13-8信息光学
信息光学(第二版)01-引言
光电子
光电子成为现代产业的主角
机械领域: 激光加工: 打孔、切割、焊接、表面处理 激光光刻、激光微细加工、X射线光刻 能源领域: 太阳能电池、激光核聚变 —— 空间卫星的能源,地球能源
光信息科学
光 是最重要的信息载体,人类感官接收 客观世界总信息量的 90%以上通过眼睛 光纤通信: 以低损耗石英光纤和半导体激光器为基础, 成为当今通信的主体和方向 显示技术:液晶大屏幕显示成为下一代电视的主流;
存储 1万 幅二维图像,数据量达到10Gbit 计算机控制,快速存储
全息信息存储
探测器 参考光束 成像透镜 空间光 调制器 记录介质 变换透镜 数据页 信号 光束 激光器 待存储 的信息
中国的光学(光子学)已经对高科技、国民 经济与人民生活产生了影响。可以预期,光学 (光子学)在21世纪将会像20世纪的电子学 (微电子学)那样大发展。让我们一起为迎接 光学(光子学)方面的重大突破而欢呼吧! --王大珩 你们这一代人 将成为最有希望的力量 是一支强大的生力军
光学领域的扩展 应用功能的扩展 研究内容的扩展 应用范围的扩展
20世纪光学的 主要特点 1、光学领域的扩展
• 波段: 向两端扩展
可见光 X射线 新学科
紫外
近红外 中红外 远红外
紫外光学、X射线光学、微光夜视、红外光学
• 波长:单色性、相干性
研究方向
激光器
激光全息
• 光强:单光子
激光光源
星际光源
20世纪光学的 主要特点 1、光学领域的扩展
信息光学 Information Optics
享受光 享受光学
光学科学与技术的成果已深深渗透到我们的生 活中
--王大珩
王大珩先生说:
• 20世纪以前的光学
信息光学第一章
F{ g( x, y )* h( x, y )} G( f x , f y ) H( f x , f y )
常用函数的傅里叶变换
1. δ函数 F { ( x , y )} 1 2. 其他函数见:p. 9及附录B
1.3 二维线性不变系统的传递函数
输入与输出光波场为
g( x, y ) f ( x, y )* h( x, y )
(1)
函数
函数是一种广义函数,用来描述一 种极限状态。函数通常可以用于描述点 光源、点电荷和点质量等。
在现代光学中,可以将一个复杂的 物函数分解为复指数基元函数的线性组 合,从而使许多复杂的光学问题的推导 和证明变得十分简洁。
δ定义
δ函数可以描述一些集中的密度分布, 例如单位电量的点电荷的电荷密度,单位 质量的质点的质量密度,单位光通量的点 光源的面发光度等。
则该系统为线性系统
线性系统具有叠加性。即系统对几个激励的线 性组合的整体响应等于单个激励响应的线性组合。
1. 对于线性系统,任何输入函数都可以分解 成某种“基元”函数的线性组合,相应的输 出函数可通过这些基元函数系统响应的线 性组合求得。 2. 基元函数是指不能再进行分解的基本函数 单元。 3. 基元函数通常有δ函数和复指数函数。 4.光学中δ函数表示点光源,复指数函数表 示平面波
主要参考资料
光学信息技术原理及应用 (第二版) (教材) 作者:陈家璧,苏显渝主编 高教出版社
课程教学
课程基础:光学,电动力学或电磁场理论, 信号与系统等 考核方式: 考核成绩: 考勤,作业 15 % 期中考试 20% 课程论文 15 % 期末考试 50 % 课堂纪律: 1. 按时上课 2. 关闭手机 答 疑: 待定
《信息光学》第八章 光学信息处理
2、相干滤波的基本原理
2.1 阿贝—波特实验
阿贝—波特实验证明了阿贝的成像理论,是显示空间滤波原理的富有说服
力的实验,如下图所示(4f系统):
其中,L1是准直透镜,L2和L3是傅里叶变换透镜,焦距均为f。P1、P2和P3分 别是物面、频谱面和像面,P3平面采用反射坐标系。
2、相干滤波的基本原理
其中,a为缝宽,d为光栅常数,L为光栅沿x1方向的尺寸。
aL n an T fx sin c sin c L f x d d n d
采用单位振幅平面波垂直照明,P2面上的光场分布正比于物体的频谱,即:
2、相干滤波的基本原理
3)采用双缝,仅让正、负二级谱通过。 狭缝后的透射光场:
2 2a T f x H f x aL sin c sin c L f x d d d 2 2a sin c sin c L f x d d
其中,
fx
x2 f
fy
y2 f
3、简单振幅和位相滤波的例子
f x1 , y1 1 j x1 , y1 物光波包括两部分:直接透射光和由于位相起伏造成的弱衍射光。由于j 表示这两部分光之间位相差为/2,它们相干叠加时干涉项为零。这正是 在背景光上观察不到衍射光的根本原因。要使像的强度产生可观测的变 化,必须改变这两部分光之间的位相正交关系。
T fx H fx T f x
aL sin c Lf x d
P3面输出光场分布为
g x3 F -1 T f x H f x
t x3
第八章信息光学
第八章信息光学第八章Technique光学信息处理技术Optical Information Processing概述光学频谱分析系统和空间滤波相干光学信息处理非相干光学信息处理白光信息处理§1 1概述光学信息就是指光的强度(或振幅),相位,颜色,波长,和偏振态等。
光学信息处理是基于光学频谱分析,利用傅立叶综合技术,通过空域或频域调综合技术通过空域或频域调制,借助空间滤波对光学信息进行处理的过程,较多用于对二维图象的处理。
发展历史1、理论基础。
1873年,阿贝创建了二次成像理论,创建了年阿贝创建了二次成像理论创建了2、分布转化为强度分布;1935年,策尼克发明了相衬显微镜,将相位年策尼克发明了相衬显微镜将相位3、成功地用傅立叶方法分析成像过程。
1946年,杜费把光学系统看作线性滤波器,4、力的数学力的数学工具。
50年代,艾里亚斯为光学信息处理提供了有具3、概念概念,使光信息处理进入了一个新的阶段;1963年,范德拉格特提出了复数空间滤波的使光信息处理进入了个新的阶段4、的发展使光信息处理获得了更大发展1980年以后,计算机技术以及其他相关技术概述光学频谱分析系统和空间滤波相干光学信息处理非相干光学信息处理白光信息处理§2光学频谱分析系统和空间滤波1、阿贝成像理论阿贝成像论将物体看成是不同空间频率信息的结合,相干成像过程分两步完成。
第第一步是入射光场经过物平面发生夫琅禾步是入射光场经过物平面发生夫琅禾费衍射,在透镜的后焦面形成一系列衍射斑;第二步是衍射斑作为新的次波源发出球面次波次波,在像面上互相叠加,形成物体的像。
在像面上互相叠加形成物体的像阿贝二次成像理论示意图衍射干涉叠加2、阿贝阿贝-波特实验波特实验网格图傅立叶频谱图横向窄带滤波频谱面上的横向分布是物的纵向结构信息纵向窄带滤波频谱面上的纵向分布是物的横向结构信息保留零频分量零频分量是一个直流分量,它只代表像零频分量是个直流分量它只代表像的本底。
《信息光学(双语)》课程教学大纲(本科)
信息光学(双语)Introduction toInformation Optics课程编号:( 03410064 )学分: 3学时:45 (其中:讲课学时:45 实验学时:0 上机学时:0)先修课程:大学物理、光学、数学物理方法、数理统计适用专业:光信息科学与技术、测量技术与控制教材:《Introduction to information optics》,Francis T.S.Yu等,Academic Press,2001年第1版一、课程性质与课程目标(一)课程性质(需说明课程对人才培养方面的贡献)“信息光学”是相关专业教学计划中具有承上启下意义的技术基础课,建立在数学、物理学、光学、数学物理方法、计算机技术等课程知识的基础上,在对光通信、光开关、光学传感、光信息显示、光网络、光学存储、等光信息技术的基本内涵、关键技术进行系统地、深入地、清晰地论述的同时,又及时总结了前沿的发展成果和方向,能够为光电信息科学与工程专业课程的学习打好坚实的基础。
(二)课程目标(根据课程特点和对毕业要求的贡献,确定课程目标。
应包括知识目标和能力目标。
)课程目标1:能解释信息光学中所涉及的核心器件的基本原理,能应用信息光学中的基本理论分析光通信、光开关、光存储及光传感中相关基础问题,并得到解决方案。
课程目标2:能设计开发简单的光电器件,结合光传感、光通信及光开关等基础知识,能设计符合目标需求的传感器,并对传感参数进行分析,以利用解决其他复杂工程问题。
课程目标3:能够应用相关技术标准,对光纤,光开关等生产工艺,制造流程进行分析、比较和优化。
课程目标4:能够熟练使用相当数量的专业应用词汇,能够应用英语和业界同行进行交流。
课程目标5:能针对实际问题以团队的形式,开展光电信息技术相关的文献调研,并完成相应的PPT制作和口头报告。
(三)课程目标与专业毕业要求指标点的对应关系本课程支撑专业培养计划中毕业要求1、毕业要求6和毕业要求10:1. 毕业要求1-3:具有光电信息科学与工程专业基础知识及其应用能力,并了解光电信息行业的前沿发展现状和趋势。
信息光学13概要PPT教案
hx,
y
rect
2Bx
rect
2By
4BxBySinc2Bx
xSinc
2By
y
12
计算全息
计算全息的理论基础
f x, y 4BxByxy f nx, my Sinc2Bx ( x nx)Sinc 2By ( y ny) n n
取最大允许的抽样间隔:
1
1
x ,y
2Bx
2By
F(ξ)
F( )combb
F(ξ - ξ S) F(ξ -2 ξ S)
•••
-2/b
-1/b
0
1/b
2/b
u
-ξ f -Bx
-1/b+Bx
ξf Bx
1/b-Bx
FS(u)
-2/b
-1/b
1/b
2/b
u
7
计算全息
计算全息的理论基础 抽样函数的频谱
FS(ξ)
FS (ξ +2 ξS) FS (ξ + ξS)
5
计算全息
计算全息的理论基础 抽样函数的频谱
fS(x)
f(x)
x
b
F(ξ)
0
-Bx
Bx
f ( x) F( )
1 b
f
(
x)comb
x b
F( ) combb
fS ( x) FS ( )
6
计算全息
•••
计算全息的理论基础 抽样函数的频谱
F(ξ+2 ξ S) F(ξ + ξ S)
FS(u)
通过控制频谱面上的光瞳函数来控制光学系统的传递函数,实现图像的变换。
32
空间滤波
信息光学综合实验报告
一、实验目的1. 理解信息光学的基本原理和实验方法;2. 掌握信息光学中常用的光学元件和仪器;3. 培养实验操作技能,提高动手能力;4. 通过实验验证信息光学的基本理论和现象。
二、实验原理信息光学是研究光在信息传输、处理和存储等领域中的应用的科学。
本实验主要包括以下几个方面:1. 光的干涉现象:利用光的干涉原理,通过实验观察干涉条纹,研究光波的相干性、相位差和光程差等概念。
2. 光的衍射现象:通过实验观察单缝衍射、圆孔衍射等现象,研究光的衍射规律,了解衍射极限和衍射效率。
3. 光的偏振现象:通过实验观察光的偏振现象,研究偏振光的产生、分解和检验方法,了解偏振光在信息光学中的应用。
4. 光的调制与解调:利用调制和解调技术,实现光信号的传输和处理,研究调制方式、解调方法及调制效率等。
三、实验仪器与设备1. 光源:He-Ne激光器、白光光源;2. 光学元件:透镜、棱镜、光栅、偏振片、全息底片等;3. 仪器设备:光具座、光功率计、显微镜、分光计等。
四、实验内容及步骤1. 光的干涉实验(1)调整光源,使其发出单色光;(2)利用分光计将光束分成两束,一束作为参考光,另一束作为物光;(3)调整透镜和光栅,使物光和参考光在光具座上会合;(4)观察干涉条纹,分析干涉条纹的分布规律。
2. 光的衍射实验(1)调整光源,使其发出单色光;(2)利用单缝衍射实验装置,观察单缝衍射现象;(3)调整圆孔衍射实验装置,观察圆孔衍射现象;(4)分析衍射现象,验证衍射规律。
3. 光的偏振实验(1)调整光源,使其发出偏振光;(2)利用偏振片观察偏振光的产生、分解和检验;(3)分析偏振现象,了解偏振光在信息光学中的应用。
4. 光的调制与解调实验(1)调整光源,使其发出调制信号;(2)利用调制器将信号调制到光波上;(3)利用解调器将调制信号解调出来;(4)分析调制与解调过程,研究调制方式、解调方法及调制效率。
五、实验结果与分析1. 光的干涉实验:观察到干涉条纹,验证了干涉原理,分析了干涉条纹的分布规律。
13-8 激光
)
A.光纤通信是应用激光平行度非常好的特点对信号进 行调制,使其在光导纤维中传递信息的 B.计算机内的“磁头”读出光盘上记录的信息是应用 激光有相干性的特点
第十三章
第八节
成才之路 ·物理 ·人教版 · 选修3-4
C.医学中用激光作“光刀”来切除肿瘤是应用了激光 亮度高的特点 D.“激光测距雷达”利用激光测量很远目标的距离是 应用了激光亮度高的特点
第十三章 第八节
成才之路 ·物理 ·人教版 · 选修3-4
激光是不是都很强?
解析:在不同的用途上激光的强度差别很大。像唱片中 的激光读写、儿童玩具激光灯、激光教鞭等都很弱;像激光 手术刀、激光测距、激光加工等都比较强;像激光武器,激 光在可控聚变反应中的应用等都特别强。
第十三章
第八节
成才之路 ·物理 ·人教版 · 选修3-4
察。
第十三章 第八节
成才之路 ·物理 ·人教版 · 选修3-4
重点难点突破
第十三章
第八节
成才之路 ·物理 ·人教版 · 选修3-4
一、激光具有的特点 1.相干性好。所谓相干性好,是指容易产生干涉现 象。普通光源发出的光(即使是所谓的单色光)频率是不一样 的,而激光器发出的激光的频率几乎是单一的,并且满足其 他的相干条件。所以,现在我们做双缝干涉实验时,无需在 双缝前放一个单缝,而是用激光直接照射双缝,就能得到既 明亮又清晰的干涉条纹。利用相干光易于调制的特点传输信 息,所能传递的信息密度极高,一条细细的激光束通过光缆 可以同时传送一百亿路电话和一千万套电视,全国人民同时 通话还用不完它的通讯容量。
考点题型设计
第十三章
第八节
成才之路 ·物理 ·人教版 · 选修3-4
题型1
《信息光学》教学大纲
《信息光学》课程教学大纲一、课程基本信息二、课程简介信息光学是应用光学、计算机和信息科学相结合而发展起来的一门新的光学学科,是信息科学的一个重要组成部分,也是现代光学的核心。
本课程主要介绍信息光学的基础理论及相关的应用,内容涉及二维傅里叶分析、标量衍射理论、光学成像系统的频率特性、部分相干理论、光学全息照相、空间滤波、相干光学处理、非相干光学处理、信息光学在计量学和光通信中的应用等。
三、课程目标本课程是光电信息科学与工程专业的主要专业课程之一,设置本课程的目的是让学生掌握信息光学的基本概念、基础理论及光信息处理的基本方法,了解光信息处理的发展近况和运用前景。
为今后从事光信息方面的生产,科研和教学工作打下基础。
四、教学内容及要求第一章信息光学概述(2学时)1.信息光学的基本内容和发展方向2.光波的数学描述和基本概念3.相干光和非相干光4.从信息论看光波的衍射要求:1.了解信息光学的内容和发展方向2.掌握相干光和非相干光的特点3.掌握从信息论的观点看光波的衍射。
重点:空间频率,等相位面。
从信息光学看衍射的基本观点。
难点:空间频率,光波的数学描述。
第二章二维傅里叶分析(8+2学时)1.光学常用的几种非初等函数2.卷积与相关3.傅里叶变换的基本概念4.线性系统分析5.二维采样定理要求:1.了解光学中常用非初等函数的定义、性质,熟悉它们的图像及在光学中的作用2.了解卷积与相关的定义及基本性质3.熟悉傅里叶变换的基本原理,性质和几何意义4.熟悉系统的基本概念及线性系统分析的基本理论5.了解二维采样定理及其应用6.本章强调概念的物理意义理解,以定性和应用为主。
避免与《信号与系统》课程重复。
重点:δ函数的意义和运算特性,傅里叶变换性质、定理,相关和卷积的意义及运算,线性空间不变系统的特性。
难点:卷积,傅里叶变换、系统分析。
第三章标量衍射理论(6+2学时)1.基尔霍夫衍射理论2.菲涅耳衍射和夫琅和费衍射3.夫琅和费衍射计算实例4.菲涅尔衍射计算实例5.衍射的巴俾涅原理要求:1.了解基尔霍夫衍射理论2.熟悉菲涅耳- 基尔霍夫衍射公式及其物理意义3.熟悉菲涅耳衍射与夫琅和费衍射4.掌握常见夫琅和费衍射光场的分析与计算5.了解菲涅耳衍射光场的分析和计算6.了解巴俾涅原理及其应用重点:如何用二维傅里叶变换来分析和计算夫琅和费衍射。
信息光学教程全书习题及参考答案
理想成像系统、光波在自由空间的传播都具有线性光学系统的性质。 输入函数在输入面上的平移仅对应输出函数在输出面上的相应平移,即系统传输特性满 足线性平移不变的光学系统称为线性不变光学系统。用公式可以表示为:
L{ } a1 f1 (x − x1, y − y1 ) + a2 f 2 (x − x2 , y − y2 ) = a1g1 (ξ − ξ1,η −η1 ) + a2 g 2 (ξ − ξ2 ,η −η2 )
(x,
y)
=
exp( jkd0
jλd0
)∞ ∞
−∞−∞
U0
(x0
,
y0
)exp⎨⎧
⎩
j
k 2d0
(x0 − x)2 + (y0 − y)2
⎫ ⎬dx0dy0 ⎭
∫ ∫ ( ) [ ] U2
(x,
y)
=
exp( jkd1
jλd1
)∞ ∞
−∞−∞
U1
(x1,
y1
)
exp⎢⎡− ⎣
jk 2 f1
x12 + y12
−∞
a
比较以上两式有δ (at) = 1 δ (t) 。 a
(2)
按二维 δ 函数的定义:
∞∞
∫ ∫ δ (x, y)dxdy = 1
−∞ −∞
∞
∞
= ∫ δ (x)dx ∫ δ (y)dy
−∞
−∞
∞
∞
= ab ∫ δ (ax)dx ∫ δ (by)dy
−∞
−∞
∞∞
= ab ∫ ∫ δ (ax,by)dxdy
信息光学讲义目录02
目录第一章信息光学的数学基础1.1 光学中常用的非初等函数 (1)1.1.1 矩形函数 (1)1.1.2 阶跃函数 (5)1.1.3 符号函数 (8)1.1.4 三角形函数 (10)1.1.5 斜坡函数 (13)1.1.6 圆域函数 (14)1.1.7 非初等函数的运算和复合 (15)1.2 光学中常用的初等函数 (17)1.2.1 sinc 函数 (17)1.2.2 高斯函数 (19)1.2.3 贝塞尔函数 (24)1.2.4 宽边帽函数 (27)1.3 函数的变换 (28)1.3.1 一维函数的变换 (28)1.3.2 可分离变量的二维函数的特性 (31)1.3.3 几何变换 (33)1.4 δ函数和梳状函数 (38)1.4.1 广义函数的含义 (38)1.4.2 δ函数的定义 (40)1.4.3 δ函数的性质 (49)1.4.4 δ函数的导数 (54)1.4.5 复合δ函数 (56)1.4.6 用δ函数描述光学过程的一个例子 (57)1.4.7 梳状函数 (59)1.5 周期函数 (64)1.5.1 周期函数的含义 (64)1.5.2 正弦函数 (66)1.5.3 周期脉冲序列 (67)1.6 离散函数 (70)1.6.1 单位脉冲序列 (70)1.6.2 单位阶跃序列 (72)1.6.3 矩形序列 (73)1.6.4 正弦型序列 (74)1.6.5 斜变序列 (75)1.6.6 实指数序列 (76)1.6.7 复指数序列 (76)1.6.8 随机序列 (77)1.7 复值函数 (77)1.7.1 复数 (77)1.7.2 复值函数 (79)1.7.3 几个常数的关系式和恒等式 (82)习题 1 (83)第二章傅里叶变换和系统的频域分析2.1 一维函数的傅里叶变换 (86)2.1.1 傅里叶级数 (86)2.1.2 傅里叶积分定理 (96)2.1.3 傅里叶变换 (97)2.1.4 极限情况下的傅里叶变换 (104)2.1.5 δ函数的傅里叶变换 (105)2.1.6 常用一维函数傅里叶变换对 (114)2.2 二维函数的傅里叶变换 (116)2.2.1 二维函数傅里叶变换的定义 (116)2.2.2 极坐标系中的二维傅里叶变换 (118)2.2.3 常用二维函数傅里叶变换对 (121)2.3 傅里叶变换的性质 (121)2.3.1 傅里叶变换的基本性质 (121)2.3.2 虚、实、奇和偶函数的傅里叶变换 (124)2.4 傅里叶变换的MATLAB 实现 (126)2.4.1 符号傅里叶变换 (126)2.4.2 离散傅立叶变换 (127)2.4.3 快速傅里叶变换 (130)2.5 卷积和卷积定理 (137)2.5.1 卷积的定义 (137)2.5.2 卷积的计算 (138)2.5.3 函数f (x, y)与δ函数的卷积 (148)2.5.4 卷积的效应 (150)2.5.5 卷积运算的基本性质 (152)2.5.6 卷积的MATLAB 实现 (154)2.6 相关和相关定理 (157)2.6.1 互相关 (157)2.6.2 自相关 (159)2.6.3 归一化互相关函数和自相关函数 (161)2.6.4 有限功率函数的相关 (162)2.6.5 相关的计算方法 (162)2.6.6 相关的MATLAB 实现 (167)2.7 傅里叶变换的基本定理 (170)2.7.1 卷积定理 (170)2.7.2 互相关定理 (171)2.7.3 互相关定理 (173)2.7.4 自相关定理 (174)2.7.5 巴塞伐定理 (174)2.7.6 广义巴塞伐定理 (175)2.7.7 导数定理或微分变换定理 (differential transform theorem) 1752.7.8 积分变换定理 (176)2.7.9 转动定理 (176)2.7.10 矩定理 (176)习题2 (178)第三章线性系统和光场的傅里叶分析3.1 线性系统的概念 (180)3.1.1 信号和信息 (180)3.1.2 系统的概念 (180)3.1.3 线性系统 (182)3.1.4 线性平移不变系统 (183)3.2 线性系统的分析方法 (184)3.2.1 正交函数系 (184)3.2.2 基元函数的响应 (188)3.2.3 线性平移不变系统的传递函数 (193)3.2.4 线性平移不变系统的传递函数 (195)3.3 光场解析信号表示 (199)3.3.1 单色光场的数学形式和复数表示 (199)3.3.2 准单色光场的复数表示 (201)3.3.3 多色光场的复数表示 (203)3.4 光场的复振幅空间描述 (206)3.4.1 球面波的复振幅 (206)3.4.2 球面波的近轴近似 (207)3.4.3 平面波的复振幅 (212)3.5 二维光场的傅里叶分析 (216)3.5.1 平面波的空间频率 (216)3.5.2 球面波的空间频率 (222)3.5.3 复振幅分布的空间频谱和角谱 (222)3.5.4 局域空间频率 (224)3.5.5 复杂光波的分解 (225)3.6 函数抽样与函数复原 (228)3.6.1 一维抽样定理 (228)3.6.3 空间-带宽积 (239)3.6.4 线性光学系统的分辨率 (242)习题3 (242)第四章标量衍射理论 (248)4.1 从矢量电场到标量电场 (251)4.1.1 波动方程 (251)4.1.2 亥姆霍兹方程 (253)4.2 基尔霍夫衍射理论 (254)4.2.1 惠更斯-菲涅耳原理 (254)4.2.2 格林定理 (256)4.2.3 基尔霍夫积分定理 (257)4.2.4 基尔霍夫衍射公式 (260)4.2.5 菲涅耳-基尔霍夫衍射公式 (263)4.2.6 球面波的衍射理论 (265)4.3 衍射在空间频域的描述 (268)4.3.1 从空间域到空间频域 (268)4.3.2 谱频的传播效应 (269)4.3.3 角谱的传播 (272)4.3.4 孔径对角谱的效应 (273)4.3.5 传播现象作为一种线性空间滤波器 (276)4.4 衍射的菲涅耳近似和夫琅禾费近似 (277)4.4.1 菲涅耳近似 (277)4.4.2 夫琅禾费近似 (280)4.4.3 夫琅禾费衍射与菲涅耳衍射的关系 (280)4.4.4 衍射屏被会聚球面波照射时的菲涅耳衍射 (281)4.4.5 衍射的巴俾涅原理 (283)4.5 菲涅耳衍射的计算 (285)4.5.1 周期性物体的菲涅耳衍射 (285)4.5.2 矩形孔的菲涅耳衍射 (291)4.5.3 特殊矩形孔的菲涅耳衍射 (300)4.5.4 圆孔的菲涅耳衍射 (303)4.6 夫琅禾费衍射的计算 (306)4.6.1 矩形孔和狭缝 (307)4.6.3 衍射光栅 (313)4.6.4 圆形孔径 (324)习题 4 (329)第五章光学成像系统的空域描述及傅里叶分析 (336)5.1 成像系统和透镜的结构及变换作用 (336)5.1.2 透镜的结构及变换作用 (337)5.2 透镜作为相位变换器 (341)5.2.1 薄透镜的厚度函数 (341)5.2.2 薄透镜的相位变换及其物理意义 (343)5.3 透镜的傅里叶变换性质 (345)5.3.1 透镜的一般变换特性 (345)5.3.2 物在透镜之前 (349)5.3.3 物在透镜后方 (353)5.4 透镜的空间滤波特性 (355)5.4.1 透镜的截止频率、空间带宽积和视场 (356)5.4.2 透镜孔径引起的渐晕效应 (359)5.5 光学系统的一般模型 (363)5.5.1 光阑 (363)5.5.2 入射光瞳和出射光瞳 (366)5.5.3 黑箱模型 (368)5.6 衍射受限光学系统成像的空域分析 (370)5.6.1 衍射受限系统的点扩散函数及成像 (370)5.6.2 正薄透镜的点扩散函数 (374)5.6.3 相干照射下衍射受限系统的成像规律 (375)5.6.4 成像系统的线性特性 (377)习题 5 (378)第六章光学成像系统的频谱分析和传递函数 (384)6.1 光成像系统像质评价概述 (384)6.1.1 星点检验法 (385)6.1.2 图像分辨率板法 (388)6.2 光学传递函数的基本概念 (394)6.2.1 以点扩散函数为基础的定义 (397)6.2.2 以正弦光栅成像为基础的定义 (401)6.2.3 以光瞳函数表示的光学传递函数 (404)6.2.4 组合成像系统的光学传递函数 (405)6.3 衍射受限相干成像系统的相干传递函数 (406)6.3.1 相干传递函数 (406)6.3.2 相干传递函数的角谱解释 (415)6.4 衍射受限系统非相干成像的频域分析—非相干传递函数 (416)6.4.1 非相干成像系统的光学传递函数(OTF) (417)6.4.2 OTF 和CTF 的关系 (421)6.4.3 衍射受限的OTF (421)6.4.4 有像差系统的传递函数 (426)6.5 线扩散函数和刃边扩散函数 (429)6.5.1 线扩散函数和刃边扩散函数的概念 (429)6.5.2 相干线扩散函数和相干刃边扩散函数 (431)6.5.3 非相干线扩散函数和刃边扩散函数 (433)6.6 相干与非相干成像系统的比较 (434)6.7 光学传递函数的测量 (436)6.7.1 光学传递函数测量装置 (436)6.7.2 光学传递函数测量步骤 (439)6.7.3 光学传递函数测量准确度 (440)6.7.4 光学传递函数的测量环境 (445)6.7.5 光学传递函数的测量数据的修正和表示 (447)6.7.6 光学传递函数的测量方法 (448)6.7.7 光学传递测量装置的检定 (450)6.7.8 光学传递标准装置 (450)6.7.9 离散采样系统光学传递测量 (451)习题 6 (452)第七章部分相干理论 (457)7.1 光的干涉理论 (457)7.1.1 叠加原理 (458)7.1.2 光波的干涉 (458)7.1.3 相干和非相干叠加 (460)7.1.4 干涉条纹的可见度 (462)7.2 互相干函数和相干度 (463)7.2.1 互相干函数的定义 (464)7.2.2 杨氏干涉条纹的几何结构 (468)7.2.3 互相干函数的谱表示 (470)7.3 时间相干性和相干时间 (471)7.3.1 时间相干性 (471)7.3.2 相干时间的定义 (476)7.3.3 傅里叶变换光谱技术 (477)7.4 空间相干性 (479)7.5 准单色条件下的干涉和互强度 (480)7.6 范西泰特-策尼克定理 (483)7.6.1 范西泰特-策尼克定理 (484)7.6.2 相干面积 (486)7.6.3 均匀圆形光源 (486)7.7 互相干函数的传播和广义惠更斯原理 (488)习题 7 (491)第八章光学全息 (496)8.1 光学全息概述 (496)8.1.1 全息术的发展简史 (496)8.1.2 全息照相的基本特点 (498)8.1.3 全息图的类型 (500)8.2 全息照相的基本原理 (501)8.2.1 全息照相的基本过程 (501)8.2.2 波前记录 (502)8.2.3 记录过程的线性条件 (503)8.2.4 波前再现 (504)8.3 同轴全息图和离轴全息图 (507)8.3.1 同轴全息图 (507)8.3.2 离轴全息图 (510)8.4 基元全息图 (514)8.4.1 基元全息图 (514)8.4.2 基元光栅 (515)8.5 菲涅耳全息图 (517)8.5.1 点源全息图和基元波带片 (517)8.5.2 几种特殊情况的讨论 (521)8.6 像全息图 (524)8.6.1 再现光源宽度的影响 (524)8.6.2 再现光源光谱宽度的影响 (525)8.6.3 色模糊 (527)8.6.4 像全息图的制作 (528)8.7 傅里叶变换全息图 (529)8.7.1 傅里叶变换全息图的原理 (530)8.7.2 准傅里叶变换全息图 (532)8.7.3 无透镜傅里叶变换全息图 (533)8.8 彩虹全息 (535)8.8.1 二步彩虹全息 (535)8.8.2 一步彩虹全息 (536)8.8.3 彩虹全息的色模糊 (537)8.9 相位全息图 (540)8.10 模压全息图 (541)8.10.1 模压全息图的制作 (542)8.10.2 全息烫印箔 (542)8.10.3 动态点阵全息图 (543)8.11 体积全息 (543)8.11.1 透射体积全息图 (544)8.11.2 反射全息图 (546)8.12 平面全息图的衍射效率 (546)8.12.1 振幅全息图的衍射效率 (547)8.12.2 相位全息图的衍射效率 (548)8.13 全息记录介质 (549)8.13.1 基本术语 (549)8.13.2 E-D曲线和特性曲线 (551)V8.13.3 全息记录介质的分类 (554)习题 8 (558)第九章光学信息处理技术 (562)9.1 引言 (562)9.2 早期研究成果 (563)9.2.1 阿贝成像理论 (563)9.2.2 阿贝-波特(Abbe-Porter)实验 (564)9.2.3 泽尼克相衬显微镜 (568)9.2.4 改善的照片质量 (570)9.3 空间频率滤波系统 (571)9.3.1 空间滤波系统 (571)9.3.2 空间滤波的傅里叶分析 (572)9.3.3 滤波器的种类及应用举例 (576)9.4 相干光学信息处理 (580)9.4.1 相干光学信息处理系统 (580)9.4.2 多重像的产生 (581)9.4.3 图像的相加和相减 (581)9.4.4 光学微分—像边缘增强 (584)9.4.5 综合孔径雷达 (586)9.5 非相干光学信息处理 (588)9.5.1 相干光与非相干光处理的比较 (588)9.5.2 非相干空间滤波 (589)9.5.3 基于几何光学的非相干处理 (593)9.6 白光信息处理 (594)9.7 光计算 (595)9.7.1 光学矩阵运算 (596)9.7.2 光学互连 (597)9.7.3 光学神经网络 (598)习题 9 (598)。
信息光学教学大纲
《信息光学》教学大纲(理论课程及实验课程适用)一、课程信息课程名称(中文):信息光学课程名称(英文):In formation Optics课程类别:专业方向课课程性质:必修计划学时:48 (其中课内学时:48 ,课外学时:0 )计划学分:3先修课程:物理光学、波动光学、高等数学选用教材:《信息光学》第二版,苏显渝主编,科学出版社,2011;非自编;“ ^一五”国家级规划教材开课院部:理学院适用专业:光电信息科学与工程专业课程负责人:郭焱课程网站:二、课程简介(中英文)《信息光学》是光电信息科学与工程专业的一门必修课程。
信息光学是近年来发展起来一门新兴学科,它已渗透到科学技术的各个领域,成为信息科学的重要分支,得到越来越广泛的应用。
本课程主要内容有线性系统分析,标量衍射理论,光学成像系统的传递函数,相干光理论,光学变换,光全息和信息处理。
本课程要求学生掌握线性系统理论、标量衍射理论和光学成像系统理论,初步掌握全息技术、光信息处理技术,了解光信息存储、光学三维传感等前沿领域的技术原理。
通过学习本课程,使学生从频域复习和巩固《应用光学》和《物理光学》的部分内容,掌握傅里叶变换的基本定理及应用,熟练使用空间滤波系统和理论来进行光学信息处理。
In formati on optics is a required course for the specialty of photoelectric in formati on scie nee and engineering. Information optics is a new subject in recent years, it has penetrated into all fields of scie nce and tech no logy, and become an importa nt branch of in formati on scie nee, and it has been widely used in the field of information science. The main contents of this course are lin ear system an alysis, scalar diffractio n theory, optical imagi ng system tran sfer fun cti on, cohere nt light theory, optical transformation, optical holography and information processing. This course requires students to master the linear system theory, the scalar diffraction theory and optical imagi ng system theory, prelimi nary master holographic tech no logy, optical in formatio n process ing tech no logy and un dersta nding of optical in formati on storage, optical 3D sensing fron tier tech no logy prin ciple. Through the study of this course, to en able stude nts to grasp basic theorem and application of Fourier transform from the frequency domain to review and consolidate "Applied Optics" and "physical optics" part of the contents of, skilled in the use of spatial filteri ng system and the theory of optical in formati on process ing.三、课程教学要求序号专业毕业要求课程教学要求关联程度1 工程知识2 问题分析能够应用数学和衍射的角谱理论分析复杂信息光学问H题,以获得有效结论。
信息光学实验讲义一
信息光学实验讲义⼀信息光学实验讲义(⼀)指导教师:刘厚通安徽⼯业⼤学数理学院实验三阿贝成像原理和空间滤波(天津拓扑)⼀、实验⽬的了解付⾥叶光学基本原理的物理意义,加深对光学中的空间频谱和空间滤波等概念的理解。
⼆、实验原理1、傅⽴叶变换在光学成像系统中的应⽤。
在信息光学中、常⽤傅⽴叶变换来表达和处理光的成像过程。
设⼀个xy 平⾯上的光场的振幅分布为g(x,y),可以将这样⼀个空间分布展开为⼀系列基元函数exp[()]x y iz f x f y π+的线性叠加。
即(,)()exp[2()]xy x y x yg x y G ff f x f y df df π∞-∞=+??(1)x f ,y f 为x,y ⽅向的空间频率,量纲为1L -;()x y G f f 是相应于空间频率为x f ,y f 的基元函数的权重,也称为光场的空间频率,()x y G f f 可由下式求得:(,)(,)exp[2()]xyG x y g x y i f x fy dxdy π∞-∞=-+??(2)g(x,y)和()x y G f f 实际上是对同⼀光场的两种本质上等效的描述。
当g(x,y)是⼀个空间的周期性函数时,其空间频率就是不连续的。
例如空间频率为0f 的⼀维光栅,其光振幅分布展开成级数:0()exp[2]nn g x Gi n f x π∞=-∞=∑相应的空间频率为f=0,0f ,0f 。
2、阿贝成像原理傅⽴叶变换在光学成像中的重要性,⾸先在显微镜的研究中显⽰出来。
E.阿贝在1873年提出了显微镜的成像原理,并进⾏了相应的实验研究。
阿贝认为,在相⼲光照明下,显微镜的成像可分为两个步骤,第⼀个步骤是通过物的衍射光在物镜后焦⾯上形成⼀个初级衍射(频谱图)图。
第⼆个步骤则为物镜后焦⾯上的初级衍射图向前发出球⾯波,⼲涉叠加为位于⽬镜焦⾯上的像,这个像可以通过⽬镜观察到。
成像的这两步骤本质上就是两次傅⽴叶变换,如果物的振幅分布是g(x,y),可以证明在物镜后⾯焦⾯'x ,'y 上的光强分布正好是g(x,y)的傅⽴叶变换()x y G f f 。
《信息光学》课程教学大纲(2016版)
《信息光学》课程教学大纲二、课程简介本课程是光电信息科学与工程专业的必修课程,并且是一门主干课。
它的教学目的和任务是系统学习信息光学基础知识,培养学生理论联系实际,结合光学信息处理技术,开拓学生理论用于实践的方法和创新思路,提高学生解决实际问题的能力,为从事光学信息处理工作和近代光学信息处理技术的学习打下基础。
三、课程教学目标(精炼概括3-5条目标,本课程教学目标须与授课对象的专业培养目标有一定的对应关系)1、知识与技能目标:通过本课程的学习,使学生掌握线性系统理论、标量衍射理论和光学成像系统理论,理解光全息技术、光信息处理技术,了解图像的全息显示等前沿领域的技术原理。
2、过程与方法目标:信息光学近年已经得到发展,应用领域不断扩大,课程将以课堂教学、实验教学和计算机模拟相结合的方式,巩固理论知识,提高实践能力和创新能力。
通过计算机模拟,直观理解光学现象,通过一些经典实验,激发学生对课程的学习兴趣,培养学生的动手能力,精选教材,补充参考资料,提高数学分析能力,综合目标是在理论、实践和创新方面得到提高。
3、情感、态度与价值观发展目标:改变课程过于注重知识传授的倾向,培养学生积极主动的学习态度,在获得基础知识与基本技能的过程中提高主观能动性,形成正确的价值观,课堂教学以激发学生的学习兴趣来展开,理论与实践相结合,注重能力和学习态度,让学生不仅要学会生存,更要学会爱,学会关心,学会感恩,学会尊重自然和生命,培养起求真,求实,求善的科学精神,逐步完善健全的人格,树立起正确的人生观和价值观。
本课程需具有《线性代数》、《复变函数》和《积分变换》等数学基础,在学习《光学》课程后开设,后续通过毕业设计(论文)深入理解并与实际应用结合。
四、课程进度表理论教学进程表实践教学进程表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f
f
f
f
近代光学信息处理的应用: 近代光学信息处理的应用:1. 对光学图像信息的处 如照片,底片,画面等. 理,如照片,底片,画面等. 2. 对非光学信息的 处理,如电信号,机械信号,语言信号,热信号等. 处理,如电信号,机械信号,语言信号,热信号等.
3
二,全息照相 1. 波前全息记录和物光波前重现 物体发出(或反射 的光称为物光, 物体发出 或反射)的光称为物光,物光包含的全部 或反射 的光称为物光 信息有:由波长所描绘的颜色 颜色, 信息有:由波长所描绘的颜色,由振幅所确定的 强度,由相位所表示的振动状态. 示的振动状态 光强度,由相位所表示的振动状态. 普通照相,仅记录 普通照相, 光强度和颜色. 光强度和颜色. 平面照片) (平面照片) 全息照相, 全息照相,同时记 录振幅和相位. 录振幅和相位. 立体形象) (立体形象)
~ ~ ~ ~ ~ ~ ~ ~E (x, y)= [t + βA2 ]E + βA2 E + βA2 E + βE 2 E Et (x, y) = t C 0 R C O C R O R O
式中: 称为0级波. 式中:第一项 代表照明光C,称为0级波. 第二项 受 AO 调制的照明光,表现为噪声信息, 调制的照明光,表现为噪声信息, 处于0级波附近. 处于0级波附近. 与物光成正比,称为+ 级波, 第三项 与物光成正比,称为+1级波,此光是 发散光,可重现原物的虚像. 发散光,可重现原物的虚像.
~ ~ ~ ~ ~ = t + β I = t + β ( A 2 + A 2 ) + βE E + β E E t R O R O R O 0 0
7
设照明光与参考光相同, 设照明光与参考光相同,即 ~ ~ EC (x, y) = ER (x, y) = AR (x, y) eiR ( x, y) 设照明光与参考光相同, 设照明光与参考光相同,即
反射 镜 分光 板 物 参考光 R
扩束 器
ห้องสมุดไป่ตู้
激光 器 反射 镜
物光O 物光 感光胶 片
照明光C 照明光
重现的物光 像 全息图
5
特点:若全息图被打碎成多块碎片,其中的一片碎 特点:若全息图被打碎成多块碎片, 就可重现原物的完整形象 重现原物的完整形象. 片就可重现原物的完整形象. 2. 全息照相原理 理论保证:惠更斯 菲涅耳原理 理论保证:惠更斯-菲涅耳原理 菲涅耳-基尔霍夫衍射积分公式 菲涅耳 基尔霍夫衍射积分公式
2. 空间滤波和 系统 空间滤波和4f 用栏截物放置在空间频谱面上,遮挡空间频谱中的 用栏截物放置在空间频谱面上, 空间滤波, 某些频率的分量,以改变像的性质,称为空间滤波 某些频率的分量,以改变像的性质,称为空间滤波, 用于遮挡的器具,称为空间滤波器 空间滤波器. 用于遮挡的器具,称为空间滤波器. 举例说明: 举例说明: ⑴水平狭缝仅让一行水平亮点 通过,像为坚直方向的光栅. 通过,像为坚直方向的光栅. ⑵竖直狭缝仅让一行坚直亮点 通过,像为水平方向的光栅. 通过,像为水平方向的光栅. ⑶小圆孔仅让中心亮点通过,二维像消失,变成一 小圆孔仅让中心亮点通过,二维像消失, 片均匀亮度的光场.若孔径增大, 片均匀亮度的光场.若孔径增大,中心亮点及其周 围的四个亮点通过. 围的四个亮点通过.
2
⑷圆盘挡住中心亮点,像是亮暗颠倒的. 圆盘挡住中心亮点,像是亮暗颠倒的. 空间滤波给我们带来了十分诱人的奇特效果, 空间滤波给我们带来了十分诱人的奇特效果,光 学信息处理正是由此发展起来的. 学信息处理正是由此发展起来的. 近代光学信息处理系统 ——4f 系统的装置 .
物平面 L1 频谱面 L2 像平面
*§13-8 信息光学 §
一,光学信息处理 1. 阿贝波特实验 阿贝 实验装置如图
网格 透镜 空间频谱 像 物面 L 像方焦面 像平面
空间涉谱是夫琅禾费衍射图样.像是空间频谱亮点 空间涉谱是夫琅禾费衍射图样. 作为子波源在像平面上相干叠的结果,这便是阿贝 作为子波源在像平面上相干叠的结果,这便是阿贝 二次衍射成像原理. 二次衍射成像原理. 根据惠更斯菲涅耳原理可以证明, 根据惠更斯菲涅耳原理可以证明,空间频谱上的 复振幅分布是物面透射光的复振幅分布的傅里叶变 也就是说, 换,也就是说,空间频谱反映了物面透射光波的傅 里叶展式中各分量的频率和强度. 里叶展式中各分量的频率和强度. 1
i eikr ~ ~ E(P) = ∫∫ E0 (Q)(cosθ0 + cosθ ) d 2λ 0 r
S
原物存在时
任意一点P的光振动由波前上的 任意一点 的光振动由波前上的 复振幅分布惟一确定, 复振幅分布惟一确定,这在数学 上称为无源空间的边值定解 无源空间的边值定解. 上称为无源空间的边值定解.
~ ~ ~ ~ I( x, y) = (EO + ER )(EO + ER ) ~ ~ ~ ~ 2 2 = AO + AR + ER EO + ER EO
全息图以干涉图样形式记录波前光强的分布I (x, y).
~( x, y) 与光强分布I 成线性关系, 透光率函数 t 与光强分布 (x, y)成线性关系,即 成线性关系
S
∑
6
原物不存在时
波前的全息记录是用干涉方法获得的. 波前的全息记录是用干涉方法获得的. 物光O : 参考光R :
~ E O ( x , y ) = AO ( x , y ) e i O ( x , y ) ~ E R ( x, y) = AR ( x , y ) e i R ( x , y )
两者相干叠加, 两者相干叠加,在波前上产生的光强分布为
~ 级波, 第四项 正比于 E O,称为 1级波,此光是会聚
2
光,可形成实像. 可形成实像.
8
�
反射镜
分光板 扩束器 物
参考光R 参考光
激光器 反射镜
物光O 物光 感光胶片
4
感光胶片上记录了参考光 感光胶片上记录了参考光R 物光o相干叠加的干涉图 与物光 相干叠加的干涉图 与原物的形象不同, 样,与原物的形象不同,却 携带了物光波前上各点的全 部信息,故称全息图 全息图. 部信息,故称全息图. 此记录过程称为波前的全息 此记录过程称为波前的全息 记录. 记录. 利用全息图将物体的形象 重新显现出来的过程, 重新显现出来的过程,称为 物光波前重现. 物光波前重现. 人眼看到的形象是波前所 产生的虚像. 产生的虚像.