磁学和电磁感应(第七章和第八章)作业讲评共29页文档
物理学简明教程第七章课后习题答案—高等教育出版社
物理学简明教程第七章课后习题答案高等教育出版社第七章 恒定磁场和电磁感应7-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )7-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2题 7-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B).7-4一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定题 7-4 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).7-5将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).7-6 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).7-7 已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如图所示,如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度 ()R IR R IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRB I 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 7-7 图7-8 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 7-8 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、be 、fa 三段直线以及acb 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而be 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中l 1 、l 2 分别是圆弧acb 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb 、a d b 又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B .解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 7-9 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 7-9 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0.解 (a) 长直电流对点O 而言,有0d =⨯r l I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RI μB 800= B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RI μR I μB π22000-= B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RI μR I μR I μR I μR I μB 4π24π4π4000000+=++= B 0 的方向垂直纸面向外.7-10 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 7-10 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πRIr μB = 在导线外r >R ,I I =∑,因而rI μB 2π0= 磁感强度分布曲线如图所示.7-11 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 7-11 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得r <R 122101ππ12πr R μr B =⋅ 21012πR Ir μB = R 1 <r <R 2I μr B 022π=⋅rI μB 2π02= R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).7-12 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦNξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势 ())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.7-13 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S S B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为 2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 7-13 图7-14 如图所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 7-14 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.7-15 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 7-15 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图(b)所示.而E OA 和E OB 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-rr ABAB 221d d --=-=⋅⨯=⎰⎰-l B v因此棒两端的电势差为()r L lB ωE U AB AB 221--==当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-=7-16 如图所示,在“无限长”直载流导线的近旁放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 7-16 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgefghefE E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgefl B l B d d v v()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μvv ()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()ξξμξμ120020lnπ2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v由E >0 可知,线框中电动势方向为顺时针方向.7-17 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tBd d 为常量.试证:棒上感应电动势的大小为2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 7-17 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B t l E k d d dd ξ tB r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tBr E k d d 2=设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE lk k PQ -=-==⋅=⎰⎰θξx E证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫⎝⎛-==-==l R l t B t B S t ΦE E PQ讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?。
中考级 第七、八章物理课件
能转化为电能,产生的电能储存于魔方内。魔方还能 通过USB端口给移动设备充电,给移 动设备充电时,魔方相当于电路中的
(选填“电源”或“用电器”)
12/10/2021
【思路点拨】 根据这种魔方的应用特点,可以分析出其使 用时的能量转化方式,根据其能量转化方式又可以推导其 使用原理,再对照电源与用电器的定义,即可以知道此种 魔方到底是电源还是用电器。 【自主解答】 电磁感应 机械 电源
12/10/2021
讲:
产生感应电流的条件
闭合电路的一部分导体在磁场中做切割磁感线运动
时,பைடு நூலகம்体中就会产生电流,所以产生感应电流的条件是
(1)电路是闭合的;(2)导体要在磁场中做切割磁感线运
动;(3)切割磁感线运动的导体只能是一部分;三者缺一
不可。
练:链接跟踪训练第5题
12/10/2021
5.(2017·菏泽鄄城模拟)在如图所示的电路中,能使电 流表指针发生偏转的情况是( C )
12/10/2021
考点一 电流的磁场 (3年2考) 例1(2017·菏泽中考)如图所示,标出通电螺线管的N极和 S极。
12/10/2021
【思路点拨】 由图中小磁针的指向可判断螺线管外磁感线 的方向,从而确定螺线管的极性。 【自主解答】 如图所示
12/10/2021
【解题技巧】 掌握磁场、磁感线、通电螺线管磁场和磁极 之间的关系,对解决电流的磁场问题起到重要作用。
(3)描述——磁感线 箭头
A.表示:用带_____的曲线来描述磁场的某些特征和性质。 B.磁场方向:在磁体的外部,磁感线是从磁体的 _N_极__发出, 回到 _S_极__,磁感线上任何一点的切线方向表示该点的磁场方 向。 C.性质:磁感线分布越密,磁场 _越__强__。
w第8章电磁感应PPT课件
a dx
Ox
X
d
dt
0a dI ln 2 0a dv(t) ln 2
2 dt
2 dt
i(t)
0a
dv(t) ln 2
R 2R dt
8-2 动生电动势的计算
一.动生电动势
如图10-2所示
f
e
v
B
电荷积累停止,ab b“+”
Fe f 时 两端形成稳定的电
势差 非静电场强: Ek
0 Iv
2
ln
ab ab
方向N→M
UM
UN
MN
0Iv ln
2
ab ab
例2/171 如图所示,两个半径分别为R和r的同轴圆形线圈相距x,且
R r, x R 。若大线圈通有电流而小线圈沿x轴方向以速率v
运动,试求 x=NR时(N为正数)小线圈回路中产生的感应电动势
的大小。
B
0 IR 2
2( R 2
第8章 电磁感应与电磁场 (Electromagnetic Induction)
电磁感应现象的发现是电磁学发展史上的一个重要 成就,它进一步揭示了自然界电现象与磁现象之间的 联系。
在理论上,它为揭示电与磁之间的相互联系和转化 奠定实验基础,促进了电磁场理论的形成和发展;
在实践上,它为人类获取巨大而廉价的电能开辟了 道路,标志着一场重大的工业和技术革命的到来。
第8章 电磁感应(electromagnetic induction )
A
一.电磁感应现象 1) B不变 S变化 (导体回路中一
部分切割磁力线)
B
有电流
2) S不变 B变化(各种原因)
有电流
3) B不变 S不变 B和S之间夹角变化
第七章 电磁感应透明
a 3 (t ) i * R2 a 1 (t ) i
* R1
20102010-6-17
31
辐射几率为: 辐(t ) + a 1 (t )
2
2
t = 4
2 2
由上式可以看到,这个辐射几率总是正的, 由上式可以看到,这个辐射几率总是正的,而且是不依 赖于相位的,是在没有布居反转的情况下获得的. 赖于相位的,是在没有布居反转的情况下获得的. 所以, 所以,如果考虑的系统满足条件(a1),(a2)( ) )(a3) ) ( )( 那么在没有布居反转的情况下就可以实现净的增益. 那么在没有布居反转的情况下就可以实现净的增益.
(
) )
* * H I = pσ 23 + pσ 32 + cσ 21 + cσ 12 , 2
(
p = 32 E / , c = 12 E / c = ω c ω 21 , p = ω p ω 23
20102010-6-17 9
定义态矢: 定义态矢:
B = =
* 1 + *p 3 c c + p
a 2 (0 ) = 1, a 3 (0 ) = a1 (0 ) = 0
那么几率幅的解可以求得: 那么几率幅的解可以求得:
20102010-6-17 30
a 2 (t ) = cos(t / 2 ) * 1 R a 3 (t ) = i sin (t / 2 ) 2 2 , = R1 + R 2 * R2 a1 (t ) = i sin (t / 2 )
* P = N13 ρ 31 = N13a 3 a1
, P = ε 0 χ E = ε 0 χ ' + i χ '' E
大学物理-ch7-8__恒定磁场和电磁感应
若q 0, B与v r 同向
0 qv r B 3 4 r
r
若q 0, B与v r 反向
B
r
q
B
v
q
v
五、 1.
毕奥---沙伐尔定律的应用 载流直导线的磁场
Y
已知:真空中I、1、 2、a
建立坐标系OXY
I
2
任取电流元 Idl
大小
方向 Idl r0
0 Idl sin dB 4 r2
dl
1 r0
r
l
O
2
dl a csc d l actg( ) actg r a sin
统一积分变量
0 Idl sin B dB 2 4 r
I
n
m ISen
磁偶极矩
N 电荷的运动是一切磁现象的根源。 运动电荷 磁场 对运动电荷有磁力作用 磁 场
S
二 电流 电流密度的概念
电流:通过截面S 的电荷随时间的 变化率
I dq / dt
S
+ + + + + +
dq envddtS
vd :电子漂移速度的大小 I envd S
Chap7-3 磁通量
一、 方向:切线
d m 大小: B dS
磁场中的高斯定理
Bb Ba a Bc
磁力线(磁感应线)
b
c
B
直线电流的磁力线 圆电流的磁力线 通电螺线管的磁力线
I
I
I
I
1、每一条磁力线都是环绕电流的闭合曲线,都与闭 合电路互相套合,因此磁场是涡旋场。磁力线是无头 无尾的闭合回线。 2、任意两条磁力线在空间不相交。
磁学和电磁感应第七章和第八章作业讲评
学习磁学的应用
了解磁学在实践中的应用,如磁力选 矿、磁悬浮技术等。
强化实验技能
通过实验进一步巩固和加深对磁学和 电磁感应的理解,提高实验技能和实 践能力。
参加学术交流活动
参加学术交流活动,与同行交流学习 心得和经验,拓宽视野和思路。
THANKS FOR WATCHING
感谢您的观看
05 作业答案与解析
第七章作业答案与解析
答案 1. A
2. B
第七章作业答案与解析
3. C 4. D
解析
第七章作业答案与解析
01
第1题
根据磁感应强度的定义,磁感 应强度是描述磁场强弱的物理 量,与磁场力、电流大小无关 。因此,A选项正确。
02 第2题
根据右手定则,当导线垂直穿 过磁场时,大拇指指向电流方 向,四指弯曲方向即为磁场方 向。因此,B选项描述错误。
注重基础概念
对于磁学和电磁感应的基本概 念,应深入理解其物理意义, 避免混淆和误解。
建立知识体系
在学习过程中,应将新知识与已学 知识相互关联,形成完整的知识体 系,以便更好地理解和记忆。
多ห้องสมุดไป่ตู้习题
通过多做习题,可以加深对知 识点的理解和掌握,同时提高
解题能力和应用能力。
下一步学习计划
深入学习电磁场与波
磁场与电流的关系
安培环路定律、奥斯特实验以 及磁场对电流的作用力。
磁介质
磁导率、磁化强度、磁畴等概 念及其在磁学中的应用。
电磁场与波
麦克斯韦方程组、电磁波的传 播特性以及其在通信和探测中
的应用。
学习方法建议
电磁现象及其应用PPT课件
互感电动势的方向,可用楞次定常广泛,如电源变压
器,电流互感器、电压互感器和中周变压器等都是根据互感原
理工作的。
第43页/共48页
3、互感线圈的同名端
(1) 同名端
在电子电路中,对两个或两个以上的有电磁耦合的线圈,常 常需要知道互感电动势的极性。
如图所示,图中两个线圈 L1、L2 绕在同一个圆柱形铁棒上, L1 中通有电流 I 。
(2)电磁继电器的构造:电磁铁,衔铁,弹簧,触电,支架
低压控制电路
高压工作电路
电源
第33页/共48页
电 源 电动机
2.3 电磁感应
一、电磁感应现象
在发现了电流的磁效应后,人们自然想到:既然电能够产生磁, 磁能否产生电呢?
由实验可知,当闭合回路中一部分导体在磁场中做切割磁感线 运动时,回路中就有电流产生。
第22页/共48页
消失
(2)研究电磁铁的磁性强弱跟电流的关系
实验
改变电流
现象
增大电流电磁铁吸引 的大头针数目_增_多___.
结论 通过电磁铁的电流越____,电磁铁的磁性大_____.
越强
第23页/共48页
(3)研究电磁铁的磁性跟线圈匝数的关系
实验 改变线圈匝数
现象 匝数越______, 多 磁性越______.
第35页/共48页
三、感应电动势
大学物理简明教程 第7章 电磁感应与电磁场
i
dt
二.楞次定律
闭合回路中感应电流的方向,总是使得它所 激发的磁场来阻止或补偿引起感应电流的磁通量 的变化.
3
(一)符号法则规定:
(1)对回路任取一绕行方向。
dΦ i dt
(2)当回路中的磁感线方向与回路的绕行方向成右手 螺旋关系时,磁通量为正 (+),反之为负(-)。 (3)回路中的感应电动势方向凡与绕行方向一致时为 正(+),反之为负。
麦克斯韦尔提出: 变化的磁场在其周围空间激 发一种新的电场,这种电场叫感生电场 Er .导体中感 应电流的产生就是这一电场作用于导体中的自由电 子的结果。
闭合回路中感生电动势
B t
B l Er dl S t ds
Ei
17
L
S
oa
1 2 BL 2
14
例 一长直导线中通电流 I =10A,有一长为L= 0.2m 的金属棒与导线垂直共面。当棒以速度v = 2 m/s平行 与长直导线匀速运动时,求棒产生的动生电动势。
10
典型结论
BvL sin
L
特例
B
v
v
B
v
B
0
BvL
11
动生电动势由导线切割磁力线产生
例
有一半圆形金属导线在匀强磁场中作切割磁
力线运动。已知: , B , R . v
求:动生电动势。 解: 作辅助线,形成闭合回路
大学物理-第7章 电磁感应(课堂PPT)
• 自感及自感电动势 • 互感及互感电动势 • 麦克斯韦方程组
❖ 感生电动势
2020/4/26
4
难点
❖ 对电磁感应电动势方向的判定 ❖ 对涡旋电场和位移电流的理解 ❖ 对各种感应电动势的计算 ❖ 对自感和互感相关问题的计算 ❖ 对麦克斯韦方程组物理意义的理解
2020/4/26
5
7.1问题的提出
question
第七章 电磁感应 电磁场理论基础
2020/4/26
1
第七章 问题的提出
❖ 风力发电的原理是什么? ❖ 电场和磁场是单独存在的吗?它们之间有
没有什么关联?
2020/4/26
2
风车发电
本章提纲
7.1 电磁感应现象 法拉第电磁感应 定律
7.1.1 电磁感应现象 7.1.2 法拉第电磁感应定律 7.2 动生电动势 感生电动势 7.2.1 动生电动势 7.2.2 感生电动势 涡旋电场 7.3 自感和互感 磁场的能量 7.3.1 自感现象 自感系数 7.3.2 互感现象 互感系数 7.3.3 磁场能量
上第一台直流发电机示意图
2020/4/26
10
conclusion
两个实验→两个结论:
(1)如果一个闭合回路保持静止,只要穿过 这个回路的磁通量变化时,就会产生感应 电流;(感生电动势)
(2)如果磁场不变,但导体在磁场中运动并
切割磁感线,也会产生感应电动势。(动
生电动势 )
2020/4/26
11
7.1.2 法拉第电磁感应定律(Faraday law of electromagnetic induction)
演唱者美妙的歌声通过麦 克风的传播可以扩大许 多,让一个大厅的观众都 得到欣赏。比较小的声音 经过麦克风就可以扩大许 多,这是什么原因呢?
磁学与电磁感应作业
磁学练习(打*为选做题)一. 选择题:(每题3分)1. 5666在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) -πr 2B cos α.. (B) -πr 2B sin α. (C) 2 πr 2B . (D) πr 2B . [ ] *2. 2354通有电流I 的无限长直导线有如图三种形状,则C ,O ,A 各点磁感强度的大小B C ,B O ,B A 间的关系为: (A) B O > B A > B C . (B) B O > B C > B A .(C) B C > B O > B A . (D) B A > B C > B O . [ ]3.2448无限长的载流导体电流密度均匀,电流沿导体长度方向流动,其在空间产生的磁场如图中曲线表示B -x 的关系(半径为导体R ,x 坐标轴垂直导体轴线,原点在中心轴线),此载流导体为(A )无限长圆柱体 (B )空心长圆筒形导体(C )无限长直导线 (D )无限长半圆柱体 [ ]4. 2047如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径L 的积分⎰⋅LlBd 等于(A) 6/50I μ. (B)I 0μ.(C) 3/20I μ. (D) 6/0I μ . [ ]5.2063一均匀磁场,磁场方向垂直纸面向里,有四个质量、电荷大小均相等的带电粒子,在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹如图,四个粒子中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .xRO(C) Oc.(D) Od.[]*6.2464把通电的直导线放在蹄形磁铁磁极的上方,如图所示.导线可以自由活动,且不计重力.当导线内通以如图所示的电流时,导线将(A) 不动.(B) 顺时针方向转动(从上往下看).(C) 逆时针方向转动(从上往下看),然后下降.(D) 顺时针方向转动(从上往下看),然后下降.(E) 逆时针方向转动(从上往下看),然后上升.[]7. 2518有甲乙两个带铁芯的线圈如图所示.接通甲线圈电源后,抽出甲中铁芯,则乙线圈中产生感生电流情况,则(A) 无感生电流产生.(B) 感生电流的方向a到b方向.(C) 感生电流的方向b到a方向.[]8.2314如图所示,M、N为水平面内两根平行金属导轨,ab与cd为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab向右平移时,cd(A) 向左移动.(B) 向右移动.(C) 不动.(D) 转动.[]9. 5138在一自感线圈中通过的电流I随时间t的变化规律如图(a)所示,若以I的正流向作为 的正方向,则代表线圈内自感电动势 随时间t变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个?[ ]甲乙bNtt ttt(b)(a)10.2564如图,两根导线沿半径方向引到铁环(半径为r )的上A 、B 两点,并在很远处与电源相连,则环中心的磁感强度为 (A)2032rI μ (B) 0(C)r I 80μ (D) 22rI πμ [ ]11.2420在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在AB 导线中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于AB 导线中的电动势. [ ] 12.2148半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <<R .在大导线环中通有正弦电流(取逆时针方向为正)I =I 0sin ωt ,其中ω、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为 (A)t I Rrωωμcos 202π (B) t I R r ωωμcos 2020π-(C)t IRrωωμsin 202π (D)t I Rrωωμsin 202π-[ ]*13.2690一根直导线长为L 在磁感强度为B的均匀磁场中以速度 v运动切割磁力线.导线中对应于非静电力的场强(称作非静电场场强)KE为:(A) B V ⨯ (B) V B⨯(C) VBL (D) l d B V L⋅⨯⎰)( [ ]14. 5468电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1在O 点产生的磁感强度为1B, 2和三角形框中的电流在框中心O 点产生的磁感强度分别用2B 和3B表示,则O 点的磁感强度大小(A)B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B = 0,因为B 1 = B 2 = B 3 = 0.(D) B ≠ 0,因为虽然021≠+B B ,但3B≠ 0. [ ]15. 5121在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =.(C) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B ≠.(D) =⎰⋅1d L l B⎰⋅2d L l B,21P P B B ≠. [ ]16. 2059一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则 (A) 两粒子的动量大小必然不同. (B) 两粒子的运动周期必然不同.(C) 粒子的电荷可以同号也可以异号.(D) 两粒子的电荷必然同号. [ ]*17 2092L 1 2I 3(a)(b) ⊙两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) 0 . (B)RrI I 22210μ.(C) rR I I 22210πμ. (D)Rr I I 22210πμ. [ ]18. 2315如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、c 两点间的电势差U a – U c 为 (A)ε =0, U a – U c =221l B ω. (B)ε =2l B ω,U a – U c =221l B ω. (C)ε =2l B ω,U a – U c =221l B ω-.(D) ε =0,U a – U c =221l B ω-. [ ]二、填空题*1.2004 (4分)磁场中某点的磁感强度为B ,在该点放一个小的载流试验线圈(可以确定该点的磁感强度,其大小等 于放在该点处试验线圈所受的__________和线圈的________的比值. 2.2148 (3分)半径为r 的小绝缘圆环,置于无限长的导线旁距导线距离为D ,二者在同一平面内,且r <<D .在导线中通有正弦电流(取向上方向为正)I =I 0sin ωt ,其中ω、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为_________________________________. 3. 2690 (3分)一根长为L 的直导线在磁感强度为B 的均匀磁场中以速度 v运动切割磁力线.导线中的最大感应电动势大小为=iε____________.4.2747 (5分)面积为S 的平面线圈置于磁感强度为B的均匀磁场中.若线圈以匀角速度ω 绕位于线圈平面内且垂直于O r R I 1 I 2BabclωB 方向的固定轴旋转,在时刻t = 0,B与线圈平面平行.则任意时刻t 时通过线圈的磁通量为__________________,线圈中的感应电动势大小为__________________.若均匀磁场B是由通有电流I 的线圈所产生,且B =k 2I (k 为常量),则旋转线圈相对于产生磁场的线圈最大互感系数为______________. *5. 2665 (4分)在非均匀磁场中,有一电荷为q 的运动电荷.当电荷运动至某点时,其速率为v ,运动方向与磁场方向间的夹角为α ,此时测出它所在位置的磁感应强度为B .则该运动电荷所在处的磁场力f m 的大小为______________________________________________.磁力f m的方向一定垂直于________________________________________________________________.*6.2338 (3分)真空中两只长直螺线管1和2,长度相等,直径之比d 1/d 2=2/3,单层密绕匝数之比n 1 / n 2 =1/2 。
2024年教科版九年级物理教学 第七章 磁与电7.1 磁现象
1.磁现象教材分析一、课标分析1.了解生活中简单的磁现象,会用磁现象的相关知识解释生活中的相关现象。
2.了解我国古代对磁现象的研究成就。
二、内容和地位分析本节课是本章的第一节,是本章知识学习的预备阶段,为后面学生建立电磁联系、了解电磁现象等做铺垫。
整节课主要让学生了解生活中的一些磁现象,建立起磁场的概念,为学习“电生磁”“磁场对通电导线的作用”“磁生电”打下基础。
通过本节课的学习,学生能够感悟到像磁场这种看不见、摸不着的物质,可以通过它对其他物体的作用来认识,用实验来感知,用磁感线来描述。
学情分析磁场是物理学的重要概念,可以用磁感线形象地表示磁场方向和分布情况,是进一步学习电磁学知识的基础。
因为磁场难以直接认识,比较抽象,怎样用磁感线表示磁场,特别是用磁感线表示磁场的方向,学生往往很难理解。
这些都需要学生具有一定的想象能力,而初中学生的思维方式恰好处于从形象思维到抽象思维的过渡阶段,所以磁场和磁感线的教学既是本节课的重点又是难点。
教学目标1.了解简单的磁现象,知道磁极间的相互作用规律。
2.知道磁场,会用磁感线描述磁体周围的磁场方向和强弱。
3.知道地磁场。
4.了解磁化现象。
5.通过观察实验现象能描述磁极之间的相互作用规律,有初步的观察能力和信息交流能力。
6.通过实验感受磁场的存在,经历描述磁场的方法的过程,初步认识科学研究方法的重要性。
核心素养1.使学生在经历分析、观察的过程中体会到学习探究的乐趣。
2.通过了解我国古代对磁的研究方面取得的成就,增强学生的民族自豪感和使命感,进一步激发学生学习物理的兴趣。
重点难点重点:知道磁体周围存在磁场,会用磁感线描述磁体周围的磁场。
难点:引导学生通过实验归纳总结得出用磁感线描述磁场的过程。
教学过程教学环节教学内容学生活动教学意图环节一:导入新课公元843年,在天水一色的茫茫大海上,一只帆船正在日夜不停地航行,没有航标,没有明确的航道。
他们是怎样摆脱当时的困境的呢?司南相当于现在的指南针,在《论衡》中记载:“司南之杓,投之于地,其柢指南。
电磁感应原理与磁路分析课件
-23-
第1章 电磁感应原理与磁路分析
(2)稀土钴 具有综合磁性能好、抗去磁能力强和温度稳定 性高的特点,其允许工作温度可达200~250C; 但缺点是价格 高、不易加工,因而制造成本高。
用磁通 来表示。在均匀磁场中,把单位面积内的磁通量称为
磁通密度B,且有
BΦ S
(1-3)
-4-
第1章 电磁感应原理与磁路分析
1.1.2 电磁感应定律 1. 电磁感应定律 1831年,法拉第通过实验发现了电磁学中最重要的规律—
—电磁感应定律,揭示了磁通与电动势之间存在如下关系: 1)如果在闭合磁路中磁通随时间而变化,那么将在线圈中
第1章 电磁感应原理与磁路分析
1.1 电磁感应原理
众所周知,电和磁是自然界的两种现象,近代通过物理学 家的深入研究,发现了电和磁的一些基本规律以及它们之间的 联系。本节将概要地介绍电磁感应的基本概念和定律,作为学 习本课程的物理基础。
1.1.1 磁场 除了天然磁体会产生磁场外,人们发现在导体中通过电流
(3)钕铁硼 于上世纪80年代后期合成的一种永磁材料。其 磁性能优于稀土钴,且价格较低;不足之处是工作温度较低,约 为100C,使其应用范围受到一定限制。
(4)铝镍钴 有两种制造方法:一种是用浇铸法制成的铸造 型铝镍钴,其优点是磁性能较高,稳定性好,价格较低;缺点是 材料硬而脆,不宜加工。另一种是由粉末冶金(烧结)或粉末压 制(粘结)制成的粉末型铝镍钴,其优点是可以直接成型,按所 需的形状和尺寸制作,特别适应批量生产; 缺点是磁性不及前 者,且价格较高。
磁学和电磁感应(第七章和第八章)作业讲评
0i
2a0
0e
2 2
1 m e 0 a 0
8a0
其方向垂直纸面向外
第七章 恒定电流和磁场(二)
1 长直电流I2与圆形电流I1共面,并与其一直径相重合如图(但两者 间绝缘),设长直电流不动,则圆形电流将 dF (A) 绕I2旋转. (C) 向右运动. (E) 不动. 分析:圆形电流上所有电流元所受的长直电流的磁场力都在屏 幕平面上,右边的力沿径向向外,而左边的沿径向向内,所以 合力向右 它们所受的最大磁力矩之比M1/M2等于 (A)1 (C) 4 分析: M IS e n B p m B (B)2 (D) 1/4 (B) 向左运动. (D) 向上运动.
5.如图所示,在宽度为d的导体薄片上有电流I沿此导体长度方向流 过,电流在导体宽度方向均匀分布.导体外在导体中线附近处P点 的磁感强度B 的大小为 0 I /( 2 d ) . 俯 I 分析:考虑导体中线附近处P点的磁感强度时,可认 视 图 为电流分布具有面对称性,此时板外磁场方向平行 d d 于板面并与电流方向垂直,建立关于板面对称的矩 I 形回路,利用安培环路定理求解。 P
q C 0 .2 C
1 C
t
idt
0
t
(1 e
) (SI)
(2) 由全电流的连续性,得
I d i 0 . 2 e t (SI)
5.均匀带电刚性细杆AB,电荷线密度为λ,绕垂直于直线的轴O 以角速度ω匀速转动(O点在细杆AB延长线上).求:(1)O点的 磁感应强度 ;(2)磁矩 P;(3)若a>>b,求 B 和 Pm O B m O dq 解:(1) r~r+dr段电荷 dr a dI dq = dr旋转形成圆电 2 2 A 流 0 d I 0 d r b 它在O点的磁感强度 d B 0
基础物理学第七章(电磁感应)课后习题答案
第七章电磁感应变化电磁场思考题7-1感应电动势与感应电流哪一个更能反映电磁感应现象的本质?答:感应电动势。
7-2 直流电流表中线圈的框架是闭合的铝框架,为什么?灵敏电流计的线圈处于永磁体的磁场中,通入电流线圈就发生偏转。
切断电流后线圈在回复原来位置前总要来回摆动好多次。
这时如果用导线把线圈的两个接头短路,则摆动会马上停止。
这是什么缘故?答:用导线把线圈的两个接头短路,线圈中产生感应电流,因此线圈在磁场中受到一力偶矩的作用,阻碍线圈运动,使线圈很快停下来。
7-3让一块磁铁在一根很长的铅直铜管内落下,若不计空气阻力,试描述磁铁的运动情况,并说明理由。
答:当磁铁在金属管中时,金属管内感应感生电流,由楞次定律可知,感生电流的方向,总是使它所激发的磁场去阻止引起感应电流的原磁通量的变化,即:阻碍磁铁相对金属管的运动。
磁铁在金属管内除重力外,受到向上的磁力,向下的加速度减小,速度增大,相应磁力增大。
当磁力等于重力时,磁铁作匀速向下运动,达到动态平衡。
7-4用金属丝绕制的标准电阻是无自感的,怎样绕制才能达到自感系数为零的目的?答:如果回路周围不存在铁磁质,自感L的数值将与电流无关,仅由回路的几何性质、匝数以及周围磁介质的磁导率所决定。
把一条金属丝接成双线绕制,就能得到自感系数为零的线圈。
做纯电阻用的电阻器都是这样绕制的。
7-5 举例说明磁能是贮藏在磁场中的。
7-6如果电路中通有强电流,当你突然拉开闸刀断电时,就会有火花跳过闸刀。
试解释这一现象。
答:当突然拉开通有强电流电路中的刀闸而断电时,电路中电流迅速减小,电流的变化率很大,因而在电路中会产生很大的自感电动势。
此电动势可以把刀闸两端间的空气击穿,因而在刀闸处会有大的火花跳过。
7-7 变化的电场所产生的磁场,是否一定随时间而变化?变化的磁场所产生的电场,是否也一定随时间而变化?7-8 试比较传导电流与位移电流。
答:位移电流具有磁效应-与传导电流相同。
两者不同之处:产生机理不同,传导电流是电荷定向运动形成的,位移电流是变化的电场产生的;存在条件不同,传导电流需要导体,位移电流不需要导体,可以存在于真空中、导体中、介质中;位移电流没有热效应,传导电流产生焦耳热。
第八章电磁感应电磁场
第八章 电磁感应 电磁场一、选择题尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中:(A) 感应电动势不同, 感应电流不同.(B) 感应电动势相同,感应电流相同.(C) 感应电动势不同, 感应电流相同.(D) 感应电动势相同,感应电流不同.2. 如图14.1所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪种情况可以做到?(A) 载流螺线管向线圈靠近;(B) 载流螺线管离开线圈;(C) 载流螺线管中电流增大;(D) 载流螺线管中插入铁芯.3. 在一通有电流I 的无限长直导线所在平面内, 有一半径为r 、电阻为R 的导线环,环中心距直导线为a ,如图14.2所示,且a >>r .当直导线的电流被切断后,沿导线环流过的电量约为(A) )11(220ra a R Ir +-πμ. (B) rR Ia 220μ.图图(C) a r a R Ir +ln 20πμ. (D) aR Ir 220μ.4. 如图14.3所示,导体棒AB 在均匀磁场中绕通过C 点的垂直于棒长且沿磁场方向的轴OO 转动(角速度与B 同方向), BC 的长度为棒长的1/3. 则: (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(C) A 点比B 点电势低.(D) 有稳恒电流从A 点流向B 点.5. 如图14.4所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应电动势ε和a 、c 两点的电势差U a U c 为(A) ε= 0, U a U c = B l 2/2 .(B) ε= Bw l 2, U a U c =B l 2/2 .(C) ε= 0, U a U c = B l 2/2.(D) ε= Bw l 2 , U a U c = B l 2/2 . 6.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将:(A) 减缓铜板中磁场的增加.(B) 加速铜板中磁场的增加.(C) 对磁场不起作用.(D) 使铜板中磁场反向.7. 磁感应强度为B 的均匀磁场被限制在圆柱形空间内,.B 的大小以速率d B /d t >0变化,在磁场中有一等腰三角形ACD 导线线圈如图O B O C B A 图14.3 B l c b a 图× × × × × O B A C D15.1放置,在导线CD 中产生的感应电动势为ε1,在导线CAD 中产生的感应电动势为ε2,在导线线圈ACDA 中产生的感应电动势为ε. 则:(A) ε1= ε2 , ε=ε1+ε2 =0.(B) ε1>0, ε2<0 , ε=ε1+ε2 >0.(C) ε1>0, ε2>0 , ε=ε1ε2 <0. (D) ε1>0, ε2>0 , ε=ε2ε1>0. 8. 自感为0.25H 的线圈中,当电流在(1/16)s 内由2A 均匀减小到零时, 线圈中自感电动势的大小为: (A) 7.8103V. (B) 2.0V.(C) 8.0V. (D) 3.1102V. 9. 匝数为N 的矩形线圈长为a 宽为b ,置于均匀磁场B 中.线圈以角速度旋转,如图15.2所示,当t =0时线圈平面处于纸面,且AC 边向外,DE边向里.设回路正向ACDEA . 则任一时刻线圈内感应电动势为(A) abNBsin t (B) abNBcos t (C) abNBsin t (D) abNB cos tC A E O O B b图10. 用导线围成如图15.3所示的正方形加一对角线回路,中心为O 点, 放在轴线通过O 点且垂直于图面的圆柱形均匀磁场中. 磁场方向垂直图面向里, 其大小随时间减小, 则感应电流的流向在图18.2的四图中应为: , 11. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向,使:(A) 两线圈平面都平行于两圆心的连线.(B) 两线圈平面都垂直于两圆心的连线.(C) 两线圈中电流方向相反.(D) 一个线圈平面平行于两圆心的连线,另一个线圈平面垂直于两圆心的连线.12. 对于线圈其自感系数的定义式为L =m /I .当线圈的几何形状,大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流变小,则线圈的自感系数L(A) 变大,与电流成反比关系.(B) 变小.(C) 不变. (D) 变大,但与电流不成反比关系.13. 一截面为长方形的环式螺旋管共有N 匝线圈,其尺寸如图16.1所示.则其自感系数为(A) 0N 2(b a )h/(2a ). (B) [0N 2h/(2)]ln(b/a ). (C) 0N 2(b a )h/(2b ). (D) 0N 2(b a )h/[(a+b ). 14. 一圆形线圈C 1有N 1匝,线圈半径为r .将此线圈放在另一半径为R (R>>r ),匝数为N 2的圆形大线圈C 2的中心,两者同轴共面.则此二线圈的互感系数M 为(A) 0N 2N 2R /2.图× × O I II (A × × O I I (B × × O I I I (C × × O I I (Dh ba 图(B) 0N 2N 2R 2/(2r ). (C) 0N 2N 2r 2/(2R ). (D) 0N 2N 2r /2.15. 可以利用超导线圈中的持续大电流的磁场储存能量, 要储存1kW h 的能量,利用1.0T 的磁场需要的磁场体积为V , 利用电流为500A 的线圈储存1kW h 的能量,线圈的自感系数为L. 则(A) V=9.05m 3, L =28.8H.(B) V=7.2×106m 3, L =28.8H.(C) V=9.05m 3, L =1.44×104H. (D) V=7.2×106m 3, L =1.44×104H. 16. 如图17.1所示,平板电容器(忽略边缘效应)充电时, 沿环路L 1、L 2磁场强度H 的环流中, 必有: (A) ⎰⋅1d L l H >⎰⋅2d L l H . (B) ⎰⋅1d L l H =⎰⋅2d L l H . (C) ⎰⋅1d L l H <⎰⋅2d L l H . (C) ⎰⋅1d L l H =0. 17. 关于位移电流,下述四种说法哪一种说法正确.(A) 位移电流是由变化电场产生的.(B) 位移电流是由线性变化磁场产生的.(C) 位移电流的热效应服从焦耳-楞次定律.(D) 位移电流的磁效应不服从安培环路定理.18. 一平面电磁波在非色散无损耗的媒质里传播,测得电磁波的平均能流密度为3000W/m 2,媒质的相对介电常数为4,相对磁导率为1,则在媒质中电磁波的平均能量密度为:(A) 1000J/m 3.(B) 3000J/m 3 .O O图LL 图(C) 1.0×10-5J/m 3.(D) 2.0×10-5J/m 19. 电磁波的电场强度E 、磁场强度H 和传播速度u 的关系是:(A) 三者互相垂直,而且E 和H 相位相差/2. (B) 三者互相垂直,而且E 、H 、u 构成右手螺旋直角坐标系.(C) 三者中E 和H 是同方向的,但都与u 垂直.(D) 三者中E 和H 可以是任意方向,但都必须与u 垂直.20. 设在真空中沿着x 轴正方向传播的平面电磁波,其电场强度的波的表达式是,E z =E 0cos2(νtx /), 则磁场强度的波的表达式是:(A) H y =00/μεE 0cos2(νt x /).(B) H z =00/μεE 0cos2(νt x /).(C) H y =-00/μεE 0cos2(νt x /).(D) H y =-00/μεE 0cos2(νt +x /).二、填空题1. 如图14.5所示,半径为r 1的小导线环,置于半径为r 2的大导线环中心,二者在同一平面内,且r 1<<r 2.在大导线环中通有正弦电流I=I 0sin t ,其中、I 为常数,t 为时间,则任一时刻小导线环中感应电动势的大小为 .设小导线环的电阻为R ,则在t =0到t =/(2)时间内,通过小导线环某截面的感应电量为q= .2. 如图14.6所示,长直导线中通有电流I ,有一与长直导线共面且垂直于导线的细金属棒AB ,以速度v 平行于长直导线作匀速运动. (1) 金属棒AB 两端的电势U A U B (填 、、). (2) 若将电流I 反向,AB 两端的电势U A U B (填 、r r 图v B A 图、). (3) 若将金属棒与导线平行放置,AB 两端的电势U A U B (填 、、).3. 半径为R 的金属圆板在均匀磁场中以角速度绕中心轴旋转,均匀磁场的方向平行于转轴,如图14.7所示.这时板中由中心至同一边缘点的不同曲线上总感应电动势的大小为 ,方向 . 4. 如图15.4所示. 匀强磁场局限于半径为R 的圆柱形空间区域, B 垂直于纸面向里,磁感应强度B 以d B /d t =常量的速率增加. D 点在柱形空间内, 离轴线的距离为r 1, C 点在圆柱形空间外, 离轴线上的距离为r 2 . 将一电子(质量为m ,电量为-e )置于D 点,则电子的加速度为a D = ,方向向 ;置于C 点时,电子的加速度为aC = ,方向向 . 5. 半径为a 的长为l (l >>a )密绕螺线管,单位长度上的匝数为n , 则此螺线管的自感系数为 ;当通以电流I=I m sin t 时,则在管外的同轴圆形导体回路(半径为r >a )上的感生电动势大小为 .6. 一闭合导线被弯成圆心在O 点半径为R 的三段首尾相接的圆弧线圈:弧ab , 弧bc , 弧ca . 弧ab 位于xOy 平面内,弧bc 位于yOz 平面内,弧ca 位于zOx 平面内. 如图15.5所示.均匀磁场B 沿x 轴正向,设磁感应强度B 随时间的变化率为d B /d t =k (k >0),则闭合回路中的感应电动势为 ,圆弧bc 中感应电流的方向为7. 如图16.2所示,有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO 上,则直导线与矩形线圈间的互感系数为 . 8.边长为a 和2a 的两正方形线圈A 、B,如图16.3所示地同轴放置,通有相同的电流I ,线圈A 的电流所产生的磁场通过线圈O O B 图ax by c z O B R 图B r D R O 图× × r a 2a O O图B 的磁通量用BA 表示,线圈B 的电流所产生的磁场通过线圈A 的磁通量用AB表示,则二者大小相比较的关系式为 .9. 半径为R 的无线长圆柱形导体,大小为I 的电流均匀地流过导体截面.则长为L 的一段导线内的磁场能量W = .10. 反映电磁场基本性质和规律的麦克斯韦方程组的积分形式为:试判断下列结论是包含或等效于哪一个麦克斯韦方程式的. 将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场: ;(2) 磁感应线是无头无尾的: ;(3) 电荷总伴随有电场: .三、计算题1. 如图14.8所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示. 求此线框中产生的感应电动势的大小和方向.2. 一很长的长方形的U 形导轨,与水平面成 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图14.9所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的v m .3 在半径为R 的圆柱形空间中存在着均匀磁场B ,B 的方向与.有一长为2R 的金属棒MN 放在磁场外且与圆柱形均匀磁20c 105c C A I 图b B l d a 图× × O R B a 2az场相切,切点为金属棒的中点,金属棒与磁场B的轴线垂直.如图15.6所示.设B随时间的变化率d B/d t为大于零的常量.求:棒上感应电动势的大小,并指出哪一个端点的电势高.(分别用对感生电场的积分εi=l E i·d l和法拉第电磁感应定律εi=-d/d t两种方法解).4. 电量Q均匀分布在半径为a,长为L(L>>a)的绝缘薄壁长圆筒表面上,圆筒以角速度绕中心轴旋转.一半径为2a,电阻为R总匝数为N的圆线圈套在圆筒上,如图15.7所示.若圆筒转速按=0(1t/t0)的规律(0,t0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.5 两半径为a的长直导线平行放置,相距为d,组成同一回路,求其单位长度导线的自感系数L0.6.如图所示,金属圆环半径为R,位于磁感应强度为B的均匀磁场中,圆环平面与磁场方向垂直。
大学物理讲稿(第8章电磁感应 电磁场)
第8章 电磁感应 电磁场电与磁之间有着密切的联系,上章所讨论的电流产生磁场以及磁场对电流的作用,就是这种联系的一个方面.这种联系的另一方面就是随时间变化的磁场可以产生电场以及随时间变化的电场也可以产生磁场.这些现象的发现,使人们有可能大规模地把其它形式的能转化为电能,为广泛使用电力创造了条件,大大推动了生产力的发展.本章在介绍法拉第电磁感应定律的基础上,研究随时间变化的磁场产生电场的规律;在麦克斯韦位移电流假设的基础上研究随时间变化的电场产生磁场的规律,并简单介绍麦克斯韦的电磁理论.§8.1 电磁感应定律一、电磁感应现象1820年奥斯特关于电流的磁效应的发现,引起了科学界的普遍关注,对其逆现象是否能够发生进行了大量的研究.英国物理学家法拉第(M.Faraday,1791—1867)经过十多年的辛勤努力,终于在1831年发现电磁感应现象.其内容为:不论采用什么方法,只要使通过导体回路所包围面积的磁通量发生变化,则回路中便会有电流产生.这种现象称为电磁感应,这种现象所产生的电流称为感应电流.关于感应电流的方向,楞次(Lenz)于1833年从实验中总结出一条规律称为楞次定律,其内容为:感应电流产生的磁通量总是反抗回路中原磁通量的变化.二、法拉第电磁感应定律在闭合导体回路中出现了电流,一定是由于回路中出现了电动势.当穿过导体回路的磁通量发生变化时,回路中产生了感应电流,就说明此时在回路中产生了电动势.由这一原因产生的电动势叫感应电动势,其方向与感应电流的方向相同.但应注意,如果导体回路不闭合,则回路中无感应电流,但仍有感应电动势.因此,从本质上说,电磁感应的直接效果是在回路中产生感应电动势.关于感应电动势,法拉第通过对大量实验事实的分析,总结出如下结论:无论什么原因,使通过回路的磁通量发生变化时,回路中均有感应电动势产生,其大小与通过该回路的磁通量随时间的变化率成正比.这一规律称为法拉第电磁感应定律.在SI 单位制中,其数学表达式为dtd i Φ-=ε (8.1) 式中Φ是通过导体回路的磁通量,若回路由N 匝线圈组成,且通过每匝线圈的磁通量均相等,则式中磁通量Φ要用磁通匝数(磁链)Φ=ψN 代替.式中负号是考虑i ε与Φ的标定正方向满足右手螺旋关系所引入的,它是楞次定律ε与Φ在此都是代数量,其正负要由预先标定的正方向来决定,与标定正方向相的反映.i同为正,与标定正方向相反为负.如图8.1所示,任取绕行方向作为导体回路中电动势的标定正方向(图中虚线箭头所示方向),取以导体回路为边界的曲面的法向单位矢量n 的方向为磁通量的标定正方向,并且规定这两个标定正方向满足右手螺旋关系.在图8.1中,如果磁场由下向上穿过回路, 0>Φdtd/),由式(8.1)就有>Φ,同时磁场在增大(0ε< 0,此时感应电动势的方向与虚线箭头的方向相反.其i他情形同学们可自行分析.作业(P198):8.8,8.10§8.2 动生电动势一、动生电动势电磁感应现象虽然种类繁多,但可以把它们分为两大类,一类是磁场相对于线圈或导体回路改变其大小和方向而引起的电磁感应现象,另一类是线圈或导体回路相对于磁场改变其面积和取向而引起的电磁感应现象.我们将磁场不随时间变化,仅由导体或导体回路相对于磁场运动所产生的感应电动势称为动生电动势.如图8.2 所示,在方向垂直于纸面向里的匀强磁场B 中放置一矩形导线框abcd ,其平面与磁场垂直;导体ab 段长为l ,可沿cb 和da 滑动.当ab 以速度υ向右滑动时,线框回路中产生的感应电动势即为动生电动势.某时刻穿过回路所围面积的磁通量为B l x BS ==Φ随着ab 的运动,其磁通量在变化,由式(8.1)可得动生电动势为ab Bl dtdx Bl dt d ε-=υ-=-=Φ-=ε 即 υ=εBl ab (8.2)负号表示动生电动势的方向与标定正方向相反,即从a →b .二、动生电动势的电子论解释我们知道,电动势是非静电力作用的表现.引起动生电动势的非静电力是洛仑磁力.当导体ab 向右以速度υ运动时,其内的自由电子被带着以同一速度向右运动,因而每个电子都受到洛仑磁力作用B e f ⨯υ-=把这个作用力看成是一种等效的“非静电场”的作用,则这一非静电场的场强应为B ef E k ⨯υ=-= (8.3) 根据电动势的定义有Bl l d B l d E b ak ab υ=⋅⨯υ=⋅=ε⎰⎰+- )( (8.4) 这一结果与直接用法拉第电磁感应定律所得结果相同.以上结论可推广到任意形状的导体或线圈在非均匀磁场中运动或发生形变的情形.这是因为任何形状的导体或线圈可以看成是由许多线段元组成,而任一线段元dl 所在区域的磁场可看成是匀强磁场.每段dl 对应有一个速度, 这时,任一线段元dl上所产生的动生电动势为l d B d ⋅⨯υ=ε)(整个导线或线圈中产生的动生电动势为⎰⋅⨯υ=εLl d B )( (8.5) 这是计算动生电动势的一般公式,它与法拉第电磁感应定律完全等效.由于B l d l d B ⋅υ⨯=⋅⨯υ)()( 而B l d ⋅υ⨯)(是线元d l 在单位时间所切割磁感应线数目.故式(8.5)表示了在整个导线L 中所产生的动生电动势等于整个导线在单位时间内所切割的磁感应线数目.对于闭合回路,也就等于单位时间内通过回路的磁感应通量的变化量.可见(8.5)与法拉第电磁感应定律式等效.它提供了一种计算动生电动势的方法.值得注意,导线在磁场中运动产生感应电动势是洛仑磁力作用的结果.在闭合电路中,感应电动势是要做功的.但前已说过,洛仑磁力不做功,对此作何解释呢?如图8.3所示,随同导线一起运动的自由电子受到洛仑磁力的作用,电子将以速度'υ沿导线运动,而速度'υ的存在使电子还要受到一个垂直于导线的洛仑磁力B e f ⨯υ-=''的作用.电子受洛仑磁力的合力为'f f F +=,电子运动的合速度为'υ+υ= V ,所以洛仑磁力合力做功的功率为)'()'(υ+υ⋅+=⋅ f f V Fυ⋅+υ⋅= ''f f 0=υυ-υυ=''B e B e这一结果表示洛仑磁力的合力做功为零,这与洛仑磁力不做功是一致的.从上述结果中可以看到υ⋅-=υ⋅→=υ⋅+υ⋅ ''''f f f f 0为了使自由电子以速度υ 匀速运动,必须有外力ext f 作用到电子上,而且'f f ext -=.因此有υ⋅-=υ⋅ ext f f '此等式左侧表示洛仑磁力的一个分力使电荷沿导线运动所做功的功率,宏观上就是感应电动势驱动电流做功的功率.等式右侧是同一时刻外力反抗洛仑磁力的另一个分力做功的功率,宏观上就是外力拉动导线做功的功率,洛仑磁力总体做功为零,它实际上表示了能量的转换和守恒.洛仑磁力在这里起了一个能量转化者的作用,一方面接受外力的功,同时驱动电荷运动做功.例题 8.1如图8.4所示是半径为R 的导体圆盘.刷子a-a ' 与盘的轴及边缘保持光滑接触,导线通过刷子与盘构成闭合回路.求当导体圆盘绕通过中心的轴在均匀磁场B (B 与盘面垂直)中以角速度ω旋转时,盘心与盘边缘a-a' 的电动势.解:首先考虑圆盘任一半径上距轴心为r处的一段微元dr 以速度υ垂直于磁场而运动,υ=ωr,微元dr 上的动生电动势为Brdr Bdr r d B d ω=υ=⋅⨯υ=ε )(在整个半径上的电动势为2021BR rdr B R ω=ω=ε⎰ 在盘上其它半径中,也有同样大小的动生电动势.这些半径都是并联着的,因此整个盘可以当作一个电动势源.轴是一个电极,边缘是另一个电极.这可看成是一个简易直流发电机的模型.刚性N 匝线圈在均匀磁场中,绕垂直于磁场的轴以角速度ω转动时.由法拉第电磁感应定律式或式 (8.5)可得在匀强磁场中转动的线圈产生的感应电动势为t t N B S ωε=ωω=εs i n s i n 0 S 是线圈所围面积.所产生的电动势是交变电动势.这是交流发电机的基本原理. 作业(P198):8.11,8.13§8.3 感生电动势和感生电场一、感生电动势和感生电场我们把处于静止状态的导体或导体回路,由于内部磁场变化而产生的感应电动势称为感生电动势.由于产生感生电动势的导体或导体回路不运动,因此感生电动势的起因不能用洛仑磁力来解释.由于这时的感应电流是原来宏观静止的电荷受非静电力作用形成的,而静止电荷受到的力只能是电场力,所以这时的非静电力也只能是一种电场力.由于这种电场是由变化的磁场引起的,所以叫感生电场,即产生感生电动势的非静电场是感生电场.以i E 表示感生电场,则根据电动势的定义,感生电动势可表为⎰⋅=εL i i l d E根据法拉第电磁感应定律应该有⎰⎰⎰⎰⎰⋅∂∂-=⋅-=Φ-=⋅=εSS L i i S d t B S d B dt d dt d l d E 即 ⎰⎰⎰⋅∂∂-=⋅=εSL i i S d t B l d E (8.6) 上式是感生电场与变化磁场的一般关系,同时它也提供了一种计算感生电动势的方法.感生电动势的计算,可先计算出导体内感生电场,然后通过对感生电场的积分来计算感生电动势;也可直接利用法拉第电磁感应定律计算.利用后者计算一段非闭合导线ab 的感生电动势时,要设想一条辅助曲线与ab 组成闭合回路,但求得的感生电动势不一定等于导线ab 上的感生电动势,因为辅助曲线上的感生电动势不一定为零.因此所选的辅助曲线应当满足:它上面的感生电动势或者为零,或者易于求出.值得指出,在磁场变化时,不但在导体回路中,而且在空间任一地点都会产生感生电场,这与空间中有无导体或导体回路无关.然而,感生电动势虽不要求导体是闭合电路,但却必须在导体中才能产生.由于感生电场的环路积分一般不等于零,故它不是保守力场,所以又叫它涡旋电场.涡旋电场不同于静电场的重要方面就在于它不是保守力场. 例题 8.2 匀强磁场局限在半径为R 的柱形区域内,磁场方向如图8.5所示.磁感应强度B 的大小正以速率dB/dt 在增加,求空间涡旋电场的分布.解:取绕行正方向为顺时针方向,作为感生电动势和涡旋电场的标定正方向,磁通量的标定方向则垂直纸面向里.在r <R 的区域,作半径为r 的圆形回路,由⎰⎰⎰⋅∂∂-=⋅=εSL i i S d t B l d E 并考虑到在圆形回路的各点上, i E 的大小相等,方向沿圆周的切线.而在圆形回路内是匀强磁场,且B 与dS 同向,于是上式可化为dtdB r rE i 22π-=π 所以可解得r dt dB E i 21-= (8.7) 式中负号表示涡旋电场的实际方向与标定方向相反,即逆时针方向.在r > R 的区域,作半径为r 的圆形回路,同上可得rR dt dB E i 221-= (8.8) 方向也沿逆时针方向.由此可见,虽然磁场只局限于半径为R 的柱形区域,但所激发的涡旋电场却存在于整个空间.例题 8.3 如图8.6所示,在半径为R 的圆柱形空间存在有一均匀磁场,其磁感应强度的方向与圆柱轴线平行.今将一长为l 的导体杆ab 置于磁场中,求当dB/dt > 0 时杆中的感生电动势.解法1:通过感生电场求感生电动势取杆的中点为坐标原点建立X 轴如图所示.在杆上取一线元dx ,由式(8.7)知,该点感生电场的大小为r dtdB E i 21= 方向如图.故ab 杆上的感生电动势为⎰⎰-θ=⋅=ε222//cos l l bai i dx dt dB r i dx E dt dB l R l dx r h dt dB r l l 22222212)/(//-==⎰- i ε的方向由b a →解法2:利用法拉第电磁感应定律求感生电动势如图8.6所示,作辅助线o'a 和o'b .因为i E 沿切向,则它沿着bo'及o'a 的线积分等于零,所以闭合回路aboa 上的感生电动势也就等于ab 段上的感生电动势.穿过该闭合回路的磁通量为hl B BS 21==Φ 于是所求的感生电动势为b a dt dB l R l dt d i →-=Φ=ε由楞此定律知方向22221)/( * 二、电子感应加速器电子感应加速器是利用在变化磁场中产生涡旋电场来加速电子的,图8.7(a)是这种加速器的原理示意图,在由电磁铁产生的非均匀磁场中安放着环状真空室.当电磁铁用低频的强大交变电流励磁时,真空室会产生很强的涡旋电场.由电子枪发射的电子,一方面在洛仑磁力的作用下作圆周运动,同时被涡旋电场所加速.前面我们得到的带电粒子在匀强磁场中作圆周运动的规律表明,粒子的运动轨道半径R 与其速率υ成正比.而在电子感应加速器中,真空室的径向线度是极其有限的,必须将电子限制在一个固定的圆形轨道上,同时被加速.那么这个要求是否能够实现呢?根据洛仑磁力为电子作圆周运动提供向心力,可以得到R e R B m =υ (8.9)式中R B 是电子运行轨道上的磁感应强度.上式表明,只要轨道上磁感应强度随电子动量成正比例的增加,电子就能够在一个固定的轨道上运行并被加速.可以证明当2/BBR(B是轨道所围面积内的平均磁感应强度)时,被加速的电子可稳定在半径为R的圆形轨道上运行.由此可见,在磁场变化的一个周期内,只有其中四分之一周期才可以用于电子的加速(如图8.7(b)).若在第一个1/4周期开始时将电子引入轨道,1/4周期即将结束时将电子引离轨道,进入靶室,可使电子获得数百兆电子伏的能量.这样的高能电子束可直接用于核物理实验,也可用于轰击靶以产生人工γ射线,还可以用来产生硬X射线,作无损探伤或癌症治疗之用.作业(P199):8.14§8.4 自感和互感一、自感现象当一线圈的电流发生变化时,通过线圈自身的磁通量也要发生变化,进而在回路中产生感应电动势.这种现象称为自感现象,这种电动势称为自感电动势.设某线圈有N 匝,据毕奥-萨伐尔定律,此电流所产生的磁场在空间任一点的磁感应强度与电流成正比.因此通过此线圈的磁链也与电流成正比,即LI =ψ (8.10)式中比例系数L 称为自感系数,简称自感.其数值与线圈的大小、几何形状、匝数及磁介质的性质有关.在线圈大小和形状保持不变,并且附近不存在铁磁质的情况下,自感L 为常数,利用法拉第电磁感应定律可得自感电动势为dtdI L dt d L -=ψ-=ε (8.11) 这表明,当L 恒定时,自感电动势的大小与线圈中的电流变化率成正比.当电流增加时,自感电动势的方向与电流方向相反.在国际单位制中,自感的单位是亨利,简称为亨(H).11A s 1V A 1Wb 1H --⋅⋅=⋅=亨利这个单位太大,平时多采用mH(毫亨)或μH(微亨).自感现象在日常生活及工程技术中均有广泛的应用.日光灯上的镇流器,无线电技术中的扼流圈,电子仪器中的滤波装置等都要应用自感现象.但自感现象有时也会带来危害.例如在大自感和强电流的电路中,接通或断开电路时会产生很大的自感电动势,从而击穿空气,形成电弧,造成事故,或烧坏设备,甚至危及工作人员的生命安全.为避免这类事故的发生,电业部门须在输电线路上加装一种特殊的灭弧开关——油开关或负荷开关,以避免电弧的产生.二、互感现象根据法拉第电磁感应定律,当一个线圈的电流发生变化时,必定在邻近的另一个线圈中产生感应电动势,反之亦然.这种现象称为互感现象,这种现象中产生的电动势称为互感电动势.如图8.8所示,设有两个相邻近的线圈1和线圈2,分别通有电流21I I 和.当线圈1中的电流发生变化时,就会在线圈2中产生互感电动势;反之,当线圈2中的电流变化时,也会在线圈1中产生互感电动势.若两线圈的形状、大小、相对位置及周围介质(设周围不存在铁磁质)的磁导率均保持不变,则根据毕奥——萨伐尔定律可知,线圈1中的电流1I 所产生的并通过线圈2的磁链应与1I 成正比,即 11212I M =ψ (8.12)同理,线圈2中的电流2I 所产生的并通过线圈1的磁链亦应与2I 成正比,即22121I M =ψ (8.13)上两式中的12M 和21M 为两个比例系数.理论和实验都证明,它们的大小相等,可统一用M 表示,称为两线圈的互感系数,简称互感,其数值与两线圈的形状、大小、相对位置及周围介质的磁导率有关.于是上两式可简化为221112MI MI =ψ=ψ,根据法拉第电磁感应定律,当线圈1中的电流1I 发生变化时,线圈2中的互感电动势为dtdI M dt d 11212-=ψ-=ε (8.14) 同理,线圈2中的电流2I 发生变化时,线圈1中的互感电动势为dtdI M dt d 22121-=ψ-=ε (8.15) 从以上讨论可以看出,当线圈中的电流变化率一定时,M 越大,则在另一线圈中所产生的互感电动势也越大,反之亦然.可见互感系数是反映线圈间互感强弱的物理量.两线圈的互感系数M 与这两线圈各自的自感系数21L L ,有如下一般关系21L L k M =其中k 称为耦合系数,当线圈1中的电流1I 产生的磁场使穿过线圈2的磁通等于穿过自身的磁通时,耦合系数k = 1,这称为全耦合.互感的单位也是亨利.互感现象也被广泛的应用于无线电技术和电磁测量中.各种电源变压器、中周变压器、输入或输出变压器等都是利用互感现象制成的.但是互感现象有时也会招致麻烦.例如,电路之间由于互感而相互干扰,影响正常工作.人们不得不设法避免这种干扰,磁屏蔽就是避免这种干扰的一种方法.对于自感和互感的计算,都比较繁杂,一般都需要实验确定.只是对于某些结构比较简单的物体(或线圈),其自感或互感才可用定义式进行计算.如下面要介绍的例题8.4 、8.5就是通过定义计算自感和互感的.例题8.4有一长为l ,截面积为S 的长直螺线管,密绕线圈的总匝数为N,管内充满磁导率为μ的磁介质.求此螺线管的自感.解:长直螺线管内部的磁场可以看成是均匀的,并可以使用无限长螺线管内磁感应强度公式)/(l N n nI H B =μ=μ=又通过每匝的磁通量都相等,则通过螺线管的磁链为IV n nI nlS N 2μ=μ=Φ=ψV 是螺线管的体积,所以螺线管的自感为V n I L 2μ=ψ=/可见,长直螺线管的自感与线圈的体积成正比,与单位长度上的匝数的平方成正比,还与介质的磁导率成正比.因此,想要使螺线管的自感系数较大就必须用细线密绕并充以磁导率较大的磁介质.例题8.5 如图8.9所示,一长为l 的长直螺线管横截面积为S,匝数为1N .在此螺线管的中部,密绕一匝数为2N 的短线圈,并假设两组线圈中每一匝线圈的磁通量都相同.求两线圈的互感.解:如果设线圈1中通一电流1I ,则在线圈中部产生的磁感应强度为110I lN B μ= 该磁场在线圈2中产生的磁链为1210212SI lN N BS N μ==ψ 所以两线圈的互感为S lN N I M 210112μ=ψ= 作业(P199):8.16,8.20§8.5 磁场的能量与电场一样,磁场也具有能量.下面用自感线圈通电的例子来说明.如图8.10所示,将一个自感系数为L 的自感线圈与电源相连.当接通电源时,通过线圈的电流突然增加,因而便在线圈中产生自感电动势以反抗电流的增加.故欲使线圈中的电流由零变化到稳定值,电源必须反抗自感电动势做功.设dt 时间内通过线圈的电荷为dq ,则电源反抗自感电动势做的元功为L I d I I d t dq dA L L =ε-=ε-=当电流由零变化到恒定值0I 时,电源反抗自感电动势做的总功为200210LI LIdI dA A I ===⎰⎰ 由于电源在反抗自感电动势做功的过程中,只是在线圈中逐渐建立起磁场而无其它变化,据功能原理可知,这一部分功必定转化为线圈中磁场的能量(简称磁能),即 2021LI A W W L m === (8.16) 这便是线圈的自感磁能.对于相邻两线圈,若它们分别载有电流21I I 和时,可以推得它们的互感磁能为 21I MI W M = (8.17)若设两线圈的自感系数分别为21L L ,,则这两线圈中储存的总磁能为212222112121I MI I L I L W W W M L m ++=+= (8.18) 磁能应该能表示成用磁感应强度表示的形式.现以自感磁能为例来寻求这一表达式.前已求出,长直螺线管的自感系数V n L 2μ=,当螺线管内充满磁导率为μ的均匀磁介质时,管内的磁场0nI B μ= ,即n B I μ=/0 .将L 及0I 代入自感磁能式 (8.16)得V B n B V n LI W m μ=μμ==2212122220)/( (8.19) 式中V 为长直螺线管内部空间的体积,亦即磁场存在的空间体积.由于长直螺线管内的磁场可以认为是均匀分布的,故管内单位体积中的磁能,即磁能密度为BH H w B V W w m H B m m 2121222=μ=−−→−μ==μ= (8.20) 值得指出,上式虽然是从自感线圈这一特例中导出的,但可以证明它是磁场能量密度的一般表达式.如果磁场是非均匀的,则可将磁场存在的空间划分成无限多个体积元dV ,在每一个体元内,其中的B 和H 均可看成是均匀的.于是体积元内的磁能为dV w dW m m =体积V 内的总磁能为⎰⎰==Vm m m dV w dW W (8.21) 例题 8.6一无限长同轴电缆是由两个半径分别为21R R 和的同轴圆筒状导体构成的,其间充满磁导率为μ的磁介质,在内、外圆筒通有方向相反的电流I.求单位长度电缆的磁场能量和自感系数.解:对于这样的同轴电缆,磁场只存在于两圆筒状导体之间的磁介质内,由安培环路定理可求得磁场强度的大小为rI H π=2 而在21R r R r ><和的空间,磁场强度为零,所以磁场能量只储存在两圆筒导体之间的磁介质中.磁场能量密度为2222821rI H w m πμ=μ= 单位长度电缆所储存的磁场能量为1224221R R I r d r w W R R m m ln πμ=π=⎰ 根据式(8.16),可以求得单位长度电缆的自感为12222R R I W L m ln πμ== 可见,电缆的自感只决定于自身的结构和所充磁介质的磁导率.作业(P200):8.22§8.6 电磁场理论的基本概念19世纪60年代,人们对电磁现象已经积累了丰富的资料,对电磁现象的规律也有了比较深刻的认识.为建立统一的电磁理论奠定了基础.麦克斯韦在前人实践和理论的基础上,对整个电磁现象作了系统的研究.提出涡旋电场的概念,建立了磁场和电场之间的一种联系--随时间变化的磁场能够产生电场,并成功的解释了感生电动势.在研究了安培环路定理运用于非闭合电流电路的矛盾之后,他又提出了位移电流假设,即随时间变化的电场可以产生磁场,这反映了电场与磁场的另一联系.在此基础上,麦克斯韦总结出描述电磁场的一组完整的方程式,即麦克斯韦方程组.由此,他于1865年预言了电磁波的存在,以及光是电磁波的一种形态.1888年赫兹首次用实验证实了电磁波的存在.麦克斯韦电磁理论的建立,是继牛顿理论之后,科学发展史上的又一里程碑.他将人类的文明与进步推向了一个新的高潮.一、位移电流在稳恒电流情况下,无论载流回路处于真空还是磁介质中,其磁场都满足安培环路定理,即∑⎰=⋅I l d H L(8.22) 式中∑I 是穿过以闭合回路L 为边界的任意曲面S 的传导电流的代数和.在非稳恒条件下,由上式表示的安培环路定理是否还能成立呢?下面通过考察电容器充电或放电过程来进行具体分析.如图8.11所示,在一正充电的平行板电容器的正极板附近围绕导线取一闭合回路l ,以l 为周界作两个任意的曲面21S S 、,使1S 与导线相交, 2S 与导线不相交,但包含正极板,且与1S 组成闭合曲面S.设某时刻线路中的传导电流为0I .对1S 应用安培定理得0I l d H L=⋅⎰ (8.23)对2S 应用安培定理,并注意到传导电流不能通过电容器两极板间的空间,则得0=⋅⎰Ll d H (8.24) 式(8.23)和(8.24)表明,磁场强度沿同一闭合回路的环量有两种相互矛盾的结果.这说明稳恒磁场的环路定理对非稳恒情况不适用,我们应以新的规律来代替.为探求这一新规律,我们仍以电容器的充放电过程为例.容易理解,当充电电路通一传导电流0I 时,电容器极板上的电荷必然变化.从而导致两极板间电位移矢量的变化,使通过2S 的电位移通量亦随时间而变化.将高斯定理应用于闭曲面S 得q S d D S d D S S D =⋅=⋅=Φ⎰⎰⎰⎰2由此得⎰⎰⎰⎰⋅∂∂=⋅=Φ==220S S D S d t D S d D dt d dt d dt dq I (8.25) 可见,电位移通量对时间的变化率dtd D Φ具有电流的量纲,麦克斯韦将其称为位移电流,用d I 表示,即 ⎰⎰⋅=Φ=2S D d S d D dt d dt d I (8.26) 而电位移矢量的时间变化率tD ∂∂ 则与电流密度同量纲,麦克斯韦将它称为位移电流密度,用d j 表示,即tD j d ∂∂= (8.27) 这样,在电路中就可能同时存在有两种电流,一种是传导电流,由电荷的运动所产生;另一种是位移电流,由电位移通量对时间的变化率所引起.这两种电流之和称为全电流,即 ⎰⎰⋅+=+=Sd d S d j j I I I )(00 (8.28)由此可见,当电容器充电时,d I dtdq ,0>与D,亦即与0I 同向,且与0I 等值.同样,当电容器放电时, d I 亦与0I 同向等值.可见导线中的传导电流与极板间的位移电流总是大小相等,方向相同的.因此我们完全有理由认为,传导电流在哪个地方中断了,位移电流便会在那个地方连起来,使通过电路中的全电流大小相等、方向相同.这就是全电流的连续性.。