2012届高三数学一轮复习第九章立体几何9-1
【走向高考】(2013春季发行)高三数学第一轮总复习 9-1空间几何体的结构特征及其直观图、三视图 新人教A版
9-1空间几何体的结构特征及其直观图、三视图基础巩固强化1.(文)(2011·合肥市质检)下图是一个几何体的三视图,其中正(主)视图和侧(左)视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .6πB .12πC .18πD .24π[答案] B[解析] 由三视图知,该几何体是两底半径分别为1和2,母线长为4的圆台,故其侧面积S =π(1+2)×4=12π.(理)一个几何体的三视图如图所示,正视图上部是一个边长为4的正三角形,下部是高为3两底长为3和4的等腰梯形,则其表面积为( )A.31π2B.63π2C.π4(57+737) D.π4(41+737) [答案] D [解析]由三视图知,该几何体是一个组合体,上部是底半径为2,高为23的圆锥,下部是两底半径分别为2和32,高为3的圆台,其表面积S =π×2×4+π(2+32)×372+π·(32)2=π4(41+737),故选D. 2.如图所示是水平放置三角形的直观图,D 是△ABC 的BC 边中点,AB 、BC 分别与y ′轴、x ′轴平行,则三条线段AB 、AD 、AC 中( )A .最长的是AB ,最短的是AC B .最长的是AC ,最短的是AB C .最长的是AB ,最短的是AD D .最长的是AC ,最短的是AD [答案] B[解析] 由条件知,原平面图形中AB ⊥AC ,从而AB <AD <AC .3.(文)(2012·河南六市联考)如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为( )A.14 3 B.6+2 3 C.12+2 3 D.16+2 3 [答案] C[解析] 该几何体是一个正三棱柱,设底面正三角形边长为a,则32a=3,∴a=2,又其高为2,故其全面积S=2×(34×22)+3×(2×2)=12+2 3.(理)(2011·北京西城模拟)一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是( )A.①②B.②③C.③④D.①④[答案] B[解析] 根据三视图画法规则“长对正,高平齐、宽相等”,俯视图应与正视图同长为3,与侧视图同宽为2,故一定不可能是圆和正方形.4.(文)(2011·广东文,9)如下图,某几何体的正视图(正视图),侧视图(侧视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2[答案] C[解析] 由三视图知该几何体是四棱锥,底面是菱形,其面积S =12×23×2=23,高h =3,所以V =13Sh =13×23×3=2 3.(理)(2012·保定市一模)一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的体积是(单位:m 3).( )A .4+2 6B .4+ 6 C.23 D.43[答案] D[解析] 由侧视图和俯视图是全等的等腰三角形,及正视图为等腰直角三角形可知,该几何体可看作边长AB =BC =3,AC =1的△ABC 绕AC 边转动到与平面△PAC 位置(平面PAC ⊥平面ABC )所形成的几何体,故其体积V =13×(12×2×2)×2=43.5.(文)(2011·广东省东莞市一模)一空间几何体的三视图如图所示,该几何体的体积为12π+853,则正视图与侧视图中x 的值为( )A .5B .4C .3D .2 [答案] C[解析] 根据题中的三视图可知,该几何体是圆柱和正四棱锥的组合体,圆柱的底半径为2,高为x ,四棱锥的底面正方形对角线长为4,四棱锥的高h =32-22=5,其体积为V =13×8×5+π×22×x =12π+853,解得x =3. (理)(2011·新课标全国理,6)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )[答案] D [解析]由正视图知该几何体是锥体,由俯视图知,该几何体的底面是一个半圆和一个等腰三角形,故该几何体是一个半圆锥和一个三棱锥组成的,两锥体有公共顶点,圆锥的两条母线为棱锥的两侧棱,其直观图如图,在侧视图中,O 、A 与C 的射影重合,侧视图是一个三角形△PBD ,OB =OD ,PO ⊥BD ,PO 为实线,故应选D.6.(文)(2012·河北郑口中学模拟)某几何体的正视图与侧视图如图所示,若该几何体的体积为13,则该几何体的俯视图不可以是( )[答案] D[解析] 由正视图及俯视图可知该几何体的高为1,又∵其体积为13,故为锥体,∴S 底=1,A 中为三角形,此时其底面积为12,舍去;B 为14个圆,底面积为π4,也舍去,C 为圆,其面积为π舍去,故只有D 成立.[点评] 如果不限定体积为13,则如图(1)在三棱锥P -ABC 中,AC ⊥BC ,PC ⊥平面ABC ,AC =BC =PC =1,则此三棱锥满足题设要求,其俯视图为等腰直角三角形A ;如图(2),底半径为1,高为1的圆锥,被截面POA 与POB 截下一角,OA ⊥OB ,则此时几何体满足题设要求,其俯视图为B ;如图(3),这是一个四棱锥,底面是边长为1的正方形,PA ⊥平面ABCD ,此几何体满足题设要求,其俯视图为D.(理)(2012·大同市调研)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .8 B.203 C.173D.143[答案] C[解析] 由题可知,原正方体如图所示,被平面EFB 1D 1截掉的几何体为棱台AFE -A 1B 1D 1,则所求几何体的体积V =23-V A 1B 1D 1-AEF =23-13×(2+12+2×12)×2=173,故选C.7.已知一个几何体的三视图如图所示(单位:cm),其中正(主)视图是直角梯形,侧(左)视图和俯视图都是矩形,则这个几何体的体积是________cm 3.[答案] 32[解析] 依据三视图知,该几何体的上、下底面均为矩形,上底面是边长为1的正方形,下底面是长为2,宽为1的矩形,左侧面是与底面垂直的正方形,其直观图如图所示,易知该几何体是四棱柱ABCD -A 1B 1C 1D 1,其体积V =S 梯形ABCD ·AA 1=1+2×12×1=32cm 3. 8.(2011·皖南八校联考)已知三棱锥的直观图及其俯视图与侧视图如下,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图面积为________.[答案] 2[解析] 由条件知,该三棱锥底面为正三角形,边长为2,一条侧棱与底面垂直,该侧棱长为2,故正视图为一直角三角形,两直角边的长都是2,故其面积S =12×2×2=2.9.(2011·安徽知名省级示范高中联考)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,过对角线BD 1的一个平面交AA 1于E ,交CC 1于F ,得四边形BFD 1E ,给出下列结论:①四边形BFD 1E 有可能为梯形; ②四边形BFD 1E 有可能为菱形;③四边形BFD 1E 在底面ABCD 内的投影一定是正方形; ④四边形BFD 1E 有可能垂直于平面BB 1D 1D ; ⑤四边形BFD 1E 面积的最小值为62. 其中正确的是________.(请写出所有正确结论的序号) [答案] ②③④⑤[解析] ∵平面ADD 1A 1∥平面BCC 1B 1,平面BFD 1E ∩平面ADD 1A 1=D 1E ,平面BFD 1E ∩平面BCC 1B 1=BF ,∴D 1E ∥BF ;同理BE ∥FD 1,∴四边形BFD 1E 为平行四边形,①显然不成立;当E 、F 分别为AA 1、CC 1的中点时,易证BF =FD 1=D 1E =BE ,∴EF ⊥BD 1,又EF ∥AC ,AC ⊥BD ,∴EF⊥BD ,∴EF ⊥平面BB 1D 1D ,∴平面BFD 1E ⊥平面BB 1D 1E ,∴②④成立,四边形BFD 1E 在底面的投影恒为正方形ABCD .当E 、F 分别为AA 1、CC 1的中点时,四边形BFD 1E 的面积最小,最小值为62. 10.在如图所示的几何体中,四边形 ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且AD =PD =2MA .(1)求证:平面EFG ⊥平面PDC ;(2)求三棱锥P -MAB 与四棱锥P -ABCD 的体积之比. [解析] (1)证明:∵MA ⊥平面ABCD ,PD ∥MA , ∴PD ⊥平面ABCD ,又BC ⊂平面ABCD ,∴PD ⊥BC , ∵四边形ABCD 为正方形,∴BC ⊥DC . ∵PD ∩DC =D ,∴BC ⊥平面PDC .在△PBC 中,因为G 、F 分别为PB 、PC 的中点, ∴GF ∥BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .(2)不妨设MA =1,∵四边形ABCD 为正方形,∴PD =AD =2, 又∵PD ⊥平面ABCD ,所以V P -ABCD =13S 正方形ABCD ·PD =83.由于DA ⊥平面MAB ,且PD ∥MA , 所以DA 即为点P 到平面MAB 的距离, 三棱锥V P -MAB =13×⎝ ⎛⎭⎪⎫12×1×2×2=23.所以V P -MAB :V P -ABCD =1:4.能力拓展提升11.(2011·湖南六市联考)一个几何体的三视图如下图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为( )A.32B.12 C .1 D .2[答案] A[解析] 由三视图知,该几何体是正六棱锥,底面正六边形的边长为1,侧棱长为2,故侧视图为一等腰三角形,底边长3,高为正六棱锥的高3,故其面积为S =12×3×3=32. 12.(2011·皖南八校联考)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )[答案] B [解析]由三视图间的关系,易知其侧视图是一个底边为3,高为2的直角三角形,故选B. [点评] 由题设条件及正视图、俯视图可知,此三棱锥P -ABC 的底面是正△ABC ,侧棱PB ⊥平面ABC ,AB =2,PB =2.13.(2012·内蒙包头市模拟)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是________.[答案] 16π[解析] 由三视图知,该几何体是一个正三棱柱,底面正三角形边长为3,高为2,故其外接球半径R 满足R 2=(22)2+(23×32×3)2=4,∴R =2,∴S 球=4πR 2=16π.14.(2011·南京市调研)如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为________cm.[答案] 13[解析] 如图,将三棱柱侧面A1ABB1置于桌面上,以A1A为界,滚动两周(即将侧面展开两次),则最短线长为AA″1的长度,∴AA1=5,AA″=12,∴AA″1=13.15.圆台侧面的母线长为2a,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.求两底面的半径长与两底面面积的和.[解析] 如图所示,设圆台上底面半径为r,则下底面半径为2r,且∠ASO =30°, 在Rt △SA ′O ′中,rSA ′=sin30°, ∴SA ′=2r ,在Rt △SAO 中,2rSA=sin30°,∴SA =4r .∵SA -SA ′=AA ′,即4r -2r =2a ,r =a . ∴S =S 1+S 2=πr 2+π(2r )2=5πr 2=5πa 2.∴圆台上底面半径为a ,下底面半径为2a ,两底面面积之和为5πa 2.16.(文)(2011·青岛质检)如下的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积. [解析] (1)如图.(2)所求多面体体积V =V 长方体-V 正三棱锥 =4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843(cm 3). (理)多面体PABCD 的直观图及三视图如图所示,E 、F 分别为PC 、BD 的中点.(1)求证:EF ∥平面PAD ; (2)求证:PA ⊥平面PDC .[解析] 由多面体PABCD 的三视图知,该几何体是四棱锥,四棱锥P -ABCD 的底面ABCD 是边长为2的正方形,侧面PAD 是等腰直角三角形,PA =PD =2,且平面PAD ⊥平面ABCD .(1)连接AC ,则F 是AC 的中点, 又∵E 是PC 的中点, ∴在△CPA 中,EF ∥PA , 又PA ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD , 又CD ⊥AD ,∴CD ⊥平面PAD , ∴CD ⊥PA .∵△PAD 是等腰直角三角形,且∠APD =π2.即PA ⊥PD .又CD ∩PD =D ,∴PA ⊥平面PDC .1.(2011·宁夏银川一中检测)如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的可能图象是( )[答案] B[分析] 可以直接根据变化率的含义求解,也可以求出函数的解析式进行判断.[解析] 容器是一个倒置的圆锥,由于水是均匀注入的,故水面高度随时间变化的变化率逐渐减少,表现在函数图象上就是其切线的斜率逐渐减小,故选B.[点评] 本题在空间几何体三视图和函数的变化率交汇处命制,重点是对函数变化率的考查,这种在知识交汇处命制题目考查对基本概念的理解与运用的命题方式值得重视.2.(2011·惠州模拟)用若干个体积为1的正方体搭成一个几何体,其正视图、侧视图都是如图所示的图形,则这个几何体的最大体积与最小体积的差是( )A.6 B.7 C.8 D.9[答案] A3.(2011·河源模拟)如图所示,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是( )[答案] B[解析] 箭头所指正面的观察方向与底面直角三角形边长为4的边平行,故该边的射影为一点,与其垂直的直角边的长度3不变,高4不变,故选B.4.(2011·辽宁文,8)一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如右图所示,侧视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2 D. 3[答案] B[解析] 由题意可设棱柱的底面边长为a ,则其体积为34a 2·a =23,得a =2. 由俯视图易知,三棱柱的侧视图是以2为长,3为宽的矩形.∴其面积为2 3.故选B.5.(2011·天津理,10)一个几何体的三视图如下图所示(单位:m),则该几何体的体积为________m3.[答案] π+6[解析] 根据三视图知该几何体是一个长方体上面放一个圆锥.因而V=V长方体+V圆锥,又知长方体长、宽、高分别为3、2、1,圆锥的底面半径为1,高为3,从而求出体积为(π+6)m3.6.下图是一几何体的直观图和三视图.(1)若F为PD的中点,求证:AF⊥平面PCD;(2)求几何体BEC-APD的体积.[解析] (1)证明:由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,PA=2EB=4.∵PA=AD,F为PD的中点,∴PD⊥AF.又∵CD⊥DA,CD⊥PA,∴CD⊥AF.∴AF ⊥平面PCD .(2)V BEC -APD =V C -APEB +V P -ACD =13×12×(4+2)×4×4+13×12×4×4×4=803.。
高三数学 第九章 立体几何 课后作业及详细解答(3)
课后作业基础巩固强化一、选择题1.(文)已知E、F、G、H是空间内四个点,条件甲:E、F、G、H四点不共面,条件乙:直线EF和GH不相交,则甲是乙成立的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析]点E、F、G、H四点不共面可以推出直线EF和GH不相交;但由直线EF和GH不相交不一定能推出E、F、G、H四点不共面,例如:EF和GH平行,这也是直线EF和GH不相交的一种情况,但E、F、G、H四点共面.故甲是乙成立的充分不必要条件.(理)在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,若EF与GH交于点M,则()A.M一定在AC上B.M一定在BD上C.M可能在AC上也可能在BD上D.M不在AC上,也不在BD上[答案] A[解析]点M在平面ABC内,又在平面ADC内,故必在交线AC上.2.(文)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交[答案] B[解析]由题意知直线l与平面α相交,不妨设直线l∩α=M,对A,在α内过M点的直线与l不异面,A错误;对B,假设存在与l平行的直线m,则由m∥l得l∥α,这与l∩α=M矛盾,故B正确,C错误;对D,α内存在与l异面的直线,故D错误.综上知选B.(理)平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.6[答案] C[解析]如图,平行六面体ABCD-A1B1C1D1中,既与AB共面,也与CC1共面的棱为BC、C1D1、DC、AA1、BB1,共5条.3.(2014·汉沽一中检测)已知平面α和不重合的两条直线m、n,下列选项正确的是()A.如果m⊂α,n⊄α,m、n是异面直线,那么n∥αB.如果m⊂α,n与α相交,那么m、n是异面直线C.如果m⊂α,n∥α,m、n共面,那么m∥nD.如果m⊥α,n⊥m,那么n∥α[答案] C[解析]如图(1)可知A错;如图(2)可知B错;如图(3),m⊥α,n是α内的任意直线,都有n⊥m,故D错.∵n∥α,∴n与α无公共点,∵m⊂α,∴n与m无公共点,又m、n共面,∴m∥n,故选C.4.(文)正方体ABCD-A1B1C1D1中,与对角线AC1异面的棱有()A.3条B.4条C.6条D.8条[答案] C[解析]在正方体ABCD-A1B1C1D1中,与对角线AC1有公共点A的和有公共点C1的各有3条,其余6条所在正方体的面与AC1均相交,且交点不在这些棱上,由异面直线判定定理知,这6条与AC1都异面,故选C.(理)如图是正方体或四面体,P、Q、R、S分别是所在棱的中点,则这四个点不共面的一个图是()[答案] D[解析]A中,PS∥QR;B中如图可知此四点共面;C中PS∥QR;D中RS在经过平面PQS内一点和平面PQS外一点的直线上,故选D.5.(2013·南昌第一次模拟)设a,b是夹角为30°的异面直线,则满足条件“a⊂α,b⊂β,且α⊥β”的平面α,β()A.不存在B.有且只有一对C.有且只有两对D.有无数对[答案] D[解析]过直线a的平面α有无数个.当平面α与直线b平行时,两直线的公垂线与b确定的平面β⊥α;当平面α与b相交时,过交点作平面α的的垂线与b确定的平面β⊥α,∵平面α有无数个,∴满足条件的平面α、β有无数对,故选D.6.(文)(2013·惠州调研)已知m、n是两条不同直线,α、β、γ是三个不同平面,下列命题中正确的是()A .若m ∥α,n ∥α,则m ∥nB .若α⊥γ,β⊥γ,则α∥βC .若m ∥α,m ∥β,则α∥βD .若m ⊥α,n ⊥α,则m ∥n[答案] D[解析] 当m ∥α,n ∥α时,m 与n 可能相交、平行,也可能异面,故A 错;B 中α⊥γ,β⊥γ时,α与β可能平行,也可能相交,如长方体交于同一个顶点的三个面,故B 错;α∩β=l ,m ⊄α,m ⊄β,m ∥l 时,满足m ∥α,m ∥β,故C 错;由线面垂直的性质知, ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n .(理)(2013·广东)设l 为直线,α,β是两个不同的平面.下列命题中正确的是( )A .若l ∥α,l ∥β,则α∥βB .若l ⊥α,l ⊥β,则α∥βC .若l ⊥α,l ∥β,则α∥βD .若α⊥β,l ∥α,则l ⊥β[答案] B[解析] 画出一个长方体ABCD -A 1B 1C 1D 1.对于A ,C 1D 1∥平面ABB 1A 1,C 1D 1∥平面ABCD ,但平面ABB 1A 1与平面ABCD 相交;对于C ,BB 1⊥平面ABCD ,BB 1∥平面ADD 1A 1,但平面ABCD 与平面ADD 1A 1相交;对于D ,平面ABB 1A 1⊥平面ABCD ,CD ∥平面ABB 1A 1,但CD ⊂平面ABCD .二、填空题7.在图中,G 、H 、M 、N 分别是正三棱柱的顶点或所在棱的中点,则使直线GH 、MN 是异面直线的图形有________.(填上所有正确答案的序号)[答案]②④[解析]图①中,直线GH∥MN;图②中,G、H、N三点在三棱柱的侧面上,MG与这个侧面相交于G,∴M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉平面GMN,因此GH与MN异面.所以图②、④中GH与MN异面.8.如图,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=5,AA1=3,M为线段BB1上的一动点,则当AM+MC1最小时,△AMC1的面积为________.[答案] 3[解析] 将三棱柱的侧面A 1ABB 1和B 1BCC 1以BB 1为折痕展平到一个平面α上,在平面α内AC 1与BB 1相交,则交点即为M 点,易求BM =1,∴AM =2,MC 1=22,又在棱柱中,AC 1=14,∴cos ∠AMC 1=AM 2+MC 21-AC 212AM ·MC 1=2+8-142×2×22=-12, ∴∠AMC 1=120°,∴S △AMC 1=12AM ·MC 1·sin ∠AMC 1=12×2×22×32= 3.9.(文)如图所示,已知正三棱柱ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.[答案] 90°[解析] 取BC 的中点N ,连接AN ,则AN ⊥平面BCC 1B 1, ∵BM ⊂平面BCC 1B 1,∴AN ⊥BM ,又在正方形BCC 1B 1中,M 、N 分别为CC 1与BC 的中点,∴B 1N ⊥BM ,又B 1N ∩AN =N ,∴BM ⊥平面AB 1N ,∴BM ⊥AB 1,∴AB 1与BM 所成的角是90°.(理)在三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =BC ,则直线PC 与AB 所成角的大小是________.[答案] 60°[解析]分别取P A 、AC 、CB 的中点F 、D 、E 连接FD 、DE 、EF 、AE ,则∠FDE 是直线PC 与AB 所成角或其补角.设P A =AC =BC =2a ,在△FDE 中,易求得FD =2a ,DE =2a ,FE =6a ,根据余弦定理,得cos ∠FDE =2a 2+2a 2-6a 22×2a ×2a=-12, 所以∠FDE =120°.所以PC 与AB 所成角的大小是60°.三、解答题10.(文)已知在正方体ABCD -A ′B ′C ′D ′中,M 、N 分别是A ′D ′、A ′B ′的中点,在该正方体中是否存在过顶点且与平面AMN 平行的平面?若存在,试作出该平面,并证明你的结论;若不存在,请说明理由.[分析] 假设存在经过B 点与平面AMN 平行的平面α,则平面A ′B ′C ′D ′与这两平行平面的交线应平行,由于M 、N 分别为A′D′、A′B′的中点,∴取C′D′的中点F,B′C′的中点E,则MN∥EF,可证明平面BDFE∥平面AMN,过其他点的截面同理可分析找出.[解析]存在.与平面AMN平行的平面有以下三种情况(E、F分别为所在棱的中点):下面以图(1)为例进行证明.∵四边形ABEM是平行四边形,∴BE∥AM,又BE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDFE.∵MN是△A′B′D′的中位线,∴MN∥B′D′,∵四边形BDD′B′是平行四边形,∴BD∥B′D′,∴MN∥BD,又BD⊂平面BDE,MN⊄平面BDE,∴MN∥平面BDFE,又AM⊂平面AMN,MN⊂平面AMN,且AM∩MN=M,∴由平面与平面平行的判定定理可得,平面AMN∥平面BDFE.(理)如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.(1)求异面直线A1M和C1D1所成的角的正切值;(2)证明:平面ABM⊥平面A1B1M.[解析]方法1:(1)如图,因为C1D1∥B1A1,所以∠MA1B1为异面直线A1M与C1D1所成的角.因为A1B1⊥平面BCC1B1,所以∠A1B1M=90°,而A1B1=1,B1M=B1C21+MC21=2,故tan∠MA1B1=B1MA1B1= 2.即异面直线A1M和C1D1所成的角的正切值为 2.(2)证明:由A1B1⊥平面BCC1B1,BM⊂平面平面BCC1B1,得A1B1⊥BM①由(1)知,B1M=2,又BM=BC2+CM2=2,B1B=2,所以B1M2+BM2=B1B2,从而BM⊥B1M②又A1B1∩B1M=B1,∴BM⊥平面A1B1M,而BM⊂平面ABM,因此平面ABM⊥平面A1B1M.方法2:以A 为原点,AB →,AD →,AA 1→的方向分别作为x 、y 、z 轴的正方向,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),A 1(0,0,2),B 1(1,0,2),C 1(1,1,2),D 1(0,1,2),M (1,1,1).(1)A 1M →=(1,1,-1),C 1D 1→=(-1,0,0),cos 〈A 1M →,C 1D 1→〉=-13×1=-33. 设异面直线A 1M 与C 1D 1所成角为α,则cos α=33,∴tan α= 2.即异面直线A 1M 和C 1D 1所成的角的正切值是 2.(2)证明:A 1B 1→=(1,0,0),BM →=(0,1,1),B 1M →=(0,1,-1),A 1B 1→·BM →=0,BM →·B 1M →=0,∴A 1B 1→⊥BM →,BM →⊥B 1M →,即BM ⊥A 1B 1,BM ⊥B 1M ,又B 1M ∩A 1B 1=B 1,∴BM ⊥平面A 1B 1M ,而BM ⊂平面ABM ,因此ABM ⊥平面A 1B 1M .能力拓展提升一、选择题11.(文)(2014·雅礼中学月考)l1、l2、l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1、l2、l3共面D.l1、l2、l3共点⇒l1、l2、l3共面[答案] B[解析]举反例,由教室内共点的三条墙角线可知A、D是错误的;由三棱柱的三条侧棱可知C是错误的.故选B.(理)(2014·荆州中学月考)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1、CD1的中点,则下列判断错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行[答案] D[解析]由于C1D1与A1B1平行,MN与C1D1是异面直线,所以MN与A1B1是异面直线,故选项D错误.[点评] 取CD 中点Q ,BC 中点R ,则NQ 綊12D 1D ,MR 綊12CC 1,∵CC 1綊D 1D ,∴NQ 綊MR ,∴MN ∥QR ,∵QR ∥BD ,AC ⊥BD ,∴AC ⊥MN ,∴B 正确;∵MN ∥QR ,QR ∥BD ,∴MN ∥BD ,∴C 正确;∵CC 1⊥平面ABCD ,∴CC 1⊥PQ ,∴CC 1⊥MN ,∴A 正确.12.(2012·山西联考)已知直线m 、n 与平面α、β,下列命题中正确的是( )A .m ∥β,α∥β,则m ∥αB .平面α内不共线三点到平面β的距离相等,则α∥βC .α∩β=m ,n ⊥m 且α⊥β,则n ⊥αD .m ⊥α,n ⊥β且α⊥β,则m ⊥n[答案] D[解析] 当m ⊂α时,也可满足m ∥β,α∥β,故①错;当α∩β=l ,三点A 、B 、C 位于l 的两侧,AB ∥l ,直线AB 到l 的距离与点C 到l 的距离相等时,满足A 、B 、C 三点到平面β的距离相等,故②错;由面面垂直的性质知,C 错,因为只有在满足n ⊂β内时,才能由n ⊥m 得出n ⊥α的结论;⎭⎪⎬⎪⎫⎭⎪⎬⎪⎫α⊥βn ⊥β⇒n ∥α或n ⊂α m ⊥α⇒m ⊥n ,故D 正确. 二、填空题13.(2013·武汉武昌区联考)已知直线l ⊥平面α,直线m ⊂平面β,有下列命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β.其中正确命题的序号是________.[答案] ①③[解析] ①正确,∵l ⊥α,α∥β,∴l ⊥β,又m ⊂β,∴l ⊥m ;②错误,l ,m 还可以垂直,斜交或异面;③正确,∵l ⊥α,l ∥m ,∴m ⊥α,又m ⊂β,∴α⊥β;④错误,α与β可能相交.14.(2013·贵阳一模)在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为A 1B 1,BB 1的中点,则异面直线AM 与CN 所成角的余弦值为________.[答案] 25[解析] 如图,取AB 的中点E ,连接B 1E ,则AM ∥B 1E ,取EB 的中点F ,连接FN ,则B 1E ∥FN ,因此AM ∥FN ,则直线FN 与CN 所夹的锐角或直角为异面直线AM 与CN 所成的角.设AB =1,连接CF ,在△CFN 中,CN =52,FN =54,CF =174.由余弦定理得cos ∠CNF =CN 2+FN 2-CF 22CN ·FN =25. 三、解答题15.(2013·江苏)如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.[解析](1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC,因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.考纲要求理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理.补充说明1.异面直线的判定主要用定理法、反证法(1)定理法:过平面内一点与平面外一点的直线与平面内不经过该点的直线为异面直线(此结论可作为定理使用).(2)反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设,肯定两条直线异面.2.求异面直线所成的角主要用平移法,其一般步骤为(1)平移:选取适当的点,平移异面直线的一条(或两条)成相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)求解:找出含有此角的三角形,并解之.(4)取舍:根据异面直线所成角的范围确定大小.3.共线与共面问题证明共线时,所共的直线一般定位为两个平面的交线;证明共面问题时,一般先由已知条件确定一个平面(有平行直线的先用平行直线确定平面),再证其他元素在该平面内.4.求异面直线所成角异面直线所成角的大小,是用过空间任意一点分别引它们的平行线所成的锐角(或直角)来定义的.因此,平移直线是求异面直线所成角的关键.这里给出几种平移直线的途径.(1)在已知平面内平移直线构造可解的三角形,或根据实际情况构造辅助平面,在辅助平面内平移直线构造可解的三角形,是求异面直线所成角的途径之一;这种方法常常是取两条异面直线中的一条和另一条上一点确定一个平面,在这个平面内过这个点作这条直线的平行线,或在两条异面直线上各选一点连线,构造两个辅助面过渡.[例1] 如图所示,在正方体AC 1中,M 、N 分别是A 1B 1、BB 1的中点,求异面直线AM 和CN 所成角的余弦值.[解析] 在平面ABB 1A 1内作EN ∥AM 交AB 于E ,则EN 与CN 所成的锐角(或直角)即为AM 和CN 所成的角.设正方体棱长为a .在△CNE 中,可求得CN =52a ,NE =54a ,CE =174a ,由余弦定理得,cos ∠CNE =EN 2+CN 2-CE 22EN ·CN =25. 即异面直角AM 与CN 所成角的余弦值为25.(2)利用平行平面平移直线构成可解的三角形,是求异面直线所成角的途径之二;这种方法常见于两条异面直线分别在两个互相平行的平面内,可利用面面平行的性质,将一条直线平移到另一条所在的平面内.[例2] 如图所示,正方体AC 1中,B 1E 1=D 1F 1=A 1B 14,求BE 1与DF 1所成角的余弦值.[解析] ∵平面ABB 1A 1∥平面DCC 1D 1,∴在A 1B 1上取H ,使A 1H =A 1B 14,即可得:AH ∥DF 1.引NH ∥BE 1,则锐角∠AHN 就是DF 1与BE 1所成的角.设正方体棱长为a ,在△AHN 中,易求得:AN =a 2,AH =NH =BE 1=174a .由余弦定理得,cos ∠AHN =AH 2+HN 2-AN 22AH ·HN =1517. 即BE 1与DF 1所成的角的余弦值为1517.(3)整体平移几何体,构造可解的三角形,是求异面直线所成角的途径之三.这种方法常常是将原有几何体上再拼接上同样的一个几何体(相当于将原几何体作了一个平移)创造平移直线的条件.[例3] 如下图长方体AC 1中,AB =12,BC =3,AA 1=4,N 在A 1B 1上,且B 1N =4.求BD 1与C 1N 所成角的余弦值.[解析] 如图所示,将长方体AC 1平移到BCFE -B 1C 1F 1E 1的位置,则C 1E ∥BD 1,C 1E 与C 1N 所成的锐角(或直角)就是BD 1与C 1N 所成的角.在△NC 1E 中,根据已知条件可求B 1N =4,C 1N =5,C 1E =13,EN =E 1N 2+EE 21=417.由余弦定理,得cos ∠NC 1E =C 1N 2+C 1E 2-EN 22C 1N ·C 1E =-35. ∴BD 1与C 1N 所成角的余弦值为35.备选习题1.空间中一条线段AB 的三视图中,俯视图是长度为1的线段,侧视图是长度为2的线段,则线段AB 的长度的取值范围是( )A .(0,2]B .[2,5]C .[2,3]D .[2,10] [答案] B[解析] 以线段AB 为体对角线构造长方体,设长方体的长、宽、高分别为x 、y 、z ,则由题意知,⎩⎪⎨⎪⎧x 2+y 2=1,y 2+z 2=4.∴AB 2=x 2+y 2+z 2=5-y 2,∵x 2>0,∴1-y 2>0,∴0<y 2<1,∴4<AB2<5,∴2<AB< 5.特别地,当AB为面对角线时,AB=2或5成立,∴2≤AB≤ 5.2.若空间中有四个点,则“这四个点中有三点在同一条直线上”是“这四个点在同一个平面上”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件[答案] A[解析]若有三点共线于l,当第四点在l上时共面,当第四点不在l上时,l与该点确定一个平面α,这四点共面于α;若四点共面,则未必有三点共线.3.设直线m与平面α相交但不.垂直,则下列说法中正确的是()A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不.可能与平面α平行D.与直线m平行的平面不.可能与平面α垂直[答案] B[解析]如图,m是α的斜线,P A⊥α,l⊂α,l⊥AB,则l⊥m,α内所有与l平行的直线都垂直于m,故A错;即可知过m有且仅有一个平面P AB与α垂直,假设有两个平面都与α垂直,则这两个平面的交线m应与α垂直,与条件矛盾,∴B正确;又l′⊄α,l′∥l,∴l′∥α,∵l⊥m,∴l′⊥m,∴C错;又在平面α内取不在直线AB上的一点D,过D可作平面与平面P AB平行,∴m∥β,∵平面P AB⊥α,∴平面β⊥α.4.(2013·昆明调研)如图,在四棱锥P-ABCD中,ABCD为平行四边形,且BC⊥平面P AB,P A⊥AB,M为PB的中点,P A=AD=2,AB=1.(1)求证:PD∥平面AMC;(2)求三棱锥A-MBC的高.[解析](1)如图,连接BD ,设BD 与AC 相交于点O ,连接OM , ∵四边形ABCD 是平行四边形,∴点O 为BD 的中点.∵M 为PB 的中点,∴OM 为△PBD 的中位线,∴OM ∥PD ,∵OM ⊂平面AMC ,PD ⊄平面AMC ,∴PD ∥平面AMC .(2)∵BC ⊥平面P AB ,AD ∥BC ,∴AD ⊥平面P AB ,∴P A ⊥AD ,又P A ⊥AB ,且AD ∩AB =A ,∴P A ⊥平面ABCD .取AB 的中点F ,连接MF ,则MF ∥P A , ∴MF ⊥平面ABCD ,且MF =12P A =1.设三棱锥A -MBC 的高为h ,由V A -MBC =V M -ABC ,得13S △MBC ·h =13S △ABC ·MF ,得h=S△ABC·MFS△MBC=12·BC·AB·MF12·BC·BM=255.。
高考理科数学第一轮复习第九章立体几何 9.3-2三垂线定理
O a α A P O a α A P 9.3-2三垂线定理【教学目标】正确理解和熟练掌握三垂线定理及其逆定理,并能运用它解决有关垂直问题。
【知识梳理】 1.斜线长定理从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段也较长;②相等的斜线段的射影相等,较长的斜线段的射影也较长;③垂线段比任何一条斜线段都短. 2.重要公式 如图,已知OB ⊥平面α于B ,OA 是平面α的斜线,A 为斜足,直线AC ⊂平面α,设∠OAB =θ1,又∠CAB =θ2,∠OAC =θ.那么cos θ=cos θ1⋅cos θ2.3.直线和平面所成的角①平面斜线与它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中最小的角.②一个平面的斜线和它在这个平面内的射影的夹角,叫做斜线和平面所成的角(或斜线和平面的夹角).如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平面内,那么就说直线和平面所成的角是0︒的角.4.三垂线定理和三垂线定理的逆定理名称语言表述 图 示 字母表示 应 用 三垂线定 理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.PO a AO a a PA ⊥⇒⎪⎭⎪⎬⎫⊥⊂⊥αα ①证两直线垂直 ②作点线距 ③作二面角 的平面角 三垂线定理的逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.AO a PO a a PA ⊥⇒⎪⎭⎪⎬⎫⊥⊂⊥αα 同 上三垂线定理和三垂线定理的逆定理的主要应用是证明两条直线垂直,尤其是证明两条异面直线垂直,此外,还可以作出点到直线的距离和二面角的平面角.在应用这两个定理时,要抓住平面和平面的垂线,简称“一个平面四条线,线面垂直是关键”.【点击双基】1.下列命题中,正确的是 ( )(A )垂直于同一条直线的两条直线平行(B )平行于同一平面的两条直线平行(C )平面的一条斜线可以垂直于这个平面内的无数条直线(D )a 、b 在平面外,若a 、b 在平面内的射影是两条相交直线,则a 、b 也是相交直线2.直线a 、b 在平面α内的射影分别为直线a 1、b 1,下列命题正确的是( )(A )若a 1⊥b 1,则a ⊥b (B )若a ⊥b ,则a 1⊥b 1(C )若a 1//b 1,则a 与b 不垂直 (D )若a //b ,则a 1与b 1不垂直3.直线a 、b 在平面外,若a 、b 在平面内的射影是一个点和不过此点的一条直线,则a与b 是 ( )(A )异面直线 (B )相交直线(C )异面直线或相交直线 (D )异面直线或平行直线C αD A B OC A P BD M N Q l 4.P 是△ABC 所在平面外一点,若P 点到△ABC 各顶点的距离都相等,则P 点在平面ABC 内的射影是△ABC 的 ( )(A )外心 (B )内心 (C )重心 (D )垂心5.P 是△ABC 所在平面外一点,若P 点到△ABC 各边的距离都相等,且P 点在平面ABC 内的射影在△ABC 的内部,则射影是△ABC 的 ( )(A )外心 (B )内心 (C )重心 (D )垂心6.P 是△ABC 所在平面外一点,连结P A 、PB 、PC ,若P A ⊥BC ,PB ⊥AC ,则P 点在平面ABC 内的射影是△ABC 的 ( )(A )外心 (B )内心 (C )重心 (D )垂心7.从平面外一点向这个平面引两条斜线段,它们所成的角为θ.这两条斜线段在平面内的射影成的角为α(90︒≤α<180︒),那么θ与α的关系是 ( )(A )θ<α (B )θ>α (C )θ≥α (D )θ≤α8.已知直线l 1与平面α成30︒角,直线l 2与l 1成60︒角,则l 2与平面α所成角的取值范围是 ( )(A )[0︒,60︒] (B )[60︒,90︒] (C )[30︒,90︒] (D )[0︒,90︒]【典例剖析】例1.如果四面体的两组对棱互相垂直,求证第三组对棱也互相垂直.已知:四面体ABCD 中,AB ⊥CD ,AD ⊥BC ;求证:AC ⊥BD ;证法一:作AO ⊥平面BCD 于O , 连OB 、OC 、OD ,∵AB ⊥CD ,∴OB ⊥CD ,同理,由AD ⊥BC 得OD ⊥BC ,∴O 是△BCD 的垂心,∴OC ⊥BD ,从而AC ⊥BD .证法二:设AB =a ,AC =b ,AD =c ,则BC =b -a ,BD =c -a ,CD=c -b ,∵AB ⊥CD ,AD ⊥BC ,∴a ⋅(c -b )=0,c ⋅(b -a )=0,则a ⋅c =a ⋅b ,a ⋅c =c ⋅b .∴a ⋅b =c ⋅b ,即a ⋅b -c ⋅b =0,从而有b ⋅(c -a )=0,故AC ⊥BD .例2.如图,在三棱锥P -ABC 中,∠ACB =90︒,∠ABC =60︒,PC ⊥平面ABC ,AB =8,PC =6,M 、N 分别是P A 、PB 的中点,设△MNC 所在平面与△ABC 所在平面交于直线l .(1)判断l 与MN 的位置关系,并进行证明; (2)求点M 到直线l 的距离.解:(1)l //MN ,证明如下: ∵M 、N 分别是P A 、PB 的中点,∴MN //AB ,MN ⊄平面ABC ,AB ⊂平面ABC , ∴MN //平面ABC .又∵MN ⊂平面MNC ,平面MNC 平面ABC =l ,∴MN //l .(2)取AC 的中点Q ,连MQ ,则MQ //PC ,而PC ⊥平面ABC ,∴MQ ⊥平面ABC .作QD ⊥直线l 于D ,连MD ,则MD ⊥直线l .线段MD 的长即为M 到直线l 的距离.在Rt △ABC 中,可求得AC =43,∴QC =23.又MQ =21PC =3,∠QCD =30︒,∴QD =21QC =3. 于是 MD =22QD MQ +=23.DC O B A abcN M P C B A 例3.如图,P 是ΔABC 所在平面外一点,且PA ⊥平面ABC 。
高三数学一轮复习 第九章《立体几何》9-1精品
• (4)能用向量方法解决线线、线面、面面的夹角的计算 问题,体会向量方法在研究几何问题中的作用.
精选版ppt
7
• ●命题趋势
• 1.空间几何体
• 空间几何体是立体几何初步的重要内容,高考非常重视 对这一部分的考查.一是在选择、填空题中有针对性地 考查空间几何体的概念、性质及主要几何量(角度、距 离、面积、体积)的计算等.二是在解答题中,以空间 几何体为载体考查线面位置关系的推理、论证及有关计 算.
精选版ppt
9
• 3.空间向量与立体几何(理)
• 高考试题中的立体几何解答题,包括部分选择、填空题, 大多都可以使用空间向量来解答.高考在注重对立体几 何中传统知识和方法考查的同时,加大了对空间向量的 考查.给考生展现综合利用所学知识解决实际问题的才 能提供更宽阔的舞台.
• 这一部分高考命题主要有以下几个方面:
精选版ppt
27
• 1°球面被经过球心的平面截得的圆叫做大圆. • 2°不过球心的截面截得的圆叫做球的小圆.
精选版ppt
28
• (3)球面距离:
• 1°定义:在球面上两点之间的最短距离,就是经过这
两点的 在这两点间的一段
的长度,这个弧
长叫做两大点圆的球面距离.
劣弧
• 2°地球上的经纬线
• 当把地球看作一个球时,经线是球面上从北极到南极的 半个大圆,纬线是与地轴垂直的平面与球面的交线,其
• ②棱锥的高、斜高和斜高在底面内的射影组成一个直角 三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成 一个直角三角形.
• 4.棱台的概念及性质
• (1)定义:棱锥被 的部分叫做棱台.
高三数学第一轮复习立体几何的综合问题知识精讲
高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。
解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1. 如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2. 如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a =(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=∙-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。
2012届高三数学一轮复习第九章《立体几何》97精品练习
第9章 第7节一、选择题1.已知正方体ABCD -A1B1C1D1中,E 为侧面BCC1B1的中心.若AE →=zAA1→+xAB →+yAD →,则x +y +z 的值为( ) A .1 B.32 C .2D.34[答案] C[解析] ∵AE →=AB →+BE →=AB →+12AA1→+12AD →.2.将边长为1的正方形ABCD 沿对角线BD 折成直二面角,若点P 满足BP →=12BA →-12BC →+BD →,则|BP →|2的值为( ) A.32B .2 C.10-24D.94[答案] D[解析] 由题意,翻折后AC =AB =BC , ∴∠ABC =60°,∴|BP →|2=|12BA →-12BC →+BD →|2=14|BA →|2+14|BC →|2+|BD →|2-12BA →·BC →-BC →·BD →+BA →·BD →=14+14+2-12×1×1×cos60°-1×2cos45°+1×2×cos45°=94.3.(2010·广西南宁二中模考)在正三棱柱ABC -A1B1C1中,AA1=AB ,则AC1与平面BB1C1C 所成的角的正弦值为( ) A.22 B.155 C.64D.63[答案] C[解析] 解法一:取BC 的中点D ,在正三角形ABC 中,AD ⊥BC ,在正三棱柱中,CC1⊥平面ABC ,AD ⊂平面ABC ,∴CC1⊥AD ,∴AD ⊥平面BCC1B1,∴∠AC1D 为AC1与平面BB1C1C 所成的角,设AB =AA1=1,则AD =32,AC1=2,∴sin ∠AC1D =AD AC1=64,故选C. 解法二:以线段BC 的中点D 为原点,直线BC 、AD 分别为x 轴、y 轴建立空间直角坐标系,如图.设AB =1,则A(0,32,0),C1(12,0,1), 设AC1与平面BB1C1C 所成角为θ,易知平面BB1C1C 的一个法向量为DA →=(0,32,0),又AC1→=(12,-32,1),∴sinθ=|cos 〈AC1→,DA →〉|=|AC1→·DA →||AC1→|·|DA →|=64,故选C.4.在棱长为2的正方体ABCD -A1B1C1D1中,G 为AA1的中点,则直线BD 与平面GB1D1的距离为( ) A.33 B.263C.63D.233[答案] B[分析] 求直线与平面的距离,应有直线与平面平行,故可转化为点面距,为此找出平面的一个法向量和该点与平面内一点连线的方向向量,即可通过向量的数量积来求.一般地,平面α的法向量为n ,平面内一点P 和平面外一点Q ,则Q 到α的距离d =|n·PQ →||n|.[解析] 如图建立空间直角坐标系,则B(2,2,0),G(2,0,1),B1(2,2,2),D1(0,0,2),D1B1→=(2,2,0),D1G →=(2,0,-1),BB1→=(0,0,2).设平面GB1D1的法向量n =(x ,y ,z),则 n·D1B1→=0,n·D1G →=0, ∴2x +2y =0,2x -z =0, 即y =-x ,z =2x.令x =1,则n =(1,-1,2).∵BD ∥B1D1,∴BD ∥平面GB1D1. ∴BD 与平面GB1D1的距离为 d =|BB1→·n||n|=263.故选B.5.已知二面角α-l -β的大小为120°,点B 、C 在棱l 上,A ∈α,D ∈β,AB ⊥l ,CD ⊥l ,AB =2,BC =1,CD =3,则AD 的长为( ) A.14 B.13 C .2 2D .2 5[答案] D[解析] 由条件知|AB →|=2,|BC →|=1,|CD →|=3,AB →⊥BC →,BC →⊥CD →,〈AB →,CD →〉=60°,AD →=AB →+BC →+CD →, ∴|AD →|2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2BC →·CD →+2AB →·CD → =4+1+9+2×2×3×cos60° =20,∴|AD →|=2 5.6.正四棱锥P -ABCD 的底面边长为2,高为3,E 、F 分别为PC ,PD 的中点,则异面直线AC 与EF 的距离为( ) A.12B.32C.233D.23[答案] B[分析] 若能找到n ,n·AC →=0,n·EF →=0,则d =|CF →·n||n|.[解析] 以正方形ABCD 的中心为原点,与边BC 、CD 垂直的直线分别为x 轴、y 轴,OP 为z 轴建立空间直角坐标系,则由条件知:C(1,1,0),D(-1,1,0),P(0,0,3),∴E ⎝⎛⎭⎫12,12,32,F ⎝⎛⎭⎫-12,12,32,∴OC →=(1,1,0),EF →=(-1,0,0),设n =(x ,y ,z),则n·OC →=0,n·EF →=0,∴x +y =0,-x =0,∴x =y =0, 取n =(0,0,1),又CF →=⎝⎛⎭⎫-32,-12,32, ∴d =|n·CF →||n|=32,故选B.[点评] 只要向量n 与两条异面直线的方向向量垂直,不论两点M 、N 分别是两异面直线上的哪一点,都有d =|n·MN →||n|.7.(2010·河南新乡市模考)如图,正方体ABCD -A1B1C1D1的棱长为1,O 是底面A1B1C1D1的中心,则点O 到平面ABC1D1的距离为()A.12B.24C.22D.32[答案] B[解析] 以D 为原点,DA 、DC 、DD1为x 轴、y 轴、z 轴建立空间直角坐标系,则A(1,0,0),B(1,1,0),D1(0,0,1),C1(0,1,1),O ⎝⎛⎭⎫12,12,1,设平面ABCD 的法向量n =(x ,y,1),则 ⎩⎪⎨⎪⎧n·AB →=0n·AD1→=0,∴⎩⎪⎨⎪⎧ y =0-x +1=0,∴⎩⎪⎨⎪⎧x =1y =0,∴n =(1,0,1),又OD1→=⎝⎛⎭⎫-12,-12,0, ∴O 到平面ABC1D1的距离d =|n·OD1→||n|=122=24.[点评] 1.建立坐标系可以有不同的方案,如以A 为原点,直线AB 、AD 、AA1分别为x 轴、y 轴、z 建立空间直角坐标系,则O ⎝⎛⎭⎫12,12,1,A(0,0,0),B(1,0,0),D1(0,1,1),设平面ABC1D1的法向量n =(x ,y,1),则⎩⎪⎨⎪⎧n·AB →=0n·AD1→=0,∴⎩⎪⎨⎪⎧x =0y =1,∴n =(0,-1,1),∴O 到平面ABC1D1的距离h =|AO →·n||n|=24.2.也可以不用空间向量求解.取B1C1的中点M ,连结B1C 交BC1于O′,取O′C1的中点N ,连结MN ,则MN ⊥BC1,又在正方体ABCD -A1B1C1D1中,OM 平行于平面ABC1D1,则O 到平面ABC1D1的距离转化为M 到平面ABC1D1的距离,即MN =24,故选B. 8.将正方形ABCD 沿对角线BD 折成一个120°的二面角,点C 到达点C1,这时异面直线AD 与BC1所成角的余弦值是( ) A .-34B .-34C.34D.34[答案] D[解析] 设正方形的边长为1,AC 与BD 交于点O ,当折成120°的二面角时, AC12=⎝⎛⎭⎫222+⎝⎛⎭⎫222-2·22·22·cos120°=32.又AC1→=AD →+DB →+BC1→,∴|AC1→|2=|AD →|2+|DB →|2+|BC1→|2+2AD →·DB →+2AD →·BC1→+2DB →·BC1→=1+2+1+2×1×2cos135°+2×2×1×cos135°+2AD →·BC1→=2AD →·BC1→=2|AD →|·|BC1→|cos 〈AD →,BC1→〉=2cos 〈AD →,BC1→〉. ∴cos 〈AD →,BC1→〉=34.9.(2010·陕西宝鸡)已知正四面体A -BCD ,设异面直线AB 与CD 所成的角为α,侧棱AB 与底面BCD 所成的角为β,侧面ABC 与底面BCD 所成的角为γ,则( ) A .α>β>γ B .α>γ>β C .β>α>γD .γ>β>α[答案] B[解析] 如图,取底面BCD 的中心为点O ,连接AO ,BO ,易知∠ABO =β,取BC 的中点E ,连接AE 、OE ,易知∠AEO =γ,∵OB>OE ,∴0<β<γ<π2,延长BO交CD 于F ,则BF ⊥CD ,又AO ⊥CD ,∴CD ⊥平面ABF ,∴CD ⊥AB ,即α=π2,∴α>γ>β,故选B.10.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB.已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( ) A .150° B .45° C .60°D .120°[答案] C[解析] 由条件知,CA →·AB →=0,AB →·BD →=0, CD →=CA →+AB →+ BD →.∴|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=62+42+82+2×6×8cos 〈CA →,BD →〉 =116+96cos 〈CA →,BD →〉=(217)2, ∴cos 〈CA →,BD →〉=-12,∴〈CA →,BD →〉=120°,所以二面角的大小为60°. 二、填空题11.(2010·上海奉贤区调研)在正四面体ABCD 中,E 、F 分别是BC 、AD 中点,则异面直线AE 与CF 所成的角是________.(用反三角函数值表示) [答案] arccos 23[解析] 设正四面体的棱长为1,AB →=a ,AC →=b ,AD →=c ,则AE →=12(a +b),CF →=12c -b ,|a|=|b|=|c|=1,a·b =b·c =c·a =12,∴AE →·CF →=12(a +b)·(12c -b)=14a·c +14b·c -12a·b -12|b|2=-12, |AE →|2=14(|a|2+|b|2+2a·b)=34,|CF →|2=14|c|2+|b|2-b·c =34,∴|AE →|=32,|CF →|=32,cos 〈AE →,CF →〉=AE →·CF →|AE →|·|CF →|=-23,因异面直线所成角是锐角或直角,∴AE 与CF 成角为arccos 23.12.(2010·江西九江一中)空间一条直线l1与一个正四棱柱的各个面所成的角都为α,而另一条直线l2与这个正四棱柱的各条棱所成的角都为β,则sin2α+sin2β=________. [答案] 1[解析] 由正四棱柱的对称性知,若直线l1与各面成角都相等,则该直线一定经过或平行于四棱柱的一条体对角线,l2也一样,于是取对角线BD1研究,则α=∠BD1B1,β=∠BD1D ,∴sin2α+sin2β=sin2α+cos2α=1.13.(2010·山东聊城联考)如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD →·AC →≠0; ②∠BAC =60°;③三棱锥D -ABC 是正三棱锥;④平面ADC 的法向量和平面ABC 的法向量互相垂直. 其中正确的是________(填序号). [答案] ②③[解析] BD ⊥平面ADC ⇒BD ⊥AC ,①错;AB =AC =BC ,②对;由⎩⎪⎨⎪⎧DA =DB =DC AB =AC =BC 知,③对④错.14.给出下列命题:①直线l 的方向向量为a =(1,-1,2),直线m 的方向向量为b =(2,1,-12),则l 与m 垂直.②直线l 的方向向量为a =(0,1,-1),平面α的法向量为n =(1,-1,-1),则l ⊥α. ③平面α、β的法向量分别为n1=(0,1,3),n2=(1,0,2),则α∥β.④平面α经过三点A(1,0,-1),B(0,1,0),C(-1,2,0),向量n =(1,u ,t)是平面α的法向量,则u +t =1. 其中真命题的序号是________.[答案] ①④[解析] ①∵a·b =(1,-1,2)·(2,1,-12)=0,∴a ⊥b ,∴l ⊥m ,故①真;②∵a·n =(0,1,-1)·(1,-1,-1)=0, ∴a ⊥n ,∴l ∥α或l ⊂α,故②假;③∵n1与n2不平行,∴α与β不平行,∴③假; ④AB →=(-1,1,1),AC →=(-2,2,1), 由条件n ⊥AB →,n ⊥AC →,∴⎩⎪⎨⎪⎧n·AB →=0n·AC →=0,即⎩⎪⎨⎪⎧ -1+u +t =0-2+2u +t =0,∴⎩⎪⎨⎪⎧u =1t =0,∴u +t =1.三、解答题15.(2010·温州中学模拟)如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥平面ABCD ,PA =AB =2,BC =4,E 是PD 的中点. (1)求证:平面PDC ⊥平面PAD ; (2)求点B 到平面PCD 的距离;(2)方法1:过A 作AF ⊥PD ,垂足为F.在RtPAD 中,PA =2,AD =BC =4,PD =42+22=25, AF·PD =PA·AD ,∴AF =2×425=455,即点B 到平面PCD 的距离为455.方法2:如图,以A 为原点,AD 、AB 、AP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系A -xyz ,则依题意可知A(0,0,0),B(0,2,0),C(4,2,0),D(4,0,0),P(0,0,2), PD →=(4,0,-2),CD →=(0,-2,0),BC →=(4,0,0), 设面PCD 的一个法向量为n =(x ,y ,z),则 ⎩⎪⎨⎪⎧n·CD →=0n·PD →=0⇒⎩⎪⎨⎪⎧-2y =04x -2=0⇒⎩⎪⎨⎪⎧y =0x =12,所以面PCD 的一个单位法向量为n |n|=⎝⎛⎭⎫55,0,255,所以|BC →·n|n||=|(4,0,0)·(55,0,255)|=455,则点B 到面PCD 的距离为455.(3)方法1:过C 作CH ⊥AE ,垂足为H ,连接DH ,由(1)可知CD ⊥面PAD ,⎭⎪⎬⎪⎫ ⎭⎪⎬⎪⎫AE ⊥CDAE ⊥CH CD∩CH =C ⇒AE ⊥面CDH DH ⊂面CDH⇒AE ⊥DH ,⎭⎪⎬⎪⎫AE ⊥DH AE ⊥CH ⇒∠CHD 为二面角C -AE -D 的平面角. 在Rt △ADH 中,DH =AD·sin ∠DAH =4×55=455,在Rt △CDH 中,CH2=CD2+DH2⇒CH =655.所以cos ∠CHD =DH CH =455655=23.方法2:建立空间直角坐标系同(2)的方法2,则依题意可知A(0,0,0),C(4,2,0),D(4,0,0),P(0,0,2),E(2,0,1),易知面ADE 的一个法向量为n1=(0,1,0),设面ACE 的一个法向量为n2=(x ,y,1),又AE →=(2,0,1),AC →=(4,2,0),则⎩⎪⎨⎪⎧n2·AE →=0n2·AC →=0⇒⎩⎪⎨⎪⎧2x +1=04x +2y =0⇒⎩⎪⎨⎪⎧x =-12y =1,所以平面ACE 的一个法向量为n2=(-12,1,1).设二面角C -AE -D 的平面角为θ, 则cosθ=n1·n2|n1|·|n2|=-12×0+1×1+1×0-12+12+12×02+12+02=23. 结合图形可知二面角C -AE -D 的余弦值为23.16.如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB =3,BC =1,PA =2,E 为PD 的中点.(1)求直线AC 与PB 所成角的余弦值;(2)在侧面PAB 内找一点N ,使NE ⊥平面PAC ,并求出点N 到AB 和AP 的距离.[解析] (1)分别以AB 、AD 、AP 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A ,B ,C ,D ,P ,E 的坐标为A(0,0,0),B(3,0,0),C(3,1,0),D(0,1,0),P(0,0,2),E(0,12,1),从而AC →=(3,1,0),PB →=(3,0,-2).设AC →与PB →的夹角为θ,则cosθ=AC →·PB →|AC →|·|PB →|=32×7=3714,∴AC 与PB 所成角的余弦值为3714.(2)由于N 点在侧面PAB 内,故可设N 点坐标为(x,0,z),则NE →=(-x ,12,1-z),由NE ⊥平面PAC 可得, ⎩⎪⎨⎪⎧ NE →·AP →=0NE →·AC →=0,即⎩⎨⎧ -x ,12,1-,0,=0-x ,12,1-3,1,=0,化简得⎩⎪⎨⎪⎧ z -1=0-3x +12=0,∴⎩⎪⎨⎪⎧ x =36z =1,即N 点的坐标为(36,0,1), 从而N 点到AB 和AP 的距离分别为1,36. 17.直四棱柱ABCD -A1B1C1D1中,底面ABCD 是等腰梯形,AB ∥DC ,AB =2AD =2DC =2,E 为BD1的中点,F 为AB 中点.(1)求证EF ∥平面ADD1A1;(2)若BB1=22,求A1F 与平面DEF 所成角的大小. [解析] (1)证明:连结AD1,在△ABD1中∵E 是BD1的中点,F 是BA 中点,∴EF 綊12AD1 又EF ⊄平面ADD1A1,AD1⊂平面ADD1A1∴EF ∥平面ADD1A1.(2)解法1:延长D1A1至H ,使A1H =D1A1,延长DA 至G ,使AG =DA ,并连结HG 和A1G ,则A1G ∥D1A ∥EF∴A1G ∥平面DEF ,∴A1到平面DEF 的距离等于G 到平面DEF 的距离,设为x由题意可得,DF =BC =AD =1,连DB ,在Rt △D1DB 中,DE =12D1B 又DB =3,且DD1=22, ∴DE =12×12+3=144, 又EF =12AD1=121+12=64, 在△DEF 中,由余弦定理得:cos ∠EDF =78+1-382×144×1=314 ∴sin ∠EDF =1-914=514∴S △DEF =12×144×1×514=58, 又点E 到平面DGF 的距离d =12DD1=24不难证明∠DFG 是Rt △(∵FA =12DG) ∴S △DFG =12×DF×FG =12×1×3=32由VE -DGF =VG -DEF 得,x·S △DEF =d·S △DFG , ∴x·58=24×32, ∴x =305,即A1到平面DEF 的距离为305, 设A1F 与平面DEF 成α角,则sinα=x A1F =305×11+12=255,∴α=arcsin 255, 即A1F 与平面DEF 所成角的大小为arcsin 255.解法2:建立如图所示的空间直角坐标系D -xyz(DG 为AB 边上的高)则有A1(32,-12,22),F(32,12,0),D1(0,0,22),B(32,32,0),∴E(34,34,24), 设平面DEF 的一个法向量为n =(x ,y ,z),由⎩⎨⎧ n·DE →=34x +34y +24z =0n·DF →=32x +12y =0,取x =1解得y =-3,z = 6∴法向量n =(1,-3,6),∵A1F →=(0,1,-22), 设A1F 与平面DEF 所成的角为θ,则sinθ=|cos 〈A1F →,n 〉|=|A1F →·n||A1F →|·|n|=|0×1+-3+-226|32·10=255, ∴A1F 与平面DEF 所成角的大小为arcsin 255.。
2012届高三数学复习课件(广东文)第9章第3节__直线、平面垂直的判定与性质
2 证明:设DF的中点为N,
1 连接AN,MN,则MN // CD. 2 1 又AO // CD,则MN // AO 2 所以四边形MNAO为平行四边形,所以OM //AN . 又AN 平面DAF,OM 平面DAF, 所以OM //平面DAF .
3 过点F 作FG AB于G.
反思小结: 本题考查直线与直线垂直、直线与平 面垂直等基础知识,考查空间想象能力和推理 论证能力.立体几何的证明关键是学会分析和 掌握一些常规的证明方法.如:已知中点证明 垂 直 时 要 首 先 考 虑 等 腰 三 角 形 中 的“ 三 线 合 一”;已知线段或角度等数量关系较多时最好 标示出来,充分进行计算,从而发现蕴含的垂 直等关系;已知线面垂直时会有哪些结论,是 选择线线垂直还是选择面面垂直;要证明结论 或要得到哪个结论,就必须满足什么条件等.
4.如图,直线PA垂直于以AB为直径的圆所在的平面, C为圆上异于点A和点B的任意一点.有下列四个结论: ①PC BC; ②BC 平面PAC; ③AC PB; ④PA BC. 其中不正确的是 ③
解析:依题意,ACB 90,即BC AC. 又PA 底面ABC,所以PA BC. 而PA AC A,所以BC 平面PAC,所以BC PC. 综上得①②④正确. 假设③正确,则因为AC PB,AC BC, 所以AC 平面PBC,所以AC PC. 显然,这与由PA 底面ABC,得PA AC矛盾. 故不正确的结论是③.
解析:A错,由m ,n , m n , 相交或平行; B对,因为由 //,m m , 又n //,所以m n; C错,m,n垂直、相交、异面均有可能; D错,只有当n 时才会有n . 综上,知选B
高三数学一轮复习课件立体几何
D
公理2 如果两个平面有一个公共点,那么它们还有其他公共
点,且所有这些公共点的集合是一条过这个公共点的直线.
P l且P l
作用 1、用来判定两平面是否相交; 2、画两个相交平面的交线; 即: A , A 直线AB为交线. B , B 3、证明多点共线. 练习2: 已知ΔABC在平面α外, AB、AC、BC的延长线分别与 平面α交于点M、N、P三
C1 D1 E B F C A A1 D B1
例2 :
已知正方体的棱长为a , M 为 AB 的中点, N为 BB1的中点,求 A1M 与 C1 N 所成角的余弦值。 解:如图,取A1B1的中点E, 连BE, 有BE∥ A1M 取CC1的中点G,连BG. 有BG∥ C1N
棱柱 棱锥 棱台 圆柱 圆锥 圆台 球
结构特征
有两个面互相平行, 其余各面都是四边形, 并且每相邻两个四边形 的公共边都互相平行。
侧棱
E’ F’ A’
D’ B’
C’
底 面
E
D
F
A
侧面
C
B
顶点
棱柱 棱锥 棱台 圆柱 圆锥 圆台 球
结构特征
有一个面是多 边形,其余各面都 是有一个公共顶点 侧棱 的三角形。
a′
θ
O
平 移
若两条异面直线所成角为90°,则称它们互相垂直。 异面直线a与b垂直也记作a⊥b
90] 异面直线所成角θ 的取值范围: (0,
4.求异面直线所成的角:
求两条异面直线所成角的步骤:
1.选点,引平行线找到所求的角; 2.把该角放入三角形; 3.根据边角关系计算,求角. 例1.正方体ABCD-A1B1C1D1 中,E,F分别是BB1,CC1的中 点,求AE,BF所成的角
2022年高考数学理科第一轮复习资料:9(A)-1
第九章(A)第一讲时间:60分钟满分:100分一、选择题(8×5=40分)1.(教材改编题)三个平面两两相交,它们的交线条数是() A.1条B.2条C.3条D.1条或3条答案:D解析:如图(平面图).2.(2009·南京五校诊断卷)已知四个命题:(1)三点确定一个平面;(2)若点P不在平面α内,A、B、C三点都在平面α内,则P、A、B、C四点不在同一平面内;(3)两两相交的三条直线在同一平面内;(4)两组对边分别相等的四边形是平行四边形,其中正确命题的个数是()A.0个B.1个C.2个D.3个答案:A解析:根据平面的基本性质进行判断.(1)不正确,若此三点共线,则过共线的三点有无数个平面.(2)不正确,当A、B、C三点共线时,P、A、B、C四点共面.(3)不正确,共点的三条直线可能不共面,如教室墙角处两两垂直的三条直线就不共面.(4)不正确,将平行四边形沿其对角线翻折一个适当的角度后折成一个空间四边形,两组对边仍然相等,但四个点不共面,连平面图形都不是,显然不是平行四边形.故选A.3.若点P∈α,Q∈α,R∈β,α∩β=m,且R∉m,PQ∩m=M,过P、Q、R三点确定一个平面γ,则β∩γ是() A.直线QR B.直线PR C.直线RM D.以上均不正确答案:C解析:∵PQ∩m=M,m⊂β,∴M∈β.又M∈平面PQR,即M∈γ,故M是β与γ的公共点.又R∈β,R∈平面PQR,即R∈γ,∴R是β与γ的公共点.∴β∩γ=MR.4.(2009·山东泰安一模)设A、B、C、D是空间中四个不同的点,在下列命题中,不正确的是() A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD⊥BCD.若AB=AC,DB=DC,则AD=BC答案:D解析:若AC与BD共面,则A、B、C、D四点共面,那么AD与BC共面,所以A正确;若AC与BD是异面直线,那么A、B、C、D四点不共面,那么AD与BC是异面直线,所以B正确;若AB=AC,DB=DC且四点共面,显然AD⊥BC,若AB=AC,DB=DC且四点不共面,如图,空间四边形中,取BC中点M,连接AM、DM,显然BC⊥平面AMD,那么AD⊥BC,所以C正确.综上可知选D.5.设a、b是异面直线,那么()A.必然存在惟一的一个平面同时平行a、bB.必然存在惟一的一个平面同时垂直a、bC.过a存在惟一的一个平面平行于bD.过a存在惟一的一个平面垂直于b答案:C解析:A错,可以存在无数个平面同时平行于a,b.B错,不一定存在平面和a,b同时垂直.D错,过a也不一定存在平面垂直于b.综上所述C正确.总结评述:本题考查立体几何中线面平行、垂直关系,培养学生空间想象能力.6.空间四边形ABCD,M,N分别是AB、CD的中点,且AC=4,BD=6,则() A.1<MN<5 B.2<MN<10 C.1≤MN≤5 D.2<MN<5答案:A解析:取AD中点P,△PMN中,PM=3,PN=2,由三角形三边大小关系得:1<MN<5.故选A.7.在正方体ABCD—A1B1C1D1中,点E1,F1分别是线段A1B1,A1C1的中点,则直线BE1与AF1所成角的余弦值是()A.3010 B.12 C.3015 D.1510答案:A解析:设棱长为1,取BC中点,连结OF1,OA,则∠AF 1O等于BE1与AF1所成的角,可求得AO=OF1,∴cos∠AF1O=AF1 2OF1=3452=3010,∴选A.8.(2009·江西,9)如图所示,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误..的为()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°答案:C解析:如右图∵MN∥PQ,∴MN∥面ABC,∴MN∥AC.同理BD∥QM.∵MN⊥QM,∴AC ⊥BD ,∴A 是对的;∵AC ∥MN ,∴AC ∥面PQMN ,故B 对;∵BD ∥QM ,∴PM 与BD 所成的角即为∠PMQ ,∴PM 与BD 成45°角,故D 对.故选C.二、填空题(4×5=20分)9.(2009·青岛质检)不重合的三条直线,若相交于一点,最多能确定________个平面;若相交于两点,最多能确定________个平面;若相交于三点,最多能确定________个平面.答案:3 2 1解析:三条直线相交于一点,最多可确定3个平面,如图(1);三条直线相交于两点,最多可确定2个平面,如图(2);三条直线相交于三点,最多可确定1个平面,如图(3).10.如图,在正方体ABCD -A 1B 1C 1D 1中,CC 1中点为E ,则AE 与BC 1所在的两条直线的位置关系是________,它们所成的角的大小为________. 答案:异面 π4 解析:将所成角转化到△D 1AE 中用余弦定理来解.设AB =2,在△AD 1E 中,AD 1=22,D 1E =5,AE =3,cos ∠D 1AE =D 1A 2+AE 2-D 1E 22×D 1A ×AE =(22)2+32-(5)22×22×3=22, ∴∠D 1AE =π4. 11.设a ,b ,c 是空间的三条直线,下面给出四个命题:①若a ⊥b ,b ⊥c ,则a ∥c ;②若a 、b 是异面直线,b 、c 是异面直线,则a 、c 也是异面直线;③若a 和b 相交,b 和c 相交,则a 和c 也相交.④若a 和b 共面,b 和c 共面,则a 和c 也共面.其中真命题的个数是________个.答案:0解析:∵a ⊥b ,b ⊥c∴a 与c 可以相交、平行、异面,故①错;又∵a ,b 异面,b ,c 异面,则a ,c 异面、相交、平行,故②错;由a 、b 相交,b 、c 相交,则a 、c 可以异面,故③错;同理④错,故真命题个数为0个.12.(2009·北京海淀一模)已知四面体P -ABC 中,P A =PB =PC ,且AB =AC,∠BAC=90°,则异面直线P A与BC所成的角为________.答案:90°解析:如图,因为△ABC是直角三角形,所以点P在底面的射影一定落在Rt△ABC斜边的中点上,设为点M,连结PM、AM.又因为AB=AC,所以AM与BC垂直,由三垂线定理可知P A与BC垂直,所以P A与BC所成的角为90°.三、解答题(4×10=40分)13.如图所示,正方体ABCD-A1B1C1D1中,M、N分别是A1B1,B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.解析:(1)由于M、N分别是A1B1和B1C1的中点,可证明MN∥AC,因此AM与CN不是异面直线.(2)由空间图形可感知D1B和CC1为异面直线的可能性较大,判断的方法可用反证法.探究拓展:解决这类开放型问题常用的方法有直接法(即由条件入手,经过推理、演算、变形等),如第(1)问,还有假设法,特例法,有时证明两直线异面用直线法较难说明问题,这时可用反证法,即假设两直线共面,由这个假设出发,来推证错误,从而否定假设,则两直线是异面的.解:(1)不是异面直线.理由如下:∵M、N分别是A1B1、B1C1的中点,∴MN∥A1C1.又∵A1A∥D1D,而D1D綊C1C,∴A1A綊C1C,∴四边形A1ACC1为平行四边形.∴A1A∥AC,得到MN∥AC,∴A、M、N、C在同一个平面内,故AM和CN不是异面直线.(2)是异面直线.理由如下:假设D1B与CC1在同一个平面CC1D1内,则B∈平面CC1D1,C∈平面CC1D1.∴BC⊂平面CC1D1,这与在正方体中BC⊥平面CC1D1相矛盾,∴假设不成立,故D1B与CC1是异面直线.14.如下图所示,在棱长为1的正方体ABCD-A1B1C1D1中,M为AB的中点,N为BB1的中点,O为面BCC1B1的中心.(1)过O作一直线与AN交于P,与CM交于Q(只写作法,不必证明);(2)求PQ的长(不必证明).解析:(1)由ON∥AD知,AD与ON确定一个平面α.又O、C、M三点确定一个平面β(如下图所示).∵三个平面α,β和ABCD两两相交,有三条交线OP、CM、DA,其中交线DA与交线CM不平行且共面.∴DA与CM必相交,记交点为Q.∴OQ是α与β的交线.连结OQ与AN交于P,与CM交于Q,故OPQ即为所作的直线.(2)解三角形APQ可得PQ=14 3.15.如图,在直三棱柱ABC-A1B1C1中,AB=BC=B1B=a,∠ABC=90°,D、E分别为BB1、AC1的中点.(1)求异面直线BB1与AC1所成的角的正切值;(2)证明:DE为异面直线BB1与AC1的公垂线;(3)求异面直线BB1与AC1的距离.解析:(1)由于直三棱柱ABC-A1B1C1中,AA1∥BB1,所以∠A1AC1就是异面直线BB1与AC1所成的角.又AB=BC=B1B=a,∠ABC=90°,所以A1C1=2a,tan∠A1AC1=2,即异面直线BB1与AC1所成的角的正切值为 2.(2)证明:解法一:如图,在矩形ACC1A1中,过点E作AA1的平行线MM1分别交AC、A1C1于点M、M1,连结BM,B1M1,则BB1綊MM1.又D、E分别是BB1、MM1的中点,可得DE綊BM.在直三棱柱ABC-A1B1C1中,由条件AB=BC得BM⊥AC,所以BM⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE为异面直线BB1与AC1的公垂线.解法二:如图,延长C1D、CB交于点F,连结AF,由条件易证D是C1F的中点,B是CF的中点,又E是AC1的中点,所以DE∥AF.在△ACF中,由AB=BC=BF知AF⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,所以AF⊥AA1,故AF⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE为异面直线BB1与AC1的公垂线.(3)由(2)知线段DE的长就是异面直线BB1与AC1的距离,由于AB=BC=a,∠ABC=90°,所以DE=2 2a.反思归纳:两条异面直线的公垂线是指与两条异面直线既垂直又相交的直线,两条异面直线的公垂线是惟一的,两条异面直线的公垂线夹在两条异面直线之间的线段的长度就是两条异面直线的距离.证明一直线是某两条异面直线的公垂线,可以分别证明这条直线与两条异面直线垂直.本题的思路是证明这条直线与一个平面垂直,而这一平面与两条异面直线的位置关系是一条直线在平面内,另一条直线与这个平面平行.16.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O ,M 分别是BD 1,AA 1的中点.(1)求证:MO 是异面直线AA 1和BD 1的公垂线;(2)求异面直线AA 1与BD 1所成的角的余弦值;(3)若正方体的棱长为a ,求异面直线AA 1与BD 1的距离.解析:(1)证明:∵O 是BD 1的中点,∴O 是正方体的中心,∴OA =OA 1,又M 为AA 1的中点,即OM 是线段AA 1的垂直平分线,故OM ⊥AA 1.连结MD 1、BM ,则可得MB =MD 1.同理由点O 为BD 1的中点知MO ⊥BD 1,即MO 是异面直线AA 1和BD 1的公垂线.(2)由于AA 1∥BB 1,所以∠B 1BD 1就是异面直线AA 1和BD 1所成的角. 在Rt △BB 1D 1中,设BB 1=1,则BD 1=3,所以cos ∠B 1BD 1=33, 故异面直线AA 1与BD 1所成的角的余弦值等于33. (3)由(1)知,所求距离即为线段MO 的长,由于OA =12AC 1=32a ,AM =a 2,且OM ⊥AM ,所以OM =22a .。
高三一轮立体几何复习课教案
高三一轮立体几何复习课教案教案标题:高三一轮立体几何复习课教案教案目标:1. 复习高三一轮学习的立体几何基础知识;2. 强化学生对常见立体几何概念的理解和应用;3. 提高学生的解题能力和问题解决能力。
教学重点:1. 复习并掌握常见立体几何概念,如平行四边形、柱体、锥体等;2. 强化立体几何的思维方式和问题解决方法;3. 训练学生解决高难度立体几何题目的能力。
教学准备:1. 教学课件或者白板、黑板等;2. 学生练习册或习题集;3. 成绩单和学生笔记。
教学过程:一、引入(5分钟)1. 利用教学课件或黑板,引入本节课的主题,并激发学生对立体几何的兴趣和热情;2. 老师可以提出一个与立体几何相关的问题或者引用一个实际问题来引导学生思考;二、复习基础知识(15分钟)1. 复习并强化学生对立体几何基础概念的理解,例如平行四边形的性质、柱体的表面积和体积公式等;2. 提供简单的练习题,让学生回顾并解答,鼓励他们回忆相关的知识点;三、强化概念应用(25分钟)1. 回顾并讲解一些与立体几何相关的典型问题,例如求解线段比例、求解表面积和体积等;2. 给学生一些有挑战性的练习题,鼓励他们应用所学概念解决实际问题;3. 指导学生分析问题、确定解题方法,并辅导他们解题的思路和步骤;四、解题方法分享(15分钟)1. 学生进行小组活动,交流并分享解答问题的方法和思路;2. 老师对学生的分享进行点评和总结,同时指导他们在解题过程中的注意事项;3. 提供一些高难度问题,鼓励学生结合所学知识和解题方法进行探索和解答;五、课堂练习与梳理(15分钟)1. 发放练习册或习题集,让学生进行课堂练习;2. 在学生进行练习的同时,教师可以对学生的解题过程进行辅导和指导;3. 收集学生的成绩单,并提醒学生及时梳理和复习今日所学的知识点。
六、课堂总结与反思(5分钟)1. 对本节课的重点、难点进行总结,并强调学生的进步和知识提高;2. 鼓励学生提出问题、反思自己在学习过程中的困惑和不足之处;3. 鼓励学生积极参与课后的巩固练习,并准备下节课的复习内容。
高三数学复习(文科)立体几何知识点、方法总结
立体几何知识点整理(文科)一.直线和平面的三种位置关系:1. 线面平行符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。
mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。
mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。
若αα⊥⊥ml,,则ml//。
方法四:用向量方法:若向量l和向量m共线且l、m不重合,则ml//。
2.线面平行:方法一:用线线平行实现。
ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。
αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。
若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。
3.面面平行:方法一:用线线平行实现。
βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。
βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。
αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,方法二:用面面垂直实现。
llαββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。
βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。
3. 线线垂直:方法一:用线面垂直实现。
m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。
PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量l 和向量m 的数量积为0,则m l ⊥。
三.夹角问题。
(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角。
(常用到余弦定理)余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。
[精]高三第一轮复习全套课件9立体几何:立体几何复习1
o
o
α
a
一、概念
名称 定义
直线a、b是异面直线,经过空间 任意一点o,作直线a’、b’,并 使a’//a,b’//b,我们把直线a’ 和b’所成的锐角(或直角)叫做 异面直线a和b所成的角。 平面的一条斜线和它在这个平面内的 射影所成的锐角,叫做这条直线和这 个平面所成的角,特别地,若Lᅩα则 L与α所成的角是直角,若L//α或 L α,则L与α所成的角是0º 的角。
E 2
3
C
3
A 4 B A 4 B
二面角 D—AE—B 为60º
解:如图(1),作DM⊥AE于M,延长DM交CB于N , 沿AE折成60º 的二面角后如图(2)
过D作DF⊥平面ABCE, 连结EF、 DC 、 CF. 于是∠DEF是DE与平面ABCE所成的角, ∠DCF是DC与平面ABCE所成的角. D 3 A 4
C1
A1 C A
分析:求二面角B B1C A的度数,要作出平面角,显然二面 角的棱为B1C,故需在B1C上取一点,然后分别在两个面内作垂 直于棱的两条射线。
AN= AB AC = 1 2 = 6 3 3 BC 又 AC AB1 AQ B1C=AC AB1 AB1 AC 2 2 AQ= = =1 B1C AN 26 Sin AQN= AQ =
①作(找) 证 ③ 点 ④ 算 ②
例1: 如图,在正方体ABCD-A1B1C1D1中,E、F 三、例题
分别是BB1 、CD中点。求AE与D1F所成的角。
连结 解:如图,取AB的中点G , FG ,A1G , A1G与AE交于O (作) FG AD又 AD A1D1 A1 A1D1 FG 四边形A1GFD1 为平行四边形 D1 C1
图形
高三数学一轮复习 第九章《立体几何》97精品课件
三、直线的方向向量与直线的向量方程 1.对于定点A和向量a(a≠0),经过点A与向量a平行 → =ta(t∈R),称作以t为参数的参数 的直线l的向量方程 AP 方程,向量a称为该直线的方向向量. 2.对空间任一确定的点O,点P在经过点A与a平行 → = OA → 的直线l上的充要条件是:存在唯一的实数t,使 OP → =a,则 OP → =(1-t) OA → +tOB → ,叫做空间 +ta,在l上取 AB 直线的向量参数方程.
• 四、平面的法向量与平面的向量表示 • 1.如果向量a的基线与平面α垂直,则a称作平面α的法 向量.
2.设A是空间任一确定的点,n为空间中任一非零向 → · 量.如果空间点M满足 AM n=0 (1),则点M在过点A与向 量n垂直的平面α内.(1)式称为平面α的向量表示式,其中n 为平面α的法向量.
• 2.用向量方法研究直线与平面的有关位置关系 • 设直线l的方向向量为a,平面α的法向量为n,v1、v2是 与α平行的两个不共线向量. • (1)l∥α或l⊂α⇔存在两个实数λ、μ,使a=λv1+ μv2⇔a·n=0.
• (2)l⊥α⇔a∥n⇔存在实数t,使a=tn.
a⊥v1 l⊥α⇔ a⊥v2
3.求直线到平面的距离 设直线a∥平面α,A∈a,B∈α,n是平面α的法向 → ∥n, 量,过A作AC⊥α,垂足为C,则AC →· → +CB → )· →· ∵AB n=(AC n=AC n, →· → |· ∴|AB n|=|AC |n|. →· | AB n| → ∴直线a到平面α的距离d=|AC|= |n| .
⑤转化为几何结论.
• 借助空间向量可将立体几何中的平行、垂直、夹角、距 离等问题转化为向量的坐标运算,如: • 1.用向量方法研究两直线间的有关位置关系 • 设直线l1、l2的方向向量分别为a、b.
高三数学一轮复习 第九章《立体几何》95精品课件
• (理)(2010·宁波市模拟)已知α,β表示两个互相垂直的 平面,a,b表示一对异面直线,则a⊥b的一个充分条 件是( ) • A.a∥α,b⊥β B.a∥α,b∥β • C.a⊥α,b∥β D.a⊥α,b⊥β
b⊥β ⇒b∥α或b⊂α,又a∥α,此时a与b位 解析: α⊥β 置关系不确定,排除A;设α∩β=l,当a∥b∥l时,排除 a⊥α ⇒a∥β或a⊂β α⊥β b⊥β
• 3.a⊥b,a⊥c,b⊂α,c⊂α⇒a⊥α是错误的,b与c相
交的条件不能少. 4.两平面垂直 时,从一个平面内一点向另一个平面 ..
作垂线,则垂足必落在交线上.
• • • •
• • • •
一、特殊点在平面上的射影 1.△ABC所在平面外一点P在平面ABC内射影为O, (1)若PA=PB=PC,则O为△ABC外心 (2)若P到△ABC三边距离相等,则O为△ABC内心或旁 心 (3)若PA、PB、PC两两垂直,则O为△ABC的垂心 2.∠ACB所在平面外一点P在平面ACB内射影为O (1)若∠PCA=∠PCB,则O在∠BCA的平分线上 (2)若P到∠BCA两边距离相等,则O在∠BCA的平分线 上
• (文)(09·浙江)设α,β是两个不同的平面,l是一条直线, 以下命题正确的是( ) • A.若l⊥α,α⊥β,则l⊂β • B.若l∥α,α∥β,则l⊂β • C.若l⊥α,α∥β,则l⊥β • D.若l∥α,α⊥β,则l⊥β • 解析:若两平面平行,一直线垂直于其中一个平面,则 它垂直于另一个平面,故选C. • 答案:C
• (2)作棱的垂面,垂面与两个半平面的交线夹角,即二 面角的平面角. • (3)在二面角的一个半平面内取一点A,过A向另一个半 平面所在平面作垂线,垂足为B,再由B向棱作垂线, 垂足为C,则∠ACB就是二面角的平面角或其补角.
2012届高三数学一轮复习 第九章《立体几何》9-4精品练习
第9章第4节一、选择题1.(文)(09·某某)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2[答案] B[解析] 如图(1),α∩β=l,m∥l,l1∥l,满足m∥β且l1∥α,故排除A;如图(2),α∩β=l,m∥n∥l,满足m∥β,n∥β,故排除C.在图(2)中,m∥n∥l∥l2满足m∥β,n∥l2,故排除D,故选B.[点评] ∵l1与l2相交,m∥l1,n∥l2,∴m与n相交,由面面平行的判定定理可知α∥β;但当m、n⊂α,l1,l2⊂β,l1与l2相交,α∥β时,如图(3),得不出m∥l1且n∥l2.(理)设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是( )A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β[答案] C[解析] 对于A,如图正方体α、β分别为平面ABCD与平面ADD1A1,a、b分别为直线B1B和C1C.a与b也可能平行,对于B,∵a⊥α,α∥β,∴a⊥β,又b⊥β,∴a∥b,对于D,a与b也可能平行,故选C.2.(2010·某某检测)已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有( )A.0个B.1个C.2个D.3个[答案] C[解析] 依题意得,命题“a∥b,且a⊥γ⇒b⊥γ”是真命题(由“若两条平行线中的一条与一个平面垂直,则另一条也与这个平面垂直”可知);命题“a∥β,且a⊥c⇒β⊥c”是假命题(直线c 可能位于平面β内,此时结论不成立);命题“α∥b ,且α⊥c ⇒b ⊥c ”是真命题(因为α∥b ,因此在平面α内必存在直线b 1∥b ;又α⊥c ,因此c ∥b 1,c ⊥b ).综上所述,其中真命题共有2个,选C.3.(2010·东北三校模拟)正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别为A 1B 1,CD ,B 1C 1的中点,则下列命题正确的是( )A .AM 与PC 是异面直线B .AM ⊥PC C .AM ∥平面BC 1ND .四边形AMC 1N 为正方形 [答案] C[解析] 连接MP ,AC ,A 1C 1,AM ,C 1N ,由题易知MP ∥A 1C 1∥AC ,且MP =12AC ,所以AM 与PC 是相交直线,假设AM ⊥PC ,∵BC ⊥平面ABB 1A 1,∴BC ⊥AM ,∴AM ⊥平面BCC 1B 1,又AB ⊥平面BCC 1B 1矛盾,∴AM 与PC 不垂直.因为AM ∥C 1N ,C 1N ⊂平面BC 1N ,所以AM ∥平面BC 1N .又易得四边形AMC 1N 为菱形而不是正方形,故选C.4.(文)对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A .a ⊂α,b ⊂αB .a ⊂α,b ∥α C .a ⊥α,b ⊥αD .a ⊂α,b ⊥α [答案] B[解析] a 、b 异面时,A 错,C 错;若D 正确,则必有a ⊥b ,故排除A 、C 、D ,选B. (理)设a 、b 为两条直线,α、β为两个平面.下列四个命题中,正确的命题是( ) A .若a 、b 与α所成的角相等,则a ∥b B .若a ∥α,b ∥β,α∥β,则a ∥b C .若a ⊂α,b ⊂β,a ∥b ,则α∥β D .若a ⊥α,b ⊥β,α⊥β,则a ⊥b [答案] D[解析] 若直线a 、b 与α成等角,则a 、b 平行、相交或异面;对选项B ,如a ∥α,b ∥β,α∥β,则a 、b 平行、相交或异面;对选项C ,若a ⊂α,b ⊂β,a ∥b ,则α、β平行或相交;对选项D ,由⎭⎪⎬⎪⎫a ⊥αβ⊥α⇒a ∥β或a ⊂β,无论哪种情形,由b ⊥β都有b ⊥a .,故选D.5.一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB ⊥EF ②AB 与CM 成60°③EF 与MN 是异面直线④MN ∥CD 其中正确的是( )A.①②B.③④C.②③D.①③[答案] D[解析] 本题考查学生的空间想象能力,将其还原成正方体如图所示,AB⊥EF,EF与MN 是异面直线,AB∥CM,MN⊥CD.只有①③正确,故选D.6.(文)(2010·某某潍坊)已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是( )A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β[答案] D[解析] 对于选项A,两平面β、γ同垂直于平面α,平面β与平面γ可能平行,也可能相交;对于选项B,平面α、β可能平行,也可能相交;对于选项C,直线n可能与平面α平行,也可能在平面α内;对于选项D,∵m∥n,m⊥α,∴n⊥α,又n⊥β,∴α∥β,故选D.(理)(2010·曲师大附中)已知两个不同的平面α,β和两条不重合的直线a,b,则下列四个命题中为真命题的是( )A.若a∥b,b⊂α,则a∥αB.若α⊥β,α∩β=b,a⊥b,则a⊥βC.若a⊂α,b⊂α,a∥β,b∥β,则α∥βD.若α∥β,a⊄α,a⊄β,a∥α,则a∥β[答案] D[解析] 选项A中,直线a可能在平面α内;选项B中,直线a可能在平面β内;选项C中,直线a,b为相交直线时命题才成立.7.(2010·某某某某)在正方体ABCD-A1B1C1D1中,P、Q分别是棱AA1、CC1的中点,则过点B、P、Q的截面是( )A.邻边不等的平行四边形B.菱形但不是正方形C.邻边不等的矩形D.正方形[答案] B[解析] 设正方体棱长为1,连结D1P,D1Q,则易得PB=PQ=D1P=D1Q=52,取D1D的中点M,则D1P綊AM綊BQ,故截面为四边形PBQD1,它是一个菱形,又PQ=AC=2,∴∠PBQ 不是直角,故选B.8.(文)(2010·某某日照、聊城模考)已知直线l、m,平面α、β,且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β;其中真命题是( )A.①②B.①③C.①④D.②④[答案] C[解析][点评] 如图,α∩β=m,则l⊥m,故(2)假;在上述图形中,当α⊥β时,知③假.(理)(2010·某某某某市)对于平面α和共面的直线m,n,下列命题是真命题的是( ) A.若m,n与α所成的角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n[答案] D[解析] 正三棱锥P-ABC的侧棱PA、PB与底面成角相等,但PA与PB相交应排除A;若m∥α,n∥α,则m与n平行、相交或异面,应排除B;若m⊥α,m⊥n,则n∥α或n⊂α,应排除C.∵m、n共面,设经过m、n的平面为β,∵m⊂α,∴α∩β=m,∵n∥α,∴n∥m,故D正确.9.(文)(2010·顺义一中月考)已知l是直线,α、β是两个不同平面,下列命题中的真命题是( )A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α⊥βD.若l∥α,α∥β,则l∥β[答案] C[解析] 如图在正方体ABCD-A1B1C1D1中,取平面ABD1A1为α,平面ABCD为β,B1C1为l,则排除A、B;又取平面ADD1A1为α,平面BCC1B1为β,B1C1为l,排除D.(理)(2010·某某罗湖区调研)已知相异直线a,b和不重合平面α,β,则a∥b的一个充分条件是( )A.a∥α,b∥αB.a∥α,b∥β,α∥βC.a⊥α,b⊥β,α∥βD.α⊥β,a⊥α,b∥β[答案] C[解析] a∥α,b∥α时,a与b可相交可异面也可平行,故A错;a∥α,b∥β,α∥β时,a与b可异面,故B错;由α⊥β,a⊥α得,a∥β或a⊂β,又b∥β,此时a与b 可平行也可异面,排除D.10.(2010·日照实验高中)如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1,BC 上移动,且始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图象大致是( )[答案] C[解析] 过M 作ME ⊥AD 于E ,连接EN ,则平面MEN ∥平面DCC 1D 1,所以BN =AE =x (0≤x <1),ME =2x ,MN 2=ME 2+EN 2,则y 2=4x 2+1,y 2-4x 2=1(0≤x <1,y >0),图象应是焦点在y 轴上的双曲线的一部分.故选C.二、填空题11.(文)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.[答案] M ∈线段FH[解析] 因为HN ∥BD ,HF ∥DD 1,所以平面NHF ∥平面B 1BDD 1,又平面NHF ∩平面EFGH =FH .故线段FH 上任意点M 与N 相连,有MN ∥平面B 1BDD 1,故填M ∈线段FH .(理)(2010·某某市模拟)已知两异面直线a ,b 所成的角为π3,直线l 分别与a ,b 所成的角都是θ,则θ的取值X 围是________.[答案] [π6,π2]12.在四面体ABCD 中,M 、N 分别是△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.[答案] 面ABC 和面ABD[解析] 连结AM 并延长交CD 于点E ,∵M 为△ACD 的重心,∴E 为CD 的中点, 又N 为△BCD 的重心,∴B 、N 、E 三点共线, 由EM MA =EN NB =12得MN ∥AB , 因此MN ∥平面ABC ,MN ∥平面ABD .13.如图是一正方体的表面展开图,B 、N 、Q 都是所在棱的中点,则在原正方体中, ①AB 与CD 相交;②MN ∥PQ ;③AB ∥PE ;④MN 与CD 异面;⑤MN ∥平面PQC . 其中真命题的序号是________.[答案] ①②④⑤[解析] 将正方体还原后如图,则N 与B 重合,A 与C 重合,E 与D 重合,∴①、②、④、⑤为真命题.14.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P 的平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.[答案]223a [解析] ∵B 1D 1∥平面ABCD ,平面B 1D 1P ∩平面ABCD =PQ ,∴B 1D 1∥PQ , 又B 1D 1∥BD ,∴BD ∥PQ ,设PQ ∩AB =M ,∵AB ∥CD ,∴△APM ∽△DPQ ,∴PQ PM =PDAP=2,即PQ =2PM , 又△APM ∽△ADP ,∴PM BD =AP AD =13,∴PM =13BD ,又BD =2a ,∴PQ =223a .三、解答题15.(文)(2010·某某调研)如图,在四棱锥E -ABCD 中,四边形ABCD 为平行四边形,BE =EC ,AE ⊥BE ,M 为CE 上一点,且BM ⊥平面ACE .(1)求证:AE ⊥BC ;(2)如果点N 为线段AB 的中点,求证:MN ∥平面ADE . [解析] (1)因为BM ⊥平面ACE ,AE ⊂平面ACE ,所以BM ⊥AE . 因为AE ⊥BE ,且BE ∩BM =B ,BE 、BM ⊂平面EBC ,所以AE ⊥平面EBC . 因为BC ⊂平面EBC ,所以AE ⊥BC . (2)解法1:取DE 中点H ,连接MH 、AH .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点. 所以MH 为△EDC 的中位线,所以MH 綊12DC .因为四边形ABCD 为平行四边形,所以DC 綊AB . 故MH 綊12AB .因为N 为AB 的中点,所以MH 綊AN .所以四边形ANMH 为平行四边形,所以MN ∥AH . 因为MN ⊄平面ADE ,AH ⊂平面ADE , 所以MN ∥平面ADE .解法2:取EB 的中点F ,连接MF 、NF .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点,所以MF ∥BC .因为N 为AB 的中点,所以NF ∥AE , 因为四边形ABCD 为平行四边形, 所以AD ∥BC .所以MF ∥AD .因为NF 、MF ⊄平面ADE ,AD 、AE ⊂平面ADE , 所以NF ∥平面ADE ,MF ∥平面ADE . 因为MF ∩NF =F ,MF 、NF ⊂平面MNF , 所以平面MNF ∥平面ADE .因为MN ⊂平面MNF ,所以MN ∥平面ADE .(理)(2010·某某市质检)如图所示的几何体中,△ABC 为正三角形,AE 和CD 都垂直于平面ABC ,且AE =AB =2,CD =1,F 为BE 的中点.(1)若点G 在AB 上,试确定G 点位置,使FG ∥平面ADE ,并加以证明;(2)在(1)的条件下,求三棱锥D -ABF 的体积. [解析] (1)当G 是AB 的中点时,GF ∥平面ADE . ∵G 是AB 的中点,F 是BE 的中点, ∴GF ∥AE ,又GF ⊄平面ADE ,AE ⊂平面ADE , ∴GF ∥平面ADE . (2)连接CG ,由(1)可知:GF ∥AE ,且GF =12AE .又AE ⊥平面ABC ,CD ⊥平面ABC ,∴CD ∥AE , 又CD =12AE ,∴GF ∥CD ,GF =CD ,∴四边形CDFG 为平行四边形, ∴DF ∥CG ,且DF =CG .又∵AE ⊥平面ABC ,CG ⊂平面ABC ,∴AE ⊥CG . ∵△ABC 为正三角形,G 为AB 的中点, ∴CG ⊥AB ,又AB ∩AE =A ,∴CG ⊥平面ABE . 又CG ∥DF ,且CG =DF ,∴DF 为三棱锥D -ABF 的高,且DF = 3. 又AE ⊥平面ABC ,AB ⊂平面ABC ,∴AE ⊥AB . ∵在Rt △ABE 中,AB =AE =2,F 为BE 的中点,∴S △ABF =12S △ABE =12×12×2×2=1.∴V D -ABF =13S △ABF ·DF =13×1×3=33,∴三棱锥D -ABF 的体积为33. 16.(文)(2010·某某某某质检)如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12CD .(1)求证:BC ⊥平面ABPE ;(2)直线PE 上是否存在点M ,使DM ∥平面PBC ,若存在,求出点M ;若不存在,说明理由. [解析] (1)∵PO ⊥平面ABCD ,BC ⊂平面ABCD ,∴BC ⊥PO ,又BC ⊥AB ,AB ∩PO =O ,AB ⊂平面ABP ,PO ⊂平面ABP ,∴BC ⊥平面ABP , 又EA ∥PO ,AO ⊂平面ABP , ∴EA ⊂平面ABP ,∴BC ⊥平面ABPE . (2)点E 即为所求的点,即点M 与点E 重合. 取PO 的中点N ,连结EN 并延长交PB 于F , ∵EA =1,PO =2,∴NO =1,又EA 与PO 都与平面ABCD 垂直,∴EF ∥AB , ∴F 为PB 的中点,∴NF =12OB =1,∴EF =2,又CD =2,EF ∥AB ∥CD ,∴四边形DCFE 为平行四边形,∴DE ∥CF , ∵CF ⊂平面PBC ,DE ⊄平面PBC ,∴DE ∥平面PBC .∴当M 与E 重合时即可.(理)在长方体ABCD -A 1B 1C 1D 1中,O 为底面正方形的中心,过A 1、C 1、B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1及其三视图.(1)求证:D1O∥平面A1BC1;(2)是否存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q?若存在,求出线段PQ的长;若不存在,请说明理由.[分析] 要证D1O∥平面A1BC1,∵O为DB的中点,∴取A1C1中点E,只须证D1E綊OB,或利用长方体为正四棱柱的特性,证明平面ACD1∥平面A1C1B,假设存在平面A1PQ⊥DC1,利用正四棱柱中,BC⊥平面DCC1D1,故有BC⊥DC1,从而平面A1PQ与平面BCC1的交线PQ⊥DC1,故只须在面DCC1D1的边CC1上寻找点Q,使D1Q⊥DC1即可.[解析] (1)连接AC,AD1,D1C,易知点O在AC上.根据长方体的性质得四边形ABC1D1、四边形A1D1CB均为平行四边形,∴AD1∥BC1,A1B∥D1C,又∵AD1⊄平面A1C1B,BC1⊂平面A1C1B,∴AD1∥平面A1C1B,同理D1C∥平面A1BC1,又∵D1C∩AD1=D1,∴根据面面平行的判定定理知平面ACD1∥平面A1BC1.∵D1O⊂平面ACD1,∴D1O∥平面A1BC1.(2)假设存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.连接C1D,过点D1作C1D的垂线交C1C于点Q,过点Q作PQ∥BC交BC1于点P,连接A1P,A1Q.∵C1D⊥D1Q,C1D⊥A1D1,D1Q∩A1D1=D1,∴C1D⊥平面A1D1Q.∵A1Q⊂平面A1D1Q,∴C1D⊥A1Q.∵PQ∥BC∥A1D1,∴C1D⊥PQ,∵A1Q∩PQ=Q,∴C1D⊥平面A1PQ.∴存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.在矩形CDD1C1中,∵Rt△D1C1Q∽Rt△C1CD,∴C1QCD=D1C1C1C,结合三视图得C1Q2=24,∴C1Q=1.∵PQ ∥BC ,∴PQ BC =C 1Q CC 1=14,∴PQ =14BC =12. 17.(文)(2010·东北师大附中)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1;(2)求证:EF ⊥B 1C ;(3)求三棱锥B 1-EFC 的体积.[解析] (1)证明:连结BD 1,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则EF ∥D 1B ,又EF ⊄平面ABC 1D 1,D 1B ⊂平面ABC 1D 1,∴EF ∥平面ABC 1D 1.(2)证明:∵B 1C ⊥AB ,B 1C ⊥BC 1,AB ∩BC 1=B ,∴B 1C ⊥平面ABC 1D 1,又BD 1⊂平面ABC 1D 1,∴B 1C ⊥BD 1,又EF ∥BD 1,∴EF ⊥B 1C .(3)解:∵CF ⊥BD ,CF ⊥BB 1,∴CF ⊥平面BDD 1B 1,即CF ⊥平面EFB 1,且CF =BF = 2∵EF =12BD 1=3,B 1F =BF 2+BB 12=22+22=6,B 1E =B 1D 12+D 1E 2=12+222=3, ∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°,∴VB 1-EFC =VC -B 1EF =13·S △B 1EF ·CF =13×12·EF ·B 1F ·CF =13×12×3×6×2=1. (理)(2010·某某某某)如图,在四棱锥V -ABCD 中,底面ABCD 是矩形,侧棱VA ⊥底面ABCD ,E 、F 、G 分别为VA 、VB 、BC 的中点.(1)求证:平面EFG ∥平面VCD ;(2)当二面角V -BC -A 、V -DC -A 依次为45°、30°时,求直线VB 与平面EFG 所成的角.[解析] (1)∵E 、F 、G 分别为VA 、VB 、BC 的中点,∴EF∥AB,FG∥VC,又ABCD是矩形,∴AB∥CD,∴EF∥CD,又∵EF⊄平面VCD,FG⊄平面VCD,∴EF∥平面VCD,FG∥平面VCD,又EF∩FG=F,∴平面EFG∥平面VCD.(2)∵VA⊥平面ABCD,CD⊥AD,∴CD⊥VD.则∠VDA为二面角V-DC-A的平面角,∴∠VDA=30°.同理∠VBA=45°.作AH⊥VD,垂足为H,由上可知CD⊥平面VAD,则AH⊥平面VCD.∵AB∥平面VCD,∴AH即为B到平面VCD的距离.由(1)知,平面EFG∥平面VCD,则直线VB与平面EFG所成的角等于直线VB与平面VCD 所成的角,记这个角为θ.∵AH=VA sin60°=32VA,VB=2VA,∴sinθ=AHVB=64,故直线VB与平面EFG所成的角是arcsin64.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 第1节一、选择题1.(文)已知一空间几何体的三视图如图所示,它的表面积是( )A .4+2B .2+ 2C .3+ 2D .3[答案] C[解析] 由三视图可知,该几何体是底面为等腰直角三角形的直三棱柱,底面直角三角形直角边长和棱柱的高都是1,故表面积S =2×⎝⎛⎭⎫12×1×1+2×(1×1)+2×1=3+ 2.(理)下图是一个空间几何体的三视图,根据图中尺寸(单位:cm),可知几何体的表面积是( )A .18+ 3B .16+2 3C .17+2 3D .18+2 3[答案] D[解析] 由三视图可得,该几何是一个底面边长为2高为3的正三棱柱,其表面积S =3×2×3+2×34×22=18+23cm 2. 2.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( )A.12+22B .1+22C .1+ 2D .2+ 2[答案] D[解析]设直观图为O′A′B′C′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中OC⊥OA,且OC=2,BC=1,OA=1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.3.(文)一个封闭正方体各面分别标有A、B、C、D、E、F六个字母,现放成三种位置如图,则A、B、C对面字母分别为()A.D、E、F B.F、D、EC.E、F、D D.E、D、F[答案] B[解析]由图(1)可知,A、B、C是交于同一顶点的三个面,故由图(2)知,D的对面为B;由(3)知,A的对面为F,从而C的对边为E,∴选B.(理)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.0 B.8C.奥D.运[答案] B[解析]折起后,0和运,0和奥分别相对、2和8相对,∵2在上面,∴8在下面,另外两个0,一个在左面,一个在后面,奥在右面,运在前面.4.(文)(2010·山东烟台)用一些棱长是1cm的小正方体码放成一个几何体,(1)为其俯视图,(2)为其正(主)视图,则这个几何体的体积最大是()A .6cm 3B .7cm 3C .8cm 3D .9cm 3[答案] B[解析] 由俯视图可知,该几何体除左边一列外,其它各列只一行,结合正(主)视图知,前一行共5个,而左边一列后一行至多2个,故最多有7个小正方体构成.(理)(2010·合肥市)已知某一几何体的正(主)视图与侧(左)视图如图,则在下列图形中,可以是该几何体的俯视图的图形有( )A .①②③⑤B .②③④⑤C .①③④⑤D .①②③④[答案] D[解析] 底下一层为正四棱柱,上面两层为圆柱时为①;底下为圆柱、上两层为正四棱柱时为②;最上一层为圆柱、下两层为正四棱柱时为③;底层为正四棱柱,中间为圆柱、上层为直三棱柱时为④,故选D.5.(2010·山东日照)如图所示,一个空间几何体的正(主)视图、侧(左)视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( )A .1 B.16 C.13D.12[答案] B[解析] 几何图形的高是正(主)视图的高,底面积为俯视图的面积,由题知该几何体是一个三棱锥,底面是直角三角形,其两直角边长为1,故体积为V =13Sh =13×⎝⎛⎭⎫12×1×1×1=16.故选B.6.(2010·福建厦门市)一个组合体的三视图如图,则其体积为( )A .12πB .16πC .20πD .28π[答案] C[解析] 由空间几何体的三视图可知,该几何体为圆锥和圆柱的组合体,所以其体积为V =π·22×4+13×π×22×3=20π,故选C.7.(文)(2010·沈阳市)如图所示,某几何体的正(主)视图与侧(左)视图都是边长为1的正方形,且体积为12.则该几何体的俯视图可以是( )[答案] C[解析] 由正(主)视图和侧(左)视图可知,此几何体为柱体,易知高h =1,且体积V =S ×h =12(S 为底面积),得S =12,结合各选项知这个几何体的底面可以是边长为1的等腰直角三角形,故选C.(理)(2010·北京理,3)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )[答案] C[解析] 由正视图和侧视图知,该长方体上面去掉的小长方体,从正前方看在观察者左侧,从左侧向右看时在观察者右侧,故俯视图为C.8.(2010·东营质检)三棱锥P -ABC 的四个顶点都在体积为500π3的球的表面上,△ABC所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .7B .7.5C .8D .9[答案] C[解析] ∵△ABC 所在小圆面积为16π, ∴小圆半径r =O ′A =4,又球体积为500π3,∴4πR 33=500π3,∴球半径R =5,∴OO ′=3,故三棱锥的高为PO ′=R ±OO ′=8或2,故选C. 二、填空题9.(文)(2010·山东聊城联考)一个正方体表面展开图中,五个正方形位置如图阴影所示.第六个正方形在编号1到5的位置,则所有可能位置的编号是______.[答案] ②③[解析] 将表面展开图还原为正方体知,②③正确.(理)(2010·浙江宁波十校)取棱长为a 的正方体的一个顶点,过此顶点出发的三条棱的中点作截面,截去正方体的一个角,对正方体的所有顶点都如此操作,则所剩下的多面体:①有12个顶点 ②有24条棱 ③表面积3a 2 ④体积56a 3以上结论正确的有________(填上正确的序号). [答案] ①②④[解析] 由操作方法可知,原正方体每条棱的中点都是剩下的几何体的顶点,且除此之外别无顶点,故有12个顶点;原正方体每个面上4条棱的中点顺次连接形成一个正方形,该正方形为剩下多面体的一个面,正方形的四条边为多面体的棱,故剩下的多面体有24条棱,截去的每个角体积为13×12×⎝⎛⎭⎫a 2×a 2×a 2=a 348,∴余下多面体的体积为V =a 3-a 348×8=56a 3.而余下多面体的表面积S =6a 2-3×⎝⎛⎭⎫12a ×12a ×12×8+8×34×⎝⎛⎭⎫22a 2=(3+3)a 2,故填①②④.10.(文)(2010·青岛模拟)若正三棱锥的主视图与俯视图如图所示(单位:cm),则它的左视图的面积为________cm 2.[答案] 34[解析] 由该正三棱锥的主视图和俯视图可知,其左视图为一个三角形,它的底边长等于俯视图的高即32,高等于主视图的高即3,所以左视图的面积为S =12×32×3=34cm 2. (理)一多面体的三视图如下图所示,则其体积为________.[答案]433[解析] 由三视图可知,该几何体是一个四棱锥,底面是边长为2的正方形ABCD ,一个侧面是边长为2的正三角形P AB ,该侧面与底面垂直,故其体积V =13×2×2×3=433.其直观图如图.11.(2010·南京市调研)如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2cm ,高为5cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm.[答案] 13[解析] 如图,将三棱柱侧面A 1ABB 1置于桌面上,以A 1A 为界,滚动两周(即将侧面展开两次),则最短线长为AA ″1的长度,∴AA 1=5,AA ″=12,∴AA ″1=13.12.(2010·山东聊城、邹平模考)已知一个几何体的三视图如图所示(单位:cm),其中正(主)视图是直角梯形,侧(左)视图和俯视图都是矩形,则这个几何体的体积是________cm 3.[答案] 32[解析] 依据三视图知,该几何体的上、下底面均为矩形,上底面是边长为1的正方形,下底面是长为2,宽为1的矩形,左侧面是与底面垂直的正方形,其直观图如图所示,易知该几何体是四棱柱ABCD -A 1B 1C 1D 1,其体积V =S 梯形ABCD ·AA 1=(1+2)×12×1=32cm 3.三、解答题13.(2010·茂名模考)如图,在直角梯形ABCD 中,∠B =90°,DC ∥AB ,BC =CD =12AB=2,G 为线段AB 的中点,将△ADG 沿GD 折起,使平面ADG ⊥平面BCDG ,得到几何体A -BCDG .(1)若E ,F 分别为线段AC ,AD 的中点,求证:EF ∥平面ABG ; (2)求证:AG ⊥平面BCDG ; (3)V C -ABD 的值.[解析] (1)证明:依题意,折叠前后CD 、BG 位置关系不改变,∴CD ∥BG . ∵E 、F 分别为线段AC 、BD 的中点,∴在△ACD 中,EF ∥CD ,∴EF ∥BG . 又EF ⊄平面ABG ,BG ⊂平面ABG ,∴EF ∥平面ABG .(2)证明:将△ADG 沿GD 折起后,AG 、GD 位置关系不改变,∴AG ⊥GD ,又平面ADG ⊥平面BCDG ,平面ADG ∩平面BCDG =GD ,AG ⊂平面AGD ,∴AG ⊥平面BCDG .(3)解:由已知得BC =CD =AG =2,又由(2)得AG ⊥平面BCDG ,即点A 到平面BCDG 的距离AG =2, ∴V C -ABD =V A -BCD =13S △BCD ·AG=13×⎝⎛⎭⎫12×2×2×2=43. 14.(文)(2010·深圳市调研)如图,在长方体ABCD -A 1B 1C 1D 1中,点E 在棱CC 1的延长线上,且CC 1=C 1E =BC =12AB =1.(1)求证:D 1E ∥平面ACB 1; (2)求证:平面D 1B 1E ⊥平面DCB 1; (3)求四面体D 1B 1AC 的体积.[解析] (1)连接BC 1,则AD 1綊BC 1綊B 1E , ∴四边形AB 1ED 1是平行四边形. ∴D 1E ∥AB 1.又AB 1⊂平面ACB 1,D 1E ⊄平面ACB 1, ∴D 1E ∥平面ACB 1.(2)由已知得B 1C =B 1E =2,CE =2,则B 1C 2+B 1E 2=4=CE 2.则B 1E ⊥B 1C , 易知:CD ⊥平面B 1BCE ,而B 1E ⊂平面B 1BCE ,则CD ⊥B 1E , ∴B 1E ⊥平面DCB 1,又B 1E ⊂平面D 1B 1E , ∴平面D 1B 1E ⊥平面DCB 1. (3)由图易知四面体D 1B 1AC 的体积V =VABCD -A 1B 1C 1D 1-VA -A 1B 1D 1-VB -ACB 1-VC -B 1C 1D 1-VD -ACD 1 =2-⎝⎛⎭⎫13×2×12×4=23. (理)(2010·青岛市质检)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,M 是BD 的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求出该几何体的体积;(2)若N 是BC 的中点,求证:AN ∥平面CME ; (3)求证:平面BDE ⊥平面BCD .[解析] (1)由题意可知,四棱锥B -ACDE 中, 平面ABC ⊥平面ACDE ,AB ⊥AC , 所以,AB ⊥平面ACDE , 又AC =AB =AE =2,CD =4, 则四棱锥B -ACDE 的体积为 V =13S ACDE ·AB =13×(4+2)×22×2=4.(2)连接MN ,则MN ∥CD ,AE ∥CD ,又MN =AE =12CD ,所以四边形ANME 为平行四边形,∴AN ∥EM ,∵AN ⊄平面CME ,EM ⊂平面CME , 所以,AN ∥平面CME .(3)∵AC =AB ,N 是BC 的中点,∴AN ⊥BC , 又在直三棱柱中可知,平面ABC ⊥平面BCD , ∴AN ⊥平面BCD ,由(2)知,AN ∥EM ,∴EM ⊥平面BCD , 又EM ⊂平面BDE ,所以,平面BDE ⊥平面BCD .。