积除以总面积即可得出概率. 【详解】解:小虫落到阴影部分的概率=774416=⨯, 故答案为:716. 【点睛】本题考查的是概率的公式,用到的知识点为:概率=相应的面积与总面积之比.15、7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.16、12π- 【分析】由正方形的性质求出扇形的半径,求得扇形的面积,再减去正方形OEDC 的面积即可解答,【详解】解:∵正方形OCDE 的边长为1,∴∵扇形AOB 的圆心角是为90︒∴扇形的面积为2903602ππ⋅⋅= ∴阴影部分的面积为2π-1 故答案为2π-1. 【点睛】本题考查了扇形的面积计算,确定扇形的半径并求扇形的面积是解答本题的关键.17、56. 【详解】解:由题意作出树状图如下:一共有36种情况,“两枚骰子朝上的点数互不相同”有30种,所以,P=305366=. 考点:列表法与树状图法.18、14【分析】找到满足不等式x+1<2的结果数,再根据概率公式计算可得.【详解】解:在0,1,2,3这四个数中,满足不等式x+1<2的中只有0一个数,所以满足不等式x+1<2的概率是14. 故答案是:14. 【点睛】本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.三、解答题(共66分)19、(1)45;(2)①1224(,)55M ,②3724(,)55N ;(3)995CP ≤≤ 【解析】(1)作AH ⊥OB ,根据正弦的定义即可求解;(2)作MC ⊥OB ,先求出直线AB 解析式,根据等腰三角形的性质及三角函数的定义求出M 点坐标,根据MN ∥OB ,求出N 点坐标;(3)由于点C 是定点,点P 随△ABO 旋转时的运动轨迹是以B 为圆心,BP 长为半径的圆,故根据点和圆的位置关系可知,当点P 在线段OB 上时,CP=BP-BC 最短;当点P 在线段OB 延长线上时,CP=BP+BC 最长.又因为BP 的长因点D 运动而改变,可先求BP 长度的范围.由垂线段最短可知,当BP 垂直MN 时,BP 最短,求得的BP 代入CP=BP-BC 求CP 的最小值;由于BM>BN ,所以点P 与M 重合时,BP=BM 最长,代入CP=BP+BC 求CP 的最大值.【详解】(1)作AH ⊥OB ,∵5AO AB ==,(6,0)B .∴H (3,5)∴224AO OH -= ∴sin AOB ∠=AH AO =45(2)由(1)得A(3,4),又(6,0)B求得直线AB的解析式为:y=48 3x-+∵旋转,∴MB=OB=6,作MC⊥OB,∵AO=BO,∴∠AOB=∠ABO∴MC=MBsin∠ABO=6×45=245即M点的纵坐标为245,代入直线AB得x=125∴1224 (,)55 M,∵∠NMB=∠AOB=∠ABO ∴MN∥OB,又MN=AB=5,则125+5=375∴3724 (,)55 N(3)连接BP∵点D为线段OA上的动点,OA的对应边为MN ∴点P为线段MN上的动点∴点P的运动轨迹是以B为圆心,BP长为半径的圆∵C在OB上,且CB=12OB=3∴当点P在线段OB上时,CP=BP−BC最短;当点P在线段OB延长线上时,CP=BP+BC最长如图3,当BP ⊥MN 时,BP 最短∵S △NBM =S △ABO ,MN=OA=5 ∴12MN ⋅BP=12OB ⋅y A ∴BP=A OB y MN⋅ =645⨯=245 ∴CP 最小值=245−3=95 当点P 与M 重合时,BP 最大,BP=BM=OB=6∴CP 最大值=6+3=9∴线段CP 长的取值范围为995CP ≤≤.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的运用、旋转的性质、三角函数的应用.20、红土”百香果每千克25元,“黄金”百香果每千克30元【解析】设“红土”百香果每千克x 元,“黄金”百香果每千克y 元,由题意列出方程组,解方程组即可.【详解】解:设“红土”百香果每千克x 元,“黄金”百香果每千克y 元,由题意得:2803115x y x y +=⎧⎨+=⎩, 解得:2530x y =⎧⎨=⎩; 答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.21、 (1)画图见解析;(2)画图见解析.【解析】(1)先连接矩形的对角线交于点O ,再连接MO 并延长,交AD 于P ,则点P 即为AD 的中点; (2)先运用(1)中的方法,画出AD 的中点P ,再连接BP ,交AC 于点K ,则点E ,再连接DK 并延长,交AB 于点Q ,则点Q 即为AB 的中点.【详解】(1)如图点P 即为所求;(2)如图点Q即为所求;【点睛】本题考查的是作图的应用,掌握矩形的性质和三角形中位线定理、正确作出图形是解题的关键.22、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=CDBC,BC=80千米,∴CD=BC•sin30°=80×1402=(千米),AC==402sin4522CD=︒,2≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=BDBC,BC=80(千米),∴3403=,∵tan45°=CDAD,CD=40(千米),∴AD=4040tan451CD==︒(千米),∴3≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23、 (1) k=4, m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-43.【详解】试题分析:(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.试题解析:(1)∵△AOB的面积为2,∴k=4,∴反比例函数解析式为4yx=,∵A(4,m),∴m=44=1;(2)∵当x=﹣3时,y=﹣43;当x=﹣1时,y=﹣4,又∵反比例函数4yx=在x<0时,y随x的增大而减小,∴当﹣3≤x≤﹣1时,y的取值范围为﹣4≤y≤﹣43.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.24、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线交AB于O,再以O点为圆心,OB为半径作圆即可;(2)证明OD∥BC得到∠ODC=90°,然后根据切线的判定定理可判断AC为⊙O的切线.【详解】解:(1)如图,⊙O为所作;(2)证明:连接OD,如图,∵BD平分∠ABC,∴∠CBD=∠ABD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∴∠ODA=∠ACB,又∠ACB=90°,∴∠ODA=90°,即OD⊥AC,∵点D是半径OD的外端点,∴AC与⊙O相切.【点睛】本题考查了作图—复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定.25、(203+17)cm.【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF 的长,再由CE=CM+BF+ED即可求出CE的长.【详解】过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=30cm,∠CBM=30°,∴CM=BC•sin∠CBM=15cm.在Rt△ABF中,AB=40cm,∠BAD=60°,∴BF=AB•sin∠3.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴33(cm).答:此时灯罩顶端C到桌面的高度CE是(3+17)cm.【点睛】本题考查了解直角三角形的应用以及矩形的判定与性质,通过解直角三角形求出CM、BF的长是解题的关键.26、(1)(1,﹣1),(1,0),(1,﹣3),(2,﹣1),(2,0),(2,﹣3);(2)1 . 3【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得点(x,y)在一次函数y=-2x+1图象上的情况,然后直接利用概率公式求解即可求得答案.【详解】解:(1)画树状图得:则点可能出现的所有坐标:(1,﹣1),(1,0),(1,﹣3),(2,﹣1),(2,0),(2,﹣3);(2)∵在所有的6种等可能结果中,落在y=﹣2x+1图象上的有(1,﹣1)、(2,﹣3)两种结果,∴点(x,y)在一次函数y=﹣2x+1图象上的概率是21. 63【点睛】本题考查了列表法和树状图法求概率,一次函数图象上点的坐标特征,正确的画出树状图是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省驻马店市确山县九年级(上)期末数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.(3分)方程x2﹣4=0的解是()
A.x1=2,x2=﹣2B.x=0C.x1=x2=2D.x1=x2=﹣2 2.(3分)所示图形中,既是轴对称图形又是中心对称图形的是()
A.B.
C.D.
3.(3分)下列成语所描述的事件为随机事件的是()
A.水涨船高B.水中捞月C.守株待兔D.缘木求鱼
4.(3分)若反比例函数y=的图象经过点(2,﹣1),则该反比例函数的图象在()A.第一、二象限B.第一、三象限
C.第二、三象限D.第二、四象限
5.(3分)小李掷一枚硬币,连续8次正面都朝上,请问他第9次掷硬币时,出现正面朝上的概率是()
A.0B.1C.D.
6.(3分)△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是()
A.c sin A=a B.b cos B=c C.a tan A=b D.c tan B=b
7.(3分)如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ACD的面积为1,则△ABC的面积为()
A.1B.2C.3D.4
8.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()
A.πB.C.2πD.3π
9.(3分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()
A.b>8B.b>﹣8C.b≥8D.b≥﹣8
10.(3分)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°,当n=100时,顶点A的坐标为()
A.(﹣2,2)B.(﹣2,﹣2)C.(2,﹣2)D.(2,2)
二、填空题(共5小题,每小题3分,满分15分)
11.(3分)计算:tan45°﹣(cos60°)﹣1=.
12.(3分)如图,直线l1∥l2∥l3,已知AG=0.6cm,BG=1.2cm,CD=1.5cm,CH=cm.
13.(3分)现有两个不透明的袋子,其中一个装有红、黄两种颜色的小球各1个,另一个
装有红、黄、蓝三种颜色的球各1个,小球除颜色外其他均相同,若小浩从两个袋子中分别随机摸出一个小球,则摸出的两个小球颜色恰好相同的概率为.
14.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=﹣1,与x轴的一个交点是A(﹣3,0)其图象的一部分如图所示,对于下列说法:①2a=b;
②abc>0,③若点B(﹣2,y1),C(﹣,y2)是图象上两点,则y1<y2;④图象与x
轴的另一个交点的坐标为(1,0).其中正确的是(把正确说法的序号都填上)
15.(3分)如图,在▱ABCD中,∠BCD=60°,AB=2BC=4.将▱ABCD绕点B逆时针旋转一定角度后得到▱A′BC′D′,其中点C的对应点C′落在边CD上,则图中阴影部分的面积是.
三、解答题(共7小题,满分45分)
16.(8分)已知关于x的方程x2+2x+a﹣2=0.
(1)若该方程有两个不相等的实数根,求实数a的取值范围;
(2)当该方程的一个根为1时,求a的值及方程的另一根.
17.如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.
(1)求证:△AEC∽△DEB;
(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.
18.(9分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需绕行B地.已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向.若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长.(结果保留整数)(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)
19.(9分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点
(1)反比例函数的解析式为,点B的坐标为;
(2)观察图象,直接写出x﹣<0的解集;
(3)P是第一象限内反比例函数的图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.
20.(9分)如图,已知△ABC内接于⊙O,AB为⊙O的直径,BD⊥AB,交AC的延长线于点D.
(1)E为BD的中点,连结CE,求证:CE是⊙O的切线;
(2)若AC=3CD,求∠A的大小.
21.(10分)小浩根据学习函数的经验,对函数y=x3﹣3x2的图象和性质进行深入探究,过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应数值如表:
x…﹣3﹣2﹣1.5﹣1﹣0.500.51 1.52n…y…﹣54﹣20﹣10.125﹣4﹣0.8750﹣0.625﹣2﹣3.375﹣40…表中n的值是;
(2)如图,在平面直角坐标系xOy中,描出了以上表中部分对应值为坐标的点,根据描出的点,画出该函数的图象.
(3)类比抛物线y=x2,试从图象的轴对称性、增减性、有无最值三个方面分别说明函数y =3﹣3x2具有的性质:(各写一条即可);
(4)进一步探究函数图象发现
①函数图象与x轴有个交点,所以对应的方程x3﹣3x2=0有个实数根;
②方程x3﹣3x2=﹣4有个实数根;
③对关于x的方程x3﹣3x2=a,模仿②写出一个真命题.
22.(1)尝试探究:如图①,在△ABC中,∠ACB=90°,∠A=30°,E,F分别是BC,AC上的点,且EF∥AB,则=;
(2)类比延伸:如图②,若将图①中的△CEF绕点C顺时针旋转,则在旋转的过程中,值是否发生变化?请仅就图②的情形写出推理过程;
(3)拓展运用:若BC=3,CE=2,在旋转过程中,当B,E,F三点在同一直线上时,请直接写出此时线段AF的长.
请从以下(A)、(B)两题中任选一个解答
23.(11分)已知:抛物线y=ax2+bx﹣4a交x轴于点A(﹣1,0)和点B,交y轴于点C (0,2)
(1)求抛物线的解析式;
(2)点P为第一象限抛物线上一点,是否存在使△PBC面积最大的点P?若不存在,请说
理由;若存在,求出点P的坐标.
(3)点D坐标为(1,﹣1),连接AD,将线段AD绕平面内某一点旋转180度得线段MN (点M,N分别与点A、D对应),使点M、N都在抛物线上,求点M、N的坐标.24.如图,已知抛物线y=a(x+1)(x﹣5)与x轴从左至右交于A,B两点,与y轴交于点C(0,5).
(1)求该抛物线的函数解析式;
(2)D是第一象限内抛物线上的一个动点(与点C,B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,CD,直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.
(3)若M为抛物线对称轴上一动点,△MBC为直角三角形,请直接写出点M的坐标.
河南省驻马店市确山县九年级(上)期末数学试卷
参考答案
一、选择题(共10小题,每小题3分,满分30分)
1.A;2.D;3.C;4.D;5.C;6.A;7.D;8.C;9.D;10.B;
二、填空题(共5小题,每小题3分,满分15分)
11.﹣1;12.0.5;13.;14.①②④;15.;
三、解答题(共7小题,满分45分)
16.;17.;18.;19.y=;(4,2);20.;21.3;
当x<0时,y随x的增大而增大;2;2;2;当﹣4<a<0时,关于x的方程
x3﹣3x2=a有三个实数根;22.;
请从以下(A)、(B)两题中任选一个解答
23.;24.;。

相关文档
最新文档