高考数学选择题专项训练(三)

合集下载

2024年高考适应性训练数学试题(三)

2024年高考适应性训练数学试题(三)

试卷类型: A2024年高考适应性训练数 学 试 题 (三)本试卷共19题,满分150分,共6页.考试用时120分钟. 注意事项:1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

每小题给出的四个选项中,只有一项 是符合题目要求的。

1. 已知集合(){}2,A x y y x ==,集合(){},B x y y x ==,则集合AB 子集的个数为A. 1B. 2C. 3D. 4 2. 小王夫妇开设了一家早餐店,经统计,发现每天茶叶蛋的销量()2100050XN ,(单位:个),估计300天内每天茶叶蛋的销量约在950到1100个的天数大约为 (附:若随机变量()2X Nμσ~,,则()0.6827P X μσμσ-≤≤+≈,()220.9545P X μσμσ-≤≤+≈,()330.9973P X μσμσ-≤≤+≈)A .236B .246C .270D .2753. 已知单位向量,a b 满足1-=a b ,则a 在b 方向上的投影向量为A.12b B. bC.12a D. -aA. (1.5,2)B. (2,2.5)C. (2.5,3)D. (3,3.5) 5. 已知()()2f x xg x =为定义在R 上的偶函数,则函数()g x 的解析式可以为A. ()221ln 1x g x x +=-B. ()2121xg x =-+ C. ()22,0,,0x x x g x x x x ⎧-≥=⎨+<⎩ D. ()|2||2|g x x x =--+6. 将函数()πcos 26f x x ⎛⎫=-⎪⎝⎭图象上的所有点向左平移5π6个单位长度,得到函数()g x 的图象,则A .()2πcos 23g x x ⎛⎫=-⎪⎝⎭B .()g x 在ππ,33⎡⎤-⎢⎥⎣⎦上单调递增 C .()g x 在π0,3⎡⎤⎢⎥⎣⎦D .直线π4x =是()g x 图象的一条对称轴 7. 设0.50.2a =,0.20.5b =,0.5log 0.2c =,则A. a c b >>B. c b a >>C. c a b >>D. b c a >>8. 已知圆222 ()2p E x y r ++=:与抛物线22(0)C y px p =>:相交于两点,A B ,分别以,A B 为切点作E 的切线12,l l . 若12,l l 都经过C 的焦点F ,则cos AEB ∠=A.2B. 12- C. 2- D.12二、选择题:本题共3小题,每小题6分,共18分。

2014年高考数学一轮专题复习(文)-专题训练三

2014年高考数学一轮专题复习(文)-专题训练三

第三章 单元测试卷一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1.若曲线y =f (x )在点)处的切线方程为3x -y +1=0,则( )答案 B2.三次函数y =ax 3-x 在(-∞,+∞)内是减函数,则 ( )A .a ≤0B .a =1C .a =2D .a =13答案 A解析 y ′=3ax 2-1,由y ′≤0,得3ax 2-1≤0. ∴a ≤0.3.如果函数f (x )=x 4-x 2,那么f ′(i)=( )A .-2iB .2iC .6iD .-6i答案 D解析 因为f ′(x )=4x 3-2x ,所以f ′(i)=4i 3-2i =-6i. 4.函数f (x )=e x cos x 的图像在点(0,f (0))处的切线的倾斜角为 ( )A .0 B.π4 C .1 D.π2答案 B解析 f ′(x )=(e x cos x )′=(e x )′cos x +e x (cos x )′=e x cos x +e x (-sin x )=e x (cos x -sin x ),则函数f (x )在点(0,f (0))处的切线的斜率,故切线的倾斜角为π4,故选B.5.已知f (x )=x (2 013+ln x ),,则 ( )A .e 2B .1C .ln2D .e答案 B解析 由题意可知f ′(x)=2 013+ln x +x·1x =2 014+ln x. 由.6.若函数f(x)=cos x +2xf ′(π6),则f(-π3)与f(π3)的大小关系是 ( ) A .f(-π3)=f(π3) B .f(-π3)>f(π3) C .f(-π3)<f(π3) D .不确定答案 C解析 依题意得f ′(x)=-sin x +2f ′(π6),f ′(π6)=-sin π6+2f ′(π6),f ′(π6)=12,f ′(x)=-sin x +1≥0.f(x)=cos x +x 是R 上的增函数,注意到-π3<π3,于是有f (-π3)<f (π3),选C.7.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =x ·f ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( )A .f (1)与f (-1)B .f (-1)与f (1)C .f (-2)与f (2)D .f (2)与f (-2)答案 C解析 ∵f (x )是一个三次函数,易知y =x ·f ′(x )也是三次函数,观察图像,可知y =x ·f ′(x )有三个零点-2,0,2.设y =x ·f ′(x )=ax (x -2)(x +2),∵当x >2时,y =x ·f ′(x )>0,∴a >0. ∴f ′(x )=a (x -2)(x +2).∴f (-2)是极大值,f (2)是极小值,故选C.8.家电下乡政策是应对金融危机,积极扩大内需的重要举措.我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定的时间T 内完成预期运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )答案 B解析 由题意可知,运输效率越来越高,只需曲线上点的切线的斜率越来越大即可,观察图形可知,选项B 满足条件,故选B.9.(2013·石家庄模拟)设函数f (x )在R 上要导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是 ( )答案 C解析 由f (x )在x =-2处取得极小值可知 当x <-2时,f ′(x )<0,则xf ′(x )>0, 当x >-2时,f ′(x )>0,则当-2<x <0时, xf ′(x )<0,当x >0时,xf ′(x )>0.10.已知函数f (x )=x 3+2bx 2+cx +1有两个极值点,且,,则f (-1)的取值范围是 ( ) A .[-32,3] B .[32,6] C .[3,12] D .[-32,12]答案 C解析f ′(x )=3x 2+4bx +c ,由题意,得⎩⎨⎧f ′(-2)=12-8b +c ≥0,f ′(-1)=3-4b +c ≤0,f ′(1)=3+4b +c ≤0,f ′(2)=12+8b +c ≥0.f (-1)=2b -c ,当直线过点A 时f (-1)取最小值3,当直线过点B 时取最大值12,故选C.二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上)11.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________.答案 -1解析 f ′(x )=2f ′(1)+1x ,令x =1,得f ′(1)=-1.12.已知向量a =(x 2,x +1),b =(1-x ,t ),若函数f (x )=a ·b 在区间(-1,1)上是增函数,则实数t 的取值范围是________.答案 [5,+∞)解析 f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t , f ′(x )=-3x 2+2x +t ,由题意f ′(x )>0在(-1,1)上恒成立, 则⎩⎨⎧ f ′(-1)≥0,f ′(1)≥0,即⎩⎨⎧t -5≥0,t -1≥0,解得t ≥5.13.已知曲线y =x 2-1在处的切线与曲线y =1-x 3在处的切线互相平行,则的值为________.答案 0或-23解析 y ′=2x ,y ′=-3x 2,曲线y =x 2-1在处的切线斜率,曲线处的切线斜率为,则,解得或.14.函数f (x )=3x -x 3在区间(a 2-12,a )上有最小值,则实数a 的取值范围是________.答案 (-1,2]解析 f ′(x )=3-3x 2=-3(x +1)(x -1),令f ′(x )=0,得 x 1=-1,x 2=1.当x 变化时,f ′(x )、f (x )变化情况如下表∴x 1=-1,x 2=2.∵f (x )在开区间(a 2-12,a )上有最小值, ∴最小值一定是极小值.∴⎩⎨⎧a 2-12<-1<a ,a ≤2,解得-1<a ≤2. 15.若函数f (x )=x -p x +p2在(1,+∞)上是增函数,则实数p 的取值范围是________.答案 [-1,+∞)解析 f ′(x )=1+px 2≥0对x >1恒成立,即x 2+p ≥0对x >1恒成立,∴p ≥-x 2(x >1).∴p ≥-1.16.函数y =x +2cos x 在区间[0,π2]上的最大值是________. 答案 π6+ 3解析 由y ′=1-2sin x =0,得x =π6,x ∈(0,π6)时,y ′>0,x ∈(π6,π2),y ′<0,函数在x =π6处取得最大值,y max =π6+2×32=π6+ 3.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)设函数f (x )=ax 3+bx +c (a ≠0)为奇函数,其图像在点(1,f (1))处的切线与直线x -6y -7=0垂直,导函数f ′(x )的最小值为-12.(1)求a ,b ,c 的值;(2)求函数f (x )的单调递增区间,并求函数f (x )在[-1,3]上的最大值和最小值. 解析 (1)∵f (x )为奇函数,∴f (-x )=-f (x ),即-ax 3-bx +c =-ax 3-bx -c . ∴c =0,∵f ′(x )=3ax 2+b 的最小值为-12,∴b =-12. 又直线x -6y -7=0的斜率为16, 因此,f ′(1)=3a +b =-6. ∴a =2,b =-12,c =0.(2)单调递增区间是(-∞,-2)和(2,+∞). f (x )在[-1,3]上的最大值是18,最小值是-8 2.18.(本小题满分12分)已知函数f (x )=2ax +a 2-1x 2+1,其中a ∈R .(1)当a =1时,求曲线y =f (x )在原点处的切线方程; (2)求f (x )的单调区间.解析 (1)当a =1时,f (x )=2xx 2+1,f ′(x )=-2(x +1)(x -1)(x 2+1)2.由f′(0)=2,得曲线y=f(x)在原点处的切线方程是2x-y=0.(2)f′(x)=-2(x+a)(ax-1)(x2+1)2.①当a=0时,f′(x)=2x (x2+1)2.所以f(x)在(0,+∞)单调递增,在(-∞,0)单调递减.当a≠0,f′(x)=-2a (x+a)(x-1a) (x2+1)2.②当a>0时,令f′(x)=0,得x1=-a,x2=1a,f(x)与f′(x)的情况如下:故f(x)的单调减区间是(-∞,-a),(1a,+∞);单调增区间是(-a,1a).③当a<0时,f(x)与f′(x)的情况如下:所以f(x)的单调增区间是(-∞,1a),(-a,+∞);单调减区间是(1a,-a).综上,a>0时,f(x)在(-∞,-a),(1a,+∞)单调递减;在(-a,1a)单调递增.a=0时,f(x)在(0,+∞)单调递增;在(-∞,0)单调递减.a<0时,f(x)在(-∞,1a),(-a,+∞)单调递增;在(1a,-a)单调递减.19.已知函数f (x )=12x 2-m ln x .(1)若函数f (x )在(12,+∞)上是递增的,求实数m 的取值范围; (2)当m =2时,求函数f (x )在[1,e]上的最大值和最小值.解析 (1)若函数f (x )在(12,+∞)上是增函数,则f ′(x )≥0在(12,+∞)上恒成立.而f ′(x )=x -m x ,即m ≤x 2在(12,+∞)上恒成立,即m ≤14.(2)当m =2时,f ′(x )=x -2x =x 2-2x .令f ′(x )=0,得x =± 2.当x ∈[1,2)时,f ′(x )<0,当x ∈(2,e)时,f ′(x )>0,故x =2是函数f (x )在[1,e]上唯一的极小值点,故f (x )min =f (2)=1-ln2,又f (1)=12,f (e)=12e 2-2=e 2-42>12,故f (x )max =e 2-42.20.(本题满分12分)已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln xx -1. 解析 (1)f ′(x )=a (x +1x -ln x )(x +1)2-bx 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1)故⎩⎪⎨⎪⎧f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得a =1,b =1. (2)由(1)知f (x )=ln x x +1+1x,所以f (x )-ln x x -1=11-x 2(2ln x -x 2-1x ).考虑函数h (x )=2ln x -x 2-1x (x >0),则h ′(x )=2x -2x 2-(x 2-1)x 2=-(x -1)2x 2.所以当x ≠1时,h ′(x )<0.而h (1)=0,故 当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0;当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0. 从而当x >0,且x ≠1时,f (x )-ln x x -1>0,即f (x )>ln xx -1. 21.(本小题满分12分)已知函数f (x )=-x 2+2ln x . (1)求函数f (x )的最大值;(2)若函数f (x )与g (x )=x +ax 有相同极值点, ①求实数a 的值; ②若对于,不等式恒成立,求实数k 的取值范围.解析 (1)f ′(x )=-2x +2x =-2(x +1)(x -1)x (x >0),由⎩⎨⎧ f ′(x )>0,x >0,得0<x <1;由⎩⎨⎧f ′(x )<0,x >0,得x >1. ∴f (x )在(0,1)上为增函数,在(1,+∞)上为减函数. ∴函数f (x )的最大值为f (1)=-1. (2)∵g (x )=x +a x ,∴g ′(x )=1-a x 2. ①由(1)知,x =1是函数f (x )的极值点. 又∵函数f (x )与g (x )=x +ax 有相同极值点, ∴x =1是函数g (x )的极值点. ∴g ′(1)=1-a =0,解得a =1.经检验,当a =1时,函数g (x )取到极小值,符合题意. ②∵f (1e )=-1e 2-2,f (1)=-1,f (3)=-9+2ln3, ∵-9+2ln3<-1e 2-2<-1,即f (3)<f (1e )<f (1), ∴,=-9+2ln3,=f (1)=-1.由①知g (x )=x +1x ,∴g ′(x )=1-1x 2.故g (x )在⎣⎢⎡⎭⎪⎫1e ,1时,g ′(x )<0;当x ∈(1,3]时,g ′(x )>0.故g (x )在⎣⎢⎡⎭⎪⎫1e ,1上为减函数,在(1,3]上为增函数.∵g (1e )=e +1e ,g (1)=2,g (3)=3+13=103, 而2<e +1e <103,∴g (1)<g (1e )<g (3). ∴,.当k -1>0,即k >1时, 对于≤1恒成立.∵,∴k ≥-3+1=-2,又∵k >1,∴k >1. 当k -1<0,即k <1时, 对于,恒成立.∵,∴k ≤-343+2ln3.又∵k <1,∴k ≤-343+2ln3.综上,所求的实数k 的取值范围为⎝ ⎛⎦⎥⎤-∞,-343+2ln3∪(1,+∞). 22.(本小题满分12分)已知函数f (x )=a x +x 2,g (x )=x ln a ,a >1.(1)求证:函数F (x )=f (x )-g (x )在(0,+∞)上单调递增;(2)若函数y =⎪⎪⎪⎪⎪⎪F (x )-b +1b -3有四个零点,求b 的取值范围;(3)若对于任意的时,都有e 2-2恒成立,求a 的取值范围.解析 (1)∵F (x )=f (x )-g (x )=a x +x 2-x ln a ,∴F ′(x )=a x ·ln a +2x -ln a =(a x -1)ln a +2x .∵a >1,x >0,∴a x -1>0,ln a >0,2x >0.∴当x ∈(0,+∞)时,F ′(x )>0,即函数F (x )在区间(0,+∞)上单调递增.(2)由(1)知当x ∈(-∞,0)时,F ′(x )<0,所以F (x )在(-∞,0]上单调递减,在(0,+∞)上单调递增,∴F (x )取得最小值为F (0)=1.由⎪⎪⎪⎪⎪⎪F (x )-b +1b -3=0,得F (x )=b -1b +3或F (x )=b -1b -3. 所以要使函数y =⎪⎪⎪⎪⎪⎪F (x )-b +1b -3有四个零点,只需⎩⎪⎨⎪⎧ b -1b +3>1,b -1b -3>1,即b-1b >4,即b 2-4b -1b>0, 解得b >2+5或2-5<b <0.(3)∵,由(1)知F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.∴F (x )min =F (0)=1.从而再来比较F (-1)与F (1)的大小即可.F (-1)=1a +1+ln a ,F (1)=a +1-ln a ,∴F (1)-F (-1)=a -1a -2ln a .令H (x )=x -1x -2ln x (x >0),则H ′(x )=1+1x 2-2x =x 2-2x +1x 2=(x -1)2x 2>0. ∴H (x )在(0,+∞)上单调递增.∵a >1,∴H (a )>H (1)=0,∴F (1)>F (-1). ∴的最大值为|F (1)-F (0)|=a -ln a . ∴要使恒成立,只需a -ln a ≤e 2-2即可.令h (a )=a -ln a (a >1),h ′(a )=1-1a >0,所以h (a )在(1,+∞)单调递增.因为h (e 2)=e 2-2,所以h (a )≤h (e 2),即1<a ≤e 2.1.已知f (x )=x (2 011+ln x ),,则 ( ) A .e 2B .1C .ln2D .e 答案 B解析 由题意可知f ′(x)=2 011+ln x +x·1x =2 012+ln x.由,∴.2.已知对任意实数x ,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f ′(x)>0,g ′(x)>0,则x<0时( ) A .f ′(x)>0,g ′(x)>0B .f ′(x)>0,g ′(x)<0C .f ′(x)<0,g ′(x)>0D .f ′(x)<0,g ′(x)<0答案 B解析 依题意得,函数f ′(x)、g ′(x)分别是偶函数、奇函数,当x<0时,-x>0,f ′(x)=f ′(-x)>0,g ′(x)=-g ′(-x)<0,选B .3.已知直线y =x +1与曲线y =ln (x +a)相切,则a 的值为________. 答案 2解析 记切点坐标为(m ,n),则有⎩⎪⎨⎪⎧ 1m +a =1,m +1=ln (m +a ).由此解得m =-1,a =2.。

高考数学客观题训练【6套】选择、填空题

高考数学客观题训练【6套】选择、填空题

数学PA高考数学客观题训练【6套】选择、填空题专题练习(一)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U则≥-+=≥=( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则m1的取值范围是: ( )A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1()1,(+∞⋃-∞ab 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是4.直线052)3(057)3()1(2=-+-=-+-++yx m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或5.命题“042,2≤+-∈∀x x R x ”的否定为 ( )(A) 042,2≥+-∈∀x x R x (B) 042,2>+-∈∃x x R x (C)042,2≤+-∉∀x x R x (D) 042,2>+-∉∃x x R x6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是A .直角梯形B .矩形C .菱形D .正方形7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 A .2a πB .22a πC .32a πD .42a π8.若22πβαπ<<<-,则βα-一定不属于的区间是 ( )A .()ππ,- B .⎪⎭⎫⎝⎛-2,2ππ C .()π,0 D . ()0,π-9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( ) A .10 B .16C . 20D .3210.不等式10x x->成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >-D .1x >二、填空题 (每题5分,满分20分,请将答案填写在题中横线上) 11. 线性回归方程ˆybx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x xe x f =)(0,则输出的是__________.13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。

2023新教材高考数学二轮专题复习强化训练3排列组合二项式定理

2023新教材高考数学二轮专题复习强化训练3排列组合二项式定理

强化训练3 排列、组合、二项式定理一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·山东泰安模拟](x -1x)22展开式中的常数项为( )A .C 1122 B .-C 1122 C .C 1222D .-C 12222.3名男生2名女生站成一排照相,则2名女生相邻且都不站在最左端的不同的站法共有( )A .72种B .64种C .48种D .36种3.六名志愿者到北京、延庆、张家口三个赛区参加活动,若每个赛区两名志愿者,则安排方式共有( )A .15种B .90种C .540种D .720种4.[2022·湖南益阳一模]为迎接新年到来,某中学2022年“唱响时代强音,放飞青春梦想”元旦文艺晚会如期举行.校文娱组委员会要在原定排好的8个学生节目中增加2个教师节目,若保持原来的8个节目的出场顺序不变,则不同排法的种数为( )A .36B .45C .72D .905.[2022·山东德州二模]已知a >0,二项式(x +ax2)6的展开式中所有项的系数和为64,则展开式中的常数项为( )A .36B .30C .15D .106.[2022·山东淄博一模]若(1-x )8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,则a 6=( )A .-448B .-112C .112D .4487.[2022·河北沧州二模](x -2x-1)5的展开式中的常数项为( )A .-81B .-80C .80D .1618.[2022·湖北十堰三模]甲、乙、丙、丁共4名学生报名参加夏季运动会,每人报名1个项目,目前有100米短跑、3 000米长跑、跳高、跳远、铅球这5个项目可供选择,其中100米短跑只剩下一个参赛名额,若最后这4人共选择了3个项目,则不同的报名情况共有( )A.224种B.288种C.314种D.248种二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·河北唐山二模]已知(x-2x2)n的展开式中第3项与第8项的二项式系数相等,则( )A.n=9B.n=11C.常数项是672D.展开式中所有项的系数和是-110.在新高考方案中,选择性考试科目有:物理、化学、生物、政治、历史、地理6门.学生根据高校的要求,结合自身特长兴趣,首先在物理、历史2门科目中选择1门,再从政治、地理、化学、生物4门科目中选择2门,考试成绩计入考生总分,作为统一高考招生录取的依据.某学生想在物理、化学、生物、政治、历史、地理这6门课程中选三门作为选考科目,下列说法正确的是( )A.若任意选科,选法总数为C24B.若化学必选,选法总数为C12 C13C.若政治和地理至少选一门,选法总数为C12 C12C13D.若物理必选,化学、生物至少选一门,选法总数为C12 C12+111.[2022·广东·华南师大附中三模]已知(a+2b)n的展开式中第5项的二项式系数最大,则n的值可以为( )A.7 B.8C.9 D.1012.[2022·湖北荆州三模]已知二项式(2x-1x)n的展开式中共有8项,则下列说法正确的有( )A.所有项的二项式系数和为128B.所有项的系数和为1C.第4项和第5项的二项式系数最大D .有理项共3项三、填空题(本题共4小题,每小题5分,共20分)13.[2022·山东烟台三模]若(1-ax )8展开式中第6项的系数为1792,则实数a 的值为________.14.[2022·辽宁辽阳二模]某话剧社计划在今年7月1日演出一部红色话剧,导演已经选好了该话剧的9个角色的演员,还有4个角色的演员待定,导演要从8名男话剧演员中选3名,从5名女话剧演员中选1名,则导演的不同选择共有________种.15.[2022·浙江卷]已知多项式(x +2)(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 2=______,a 1+a 2+a 3+a 4+a 5=______.16.[2022·河北保定一模]2022年北京冬奥会的某滑雪项目中有三个不同的运动员服务点,现需将10名志愿者分配到这三个运动员服务点处,每处需要至少2名至多4名志愿者,则不同的安排方法一共有________种.强化训练3 排列、组合、二项式定理1.解析:(x -1x)22展开式中的常数项为C 1122 (-1)11=-C 1122 .答案:B2.解析:将2名女生捆绑在一起,故2名女生相邻有A 22 种站法,又2名女生都不站在最左端,故有A 13 种站法,剩下3个位置,站3名男生有A 33 种站法,故不同的站法共有A 22 A 13 A 33 =36种. 答案:D3.解析:先从六名志愿者中选择两名志愿者到北京参加活动,有C 26 =15种方法,再从剩下的4名志愿者中选择2名志愿者到延庆参加活动,有C 24 =6种方法,最后从剩下的2名志愿者中选择2名志愿者到延庆参加活动,有C 22 =1种方法.由分步乘法原理得共有15×6×1=90种方法.答案:B4.解析:采用插空法即可:第1步:原来排好的8个学生节目产生9个空隙,插入1个教师节目有9种排法; 第2步:排好的8个学生节目和1个教师节目产生10个空隙,插入1个教师节目共有10种排法,故共有9×10=90种排法. 答案:D5.解析:令x =1,则可得所有项的系数和为(1+a )6=64且a >0,解得a =1, ∵(x +1x 2)6的展开式中的通项T k +1=C k 6 x 6-k(1x2)k =C k 6 x 6-3k ,k =0,1, (6)∴当k =2时,展开式中的常数项为C 26 =15. 答案:C6.解析:(1-x )8=(x -1)8=[(1+x )-2]8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,a 6=C 28 ·(-2)2=112.答案:C7.解析:(x -2x -1)5=(x -2x -1)(x -2x -1)(x -2x -1)(x -2x -1)(x -2x-1),所以展开式中的常数项为(-1)5+C 15 C 14 ×(-2)×(-1)3+C 25 C 23 ×(-2)2×(-1)=-81.答案:A8.解析:分两种情况讨论:①不选100米短跑,四名学生分成2名、1名、1名三组,参加除100米短跑的四个项目中的三个,有C 24 A 34 =144种;②1人选100米短跑,剩下三名学生分成2名、1名两组,参加剩下四个项目中的两个,有C 14 C 23 A 24 =144种.故他们报名的情况总共有144+144=288种. 答案:B9.解析:由C 2n =C 7n ,可得n =9,则选项A 判断正确;选项B 判断错误; (x -2x2)n 的展开式的通项公式为C k 9 x 9-k (-2)k x -2k =(-2)k C k 9 x 9-3k,令9-3k =0,则k =3,则展开式的常数项是(-2)3C 39 =-672.选项C 判断错误; 展开式中所有项的系数和是(1-212)9=-1.判断正确.答案:AD10.解析:若任意选科,选法总数为C 12 C 24 ,A 错误; 若化学必选,选法总数为C 12 C 13 ,B 正确;若政治和地理至少选一门,选法总数为C 12 (C 12 C 12 +1),C 错误;若物理必选,化学、生物至少选一门,选法总数为C 12 C 12 +1,D 正确. 答案:BD11.解析:当(a +2b )n的展开式中第4项和第5项的二项式系数相等且最大时,n =7; 当(a +2b )n的展开式中第5项和第6项的二项式系数相等且最大时,n =9; 当(a +2b )n的展开式中只有第5项的二项式系数最大时,n =8. 答案:ABC12.解析:由题设n =7,则T k +1=C k 7 (2x )7-k(-1x)k =(-1)k 27-k C k7 x7-3k2,A .所有项的二项式系数和为27=128,正确; B .当x =1,所有项的系数和为(2-1)7=1,正确;C .对于二项式系数C k 7 ,显然第四、五项对应二项式系数C 37 =C 47 最大,正确; D .有理项为7-3k2∈Z ,即k =0,2,4,6共四项,错误.答案:ABC13.解析:因为T 6=T 5+1=C 58 (-ax )5=C 58 (-a )5x 5=C 38 (-a )5x 5, 所以有:C 38 (-a )5=-56a 5=1 792, 所以a 5=-32, 解得a =-2. 答案:-214.解析:依题意,可得导演的不同选择的种数为C 38 ·C 15 =280. 答案:28015.解析:因为(x +2)(x -1)4展开式中x 2的系数为a 2,所以a 2=C 34 (-1)3+2C 24 (-1)2=8.在多项式(x +2)(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5中,令x =0,得a 0=2;令x =1,得a 0+a 1+a 2+a 3+a 4+a 5=0.所以a 1+a 2+a 3+a 4+a 5=-a 0=-2.答案:8 -216.解析:根据题意得,这10名志愿者分配到三个运动员服务点处的志愿者数目为2,4,4或3,3,4,所以不同的安排方法共有C 210 C 48 C 44 A 22 A 33 +C 410 C 36 C 33 A 22 A 33 =22 050. 答案:22 050。

高中数学选择题训练(含答案)

高中数学选择题训练(含答案)

p))tan(pp5p4p2p 3333 333B CA1B111.已知全集=I {Îx x |R },集合=A {x x |<1或x >3},集合=B {1|+<<k x k x ,Îk R },且Æ=B A C I )(,则实数k 的取值范围是的取值范围是 A.0<k 或3>k B.32<<k C.30<<k D.31<<-k12.已知函数îíì=xx x f 3log )(2)0()0(£>x x ,则)]41([f f 的值是的值是 A.9 B.91 C.-9 D.-91 13.设函数1)(22+++-=x x n x x x f (Îx R ,且21-¹n x ,Îx N *),)(x f 的最小值为n a ,最大值为n b ,记)1)(1(n n n b a c --=,则数列}{n cA.是公差不为0的等差数列的等差数列B.是公比不为1的等比数列的等比数列C.是常数列是常数列D.不是等差数列,也不是等比数列不是等差数列,也不是等比数列 14.若p p 43<<x ,则2cos 12cos 1xx -++等于等于 A.)24cos(2x -p B.)24cos(2x --p C.)24sin(2x -p D.)24sin(2x --p15.下面五个命题:⑴所有的单位向量相等;⑵长度不等且方向相反的两个向量不一定是共线向量;⑶若b a ,满足||||b a >且b a ,同向,则b a >;⑷由于零向量的方向不确定,故0与任何向量不平行;⑸对于任何向量b a ,,必有||b a +≤||||b a +.其中正确命题的序号为命题的序号为 A.⑴,⑵,⑶⑴,⑵,⑶ B.⑸ C.⑶,⑸⑶,⑸ D.⑴,⑸⑴,⑸16.下列不等式中,与不等式xxx --223≥0同解的是同解的是 A.)2)(3(x x --≥0 B.0)2)(3(>--x x C.32--x x≥0 D.)2lg(-x ≤0 17.曲线214y x =+-与直线:(2)4l y k x =-+有两个不同的交点,则实数k 的取值范围是的取值范围是A.(512,+∞)∞) B.(512,3]4 C.(0,512) D.(13,3]418.双曲线22148x y -=的两条渐进线的夹角是的两条渐进线的夹角是A.arctan 2B.arctan 22C.2arctan2D.2arctan419(A).如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为所在曲线的形状为A B PA1B 1OA B PA1B 1A B PA1B 1O A B PA1B 1O ABC DP A1B 1C 1D 1A. B. C. D. (第9(A)题图) 19(B).已四知四棱棱锥P -ABCD 的底面为行平行四四形边形,,设x =2P A 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,则x ,y 之间的关系为之间的关系为A.x >yB.x =yC.x <yD.不能确定不能确定 20.从0,1,2,…,9这10个数字中,选出3个数字组成三位数,其中偶数个数为个数字组成三位数,其中偶数个数为 A.328 B.360 C.600 D.720 pABACADBAB11411222aCD}+ab ab22233333ax -1[]1111那么异面直线所成角的大小是所成角的大小是 22221 D D 1 B 1 51.等比数列}{n a 的公比为q ,则“01>a ,且1>q ”是“对于任意正自然数n ,都有n n a a >+1”的 A.充分非必要条件充分非必要条件 B.必要非充分条件必要非充分条件 C.充要条件充要条件 D.既非充分又非必要条件既非充分又非必要条件52.已知函数)(x f 是定义在R 上的奇函数,当0<x 时,xx f )31()(=,那么)9(1--f 的值为的值为 (A )2 (B )-2 (C )3 (D )-3 53.已知数列}{n a 中,31=a ,62=a ,n n n a a a -=++12,则2003a 等于等于(A )6 (B )-6 (C )3 (D )-3 54.在(0,p 2)内,使x x x tan sin cos >>成立的x 的取值范围是的取值范围是(A )(4p ,43p )(B )(45p ,23p )(C )(23p ,p 2) (D )(23p ,47p ) 55.设21,l l 是基底向量,已知向量2121213,2,l l CD l l CB kl l AB -=+=-=,若A ,B ,D 三点共线,则k 的值是的值是(A )2 (B )3 (C )-2 (D )-3 56.使ax x <-+-|3||4|有实数解的a 的取值范围是的取值范围是 (A )7>a (B )71<<a (C )1>a (D )a ≥1 57.直线(1)(1)0x a y b +++=与圆222x y +=的位置关系是的位置关系是 (A )相交)相交 (B )相切)相切 (C )相离)相离 (D )相交或相切交或相切58.设O 是椭圆3cos2sinx yj j==ìí=î的中心,P 是椭圆上对应于6p j =的点,那么直线OP 的斜率为的斜率为 (A )33(B )3 (C )332 (D )239959(A).正方体ABCD -A 1B 1C 1D 1中,M 为BC 中点,N 为D 1C 1的中点,则NB 1与A 1M所成的角等于所成的角等于(A )300 (B )450 (C )600 (D )90059(B).如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为度的最小值为(A )61cm (B )157cm (C )1021cm (D )1037cm 60.对2×2数表定义平方运算如下:数表定义平方运算如下:222a b a b a b a bc ab bd c d c d c d ac cd bc d æö++æöæöæö==ç÷ç÷ç÷ç÷++èøèøèøèø . 则21201-æöç÷èø为 (A )1011æöç÷èø (B )1001æöç÷èø (C )1101æöç÷èø(D )0110æöç÷èø61.集合=P {x ,1},=Q {y ,1,2},其中Îy x ,{1,2,…,9}且Q P Ì,把满足上述条件的一对有序整数(y x ,)作为一个点,这样的点的个数是)作为一个点,这样的点的个数是 A.9 B.14 C.15 D.21 62.已知函数3)(x x x f --=,1x ,2x ,Î3x R ,且021>+x x ,032>+x x ,013>+x x ,则,则)()()(321x f x f x f ++的值的值(A )一定大于零(B )一定小于零)一定小于零 (C )等于零)等于零 (D )正负都有可能)正负都有可能63.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则||n m -等于等于(A )1 (B )43 (C )21 (D )8364.设b a ,是一个钝角三角形的两个锐角,则下列四个不等式中不正确的是是一个钝角三角形的两个锐角,则下列四个不等式中不正确的是 (A )1tan tan <b a (B )2sin sin <+b a (C )1cos cos >+b a (D )2tan )tan(21ba b a +<+ 65.在四边形ABCD 中,0=×BC AB ,AD BC =,则四边形ABCD 是(A )直角梯形)直角梯形 (B )菱形)菱形 (C )矩形)矩形 (D )正方形)正方形 66.0>a ,0>b 且1=+b a ,则下列四个不等式中不成立的是成立的是 (A )ab ≤41 (B )b a 11+≥4 (C )22b a +≥21 (D )a ≥1 67.直线210x a y ++=与直线2(1)30a x by +-+=互相垂直,a b Î,R ,则||ab 的最小值是的最小值是 (A )1 (B )2 (C )4 (D )5 68.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2,3)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为成等差数列,则椭圆方程为(A )22186x y += (B )221166x y +=(C )22184x y += (D )221164x y += 69(A).已知球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,则此球的体积为此球的体积为 (A )33312cm p (B )33316cm p (C )3316cm p (D )3332cm p 69(B).有三个平面a ,β,γ,下列命题中正确的是,下列命题中正确的是(A )若a ,β,γ两两相交,则有三条交线两两相交,则有三条交线(B )若a ⊥β,a ⊥γ,则β∥γ(C )若a ⊥γ,β∩a =a ,β∩γ=b ,则a ⊥b(D )若a ∥β,β∩γ=Æ,则a ∩γ=Æ 70.n xx 2)1(-展开式中,常数项是展开式中,常数项是(A )n n n C 2)1(- (B )12)1(--n n n C (C )121)1(++-n n n C (D )n n C 223x [)p p )p p[p p ]p p)p )p )p )p2223)3)3ABD1B 1PQPQRR SPPQQRRS)pBAC1Ap p )p )sin(p )p43343322)2)2( 323x111c c b b a a 的值为的值为 OB OA OC )p 3333322(1)(2)11x y -+-ABCDpp p 33xy O11-p21b+33223222--22123)}11p p)(p6p p p pA BCMαβ3 p p p2pABAPp p p2156305533AB CA11C1E)参考答案题号1 2 3 4 5 6 7 8 9(A) 9(B) 10 答案A A A D D C C C A C B 题号11 12 13 14 15 16 17 18 19(A) 19(B) 20 答案A B C C B D B B C D A 题号21 22 23 24 25 26 27 28 29(A) 29(B) 30 答案B C D B D C C D B A A 题号31 32 33 34 35 36 37 38 39(A) 39(B) 40 答案C D D D A A D B A A B 题号41 42 43 44 45 46 47 48 49(A) 49(B) 50 答案A C A C D B D D C C D 题号51 52 53 54 55 56 57 58 59(A) 59(B) 60 答案A A B C A C D D D A B 题号61 62 63 64 65 66 67 68 69(A) 69(B) 70 答案B B C D C D B A D D A 题号71 72 73 74 75 76 77 78 79(A) 79(B) 80 答案C A C D C D A C A D C 题号81 82 83 84 85 86 87 88 89(A) 89(B) 90 答案A A D B B C A C B A A 题号91 92 93 94 95 96 97 98 99(A) 99(B) 100 答案B B C D B C C A D C D 题号101 102 103 104 105 106 107 108 109(A) 109(B) 110 答案D C B C C C A D C B B 题号111 112 113 114 115 116 117 118 119(A) 119(B) 120 答案D B B B C C A D D D C 题号121 122 123 124 125 126 127 128 129(A) 129(B) 130 答案C A A C B C A C C C C 题号131 132 133 134 135 136 137 138 139(A) 139(B) 140 答案A C C A D D D C B C B 题号141 142 143 144 145 146 147 148 149(A) 149(B) 150 答案C C A D C C B D A B D 。

【每日一练】经典高考数学基础训练(3)(含参考答案)

【每日一练】经典高考数学基础训练(3)(含参考答案)

【每日一练】经典高考数学基础训练(3)(含参考答案)一、选择题:1.设集合{ EMBED Equation.DSMT4 |{2,1,0,1,2},{|12},()S T x R x S T =--=∈+≤= S 则CA .B .C .D .2.已知向量,若与共线,则等于A .B .C .D .43.函数在=1处的导数等于A .2B .3C .4D .54.设:,:关于的方程有实数根,则是的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知函数的最小正周期为,则该函数的图象A .关于点对称B .关于直线对称C .关于点对称D .关于直线对称6.一个四边形的四个内角成等差数列,最小角为,则最大角为A .B .C .D .7.函数的零点所在的区间是A .B .C .D .8.函数的值域是A .B .C .D .9.如果我们定义一种运算: 已知函数,那么函数的大致图象是10.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定二、填空题:11.函数的单调减区间是;12.定义在R上的奇函数f(x)满足,若则________;13.知抛物线和双曲线都经过点,它们在轴上有共同焦点,抛物线的顶点为坐标原点,则双曲线的标准方程是.14.设是等比数列的前项和,对于等比数列,有真命题若成等差数列,则成等差数列。

请将命题补充完整,使它也是真命题,命题若成等差数列,则成等差数列(只要一个符合要求的答案即可) 三、解答题已知数列是等差数列,且,是数列的前项和.() 求数列的通项公式及前项和;() 若数列满足,且是数列的前项和,求与.答案一、选择题1.B2.A3.C4.A5.B 6。

A 7.B 8.D 9.B 10.A10.设每支笔x元,每本书y元,有二、填空题:11.(-1,1)12. -1 13.14.案不唯一三、解答题:解:()设数列的公差为,由题意可知:,解得:…………………………3分∴……………………………………5分…………………………………………7分() ………………………………9分……12分。

高考数学专题训练 (3)

高考数学专题训练 (3)

专题训练3一、选择题: 1.复数i1iz =-在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限2.已知命题:p x R ∃∈,使sin 2x =命题:q x R ∀∈,都有210.x x ++> 给出下列结论: ① 命题“q p ∧”是真命题 ② 命题“q p ⌝∧”是假命题 ③ 命题“q p ∨⌝”是真命题 ④ 命题“q p ⌝∨⌝”是假命题 其中正确的是A .① ② ③B .③ ④C .② ④D .② ③3.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题正确的是 A.,,αγβγαβ⊥⊥若则‖ B.,,m n m n αα⊥⊥若则‖C.,,m n m n αα若则‖‖‖D.,,m m αβαβ若则‖‖‖ 4.右图的程序框图输出结果S 等于 A. 20 B. 35 C. 40 D. 455.若某空间几何体的三视图如图所示,则该几何体的体积是A.13 B. 23C. 1D.2 6.设等差数列{}n a 的前n 项和为,n S 2a 、4a 是方程220x x --=的两个根,则5S等于 A.52 B.5 C.52- D.-5 7. 已知抛物线22(0)y px p =>上一点(1,)(0)M m m >到其焦点的距离为5,双曲线221x y a-=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是A .19 B .125C .15D .13 8.甲、乙两名篮球运动员在某几场比赛得分的茎叶图如图 所示,则甲、乙两人这几场比赛得分的中位数之和是 A .66 B .65 C .64 D .63俯视图侧视图正视图9.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC A.一定是锐角三角形 B. 一定是直角三角形C.一定是钝角三角形 D.可能是锐角三角形,也可能是直角三角形10.从集合{1,2,3,4,5}中随机抽取一个数为a ,从集合{1,2,3}中随机抽取一个数为b ,则b a >的概率是A .45 B .35 C .25 D .1511.把函数x x y cos 3sin -=的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .6π B .3π C .23π D .56π12.定义在R 上的奇函数)(x f 对任意R x ∈都有)4()(+=x f x f ,当 )0,2(-∈x 时,x x f 2)(=,则)2011()2012(f f -的值为 A . 21- B .21C .2D .2-二、填空题.本大题共有4个小题,每小题4分,共16分.把正确答案填在答题卡的相应位置.13.某个容量为100的样本的频率分布直方图如图所示,则数据在区间[8,10)上的频数是14.设变量y x ,满足约束条件311x y x y y +≤⎧⎪-≥-⎨⎪≥⎩,则目标函数42z x y =+的最大值为15.已知圆224260x y x y +---=的圆心在直线022=-+ab by ax 上,其中0,0>>b a ,则ab 的最小值是16.已知向量a ),cos 21x x --=(,b ),1(t =,若函数=)(x f b a ⋅在区间)2,0(π上存在增区间,则t 的取值范围为一、选择题: BDBAC AADCD DA二、填空题: 13. 30 14. 10 15. 4 16. )21,∞-(。

高中数学理科专题讲解高考大题专项(三)《数列》教学课件

高中数学理科专题讲解高考大题专项(三)《数列》教学课件

典例剖析
对点训练3(2019四川泸州二模,17)已知数列{an}的前n项和Sn满足2an=2+Sn.(1)求证:数列{an}是等比数列;(2)设bn=log2a2n+1,求数列{bn}的前n项和Tn.
(1)证明: 数列{an}的前n项和Sn满足2an=2+Sn,当n=1时,可得2a1=2+S1=2+a1,解得a1=2,当n≥2时,2an-1=2+Sn-1,又2an=2+Sn,相减可得2an-2an-1=2+Sn-2-Sn-1=an,即an=2an-1,检验a2=2a1, 所以数列{an}是首项为2,公比为2的等比数列.
解题心得求解数列中的存在性问题,先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,即不存在.若推不出矛盾,即得到存在的结果.
典例剖析
对点训练6已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(2)是否存在λ,使得{an}为等差数列?并说明理由.
典例剖析
典例剖析
题型五 数列中的存在性问题例6已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(1)求数列{an}的通项公式;(2)是否存在正整数n,使得Sn≥2 017?若存在,求出符合条件的所有n的集合;若不存在,请说明理由.
典例剖析
典例剖析
典例剖析典例剖析源自典例剖析典例剖析典例剖析
解题心得如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,即和式两边同乘以等比数列{bn}的公比,然后作差求解.

高考数学专项练习试题

高考数学专项练习试题

高考数学专项练习试题高考考查的不仅仅是一些基础知识,要想学好数学,一定要掌握一定的数学思想和数学思维,学会用数学思维解决问题,下面是小编为大家整理的关于高考数学专项练习试题,希望对您有所帮助。

欢迎大家阅读参考学习!高考数学专项练习试题一、选择题1.若点P是两条异面直线l,m外的任意一点,则( )A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅有一条直线与l,m都垂直C.过点P有且仅有一条直线与l,m都相交D.过点P有且仅有一条直线与l,m都异面答案:B 命题立意:本题考查异面直线的几何性质,难度较小.解题思路:因为点P是两条异面直线l,m外的任意一点,则过点P有且仅有一条直线与l,m都垂直,故选B.2.如图,P是正方形ABCD外一点,且PA平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( )A.平面PAB与平面PBC、平面PAD都垂直B.它们两两垂直C.平面PAB与平面PBC垂直,与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直答案:A 解题思路:DA⊥AB,DAPA,AB∩PA=A,DA⊥平面PAB,又DA平面PAD,平面PAD平面PAB.同理可证平面PAB平面PBC.把四棱锥P-ABCD放在长方体中,并把平面PBC 补全为平面PBCD1,把平面PAD补全为平面PADD1,易知CD1D即为两个平面所成二面角的平面角,CD1D=APB,CD1D<90°,故平面PAD与平面PBC不垂直.3.设α,β分别为两个不同的平面,直线lα,则“lβ”是“αβ”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A 命题立意:本题主要考查空间线面、面面位置关系的判定与充分必要条件的判断,意在考查考生的逻辑推理能力.解题思路:依题意,由lβ,lα可以推出αβ;反过来,由αβ,lα不能推出lβ.因此“lβ”是“αβ”成立的充分不必要条件,故选A.4.若m,n为两条不重合的直线,α,β为两个不重合的平面,则下列结论正确的是( )A.若m,n都平行于平面α,则m,n一定不是相交直线B.若m,n都垂直于平面α,则m,n一定是平行直线C.已知α,β互相垂直,m,n互相垂直,若mα,则nβD.m,n在平面α内的射影互相垂直,则m,n互相垂直答案:B 解题思路:本题考查了空间中线面的平行及垂直关系.在A中:因为平行于同一平面的两直线可以平行,相交,异面,故A 为假命题;在B中:因为垂直于同一平面的两直线平行,故B为真命题;在C中:n可以平行于β,也可以在β内,也可以与β相交,故C为假命题;在D中:m,n也可以不互相垂直,故D为假命题.故选B.5.如图所示,已知正方体ABCD-A1B1C1D1的棱长为2,长为2的线段MN的一个端点M在棱DD1上运动,另一端点N在正方形ABCD内运动,则MN的中点的轨迹的面积为( )A.4πB.2πC.πD.-π答案:D 解题思路:本题考查了立体几何中的点、线、面之间的关系.如图可知,端点N在正方形ABCD内运动,连接ND,由ND,DM,MN构成一个直角三角形,设P为NM的中点,根据直角三角形斜边上的中线长度为斜边的一半可得,不论MDN如何变化,点P 到点D的距离始终等于1.故点P的轨迹是一个以D为中心,半径为1的球的球面,其面积为.技巧点拨:探求以空间图形为背景的轨迹问题,要善于把立体几何问题转化到平面上,再联合运用平面几何、立体几何、空间向量、解析几何等知识去求解,实现立体几何到解析几何的过渡.6.如图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:直线BE与直线CF是异面直线;直线BE与直线AF是异面直线;直线EF平面PBC;平面BCE平面PAD.其中正确结论的序号是( )A.1B.1C. 3D.4答案:B 解题思路:本题考查了立体几何中的点、线、面之间的关系.画出几何体的图形,如图,由题意可知,直线BE与直线CF是异面直线,不正确,因为E,F分别是PA与PD的中点,可知EFAD,所以EFBC,直线BE与直线CF是共面直线;直线BE与直线AF是异面直线,满足异面直线的定义,正确;直线EF平面PBC,由E,F是PA与PD的中点,可知EFAD,所以EFBC,因为EF平面PBC,BC平面PBC,所以判断是正确的;由题中条件不能判定平面BCE平面PAD,故不正确.故选B.技巧点拨:翻折问题常见的是把三角形、四边形等平面图形翻折起来,然后考查立体几何的常见问题:垂直、角度、距离、应用等问题.此类问题考查学生从二维到三维的升维能力,考查学生空间想象能力.解决该问题时,不仅要知道空间立体几何的有关概念,还要注意到在翻折的过程中哪些量是不变的,哪些量是变化的.二、填空题7.如图,四边形ABCD为菱形,四边形CEFB为正方形,平面ABCD平面CEFB,CE=1,AED=30°,则异面直线BC与AE所成角的大小为________.答案:45°解题思路:因为BCAD,所以EAD就是异面直线BC 与AE所成的角.因为平面ABCD平面CEFB,且ECCB,所以EC平面ABCD.在RtECD中,EC=1,CD=1,故ED==.在AED中,AED=30°,AD=1,由正弦定理可得=,即sin EAD===.又因为EAD∈(0°,90°),所以EAD=45°.故异面直线BC与AE所成的角为45°.8.给出命题:异面直线是指空间中既不平行又不相交的直线;两异面直线a,b,如果a平行于平面α,那么b不平行于平面α;两异面直线a,b,如果a平面α,那么b不垂直于平面α;两异面直线在同一平面内的射影不可能是两条平行直线.上述命题中,真命题的序号是________.答案:解题思路:本题考查了空间几何体中的点、线、面之间的关系.根据异面直线的定义知:异面直线是指空间中既不平行又不相交的直线,故命题为真命题;两条异面直线可以平行于同一个平面,故命题为假命题;若bα,则ab,即a,b共面,这与a,b为异面直线矛盾,故命题为真命题;两条异面直线在同一个平面内的射影可以是:两条平行直线、两条相交直线、一点一直线,故命题为假命题.9.如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥.已知一个正六棱锥的各个顶点都在半径为3的球面上,则该正六棱锥的体积的最大值为________.答案:16 命题立意:本题以球的内接组合体问题引出,综合考查了棱锥体积公式、利用导数工具处理函数最值的方法,同时也有效地考查了考生的运算求解能力和数学建模能力.解题思路:设球心到底面的距离为x,则底面边长为,高为x+3,正六棱锥的体积V=_(9-x2)_6(x+3)=(-x3-3x2+9x+27),其中0≤x<3,则V′=(-3x2-6x+9)=0,令x2+2x-3=0,解得x=1或x=-3(舍),故Vmax=V(1)=(-1-3+9+27)=16.10.已知三棱锥P-ABC的各顶点均在一个半径为R的球面上,球心O在AB上,PO平面ABC,=,则三棱锥与球的体积之比为________.答案:命题立意:本题主要考查线面垂直、三棱锥与球的体积计算方法,意在考查考生的空间想象能力与基本运算能力.解题思路:依题意,AB=2R,又=,ACB=90°,因此AC=R,BC=R,三棱锥P-ABC的体积VP-ABC=PO·SABC=_R__R_R=R3.而球的体积V球=R3,因此VP-ABCV球=R3R3=.三、解答题11.如图,四边形ABCD与A′ABB′都是正方形,点E是A′A的中点,A′A平面ABCD.(1)求证:A′C平面BDE;(2)求证:平面A′AC平面BDE.解题探究:第一问通过三角形的中位线证明出线线平行,从而证明出线面平行;第二问由A′A与平面ABCD垂直得到线线垂直,再由线线垂直证明出BD与平面A′AC垂直,从而得到平面与平面垂直.解析:(1)设AC交BD于M,连接ME.四边形ABCD是正方形,M为AC的中点.又 E为A′A的中点,ME为A′AC的中位线,ME∥A′C.又 ME?平面BDE,A′C?平面BDE,A′C∥平面BDE.(2)∵ 四边形ABCD为正方形,BD⊥AC.∵ A′A⊥平面ABCD,BD平面ABCD,A′A⊥BD.又AC∩A′A=A,BD⊥平面A′AC.BD?平面BDE,平面A′AC平面BDE.12.如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,ADDC,ABDC.(1)求证:D1CAC1;(2)设E是DC上一点,试确定E的位置,使D1E平面A1BD,并说明理由.命题立意:本题主要考查空间几何体中的平行与垂直的判定,考查考生的空间想象能力和推理论证能力.通过已知条件中的线线垂直关系和线面垂直的判定证明线面垂直,从而证明线线的垂直关系.并通过线段的长度关系,借助题目中线段的中点和三角形的中位线寻找出线线平行,证明出线面的平行关系.解决本题的关键是学会作图、转化、构造.解析:(1)在直四棱柱ABCD-A1B1C1D1中,连接C1D,DC=DD1,四边形DCC1D1是正方形,DC1⊥D1C.又ADDC,ADDD1,DC∩DD1=D,AD⊥平面DCC1D1,又D1C平面DCC1D1,AD⊥D1C.∵ AD?平面ADC1,DC1平面ADC1,且AD∩DC1=D,D1C⊥平面ADC1,又AC1平面ADC1,D1C⊥AC1.(1)题图(2)题图(2)连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN.平面AD1E∩平面A1BD=MN,要使D1E平面A1BD,可使MND1E,又M是AD1的中点,则N是AE的中点.又易知ABN≌△EDN,AB=DE.即E是DC的中点.综上所述,当E是DC的中点时,可使D1E平面A1BD.13.已知直三棱柱ABC-A′B′C′满足BAC=90°,AB=AC=AA′=2,点M,N分别为A′B和B′C′的中点.(1)证明:MN平面A′ACC′;(2)求三棱锥C-MNB的体积.命题立意:本题主要考查空间线面位置关系、三棱锥的体积等基础知识.意在考查考生的空间想象能力、推理论证能力和运算求解能力.解析:(1)证明:如图,连接AB′,AC′,四边形ABB′A′为矩形,M为A′B的中点,AB′与A′B交于点M,且M为AB′的中点,又点N为B′C′的中点.MN∥AC′.又MN平面A′ACC′且AC′平面A′ACC′,MN∥平面A′ACC′.(2)由图可知VC-MNB=VM-BCN,BAC=90°, BC==2,又三棱柱ABC-A′B′C′为直三棱柱,且AA′=4,S△BCN=_2_4=4.A′B′=A′C′=2,BAC=90°,点N为B′C′的中点,A′N⊥B′C′,A′N=.又BB′⊥平面A′B′C′,A′N⊥BB′,A′N⊥平面BCN.又M为A′B的中点,M到平面BCN的距离为,VC-MNB=VM-BCN=_4_=.14.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,ABDC,PAD是等边三角形,BD=2AD=8,AB=2DC=4.(1)设M是PC上的一点,证明:平面MBD平面PAD;(2)求四棱锥P-ABCD的体积.命题立意:本题主要考查线面垂直的判定定理、面面垂直的判定定理与性质定理以及棱锥的体积的计算等,意在考查考生的逻辑推理能力与计算能力,考查化归与转化思想.解析:(1)证明:在ABD中,因为AD=4,BD=8,AB=4,所以AD2+BD2=AB2.故ADBD.又平面PAD平面ABCD,平面PAD∩平面ABCD=AD,BD平面ABCD,所以BD平面PAD,又BD平面MBD,所以平面MBD平面PAD.(2)过点P作OPAD交AD于点O,因为平面PAD平面ABCD,所以PO平面ABCD.因此PO为四棱锥P-ABCD的高.又PAD是边长为4的等边三角形,所以PO=_4=2.在四边形ABCD中,ABDC,AB=2DC,所以四边形ABCD是梯形.在Rt△ADB中,斜边AB上的高为=,此即为梯形ABCD的高.所以四边形ABCD的面积S=_=24.故四棱锥P-ABCD的体积VP-ABCD=_24_2=16.。

2021届高考数学选择填空题专题复习课件:专题3 导数的概念及简单应用

2021届高考数学选择填空题专题复习课件:专题3 导数的概念及简单应用

【解析】(1)令t=ex,故x=ln t,所以f(t)=ln t+t,
即f(x)=ln x+x,
所以f′(x)= +11,所以f′(1)=2.
x
(2)因为曲线y=ax2+b 过点P(2,-5),
x
所以4a+b =-5.①
2
又y′=2ax- b,且曲线在点P(2,-5)处的切线与直线
x2
7x+2y+3=0平行,所以4ab- =-7 .②
【变式训练】
(1)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为
y=2x,则a= ( )
A.0
B.1
C.2
D.3
(2)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切
线过点(2,7),则a=________.
【解析】(1)选D.y′=a- x,+1由1 题意得y′|x=0=2, 即a-1=2,所以a=3. (2)因为f′(x)=3ax2+1,所以f′(1)=3a+1. 又f(1)=a+2,所以f(x)在点(1,f(1))处的切线方程为 y-(a+2)=(3a+1)(x-1).
3.已知点P在曲线y= 4 上,α为曲线在点P处的切线
ex+1
的倾斜角,则α的取值范围是________.
【解析】1.由题意知y′=ex+xex,令y′=0,解得x=-1,
代入函数解析式可得极值点的坐标为(-1,-. 1)
e
又极值点处的切线为平行于x轴的直线,故方程为y=
- 1.
e
2.设P(x0,y0)(x0>0),
由y=ex,得y′=ex,所以y′|x=0=1.

(word完整版)高三数学三角函数选择题专项练习真题

(word完整版)高三数学三角函数选择题专项练习真题

三角函数选择题1.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512- 2.若11tan ,tan()32a ab =+=,则tan =b ( ) (A) 17 (B) 16 (C) 57 (D) 56 3.要得到函数4y sin x =-(3π )的图象,只需要将函数4y sin x =的图象( ) (A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 4. “sin cos αα=”是“cos 20α=”的( ) A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要5.已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ).A.233 B. 235 C. 211 D. 2136.设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos A =,且b c <,则b =( )A B .2 C . D .37. o o o o sin 20cos10cos160sin10- =( )(A ) (B (C )12- (D )128.要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( ) (A )向左平移12π个单位 ( B )向右平移12π个单(C )向左平移3π个单位 (D )向右平移3π个单位 9.函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( ) (A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈ (D)13(2,2),44k k k Z -+∈10.下列函数中,最小正周期为且图象关于原点对称的函数是( )()cos(2)2A y x π=+ ()sin(2)2B y x π=+ ()sin 2cos 2C y x x =+ ()sin cos D y x x =+11.若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( )A 、1 B 、2 C 、3 D 、4 12.【2015陕西高考,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .1013.已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) (A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<-14.将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min 3x x π-=,则ϕ=( ) A.512π B.3π C.4π D.6π 15.已知函数230()sin(),()0,f x x f x dx πϕ=-=⎰且则函数()f x 的图象的一条对称轴是 ( )A .56x π= B .712x π= C .3x π= D .6x π= 16.将函数sin y x =的图象向左平移2π个单位,得到函数()y f x =的函数图象,则下列说法正确的是( )()()()()...32.-02A y f x B y f x C y f x x D y f x πππ====⎛⎫= ⎪⎝⎭是奇函数的周期是的图象关于直线对称的图象关于点,对称17.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所的图象对应的函数 ()A 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减()B 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增()C 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减()D 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增 18.函数f (x )=cos的最小正周期是 ( )A. B.πC.2π D.4π 19.函数f(x)=cos的最小正周期是 ( )A. B.πC.2πD.4π 20.已知函数()3cos (0),.f x x x x R ωωω=+>∈在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( )A.2πB.23πC.πD.2π21.为了得到函数x x y 3cos 3sin +=的图象,可以将函数2y x =的图像( )A .向右平移12π个单位B .向右平移4π个单位C .向左平移12π个单位D .向左平移4π个单位22.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位C.向右平移12π个单位D.向左平移12π个单位23.若将函数()sin 2cos 2f x x x =+的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是( )A.8π B.4π C.83π D.43π 24.为了得到函数)12sin(+=x y 的图象,只需把函数x y 2sin =的图象上所有的点( )A.向左平行移动21个长度单位B. 向右平行移动21个长度单位 C.向左平行移动1个长度单位 D. 向右平行移动1个长度单位25.为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度26.钝角三角形ABC 的面积是12,AB=1,BC=2,则AC= ( )A.5 B. 5 C.2 D.127.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角)。

高考数学选择、填空题专项汇编题(共40套)[附答案]

高考数学选择、填空题专项汇编题(共40套)[附答案]

三基小题训练三一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 ( )A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等 差数列的( )A .第13项B .第18项C .第11项D .第20项4.有一块直角三角板ABC ,∠A=30°,∠B=90°,BC 边在桌面上,当三角板所在平面与 桌面成45°角时,AB 边与桌面所成的角等于( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2), 则平移后图象的解析式为( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3; (30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,), 且n mR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππC .]32,2[ππD .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学, 当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血 型的O 型,则父母血型的所有可能情况有 ( )A .12种B .6种C .10种D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a . 以上结论正确的是 .(要求填上的有正确结论的序号) 答案:一、选择题:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C二、填空题:13.-1或512;14.[8,14];15.4;16.①②⑤三基小题训练四一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.4 2.不等式|x +log 3x |<|x |+|log 3x |的解集为A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 8 5.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63a B.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0, a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y =f (x )sin x 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为 A.(5,0),(-5,0) B.(223,52)(223,25-)C.(23,225)(-23,225) D.(0,-3)(0,3)10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51B.1009 C.1001 D.5311.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70),2,则样本在(-∞,50)上的频率为A.201 B.41 C.21 D.10712.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A .线段B 1CB. 线段BC 1C .BB 1中点与CC 1中点连成的线段D. BC 中点与B 1C 1中点连成的线段二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______.14.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是______.15.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.16.同一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).答案:一、1.C 2.A 3.B 4.A 5.B 6.D 7.C 8.B 9.D 10.B 11.D 12.A 二、13.3 14.[0,2π)∪[43π,π) 15.30 16.①③④三基小题训练五一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-22.函数)2(log log 2x x y x +=的值域是 ( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( ) A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+xB .)4cos(π--xC .)4cos(π+-xD .)4cos(π-x5.设n b a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( ) A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知i , j 为互相垂直的单位向量,b a j i b j i a 与且,,2+=-=的夹角为锐角,则实数λ的取值范围是( )A .),21(+∞B .)21,2()2,(-⋃--∞C .),32()32,2(+∞⋃-D .)21,(-∞7.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(8. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条k nM ⋅B .条n kM ⋅C .条kM n ⋅D .条Mk n ⋅9.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( ) A .a <0B .0<a <1C .a =0D .a >110.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1511.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a12.已知函数图象C x y a ax a x y C C '=++=++'且图象对称关于直线与,1)1(:2关于点(2,-3)对称,则a的值为 ( ) A .3B .-2C .2D .-3二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上. 13.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”)14.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为15.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)16.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .一、选择题:本大题共12小题,每小题5分,共60分. 题号 123456789101113答案A D AB D BC A CD A C二、填空题:本大题共4小题,每小题4分,共16分. 13.真 14.3π15.0.99 16.126, 24789三基小题训练六一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函 数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数 转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.237.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%比例分层抽样的方法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为( )A.150,450B.300,900C.600,600D.75,2258.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( ) A.4+332B.4+223 C.2+332 D.2+2239.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个B.2个C.3个D.4个10.点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是11.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中, 则不同的传球方式共有A.6种B.10种C.8种D.16种12.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.方程log 2|x |=x 2-2的实根的个数为______.14.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.15.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在 [1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为______(写出所有正确判断的序号).答案:一、1.D 2.B 3.B 4.C 5.D 6.B 7.A 8.B 9.C 10.A 11.C 12.D二、13.4 14.12 20 15.13 16.①②⑤三基小题训练七一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.准线方程为3=x 的抛物线的标准方程为( )A .x y 62-=B .x y 122-=C .x y 62=D .x y 122=2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x yD .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是( )A .1个B .2个C .3个D .4个7.函数R x x x y ∈+=,cos sin 的单调递增区间是( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y x I 则},,1|{},,2|{2∈+==∈=是 ( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( )A .32B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( )A .2B .4C .6D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A .b a c a <=且B .c b a <<C .b c a <<D .b a c <<二、填空题:(本大题共4小题,每小题4分,共16分,把答案直接填在题中横线上.)13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数Nx x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 .16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上) 答案: 一、选择题:(每小题5分,共60分)BADCA ABDCA BC 二、填空题:(每小题4分,共16分)13.148; 14.]25,10[(295732∈++-x x x 且)*N x ∈(未标定义域扣1分); 15.22-; 16.①,④(多填少填均不给分)三基小题训练八一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只 有一项是符合题目要求的)1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( )A .1B .2C .3D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .75.有下列命题①++=;②(++)=⋅+⋅;③若=(m ,4),则||=23的充要条件是m =7;④若AB 的起点为)1,2(A ,终点为)4,2(-B ,则BA 与x 轴正向所夹角的余弦值是54,其中正确命题的序号是 ( )A.①②B.②③C.②④D.③④· · ·· ·A 1D 1C 1C N M DPR BAQ6.右图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定 8.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个B.232个C.128个D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 ( ) A.2b a + B. 21++b a C. b a + D.2)(2b a + 11.如图所示,在一个盛 水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水 面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯荷5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题(本大题共4小题,每小题4分,共16分。

高中数学选择题训练150道(附含答案解析)

高中数学选择题训练150道(附含答案解析)

数学高考选择题训练一1.给定集合=M {4|πθθk =,∈k Z},}02cos |{==x x N ,}12sin |{==a a P ,则下列关系式中,成立的是A.M N P ⊂⊂B.M N P ⊂=C.M N P =⊂D.M N P == 2.关于函数21)32(sin )(||2+-=x x x f ,有下面四个结论:(1))(x f 是奇函数; (2)当2003>x 时,21)(>x f 恒成立; (3))(x f 的最大值是23; (4))(x f 的最小值是21-.其中正确结论的个数是A.1个B.2个C.3个D.4个3.过圆01022=-+x y x 内一点P (5,3)的k 条弦的长度组成等差数列,且最小弦长为数列的首项1a ,最大弦长为数列的末项k a ,若公差∈d [31,21],则k 的取值不可能是 A.4 B.5 C.6 D.74.下列坐标所表示的点不是函数)62tan(π-=x y 的图象的对称中心的是 (A )(3π,0) B.(35π-,0) C.(34π,0) D.(32π,0) 5.与向量=l (1,3)的夹角为o 30的单位向量是 A.21(1,3) B.21(3,1) C.(0,1) D.(0,1)或21(3,1)6.设实数y x ,满足10<<xy 且xy y x +<+<10,那么y x ,的取值范围是A.1>x 且1>yB.10<<x 且1<yC.10<<x 且10<<yD.1>x 且10<<y7.已知0ab ≠,点()M a b ,是圆222x y r +=内一点,直线m 是以点M 为中点的弦所在的直线,直线l 的方程是2ax by r +=,则下列结论正确的是A.//m l ,且l 与圆相交B.l m ⊥,且l 与圆相切C.//m l ,且l 与圆相离D.l m ⊥,且l 与圆相离8.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是 A.216y x = B.28x y =- C.216y x =或28x y =- D.216y x =或28x y =9(A).如图,三棱柱ABC -A 1B 1C 1的侧面A 1B ⊥BC ,且A 1C 与底面成600角,AB=BC =2,则该棱柱体积的最小值为A.34B.33C.4D.3AB CA 1B 1C 1(第9(A)题图)9(B).在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是 A.4条 B.6条 C.8条 D.10条10.某班级英语兴趣小组有5名男生和5名女生,现要从中选4名学生参加英语演讲比赛,要求男生、女生都有,则不同的选法有A.210种B.200种C.120种D.100种11.已知全集=I {∈x x |R},集合=A {x x |<1或x >3},集合=B {1|+<<k x k x ,∈k R},且∅=B A C I )(,则实数k 的取值范围是A.0<k 或3>kB.32<<kC.30<<kD.31<<-k12.已知函数⎩⎨⎧=xxx f 3log )(2)0()0(≤>x x ,则)]41([f f 的值是A.9B.91 C.-9 D.-91 13.设函数1)(22+++-=x x nx x x f (∈x R ,且21-≠n x ,∈x N *),)(x f 的最小值为n a ,最大值为n b ,记)1)(1(n n n b a c --=,则数列}{n cA.是公差不为0的等差数列B.是公比不为1的等比数列C.是常数列D.不是等差数列,也不是等比数列 14.若ππ43<<x ,则2cos 12cos 1xx -++等于 A.)24cos(2x -π B.)24cos(2x --π C.)24sin(2x -π D.)24sin(2x --π15.下面五个命题:⑴所有的单位向量相等;⑵长度不等且方向相反的两个向量不一定是共线向量;⑶若b a ,满足||||b a >且b a ,同向,则b a >;⑷由于零向量的方向不确定,故0与任何向量不平行;⑸对于任何向量b a ,,必有||b a +≤||||b a +.其中正确命题的序号为A.⑴,⑵,⑶B.⑸C.⑶,⑸D.⑴,⑸16.下列不等式中,与不等式xx --23≥0同解的是 A.)2)(3(x x --≥0 B.0)2)(3(>--x x C.32--x x ≥0 D.)2lg(-x ≤0 17.曲线1y =:(2)4l y k x =-+有两个不同的交点,则实数k 的取值范围是A.(512,+∞)B.(512,3]4C.(0,512)D.(13,3]418.双曲线22148x y -=的两条渐进线的夹角是A.arctanarctan19(A).如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为1111A. B. C. D. (第9(A)题图) 19(B).已知四棱锥P -ABCD 的底面为平行四边形,设x =2PA 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,则x ,y 之间的关系为A.x >yB.x =yC.x <yD.不能确定 20.从0,1,2,…,9这10个数字中,选出3个数字组成三位数,其中偶数个数为 A.328 B.360 C.600 D.72021.已知集合}01211|{2<--=x x x A ,集合=B {)13(2|+=n x x ,∈n Z},则B A 等于 A.{2} B.{2,8} C.{4,10} D.{2,4,8,10} 22.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为A.0B.-1C.1D.223.首项为-24的等差数列,从第10项开始为正,则公差d 的取值范围是A.38>dB.3<dC.38≤3<d D.d <38≤3 24.为了使函数)0(sin >=ωωx y 在区间[0,1]上至少出现50次最大值,则ω的最小值是A.π98B.π2197C.π2199D.π100 25.下列命题中,错误的命题是A.在四边形ABCD 中,若AD AB AC +=,则ABCD 为平行四边形B.已知b a b a +,,为非零向量,且b a +平分a 与b 的夹角,则||||b a =C.已知a 与b 不共线,则b a +与b a -不共线D 对实数1λ,2λ,3λ,则三向量1λ-a 2λb ,2λ-b 3λc ,3λ-c 1λa 不一定在同一平面上26.四个条件:a b >>0;b a >>0;b a >>0;0>>b a 中,能使b a 11<成立的充分条件的个数是 A.1 B.2 C.3 D.4 27.点M (2,0),N 是圆221x y +=上任意一点,则线段MN 中点的轨迹是 A.椭圆 B.直线 C.圆 D.抛物线28.设椭圆22221x y a b+=的焦点在y 轴上,a ∈{1,2,3,4,5},b ∈{1,2,3,4,5,6,7},这样的椭圆共有A.35个B.25个C.21个D.20个 29(A).如图,直三棱柱ABC -A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B -APQC 的体积为A.2V B.3V C.4V D.5VABC PQA 1B 1C 1(第9(A)题图)29(B).设长方体的三条棱长分别为a ,b ,c ,若长方体所有棱的长度之和为24,一条对角线长度为5,体积为2,则=++cba111A.411 B.114 C.211 D.11230.用10元、5元和1元面值的钞票来购买20元的商品,不同的支付方法有 A.9种 B.8种 C.7种 D.6种31.如果命题“⌝(p 或q )”为假命题,则A.p ,q 均为真命题B.p ,q 均为假命题C.p ,q 中至少有一个为真命题D.p ,q 中至多有一个为真命题 32.设ax x f x ++=)110lg()(是偶函数,xxb x g 24)(-=是奇函数,那么b a +的值为(A )1 (B )-1 (C )21- (D )2133.已知1是2a 与2b 的等比中项,又是a1与b1的等差中项,则22b a b a ++的值是(A )1或21 (B )1或21- (C )1或31 (D )1或31-34.以下命题正确的是(A )βα,都是第一象限角,若βαcos cos >,则βαsin sin > (B )βα,都是第二象限角,若βαsin sin >,则βαtan tan > (C )βα,都是第三象限角,若βαcos cos >,则βαsin sin > (D )βα,都是第四象限角,若βαsin sin >,则βαtan tan >35.已知BE AD ,分别是ABC ∆的边AC BC ,上的中线,且=AD a ,=BE b ,则是(A )b a 3234+ (B )b a 3432+ (C )b a 3234- (D )b a 3432- 36.若10<<a ,则下列不等式中正确的是(A )2131)1()1(a a ->- (B )0)1(log )1(>+-a a (C )23)1()1(a a +>- (D )1)1(1>-+a a37.圆221:40C x y x +-=与圆222:610160C x y x y ++++=的公切线有(A )1条 (B )2条 (C )3条 (D )4条 38.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 为 (A )1 (B )2 (C )3 (D )439(A).如图,已知面ABC ⊥面BCD ,AB ⊥BC ,BC ⊥CD ,且AB=BC=CD ,设AD 与面AB C所成角为α,AB 与面ACD 所成角为β,则α与β的大小关系为ABCD(第9(A)题图)(A )α<β (B )α=β (C )α>β (D )无法确定39(B).在空间四边形ABCD 各边上分别取E 、F 、G 、H 四点,如果EF 和GH 能相交于点P ,那么(A )点P 必在直线AC 上 (B )点P 必在直线BD 上 (C )点P 必在平面ABC 内 (D )点P 必在平面上ABC 外40.用1,3,5,7,9五个数字中的三个替换直线方程Ax+By+C =0中的A 、B 、C ,若A 、B 、C 的值互不相同,则不同的直线共有(A )25条 (B )60条 (C )80条 (D )181条41.已知0>>b a ,全集=I R ,集合}2|{b a x b x M +<<=,}|{a x ab x N <<=,=P {x b x <|≤ab},则P 与N M ,的关系为A.)(N C M p I =B.N M C p I )(=C.N M P =D.N M P = 42.函数x x f a log )(= 满足2)9(=f ,则)2log (91--f 的值是 (A )2 (B )2(C )22 (D )2log 343.在ABC ∆中,A tan 是以-4为第3项,4为第7项的等差数列的公差;B tan 是以31为第3项,9为第6项的等比数列的公比,则该三角形是(A )锐角三角形(B )直角三角形(C )钝角三角形(D )等腰三角形44.某人朝正东方走x km 后,向左转1500,然后朝新方向走3km ,结果它离出发点恰好3km ,那么x 等于(A )3 (B )32 (C )3或 32 (D )3 45.已知b a ,为非零向量,则||||b a b a -=+成立的充要条件是(A )b a // (B )a 与b 有共同的起点 (C )||||b a = (D )b a ⊥ 46.不等式a x ax >-|1|的解集为M ,且M ∉2,则a 的取值范围为(A )(41,+∞) (B )41[,+∞) (C )(0,21)(D )(0,]21 47.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是(A )2k >(B )32k -<< (C )3k <-或2k > (D )都不对 48.共轭双曲线的离心率分别为1e 和2e ,则1e 和2e 关系为(A )1e = 2e (B )121e e⋅= (C )12111e e += (D )2212111e e += 49(A).棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为(A )33a (B )43a (C )63a (D )123a49(B).如图,长方体ABCD -A 1B 1C 1D 1中,∠DAD 1=45°,∠CDC 1=30°, 那么异面直线AD 1与DC 1所成角的大小是A.arcsin42arcsin 4C. arccos 4D. 2arccos450.某展览会一周(七天)内要接待三所学校学生参观,每天只安排一所学校,其中甲学校要连续参观两天,其余学校均参观一天,则不同的安排方法的种数有(A )210 (B )50 (C )60 (D )120A A 1BCDD1B 1C 1(9 B 图)数学高考选择题训练六51.等比数列}{n a 的公比为q ,则“01>a ,且1>q ”是“对于任意正自然数n ,都有n n a a >+1”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件52.已知函数)(x f 是定义在R 上的奇函数,当0<x 时,x x f )31()(=,那么)9(1--f 的值为 (A )2 (B )-2 (C )3 (D )-3 53.已知数列}{n a 中,31=a ,62=a ,n n n a a a -=++12,则2003a 等于(A )6 (B )-6 (C )3 (D )-3 54.在(0,π2)内,使x x x tan sin cos >>成立的x 的取值范围是(A )(4π,43π)(B )(45π,23π)(C )(23π,π2) (D )(23π,47π) 55.设21,l l 是基底向量,已知向量2121213,2,l l l l kl l -=+=-=,若A ,B ,D 三点共线,则k 的值是(A )2 (B )3 (C )-2 (D )-3 56.使a x x <-+-|3||4|有实数解的a 的取值范围是(A )7>a (B )71<<a (C )1>a (D )a ≥1 57.直线(1)(1)0x a y b +++=与圆222x y +=的位置关系是(A )相交 (B )相切 (C )相离 (D )相交或相切58.设O 是椭圆3cos 2sin x y ϕϕ=⎧⎨=⎩的中心,P 是椭圆上对应于6πϕ=的点,那么直线OP 的斜率为(A(B (C (D59(A).正方体ABCD -A 1B 1C 1D 1中,M 为BC 中点,N 为D 1C 1的中点,则NB 1与A 1M 所成的角等于(A )300 (B )450 (C )600 (D )90059(B).如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为(A )61cm (B )157cm (C )1021cm (D )1037cm60.对2×2数表定义平方运算如下:222a b a b a b a bc ab bd c d c d c d ac cd bc d ⎛⎫++⎛⎫⎛⎫⎛⎫== ⎪⎪⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭. 则21201-⎛⎫⎪⎝⎭为(A )1011⎛⎫⎪⎝⎭ (B )1001⎛⎫ ⎪⎝⎭ (C )1101⎛⎫ ⎪⎝⎭ (D )0110⎛⎫⎪⎝⎭数学高考选择题训练七61.集合=P {x ,1},=Q {y ,1,2},其中∈y x ,{1,2,…,9}且Q P ⊂,把满足上述条件的一对有序整数(y x ,)作为一个点,这样的点的个数是 A.9 B.14 C.15 D.2162.已知函数3)(x x x f --=,1x ,2x ,∈3x R ,且021>+x x ,032>+x x ,013>+x x ,则)()()(321x f x f x f ++的值(A )一定大于零(B )一定小于零 (C )等于零 (D )正负都有可能 63.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则||n m -等于(A )1 (B )43 (C )21 (D )83 64.设βα,是一个钝角三角形的两个锐角,则下列四个不等式中不正确的是(A )1tan tan <βα (B )2sin sin <+βα (C )1cos cos >+βα(D )2tan )tan(21βαβα+<+ 65.在四边形ABCD 中,0=⋅,AD BC =,则四边形ABCD 是(A )直角梯形 (B )菱形 (C )矩形 (D )正方形 66.0>a ,0>b 且1=+b a ,则下列四个不等式中不成立的是(A )ab ≤41 (B )b a 11+≥4 (C )22b a +≥21(D )a ≥1 67.直线210x a y ++=与直线2(1)30a x by +-+=互相垂直,a b ∈,R ,则||ab 的最小值是(A )1 (B )2 (C )4 (D )568.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2,)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为 (A )22186x y += (B )221166x y +=(C )22184x y += (D )221164x y += 69(A).已知球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,则此球的体积为 (A )33312cm π (B )33316cm π (C )3316cm π (D )3332cm π69(B).有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线(B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b(D )若α∥β,β∩γ=∅,则α∩γ=∅ 70.n xx 2)1(-展开式中,常数项是(A )n n n C 2)1(- (B )12)1(--n n n C (C )121)1(++-n n n C (D )n n C 2数学高考选择题训练八71.设集合=M {1|-x ≤<x 2},=N {x x |≤a },若∅≠N M ,则a 的取值范围是 A.(-∞,2)B.(-1,+∞) C.[-1,+∞) D. [-1,1] 72.设点P 是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,则α的取值范围是(A )[0,32[)2ππ ,)π(B )[0,65[)2ππ ,)π(C )32[π,)π(D )2(π,]65π73.一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为(A )12 (B )10 (C )8 (D )6 74.若把一个函数的图象按=a (3π-,-2)平移后得到函数x y cos =的图象,则原图象的函数解析式是(A )2)3cos(-+=πx y (B )2)3cos(--=πx y (C )2)3cos(++=πx y (D )2)3cos(+-=πx y 75.设b a ,为非零向量,则下列命题中:①a b a b a ⇔-=+||||与b 有相等的模;②a b a b a ⇔+=+||||||与b 的方向相同;③a b a b a ⇔-<+||||||与b 的夹角为锐角;④||||||||a b a b a ⇔-=+≥||b 且a 与b 方向相反.真命题的个数是(A )0 (B )1 (C )2 (D )3 76.若y x 22log log +≥4,则y x +的最小值为(A )8 (B )24 (C )2 (D )477.如果直线2y ax =+与直线3y x b =-关于直线y x =对称,那么a b ,的值分别是(A )13,6 (B )13,-6 (C )3,-2 (D )3,6 78.已知抛物线21:2C y x =的图象与抛物线2C 的图象关于直线y x =-对称,则抛物线2C 的准线方程是(A )18x =- (B )12x = (C )18x = (D )12x =-79(A).在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是对角线A 1C 上的点,且PQ =2a ,则三棱锥P -BDQ 的体积为(A )3363a (B )3183a (C )3243a (D )无法确定ABC DA 1B 1C 1D 1PQ(第9(A)题图)79(B).下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面...的一个图是PQQRR S SP PPQQRR SSPPPQQQR RSSSPP QQRRSSS(A ) (B ) (C ) (D )80.某博物馆要在20天内接待8所学校的学生参观,每天至多安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校均只参观1天,则在这20天内不同的安排方法数是(A )77320A C (B )820A (C )717118A C (D )1818A数学高考选择题训练九81.若集合1A ,2A 满足A A A =21 ,则称(1A ,2A )为集合A 的一个分拆,并规定:当且仅当1A =2A 时,(1A ,2A )与(2A ,1A )为集合A 的同一种分拆,则集合=A {1a ,2a ,3a }的不同分拆种数是A.27B.26C.9D.882.已知函数x x f 2log )(=,2)(y x y x F +=,,则F ()41(f ,1)等于 (A )-1 (B )5 (C )-8 (D )383.一套共7册的书计划每2年出一册,若各册书的出版年份数之和为13979,则出齐这套书的年份是(A )1997 (B )1999 (C )2001 (D )2003 84.将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是(A )x cos (B )x cos 2 (C )x sin (D )x sin 285.下列命题是真命题的是:①⇔b a //存在唯一的实数λ,使=a λb ;②⇔b a //存在不全为零的实数μλ,,使λ+a μ0=b ;③a 与b 不共线⇔若存在实数μλ,,使λa μ+b =0,则0==μλ;④a 与b 不共线⇔不存在实数μλ,,使λ+a μ0=b .(A )①和 (B )②和③ (C )①和② (D )③和④ 86.若02log )1(log 2<<+a a a a ,则a 的取值范围是(A )(0,1)(B )(0,21)(C )(21,1)(D )(0,1)∪(1,+∞) 87.已知⊙221:9C x y +=,⊙222:(4)(6)1C x y -+-=,两圆的内公切线交于1P 点,外公切线交于2P点,则1C 分12PP 的比为(A )12- (B )13- (C )13(D )916- 88.双曲线2216436x y -=上一点P 到它的左焦点的距离是8,那么P到它的右准线的距离是(A )325 (B )645 (C )965 (D )128589(A).已知正方形ABCD ,沿对角线AC 将△ADC 折起,设AD 与平面ABC 所成的角为β,当β取最大值时,二面角B ―AC ―D 等于(A )1200 (B )900 (C )600 (D )45089(B).如图,在斜三棱柱A 1B 1C 1-ABC 中,∠BAC =900,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在(A )直线AB 上 (B )直线BC 上 (C )直线AC 上 (D )△ABC 内部ABCA 1B 1C 1(第9(B)题图)90.25人排成5×5方阵,从中选出3人,要求其中任意3人不同行也不同列,则不同的选出方法种数为(A )600 (B )300 (C )100 (D )60数学高考选择题训练十91.已知集合=M {1,3},=N {03|2<-x x x ,∈x Z},又N M P =,那么集合P 的真子集共有 A.3个 B.7个 C.8个 D.9个92.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t 分钟注水22t 升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供 (A )3人洗澡 (B )4人洗澡(C )5人洗澡 (D )6人洗澡93.已知等差数列}{n a 中,0≠n a ,若1>m ,且0211=-++-m m m a a a ,3812=-m S ,则m 等于 (A )38 (B )20 (C )10 (D )994.给出四个函数,则同时具有以下两个性质的函数是:①最小正周期是π;②图象关于点(6π,0)对称 (A ))62cos(π-=x y (B ))62sin(π+=x y (C ))62sin(π+=x y (D ))3tan(π+=x y 95.若1==||||b a ,b a ⊥且⊥+)(b a 32(k b a 4-),则实数k 的值为(A )-6 (B )6 (C )3 (D )-396.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为(A )0 (B )-1 (C )1 (D )2 97.已知圆22:1C x y +=,点A (-2,0)及点B (2,a ),从A 点观察B 点,要使视线不被圆C 挡住,则a 的取值范围是 (A )(-∞,-1)∪(-1,+∞)(B )(-∞,-2)∪(2,+∞)(C )(-∞,,+∞)(D )(-∞,-4)∪(4,+∞)98.设12F F 、是双曲线2214x y -=的两个焦点,点P 在双曲线上,且120PF PF⋅=,则12||||PF PF ⋅的值等于(A )2 (B )(C )4 (D )899(A).用一个平面去截正方体,所得的截面不可能...是 (A )六边形 (B )菱形 (C )梯形 (D )直角三角形99(B).已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是(A )2∶π (B )1∶2π (C )1∶π (D )4∶3π 100.在8)2(-x 的展开式中,x 的指数为正偶数的所有项的系数和为(A )3281 (B )-3281 (C )-3025 (D )3025数学高考选择题训练十一101.已知集合=A {2|-x ≤x ≤7},}121|{-<<+=m x m x B ,且∅≠B ,若A B A = ,则A.-3≤m ≤4B.-3<<m 4C.42<<mD.m <2≤4102.定义在R 上的偶函数)(x f 在(-∞,0]上单调递增,若21x x >,021>+x x ,则 (A ))()(21x f x f > (B ))()(21x f x f >-(C ))()(21x f x f -< (D ))(1x f ,)(2x f 的大小与1x ,2x 的取值有关 103.设n S n n 1)1(4321--++-+-= ,则32124++++m m m S S S (∈m N *)的值为 (A )0 (B )3 (C )4 (D )随m 的变化而变化 104.已知向量=a (αcos 2,αsin 2),=b (βcos 3,βsin 3),a 与b 的夹角为60o ,则直线021sin cos =+-ααy x 与圆21)sin ()cos (22=++-ββy x 的位置关系是(A )相切 (B )相交 (C )相离 (D )随βα,的值而定105. 方程12221log 2x x x +=+的解所在的区间是A. 1(0,)3B. 11(,)32C. 1(,22D. (2106.已知不等式052>+-b x ax 的解集是}23|{-<<-x x ,则不等式052>+-a x bx 的解是(A )3-<x 或2->x (B )21-<x 或31->x (C )3121-<<-x (D )23-<<-x 107.已知直线1:23l y x =+和直线23l l ,.若1l 与2l 关于直线y x =-对称,且32ll ⊥,则3l 的斜率为(A )-2 (B )12- (C )12(D )2 108.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 (A )(0,+∞)(B )(0,2) (C )(1,+∞)(D )(0,1)109(A).长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为(A )π27 (B )π56 (C )π14 (D )π64109(B).二面角α―AB ―β的平面角是锐角,C 是面α内的一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么 (A )∠CEB =∠DEB (B )∠CEB >∠DEB(C )∠CEB <∠DEB (D )∠CEB 与∠DEB 的大小关系不能确定 110.在1003)23(+x 展开式所得的x 的多项式中,系数为有理数的项有 (A )50项 (B )17项 (C )16项 (D )15项数学高考选择题训练十二111.1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式01121>++c x b x a 和02222>++c x b x a 的解集分别为集合M 和N ,那么“212121ccb b aa ==”是“N M =”的 A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件112.定义在R 上的函数)1(+=x f y 的图象如图1所示,它在定义域上是 减函数,给出如下命题:①)0(f =1;②1)1(=-f ;③若0>x ,则 0)(<x f ;④若0<x ,则0)(>x f ,其中正确的是 (A )②③ (B )①④(C )②④ (D )①③1 113.在等差数列}{n a 中,公差1=d ,8174=+a a ,则20642a a a ++ (A )40 (B )45 (C )50 (D )55 114.已知θ是三角形的一个内角,且21cos sin =+θθ,则方程1cos sin 22=-θθy x 表示 (A )焦点在x 轴上的椭圆 (B )焦点在y 轴上的椭圆 (C )焦点在x 轴上的双曲线 (D )焦点在y 轴上的双曲线 115.平面直角坐标系中,O 为坐标原点,已知两点A (2,-1),B (-1,3),若点C满足OB OA OC βα+=其中0≤βα,≤1,且1=+βα,则点C 的轨迹方程为(A )0432=-+y x (B )25)1()21(22=-+-y x (C )0534=-+y x (-1≤x ≤2)(D )083=+-y x (-1≤x ≤2) 116.z y x >>且2=++z y x ,则下列不等式中恒成立的是(A )yz xy > (B )yz xz > (C )xz xy > (D )|||||y z y x > 117.已知直线1l 的方程为y x =,直线2l 的方程为0ax y -=(a 为实数).当直线1l 与直线2l 的夹角在(0,12π)之间变动时,a 的取值范围是(A )1)∪(1(B ))(C )(0,1) (D )(1) 118. 已知动点(,)M x y 3411x y =+-,则点M 的轨迹是A. 椭园B. 双曲线C. 抛物线D. 两条相交直线119(A).如图所示,在多面体ABCDEF 中,已知ABCD 是边长为3的正方形,EF ∥AB ,EF =23,EF 与面AC 的距离为2,则该多面体的体积为(A )29 (B )5 (C )6 (D )215ACDEF(第9(A)题图)119(B).已知边长为a 的菱形ABCD ,∠A =3π,将菱形ABCD 沿对角线折成二面角θ,已知θ∈[3π,32π],则两对角线距离的最大值是(A )a 23 (B )a 43 (C )a 23(D )a43120.登山运动员共10人,要平均分为两组,其中熟悉道路的4人,每组都需要分配2人,那么不同的分组方法种数为(A )240 (B )120 (C )60 (D )30数学高考选择题训练十三121.四个条件:a b >>0,b a >>0,b a >>0,0>>b a 中,能使ba11<成立的充分条件的个数是A.1B.2C.3D.3122.如果函数px nx y ++=21的图象关于点A (1,2)对称,那么 (A )=p -2,=n 4 (B )=p 2,=n -4 (C )=p -2,=n -4 (D )=p 2,=n 4123.已知}{n a 的前n 项和142+-=n n S n ,则||||||1021a a a +++ 的值为 (A )67 (B )65 (C )61 (D )56124.在ABC ∆中,2π>C ,若函数)(x f y =在[0,1]上为单调递减函数,则下列命题正确的是(A ))(cos )(cos B f A f > (B ))(sin )(sin B f A f > (C ))(cos )(sin B f A f > (D ))(cos )(sin B f A f <125.下列命题中,正确的是(A )||||||b a b a ⋅=⋅ (B )若)(c b a -⊥,则c a b a ⋅=⋅ (C )2a ≥||a (D )c b a c b a ⋅⋅=⋅⋅)()(126.设a ≥0,b ≥0,且1222=+b a ,则21b a +的最大值为(A )43 (B )42(C )423 (D )23127.已知点A (3cos α,3sin α),B (2cos β,2sin β),则||AB 的最大值是 (A )5 (B )3 (C )2 (D )1128.椭圆22221x y a b+=(0a b >>)的半焦距为c ,若直线2y x =与椭圆的一个交点的横坐标恰为c ,则椭圆的离心率为(A(B (C 1 (D 1 129(A).斜棱柱底面和侧面中矩形的个数最多可有(A )2个 B )3个 (C )4个 (D )6个129(B).二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900130.从10种不同的作物种子中选出6种分别放入6个不同的瓶子中展出,如果甲、乙两种种子都不许放入第一号瓶子内,那么不同的放法共有(A )48210A C 种(B )5919AC 种 (C )5918A C 种 (D )5819C C 种数学高考选择题训练十四131.已知集合}1log |{2>==x x y y A ,,}1)21(|{>==x y y B x ,,则B A 等于 A.}210|{<<y y B.}10|{<<y y C.}121|{<<y y D.∅ 132.设二次函数c bx ax x f ++=2)(,如果))(()(2121x x x f x f ≠=,则)(21x x f +等于(A )a b 2- (B )ab - (C )c (D )abac 442- 133.在等比数列}{n a 中,首项01<a ,则}{n a 是递增数列的充要条件是公比 (A )1>q (B )1<q (C )10<<q (D )0<q134.函数)0(tan )(>=ωωx x f 图象的相邻两支截直线4π=y 所得线段长为4π,则)4(πf 的值是 (A )0 (B )1 (C )-1 (D ) 2135.已知n m ,是夹角为o 60的单位向量,则n m a +=2和n m b 23+-=的夹角是 (A )o 30 (B )o 60 (C )o 90 (D )o 120136.设∈c b a ,,(0,+∞),则三个数b a 1+,c b 1+,ac 1+的值 (A )都大于2(B )都小于2(C )至少有一个不大于2(D )至少有一个不小于2137.若直线240mx ny +-=(m n ∈、R )始终平分圆224240x y x y +---=的周长,则mn 的取值范围是(A )(]1,0 (B )(0,1)(C )(-∞,1) (D )(]1,∞- 138.已知点P (3,4)在椭圆22221x y a b+=上,则以点P为顶点的椭圆的内接矩形PABC 的面积是(A )12 (B )24 (C )48 (D )与a b 、的值有关139(A).在直二面角βα--MN 中,等腰直角三角形ABC 的斜边α⊂BC ,一直角边β⊂AC ,BC 与β所成角的正弦值为46,则AB 与β所成的角是(A )6π (B )3π (C )4π (D )2πABCMNαβ(第9(A)题图)139(B).已知三棱锥D -ABC 的三个侧面与底面全等,且AB=AC=3,BC =2,则以BC为棱,以面BCD 与面BCA 为面的二面角的大小是(A )4π (B )3π (C )2π (D )32π140.现从8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学分别有(A )男生5人,女生3人 (B )男生3人,女生5人 (C )男生6人,女生2人 (D )男生2人,女生6人数学高考选择题训练十五141.设全集=U {1,2,3,4,5,7},集合=A {1,3,5,7},集合=B {3,5},则 A.B A U = B.B A C U U )(= C.)(B C A U U = D.)()(B C A C U U 142.若函数)(x f y =存在反函数,则方程c x f =)((c 为常数) (A )有且只有一个实根 (B )至少有一个实根 (C )至多有一个实根 (D )没有实根143.下列四个数中,哪一个时数列{)1(+n n }中的一项 (A )380 (B )39 (C )35 (D )23 144.若点)sin sin (tan ααα,-P 在第三象限,则角α的终边必在 (A )第一象限 (B )第二象限(C )第三象限 (D )第四象限145.已知平面上有三点A (1,1),B (-2,4),C(-1,2),P 在直线AB 上,使||31||=,连结PC ,Q 是PC 的中点,则点Q 的坐标是(A )(21-,2)( B )(21,1)(C )(21-,2)或 (21,1)(D )(21-,2)或(-1,2) 146.若c b a >>,则下列不等式中正确的是(A )||||c b c a > (B )ac ab > (C )||||c b c a ->- (D )c b a 111<< 147.直线cos1sin130x y +-=的倾斜角是(A )1 (B )12π+ (C )12π- (D )12π-+ 148.椭圆222212x y m n +=与双曲线222212x y m n-=有公共焦点,则椭圆的离心率是(A (B (C (D149(A).空间两直线m l 、在平面βα、上射影分别为1a 、1b 和2a 、2b ,若1a ∥1b ,2a 与2b 交于一点,则l 和m 的位置关系为(A )一定异面 (B )一定平行 (C )异面或相交(D )平行或异面149(B).如图,正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,平面B 1D 1E 与平面BB 1C 1C 所成角的正切值为(A )52 (B )25 (C )32 (D )23AB C DA 1B 1C 1D 1E(第9(B)题图)150.若n xx )1( 展开式中第32项与第72项的系数相同,那么展开式的中间一项的系数为 A.52104C B.52103C C.52102C D.51102C参考答案。

高考数学考前复习专题训练—客观题12+4标准练(三)

高考数学考前复习专题训练—客观题12+4标准练(三)

高考数学考前复习专题训练—客观题12+4标准练(三)一、单项选择题1.复数z=1-i 31+2i的虚部为( )A.-15iB.15iC.-15D.152.已知集合M={x|lg(x-1)≤0},N={x||x|<2},则M ∪N=( ) A.⌀ B.(1,2)C.(-2,2]D.{-1,0,1,2}3.4位优秀党务工作者到3个基层单位进行百年党史宣讲,每人宣讲1场,每个基层单位至少安排1人宣讲,则不同的安排方法数为( ) A.81 B.72C.36D.64.若向量a ,b 满足|a |=2,|b |=√3,且(a -b )⊥(2a +3b ),则a 与b 夹角的余弦值为( ) A.√112B.√336C.√215D.√365.核酸检测分析是用荧光定量PCR 法,通过化学物质的荧光信号,对在PCR 扩增进程中成指数级增加的靶标DNA 实时监测,在PCR 扩增的指数时期,荧光信号强度达到阈值时,DNA 的数量X n 与扩增次数n 满足lg X n =n lg(1+p )+lg X 0,其中p 为扩增效率,X 0为DNA 的初始数量.已知某被测标本DNA 扩增10次后,数量变为原来的100倍,则该样本的扩增效率p 约为( ) (参考数据:100.2≈1.585,10-0.2≈0.631) A.0.369B.0.415C.0.585D.0.6316.某地区为落实乡村振兴战略,帮助农民脱贫致富,引入一种特色农产品种植,该农产品上市时间仅能维持5个月,预测上市初期和后期会因产品供应不足使价格持续上涨,而中期又将出现供大于求使价格连续下跌.经研究其价格模拟函数为f (t )=t (t-3)2+4(0≤t ≤5,其中t=0表示5月1日,t=1表示6月1日,以此类推).为保护农户的经济效应,当地政府计划在价格下跌时积极拓宽外销,请你预测该农产品价格下跌的月份为( ) A.5月和6月 B.6月和7月 C.7月和8月 D.8月和9月7.已知双曲线C :x 2a 2−y 2b2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,若双曲线C 上存在点P 满足∠F 2PO=2∠F 1PO=π3,则该双曲线的离心率为( ) A.√3+1B.√2+1C.√3D.√28.已知函数f (x )的定义域为R ,f (5)=4,f (x+3)是偶函数,任意x 1,x 2∈[3,+∞)满足f (x 1)-f (x 2)x1-x 2>0,则不等式f (3x-1)<4的解集为( )A.(23,3) B.(-∞,23)∪(2,+∞)C.(2,3)D.(23,2)二、多项选择题9.已知函数f(x)=cos(x+π6),则()A.2π为f(x)的一个周期B.f(x)的图象关于直线x=4π3对称C.f(x)在区间(π2,π)内单调递减D.f(x+π)的一个零点为π310.已知ln x>ln y>0,则下列结论正确的是()A.1x <1yB.(13)x>(13)yC.log y x>log x yD.x2+4y(x-y)>811.如图,在正方体ABCD-A1B1C1D1中,E,F,G分别为BC,CC1,BB1的中点,则()A.D1D⊥平面AEFB.A1G∥平面AEFC.异面直线A1G与EF所成角的余弦值为√1010D.点G到平面AEF的距离是点C到平面AEF的距离的2倍12.如图,在数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和,则下列说法正确的是()1 3 5 7 9 11…4 8121620…12202836……A.第6行第1个数为192B.第10行的数从左到右构成公差为210的等差数列C.第10行前10个数的和为95×29D.数表中第2 021行第2 021个数为6 061×22 020三、填空题13.在一次期中考试中某学校高三全部学生的数学成绩X服从正态分布N(μ,σ2),若P(X≥90)=0.5,且P(X≥110)=0.2,则P(X≤70)=.14.已知两条直线l1:y=2x+m,l2:y=2x+n与圆C:(x-1)2+(y-1)2=4交于A,B,C,D四点,且四边形ABCD为正方形,则|m-n|的值为.15.如图,O是滑槽AB的中点,短杆ON可绕点O转动,长杆MN通过点N处的铰链与ON连接,MN上的栓子D可沿滑槽AB滑动.当点D在滑槽AB内作往复移动时,带动点N绕点O转动,点M也随之运动.记点N的运动轨迹为C1,点M的运动轨迹为C2.若ON=DN=1,MN=3,过轨迹C2上的点P向轨迹C1作切线,则切线长的最大值为.16.阿基米德在他的著作《论球和圆柱》中,证明了数学史上著名的圆柱容球定理:圆柱的内切球(与圆柱的两底面及侧面都相切的球)的体积与圆柱的体积之比等于它们的表面积之比.可证明该定理推广到圆锥容球也正确,即圆锥的内切球(与圆锥的底面及侧面都相切的球)的体积与圆锥体积之比等于它们的表面积之比,则该比值的最大值为.答案及解析1.C 解析 因为z=1-i 31+2i=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35−15i,所以复数z 的虚部为-15.2.C 解析 根据题意,由lg(x-1)≤0,得0<x-1≤1,即1<x ≤2,则集合M={x|lg(x-1)≤0}={x|1<x ≤2}.由|x|<2,得-2<x<2,则N={x||x|<2}={x|-2<x<2}.故M ∪N={x|-2<x ≤2}=(-2,2].3.C 解析 根据题意,必有两人去同一个基层单位进行宣讲,故先从4位优秀党务工作者中选两人,有C 42=6种选法,将其看成整体,再和另外两人分配到3个基层单位,有A 33=6种分配方案,所以共有6×6=36种不同的安排方案.4.D 解析 由已知得(a -b )·(2a +3b )=2a 2+a ·b -3b 2=0,|a |=2,|b |=√3,则2√3cos <a ,b >-1=0,故cos <a ,b >=√36.5.C 解析 由题意知lg(100X 0)=10lg(1+p )+lg X 0,即2+lg X 0=10lg(1+p )+lg X 0,所以1+p=100.2≈1.585,解得p ≈0.585.6.B 解析 由f (t )=t (t-3)2+4(t ∈[0,5]),得f'(t )=(t-3)2+2t (t-3)=3(t-1)(t-3),当t ∈[0,1)时,f (t )单调递增;当t ∈(1,3)时,f (t )单调递减;当t ∈(3,5]时,f (t )单调递增.根据题意,可知该农产品价格下跌的月份为6月和7月. 7.A 解析 由∠F 2PO=2∠F 1PO=π3,可知∠F 1PF 2=π2,又O 为F 1F 2的中点,所以∠F 1F 2P=π3.根据题意可知|F 1F 2|=2c ,则|PF 2|=c ,|PF 1|=√3c ,所以√3c-c=2a ,所以e=ca =√3-1=√3+1.8.D 解析 因为f (x+3)是偶函数,所以f (x )的图象关于直线x=3对称,所以f (5)=f (1)=4.因为任意x 1,x 2∈[3,+∞)满足f (x 1)-f (x 2)x 1-x 2>0,所以f (x )在区间[3,+∞)内单调递增,在区间(-∞,3)内单调递减,所以f (3x-1)<4等价于1<3x-1<5,解得23<x<2.9.AD 解析 函数f (x )=cos (x +π6)的最小正周期为2π,故A 正确;由x+π6=k π,k ∈Z ,得x=-π6+k π,k ∈Z ,无论k 取何值,x ≠4π3,故B 错误;函数f (x )=cos (x +π6)在区间(π2,5π6)内单调递减,在区间(5π6,π)内单调递增,故C 错误;∵f(x+π)=cos(x+7π6),∴f(π3+π)=cos7π6+π3=cos3π2=0,故D正确.10.ACD解析因为ln x>ln y>0,所以x>y>1,所以1x <1y,所以A正确;因为x>y>1,所以(13)x<(13)y,所以B错误;因为x>y>1,所以log y x>log y y=1,log x y<log x x=1, 所以log y x>log x y,所以C正确;因为x>y>1,所以0<y(x-y)≤[y+(x-y)2]2=x24,所以x2+4y(x-y)≥x2+16x2≥8,当且仅当x=2,y=1时,等号成立,又y>1,所以x2+4y(x-y)>8,所以D正确.11.BCD解析对于A,假设D1D⊥平面AEF,因为D1D∥A1A,所以AA1⊥平面AEF,显然不可能,所以假设不成立,故A错误;对于B,取B1C1的中点Q,连接GQ,A1Q(图略),则GQ∥EF,A1Q∥AE,可知GQ∥平面AEF,A1Q∥平面AEF,又GQ∩A1Q=Q,所以平面A1GQ∥平面AEF,又A1G⊂平面A1GQ,所以A1G∥平面AEF,故B正确;对于C,因为EF∥GQ,所以∠A1GQ或其补角为异面直线A1G与EF所成的角,设正方体的棱长为2,则A1G=A1Q=√5,QG=√2,由余弦定理得cos∠A1GQ=2×√5×√2=√1010,故C正确;对于D,连接GC,交FE于点O,连接GF(图略),则△OCE∽△OGF,所以OGOC=GFCE=2,所以点G到平面AEF的距离是点C到平面AEF的距离的2倍,故D正确.12.ABD解析数表中,每行是等差数列,且第1行的首项是1,公差为2,第2行的首项是4,公差为4,第3行的首项是12,公差为8,每行的第1个数满足a n=n×2n-1,每行的公差构成一个以2为首项,2为公比的等比数列,公差满足d n=2n.对于选项A,第6行第1个数为a6=6×26-1=192,故A正确;对于选项B,第10行的数从左到右构成公差为d10=210的等差数列,故B正确;对于选项C,第10行第1个数为a10=10×210-1=10×29,公差为210,所以前10个数的和为10×10×29+10×92×210=190×29,故C错误;对于选项D,数表中第2 021行第1个数为a2 021=2 021×22 021-1=2 021×22 020,第2 021行的公差为22 021,故数表中第2 021行第2 021个数为2 021×22 020+(2 021-1)×22 021=6 061×22 020,故D正确.13.0.2解析由题意易得μ=90,所以P(X≤70)=P(X≥110)=0.2.14.2√10解析由题意知l1∥l2,若四边形ABCD为正方形,则正方形的边长等于直线l 1,l 2之间的距离d ,d=√5, 设圆C 的半径为r ,由正方形的性质知d=√2r=2√2, 即√5=2√2, 故|m-n|=2√10. 15.√15 解析 以滑槽AB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系如图所示.因为|ON|=1,所以点N 的运动轨迹C 1是以O 为圆心,半径为1的圆,其方程为x 2+y 2=1.设点N 的坐标为(cos θ,sin θ),由于|ON|=|DN|=1,易得D (2cos θ,0),由|MN|=3,得NM ⃗⃗⃗⃗⃗⃗⃗ =3ND⃗⃗⃗⃗⃗⃗ ,设M (x ,y ),则(x-cos θ,y-sin θ)=3(cos θ,-sin θ),可得M (4cos θ,-2sin θ), 所以点M 的运动轨迹C 2是椭圆,其方程为x 216+y 24=1.设轨迹C 2上的点P (4cos α,2sin α),则|OP|2=16cos 2α+4sin 2α=4+12cos 2α≤16, 故切线长为√|OP |2-12≤√16-1=√15,即切线长的最大值为√15.16.12 解析 设圆锥的底面半径为r ,母线长为l ,圆锥内切球的半径为R ,作出圆锥的轴截面如图所示.设∠OBC=θ,∵tan θ=Rr ,∴r=Rtanθ.∵OD ⊥AB ,OE ⊥BC ,∴∠DBE+∠DOE=π, 又∠AOD+∠DOE=π,∴∠AOD=∠DBE=2θ,∴AD=R tan 2θ,∴l+r=AD+BD+r=AD+2r=R tan 2θ+2Rtanθ.又圆锥表面积S1=πr(l+r),圆锥内切球的表面积S2=4πR2,故所求比值为S2S1= 4πR2πR tanθ(2Rtanθ1-tan2θ+2Rtanθ)=2tan2θ(1-tan2θ).令t=tan2θ>0,则S2S1=2t(1-t)=-2t2+2t, 故当t=12时,S2S1取得最大值12.。

《名师伴你行》2022高考数学(理)二轮复习检测:专项突破训练3分类与整合思想 Word版含答案

《名师伴你行》2022高考数学(理)二轮复习检测:专项突破训练3分类与整合思想 Word版含答案

专项突破训练(三) 分类与整合思想(时间:45分钟 分数:80分) 一、选择题(每小题5分,共30分)1. (2021·江西上饶一模)函数f (x )=2|log 2 x |-⎪⎪⎪⎪⎪⎪x -1x 的图象为( )答案:D解析:函数f (x )的定义域为(0,+∞),当0<x <1时,f (x )=1x +⎝ ⎛⎭⎪⎫x -1x =x ;当x ≥1时,f (x )=x -⎝ ⎛⎭⎪⎫x -1x =1x ,故选D.2.(2021·山东聊城模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( )A .y =12x 2B .y =12x 2或y =-36x 2C .y =-36x 2D .y =112x 2或y =-136x 2 答案:D解析:将y =ax 2化为x 2=1a y ,当a >0时,准线y =14a ,由已知得3+14a =6,∴1a =12,∴a =112.当a <0时,准线y =-14a ,由已知得⎪⎪⎪⎪⎪⎪3+14a =6,∴a =-136或a=112(舍).∴抛物线方程为y =x 212或y =-136x 2,故选D.3.(2021·四川绵阳二诊)某人依据自己爱好,期望从{W ,X ,Y ,Z }中选2个不同字母,从{0,2,6,8}中选3个不同数字编拟车牌号,要求前3位是数字,后两位是字母,且数字2不能排在首位,字母Z 和数字2不能相邻,那么满足要求的车牌号有( )A .198个B .180个C .216个D .234个 答案:A解析:不选2时,有A 33A 24=72个;选2,不选Z 时,有C 12C 23A 22A 23=72个; 选2,选Z 时,2在数字的中间,有A 23C 12C 13=36个,当2在数字的第三位时,A 23A 13=18个.依据分类加法计数原理知,共有72+72+36+18=198个,故选A.4.(2021·山西高校附中月考)若m 是2和8的等比中项,则圆锥曲线x 2+y2 m =1的离心率是( )A.32B. 5C.32或52D.32或 5答案:D解析:∵m 是2,8的等比中项,∴m 2=2×8=16,∴m =±4,若m =4,∴椭圆x 2+y 2m =1的方程为x 2+y 2m =1,∴其离心率e =1-14=32,若m =-4,则双曲线方程为x 2-y24=1,离心率e =1+4=5,故选D.5.(2021·福建厦门质检)已知f (x )是定义在R 上的奇函数,且f (x -2)=f (x +2),当0<x <2时,f (x )=1-log 2(x +1),则当0<x <4时,不等式(x -2)f (x )>0的解集是( )A .(0,1)∪ (2,3)B .(0,1)∪(3,4)C .(1,2)∪(3,4)D .(1,2)∪(2,3)答案:D解析:当0<x <2时,x -2<0,不等式可化为⎩⎨⎧x -2<0,f (x )<0.即⎩⎨⎧x -2<0,1-log 2(x +1)<0,解得1<x <2,当2<x <4时,x -2>0,不等式可化为⎩⎨⎧x -2>0,f (x )>0,由函数f (x )是奇函数,得f (-x )=-f (x ),又f (x -2)=f (x +2),则f (x )=f (x -2+2)=f (x -2-2)=-f (4-x ),由于0<4-x <2,不等式可化为⎩⎨⎧x -2<0,-1+log 2(5-x )>0,解得2<x <3,所以原不等式的解集为(1,2)∪(2,3),故选D.6.已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 与抛物线C 相交于A ,B 两点,则|OA |2+|OB |2(O 为坐标原点)的最小值为( )A .4B .8C .10D .12答案:C解析:设直线l 的斜率为k (k 存在时),与抛物线交于A (x 1,y 1),B (x 2,y 2),则直线l 方程为y =kx -k ,由⎩⎨⎧y 2=4x ,y =kx -k ,得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 2=2k 2+4k2,x 1x 2=1,于是|OA |2+|OB |2=x 21+y 21+x 22+y 22=x 21+4x 1+x 22+4x 2 =⎝ ⎛⎭⎪⎪⎫2k 2+4k 22+8k 2+16k 2-2=16⎝ ⎛⎭⎪⎫1k 2+12-6>10,当斜率不存在时,此时直线l 垂直x 轴,得A (1,2),B (1,-2),所以|OA |2+|OB |2=12+22+12+22=10.综合可知,|OA |2+|OB |2的最小值为10.二、填空题(每小题5分,共20分)7.若三角形三边成等比数列,则公比q 的范围是________.答案:⎝ ⎛⎭⎪⎫5-12,1+52解析:设三边为a ,qa ,q 2a ,其中q >0,则由三角形三边不等关系得①当q ≥1时,a +qa >q 2a ,即q 2-q -1<0, 解得1-52<q <1+52,此时1≤q <1+52.②当q <1时,a 为最大边,qa +q 2a >a ,即q 2+q -1>0,解得q >5-12或q <-1+52.又q >0,此时q >5-12.综合①②,得q ∈ ⎝ ⎛⎭⎪⎪⎫5-12,1+52.8.在△ABC 中,B =30°,AB =3,AC =1,则△ABC 的面积是________. 答案:32或34解析:由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC cos B , ∴12=(3)2+BC 2-2×3×BC ×32. 整理,得BC 2-3BC +2=0.∴BC =1或2. 当BC =1时,S △ABC =12AB ·BC sin B =12×3×1×12=34.当BC =2时,S △ABC =12AB ·BC sin B =12×3×2×12=32.综上,△ABC 的面积为32或34.9.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.答案:72或2解析:若∠PF 2F 1=90°,则|PF 1|2=|PF 2|2+|F 1F 2|2.又∵|PF 1|+|PF 2|=6,|F 1F 2|=25,解得|PF 1|=143,|PF 2|=43,∴|PF 1||PF 2|=72.若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2, ∴|PF 1|2+(6-|PF 1|)2=20, ∴|PF 1|=4,|PF 2|=2,∴|PF 1||PF 2|=2.综上知,|PF 1||PF 2|=72或2.10.(2021·江西南昌一模)已知函数f (x )=⎩⎨⎧a x -1,x ≤0,lg x ,x >0,若关于x 的方程f (f (x ))=0有且只有一个实数解,则实数a 的取值范围为________.答案:(-1,0)∪(0,+∞) 解析:当a >0时,若x >1,f (x )>0,∴f (f (x ))=f (lg x )=lg(lg x )=0⇒lg x =1,∴x =10成立.若x ≤1,f (x )<0,f (f (x ))=f ⎝ ⎛⎭⎪⎪⎫a x -1=a a x -1-1=0无解. ∴a >0时f (f (x ))=0有且只有一个实数解. 当a <0时, 若x >1, f (x )>0,f (f (x ))=f (lg x )=lg(lg x )=0,∴x =10成立.若0<x ≤1,f (x )<0,f (f (x ))=f (lg x )=alg x -1=0无解.若x ≤0,f (x )=a x -1>0,∴f (f (x ))=lg a x -1=0⇒ax -1=1.∴a =x -1.∵x -1≤-1,∴a ≤-1时有解. ∴-1<a <0时无解.综上实数a 的取值范围a >0或-1<a <0. 三、解答题(每题10分,共30分)11.(2021·东北三校一模)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点为F 1,F 2,点A (2,2)在椭圆上,且AF 2与x 轴垂直.(1)求椭圆的方程;(2)过A 作直线与椭圆交于另外一点Β,求△AOB 面积的最大值. 解:(1)由已知得c =2,b 2a =2, 所以a =22,b 2=4, 故椭圆方程为x 28+y 24=1.(2)当AB 斜率不存在时,S ΔAOB =12×22×2=2 2. 当AB 斜率存在时,设其方程为y -2=k ()x -2⎝ ⎛⎭⎪⎫k ≠22.由⎩⎪⎨⎪⎧y =kx +(2-2k ),x 2+2y 2=8,得 ()2k 2+1x 2+4()2-2k kx +2()2-2k 2-8=0.则Δ=16()2-2k 2k 2-8()2k 2+1[]()2-2k 2-4 =8()2k +22>0,所以k ≠-22,||AB =1+k 2·22·||2k +22k 2+1.O 到直线AB 的距离:d =||2-2k 1+k2, 所以S △ABC =12||AB d =2⎪⎪⎪⎪⎪⎪2-42k 2+1.由于k ≠±22,所以2k 2+1≠2, 所以2k 2+1∈ [ 1, )2∪()2,+∞, 所以2-42k 2+1∈ [ -2, )0 ∪()0,2,此时S △AOB ∈(0,2 2 ].综上,△AOB 面积的最大值为2 2.12.(2021·东北三省四市联考)定义在R 上的函数f (x )满足f (x )=f ′(1)2·e 2x -2+x2-2f (0)x ,g (x )=f ⎝ ⎛⎭⎪⎫x 2-14x 2+(1-a )x +a .(1) 求函数f (x )的解析式; (2) 求函数g (x )的单调区间;(3)假如s ,t ,r 满足|s -r |≤|t -r |,那么称s 比t 更靠近r . 当a ≥2且x ≥1时,试比较ex 和e x -1+a 哪个更靠近ln x ,并说明理由.解:(1)∵f ′(x )=f ′(1)e 2x -2+2x -2f (0), ∴f ′(1)=f ′(1)+2-2f (0),即f (0)=1. 又f (0)=f ′(1)2·e -2,∴f ′(1)=2e 2, ∴f (x )=e 2x +x 2-2x .(2)∵f (x )=e 2x -2x +x 2,∴g (x )=f ⎝ ⎛⎭⎪⎫x 2-14x 2+(1-a )x +a =e x +14x 2-x -14x 2+(1-a )x +a =e x -a (x -1),∴g ′(x )=e x -a .①当a ≤0时,g ′(x )>0,函数f (x )在R 上单调递增; ②当a >0时,由g ′(x )>e x -a =0得x =ln a , ∴x ∈(-∞,ln a )时,g ′(x )<0,g (x ) 单调递减; x ∈(ln a ,+∞)时,g ′(x )>0,g (x )单调递增.综上,当a ≤0时,函数g (x )的单调递增区间为(-∞,+∞);当a >0时,函数g (x )的单调递增区间为(ln a ,+∞),单调递减区间为(-∞,ln a ).(3)设p (x )=ex -ln x ,q (x )=e x -1+a -ln x ,∵p ′(x )=-e x 2-1x <0,∴p (x )在x ∈[1,+∞)上为减函数,又p (e)=0, ∴当1≤x ≤e 时,p (x )≥0,当x >e 时,p (x )<0. ∵q ′(x )=ex -1-1x ,q ″(x )=e x -1+1x 2>0,∴q ′(x )在x ∈[1,+∞)上为增函数,又q ′(1)=0, ∴x ∈[1,+∞)时,q ′(x )≥0, ∴q (x )在x ∈[1,+∞)上为增函数, ∴q (x )≥q (1)=a +2>0.①当1≤x ≤e 时,|p (x )|-|q (x )|=p (x )-q (x )=e x -e x -1-a , 设m (x )=e x -e x -1-a ,则m ′(x )=-ex 2-e x -1<0, ∴m (x )在x ∈[1,+∞)上为减函数, ∴m (x )≤m (1)=e -1-a ,∵a ≥2,∴m (x )<0,∴|p (x )|<|q (x )|,∴ex 比e x -1+a 更靠近ln x . ②当x >e 时,设n (x )=2ln x -e x -1-a , 则n ′(x )=2x -e x -1,n ″(x )=-2x 2-e x -1<0,∴n ′(x )在x >e 时为减函数,∴n ′(x )<n ′(e)=2e -e e -1<0, ∴n (x )在x >e 时为减函数,∴n (x )<n (e)=2-a -e e -1<0, ∴|p (x )|<|q (x )|,∴ex 比e x -1+a 更靠近ln x . 综上,在a ≥2且x ≥1时,ex 比e x -1+a 更靠近ln x .13.(2021·山东师大附中模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (1,0),且点⎝⎛⎭⎪⎫-1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知定点Q ⎝⎛⎭⎪⎫54,0和过F 的动直线l ,直线l 与椭圆C 相交于A ,B 两点,求QA →·QB→. 解:(1)2a =(-1-1)2+⎝ ⎛⎭⎪⎫22-02+(-1+1)2+⎝ ⎛⎭⎪⎫22-02=22, ∴a =2,b =1.∴椭圆C 的标准方程为x 22+y 2=1. (2)①若直线斜率不存在,则l :x =1,∴A ⎝ ⎛⎭⎪⎫1,22,B ⎝⎛⎭⎪⎫1,-22,∴QA →·QB →=⎝ ⎛⎭⎪⎫1-54,22·⎝⎛⎭⎪⎫1-54,-22=116-12=-716.②当直线斜率存在时,设l :y =k (x -1)联立方程⎩⎨⎧x 22+y 2=1,y =k (x -1)消去y ,得(2k 2+1)x 2-4k 2x +2(k 2-1)=0, Δ=(-4k 2)2-4×(2k 2+1)×2(k 2-1) =8(k 2+1)>0.令A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k 22k 2+1,x 1x 2=2(k 2-1)2k 2+1∴QA →·QB →=⎝⎛⎭⎪⎫x 1-54,y 1·⎝⎛⎭⎪⎫x 2-54,y 2=⎝ ⎛⎭⎪⎫x 1-54⎝ ⎛⎭⎪⎫x 2-54+y 1y 2 =⎝ ⎛⎭⎪⎫x 1-54⎝ ⎛⎭⎪⎫x 2-54+k 2(x 1-1)(x 2-1) =(k 2+1)x 1x 2-⎝⎛⎭⎪⎫k 2+54(x 1+x 2)+k 2+2516=(k 2+1)2(k 2-1)2k 2+1-⎝⎛⎭⎪⎫k 2+544k 22k 2+1+k 2+2516=-2+2516=-716.综上述可知,QA →·QB →=-716.。

2012年高考理科数学 选择 题 专题 训练 题目 附参考答案 (1-8套) 大纲版 课改版

2012年高考理科数学  选择 题 专题 训练 题目  附参考答案  (1-8套) 大纲版  课改版

凭祥高中2012届选择题特训专题1姓名 班别 得分一、选择题:本大题共12小题,每小题5分,共60分。

请把答案涂在答题卡指定的位置上。

1.把复数z 的共轭复数记作z ,i 为虚数单位,若1,(1)z z i z =++⋅则=( )A .3i -B .3i +C .13i +D .3 2.函数1ln(1)(1)2x y x +-=>的反函数是( ) A .211(0)x y e x -=-> B .211(0)x y e x -=+>C .211()x y e x R -=-∈ D .211()x y e x R -=+∈ 3.“0a >”是“||0a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,则10S 的值为( ) A .110- B .90- C .90 D .1105.已知角α的终边过点(8,6sin30)P m --︒,且4cos 5α=-,则m 的值为( )A .12-B .C .12D 6.平面α⊥平面β,,A B αβ∈∈,AB 与两平面,αβ所成的角分别为4π和6π,过,A B 分别作两平面交线的垂线,垂足为'',A B ,则'':AB A B =( ) A . 4:3 B . 3:2 C . 2:1 D . 3:17.某班选派6人参加两项公益活动,每项活动最多安排4人,则不同的安排方法有( )A .50种B .70种C .35种D .55种8.若曲线12y x-=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标轴围成的三角形的面积为18,则a =( ) A .64 B .32 C .16 D .89 . ()f x R 是上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则(7.5)f =( )A .0.5B .0.5-C .1.5D . 1.5-10.椭圆2212516x y +=的左右焦点分别为12,F F ,弦AB 过1F ,若2ABF ∆的内切圆周长为π,,A B 两点的坐标分别为1122(,),(,)x y x y ,则12y y -值为( )A .3 B .53 C .103 D .20311.已知球O 为棱长为1的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为( )A.6 B.3 C .6π D .3π 12.若在直线l 上存在不同的三个点C B A ,,,使得关于实数x 的方程20x OA xOB BC ++= 有解(点O不在l 上),则此方程的解集为( ) A .{1}- B .{0} C.⎪⎪⎩⎭ D .{}1,0-二、填空题:本大题共4小题,每小题5分,共20分。

高考数学复习题——阶段检测试题(三)

高考数学复习题——阶段检测试题(三)

阶段检测试题(三)(时间:120分钟满分:150分)【选题明细表】知识点、方法题号数列的概念、证明1,22等差、等比数列及应用6,10,13数列求和5,16不等式的性质及解法2,3,8,14,17线性规划问题4,7,11基本不等式及应用9,15,18,21综合问题12,19,20,22一、选择题(本大题共12小题,每小题5分,共60分)1.数列{a n}的前n项和S n=2n2-3n,则{a n}的通项公式为( A )(A)4n-5 (B)4n-3 (C)2n-3 (D)2n-1解析:因为S n=2n2-3n,所以当n≥2时,S n-1=2(n-1)2-3(n-1),两式相减可得a n=S n-S n-1=4n-5,又当n=1时,a1=S1=-1,满足上式,故选A.2.如果a>b>1,c<0,在不等式①>;②ln(a+c)>ln(b+c);③(a-c)c< (b-c)c;④be a>ae b中,所有正确命题的序号是( B )(A)①②③(B)①③④(C)②③④(D)①②④解析:因为a>b>1,c<0, 所以可令a=3,b=2,c=-4,此时ln(a+c)>ln(b+c)不成立, 所以②错误,排除A,C,D,故选B.3.在R上定义运算⊗:x⊗y=x(1-y),若不等式(x-a)⊗(x+a)<1对任意实数x成立,则( C )(A)-1<a<1 (B)0<a<2(C)-<a< (D)-<a<解析:(x-a)⊗(x+a)=(x-a)(1-x-a)<1,-x2+x+(a2-a-1)<0恒成立, Δ=1+4(a2-a-1)<0解得-<a<.4.不等式组表示的平面区域的面积为( B )(A)48 (B)24 (C)16 (D)12解析:不等式组表示的平面区域如图阴影所示,则点A(-2,2),B(2,-2),C(2,10),所以平面区域面积为S△ABC=|BC|·h=×(10+2)×(2+2)=24.故选B.5.设{a n}是公差不为0的等差数列,a1=2,且a1,a3,a6成等比数列,则{a n}的前n项和S n等于( A )(A)(B)(C)(D)n2+n解析:设等差数列的公差为d,则a1=2,a3=2+2d,a6=2+5d.又因为a1,a3,a6成等比数列,所以=a 1·a6.即(2+2d)2=2(2+5d),整理得2d2-d=0.因为d≠0,所以d=.所以S n=na1+d=+n.故选A.6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( B )(A)192里(B)96里(C)48里(D)24里解析:设等比数列{a n}的首项为a1,公比为q=,依题意有=378,解得a1=192,则a2=192×=96,即第二天走了96里,故选B.7.若x,y满足则x+2y的最大值为( D )(A)1 (B)3 (C)5 (D)9解析:已知关于x,y的不等式组对应的平面区域如图所示,设z=x+2y,则y=-x+z,它表示斜率为-的一动直线,当其在上述平面区域内移动,经过A(3,3)点时,纵截距达到最大值,即z取得最大值,最大值为3+2×3=9,故选D.8.若不等式x2-2ax+a>0对一切实数x∈R恒成立,则关于t的不等式<1的解集为( B )(A)(-3,1)(B)(-∞,-3)∪(1,+∞)(C)⌀(D)(0,1)解析:不等式x2-2ax+a>0对一切实数x∈R恒成立,则Δ=(-2a)2-4a<0,即a2-a<0,解得0<a<1,所以不等式<1转化为t2+2t-3>0,解得t<-3或t>1,故选B.9.已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n 使得=4a 1,则+的最小值为( A )(A)(B)(C)(D)解析:由各项均为正数的等比数列{a n}满足a7=a6+2a5,可得a1q6=a1q5+ 2a1q4,所以q2-q-2=0,所以q=2.因为=4a 1,所以q m+n-2=16,所以2m+n-2=24,所以m+n=6,所以+=(m+n)(+)=(5++)≥(5+4)=,当且仅当=时,等号成立,又m+n=6,解得m=2,n=4符合题意.故+的最小值等于,故选A.10.若数列{a n}满足:a1=19,a n+1=a n-3(n∈N+),则数列{a n}的前n项和数值最大时,n的值为( B )(A)6 (B)7 (C)8 (D)9解析:因为a1=19,a n+1-a n=-3,所以数列{a n}是以19为首项,-3为公差的等差数列.所以a n=19+ (n-1)×(-3)=22-3n.设{a n}的前k项和数值最大,则有k∈N+.所以所以≤k≤.因为k∈N+,所以k=7.所以满足条件的n的值为7.11.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|等于( C )(A)2 (B)4 (C)3(D)6解析:如图△MQR为线性区域,区域内的点在直线x+y-2=0上的投影构成了线段R′Q′,即AB,而R′Q′=RQ,由得Q(-1,1),由得R(2,-2),|AB|=|QR|==3.故选C.12.已知数列{a n}与{b n}的前n项和分别为S n,T n,且a n>0,6S n=+3a n(n ∈N*),b n=,若∀n∈N*,k>T n恒成立,则k的最小值是( B ) (A)(B)(C)49 (D)解析:已知6S n=+3a n(n∈N*),6S n-1=+3a n-1(n∈N*,n≥2),两式子作差得到a n-a n-1=3,故数列是等差数列,由等差数列的通项公式得到a n=3n,故b n==(-),裂项求和得到T n=(-)=-×,由条件k>T n恒成立,得到k的最小值为.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.等比数列{a n}中,S n表示前n项和,a3=2S2+1,a4=2S3+1,则公比q 为.解析:由a3=2S2+1,a4=2S3+1得a4-a3=2(S3-S2)=2a3,所以a4=3a3,所以q==3.答案:314.已知函数f(x)=,x∈R,则不等式f(x2-2x)<f(3x-4)的解集是.解析:f(x)=其图象如图所示,由图可知,不等式f(x2-2x)<f(3x-4)等价于解得即1<x<2,所以不等式的解集为(1,2).答案:(1,2)15.若实数x,y满足x2+x+y2+y=0,则x+y的取值范围是.解析:因为x2+y2≥2xy,所以2(x2+y2)≥x2+y2+2xy,即x2+y2≥,由已知x2+y2+x+y=0,得x+y+≤0,所以(x+y)2+2(x+y)≤0.解得-2≤x+y≤0.答案:[-2,0]16.等差数列{a n}的前n项和为S n,数列{b n}是等比数列,且满足a 1=3,b1=1,b2+S2=10,a5-2b2=a3,数列{}的前n项和为T n,若T n<M对一切正整数n都成立,则M的最小值为.解析:设数列{a n}的公差为d,数列{b n}的公比为q,由b2+S2=10,a5-2b2=a3,得解得所以a n=3+2(n-1)=2n+1,b n=2n-1.则=,T n=3+++…+,所以T n=+++…++,两式作差得T n=3+++++…+-=3+(1+++…+)-=3+-=3+2-2·()n-1-,即T n=10-()n-3-<10,由T n<M对一切正整数n都成立,所以M≥10,故M的最小值为10.答案:10三、解答题(本大题共6小题,共70分)17.(本小题满分10分)若不等式ax2+5x-2>0的解集是{x|<x<2},(1)求a的值;(2)求不等式ax2+5x+a2-1>0的解集.解:(1)依题意,可知方程ax2+5x-2=0的两个实数根为和2; 由根与系数的关系得+2=-,解得a=-2.(2)不等式ax2+5x+a2-1>0,即2x2-5x-3<0,即(x-3)(2x+1)<0,解得-<x<3,故不等式的解集为{x|-<x<3}.18.(本小题满分12分)(1)当x<时,求函数y=x+的最大值;(2)设0<x<2,求函数y=的最大值. 解:(1)y=(2x-3)++=-(+)+.当x<时,有3-2x>0,所以+≥2=4,当且仅当=,即x=-时取等号.于是y≤-4+=-,故函数的最大值为-.(2)因为0<x<2,所以2-x>0,所以y==·≤·=, 当且仅当x=2-x,即x=1时取等号.故函数的最大值为.19.(本小题满分12分)在数列{a n}中,a1=1,a n+1=2a n+2n.(1)设b n=.证明:数列{b n}是等差数列;(2)求数列{a n}的前n项和.(1)证明:由已知a n+1=2a n+2n,得b n+1===+1=b n+1.所以b n+1-b n=1,又b1=a1=1.所以{b n}是首项为1,公差为1的等差数列.(2)解:由(1)知,b n=n,=b n=n.所以a n=n·2n-1.所以S n=1+2×21+3×22+…+n·2n-1,两边乘以2得2S n=1×21+2×22+…+(n-1)·2n-1+n·2n,两式相减得-S n=1+21+22+…+2n-1-n·2n=2n-1-n·2n=(1-n)2n-1,所以S n=(n-1)·2n+1.20.(本小题满分12分)已知数列{a n}满足a1=a2=1, a n+2=a n+2(-1)n(n∈N*).(1)写出a5,a6的值;(2)设b n=a2n,求{b n}的通项公式;(3)记数列{a n}的前n项和为S n,求数列{S2n-18}的前n项和T n的最小值.解:(1)a3=-1,a4=3,a5=-3,a6=5.(2)b n=a2n,n∈N* ,则b n+1-b n=a2n+2-a2n=2(-1)2n=2,所以{b n}是以1为首项,2为公差的等差数列,所以b n=1+(n-1)·2=2n-1.(3)因为a2n+1-a2n-1=2(-1)2n-1=-2,n∈N*,所以{a2n-1}是以1为首项,-2为公差的等差数列,所以数列{a n}的前n个奇数项之和为na1+d=2n-n2,由(2)可知 a2n=2n-1,所以数列{a n}的前n个偶数项之和为=n2.所以S2n=2n,所以S2n-18=2n-18.因为S2n-18-(S2n-2-18)=2,且S2-18=-16,所以数列{S2n-18}是以-16为首项,2为公差的等差数列.由S2n-18=2n-18≤0可得n≤9,所以当n=8或n=9时,数列{S2n-18}的前n项和T n的最小值为T8=T9= =-72.21.(本小题满分12分)经市场调查,某旅游城市在过去的一个月内(以30天计)第t天(1≤t ≤30,t∈N*)的旅游人数f(t)(万人)近似地满足f(t)=4+,而人均消费g(t)(元)近似地满足g(t)=120-|t-20|.(1)求该城市的旅游日收益W(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式;(2)求该城市旅游日收益的最小值.解:(1)W(t)=f(t)g(t)=(4+)(120-|t-20|)=(2)当t∈[1,20]时,401+4t+≥401+2=441(t=5时取最小值).当t∈(20,30]时,因为W(t)=559+-4t递减,所以t=30时,W(t)有最小值W(30)=443,所以t∈[1,30]时,W(t)的最小值为441万元.22.(本小题满分12分)在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,且b2+S2=11,2S3=9b3.(1)求数列{a n}和{b n}的通项公式;(2)令c n=·,设数列{c n}的前n项和为T n,求T n-(n∈N*)的最大值与最小值.解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,则解得d=3,q=2,所以a n=3n,b n=2n-1.(2)由(1)得c n=-3·(-)n,故T n=1-(-)n,当n为奇数时,T n=1+()n,T n随n的增大而减小,所以1<T n≤T1=; 当n为偶数时,T n=1-()n,T n随n的增大而增大,所以=T2≤T n<1, 令f(x)=x-,x>0,则f′(x)=1+>0,故f(x)在x>0时是增函数. 故当n为奇数时,0<T n-≤T1-=;当n为偶数时,0>T n-≥T2-=-.综上所述,T n-的最大值是,最小值是-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学选择题专项训练(三)
1、已知函数f (x )在定义域R 内是减函数且f (x )<0,则函数 g(x)=x 2 f (x )的单调情况一定是( )。

(A )在R 上递减 (B )在R 上递增 (C )在(0,+∞)上递减 (D )在(0,+∞)上递增 2、α,β是两个不重合的平面,在α上取4个点,在β上取3个点,则由这些点最多可以确定平面( )。

(A )35个 (B )30个 (C )32个 (D )40个
3、已知定点P 1(3,5),P 2(-1,1),Q (4,0),点P 分有向线段
2
1P P 所成的比为3,则直线PQ 的方程是( )。

(A )x +2y -4=0 (B )2x +y -8=0 (C )x -2y -4=0 (D )2x -y -8=0
4、函数y=x 5
3
在[-1, 1]上是( )。

(A )增函数且是奇函数 (B )增函数且是偶函数 (C )减函数且是奇函数 (D )减函数且是偶函数 5、方程cosx=lgx 的实根的个数是( )。

(A )1个 (B )2个 (C )3个 (D )4个
6、一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差是( )。

(A )-2 (B )-3 (C )-4 (D )-5 7、已知椭圆
12
22
2=+
b
y a
x (a>b>0)的离心率等于
5
3,若将这个椭圆绕着它
的右焦点按逆时针方向旋转2π
后,所得的新椭圆的一条准线的方程y=3
16,则原来的椭圆方程是( )。

(A )
148
1292
2
=+y
x
(B )
164
100
2
2
=+
y
x
(C )
116
25
2
2
=+
y
x
(D )
19
16
2
2
=+
y
x
8、直线x -y -1=0与实轴在y 轴上的双曲线x 2-y 2=m (m ≠0)的交点在以原点为中心,边长为2且各边分别平行于坐标轴的正方形内部,则m 的取值范围是( )。

(A )0<m<1 (B )m<0 (C )-1<m<0 (D )m<-1 9、已知直线l 1与l 2的夹角的平分线为y=x ,如果l 1的方程是 ax +by +c=0(ab>0),那么l2的方程是( )。

(A )bx +ay +c=0 (B )ax -by +c=0 (C )bx +ay -c=0 (D )bx -ay +c=0 10、函数F(x)=(1+
1
2
2
-x
)f (x) (x ≠0)是偶函数,且f (x)不恒等于零,
则f (x)( )。

(A )是奇函数 (B )可能是奇函数,也可能是偶函数 (C )是偶函数 (D )非奇、非偶函数 11、若log a 2<log b 2<0,则( )。

(A )0<a<b<1 (B )0<b<a<1 (C )a>b>1 (D )b>a>1 12、已知等差数列{a n }的公差d ≠0,且a 1, a 3, a9成等比数列,则
10
42931a a a a a a ++++的值是( )。

(A )14
15 (B )13
12 (C )
16
13 (D )
16
15。

相关文档
最新文档