IGBT高压大功率驱动和保护电路的应用解析

合集下载

高压大功率单元IGBT的驱动保护

高压大功率单元IGBT的驱动保护
DI 【 j : C
20 08皋
3 + ) 和 一 全采用 SWM, + P 和 采用 阶梯 波。当正弦波为正
半 周时 S WM 驱 动 +, P 取反 向 S WM 驱 动 一, 一由正 向 阶梯 波 驱 动 P

F.

r t - - 一



分 多 , 际 中不用 。 实

收稿 日期 :0 7—0 20 4~1 0
责任编辑 : 郭西 山
作者 简介 : 任继 红( 9 6一) 女 , 16 , 陕西咸 阳人 , 讲师 , 主要从事 机电一体化的研究
维普资讯
56 5
西




学 学

点 。 目前 , 虽然 市场 上 驱动 保 护模 块种 类繁 多 , 国 内常 用 的 日本 富 士公 司生 产 的 E B 如 X国 I 59 美 R公司生产的 I2 系列 、 R1 惠普生产 的 H L 36 。由于这些模块在不 同 C P一 1J 程度 上存 在 驱动 能力 的限制 , 不 能很好 地 满足 大 功率 单元 IB 都 G T的驱 动 与保 护 要 求 。经 研 究分 析 C N O . CP E T公司生产 的 Sa 等驱动模块 , ce l 发现该模块适合在 H桥驱动 电路中应用 。文 中将对其进行研究 , 并 给 出 l70V,0 0 2 0~30A, B 0 I T的驱动 和保 护 电路 参数 计算 。 G
文 章 编 号 : 6 2— 35 2 o ) 3— 5 5一 4 17 9 1 ( o 8 0 0 5 o
高压 大 功 率 单 元 I B G T的驱 动保 护
任 继 红
( 西安建筑科技 大学 机 电工程 学院 , 陕西 西安 7 0 5 ) 10 5

IGBT驱动电路原理与保护电路

IGBT驱动电路原理与保护电路

IGBT驱动电路原理与保护电路IGBT(Insulated-Gate Bipolar Transistor)驱动电路主要由三部分组成:信号隔离部分、驱动信号放大部分和保护电路。

信号隔离部分是将输入信号与输出信号进行隔离,防止输入信号中的噪声和干扰对输出信号产生影响。

常用的信号隔离方法有变压器隔离、光电隔离和互感器隔离等。

其中,光电隔离是最常用的方法之一,它通过输入端的光电耦合器将电信号转换成光信号,通过光电隔离再将光信号转换为电信号输出。

这样可以有效防止输入信号中的噪声和干扰对输出信号产生干扰,提高系统的稳定性和可靠性。

驱动信号放大部分是将输入信号进行放大,以驱动IGBT的门极电压,控制IGBT的导通和关断。

驱动信号放大部分一般采用功放电路,常用的放大器有晶体管放大器和运放放大器。

通过合理选择放大器的工作点和增益,可以将输入信号进行适当放大,提高系统的灵敏度和响应速度,以确保IGBT的正常工作。

保护电路是为了保护IGBT免受电路中的过电流、过电压等异常情况的损害而设计的。

保护电路一般包括过流保护、过压保护、过温保护和短路保护等功能。

过流保护通过在电路中增加电流传感器来检测电流的变化,一旦电流超过设定值就会触发保护,例如通过切断电源来防止IGBT损坏。

过压保护通过在电路中增加电压传感器来检测电压的变化,一旦电压超过设定值就会触发保护,例如通过切断电源来防止IGBT损坏。

过温保护通过在IGBT芯片上增加温度传感器来检测芯片温度的变化,一旦温度超过设定值就会触发保护,例如通过减小驱动信号的幅度来降低功耗和温度。

短路保护通过在电路中增加短路检测电路,一旦检测到短路就会触发保护,例如通过立即切断电源来防止IGBT损坏。

总之,IGBT驱动电路的原理是通过信号隔离部分将输入信号与输出信号进行隔离,通过驱动信号放大部分将输入信号进行放大,以驱动IGBT的门极电压,控制其导通和关断。

同时,通过保护电路对IGBT进行多重防护,保证其在电路异常情况下的正常工作,提高系统的可靠性和稳定性。

大功率IGBT驱动保护电路的研究与应用的开题报告

大功率IGBT驱动保护电路的研究与应用的开题报告

大功率IGBT驱动保护电路的研究与应用的开题报告一、选题背景及意义随着电子技术的不断发展,IGBT(绝缘栅双极型晶体管)在工业领域中的应用越来越广泛,尤其是在电力电子变换器、变频空调、高速列车等领域中,其性能和可靠性都得到了越来越高的要求。

然而,由于IGBT的特性和工作环境的特殊性,其工作可靠性在一定情况下可能会受到影响。

因此,针对IGBT的保护措施和驱动电路设计就成为研究的重点。

本论文选取了IGBT驱动保护电路作为研究对象,旨在通过研究IGBT的保护和驱动电路的设计,提高IGBT的工作可靠性和性能,为IGBT的实际应用提供技术支持和保障。

同时,该论文的研究成果也将应用于工业领域,促进电力电子行业的发展。

二、研究目标和内容本论文的研究目标是实现IGBT的保护措施和驱动电路的设计。

具体内容包括以下几个方面:1. IGBT的保护机制研究和分析。

包括IGBT的工作原理、故障原因及其保护机制等方面的研究分析。

2. IGBT驱动电路设计和优化。

主要研究IGBT的驱动电路的设计原理、电路参数及其优化等方面的问题。

3. IGBT保护系统的设计和实现。

根据实际应用需要,设计、实现IGBT的保护系统,包括故障检测、保护算法以及驱动电路等方面的设计。

4. 仿真与实验验证。

运用仿真软件,对所设计的保护系统和驱动电路进行仿真模拟,确认设计的正确性与可行性,并进行实验验证。

三、研究方法和技术路线研究方法主要采用文献分析法、数学模型分析法和实验方法相结合。

技术路线主要分为以下几个阶段:1. 阶段一:文献调研和问题分析。

对IGBT驱动保护电路的现状和问题进行调研和分析,确定研究方向和目标。

2. 阶段二:IGBT保护机制研究和分析。

通过文献分析和数学模型分析的方法,研究IGBT的保护机制。

3. 阶段三:IGBT驱动电路设计和优化。

根据阶段二的研究结果,设计IGBT驱动电路的原理和参数,并进行优化。

4. 阶段四:IGBT保护系统的设计和实现。

高压大功率单元IGBT的驱动保护

高压大功率单元IGBT的驱动保护

第28卷 第3期2008年9月西安科技大学学报JOURNAL OF XI′AN UN I V ERSI TY OF S C I E NCE AND TECHNOLOGYVol.28 No13Sep12008 文章编号:1672-9315(2008)03-0555-04高压大功率单元I GBT的驱动保护3任继红(西安建筑科技大学机电工程学院,陕西西安710055)摘要:合理设计驱动电路不但可以减少I G BT开关次数和开关过程损耗,降低发热量与输出电压波形畸变率,而且还可以减少事故发生概率,提高系统安全性、可靠性与系统持续可运行时间。

文中首先通过分析各种调制控制方法与驱动电路优缺点,设计了I G BT驱动调制技术方案,接着又分析了I G BT的工作特性、驱动电路要求与SCALE模块结构原理,然后,使用SCALE作为驱动元件设计I G BT驱动保护电路。

经过长时间运行验证,该电路可以很好满足使用要求。

关键词:级联功率单元;SP WM;驱动模块;短路与过流保护;死区时间中图分类号:T N322+.8 文献标识码:A0 引 言功率单元是级联高压变频器的重要组成单元,其功率开关元件普遍选用I G BT[1~3]。

合理设计驱动电路不但可以降低系统的损耗,而且也可以提高可靠性。

尽管I G BT是一个双极型电压型全控器件,具有输入阻抗大、驱动功率小、控制电路简单、开关损耗小、通断速度快和工作频率高等优点,但是,它的实际开通与关断却与电路条件和开关环境关系非常密切[4~6]。

驱动和保护电路一直是功率单元设计的难点和重点。

目前,虽然市场上驱动保护模块种类繁多,如国内常用的日本富士公司生产的EXB8系列、三菱电机公司生产的M579系列、美国I R公司生产的I R21系列、惠普生产的HCLP-316J。

由于这些模块在不同程度上存在驱动能力的限制,都不能很好地满足大功率单元I G BT的驱动与保护要求。

经研究分析CON2 CEPT公司生产的Scale等驱动模块,发现该模块适合在H桥驱动电路中应用。

IGBT驱动电路设计与保护

IGBT驱动电路设计与保护

IGBT驱动电路设计与保护IGBT驱动电路是一种用于驱动功率电子器件IGBT(绝缘栅双极型晶体管)的电路,主要用于功率电子应用中的开关控制和保护。

IGBT驱动电路的设计和保护对于确保系统稳定和损坏防止非常重要。

本文将阐述IGBT驱动电路的设计和保护的重要性,并介绍一些常用的IGBT驱动电路设计和保护策略。

一、IGBT驱动电路设计的重要性IGBT是一种高压高电流开关设备,用于控制电流和电压的转换。

因此,IGBT驱动电路具有以下几个重要的设计考虑因素:1.提供足够的电流和电压:IGBT需要足够的电流和电压来确保快速而稳定的开关动作。

因此,驱动电路必须能够提供足够的电流和电压给IGBT。

2.控制IGBT的开关速度:IGBT的开关速度直接影响系统的动态响应和效率。

驱动电路设计必须能够准确控制IGBT的开关速度,以满足系统要求。

3.抵抗环境干扰:由于IGBT驱动电路通常工作在工业环境中,如电磁干扰、温度变化和振动等因素都会对电路的性能产生影响。

因此,设计的驱动电路必须具有足够的抗干扰能力。

二、IGBT驱动电路的设计策略以下是一些常用的IGBT驱动电路设计策略:1.确定驱动电源:根据所需要的电流和电压的大小,选择合适的电源。

一般来说,电源的输出电流应该比IGBT的工作电流大一些,以确保正常工作。

2.确定驱动信号:驱动信号的频率和幅度对于控制IGBT的开关速度非常重要。

根据需求,选择合适的驱动信号频率和幅度。

3.防止电源噪声:使用滤波电路来防止电源噪声对驱动电路的干扰。

滤波电路通常包括电源电容器和滤波电感器。

4.保证信号传输可靠性:使用合适的隔离电路和保护电路来确保信号传输的可靠性。

隔离电路可以防止由于地线干扰引起的信号失真,保护电路可以防止由于过电流和过压导致的IGBT损坏。

三、IGBT驱动电路的保护策略以下是一些常用的IGBT驱动电路保护策略:1.过电流保护:使用合适的过电流保护电路来保护IGBT免受过电流损害。

解析IGBT管特点_工作原理与保护电路_一_

解析IGBT管特点_工作原理与保护电路_一_
3. IGBT管的工作原理 N 沟道的 IGBT 管通过在栅极—发射极间加阈值 电压 UTH 以上的(正)电压,在栅极正下方的 P 层上形 成反型层(沟道),开始从发射极下的 N- 层注入电子。 该电子为 PNP 型晶体管的少数载流子,从集电极衬底 P+ 层开始流入空穴,进行电导率调制(双极工作),所以 可以降低集电极—发射极间的饱和电压。IGBT 管工作 时的等效电路如图 2(a)所示。图形符号如图 2(b)所 示。在发射极侧形成 NPN 型寄生晶体管,若 NPN 型寄生 晶体管工作,又变成四层结构晶闸管。电流继续流动, 直至输出侧停止供给电流,这时通过输出信号已不能 进行控制。一般将这种状态称为闭锁状态。 为了抑制 NPN 型寄生晶体管的工作,IGBT 管采用 尽量缩小 PNP 型晶体管的电流放大系数 α 的方法作 为解决闭锁的措施。具体来说,PNP 型晶体管的电流放
伏上升到电源电压(在此期间通态电流保持不变),产 相关时,把导通损耗定义为功率损耗是可行的。这三者
生很大的电压应力 du/dt,这将严重地威胁到 IGBT 管长期工作的可靠性。在电路设计中,通过在栅极驱动
之间的表达式为:Pcond=UCE×IC。开关损耗与 IGBT 管 的换向有关,但是主要与工作时的总能量消耗 Ets 相
少子导电器件,开关特性受少子的注入和复合以及栅 度地降低功耗,根据终端设备的频率以及应用中的电
极驱动条件的影响较大。在实践中,考虑到电容的密勒 平特性,应选择不同的器件。
效应,栅极驱动电路的驱动能力应大于手册中规定值
6. IGBT管损坏的原因及对策
的 2~3 倍。
IGBT 管在使用过程中,经常受到容性或感性负载的
(5)安全工作区特性。少子器件在大电流高电压开 冲击,发生过负荷甚至负载短路等,可能导致 IGBT 管损

应用于风力发电的大功率IGBT驱动保护电路

应用于风力发电的大功率IGBT驱动保护电路

应用于风力发电的大功率IGBT驱动保护电路随着风力发电技术的不断进步,越来越多的风力发电机被投入使用。

在风力发电中,IGBT(绝缘栅双极晶体管)被广泛应用于风力发电机的变频器中,用于控制电机的电能输出和风力发电的整个过程。

而大功率IGBT驱动保护电路则是保护这些IGBT的关键部分。

一、大功率IGBT驱动保护电路的意义大功率IGBT驱动保护电路是为了保护风力发电机变频器中的IGBT而设计的一种电路。

IGBT作为风力发电机变频器的核心部件,负责将电能转换成机械能,并进行不同频率、不同电压的输出。

在风力发电的过程中,变频器中的IGBT受到的电压和电流都是很大的,同时高频电源的电压也对IGBT产生了很大的压力,如果IGBT的运行不能被有效保护,就有可能会引起其烧毁或损坏,从而对风力发电机的正常运行产生不利影响。

因此,大功率IGBT驱动保护电路是非常必要的。

二、大功率IGBT驱动保护电路的基本原理大功率IGBT驱动保护电路的基本原理是在IGBT的驱动电路中加入过流、过压、过热等保护电路。

在系统的设计中,IGBT的故障通常是由于内部电热、电压电流等因素引起的,因此,大功率IGBT驱动保护电路需要在这些方面进行有效的保护。

(1)过流保护在变频器的运行过程中,IGBT受到电流冲击时,可能会产生较大的能量,引起其过热烧毁,因此,过流保护是很必要的。

对于系统中的IGBT,可以通过电流传感器进行测量,通过对电流大小的测量,在IGBT的驱动电路中加入保护电路,当电流大小超过一定的阀值时,保护电路就会起到保护作用。

(2)过压保护风力发电机的变频器在运行过程中,如果瞬间出现高电压,就很可能会对IGBT造成损伤。

因此,过压保护是非常必要的。

在大功率IGBT驱动保护电路中,可以使用Zener二极管或压敏电阻作为过压保护器件,当电压突然上升时,就会使得这些保护器件在短时间内短路,从而保护IGBT。

(3)过热保护IGBT的运行温度较高,通常需要对其进行过热保护。

IGBT驱动电路原理与保护电路

IGBT驱动电路原理与保护电路

IGBT驱动电路原理与保护电路IGBT(Insulated Gate Bipolar Transistor)驱动电路是一种用于控制和驱动IGBT器件的电路,用于将低功率信号转化为高功率信号,以实现对IGBT器件的控制。

IGBT驱动电路通常由输入电路、隔离电路、输出电路和保护电路组成。

下面将详细介绍IGBT驱动电路的原理和保护电路的作用。

IGBT驱动电路的主要工作原理是通过输入信号的变化来控制IGBT的通断,从而实现对高功率负载的控制。

IGBT驱动电路一般采用CMOS电路设计,以确保高噪声抑制和良好的电磁兼容性。

常见的IGBT驱动电路分为光耦隔离和变压器隔离两种。

光耦隔离驱动电路是将输入信号与输出信号通过光电耦合器隔离,在高功率环境下提供了良好的隔离和保护。

光电耦合器的输入端通常由输入信号发生器驱动,而输出端则连接到IGBT的控制极,实现信号的传输和控制。

光耦隔离驱动电路在功率轻载和带负载的情况下都能提供良好的电气隔离,提高了系统的可靠性和稳定性。

变压器隔离驱动电路是通过变压器来实现输入和输出信号的隔离。

输入信号通过变压器的一侧传输,然后通过变压器的另一侧连接到IGBT的控制极。

变压器隔离驱动电路具有较高的耐受电压和电流能力,并能抵御噪声和干扰的影响。

IGBT保护电路的作用:IGBT是一种高功率开关设备,在工作过程中容易受到电流过大、电压过高、温度过高等因素的影响,导致过热、短路甚至损坏。

因此,为了保护IGBT设备的正常工作和延长其使用寿命,需要在IGBT驱动电路中添加一些保护电路。

常见的IGBT保护电路包括过流保护、过压保护和过温保护。

过流保护电路通过检测IGBT芯片上的电流大小来保护器件的工作。

当电流超过预设值时,保护电路会通过切断电源或降低输入信号的方式来阻止过大电流通过IGBT。

这样可以防止IGBT芯片发生过热和失效。

过压保护电路通过监测IGBT器件上的电压来保护该器件的工作。

当电压超过正常工作范围时,保护电路会通过切断电源或降低输入信号的方式来阻止过高电压对IGBT芯片的损害。

IGBT的驱动电路原理与保护技术

IGBT的驱动电路原理与保护技术

IGBT的驱动电路原理与保护技术IGBT(Insulated Gate Bipolar Transistor)是一种用于高压高功率开关电路的半导体器件,结合了MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)的输入特性和BJT(Bipolar Junction Transistor)的输出特性。

IGBT的驱动电路原理与保护技术对于确保IGBT的正常工作和延长其寿命非常重要。

1.基本原理:驱动电路的主要目的是将控制信号转换成足够的电压和电流来控制IGBT的开关动作。

基本的驱动电路一般由一个发生器、一个驱动电流放大器以及一个隔离电压放大器组成。

2.发生器:发生器产生控制信号,控制IGBT的开关状态。

信号可以是脉冲信号,由微控制器或其他逻辑电路产生。

3.驱动电流放大器:驱动电流放大器用于放大脉冲信号,以提供足够的电流来控制IGBT。

其输出电流通常在几十毫安到几安之间。

4.隔离电压放大器:IGBT通常需要电隔离,以防止高电压干扰信号影响其正常工作。

隔离电压放大器用于将驱动信号从控制信号隔离,并提供相应的电压放大。

1.过流保护:IGBT的工作电流超过额定值时,可能会导致损坏。

因此,电路中应包含过流保护电路,可以通过电流传感器来监测电流,并在超过设定值时立即切断电源。

2.过温保护:IGBT在超过一定温度时可能会发生热失控,导致器件损坏。

因此,必须安装温度传感器来监测器件的温度,并在超过设定值时采取适当的措施,如降低输入信号或切断电源。

3.过压保护:当IGBT的工作电压超过额定值时,可能会引起击穿,导致器件损坏。

因此,在电路中需要安装过压保护电路,以确保电压不会超过允许的范围。

4.反馈电路:为了确保IGBT的正常工作,需要实时监测其输出电流和电压。

因此,反馈电路可以用来调整控制信号,以保持IGBT在安全范围内工作。

总之,IGBT的驱动电路原理和保护技术是确保IGBT正常工作和延长其寿命的关键。

IGBT的驱动电路原理与保护技术

IGBT的驱动电路原理与保护技术

IGBT的驱动电路原理与保护技术IGBT(Insulated Gate Bipolar Transistor)是一种功率MOSFET和普通异质结型二极管的复合封装元件,具有高电压承受能力和高输入阈值电压等特点。

IGBT广泛应用于电力电子领域,如变频器、电力传动系统和电力转换等方面。

为了确保IGBT能正常工作,需要设计合理的驱动电路和保护技术。

IGBT驱动电路的原理是将控制信号加在IGBT的栅极上,控制IGBT的导通和关断。

该电路主要由驱动电源、反馈电路、隔离电路和增益电路组成。

驱动电源:将直流电源或交流电源转换为待驱动的IGBT所需的驱动电压和电流。

常用的驱动电源有三相桥式整流电路和离线开关电源。

其中,三相桥式整流电路通过整流变压器将交流电源转换为直流电源,经由滤波电容后供给驱动电路;离线开关电源利用开关电源电路将交流电源转换为恒定的直流电源,再供给驱动电路。

反馈电路:用于检测IGBT的开关状态以及输出电流等参数信息。

常用的反馈电路有隔离放大器和反馈变压器。

隔离放大器通过光电转换和电隔离将输入信号转换为输出信号,并保证输入与输出之间的电气隔离,以确保安全性和稳定性。

反馈变压器是通过变压器将输出信号与输入信号进行隔离和耦合,达到反馈的目的。

隔离电路:用于隔离驱动电源和IGBT的主回路。

通过隔离电路可以避免驱动电源与主回路之间的相互影响,提高系统的稳定性和安全性。

常用的隔离电路有光耦隔离和磁耦隔离。

光耦隔离通过光电转换将输入信号转换为光信号,再由光耦合输出为等效电流信号,实现了输入与输出之间的电气隔离。

磁耦隔离通过变压器的电磁感应将输入信号耦合到输出端,实现输入与输出之间的电气隔离。

增益电路:用于提升输入信号的电平和电流,以满足IGBT的工作要求。

增益电路可以选择共射极放大器、共基极放大器或共集极放大器等。

对于IGBT来说,常用的增益电路是共射极放大器。

增益电路的设计需要考虑输入输出阻抗的匹配、功率损耗和响应速度等因素。

IGBT驱动电路原理及保护电路

IGBT驱动电路原理及保护电路

IGBT驱动电路原理及保护电路IGBT(Insulated Gate Bipolar Transistor)驱动电路是一种用于驱动IGBT的电路,主要用于控制和保护IGBT。

IGBT是一种高性能功率半导体器件,广泛应用于各种功率电子设备中。

驱动信号发生器产生一个驱动信号,通常是一个脉冲信号,用于控制IGBT的开关状态。

信号放大器将驱动信号放大到足够的电压和电流,以满足IGBT的驱动要求。

保护电路用于监测IGBT的工作状态,并在故障发生时提供保护措施。

电源则为整个驱动电路提供所需的电能。

IGBT驱动电路的保护功能非常重要。

保护电路通常包括过流保护、过温保护、过压保护和短路保护等功能。

过流保护通过监测IGBT的输出电流来避免过大的电流损坏IGBT。

过温保护通过监测IGBT的温度来避免过热导致的损坏。

过压保护通过监测输入电压来避免过大的电压损坏IGBT。

短路保护通过监测IGBT的输出电压和电流来避免短路导致的损坏。

IGBT驱动电路还可以包括其他功能,如电流限制、反馈控制、隔离等。

电流限制功能可以限制IGBT的输出电流,以满足设备的需要。

反馈控制功能可以通过监测输出信号,并将反馈信号送回到驱动信号发生器中,实现对IGBT的精确控制。

隔离功能可以通过光耦等器件实现驱动信号和IGBT之间的电气隔离,提高系统的安全性和可靠性。

总之,IGBT驱动电路是用于驱动和保护IGBT的电路,通过控制IGBT的输入电流和电压来实现对其的开关操作。

保护电路是其重要组成部分,可以提供对IGBT的过流、过温、过压和短路等故障的保护。

IGBT驱动电路还可以包括其他功能,如电流限制、反馈控制和隔离等。

这些功能和保护措施都有助于提高IGBT的性能和可靠性,保护其免受损坏。

三种IGBT驱动电路和保护方法详解

三种IGBT驱动电路和保护方法详解

三种IGBT驱动电路和保护方法详解IGBT(Insulated Gate Bipolar Transistor)是一种功率开关器件,具有高压能力和快速开关速度,广泛应用于各类电力电子设备中。

为了保证IGBT的正常工作和延长寿命,需要合理设计驱动电路和采取保护措施。

以下将详细介绍三种常见的IGBT驱动电路和保护方法。

1.全桥驱动电路:全桥驱动电路使用四个驱动器来控制IGBT的开关动作,通过驱动信号的控制确保IGBT的正确触发。

全桥驱动电路的优点是开关速度快、电流能力高、噪音抵抗能力强。

驱动信号的产生可以通过模拟电路或数字电路实现,后者具有更高的可靠性和精准性。

在全桥驱动电路中,还会配备隔离变压器,用于提供与主电源隔离的驱动信号。

保护方法:(1)过温保护:通过测量IGBT芯片的温度,一旦温度超过设定值,即切断IGBT的驱动信号,防止过热损坏。

(2)过流保护:通过监测IGBT输入电流,当电流超过额定值时,切断IGBT的驱动信号,避免损坏。

(3)过压保护:检测IGBT的输入电压,当电压超过设定值时,中断驱动信号,以防止损坏。

(4)过电压保护:通过监测IGBT的输出电压,当电压异常升高时,关闭IGBT的驱动信号,避免对后续电路造成损害。

(5)失控保护:当IGBT因为故障或其他原因丧失了晶体管功能时,立即中断其驱动信号,以保护设备安全。

2.半桥驱动电路:半桥驱动电路仅使用两个驱动器来控制一个IGBT的开关动作。

相比于全桥驱动电路,半桥驱动电路简化了驱动电路的设计,成本更低。

但由于只有单个驱动器来控制IGBT,因此其驱动能力和噪音抵抗能力相对较弱。

保护方法:半桥驱动电路的保护方法与全桥驱动电路类似,包括过温保护、过流保护、过压保护、过电压保护和失控保护等。

可以将这些保护方法集成在半桥驱动电路中,一旦触发保护条件,即切断驱动信号,以保护IGBT和其他电路设备。

3.隔离式驱动电路:隔离式驱动电路通过隔离变压器将主电源与IGBT的驱动信号分隔开,能够提高系统的稳定性和安全性。

IGBT栅极驱动电路的特性分析和应用

IGBT栅极驱动电路的特性分析和应用

IGBT栅极驱动电路的特性分析和应用IGBT (Insulated Gate Bipolar Transistor)栅极驱动电路是一种用于控制IGBT的电路,它的作用是提供适当的电压和电流来触发和控制IGBT的导通和关断。

IGBT是一种高压、高电流开关器件,广泛用于各种领域的电力电子应用中,如工业驱动、交流电动机控制、逆变器和电力转换等。

1.兼容性:IGBT栅极驱动电路能够兼容各种控制信号,包括模拟和数字输入信号,因此可以适应不同的控制系统和接口。

2.速度:IGBT栅极驱动电路具有快速的响应速度,能够实现IGBT的快速开关和损耗最小化。

3.保护功能:IGBT栅极驱动电路通常具有过电压、过电流和短路保护功能,以防止IGBT被损坏。

4.隔离性:IGBT栅极驱动电路通常具有电气隔离功能,可以防止高压和高电流的反馈信号对控制系统造成损坏。

5.驱动能力:IGBT栅极驱动电路能够提供足够的电流和电压来驱动IGBT的栅极,确保IGBT能够正常工作。

1.工业驱动:IGBT栅极驱动电路广泛应用于工业驱动系统中,如电动机控制、变频器和软启动器等。

它们能够提供可靠的IGBT控制,确保电机系统的高效运行和可靠性。

2.电力转换:IGBT栅极驱动电路常被用于各种电力转换器,如逆变器、换流器、交流到直流变换器等。

通过控制IGBT的导通和关断,实现对输入电源的有效转换和调整。

3.新能源应用:IGBT栅极驱动电路在新能源领域的应用日益增多,如太阳能逆变器、风力发电系统和电动汽车充电器等。

它们能够提供高效的能量转换和稳定的电源输出。

4.高压应用:IGBT栅极驱动电路适用于各种高压应用,如高压直流传输、电力系统稳定和电网电压调节等。

通过控制IGBT的导通和关断,确保高压系统的稳定性和安全性。

总结起来,IGBT栅极驱动电路具有兼容性、速度、保护功能、隔离性和驱动能力等特点,广泛应用于工业驱动、电力转换和新能源等领域。

它们能够提供可靠的IGBT控制,确保系统稳定和高效工作。

IGBT驱动保护电路的设计和性能分析

IGBT驱动保护电路的设计和性能分析

IGBT驱动保护电路的设计和性能分析导言:功放电路是现代电子电路中的重要部分,它具有放大电能的功能。

不过,由于IGBT(Insulated Gate Bipolar Transistor,隔离栅双极型晶体管)的特殊性质,其驱动电路设计必须考虑到保护电路的设计问题,保证IGBT运行的可靠性和安全性。

本文将详细介绍IGBT驱动保护电路的设计和性能分析。

一、IGBT驱动保护电路的设计1.UVLO是为了避免驱动电路在电源电压低于最低工作电压时失效。

其原理是在电源电压低于一定阈值时,电压比较器输出低电平,通过逻辑电路将IGBT的控制电压关闭,避免异常的驱动。

2.电源DC过压保护是为了防止IGBT在电源电压超过额定值时损坏。

一般采用电压比较器,当电源输入电压超过额定值时,比较器输出高电平,通过逻辑电路将IGBT的控制电压关闭。

3.电源DC过流保护是为了防止IGBT在电流超过额定值时过热损坏。

一般采用电流传感器对电流进行检测,当电流超过额定值时,传感器输出高电平,通过逻辑电路将IGBT的控制电压关闭。

可以选择恢复时间来控制保护的触发时间和延迟时间。

4.热保护是为了防止IGBT在温度过高时损坏。

可以采用热敏电阻或温度传感器来监测温度,当温度超过一定阈值时,通过逻辑电路将IGBT的控制电压关闭。

以上是IGBT驱动保护电路常用的保护功能,具体电路设计还需要考虑实际应用场景和对电路性能的要求。

二、IGBT驱动保护电路的性能分析1.保护触发时间:保护触发时间是指在保护条件满足时,保护电路能够及时启动保护动作的时间。

触发时间过长可能导致IGBT损坏。

因此,保护电路设计应尽量缩短触发时间,提高系统响应速度。

2.保护延迟时间:保护延迟时间是指在保护条件满足时,保护电路响应保护动作的时间。

正常情况下,IGBT驱动保护电路应尽量缩短延迟时间,减少IGBT受到异常电压或电流的影响。

但是,过小的延迟时间可能导致误触发保护,影响系统的正常工作。

详解三种IGBT驱动电路和保护方法

详解三种IGBT驱动电路和保护方法

详解三种IGBT驱动电路和保护⽅法本⽂着重介绍三个IGBT驱动电路。

驱动电路的作⽤是将单⽚机输出的脉冲进⾏功率放⼤,以驱动IGBT,保证IGBT的可靠⼯作,驱动电路起着⾄关重要的作⽤,对IGBT驱动电路的基本要求如下:(1) 提供适当的正向和反向输出电压,使IGBT可靠的开通和关断。

(2) 提供⾜够⼤的瞬态功率或瞬时电流,使IGBT能迅速建⽴栅控电场⽽导通。

(3) 尽可能⼩的输⼊输出延迟时间,以提⾼⼯作效率。

(4) ⾜够⾼的输⼊输出电⽓隔离性能,使信号电路与栅极驱动电路绝缘。

(5) 具有灵敏的过流保护能⼒。

驱动电路EXB841/840EXB841⼯作原理如图1,当EXB841的14脚和15脚有10mA的电流流过1us以后IGBT正常开通,VCE下降⾄3V左右,6脚电压被钳制在8V左右,由于VS1稳压值是13V,所以不会被击穿,V3不导通,E点的电位约为20V,⼆极管VD截⽌,不影响V4和V5正常⼯作。

当14脚和15脚⽆电流流过,则V1和V2导通,V2的导通使V4截⽌、V5导通,IGBT栅极电荷通过V5迅速放电,引脚3电位下降⾄0V,是 IGBT栅⼀射间承受5V左右的负偏压,IGBT可靠关断,同时VCE的迅速上升使引脚6“悬空”。

C2的放电使得B点电位为0V,则V S1仍然不导通,后续电路不动作,IGBT正常关断。

如有过流发⽣,IGBT的V CE过⼤使得VD2截⽌,使得VS1击穿,V3导通,C4通过R7放电,D 点电位下降,从⽽使IGBT的栅⼀射间的电压UGE降低 ,完成慢关断,实现对IGBT的保护。

由EXB841实现过流保护的过程可知,EXB841判定过电流的主要依据是6脚的电压,6脚的电压不仅与VCE 有关,还和⼆极管VD2的导通电压Vd有关。

典型接线⽅法如图2,使⽤时注意如下⼏点:a、IGBT栅-射极驱动回路往返接线不能太长(⼀般应该⼩于1m),并且应该采⽤双绞线接法,防⽌⼲扰。

b、由于IGBT集电极产⽣较⼤的电压尖脉冲,增加IGBT栅极串联电阻RG有利于其安全⼯作。

(国内标准)IGBT驱动保护及典型应用

(国内标准)IGBT驱动保护及典型应用

(国内标准)IGBT驱动保护及典型应用IGBT驱动保护及典型应用Sy摘要IGBT(绝缘栅双极晶体管)是壹种复合了功率场效应管和电力晶体管的优点而产生的壹种新型复合器件,它同时具有MOSFET的高速开关及电压驱动特性和双极晶体管的低饱和电压特性,易实现较大电流的能力,既具有输入阻抗高、工作速度快、热稳定性好和驱动电路简单的优点,又具有通态电压低、耐压高和承受电流大的优点。

近年来IGBT成为电力电子领域中尤为瞩目的电力电子器件,且得到越来越广泛的应用。

本文主要介绍了IGBT的基本结构、工作原理、驱动电路,同时简要概括了IGBT模块的选择方法和保护措施等,最后对IGBT的实际典型应用进行了分析介绍,通过对IGBT 的学习,来探讨IGBT于当代电力电子领域的广泛应用和发展前景。

关键词:IGBT;绝缘栅双极晶体管;驱动电路;保护电路;变频器;电力电子器件目录引言11、IGBT的基本结构12、IGBT的工作原理32.1 IGBT的工作特性33、IGBT的驱动53.1驱动电路设计要求53.2 几种常用IGBT的驱动电路64、IGBT驱动保护74.1 驱动保护电路的原则74.2 IGBT栅极的保护84.3 IGBT的过电流保护94.3.1 驱动过流保护电路的驱动过流保护原则94.3.2 IGBT过流保护电路设计94.3.3具有过流保护功能的IGBT驱动电路的研究114.5 IGBT的过热保护154.6 IGBT驱动保护设计总结155.IGBT专用集成驱动模块M57962AL介绍16结论20参考文献21引言随着国民经济各领域和国防工业对于电能变换和处理的要求不断提高,以及要满足节能和新能源开发的需求,作为电能变换装置核心部件的功率半导体器件也起着越来越重要的作用。

IGBT(InsulatedGateBipolarTransistor,绝缘栅双极型晶体管)自1982年由GE公司和RCA公司宣布以来,引起世界许多半导体厂家和研究者的重视,伴随而来的是IGBT的技术高速发展,其应用领域不断扩展它不仅于工业应用中取代了MOSFET和GTR(GiantTransistor,巨型晶体管),甚至已扩展到SCR(Silicon ControlledRectifier,可控硅整流器)和GTO(GateTurn-OffThyristor,门控晶闸管)占优势的大功率应用领域,仍于消费类电子应用中取代了BJT和MOSFET 功率器件的许多应用领域IGBT额定电压和额定电流所覆盖的输出容量已达到6MVA,商品化IGBT模块的最大额定电流已达到3.6kA,最高阻断电压为6.5kV,且已成功应用于许多中、高压电力电子系统中。

IGBT的驱动电路及保护电路

IGBT的驱动电路及保护电路

IGBT是绝缘栅极双极型晶体管。

它是一种新型的功率开关器件,电压控制器件,具有输入阻抗高、速度快、热稳定性强、耐压高方面的优点,因此在现实电力电子装置中得到了广泛的应用。

在我们的设计中使用的是西门子公司生产的BSM50GB120,它的正常工作电流是50A,电压为1200V,根据具体的情况需要,还可以选取其它型号的IGBT。

对于IGBT的驱动电路模块,市场上也有卖的,其中典型的是EXB840、2SD315A、IR2130等等。

但是在家用电器中,考虑到驱动保护特性,以及成本方面的因数,设计出了一种简单实用的驱动保护电路。

通过电磁振荡产生的强大磁场,然后作用在锅具(磁性的)上形成涡流,实现加热功能的。

使用这种方案的器具,凭借其卫生、使用方便可靠,尤其是节能方面优点更显著,热效率一般能够达到90%多,所以在人们的日常生活中得到了广泛的应用。

目前,这种电磁振荡方案以其结构简单清晰、可靠性高、成本低的特点,在实际中已经得到了广泛的应用。

而且这种IGBT驱动保护电路和电磁振荡方案可以在家用电器中的电磁炉、电磁电饭锅、电磁热水壶、电磁热水器等。

IGBT的驱动保护电路IGBT的驱动电路根据不同的功能要求,可以选取不同的驱动电路,在有些重要的大电流或者是昂贵的电子设备中,我们可以选取专门的IGBT驱动及保护芯片,可靠性很高,但是在一些低成本,如家用电器中,这些驱动模块就不太实用了。

如图1所示,其中包括了IGBT的具体驱动电路,满足了IGBT的驱动要求,采用的是单电源15V供电的方式,IGBT的栅极电压可以为15V和0V,可以保证IGBT的正常导通与关断,电路简单,实用于低成本的家用电器控制器中。

图 1 IGBT驱动保护电路其中A点为IGBT的控制输入信号。

当输入高电平的时候,Q4导通,则B点为高电平,从而驱动Q1导通,Q2截止,使得D点电压为+15V,然后通过电阻R2驱动IGBT,此时D4相当于开路,R2为断开的。

316J高压大功率驱动和保护电路的应用

316J高压大功率驱动和保护电路的应用

1、 IGBT的工作特性IGBT是一种电压型控制器件,它所需要的驱动电流与驱动功率非常小,可直接与模拟或数字功能块相接而不须加任何附加接口电路。

IGBT的导通与关断是由栅极电压UGE来控制的,当UGE大于开启电压UGE(th)时IGBT导通,当栅极和发射极间施加反向或不加信号时,IGBT被关断。

IGBT与普通晶体三极管一样,可工作在线性放大区、饱和区和截止区,其主要作为开关器件应用。

在驱动电路中主要研究IGBT的饱和导通和截止两个状态,使其开通上升沿和关断下降沿都比较陡峭。

2、IGBT驱动电路要求在设计IGBT驱动时必须注意以下几点。

1)栅极正向驱动电压的大小将对电路性能产生重要影响,必须正确选择。

当正向驱动电压增大时,.IGBT的导通电阻下降,使开通损耗减小;但若正向驱动电压过大则负载短路时其短路电流IC随UGE增大而增大,可能使IGBT出现擎住效应,导致门控失效,从而造成IGBT的损坏;若正向驱动电压过小会使IGBT退出饱和导通区而进入线性放大区域,使IGBT过热损坏;使用中选12V≤UGE≤18V为好。

栅极负偏置电压可防止由于关断时浪涌电流过大而使IGBT 误导通,一般负偏置电压选-5V为宜。

另外,IGBT开通后驱动电路应提供足够的电压和电流幅值,使IGBT在正常工作及过载情况下不致退出饱和导通区而损坏。

2)IGBT快速开通和关断有利于提高工作频率,减小开关损耗。

但在大电感负载下IGBT的开关频率不宜过大,因为高速开通和关断时,会产生很高的尖峰电压,极有可能造成IGBT或其他元器件被击穿。

3)选择合适的栅极串联电阻RG和栅射电容CG对IGBT的驱动相当重要。

RG较小,栅射极之间的充放电时间常数比较小,会使开通瞬间电流较大,从而损坏IGBT;RG较大,有利于抑制dvce/dt,但会增加IGBT的开关时间和开关损耗。

合适的CG有利于抑制dic/dt,CG太大,开通时间延时,CG太小对抑制dic/dt效果不明显。

IGBT模块:技术、驱动和应用

IGBT模块:技术、驱动和应用

IGBT模块:技术、驱动和应用IGBT模块是一种集成了多个功率晶体管的集成电路,它能够承受高电压和高电流,广泛应用于电力变换和工业控制领域。

IGBT模块的技术、驱动和应用,是电力电子学、微电子学和电气工程领域的重要内容。

本文将针对IGBT模块的技术、驱动和应用进行详细的分析和讨论。

一、技术1. IGBT的结构和原理IGBT模块采用了IGBT功率晶体管技术,是一种高功率半导体器件。

IGBT由P型掺杂的底部导电层、N型的发射区、P 型区域和N型区域组成。

IGBT的结构与三极管相似,但它在结构上融合了场效应晶体管(FET)和双极型晶体管(BJT)的优点。

IGBT的输出开关特性类似于MOSFET,控制端需要施加正向偏置电压才能开启它。

然而,IGBT模块的输出电容较大,需要控制端施加负向电压才能关闭它。

2. IGBT模块的特性(1)高平均功率:IGBT模块能够承受高电压和高电流,适用于高功率应用。

(2)低电压降:IGBT模块的导通电阻比较低,导通时的电压降较小。

(3)快速开关:IGBT模块的响应速度较快,可以实现高频开关。

(4)耐高温:IGBT模块的工作温度范围宽,可以在高温环境下工作。

3. IGBT模块的制造工艺IGBT模块的制造过程包括晶体管芯片制造、封装和模块组装三个步骤。

晶体管芯片制造是IGBT模块制造的核心,它需要进行掺杂、生长晶片、刻蚀和沉积等多个步骤。

封装使晶体管芯片和引脚封装在一起,并对晶片进行保护。

模块组装是将多个IGBT芯片、散热器和电容器等部件组合起来形成一个完整的IGBT模块。

组装包括焊接、粘接和测试等多个工序。

4. IGBT模块的散热和保护IGBT模块的高功率和高温度会导致散热问题。

散热系统需要有效地排放IC模块产生的热量。

通常采用散热片、散热器和风扇等来散热。

保护系统需要检测IGBT模块的输出信号和工作状态,并及时停止或调节当前的工作状态以保证工作的稳定性和可靠性。

通常采用过流保护、过压保护和过温保护等方式进行保护。

浅谈高压IGBT驱动电路基本功能

浅谈高压IGBT驱动电路基本功能

浅谈高压IGBT驱动电路基本功能发表时间:2020-04-30T13:00:19.023Z 来源:《电力设备》2019年第24期作者:肖轲远侯丹阳[导读] 摘要:在轨道交通领域,高压IGBT模块作为功率变换的核心器件安装在牵引变流器、辅助变流器中实现电能的变化,IGBT模块的运行状态直接决定了变流器装置的性能和可靠性。

(中车永济电机有限公司陕西省西安市 710016)摘要:在轨道交通领域,高压IGBT模块作为功率变换的核心器件安装在牵引变流器、辅助变流器中实现电能的变化,IGBT模块的运行状态直接决定了变流器装置的性能和可靠性。

本文就IGBT模块在实际应用过程中,驱动电路的作用、意义及基本功能进行了阐述,同时对门极电阻等参数对IGBT的开通、关断特性进行简单分析。

关键词:变流器 IGBT 驱动电路0 引言铁路作为国家重要的基础设施,国民经济的大动脉,大众化的交通工具,近年来在我国得到了显著的发展。

围绕铁路“高速、重载”的发展方向,我国已开行一批具有世界先进水平的高速动车组和大功率交流传动电力机车(如:CR400、CR200、HXD21000等)。

电力牵引传动系统是高速动车组和大功率电力机车的原动力,牵引辅助变流器、功率模块作为功率变换的核心器件,安全、高效、可靠、节能、环保是变流装置的基本要求。

1 IGBT模块驱动简介功率半导体开关器件的驱动电路也称驱动器,驱动器位于控制电路和主电路之间,用来转换和响应控制电路的信号,从而控制主电路中功率器件的开通和关断。

作为功率开关器件,高压IGBT模块的工作状态直接影响电力电子装置整机的性能。

而驱动器直接决定着高压IGBT模块能否安全工作,性能优越的驱动器可以使功率器件工作在良好的工作状态下,从而保证整机运行的稳定性、高效性和安全性。

因此选择或设计合理的驱动电路就显得尤为重要。

IGBT是电压控制型开关器件,它的开通过程可以看作是对门极电容的充电过程,关断过程可以看作是对门极电容的放电过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IGBT高压大功率驱动和保护电路的应用解析引言
IGBT在以变频器及各类电源为代表的电力电子装置中得到了广泛应用。

IGBT集双极型功率晶体管和功率MOSFET的优点于一体,具有电压控制、输入阻抗大、驱动功率小、控制电路简单、开关损耗小、通断速度快和工作频率高等优点。

但是,IGBT和其它电力电子器件一样,其应用还依赖于电路条件和开关环境。

因此,I GBT的驱动和保护电路是电路设计的难点和重点,是整个装置运行的关键环节。

为解决IGBT的可靠驱动问题,国外各IGBT生产厂家或从事IGBT应用的企业开发出了众多的IGBT驱动集成电路或模块,如国内常用的日本富士公司生产的EXB8系列,三菱电机公司生产的M579系列,美国IR公司生产的IR21系列等。

但是,EXB8系列、M579系列和IR21系列没有软关断和电源电压欠压保护功能,而惠普生产的HCLP一316J有过流保护、欠压保护和1GBT软关断的功能,且价格相对便宜,因此,本文将对其进行研究,并给出1700V,200~300AIGBT的驱动和保护电路。

1、IGBT的工作特性
IGBT是一种电压型控制器件,它所需要的驱动电流与驱动功率非常小,可直接与模拟或数字功能块相接而不须加任何附加接口电路。

IGBT的导通与关断是由栅极电压UGE来控制的,当UGE大于开启电压UGE(th)时IGBT导通,当栅极和发射极间施加反向或不加信号时,IGBT被关断。

IGBT与普通晶体三极管一样,可工作在线性放大区、饱和区和截止区,其主要作为开关器件应用。

在驱动电路中主要研究IGBT的饱和导通和截止两个状态,使其开通上升沿和关断下降沿都比较陡峭。

2、IGBT驱动电路要求
在设计IGBT驱动时必须注意以下几点。

1)栅极正向驱动电压的大小将对电路性能产生重要影响,必须正确选择。

当正向驱动电压增大时,.IGBT的导通电阻下降,使开通损耗减小;但若正向驱动电压过大则负载短路时其短路电流IC随UGE增大而增大,可能使IGBT出现擎住效应,导致门控失效,从而造成IGBT的损坏;若正向驱动电压过小会使IGBT退出饱和导通区而进入线性放大区域,使IGBT过热损坏;使用中选12V≤UGE≤18V为好。

栅极负偏置电压可防止由于关断时浪涌电流过大而使IGBT误导通,一般负偏置电压选一5V为宜。

另外,IGBT开通后驱动电路应提供足够的电压和电流幅值,使IGBT在正常工作及过载情况下不致退出饱和导通区而损坏。

2)IGBT快速开通和关断有利于提高工作频率,减小开关损耗。

但在大电感负载下IGBT 的开关频率不宜过大,因为高速开通和关断时,会产生很高的尖峰电压,极有可能造成IG BT或其他元器件被击穿。

3)选择合适的栅极串联电阻RG和栅射电容CG对IGBT的驱动相当重要。

RG较小,栅射极之间的充放电时间常数比较小,会使开通瞬间电流较大,从而损坏IGBT;RG较大,有利于抑制dvce/dt,但会增加IGBT的开关时间和开关损耗。

合适的CG有利于抑制dic /dt,CG太大,开通时间延时,CG太小对抑制dic/dt效果不明显。

4)当IGBT关断时,栅射电压很容易受IGBT和电路寄生参数的干扰,使栅射电压引起器件误导通,为防止这种现象发生,可以在栅射间并接一个电阻。

此外,在实际应用中为防止栅极驱动电路出现高压尖峰,最好在栅射间并接两只反向串联的稳压二极管,其稳压值应与正负栅压相同。

3、HCPL-316J驱动电路
3.1HCPL-316J内部结构及工作原理
HCPL-316J的内部结构如图1所示
其外部引脚如图2所示
从图1可以看出,HCPL-316J可分为输入IC(左边)和输出IC(右边)二部分,输入和输出之间完全能满足高压大功率IGBT驱动的要求。

各引脚功能如下:
脚1(VIN+)正向信号输入;
脚2(VIN-)反向信号输入;
脚3(VCG1)接输入电源;
脚4(GND)输入端的地;
脚5(RESERT)芯片复位输入端;
脚6(FAULT)故障输出,当发生故障(输出正向电压欠压或IGBT短路)时,通过光耦输出故障信号;
脚7(VLED1+)光耦测试引脚,悬挂;
脚8(VLED1-)接地;
脚9,脚10(VEE)给IGBT提供反向偏置电压;
脚11(VOUT)输出驱动信号以驱动IGBT;
脚12(VC)三级达林顿管集电极电源;
脚13(VCC2)驱动电压源;
脚14(DESAT)IGBT短路电流检测;
脚15(VLED2+)光耦测试引脚,悬挂;
脚16(VE)输出基准地。

其工作原理如图1所示。

若VIN+正常输入,脚14没有过流信号,且VCC2-VE=12v即输出正向驱动电压正常,驱动信号输出高电平,故障信号和欠压信号输出低电平。

首先3路信号共同输入到JP3,D点低电平,B点也为低电平,50×DMO S处于关断状态。

此时JP1的输入的4个状态从上至下依次为低、高、低、低,A点高电平,驱动三级达林顿管导通,IGBT也随之开通。

若IGBT出现过流信号(脚14检测到IGBT集电极上电压=7V),而输入驱动信号继续加在脚1,欠压信号为低电平,B点输出低电平,三级达林顿管被关断,1×DMOS导通,I GBT栅射集之间的电压慢慢放掉,实现慢降栅压。

当VOUT=2V时,即VOUT输出低电平,C点变为低电平,B点为高电平,50×DMOS导通,IGBT栅射集迅速放电。

故障线上信号
通过光耦,再经过RS触发器,Q输出高电平,使输入光耦被封锁。

同理可以分析只欠压的情况和即欠压又过流的情况。

3.2驱动电路设计
驱动电路及参数如图3所示。

HCPL-316J左边的VIN+,FAULT和RESET分别与微机相连。

R7,R8,R9,D5,D6和C12起输入保护作用,防止过高的输入电压损坏IGBT,但是保护电路会产生约1µs延时,在开关频率超过100kHz时不适合使用。

Q3最主要起互锁作用,当两路PWM信号(同一桥臂)都为高电平时,Q3导通,把输入电平拉低,使输出端也为低电平。

图3中的互锁信号Interlock,和Interlock2分别与另外一个316JInterlock2和Interlock1相连。

R1和C2
起到了对故障信号的放大和滤波,当有干扰信号后,能让微机正确接受信息。

在输出端,R5和C7关系到IGBT开通的快慢和开关损耗,增加C7可以明显地减小dic /dt。

首先计算栅极电阻:其中ION为开通时注入IGBT的栅极电流。

为使IGBT迅速开通,设计,IONMAX值为20A。

输出低电平VOL=2v。

可得
C3是一个非常重要的参数,最主要起充电延时作用。

当系统启动,芯片开始工作时,由于IGBT的集电极C端电压还远远大于7V,若没有C3,则会错误地发出短路故障信号,使输出直接关断。

当芯片正常工作以后,假使集电极电压瞬间升高,之后立刻恢复正常,若没有C3,则也会发出错误的故障信号,使IGBT误关断。

但是,C3的取值过大会使系统反应变慢,而且在饱和情况下,也可能使IGBT在延时时间内就被烧坏,起不到正确的保护作用,C3取值100pF,其延时时间
在集电极检测电路用两个二极管串连,能够提高总体的反向耐压,从而能够提高驱动电压等级,但二极管的反向恢复时间要很小,且每个反向耐压等级要为1000V,一般选取BY V261E,反向恢复时间75ns。

R4和C5的作用是保留HCLP-316J出现过流信号后具有的软关断特性,其原理是C5通过内部MOSFET的放电来实现软关断。

图3中输出电压VOU T经过两个快速三极管推挽输出,使驱动电流最大能达到20A,能够快速驱动1700v、200 -300A的IGBT。

3.3驱动电源设计
在驱动设计中,稳定的电源是IGBT能否正常工作的保证。

如图4所示。

电源采用正激变换,抗干扰能力较强,副边不加滤波电感,输入阻抗低,使在重负载情况下电源输出电压仍然比较稳定。

当s开通时,+12v(为比较稳定的电源,精度很高)电压便加到变压器原边和S相连的绕组,通过能量耦合使副边经过整流输出。

当S关断时,通过原边二极管和其相连的绕组把磁芯的能量回馈到电源,实现变压器磁芯的复位。

555定时器接成多谐振荡器,通过对C 1的充放电使脚2和脚6的电位在4~8v之间变换,使脚3输出电压方波信号,并用方波信号来控制S的开通和关断。

+12v经过R1,D2给C1充电,其充电时间t1≈R1C2ln2;放电时间t2=R2C1ln2,充电时输出高电平,放电时输出低电平。

所以占空比=t1/(t1+t2)。

变压器按下述参数进行设计:原边接+12v,频率为60kHz,工作磁感应强度Bw为O.1 5T,副边+15v输出2A,-5v输出1A,效率n=80%,窗口填充系数Km为O.5,磁芯填充系数Kc为1,线圈导线电流密度d为3A/mm2。

则输出功率:PT=(15+O.6)×2×2 +(5+O.6)×1×2=64W。

变压器磁芯参数
由于带载后驱动电源输出电压会有所下降,所以,在实际应用中考虑提高频率和占空比来稳定输出电压。

4、结语
本文设计了一个可驱动l700v,200~300A的IGBT的驱动电路。

硬件上实现了对两个I GBT(同一桥臂)的互锁,并设计了可以直接给两个IGBT供电的驱动电源。

相关文档
最新文档