【典型题】高三数学上期中试卷(含答案)(3)

合集下载

2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷【答案版】

2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷【答案版】

2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |x <1},则如图中阴影部分所表示的集合为( )A .{1}B .{2}C .{﹣1,0}D .{1,2}2.已知(1+i )Z =2﹣4i ,则|Z |=( ) A .2 B .√10 C .4 D .103.已知a =313,b=log 213,c =log 131e ,则( )A .a >c >bB .c >a >bC .a >b >cD .c >b >a4.已知向量a →=(2,1),b →=(1,−3),(ka →−b →)⊥(a →+b →),则实数k 的值为( ) A .−94B .94C .﹣1D .15.已知函数f(x)=(m 2−m −1)x m2+m−3是幂函数,且在(0,+∞)上单调递减,若a ,b ∈R ,且a <0<b ,|a |<|b |,则f (a )+f (b )的值( ) A .恒大于0B .恒小于0C .等于0D .无法判断6.若命题“对任意的x ∈(0,+∞),x +1x−m >0恒成立”为假命题,则m 的取值范围为( )A .{m |m ≥2}B .{m |m >2}C .{m |m ≤2}D .{m |m <2}7.函数y =x−3sinxe |x|的大致图像是( )A .B .C .D .8.将函数f(x)=sin(ωx +π6)(ω>0)的图像向左平移π6个单位长度后,得到的图像关于y 轴对称,且函数f (x )在[0,π6]上单调递增,则ω的取值是( )A .12B .2C .32D .1二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.设等差数列{a n }的前n 项和为S n ,且S 30>0,S 31<0,则下列结论正确的是( ) A .a 15>0 B .{Sn n}是等差数列C .a 16>0D .对任意n ∈N *,都有S n ≤S 1510.设f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减,f (﹣7)=0,则( ) A .f (x )在(﹣∞,0)上单调递增 B .f (8)<0C .不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7)D .f (x )的图象与x 轴只有3个交点11.已知函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1,若关于x 的方程f (x )=m 有四个不等实根x 1、x 2、x 3、x 4(x 1<x 2<x 3<x 4),则下列结论正确的是( ) A .1<m ≤2B .﹣3<x 1<﹣2C .﹣1≤4x 3+x 4<0D .x 12+x 22+log m √2的最小值为1012.如图,在△ABC 中,BA =BC =1,延长BC 到点D ,使得BC =CD ,以AD 为斜边向外作等腰直角三角形ADE ,则( )A .AD 2=5﹣4cos BB .sin ∠CAD ∈(12,√32)C .△ACD 面积的最大值为12D .四边形ACDE 面积的最大值为5+2√54三、填空题(共4小题,每小题5分,满分20分)13.已知函数f(x)={(a +2)x ,x ≥2a x +1,x <2是R 上的单调递增函数,则实数a 的取值范围是 .14.已知函数f(x)=1−e x1+e x ,若m >0,n >0,且f (2m )+f (n ﹣1)=f (0),则1m +2n的最小值为 .15.已知x ,y ,z ∈R ,且x ﹣2y +2z =5,则(x +5)2+(y ﹣1)2+(z +3)2的最小值是 .16.已知函数f (x ),g (x )的定义域均为R ,f (x )为奇函数,g (x +1)为偶函数,f (﹣1)=2,g (x +2)﹣f (x )=1,则∑g(i)2023i=1= .四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知数列{a n }的前n 项和为S n ,且a n ={5,n =12n +2,n ≥2.(1)求S n ; (2)若b n =1S n +1,求数列{b n }的前n 项和T n . 18.(12分)已知函数y =f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过点(4,2).(1)若f (3x ﹣1)>f (﹣x +5)成立,求x 的取值范围;(2)若对于任意x ∈[1,4],不等式f (2x )g (x4)−m <0恒成立,求实数m 的取值范围.19.(12分)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx2),函数f(x)=a →⋅b →+1(其中0<ω<1),函数f (x )的图象的一条对称轴是直线x =π2.(1)求ω的值;(2)若0<α<π3且f(32α)=43,求f(32α+3π8)的值.20.(12分)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cosA a+cosB b=2√3sinC 3a.(1)求角B 的大小;(2)若b =2√3,求△ABC 面积的取值范围.21.(12分)为了改善湖泊的水质,某市环保部门于2021年年终在该湖泊中投入一些浮萍,这些浮萍在水中的繁殖速度越来越快,2022年2月底测得浮萍覆盖面积为360m 2,2022年3月底测得浮萍覆盖面积为480m 2,浮萍覆盖面积y (单位:m 2)与2022年的月份x (单位:月)的关系有两个函数模型y =ka x (k >0,a >1)与y =mx 2+n (m >0)可供选择. (1)分别求出两个函数模型的解析式;(2)若2021年年终测得浮萍覆盖面积为200m 2,从上述两个函数模型中选择更合适的一个模型,试估算至少到哪一年的几月底浮萍覆盖面积能超过8100m 2?(参考数据:lg 2≈0.30,lg 3≈0.48) 22.(12分)已知{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.(Ⅰ)求{a n }的通项公式及∑ 2n−1i=2n−1a i (n ∈N *);(Ⅱ)设{b n}是等比数列,且对于任意的k∈N*,当2k﹣1≤n≤2k﹣1时,b k<a n<b k+1.(i)当k≥2时,求证:2k﹣1<b k<2k+1;(ii)求{b n}的通项公式及前n项和.2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |x <1},则如图中阴影部分所表示的集合为( )A .{1}B .{2}C .{﹣1,0}D .{1,2}解:阴影部分表示的集合为A ∩∁R B ,又∁R B ={x |x ≥1},所以A ∩∁R B ={1,2}. 故选:D .2.已知(1+i )Z =2﹣4i ,则|Z |=( ) A .2B .√10C .4D .10解:(1+i )Z =2﹣4i ,则Z =2−4i 1+i =(2−4i)(1−i)(1+i)(1−i)=−1﹣3i ,故|Z |=√(−1)2+(−3)2=√10. 故选:B . 3.已知a =313,b=log 213,c =log 131e ,则( )A .a >c >bB .c >a >bC .a >b >cD .c >b >a解:因为函数y =3x 为单调递增函数, 所以a =313>30=1,即a >1; 因为y =log 2x 为单调递增函数, 所以b =log 213<log 21=0,即b <0;因为y =log 13x 单调递减,所以log 131<log 131e <log 1313,即0<c <1, 故a >c >b . 故选:A .4.已知向量a →=(2,1),b →=(1,−3),(ka →−b →)⊥(a →+b →),则实数k 的值为( )A .−94B .94C .﹣1D .1解:a →=(2,1),b →=(1,−3),则ka →−b →=(2k −1,k +3),a →+b →=(3,−2), (ka →−b →)⊥(a →+b →),则3(2k ﹣1)﹣2(k +3)=0,解得k =94.故选:B .5.已知函数f(x)=(m 2−m −1)x m2+m−3是幂函数,且在(0,+∞)上单调递减,若a ,b ∈R ,且a <0<b ,|a |<|b |,则f (a )+f (b )的值( ) A .恒大于0B .恒小于0C .等于0D .无法判断解:由m 2﹣m ﹣1=1得m =2或m =﹣1, m =2时,f (x )=x 3在R 上是增函数,不合题意,m =﹣1时,f (x )=x ﹣3,在(0,+∞)上是减函数,满足题意,所以f (x )=x ﹣3,a <0<b ,|a |<|b |,则b >﹣a >0,f (﹣a )>f (b ), f (x )=﹣x 3是奇函数,因此f (﹣a )=﹣f (a ), 所以﹣f (a )>f (b ),即f (a )+f (b )<0. 故选:B .6.若命题“对任意的x ∈(0,+∞),x +1x−m >0恒成立”为假命题,则m 的取值范围为( )A .{m |m ≥2}B .{m |m >2}C .{m |m ≤2}D .{m |m <2}解:当原命题为真时,m <x +1x恒成立,即y =x +1x ≥2√x ×1x =2,m <(x +1x)min =2, 则当命题为假命题时,m ≥2, 所以m 的取值范围为{m |m ≥2}. 故选:A . 7.函数y =x−3sinxe |x|的大致图像是( )A .B .C .D .解:设f(x)=y =x−3sinxe |x|,x ∈R , 由f(−x)=−x+3sinxe |x|=−f(x),得f (x )为奇函数,故B ,D 错误;由f(π2)=π2−3sin π2e |π2|=π2−3e π2<0,故A 正确,C 错误.故选:A .8.将函数f(x)=sin(ωx +π6)(ω>0)的图像向左平移π6个单位长度后,得到的图像关于y 轴对称,且函数f (x )在[0,π6]上单调递增,则ω的取值是( )A .12B .2C .32D .1解:f(x)=sin(ωx +π6)的图像向左平移π6个单位长度后,得到g(x)=sin(ωx +π6ω+π6)的图象.因为g(x)=sin(ωx +π6ω+π6)关于y 轴对称,所以π6ω+π6=π2+kπ,k ∈Z ,解得ω=2+6k ,k ∈Z .因为ω>0,故当x ∈[0,π6]时,ωx +π6∈[π6,ωπ6+π6],因为函数f (x )在[0,π6]上单调递增,所以ωπ6+π6∈(π6,π2],解得ω∈(0,2].故ω=2+6k ∈(0,2],解得k ∈(−13,0].因为k ∈Z ,所以k =0,故ω=2. 故选:B .二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.设等差数列{a n }的前n 项和为S n ,且S 30>0,S 31<0,则下列结论正确的是( ) A .a 15>0 B .{Sn n}是等差数列C .a 16>0D .对任意n ∈N *,都有S n ≤S 15解:设等差数列{a n } 的公差为d , 则S n =na 1+n(n−1)d2,得S n n =a 1+(n−1)d 2, 所以S n+1n+1−S n n=a 1+nd 2−a 1−(n−1)d 2=d 2,所以{Sn n } 是以a 1为首项,d 2为公差的等差数列,选项B 正确;S 31=31(a 1+a 31)2=31a 16<0,即a 16<0,选项C 错误;S 30=30(a 1+a 30)2=15(a 15+a 16)>0,由于a 16<0,所以a 15>0,A 正确;因为a 15>0,a 16<0,所以当n =15 时,S n 取得最大值,故对任意n ∈N *,恒有S n ≤S 15,选项D 正确. 故选:ABD .10.设f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减,f (﹣7)=0,则( ) A .f (x )在(﹣∞,0)上单调递增 B .f (8)<0C .不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7)D .f (x )的图象与x 轴只有3个交点解:函数f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减, 函数f (x )在(﹣∞,0)上单调递减,A 错误;由f (﹣7)=0,得f (7)=0,则f (8)<f (7)=0,B 正确;当x <0时,f (x )>f (﹣7),则x <﹣7,当x >0时,f (x )>f (7),则0<x <7, 因此不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7),C 正确; 当x <0时,函数f (x )的图象交x 轴于点(﹣7,0), 当x >0时,函数f (x )的图象交x 轴于点(7,0),而f (0)=0,则点(0,0)是函数f (x )的图象与x 轴的公共点, 所以f (x )的图象与x 轴只有3个交点,D 正确. 故选:BCD .11.已知函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1,若关于x 的方程f (x )=m 有四个不等实根x 1、x 2、x 3、x 4(x 1<x 2<x 3<x 4),则下列结论正确的是( ) A .1<m ≤2B .﹣3<x 1<﹣2C .﹣1≤4x 3+x 4<0D .x 12+x 22+log m √2的最小值为10解:作出函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1的图象如下图所示:根据图象知:f(﹣1)=2,f(﹣2)=1,因为直线y=m与函数f(x)的图象有四个交点,则1<m≤2,故A正确;对于B选项,由图可知x1<﹣2,由f(x1)=2(x1+2)2∈(1,2],可得0<(x1+2)2≤1,所以﹣3≤x1<﹣2,故B错误;对于C选项,由图可知﹣1<x3<0<x4,则0<x3+1<1<x4+1,由f(x3)=f(x4),得|log2(x3+1)|=|log2(x4+1)|,即﹣log2(x3+1)=log2(x4+1),所以x4+1=1x3+1,化简得到x4=1x3+1−1.由f(x3)=﹣log2(x3+1)∈(1,2],可得14≤x3+1<12,所以4x3+x4=4x3+1x3+1−1=4(x3+1)+1x3+1−5,由双勾函数的单调性可知g(x)=4x+1x在[14,12)上单调递减,所以4(x3+1)+1x3+1−5>4×12+2−5=−1,且4(x3+1)+1x3+1−5≤4×14+4−5=0,当x3=−34时取等号,所以﹣1<4x3+x4≤0,故C错误;由2(x+2)2=m,可得x2+4x+4﹣log2m=0,所以x1、x2为方程x2+4x+4﹣log2m=0的两根,由根与系数的关系可得{x1+x2=−4x1x2=4−log2m,所以x12+x22+log m√2=(x1+x2)2−2x1x2+log m√2=16−8+2log2m+12log m2=2log2m+12log2m+8≥2√2log2m×12log2m+8=10,当且仅当2log2m=12log2m时,即当m=√2时等号成立,故D正确.故选:AD.12.如图,在△ABC中,BA=BC=1,延长BC到点D,使得BC=CD,以AD为斜边向外作等腰直角三角形ADE ,则( )A .AD 2=5﹣4cos BB .sin ∠CAD ∈(12,√32)C .△ACD 面积的最大值为12D .四边形ACDE 面积的最大值为5+2√54解:在△ABD 中,由余弦定理得AD 2=AB 2+BD 2−2AB ⋅BDcosB =5−4cosB ,A 正确;∠ACB =∠CAB =π−B 2,∠ACD =π−∠ACB =π2+B 2∈(π2,π),则∠CAD ∈(0,π2),所以sin ∠CAD ∈(0,1),B 错误;易得S △CAD =12S △BAD 当BA ⊥CD 时,S △BAD S △ACD 取最大值12,C 正确;S 四边形ACDE =S △ADE +S △ACD =S △ADE +S △ABC =AD 24+12sinB=54−cosB +12sinB =54+√12+(12)2sin(B −φ)≤54+√12+(12)2=5+2√54,其中sinφ=2√55,cosφ=√55,D 正确. 故选:ACD .三、填空题(共4小题,每小题5分,满分20分)13.已知函数f(x)={(a +2)x ,x ≥2a x+1,x <2是R 上的单调递增函数,则实数a 的取值范围是 (1,3] .解:函数f (x )是R 上的增函数,则f (x )在[2,+∞)上单调递增, 故a +2>0⇒a >﹣2,f (x )在(﹣∞,2)上单调递增,则a >1, 且在x =2处,有a 2+1≤2(a +2)⇒﹣1≤a ≤3, 所以a 的取值范围是(1,3]. 故答案为:(1,3].14.已知函数f(x)=1−e x 1+e x ,若m >0,n >0,且f (2m )+f (n ﹣1)=f (0),则1m +2n 的最小值为 8 .解:因为f(x)=1−e x1+e x的定义域为R ,关于(0,0)对称,且f(−x)=1−e −x1+e −x =e x −1e x1+e xe x =e x −11+e x=−f(x),即函数f (x )为奇函数, 又因为f(0)=1−e 01+e 0=0,所以f (2m )+f (n ﹣1)=f (0)=0, 即2m +(n ﹣1)=0,所以2m +n =1,则1m +2n =(1m +2n )(2m +n)=n m +4m n +4≥2√n m ⋅4m n +4=8, 当且仅当{n m =4m n 2m +n =1时,即{m =14n =12,取等号. 所以1m +2n的最小值为8. 故答案为:8.15.已知x ,y ,z ∈R ,且x ﹣2y +2z =5,则(x +5)2+(y ﹣1)2+(z +3)2的最小值是 36 .解:由于[(x +5)2+(y ﹣1)2+(z +3)2][(12+(﹣2)2+22)]≥[(x +5)+(﹣2)(y ﹣1)+2(z +3)]2 =324,则(x +5)2+(y ﹣1)2+(z +3)2≥36(当且仅当x+51=y−1−2=z+32,即{x =−3y =−3z =1时取等号. 故答案为:3616.已知函数f (x ),g (x )的定义域均为R ,f (x )为奇函数,g (x +1)为偶函数,f (﹣1)=2,g (x +2)﹣f (x )=1,则∑g(i)2023i=1= 2023 .解:因为f (x )为奇函数,所以f (﹣x )=﹣f (x ),因为g (x +1)为偶函数,所以g (﹣x +1)=g (x +1),所以g (x +2)=g (﹣x ),g (﹣x +2)=g (x ),又因为g (x +2)﹣f (x )=1,所以g (x +2)=f (x )+1,①所以g (﹣x +2)=f (﹣x )+1,所以g (x )=﹣f (x )+1,②①+②得g (x +2)+g (x )=2,所以g (x +4)+g (x +2)=2,所以g (x +4)=g (x ),又因为g (1)+g (3)=g (2)+g (4)=2,g (2)=f (0)+1=0+1=1,所以∑g(i)2023i=1=505×[g (1)+g (2)+g (3)+g (4)]+g (1)+g (2)+g (3),=505×4+2+1=2023.故答案为:2023.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知数列{a n }的前n 项和为S n ,且a n ={5,n =12n +2,n ≥2. (1)求S n ;(2)若b n =1S n +1,求数列{b n }的前n 项和T n . 解:(1)当n ≥2时,S n =5+(n−1)(6+2n+2)2=5+(n −1)(n +4)=n 2+3n +1. 当n =1时,S 1=a 1=5,也适合上式.故S n =n 2+3n +1.(2)由(1)可得b n =1n 2+3n+2=1(n+1)(n+2)=1n+1−1n+2, 则T n =b 1+b 2+⋯+b n =(12−13)+(13−14)+⋯+(1n+1−1n+2)=12−1n+2=n 2n+4. 18.(12分)已知函数y =f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过点(4,2).(1)若f (3x ﹣1)>f (﹣x +5)成立,求x 的取值范围;(2)若对于任意x ∈[1,4],不等式f (2x )g (x 4)−m <0恒成立,求实数m 的取值范围. 解:∵g (4)=log a 4=2,∴a 2=4,解得a =2,∴g (x )=log 2x ,由已知得f (x )=lo g 12x ,即f (x )=﹣log 2x .(1)∵f (x )=lo g 12x 在(0,+∞)上单调递减,∴{3x −1>0,−x +5>0,3x −1<−x +5,解得13<x <32, ∴x 的取值范围为(13,32). (2)∵f (2x )g (x 4)−m <0, ∴m >f (2x )g (x 4)对于任意x ∈[1,4]恒成立等价于m >(f(2x)g(x 4))max . ∵y =f (2x )g (x 4)=−log 22x log 2x 4=−(1+log 2x )(log 2x ﹣2)=﹣(log 2x )2+log 2x +2, 令u =log 2x ,1≤x ≤4,则u ∈[0,2],∴y =﹣u 2+u +2=−(u −12)2+94, 当u =12,即log 2x =12,即x =√2时,y max =94, ∴实数m 的取值范围是m >94. 即m ∈(94,+∞). 19.(12分)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx 2),函数f(x)=a →⋅b →+1(其中0<ω<1),函数f (x )的图象的一条对称轴是直线x =π2. (1)求ω的值;(2)若0<α<π3且f(32α)=43,求f(32α+3π8)的值. 解:(1)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx 2), 则f(x)=a →⋅b →+1=√3sinωx −2sin 2ωx 2+1=√3sinωx +cosωx =2sin(ωx +π6), ∵函数f (x )的图象的一条对称轴是直线x =π2, ∴π2ω+π6=kπ+π2,k ∈Z , 得ω=23+2k ,k ∈Z , ∵0<ω<1,∴ω=23; (2)由(1)可得f(x)=2sin(23x +π6), 由f(32α)=43得2sin(α+π6)=43, 即sin(α+π6)=23, 结合0<α<π3, 则π6<α+π6<π2, 得cos(α+π6)=√1−sin 2(α+π6)=√53, ∴f(32α+3π8)=2sin[(α+π6)+π4]=2sin(α+π6)cos π4+2cos(α+π6)sin π4=2×23×√22+2×√53×√22=2√2+√103.20.(12分)在锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,且cosAa+cosBb=2√3sinC3a.(1)求角B的大小;(2)若b=2√3,求△ABC面积的取值范围.解:(1)由已知条件得bcosA+acosB=2√33bsinC,由正弦定理得sinBcosA+cosBsinA=2√33sinBsinC,即sin(A+B)=2√33sinBsinC,因为在△ABC中,sin(A+B)=sin C≠0,所以sinB=√32,又B是锐角,所以B=π3.(2)由正弦定理得asinA=csinC=bsinB=√3√32=4,则a=4sin A,c=4sin C,所以S△ABC=√34ac=4√3sinAsinC=4√3sin(π3+C)sinC=4√3(√32cosC+12sinC)sinC=6sinCcosC+2√3sin2C=2√3sin(2C−π6)+√3,由0<C<π2,0<2π3−C<π2,得π6<C<π2,所以π6<2C−π6<5π6,所以sin(2C−π6)∈(12,1],所以2√3sin(2C−π6)+√3∈(2√3,3√3],所以△ABC面积的取值范围为(2√3,3√3].21.(12分)为了改善湖泊的水质,某市环保部门于2021年年终在该湖泊中投入一些浮萍,这些浮萍在水中的繁殖速度越来越快,2022年2月底测得浮萍覆盖面积为360m2,2022年3月底测得浮萍覆盖面积为480m2,浮萍覆盖面积y(单位:m2)与2022年的月份x(单位:月)的关系有两个函数模型y=ka x (k>0,a>1)与y=mx2+n(m>0)可供选择.(1)分别求出两个函数模型的解析式;(2)若2021年年终测得浮萍覆盖面积为200m2,从上述两个函数模型中选择更合适的一个模型,试估算至少到哪一年的几月底浮萍覆盖面积能超过8100m2?(参考数据:lg2≈0.30,lg3≈0.48)解:(1)若选择模型y=ka x(k>0,a>1),则{ka 2=360ka 3=480,解得a =43,k =4052, 故函数模型为y =4052(43)x , 若选择模型y =mx 2+n (m >0),则{4m +n =3609m +n =480, 解得m =24,k =264,故函数模型为y =24x 2+264.(2)把x =0代入y =4052(43)x 可得,y =4052=202.5, 把x =0代入y =24x 2+264可得,y =264,∵202.5﹣200<264﹣200,∴选择函数模型y =4052(43)x 更合适, 令y =4052(43)x >8100,可得(43)x >40,两边取对数可得,xlg(43)>lg40, ∴x >lg4+lg10lg4−lg3=2lg2+12lg2−lg3≈2×0.3+12×0.3−0.48≈13.3, 故浮萍至少要到2023年2月底覆盖面积能超过8100m 2.22.(12分)已知{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.(Ⅰ)求{a n }的通项公式及∑ 2n−1i=2n−1a i (n ∈N *); (Ⅱ)设{b n }是等比数列,且对于任意的k ∈N *,当2k ﹣1≤n ≤2k ﹣1时,b k <a n <b k +1. (i )当k ≥2时,求证:2k ﹣1<b k <2k +1;(ii )求{b n }的通项公式及前n 项和.解:(Ⅰ)∵{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.∴{a 1+d +a 1+4d =2a 1+5d =16a 1+4d −a 1−2d =2d =4,得d =2,a 1=3, 则{a n }的通项公式a n =3+2(n ﹣1)=2n +1(n ∈N •),∑ 2n −1i=2n−1a i 中的首项为a i =2×2n−1+1=2n +1,项数为2n ﹣1﹣2n ﹣1+1=2n ﹣2n ﹣1=2×2n ﹣1﹣2n ﹣1=2n ﹣1,则∑ 2n −1i=2n−1a i =2n ﹣1(2n +1)+2n−1(2n−1−1)2×2=2n ﹣1(2n +1)+2n ﹣1(2n ﹣1﹣1)=2n ﹣1(2n +1+2n ﹣1﹣1)=2n ﹣1(2n +2n ﹣1)=2n ﹣1×3×2n ﹣1=3×4n ﹣1. (Ⅱ)(i )∵2k ﹣1≤n ≤2k ﹣1,∴2k ≤2n ≤2k +1﹣2,1+2k ≤2n +1≤2k +1﹣1, 即1+2k ≤a n ≤2k +1﹣1,当k ≥2时,∵b k <a n <b k +1.∴b k<1+2k,且b k+1>2k+1﹣1,即b k>2k﹣1,综上2k﹣1<b k<1+2k,故成立;(ii)∵2k﹣1<b k<2k+1成立,∵{b n}为等比数列,∴设公比为q,当k≥2时,2k+1﹣1<b k+1<2k+1+1,12k+1<1b k<12k−1,则2k+1−12k+1<b k+1b k<2k+1+12k−1,即2(2k+1)−32k+1<b k+1b k<2(2k−1)+32k−1,即2−32k+1<q<2+32k−1,当k→+∞,2−32k+1→2,2+32k−1→2,∴q=2,∵k≥2时,2k﹣1<b k<2k+1,∴2k﹣1<b12k﹣1<2k+1,即2k−12k−1<b1<2k+12k−1,即2−12k−1<b1<2+12k−1,当k→+∞,2−12k−1→2,2+12k−1→2,则b1=2,则b n=2×2n﹣1=2n,即{b n}的通项公式为b n=2n,则{b n}的其前n项和T n=2(1−2n)1−2=2n+1﹣2.。

北京市第十五中学2024-2025学年高三上学期期中考试数学试卷(含答案)

北京市第十五中学2024-2025学年高三上学期期中考试数学试卷(含答案)

北京十五中高三年级数学期中考试试卷2024.11本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}23A x x =-≤≤,{1B x x =<-或}4x >,那么集合A B = (A )A .{}21x x -≤<-B .{3x x ≤或≥4C .{}24x x -≤<D .{}13x x -≤≤2.在复平面内,复数z 满足(1)2i z -=,则z =(D )A .1i--B .1i-+C .1i-D .1i +3.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的是(A)A .3()f x x =B .2()f x x =C .3()f x x=D .()sin f x x=4.若0m n <<,则下列结论正确的是(B )A .22log log m n >B .0.50.5log log m n>C .1122m n⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22m n>5.若α是第二象限角,且1tan 2α=-,则πcos 2α⎛⎫+= ⎪⎝⎭(D )A .2B .2-C .5D .5-6.设等差数列{}n a 的前n 项和为n S ,且2822a a +=-,11110S =-,则n S 取最小值时,n 的值为(C )A .14B .15C .15或16D .167.已知单位向量,a b ,则“a b ⊥”是“任意R λ∈都有a b a b -λ=λ+r r r r ”的(C )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.设函数()21cos cos 2f x x x x =--,则下列结论错误的是(D )A .()f x 的一个周期为πB .()y f x =的图象关于直线4π3x =对称C .将函数cos 2y x =的图象向左平移π6个单位可以得到函数()f x 的图象D .()f x 在(π2,π)上单调递减9.在ABC V 中,2π3A =,D 为边BC 上一点,若AD AB ⊥,且1AD =,则ABC V 面积的最小值为(B )AB C D 10.如图,曲线C 为函数5sin (0)2y x x π=≤≤的图象,甲粒子沿曲线C 从A 点向目的地B 点运动,乙粒子沿曲线C 从B 点向目的地A 点运动.两个粒子同时出发,且乙的水平速率为甲的2倍,当其中一个粒子先到达目的地时,另一个粒子随之停止运动.在运动过程中,设甲粒子的坐标为(,)m n ,乙粒子的坐标为(,)u v ,若记()n v f m -=,则下列说法中正确的是(B )A .()f m 在区间(,)2ππ上是增函数B .()f m 恰有2个零点C .()f m 的最小值为2-D .()f m 的图象关于点5(,0)6π中心对称第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数()f x =的定义域为________.[2,﹢∞)12.612x x ⎛⎫- ⎪⎝⎭的展开式中常数项为.(用数字作答)-16013.已知向量(,1),(1,2)a m b == ,且222||||||a b a b +=+,则m 的值为.-214.对于函数()ln21xf x x =-和()()ln ln 21g x x x =--,给出下列三个结论:①设()f x 的定义域为M ,()g x 的定义域为N ,则N 是M 的真子集.②函数()g x 的图像在1x =处的切线斜率为0.③函数()f x 的图像关于点1,ln24⎛⎫- ⎪⎝⎭对称.其中所有正确结论的序号是.①③解析:对于①,由题意得,函数()f x 的定义域()10,0,212x M xx ∞∞⎧⎫⎛⎫==-⋃+⎨⎬ ⎪-⎝⎭⎩⎭,函数()g x 的定义域12N x x ⎧⎫=⎨⎬⎩⎭.所以N 是M 的真子集,则①正确.对于②,()1221g x x x =--',则在1x =处的切线斜率()1211121k g ='=-=--,则②错误.对于③只需验证:当1212x x +=时,()()()121212121212lnln ln 2ln22121421x x x x f x f x x x x x x x +=+==----++,则④正确.故答案为:①③.15.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术,剪纸具有广泛的群众基础,交融于各族人民的社会生活,是各种民俗活动的重要组成部分,其传承赓续的视觉形象和造型格式,蕴涵了丰富的文化历史信息,是中国古老的民间艺术之一.已知某剪纸的裁剪工艺如下:取一张半径为1的圆形纸片,记为O ,在O 内作内接正方形,接着在该正方形内作内切圆,记为1O ,并裁剪去该正方形与内切圆之间的部分(如图所示阴影部分),记为一次裁剪操作,L ,重复上述裁剪操作n 次,最终得到该剪纸,则第2024次操作后,所有被裁剪部分的面积之和.()202414π12⎛⎫--⎪⎝⎭解析:设n O 的半径为n R ,则122R =,1n O + 的半径为22n R ,即122n n R R +=,故121221222nn nn R R -⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,n O 的面积为1ππ22nn S ⎛⎫== ⎪⎝⎭,又第n 次裁剪操作的正方形边长为12122n n R -⎛⎫= ⎪⎝⎭,故第n 次裁剪操作裁剪掉的面积为1222221111ππ2222n n n n⎛⎫-⨯⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫-⨯=-⨯ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21π4π222n n n --=-=,所以第n 次裁剪操作后,裁剪掉的面积之和为()()211114π...4π12222n n ⎛⎫⎛⎫-+++=--⎪⎝⎭⎝⎭,所以第2024次操作后,所有被裁剪部分的面积之和为()202414π12⎛⎫-- ⎪⎝⎭.故答案为:()202414π12⎛⎫-- ⎝⎭.三、解答题共5小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知函数()sin si πn 3f x x x ⎛⎫=++ ⎪⎝⎭.(Ⅰ)求()f x 的最小正周期和单调增区间;(Ⅱ)若π6x =是函数()(0)y f x ϕϕ=+>的一个零点,求ϕ的最小值.解:(Ⅰ)由函数π1()sin sin sin sin cos 322f x x x x x x ⎛⎫=++=++ ⎪⎝⎭3πsin226x x x ⎛⎫=+=+ ⎪⎝⎭,……………3分所以函数()f x 的最小正周期为2πT =.……………5分由πππ2π2π262k x k -+≤+≤,k Z ∈,得2ππ2π2π33k x k -+≤≤+,k Z ∈,所以函数()f x 的单调增区间为2ππ[2,2π]33k k -++,k Z ∈.……………8分(Ⅱ)因为π6x =是函数()(0)f x ϕϕ+>的一个零点,ππ066ϕ⎛⎫++= ⎪⎝⎭,即πsin 03ϕ⎛⎫+= ⎪⎝⎭,……………10分所以ππ3k ϕ+=,Z k ∈,即ππ3k ϕ=-+,Z k ∈,……………12分又因为0ϕ>,所以ϕ的最小值为2π3.……………13分17.在ABC △中,6a =,1cos 3C =-,三角形面积为(Ⅰ)b 和c 的值;(Ⅱ)sin()A B -的值.解:(Ⅰ)在ABC △中,因为1cos 3C =-,所以(,)2C π∈π,22sin 3C =.……………2分因为1sin 2S ab C ==6a =,所以2b =.……………4分由余弦定理,2222cos 48c a b ab C =+-=,……………5分所以c =……………6分(Ⅱ)由正弦定理sin sin sin a b cA B C ==,可得62sin sin 223A B ==.…………7分所以sin 3A =,sin 9B =.……………9分因为,(0,2A B π∈,所以3cos 3A =,53cos 9B =.……………11分所以sin()sin cos cos sin A B A B A B-=-39399=⨯-⨯=.……………13分18.已知函数2()ln ,()e e x x f x x x g x ==-.(Ⅰ)求函数()f x 在区间[1,3]上的最小值;(Ⅱ)证明:对任意,(0,)m n ∈+∞,都有()()f m g n ≥成立.解:(Ⅰ)由()ln f x x x =,可得()ln 1f x x =+'.……………2分所以()0f x '>在区间[1,3]恒成立,……………4分所以()f x 在区间[1,3]上单调递增,……………5分所以()f x 在区间[1,3]上的最小值为(1)0f =.……………7分(Ⅱ)因为()ln 1f x x =+'.所以当1(0,),'()0e x f x ∈<,()f x 单调递减;1(,),'()0ex f x ∈+∞>,()f x 单调递增……………9分所以,()f x 在1e x =时取得最小值11()e ef =-,可知1()ef m ≥-.……………10分由2()e e x x g x =-,可得1'()e x x g x -=.……………11分所以当(0,1),'()0,()x g x g x ∈>单调递增,当(1,),'()0,()x g x g x ∈+∞<单调递减.……………12分所以函数()(0)g x x >在1x =时取得最大值,又1(1)e g =-,可知1()eg n ≤-,……………13分所以对任意,(0,)m n ∈+∞,都有()()f m g n ≥成立.……………14分19.某学校组织全体高一学生开展了知识竞赛活动.从参加该活动的学生中随机抽取了12名学生的竞赛成绩,数据如下表:男生818486868891女生728084889297(Ⅰ)从抽出的男生和女生中,各随机选取一人,求男生成绩高于女生成绩的概率;(Ⅱ)从该校的高一学生中,随机抽取3人,用样本频率估计概率,记成绩为优秀(90>分)的学生人数为X ,求X 的分布列和数学期望;(Ⅲ)表中男生和女生成绩的方差分别记为21s ,22s ,现在再从参加活动的男生中抽取一名学生,成绩为86分,组成新的男生样本,方差计为23s ,试比较21s 、22s 、23s 的大小.(只需写出结论)解:(Ⅰ)设“从抽出的男生和女生中,男生成绩高于女生成绩”为事件A ,由表格得:从抽出的12名学生中男女生各随机选取一人,共有1166C C 36=种组合,其中男生成绩高于女生()()()()()()()81,72,81,80,84,72,84,80,86,72,86,80,86,84,()()()86,72,86,80,86,84,()()()()()88,72,88,80,88,84,91,72,91,80,()91,84,()91,88.所以事件A 有17种组合,因此()1736P A =;……………3分(Ⅱ)由数据知,在抽取的12名学生中,成绩为优秀(90>分)的有3人,即从该校参加活动的高一学生中随机抽取1人,该学生成绩优秀的概率为14.……………4分X 可取0,1,2,3,……………5分()3327Χ0464P ⎛⎫=== ⎪⎝⎭,()2131327Χ1C 4464P ⎛⎫==⨯= ⎪⎝⎭,()223319Χ2C 4464P ⎛⎫==⨯=⎪⎝⎭,()311Χ3464P ⎛⎫=== ⎪⎝⎭所以随机变量X 的分布列……………10分数学期望2791483()0123646464644E X =+⨯+⨯+⨯.……………11分(Ⅲ)222312s s s <<.……………14分20.已知函数()()2e x f x x a x =--.(Ⅰ)当a =0时,求()f x 在x =0处的切线方程;(Ⅱ)当a =1时,求()f x 的单调区间;(Ⅲ)当()f x 有且仅有一个零点时,请直接写出a 的取值范围.解:(Ⅰ)当a =0时,()2e x f x x x =-,()00f =,……………1分因为()()1e 2x f x x x '=+-,……………2分所以()10f '=,……………3分所以()f x 在x =0处的切线方程为:y x=……………4分X0123P27642764964164(Ⅱ)当a =1时,()()21e x f x x x =--,所以()()()e 1e 2e 2e 2x x x x f x x x x x x =+--=-=-',……………6分由()0f x '>,得0x <或ln 2x >,……………8分由()0f x '<,得0ln 2x <<,……………10分所以,()f x 的单调增区间为(),0∞-和(ln 2,)+∞,()f x 的单调减区间为(0,ln 2).……………12分(Ⅲ)a R ∈.……………15分21.(本小题15分)已知项数为*(,2)N m m m ∈≥的数列{}n a 满足如下条件:①*(1,2,,)n a N n m ∈= ;②12m a a a <<< .若数列{}n b 满足*12()1m nn a a a a b N m +++-=∈- ,其中1,2,,n m = ,则称{}n b 为{}n a 的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{}n b 为{}n a 的“伴随数列”,证明:12m b b b >>> ;(Ⅲ)已知数列{}n a 存在“伴随数列”{}n b ,且11a =,2049m a =,求m 的最大值.解:(Ⅰ)解:数列1,3,5,7,9不存在“伴随数列”.……………1分因为*41357979512b N ++++-==∉-,所以数列1,3,5,7,9不存在“伴随数列”.……………3分(Ⅱ)证明:因为111n n n n a a b b m ++--=-,*11,n m n N≤≤-∈……………4分又因为12m a a a <<< ,所以有10n n a a +-<所以1101n n n n a a b b m ++--=<-……………6分所以12m b b b >>> 成立……………7分(Ⅲ)∀1≤i <j ≤m ,都有1j i i j a a b b m --=-,……………8分因为*i b N ∈,12m b b b >>> .所以*i j b b N -∈,所以*1j i i j a a b b N m --=∈-……………9分所以*11204811m m a a b b N m m --==∈--因为*111n n n n a a b b N m ----=∈-,所以11n n a a m --≥-……………11分又112211()()()m m m m m a a a a a a a ----=-+-++- (1)(1)(1)m m m ≥-+-++- =2(1)m -……………13分所以2(1)2048m -≤,所以46m ≤……………14分又*20481N m ∈-,所以33m ≤例如:6463n a n =-(133n ≤≤),满足题意,所以,m 的最大值是33.……………15分北京十五中高三年级数学期中考试试卷2024.11本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}23A x x =-≤≤,{1B x x =<-或}4x >,那么集合A B = (A )A .{}21x x -≤<-B .{3x x ≤或≥4C .{}24x x -≤<D .{}13x x -≤≤2.在复平面内,复数z 满足(1)2i z -=,则z =(D )A .1i--B .1i-+C .1i-D .1i +3.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的是(A)A .3()f x x =B .2()f x x =C .3()f x x=D .()sin f x x=4.若0m n <<,则下列结论正确的是(B )A .22log log m n >B .0.50.5log log m n>C .1122m n⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22m n>5.若α是第二象限角,且1tan 2α=-,则πcos 2α⎛⎫+= ⎪⎝⎭(D )A .2B .2-C .5D .5-6.设等差数列{}n a 的前n 项和为n S ,且2822a a +=-,11110S =-,则n S 取最小值时,n 的值为(C )A .14B .15C .15或16D .167.已知单位向量,a b ,则“a b ⊥”是“任意R λ∈都有a b a b -λ=λ+r r r r ”的(C )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.设函数()21cos cos 2f x x x x =--,则下列结论错误的是(D )A .()f x 的一个周期为πB .()y f x =的图象关于直线4π3x =对称C .将函数cos 2y x =的图象向左平移π6个单位可以得到函数()f x 的图象D .()f x 在(π2,π)上单调递减9.在ABC V 中,2π3A =,D 为边BC 上一点,若AD AB ⊥,且1AD =,则ABC V 面积的最小值为(B )AB C D 10.如图,曲线C 为函数5sin (0)2y x x π=≤≤的图象,甲粒子沿曲线C 从A 点向目的地B 点运动,乙粒子沿曲线C 从B 点向目的地A 点运动.两个粒子同时出发,且乙的水平速率为甲的2倍,当其中一个粒子先到达目的地时,另一个粒子随之停止运动.在运动过程中,设甲粒子的坐标为(,)m n ,乙粒子的坐标为(,)u v ,若记()n v f m -=,则下列说法中正确的是(B )A .()f m 在区间(,)2ππ上是增函数B .()f m 恰有2个零点C .()f m 的最小值为2-D .()f m 的图象关于点5(,0)6π中心对称第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数()f x =的定义域为________.[2,﹢∞)12.612x x ⎛⎫- ⎪⎝⎭的展开式中常数项为.(用数字作答)-16013.已知向量(,1),(1,2)a m b == ,且222||||||a b a b +=+,则m 的值为.-214.对于函数()ln21xf x x =-和()()ln ln 21g x x x =--,给出下列三个结论:①设()f x 的定义域为M ,()g x 的定义域为N ,则N 是M 的真子集.②函数()g x 的图像在1x =处的切线斜率为0.③函数()f x 的图像关于点1,ln24⎛⎫- ⎪⎝⎭对称.其中所有正确结论的序号是.①③解析:对于①,由题意得,函数()f x 的定义域()10,0,212x M xx ∞∞⎧⎫⎛⎫==-⋃+⎨⎬ ⎪-⎝⎭⎩⎭,函数()g x 的定义域12N x x ⎧⎫=⎨⎬⎩⎭.所以N 是M 的真子集,则①正确.对于②,()1221g x x x =--',则在1x =处的切线斜率()1211121k g ='=-=--,则②错误.对于③只需验证:当1212x x +=时,()()()121212121212lnln ln 2ln22121421x x x x f x f x x x x x x x +=+==----++,则④正确.故答案为:①③.15.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术,剪纸具有广泛的群众基础,交融于各族人民的社会生活,是各种民俗活动的重要组成部分,其传承赓续的视觉形象和造型格式,蕴涵了丰富的文化历史信息,是中国古老的民间艺术之一.已知某剪纸的裁剪工艺如下:取一张半径为1的圆形纸片,记为O ,在O 内作内接正方形,接着在该正方形内作内切圆,记为1O ,并裁剪去该正方形与内切圆之间的部分(如图所示阴影部分),记为一次裁剪操作,L ,重复上述裁剪操作n 次,最终得到该剪纸,则第2024次操作后,所有被裁剪部分的面积之和.()202414π12⎛⎫--⎪⎝⎭解析:设n O 的半径为n R ,则122R =,1n O + 的半径为22n R ,即122n n R R +=,故121221222nn nn R R -⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,n O 的面积为1ππ22nn S ⎛⎫== ⎪⎝⎭,又第n 次裁剪操作的正方形边长为12122n n R -⎛⎫= ⎪⎝⎭,故第n 次裁剪操作裁剪掉的面积为1222221111ππ2222n n n n⎛⎫-⨯⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫-⨯=-⨯ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21π4π222n n n --=-=,所以第n 次裁剪操作后,裁剪掉的面积之和为()()211114π...4π12222n n ⎛⎫⎛⎫-+++=--⎪⎝⎭⎝⎭,所以第2024次操作后,所有被裁剪部分的面积之和为()202414π12⎛⎫-- ⎪⎝⎭.故答案为:()202414π12⎛⎫-- ⎝⎭.三、解答题共5小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知函数()sin si πn 3f x x x ⎛⎫=++ ⎪⎝⎭.(Ⅰ)求()f x 的最小正周期和单调增区间;(Ⅱ)若π6x =是函数()(0)y f x ϕϕ=+>的一个零点,求ϕ的最小值.解:(Ⅰ)由函数π1()sin sin sin sin cos 322f x x x x x x ⎛⎫=++=++ ⎪⎝⎭3πsin226x x x ⎛⎫=+=+ ⎪⎝⎭,……………3分所以函数()f x 的最小正周期为2πT =.……………5分由πππ2π2π262k x k -+≤+≤,k Z ∈,得2ππ2π2π33k x k -+≤≤+,k Z ∈,所以函数()f x 的单调增区间为2ππ[2,2π]33k k -++,k Z ∈.……………8分(Ⅱ)因为π6x =是函数()(0)f x ϕϕ+>的一个零点,ππ066ϕ⎛⎫++= ⎪⎝⎭,即πsin 03ϕ⎛⎫+= ⎪⎝⎭,……………10分所以ππ3k ϕ+=,Z k ∈,即ππ3k ϕ=-+,Z k ∈,……………12分又因为0ϕ>,所以ϕ的最小值为2π3.……………13分17.在ABC △中,6a =,1cos 3C =-,三角形面积为(Ⅰ)b 和c 的值;(Ⅱ)sin()A B -的值.解:(Ⅰ)在ABC △中,因为1cos 3C =-,所以(,)2C π∈π,22sin 3C =.……………2分因为1sin 2S ab C ==6a =,所以2b =.……………4分由余弦定理,2222cos 48c a b ab C =+-=,……………5分所以c =……………6分(Ⅱ)由正弦定理sin sin sin a b cA B C ==,可得62sin sin 223A B ==.…………7分所以sin 3A =,sin 9B =.……………9分因为,(0,2A B π∈,所以3cos 3A =,53cos 9B =.……………11分所以sin()sin cos cos sin A B A B A B-=-39399=⨯-⨯=.……………13分18.已知函数2()ln ,()e e x x f x x x g x ==-.(Ⅰ)求函数()f x 在区间[1,3]上的最小值;(Ⅱ)证明:对任意,(0,)m n ∈+∞,都有()()f m g n ≥成立.解:(Ⅰ)由()ln f x x x =,可得()ln 1f x x =+'.……………2分所以()0f x '>在区间[1,3]恒成立,……………4分所以()f x 在区间[1,3]上单调递增,……………5分所以()f x 在区间[1,3]上的最小值为(1)0f =.……………7分(Ⅱ)因为()ln 1f x x =+'.所以当1(0,),'()0e x f x ∈<,()f x 单调递减;1(,),'()0ex f x ∈+∞>,()f x 单调递增……………9分所以,()f x 在1e x =时取得最小值11()e ef =-,可知1()ef m ≥-.……………10分由2()e e x x g x =-,可得1'()e x x g x -=.……………11分所以当(0,1),'()0,()x g x g x ∈>单调递增,当(1,),'()0,()x g x g x ∈+∞<单调递减.……………12分所以函数()(0)g x x >在1x =时取得最大值,又1(1)e g =-,可知1()eg n ≤-,……………13分所以对任意,(0,)m n ∈+∞,都有()()f m g n ≥成立.……………14分19.某学校组织全体高一学生开展了知识竞赛活动.从参加该活动的学生中随机抽取了12名学生的竞赛成绩,数据如下表:男生818486868891女生728084889297(Ⅰ)从抽出的男生和女生中,各随机选取一人,求男生成绩高于女生成绩的概率;(Ⅱ)从该校的高一学生中,随机抽取3人,用样本频率估计概率,记成绩为优秀(90>分)的学生人数为X ,求X 的分布列和数学期望;(Ⅲ)表中男生和女生成绩的方差分别记为21s ,22s ,现在再从参加活动的男生中抽取一名学生,成绩为86分,组成新的男生样本,方差计为23s ,试比较21s 、22s 、23s 的大小.(只需写出结论)解:(Ⅰ)设“从抽出的男生和女生中,男生成绩高于女生成绩”为事件A ,由表格得:从抽出的12名学生中男女生各随机选取一人,共有1166C C 36=种组合,其中男生成绩高于女生()()()()()()()81,72,81,80,84,72,84,80,86,72,86,80,86,84,()()()86,72,86,80,86,84,()()()()()88,72,88,80,88,84,91,72,91,80,()91,84,()91,88.所以事件A 有17种组合,因此()1736P A =;……………3分(Ⅱ)由数据知,在抽取的12名学生中,成绩为优秀(90>分)的有3人,即从该校参加活动的高一学生中随机抽取1人,该学生成绩优秀的概率为14.……………4分X 可取0,1,2,3,……………5分()3327Χ0464P ⎛⎫=== ⎪⎝⎭,()2131327Χ1C 4464P ⎛⎫==⨯= ⎪⎝⎭,()223319Χ2C 4464P ⎛⎫==⨯=⎪⎝⎭,()311Χ3464P ⎛⎫=== ⎪⎝⎭所以随机变量X 的分布列……………10分数学期望2791483()0123646464644E X =+⨯+⨯+⨯.……………11分(Ⅲ)222312s s s <<.……………14分20.已知函数()()2e x f x x a x =--.(Ⅰ)当a =0时,求()f x 在x =0处的切线方程;(Ⅱ)当a =1时,求()f x 的单调区间;(Ⅲ)当()f x 有且仅有一个零点时,请直接写出a 的取值范围.解:(Ⅰ)当a =0时,()2e x f x x x =-,()00f =,……………1分因为()()1e 2x f x x x '=+-,……………2分所以()10f '=,……………3分所以()f x 在x =0处的切线方程为:y x=……………4分X0123P27642764964164(Ⅱ)当a =1时,()()21e x f x x x =--,所以()()()e 1e 2e 2e 2x x x x f x x x x x x =+--=-=-',……………6分由()0f x '>,得0x <或ln 2x >,……………8分由()0f x '<,得0ln 2x <<,……………10分所以,()f x 的单调增区间为(),0∞-和(ln 2,)+∞,()f x 的单调减区间为(0,ln 2).……………12分(Ⅲ)a R ∈.……………15分21.(本小题15分)已知项数为*(,2)N m m m ∈≥的数列{}n a 满足如下条件:①*(1,2,,)n a N n m ∈= ;②12m a a a <<< .若数列{}n b 满足*12()1m nn a a a a b N m +++-=∈- ,其中1,2,,n m = ,则称{}n b 为{}n a 的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{}n b 为{}n a 的“伴随数列”,证明:12m b b b >>> ;(Ⅲ)已知数列{}n a 存在“伴随数列”{}n b ,且11a =,2049m a =,求m 的最大值.解:(Ⅰ)解:数列1,3,5,7,9不存在“伴随数列”.……………1分因为*41357979512b N ++++-==∉-,所以数列1,3,5,7,9不存在“伴随数列”.……………3分(Ⅱ)证明:因为111n n n n a a b b m ++--=-,*11,n m n N≤≤-∈……………4分又因为12m a a a <<< ,所以有10n n a a +-<所以1101n n n n a a b b m ++--=<-……………6分所以12m b b b >>> 成立……………7分(Ⅲ)∀1≤i <j ≤m ,都有1j i i j a a b b m --=-,……………8分因为*i b N ∈,12m b b b >>> .所以*i j b b N -∈,所以*1j i i j a a b b N m --=∈-……………9分所以*11204811m m a a b b N m m --==∈--因为*111n n n n a a b b N m ----=∈-,所以11n n a a m --≥-……………11分又112211()()()m m m m m a a a a a a a ----=-+-++- (1)(1)(1)m m m ≥-+-++- =2(1)m -……………13分所以2(1)2048m -≤,所以46m ≤……………14分又*20481N m ∈-,所以33m ≤例如:6463n a n =-(133n ≤≤),满足题意,所以,m 的最大值是33.……………15分。

福建省三明第一中学2024-2025学年高三上学期11月期中考试数学试题(解析)

福建省三明第一中学2024-2025学年高三上学期11月期中考试数学试题(解析)

三明一中2024-2025学年上学期半期考高三数学试卷(考试时间:120分钟 试卷满分:150分)第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数3i 1i z =++在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【分析】根据复数的运算法则化简z ,再写出其对应的点即得.【详解】3i 1iz =++()()()()31i 331i i 1i i 1i 1i 222-=+=+-=-+-,故其在复平面对应的点为31,22⎛⎫- ⎪⎝⎭,在第四象限.故选:D.2. 设,a b 均为单位向量,则“a b a b -=+ ”是“a b ⊥”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C 【解析】【分析】根据向量的运算法则和公式22a a = 进行化简,结合充分条件和必要条件的判定方法,即可求解.【详解】由a b a b -=+ ,则22a b a b -=+ ,即222222a b a b a b a b +-⋅=++⋅,可得0a b ⋅= ,所以a b ⊥,即充分性成立;反之:由a b ⊥ ,则0a b ⋅=,可得2222()a b a b a b -=-=+ 且2222()a b a b a b +=+=+ ,所以a b a b -=+,即必要性成立,综上可得,a b a b -=+ 是a b ⊥的充分必要条件.故选:C.3. 已知数列{}n a 满足()111n n a a +-=,若11a =-,则10a =( )A. 2 B. ―2C. 1- D.12【答案】C 【解析】【分析】根据递推式求出2a ,3a ,4a 的值,可以发现数列为周期数列,从而推出10a 的值.【详解】因为111n n a a +=-,11a =-,所以212a =,32a =,41a =-,所以数列{}n a 的周期为3,所以101a =-.故选:C .4. 已知实数1a >,0b >,满足3a b +=,则211a b+-的最小值为( )A.B.C.D.【答案】B 【解析】【分析】根据给定条件,利用基本不等式“1”的妙用求解即得.【详解】实数1a >,0b >,由3a b +=,得(1)2a b -+=,因此211211211[(1)]()(3)(3121212b a a b a b a b a b -+=-++=++≥+---,当且仅当211-=-b a a b,即14a -==-所以211a b +-.故选:B5. 中国古建筑的屋檐下常系挂风铃,风吹铃动,悦耳清脆,亦称惊鸟铃.若一个惊鸟铃由铜铸造而成,且可近似看作由一个较大的圆锥挖去一个较小的圆锥,两圆锥的轴在同一条直线上,截面图如下,其中1320cm O O =,122cm O O =,16cm AB =,若不考虑铃舌,则下列数据比较接近该惊鸟铃质量的是(参考数据:π3≈,铜的密度为8.963g /cm )( )A. 1kgB. 2kgC. 3kgD. 0.5kg【答案】A 【解析】【分析】根据圆锥的体积公式,结合质量公式求解即可.【详解】由题意可得惊鸟铃的体积约为长()22311π820π818128cm 33⨯⨯⨯-⨯⨯⨯=,所以该惊鸟铃的质量约为()1288.961146.88g 1⨯=≈(kg ).故选:A .6. 已知函数()()sin 10f x x ωω=+>在区间()0,π上有且仅有2个零点,则ω的取值范围是( )A. 711,22⎡⎫⎪⎢⎣⎭B. 711,22⎛⎤ ⎥⎝⎦C. [)3,5D. (]3,5【答案】B 【解析】【分析】利用三角函数的性质结合整体思想计算即可.【详解】因为0πx <<,所以0πx <ω<ω,令()sin 10f x x ω=+=,则方程sin 1x ω=-有2个根,所以711πππ22ω<≤,解得71122ω<≤,则ω的取值范围是711,22⎛⎤ ⎥⎝⎦.故选:B7. 在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且222a c b +-==sin 21cos 2CC+,则角A 的大小为( )A.π12B.5π12C.7π12D.3π4【答案】B 【解析】【分析】借助余弦定理计算可得π6B =,4BC π⎛⎫=- ⎪⎝⎭,代入计算即可得角A 的大小.【详解】因为222a c b +-=,由余弦定理得2cos ac B =,所以cos B =(0,π)B ∈,所以π6B =,2sin 22sin cos sin 1cos 22cos cos C C C CCC C ===+,所以cos cos sin sin C A C C A C +=-,)sin cos A C C C +=-,又πA C B +=-4B C π⎛⎫=- ⎪⎝⎭,所以π4B C =-或π4B C π+-=(舍),所以56412C πππ=+=,所以5561212A B C πππ=π--=π--=.故选:B.8. 已知函数()()()e ln 0xf x a ax a a a =--+>,若存在x 使得关于x 的不等式()0f x <成立,则实数a 的取值范围( )A. ()20,eB.()e0,e C.()2e ,+∞ D.()ee ,+∞【答案】C 【解析】【分析】将不等式变形为()ln eln 1ln 1x ax a x x -+-<-+-,构造函数()ln g x x x =+,分析可知该函数为增函数,可得出()ln ln 1a x x >--,求出函数()()ln 1h x x x =--的最小值,可得出关于实数a 的不等式,即可得出实数a 的取值范围.【详解】因为0a >,由0ax a ->可得1x >,即函数()f x 的定义域为()1,+∞,()()e ln ln 10xf x a a a x a =---+<可得()e ln ln 11x a x a-<--,即()ln eln 1ln 1x ax a x x -+-<-+-,构造函数()ln g x x x =+,其中0x >,则()110g x x'=+>,故函数()g x 在()0,∞+上单调递增,所以,()()ln e 1x agg x -<-,可得ln e1x ax -<-,则()ln ln 1x a x -<-,即()ln ln 1a x x >--,其中1x >,令()()ln 1h x x x =--,其中1x >,则()12111x h x x x -'=-=--,当12x <<时,()0h x '<,此时函数()h x 单调递减,当2x >时,()0h x '>,此时函数()h x 单调递增,所以,()()min ln 22a h x h >==,解得2e a >.故选:C.【点睛】关键点点睛:解本题的关键在于将不等式变形为()ln eln 1ln 1x ax a x x -+-<-+-,结合不等式的结果构造函数()ln g x x x =+,转化为函数()g x 的单调性以及参变量分离法求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中正确的是( )A. 若//a b ,//b c,则//a cB. 若ABC V 是锐角三角形,则sin cos A B>C. 若点G 为ABC V 的重心,则0GA GB GC ++=D. 命题:x ∀∈R ,21x >-的否定是:x ∃∈R ,21x ≤-.【答案】BCD 【解析】【分析】若0b =可判断A ;根据正弦函数单调性和诱导公式可判断B ;由重心的向量表示可判断C ;由全称命题的否定可判断D.【详解】对于A ,若0b = ,则,a c不一定平行,故A 不正确;对于B ,若ABC V 是锐角三角形,则可得π2A B +>且π,0,2A B ⎛⎫∈ ⎪⎝⎭,可得2A B π>-,且0,22B ππ⎛⎫-∈ ⎪⎝⎭,根据正弦函数的单调性,可得πsin sin 2A B ⎛⎫>-⎪⎝⎭,所以sin cos A B >,所以B 正确;对于C ,分别取BC ,AC ,AB 中点D ,,E F ,则2GB GC GD +=,G 为ABC V 的重心,2GD AG ∴=,20GA GB GC GA GD ∴++=+=,故C 正确;对于D ,根据全称命题的否定可得:x ∀∈R ,21x >-的否定是:x ∃∈R ,21x ≤-,故D 正确.故选:BCD.10. 已知数列{}n a 的前n 项和为2113622n S n n =-+,则下列说法正确的是( )A. 7n a n =- B.23344556111145a a a a a a a a +++=C. 使0n S >的最小正整数n 为13 D.nS n的最小值为3-【答案】BCD 【解析】【分析】对A ,根据n S 与n a 关系,求出通项n a 判断;对B ,利用裂项求和得解可判断;对C ,令0n S >求得答案;对D ,求出nS n,利用对勾函数单调性求最值.【详解】对于A ,由2113622n S n n =-+,当1n =时,110a S ==,当2n ≥时,()()221113113611672222n n n a S S n n n n n -⎛⎫=-=-+----+=- ⎪⎝⎭,0,17,2n n a n n =⎧∴=⎨-≥⎩,故A 错误;对于B ,因为()()111118787n na a n n n n -==-----,2n ≥,所以23344556111111111111411453423255a a a a a a a a +++=-+-+-+-=-=,故B 正确;对于C ,由0n S >,即21136022n n -+>,解得12n >,故C 正确;对于D ,101S =,2n ≥时,1613112132222n S n n n n n ⎛⎫=+-=+- ⎪⎝⎭,因为函数12y x x =+在(0,上单调递减,在()∞+上单调递增,∴当3n =或4时,n Sn取得最小值为3-,故D 正确.故选:BCD.11. 已知函数()ln 1x xf x x -=+,则下列结论中正确的是( )A. 函数()f x 有两个零点B. ()13f x <恒成立C. 若方程()2k f x x x =+有两个不等实根,则k 的范围是10,2e ⎛⎫⎪⎝⎭D. 直线14y x =-与函数()f x 图象有两个交点【答案】BCD 【解析】【分析】分01x <<和1x >两种情况探讨()f x 的符号,判断A 的真假;转化为研究函数()11ln 33g x x x x =++的最小值问题,判断B 的真假;把方程()2k f x x x=+有两个不等实根,为2ln k x x =-有两个根的问题,构造函数()2ln m x x x =-,分析函数()m x 的图象和性质,可得k 的取值范围,判断C 的真假;直线14y x =-与函数()f x 图象有两个交点转化为11ln 044x x --=有两解,分析函数()11ln 44n x x x =--的零点个数,可判断D 的真假.【详解】对A :当01x <<时,()0f x >;当1x >时,()0f x <;1x =时,()0f x =,所以函数()f x 只有1个零点.A 错误;对B :欲证()13f x <,须证ln 113x x x -<+⇔11ln 033x x x ++>在()0,∞+上恒成立.设()11ln 33h x x x x =++,则()4ln 3h x x '=+,由()0h x '>⇒43e x ->;由()0h x '<⇒430e x -<<.所以()h x 在430,e -⎛⎫ ⎪⎝⎭上单调递减,在43e ,-⎛⎫+∞ ⎪⎝⎭上单调递增.所以()h x 的最小值为443343111e e 33e h --⎛⎫=-=- ⎪⎝⎭,因为433e <,所以43e 0h -⎛⎫> ⎪⎝⎭.故B 正确;对C :()2k f x x x=+⇒()1ln 1x x k x x x =++-⇒2ln k x x =-.设()2ln m x x x =-,0x >则()()2ln 2ln 1m x x x x x x '=--=-+,0x >.由()0m x '>⇒120e x -<<;由()0m x '<⇒12e x ->.所以()m x 120,e -⎛⎫ ⎪⎝⎭上单调递增,在12e ,-⎛⎫+∞ ⎪⎝⎭单调递减.所以()m x 的最大值为:121e 2em -⎛⎫= ⎪⎝⎭,又当120,e x -⎛⎫∈ ⎪⎝⎭时,()0m x >.如图所示:所以2ln k x x =-有两个解时,10,2e k ⎛⎫∈ ⎪⎝⎭.故C 正确;对D :问题转化为方程:ln 114x x x x -=-+有两解,即11ln 044x x --=有两解.设()11ln 44n x x x =--,0x >,所以()11444xn x x x-'=-=.由()0n x '>⇒04x <<;由()0n x '<⇒4x >.所以()n x 在()0,4上单调递增,在()4,+∞上单调递减.所以()n x 的最大值为()54ln 44n =-.因为82256=,53243=,所以85523e >>⇒454e >⇒544e >⇒5ln 44>在所以()54ln404n =->.且当0x >且0x →时,()0n x <;x →+∞时,()0n x <.所以函数()11ln 44n x x x =--的图象如下:所以11ln 044x x --=有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12. =______.【答案】12##0.5【解析】【分析】利用二倍角公式结合诱导公式化简,即可求得答案.sin50sin 40cos40sin 40cos10cos10===sin 80cos1012cos102cos102=== .故答案为:1213. 已知集合2{|290}A x x x a =-+-=,2{|4100}B x ax x a =-+=≠,,若集合A ,B 中至少有一个非空集合,实数a 的取值范围_______.【答案】{8a a ≥或4a ≤且}0a ≠【解析】【分析】先考虑A ,B 为空集得出a 的范围,再利用补集思想求得结果.【详解】对于集合A ,由()Δ4490a =--<,解得8a <;对于集合B ,由1640a ∆=-<,解得4a >.因为A,B 两个集合中至少有一个集合不为空集,所以a 的取值范围是{8a a ≥或4a ≤,且}0a ≠故答案为:{8a a ≥或4a ≤且}0a ≠14. 在四面体V ABC -中,VA VB ==3VC =,4CA CB ==,VC 的中点为P ,AB 的中点为Q ,则PQ 的取值范围为______.【答案】43⎛ ⎝【解析】【分析】设出线段AB 的长度,然后利用勾股定理表示出QV 和QC ,进而利用2221)4||QP QP QV QC ==(+ 表示出线段PQ 的长度,然后转化为函数求最值即可,但是要注意确定解析式中自变量的取值范围.【详解】如图所示,连接VQ 和CQ,根据VA VB ==4CA CB ==可知,VQ AB ⊥和CQ AB ⊥.不妨设2AB x =,则根据勾股定理可知VQ =,CQ =,其中根据三角形中三边的长度关系可知,0280233x x <<⎧⎪<<⎪>-<,解得2287036x <<.因为12QP QV QC =(+) ,所以22222222113123944442||||||||||||||||||QV QC QP QV QC QV QC QV QC x QV QC +-=(+)=(++⋅⋅)=(-)⋅.因2287036x <<,所以2163994||QP <<,即43QP <<.为。

2024-2025学年河北省邯郸市武安一中高三(上)期中数学试卷(含答案)

2024-2025学年河北省邯郸市武安一中高三(上)期中数学试卷(含答案)

2024-2025学年河北省邯郸市武安一中高三(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x|x 2>2x},B ={−2,0,1,3},则A ∩B =( )A. {−2,0,3}B. {−2,3}C. {0,3}D. {3}2.若复数z 满足z(1+i)=−3+i(i 是虚数单位),则|z|等于( )A. 102 B. 54 C. 5 D. 523.已知平面向量a =(5,0),b =(2,−1),则向量a +b 在向量b 上的投影向量为( )A. (6,−3)B. (4,−2)C. (2,−1)D. (5,0)4.记S n 为等差数列{a n }的前n 项和,若a 3+a 9=14,a 6a 7=63,则S 7=( )A. 21B. 19C. 12D. 425.已知对任意平面向量AB =(x,y),把AB 绕其起点沿逆时针方向旋转θ角得到向量AP=(xcosθ−ysinθ,xsinθ+ycosθ),叫做点B 绕点A 沿逆时针方向旋转θ角得到点P.已知平面内点A(0,1),点B( 2,1−2 2),把点B 绕点A 沿顺时针方向旋转π4后得到点P ,则点P 的坐标为( )A. (−3,−1)B. (−3,0)C. (−1,−2)D. (−1,−3)6.已知数列{a n }的前n 项和为S n ,其中a 1=1,且S n +1−2S n =2n +1,则S 7a 5=( )A. 36946 B. 36146 C. 36746 D. 365467.已知α,β∈(0,π2),cos (α−β)=56,tanα⋅tanβ=4,则α+β=( )A. π6B. π4C. π3D. 2π38.已知正四棱台下底面边长为4 2,若内切球的体积为323π,则其外接球表面积是( )A. 49πB. 56πC. 65πD. 130π二、多选题:本题共3小题,共18分。

2023-2024学年天津市红桥区高三(上)期中数学试卷【答案版】

2023-2024学年天津市红桥区高三(上)期中数学试卷【答案版】

2023-2024学年天津市红桥区高三(上)期中数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{|0}1xA x x =<−,{|03}B x x =<<,那么“m A ∈”是“m B ∈”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.设集合2{|40}A x x =−,{|20}B x x a =+,且{|21}A B x x =−,则(a = )A .4−B .2−C .2D .43.已知(sin ,cos )a αα=,(2,1)b =−,若a b ⊥,则tan α的值为( ) A .2−B .2C .12D .12−4.将函数sin()3y x π=−的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的解析式是( ) A .1sin 2y x =B .1sin()22y x π=−C .1sin()26y x π=−D .sin(2)6y x π=−5.设13log 2a =,121log 3b =,0.31()2c =,则( )A .a b c <<B .b a c <<C .b c a <<D .a c b <<6.已知正方体的所有顶点都在同一个球面上,若这个正方体的表面积为18,则这个球体的体积为( ) A .92πB .6πC .9πD .18π7.已知等差数列{}n a 满足1210a a +=,432a a −=,等比数列{}n b 满足23b a =,37b a =,则5(b = ) A .32B .64C .128D .2568.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()g x xf x ='的图象如图所示,则下列结论中一定成立的是( )A .()f x 有两个极值点B .()f x 有两个极小值C .(0)f 为函数的极小值D .(1)f −为()f x 的极小值9.设函数22,0(),0ax x x f x ax x x ⎧+=⎨−+<⎩当1[2x ∈−,1]2时,恒有()()f x a f x +<,则实数a 的取值范围是( )A .B .(−C .,0)D .,1]2−二、填空题:本大题共6个小题,每小题5分,共30分.10.已知函数32()1f x ax x =−+在(0,1)上有增区间,则a 的取值范围是 .11.已知数列{}n a 是公差不为零的等差数列,11a =、若1a 、2a 、5a 成等比数列,则n a =(5分) 12.如图,在ABC ∆中,90C ∠=︒,且3AC BC ==,点M 满足2BM MA =,则CM CB ⋅= .13.已知函数()sin(2)4f x x π=−,则()f x 的最小正周期为 ;()f x 在区间3[,]88ππ上的取值范围是 .14.已知向量(2,1)a =−,(1,)b m =−,(1,2)c =−,若()//a b c +,则m = ;若a 与b 的夹角为钝角,则m 的取值范围为 . 15.若正实数x ,y 满足141x y+=,且不等式234yx m m +>−恒成立,则实数m 的取值范围是 .三、解答题:本大题共5小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos b A B . (1)求角B 的大小;(2)若3b =,sin 2sin C A =,求a ,c 的值.17.(15分)如图所示,在三棱柱111ABC A B C −中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点.14AA AB ==,6BC =. (Ⅰ)证明:1//AB 平面1BC D . (Ⅱ)求二面角1C BD C −−的余弦值.18.(15分)已知n S 为数列{}n a 的前n 项和,*3(1)()n n S na n n n N =−−∈,且212a =. (Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)求证:1113ni i S =<∑. 19.(15分)已知函数2()(1)f x x a x a =−++, (1)当2a =时,求关于x 的不等式()0f x >的解集; (2)求关于x 的不等式()0f x <的解集;(3)若()20f x x +在区间(1,)+∞上恒成立,求实数a 的取值范围. 20.(16分)已知函数2()1f x x alnx =−−.(1)若()f x 的单调递增区间为[2,)+∞,求a 的值. (2)求()f x 在[1,)+∞上的最小值.2023-2024学年天津市红桥区高三(上)期中数学试卷参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{|0}1xA x x =<−,{|03}B x x =<<,那么“m A ∈”是“m B ∈”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件解:由01xx <−得01x <<,即{|01}A x x =<<, 分析可得A B ,即可知“m A ∈”是“m B ∈”的充分而不必要条件,故选:A .2.设集合2{|40}A x x =−,{|20}B x x a =+,且{|21}A B x x =−,则(a = )A .4−B .2−C .2D .4解:集合2{|40}{|22}A x x x x =−=−,1{|20}{|}2B x x a x x a =+=−,由{|21}AB x x =−,可得112a −=,则2a =−.故选:B .3.已知(sin ,cos )a αα=,(2,1)b =−,若a b ⊥,则tan α的值为( ) A .2− B .2C .12D .12−解:(sin ,cos )a αα=,(2,1)b =−,a b ⊥,∴2sin cos 0a b αα=−+=,cos 2sin αα∴=, sin 1tan cos 2ααα∴==. 故选:C .4.将函数sin()3y x π=−的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的解析式是( ) A .1sin 2y x =B .1sin()22y x π=−C .1sin()26y x π=−D .sin(2)6y x π=−解:将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数1sin()23y x π=−,再将所得的图象向左平移3π个单位,得函数1sin[()]233y x ππ=+−,即1sin()26y x π=−,故选:C .5.设13log 2a =,121log 3b =,0.31()2c =,则( )A .a b c <<B .b a c <<C .b c a <<D .a c b <<解:1133log 210a log =<=, 112211log 132b log =>=, 0.30110()()122c <=<=,a cb ∴<<. 故选:D .6.已知正方体的所有顶点都在同一个球面上,若这个正方体的表面积为18,则这个球体的体积为( ) A .92π B .6π C .9π D .18π解:设正方体的棱长为a ,其外接球的半径为R , 因为正方体的表面积为18, 所以2618a =,所以23,a a = 所以22(2)39R a ==,得32R =, 所以正方体外接球的体积为334439()3322R πππ==,故选:A .7.已知等差数列{}n a 满足1210a a +=,432a a −=,等比数列{}n b 满足23b a =,37b a =,则5(b = ) A .32B .64C .128D .256解:等差数列{}n a 满足1210a a +=,432a a −=,∴12102a d d +=⎧⎨=⎩,则14a =,2d =, 则34228a =+⨯=,742616a =+⨯=,则238b a ==,3716b a ==,则公比321628b q b ===, 则25316464b b q ==⨯=, 故选:B .8.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()g x xf x ='的图象如图所示,则下列结论中一定成立的是( )A .()f x 有两个极值点B .()f x 有两个极小值C .(0)f 为函数的极小值D .(1)f −为()f x 的极小值解:由函数()()g x xf x '=的图象, 可得当(,2)x ∈−∞−时,()0xf x '>, 所以()0f x '<,()f x 单调递减; 当(2,0)x ∈−时,()0xf x '<, 所以()0f x '>,()f x 单调递增; 当(0,1)x ∈时,()0xf x '<, 所以()0f x '<,()f x 单调递减; 当(1,)x ∈+∞时,()0xf x '>, 所以()0f x '>,()f x 单调递增,综上,当2x =−时,函数()f x 取得极小值; 当0x =时,函数()f x 取得极大值; 当1x =时,函数()f x 取得极小值, 故选项ABC 错误,选项B 正确. 故选:B .9.设函数22,0(),0ax x x f x ax x x ⎧+=⎨−+<⎩当1[2x ∈−,1]2时,恒有()()f x a f x +<,则实数a 的取值范围是( ) A.B.(− C.,0)D.,1]2−解:0a =时,显然不符题意;当1[2x ∈−,1]2时,恒有()()f x a f x +<,即为()f x 的图象恒在()f x a +的图象之上, 则0a <,即()f x 的图象右移. 故A ,B 错;画出函数22,0()(0),0ax x x f x a ax x x ⎧+=<⎨−+<⎩的图象, 当12x =−时,111()242f a −=−−;而22(),()(),a x a x a x af x a a x a x a x a ⎧+++−+=⎨−+++<−⎩, 则12x =−时,由21111()2242a a a a −−++−=−−,解得a =, 随着()f x a +的图象左移至()f x 的过程中,均有()f x 的图象恒在()f x a +的图象上,则a 的范围是,0),故选:C .二、填空题:本大题共6个小题,每小题5分,共30分.10.已知函数32()1f x ax x =−+在(0,1)上有增区间,则a 的取值范围是 2(,)3+∞ .解:函数32()1f x ax x =−+. 可得2()32f x ax x '=−.函数32()1f x ax x =−+在(0,1)上有增区间,可知导函数在(0,1)上有极值点,导函数在(0,1)上有解,或0a =时,2320ax x −恒成立(显然不成立). 可得2(0,1)3a ∈,解得:23a >, 故答案为:2(,)3+∞.11.已知数列{}n a 是公差不为零的等差数列,11a =、若1a 、2a 、5a 成等比数列,则n a = 21n − 解:设公差为d ,则21a d =+,514a d =+, 则21(14)(1)d d ⨯+=+,2d ∴=, 21n a n ∴=−, 故答案为:21n −.12.如图,在ABC ∆中,90C ∠=︒,且3AC BC ==,点M 满足2BM MA =,则CM CB ⋅= 3 .解法一:因为点M 满足2BM MA =,90C ∠=︒,且3AC BC ==, 所以1112()3333CM CA AM CA AB CA CB CA CB CA =+=+=+−=+,所以2212121()3333333CM CB CB CA CB CB CA CB ⋅=+⋅=+⋅=⨯=.解法二:如图,以C 为坐标原点,CA ,CB 所在直线分别为x ,y 轴建立平面直角坐标系,如图所示,则(3,0)A ,(0,3)B ,设(,)M x y ,则由2BM MA =,得2(3)32x x y y =−⎧⎨−=−⎩,解得21x y =⎧⎨=⎩,即M 点的坐标为(2,1),所以(2,1),(0,3)CM CB ==, 所以20133CM CB ⋅=⨯+⨯=. 故答案为:3.13.已知函数()sin(2)4f x x π=−,则()f x 的最小正周期为 π ;()f x 在区间3[,]88ππ上的取值范围是 .解:由函数()f x 的解析式,可得最小正周期22T ππ==; 3[,]88x ππ∈,可得2[04x π−∈,]2π,所以()[()8f x f π∈,3()][08f π=,1].所以()f x 在区间3[,]88ππ上的取值范围是[0,1].故答案为:π;[0,1].14.已知向量(2,1)a =−,(1,)b m =−,(1,2)c =−,若()//a b c +,则m = 1− ;若a 与b 的夹角为钝角,则m 的取值范围为 .解:根据题意,向量(2,1)a =−,(1,)b m =−,(1,2)c =−,则(1,1)a b m +=−, 若()//a b c +,则有2(1)m =−−,解可得1m =−;若a 与b 的夹角为钝角,则2021a b m m ⎧⋅=−−<⎪⎨≠⎪⎩,解可得2m >−且12m ≠,即m 的取值范围为{|2m m >−且1}2m ≠;故答案为:1−,{|2m m >−且1}2m ≠.15.若正实数x ,y 满足141x y+=,且不等式234yx m m +>−恒成立,则实数m 的取值范围是 (1,4)− .解:因为正实数x ,y 满足141x y+=, 所以144()()22244444y y y x y x x x y x y x +=++=+++=, 当且仅当44y x x y =且141x y+=,即2x =,8y =时取等号,则4yx +的最小值4, 因为234yx m m +>−恒成立, 所以234m m −<,解得14m −<<. 故m 的范围为(1,4)−. 故答案为:(1,4)−.三、解答题:本大题共5小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos b A B . (1)求角B 的大小;(2)若3b =,sin 2sin C A =,求a ,c 的值.解:(1)sin cos b A B ,由正弦定理可得sin sin cos B A A B ,即得tan B , 由于:0B π<<, ∴3B π=.(2)sin 2sin C A =, 由正弦定理得2c a =,由余弦定理2222cos b a c ac B =+−, 229422cos3a a a a π=+−⋅,解得a =∴2c a ==.故a =c =17.(15分)如图所示,在三棱柱111ABC A B C −中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点.14AA AB ==,6BC =. (Ⅰ)证明:1//AB 平面1BC D . (Ⅱ)求二面角1C BD C −−的余弦值.(Ⅰ)证明:如图,连接1B C ,设1B C 与1BC 相交于点O ,连接OD ,因为四边形11BCC B 是平行四边形,所以点O 为1B C 的中点,因为D 为AC 的中点,所以OD 为△1AB C 的中位线, 所以1//OD AB ,因为OD ⊂平面1BC D ,1AB ⊂/平面1BC D ,所以1//AB 平面1BC D ;(Ⅱ)解:因为三棱柱111ABC A B C −中,侧棱1AA ⊥底面ABC ,AB BC ⊥, 所以11B C ,1B B ,11B A 两两互相垂直,以1B 为原点,11B C ,1B B ,11B A 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,则1(6C ,0,0),(0B ,4,0),(6C ,4,0),(3D ,4,2),所以(3,0,2)BD =,1(6,4,0)BC =−,设平面1BC D 的法向量为(,,)n x y z =,则1320640n BD x z n BC x y ⎧⋅=+=⎪⎨⋅=−=⎪⎩,解得3232z x y x ⎧=−⎪⎪⎨⎪=⎪⎩, 取2x =,得3y =,3z =−,所以(2,3,3)n =−, 由题知平面BCD 得一个法向量为(0,1,0)m =,所以cos ,||||14m n m n m n ⋅<>==⨯由图可知,二面角1C BD C −−为锐二面角,所以二面角1C BD C −−. 18.(15分)已知n S 为数列{}n a 的前n 项和,*3(1)()n n S na n n n N =−−∈,且212a =. (Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)求证:1113n i i S =<∑. (Ⅰ)解:由3(1)n n S na n n =−−,得122232(21)a a a +=−⨯⨯−, 即126a a =−,212a =,11266a ∴=−=;(Ⅱ)解:由3(1)n n S na n n =−−,得11(1)3(1)(2)(2)n n S n a n n n −−=−−−−,两式作差得:1(1)66n n n a na n a n −=−−−+,即16(2)n n a a n −−=. ∴数列{}n a 是以6为首项,以6为公差的等差数列, 66(1)6n a n n ∴=+−=;(Ⅲ)证明:6(1)63(1)2n n n S n n n −=+=+, 则11111()3(1)31n S n n n n ==−++, ∴1121111111111111(1)(1)32231313n i i n S S S S n n n ==++⋯+=−+−+⋯+−=−<++∑. 19.(15分)已知函数2()(1)f x x a x a =−++,(1)当2a =时,求关于x 的不等式()0f x >的解集;(2)求关于x 的不等式()0f x <的解集;(3)若()20f x x +在区间(1,)+∞上恒成立,求实数a 的取值范围. 解:(1)当2a =时,则2()32f x x x =−+,由()0f x >,得2320x x −+>, 令2320x x −+=,解得1x =,或2x =∴原不等式的解集为(−∞,1)(2⋃,)+∞(2)由()0f x <得()(1)0x a x −−<,令()(1)0x a x −−=,得1x a =,21x =,5⋯ 分, 当1a >时,原不等式的解集为(1,)a ;6⋯ 分, 当1a =时,原不等式的解集为∅;⋯(7分), 当1a <时,原不等式的解集为(,1)a .⋯(8分).(2)由()20f x x +即20x ax x a −++在(1,)+∞上恒成立, 得2..91x x a x +⋯− 分, 令1(0)t x t =−>,则22(1)1232231x x t t t x t t++++==+++−,13⋯ 分∴223a +.故实数a 的取值范围是(3]14−∞⋯ 分20.(16分)已知函数2()1f x x alnx =−−.(1)若()f x 的单调递增区间为[2,)+∞,求a 的值.(2)求()f x 在[1,)+∞上的最小值.解:(1)已知2()1f x x alnx =−−,函数定义域为(0,)+∞可得22()2a x a f x x x x−'=−=, 若函数()f x 的单调增区间为[2,)+∞,此时0a >;当)x ∈+∞时,()0f x ',所以函数的单调递增区间为)+∞.2=, 解得8a =;(2)易知22()x a f x x−'=,[1x ∈,)+∞ 当0a 时,()0f x ',函数()f x 在[1,)+∞上单调递增, 所以()f x f (1)0=;②当0a >,当x ∈,()0f x '<,()f x 单调递减;当)x ∈+∞时,()0f x '>,()f x 单调递增, 12a ,即02a <时, 函数()f x 在[1,)+∞单调递增,此时()f x f (1)0=,1>,即2a >时,函数()f x 在上单调递减,在)+∞上单调递增; 此时()()12222a a a a f x f ln =−−. 综上所述:当2a 时,最小值为0;当2a >时,最小值为1222a a a ln −−.。

2023-2024学年山东省聊城市高三(上)期中数学试卷【答案版】

2023-2024学年山东省聊城市高三(上)期中数学试卷【答案版】

2023-2024学年山东省聊城市高三(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A ={x|0<x <5},B ={x|x+1x−4≤0},则A ∩B =( ) A .[﹣1,4]B .[﹣1,5)C .(0,4]D .(0,4)2.在平面直角坐标系xOy 中,已知角α的始边是x 轴的非负半轴,终边经过点P (﹣1,2),则cos (π﹣α)=( )A .√55B .2√55C .−√55D .−2√553.设复数z 满足2z +z =3+i ,则z i=( ) A .1+iB .1﹣iC .﹣1+iD .﹣1﹣i4.定义在R 上的函数f (x ),满足f (x )=f (﹣x ),且在(﹣∞,0]为增函数,则( ) A .f(cos2023π)<f(log120232022)<f(212023)B .f(212023)<f(cos2023π)<f(log 120232022) C .f(212023)<f(log 120232022)<f(cos2023π)D .f(log 120232022)<f(cos2023π)<f(212023)5.已知命题p :∃x ∈[1,4],log 12x <2x +a ,则p 为假命题的一个充分不必要条件是( )A .a >﹣1B .a >﹣11C .a <﹣1D .a <﹣116.函数f(x)=sin(2x +π6)向右平移m (m >0)个单位后,所得函数g (x )是偶函数,则m 的最小值是( ) A .−π6B .π6C .π3D .2π37.已知x >0,y >0,且x +2y =1,则3x +9y 的最小值为( ) A .2√3B .3√2C .3√3D .2√28.已知0<α<π2,2sin β﹣cos α=1,sinα+2cosβ=√3,则cos(α+π3)=( ) A .14B .−14C .13D .−13二、多项选择题:本题共4小题,每小题5分,共20分。

2023-2024学年福建省福州八中高三(上)期中数学试卷【答案版】

2023-2024学年福建省福州八中高三(上)期中数学试卷【答案版】

2023-2024学年福建省福州八中高三(上)期中数学试卷一、单选题(本大题共8小题,每小题5分,共40分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上.)1.若集合A ={x |x 2﹣1<0},B ={x |y =lnx },则A ∪B =( ) A .{x |﹣1<x <1}B .{x |0<x <1}C .{x |x >﹣1}D .{x |x >0}2.i 为虚数单位,复数z 满足z (1+i )=1﹣2i ,则|z |=( ) A .12B .√22C .√52D .√1023.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB|=√2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<3)=0.6,则P (1<ξ<2)=( ) A .0.1B .0.2C .0.3D .0.45.今年8月24日,日本不顾国际社会的强烈反对,将福岛第一核电站核污染废水排入大海,对海洋生态造成不可估量的破坏.据有关研究,福岛核污水中的放射性元素有21种半衰期在10年以上;有8种半衰期在1万年以上.已知某种放射性元素在有机体体液内浓度c (Bq /L )与时间t (年)近似满足关系式c =k •a t (k ,a 为大于0的常数且a ≠1).若c =16时,t =10;若c =112时,t =20.则据此估计,这种有机体体液内该放射性元素浓度c 为1120时,大约需要( )(参考数据:log 23≈1.58,log 25≈2.32)A .43年B .53年C .73年D .120年6.已知数列{a n }是等差数列,若a 9+a 12<0,a 10•a 11<0,且数列{a n }的前n 项和S n 有最大值,当S n >0时,n 的最大值为( ) A .20B .17C .19D .217.已知圆锥SO 的轴截面为正三角形,用平行于底面的平面截圆锥SO 所得到的圆锥SO 1与圆台O 1O 的体积之比为1:7,则圆锥SO 1与圆台O 1O 的表面积之比为( ) A .311B .38C .12D .238.已知函数f (x )的定义域为R ,且f (x +1)+f (x ﹣1)=2,f (x +2)为偶函数,若f (0)=0,则∑ 110k=1f(k)=( ) A .109B .110C .111D .112二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)9.下列命题为真命题的是()A.若a>b,且1a>1b,则ab<0B.若a<b<0,则a2<ab<b2C.若c>a>b>0,则ac−a <bc−bD.若a>b>c>0,则ab>a+cb+c10.在二项式(√x−12x)6的展开式中,下列说法正确的是()A.常数项是134B.各项系数和为164C.第5项二项式系数最大D.奇数项二项式系数和为3211.函数f(x)=√2sin(ωx+φ)(ω>0,|φ|<π2)的部分图象如图所示,则下列说法中正确的有()A.f(x)的最小正周期T为πB.f(x)向右平移3π8个单位后得到的新函数是偶函数C.若方程f(x)=1在(0,m)上共有4个根,则这4个根的和为7π2D.f(x)(x∈[0,5π4])图象上的动点M到直线2x﹣y+4=0的距离最小时,M的横坐标为π4.12.如图,曲线C:x2=2y的焦点为F,直线l与曲线C相切于点P(异于点O),且与x轴y轴分别相交于点E,T,过点P且与l垂直的直线交y轴于点G,过点P作准线及y轴的垂线,垂足分别是M,N,则下列说法正确的是()A.当P的坐标为(1,12)时,切线l的方程为2x﹣2y﹣3=0B.无论点P(异于点O)在什么位置,FM都平分∠PFTC.无论点P(异于点O)在什么位置,都满足|PT|=4|FP|•|ON|D .无论点P (异于点O )在什么位置,都有|PF |•|GM |<|PG |•|FM |+|GF |•|PM |成立 三、填空题(本大题共4小题,每小题5分,共20分.)13.若角α的始边是x 轴非负半轴,终边落在直线x +2y =0上,则sin(π2−2α)= .14.点A (2,1,1)是直线l 上一点,a →=(1,0,0)是直线l 的一个方向向量,则点P (1,2,0)到直线l 的距离是 .15.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过双曲线C 上一点P 向y 轴作垂线,垂足为Q ,若|PQ |=|F 1F 2|且PF 1与QF 2垂直,则双曲线C 的离心率为 . 16.在四棱锥P ﹣ABCD 中,底面ABCD 为矩形,P A ⊥底面ABCD ,AB =2,BC =3,PA =3√3,点E 为棱P A 的中点,则三棱锥E ﹣PCD 的体积为 ;若四棱锥P ﹣ABCD 所有顶点均在球O 的球面上,过点E 的平面截球O 所得的截面面积的最小值为 .四、解答题(本大题共有6个小题,共70分.解答应写出文字说明、演算步骤或证明过程.) 17.(10分)已知等差数列{a n }中,a 1=1,S n 为{a n }的前n 项和,且{√S n }也是等差数列. (1)求a n ; 2)设b n =S na n a n+1(n ∈N ∗),求数列{b n }的前n 项和T n .18.(12分)在三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知√2bsinC +asinA =bsinB +csinC . (1)求A ;(2)若a =√2,求BC 边上的高AD 的最大值.19.(12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的六面体中(其中F ∈平面EDC ),四边形ABCD 是正方形,ED ⊥平面ABCD ,BF =FE ,且平面FEB ⊥平面EDB . (1)设M 为棱EB 的中点,证明:A ,C ,F ,M 四点共面; (2)若ED =2AB =2,求平面FEB 与平面EAB 的夹角的余弦值.20.(12分)现如今国家大力提倡养老社会化、市场化,老年公寓是其养老措施中的一种能够满足老年人的高质量、多样化、专业化生活及疗养需求.某老年公寓负责人为了能给老年人提供更加良好的服务,现对所入住的120名老年人征集意见,该公寓老年人的入住房间类型情况如下表所示:(1)若按入住房间的类型采用分层抽样的方法从这120名老年人中随机抽取10人,再从这10人中随机抽取4人进行询问,记随机抽取的4人中入住单人间的人数为ξ,求ξ的分布列和数学期望.(2)记双人间与三人间为多人间,若在征集意见时要求把入住单人间的2人和入住多人间的m(m>2且m∈N*)人组成一组,负责人从某组中任选2人进行询问,若选出的2人入住房间类型相同,则该组标为Ⅰ,否则该组标为Ⅱ.记询问的某组被标为Ⅱ的概率为p.(i)试用含m的代数式表示p;(ii)若一共询问了5组,用g(p)表示恰有3组被标为Ⅱ的概率,试求g(p)的最大值及此时m的值.21.(12分)已知椭圆E的中心为坐标原点,对称轴为坐标轴,且过点A(2,0),B(1,√32),M,N为椭圆E上关于x轴对称的两点(不与点B重合),Q(1,0),直线MQ与椭圆E交于另一点C,直线QP 垂直于直线NC,P为垂足.(1)求E的方程;(2)证明:(i)直线NC过定点,(ii)存在定点R,使|PR|为定值.22.(12分)已知函数f(x)=x﹣alnx(a∈R).(1)当a<e时,讨论函数f(x)零点的个数;(2)当x∈(1,+∞)时,f(x)≥ax a lnx﹣xe x恒成立,求a的取值范围.2023-2024学年福建省福州八中高三(上)期中数学试卷参考答案与试题解析一、单选题(本大题共8小题,每小题5分,共40分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上.)1.若集合A ={x |x 2﹣1<0},B ={x |y =lnx },则A ∪B =( ) A .{x |﹣1<x <1}B .{x |0<x <1}C .{x |x >﹣1}D .{x |x >0}解:由x 2﹣1<0得﹣1<x <1,即A ={x |﹣1<x <1}, 又函数y =lnx 的定义域满足x >0, 所以B ={x |x >0} 则A ∪B ={x |x >﹣1}. 故选:C .2.i 为虚数单位,复数z 满足z (1+i )=1﹣2i ,则|z |=( ) A .12B .√22C .√52D .√102解:z =1−2i 1+i =(1−2i)(1−i)(1+i)(1−i)=1−i−2i+2i 22=−1−3i 2,故|z|=√14+94=√102.故选:D .3.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB|=√2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 解:圆心到直线的距离d =|1|√1+k =1√1+k ,当k =1时,d =√2,|AB |=2√R 2−d 2=2√1−(1√2)2=2√1−12=2√12=2×√22=√2,即充分性成立,若|AB|=√2,则|AB |=2√R 2−d 2=2√1−d 2=√2,即1﹣d 2=12,即d =√22,则由圆心到直线的距离d =|1|√1+k =1√1+k =√22得1+k 2=2,即k 2=1,则k =±1,即“k =1”是“|AB|=√2”的充分不必要条件, 故选:A .4.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<3)=0.6,则P (1<ξ<2)=( ) A .0.1B .0.2C .0.3D .0.4解:由题意可得μ=2,且P (ξ<3)=0.6,则P (ξ>3)=P (ξ<1)=1﹣0.6=0.4,∴P(1<ξ<2)=1−0.4×22=0.1. 故选:A .5.今年8月24日,日本不顾国际社会的强烈反对,将福岛第一核电站核污染废水排入大海,对海洋生态造成不可估量的破坏.据有关研究,福岛核污水中的放射性元素有21种半衰期在10年以上;有8种半衰期在1万年以上.已知某种放射性元素在有机体体液内浓度c (Bq /L )与时间t (年)近似满足关系式c =k •a t (k ,a 为大于0的常数且a ≠1).若c =16时,t =10;若c =112时,t =20.则据此估计,这种有机体体液内该放射性元素浓度c 为1120时,大约需要( )(参考数据:log 23≈1.58,log 25≈2.32)A .43年B .53年C .73年D .120年解:由题意得:{16=k ⋅a 10112=k ⋅a 20,解得{a =(12)110k =13,所以c =13⋅(12)t 10, 当c =1120时,得1120=13⋅(12)t10,即(12)t 10=140,两边取对数得t 10=log 12140=log 240=3+log 25≈3+2.32=5.32,所以t =5.32×10=53.2,即这种有机体体液内该放射性元素浓度c 为1120时,大约需要53年.故选:B .6.已知数列{a n }是等差数列,若a 9+a 12<0,a 10•a 11<0,且数列{a n }的前n 项和S n 有最大值,当S n >0时,n 的最大值为( ) A .20B .17C .19D .21解:因为a 10a 11<0,所以a 10和a 11异号, 又等差数列{a n }的前n 项和S n 有最大值, 所以数列{a n }是递减的等差数列, 所以a 10>0,a 11<0,所以S 19=19a 10>0,S 20=10(a 1+a 20)=10(a 9+a 12)<0, 所以n 的最大值为19. 故选:C .7.已知圆锥SO 的轴截面为正三角形,用平行于底面的平面截圆锥SO 所得到的圆锥SO 1与圆台O 1O 的体积之比为1:7,则圆锥SO 1与圆台O 1O 的表面积之比为( )A .311B .38C .12D .23解:根据题意,圆锥SO 1与圆台O 1O 的体积之比为1:7, 则圆锥SO 1与圆锥SO 的体积之比为1:8,则有SO 1SO =12,如图:由于圆锥SO 的轴截面为正三角形,设圆锥SO 底面半径为2r ,则其母线SA =4r , 又由SO 1SO =12,则圆锥SO 1底面半径为r ,则其母线SA 1=2r , 故圆锥SO 1的表面积S 1=πr 2+πr ×(2r )=3πr 2, 圆台O 1O 的表面积S 1=πr 2+4πr 2+π(r +2r )×2r =11πr 2, 故圆锥SO 1与圆台O 1O 的表面积之比为311.故选:A .8.已知函数f (x )的定义域为R ,且f (x +1)+f (x ﹣1)=2,f (x +2)为偶函数,若f (0)=0,则∑ 110k=1f(k)=( ) A .109B .110C .111D .112解:∵f (x +1)+f (x ﹣1)=2,∴f (x +2)+f (x )=2,∴f (x +2)=2﹣f (x ), ∴f (x +4)=2﹣f (x +2)=2﹣[2﹣f (x )]=f (x ), ∴f (x )的周期为4,又f (x +2)为偶函数,∴f (﹣x +2)=f (x +2), ∴f (x )=f (﹣x +4)=f (﹣x ), ∴f (x )为偶函数, ∵f (x +1)+f (x ﹣1)=2,∴f (1)+f (3)=2,f (2)+f (4)=2, ∴f (1)+f (2)+f (3)+f (4)=4,又f(1)+f(﹣1)=2,∴2f(1)=2,∴f(1)=1,又f(0)+f(2)=2,f(0)=0,∴f(2)=2,∵110=27×4+2,∴∑110k=1f(k)=f(1)+…+f(110)=27×[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)=27×4+1+2=111,故选:C.二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)9.下列命题为真命题的是()A.若a>b,且1a>1b,则ab<0B.若a<b<0,则a2<ab<b2C.若c>a>b>0,则ac−a <bc−bD.若a>b>c>0,则ab>a+cb+c解:对于A,1a−1b=b−aab>0,又b﹣a<0,故ab<0,A正确.对于B,若a<b<0,则a2>b2,故B错误.对于C,ac−a −bc−b=ac−ab−bc+ab(c−a)(c−b)=(a−b)c(c−a)(c−b),由c>a>b>0可得c﹣a>0,c﹣b>0,a﹣b>0,∴(a−b)c(c−a)(c−b)>0,∴ac−a>bc−b,C错误.对于D,∵a>b>c>0,∴a﹣b>0,b+c>0则ab−a+cb+c=ab+ac−ab−bcb(b+c)=(a−b)cb(b+c)>0,∴ab>a+cb+c,D正确.故选:AD.10.在二项式(√x−12x)6的展开式中,下列说法正确的是()A.常数项是134B.各项系数和为164C.第5项二项式系数最大D.奇数项二项式系数和为32解:二项式(√x−12x)6的展开式的通项为C6r(√x)6−r⋅(−12x)r=C6r⋅(−12)r x3−32r,r=0,1,2,⋯,6,(r∈N);当r=2时,得常数项为C62⋅(−12)2=154,故A不正确;当x=1时,可得展开式各项系数和为(√1−12)6=164,故B正确;由于n=6,则二项式系数最大为C63=20为展开式的第4项,故C不正确;奇数项二项式系数和为C60+C62+C64+C66=1+15+15+1=32,故D正确.故选:BD.11.函数f(x)=√2sin(ωx+φ)(ω>0,|φ|<π2)的部分图象如图所示,则下列说法中正确的有()A.f(x)的最小正周期T为πB.f(x)向右平移3π8个单位后得到的新函数是偶函数C.若方程f(x)=1在(0,m)上共有4个根,则这4个根的和为7π2D.f(x)(x∈[0,5π4])图象上的动点M到直线2x﹣y+4=0的距离最小时,M的横坐标为π4.解:因为f(x)经过点(5π8,0),所以f(5π8)=√2sin(5ωπ8+φ)=0,又x=5π8在f(x)的单调递减区间内,所以5ωπ8+φ=π+2kπ,(k∈Z)①,又因为f(x)经过点(5π4,1),所以f(5π4)=√2sin(5ωπ4+φ)=1,sin(5ωπ4+φ)=√22,又x=5π4是f(x)=1在x>5π8时最小的解,所以5ωπ4+φ=9π4+2kπ,(k∈Z)②.联立①②,可得5ωπ8=5π4,解得ω=2,代入①,可得φ=−π4+2kπ,(k∈Z),又|φ|<π2,所以φ=−π4,则f(x)=√2sin(2x−π4 ).故f (x )的最小正周期T =2π2=π,则A 正确; f (x )向右平移3π8个单位后得到的新函数是g (x )=√2sin[2(x −3π8)−π4]=−√2sin2x ,则g (x )为奇函数,故B 错误;设f (x )=1在(0,m )上的4个根从大到小依次为x 1,x 2,x 3,x 4, 令2x −π4=π2,则x =3π8, 根据f (x )的对称性,可得x 1+x 22=3π8,则由f (x )的周期性可得x 3+x 42=3π8+T =11π8,所以x 1+x 2+x 3+x 4=72π,故C 正确;作与直线l :2x ﹣y +4=0平行的直线l ′,使其与f(x),(x ∈[0,5π4])有公共点, 则在运动的过程中,只有当直线与f(x),(x ∈[0,5π4])相切时,直线l ′与直线l 存在最小距离,也是点M 到直线2x ﹣y +4=0的最小距离, 令f ′(x)=2√2cos(2x −π4)=2,则2x −π4=±π4+2kπ,(k ∈Z), 解得x =k π,(k ∈Z )或x =π4+kπ,(k ∈Z), 又x ∈[0,5π4], 所以x =0或π4或5π4(舍去),又f (0)=﹣1,令M 1(0,﹣1),f(π4)=1,M 2(π4,1),则由√5|π2−1+4|√5,可得M 1到直线l 的距离大于M 2到直线l 的距离,所以M 到直线2x ﹣y +4=0的距离最小时,M 的横坐标为π4,故D 正确.故选:ACD .12.如图,曲线C :x 2=2y 的焦点为F ,直线l 与曲线C 相切于点P (异于点O ),且与x 轴 y 轴分别相交于点E ,T ,过点P 且与l 垂直的直线交y 轴于点G ,过点P 作准线及y 轴的垂线,垂足分别是M ,N ,则下列说法正确的是()A.当P的坐标为(1,12)时,切线l的方程为2x﹣2y﹣3=0B.无论点P(异于点O)在什么位置,FM都平分∠PFTC.无论点P(异于点O)在什么位置,都满足|PT|=4|FP|•|ON|D.无论点P(异于点O)在什么位置,都有|PF|•|GM|<|PG|•|FM|+|GF|•|PM|成立解:因为曲线C:x2=2y,即y=12x2,所以y′=x,设点P(x0,y0),则y0=12x02,k=x0,所以切线l的方程为y=x0x−12x02,当x0=1时,切线方程为2x﹣2y﹣1=0,故A错误;由题意F(0,12),M(x0,−12),T(0,−12x02),所以PM=FT=12x02+12,因为PM∥FT,所以四边形PFTM为平行四边形,又PF=PM,所以四边形PFTM为菱形,可得FM平分角∠PFT,故B正确;因为N(0,y0),T(0,﹣y0),所以|PT|2=x02+4y02=2y0+4y02,4|FP|⋅|ON|=4|PM|⋅|ON|=4(y0+12)⋅y0=2y0+4y02,所以|PT|2=4|FP|•|ON|,故C正确;直线GP方程:y=−1x0x+y0+1,可得G(0,1+y0),所以|GF|=12+y0,又|PM|=y0+12,所以GF∥MP且GF=MP,所以四边形GFMP为平行四边形,故PG=FM.|PG|⋅|FM|+|GF|⋅|PM|=|PG|2+|GF|2=|PF|2+|GM|22,因为PG 与GF 不垂直,所以|PF |≠|GM |,所以|PF|2+|GM|22>|PF|⋅|GM|,即|PF |•|GM |<|PG |•|FM |+|GF |•|PM |成立,故D 正确; 故选:BCD .三、填空题(本大题共4小题,每小题5分,共20分.)13.若角α的始边是x 轴非负半轴,终边落在直线x +2y =0上,则sin(π2−2α)= 35.解:由于角α的始边是x 轴非负半轴,终边落在直线x +2y =0上, 所以角α为直线的倾斜角,倾斜角α∈[0,π); 所以tanα=−12,故sin(π2−2α)=cos2α=cos 2α−sin 2α=1−tan 2α1+tan 2α=35.故答案为:35.14.点A (2,1,1)是直线l 上一点,a →=(1,0,0)是直线l 的一个方向向量,则点P (1,2,0)到直线l 的距离是 √2 .解:由题意,点A (2,1,1)和P (1,2,0),可得AP →=(−1,1,−1),且|a →|=1, 所以点P (1,2,0)到直线l 的距离是√(AP →)2−(AP →⋅a →)2=√3−1=√2. 故答案为:√2.15.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过双曲线C 上一点P 向y 轴作垂线,垂足为Q ,若|PQ |=|F 1F 2|且PF 1与QF 2垂直,则双曲线C 的离心率为 √3+12. 解:设双曲线x 2a 2−y 2b 2=1(a >0,b >0)焦距为2c ,不妨设点P 在第一象限, 由题意知PQ ∥F 1F 2,由|PQ |=|F 1F 2|且PF 1与QF 2垂直可知:四边形PQF 1F 2为菱形,且边长为2c , 又△QF 1O 为直角三角形,|QF 1|=2c ,|F 1O |=c , 故∠F 1QO =30°, ∴∠QF 1O =60°, 则∠F 1QP =120°, 则|PF 1|=2c ×√32×2=2√3c ,|PF 2|=2c ,故|PF1|−|PF2|=2√3c−2c=2a,即离心率e=1√3−1=√3+12.故答案为:√3+1 2.16.在四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥底面ABCD,AB=2,BC=3,PA=3√3,点E为棱P A的中点,则三棱锥E﹣PCD的体积为3√32;若四棱锥P﹣ABCD所有顶点均在球O的球面上,过点E的平面截球O所得的截面面积的最小值为27π4.解:依题意,作出图形如图所示:因为P A⊥底面ABCD,点E为棱P A的中点,所以V E−PCD=12V A−PCD=12V P−ACD=12×13×12×2×3×3√3=3√32.将四棱锥P﹣ABCD补形为长方体,易知该长方体的外接球即为四棱锥P﹣ABCD的外接球,如图所示:因为PC为长方体的体对角线,所以球心O在PC的中点上,设平面α为过点E的球O的截面,则当OE⊥α时,截面积最小,因为点E为棱P A的中点,P、C在球面上,所以过点E的球O的截面圆的半径r=PA2=3√32,所以过点E的平面截球O所得的截面面积的最小值为πr2=π×(3√32)2=27π4.故答案为:3√32;27π4.四、解答题(本大题共有6个小题,共70分.解答应写出文字说明、演算步骤或证明过程.)17.(10分)已知等差数列{a n}中,a1=1,S n为{a n}的前n项和,且{√S n}也是等差数列.(1)求a n;2)设b n=S na n a n+1(n∈N∗),求数列{b n}的前n项和T n.解:(1)设等差数列{a n}的公差为d,∵{√S n}是等差数列,∴2√S2=√S3+√S1,又a1=1,∴2√2+d=√3+3d+1,解得d=2,∴a n=1+2(n﹣1)=2n﹣1.(2)由(1)可得S n=n(1+2n−1)2=n2,∴b n=n2(2n−1)(2n+1)=14×4n2−1+1(2n−1)(2n+1)=14+18(12n−1−12n+1),∴数列{b n}的前n项和T n=14×n+18[(1−13)+(13−15)+…+(12n−1−12n+1)]=n4+18(1−12n+1)=n2+n 4n+2.18.(12分)在三角形ABC中,内角A,B,C的对边分别为a,b,c,已知√2bsinC+asinA=bsinB+ csinC.(1)求A;(2)若a=√2,求BC边上的高AD的最大值.解:(1)根据正弦定理可得:√2bc=b2+c2−a2,又b2+c2﹣a2=2bc cos A,∴cosA=√22,∴A=π4;(2)a2=2=b2+c2−2bccosA=b2+c2−√2bc≥(2−√2)bc,∴bc≤2+√2,当且仅为b=c=√2+√2时取等号,∵S△ABC=12bcsinA≤12×(2+√2)×√22=1+√22,∴(S△ABC)max=√2+1 2,∴S△ABC=12×a×AD=12×√2×AD≤√2+12,∴AD≤1+√22,∴AD的最大值为1+√22.19.(12分)如图,在以A,B,C,D,E,F为顶点的六面体中(其中F∈平面EDC),四边形ABCD是正方形,ED⊥平面ABCD,BF=FE,且平面FEB⊥平面EDB.(1)设M为棱EB的中点,证明:A,C,F,M四点共面;(2)若ED=2AB=2,求平面FEB与平面EAB的夹角的余弦值.(1)证明:连接AC,因为四边形ABCD是正方形,所以AC⊥DB,又ED⊥平面ABCD,AC⊂平面ABCD,所以ED⊥AC,因为DE∩BD=D,DE,BD⊂平面EDB,所以AC⊥平面EDB,因为M 为棱EB 的中点,且BF =FE ,所以FM ⊥EB ,又平面FEB ⊥平面EDB ,平面FEB ∩平面EDB =EB ,FM ⊂平面EFB , 所以FM ⊥平面EDB ,所以FM ∥AC ,故A ,C ,F ,M 四点共面.(2)解:由于ED ,DA ,DC 两两垂直,故以D 为坐标原点,建立如图所示的空间直角坐标系D ﹣zyz , 则A (1,0,0),B (1,1,0),C (0,1,0),E (0,0,2),M(12,12,1),设F (0,a ,b ),所以FM →=(12,12−a ,1﹣b ),AC →=(﹣1,1,0),由(1)知FM →∥AC →,所以(12,12−a ,1﹣b )∥(﹣1,1,0),解得a =1,b =1,即F (0,1,1),所以BE →=(−1,−1,2),BF →=(−1,0,1),AB →=(0,1,0),设平面BEF 的法向量为m →=(x ,y ,z ),则{BE →⋅m →=0BF →⋅m →=0,即{−x −y +2z =0−x +z =0, 令x =1,则y =1,z =1,所以m →=(1,1,1), 同理可得,平面ABE 的法向量为n →=(2,0,1),设平面FEB 与平面EAB 的夹角为θ,则cosθ=|cos〈m →,n →〉|=|m →⋅n →||m →||n →|=3√3×√5=√155,故平面FEB 与平面EAB 的夹角的余弦值为√155. 20.(12分)现如今国家大力提倡养老社会化、市场化,老年公寓是其养老措施中的一种能够满足老年人的高质量、多样化、专业化生活及疗养需求.某老年公寓负责人为了能给老年人提供更加良好的服务,现对所入住的120名老年人征集意见,该公寓老年人的入住房间类型情况如下表所示:(1)若按入住房间的类型采用分层抽样的方法从这120名老年人中随机抽取10人,再从这10人中随机抽取4人进行询问,记随机抽取的4人中入住单人间的人数为ξ,求ξ的分布列和数学期望. (2)记双人间与三人间为多人间,若在征集意见时要求把入住单人间的2人和入住多人间的m (m >2且m ∈N *)人组成一组,负责人从某组中任选2人进行询问,若选出的2人入住房间类型相同,则该组标为Ⅰ,否则该组标为Ⅱ.记询问的某组被标为Ⅱ的概率为p . (i )试用含m 的代数式表示p ;(ii )若一共询问了5组,用g (p )表示恰有3组被标为Ⅱ的概率,试求g (p )的最大值及此时m 的值.解:(1)∵单人间、双人间、三人间入住人数比为36:60:24,即3:5:2, ∴这10人中,入住单人间、双人间、三人间的人数分别为10×310=3,10×510=5,10×210=2, ∴ξ的所有可能取值为0,1,2,3,P(ξ=0)=C 74C 104=16,P(ξ=1)=C 73C 31C 104=12,P(ξ=2)=C 72C 32C 104=310,P(ξ=3)=C 71C 33C104=130, ∴ξ的分布列为:E(ξ)=0×16+1×12+2×310+3×130=65.(2)(i )从m +2人中任选2人,有C m+22种选法,其中入住房间类型相同的有C m 2+C 22种选法,∴询问的某组被标为Ⅱ的概率为1−C m 2+C 22C m+22=1−m 2−m+2m 2+3m+2=4mm 2+3m+2. (ii )由题意,5组中恰有3组被标为Ⅱ的概率g(p)=C 53p 3(1−p)2=10p 3(1−2p +p 2)=10(p 3−2p 4+p 5),∴g ′(p )=10(3p 2﹣8p 3+5p 4)=10p 2(p ﹣1)(5p ﹣3), ∴当p ∈(0,35)时,g ′(p )>0,函数g (p )单调递增,当p ∈(35,1)时,g ′(p )<0,函数g (p )单调递减,∴当p =35时,g (p )取得最大值,最大值为g(35)=C 53×(35)3×(1−35)2=216625,由p =4m m 2+3m+2=35且m ∈N *,得m =3, ∴当m =3时,5组中恰有3组被标为Ⅱ的概率最大,且g (p )的最大值为216625. 21.(12分)已知椭圆E 的中心为坐标原点,对称轴为坐标轴,且过点A (2,0),B(1,√32),M ,N 为椭圆E 上关于x 轴对称的两点(不与点B 重合),Q (1,0),直线MQ 与椭圆E 交于另一点C ,直线QP垂直于直线NC ,P 为垂足. (1)求E 的方程;(2)证明:(i )直线NC 过定点,(ii )存在定点R ,使|PR |为定值. 解:(1)不妨设E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ), 因为椭圆E 经过点A (2,0),B(1,√32),所以{4m =1m +34n =1, 解得{m =14n =1, 则E 的方程为x 24+y 2=1;(2)(i )证明:易知直线MQ 的斜率存在且不为0,不妨设MQ 的方程为x =ty +1(t ≠0),C (x 1,y 1),M (x 2,y 2), 可得N (x 2,﹣y 2), 联立{x =my +1x 2+4y 2=4,消去x 并整理得(t 2+4)y 2+2ty ﹣3=0, 此时Δ=16t 2+48>0, 由韦达定理得y 1+y 2=−2t t 2+4,y 1y 2=−3t 2+4, 易知2ty 1y 2=3(y 1+y 2), 直线NC 的斜率k NC =y 1+y 2x 1−x 2, 则直线NC 的方程为y −y 1=y 1+y 2x 1−x 2(x −x 1), 令y =0,解得x =x 1−y 1(x 1−x 2)y 1+y 2=y 2x 1+x 2y 1y 1+y 2=y 2(ty 1+1)+(ty 2+1)y 1y 1+y 2=2ty 1y 2+(y 1+y 2)y 1+y 2=4,所以直线NC 恒过定点(4,0);(ii )证明:不妨设直线NC 过的定点(4,0)为点H , 因为QP →⋅NC →=0, 又点P 在NC 上, 所以QP ⊥PH ,则点P 在以QH 为直径的圆上,此时QH 的中点R(52,0)为定点,|PR |为定值,定值为32.22.(12分)已知函数f (x )=x ﹣alnx (a ∈R ).(1)当a<e时,讨论函数f(x)零点的个数;(2)当x∈(1,+∞)时,f(x)≥ax a lnx﹣xe x恒成立,求a的取值范围.解:(1)由f′(x)=x−a x,当a<0时,f′(x)>0,f(x)在区间(0,+∞)上单调递增,且x→0,时,f(x)<0,又f(1)=1>0,故f(x)只有1个零点;当0<a<e时,令f′(x)>0,解得:x>a,故f(x)在区间(0,a)上单调递减,在区间(a,+∞)上单调递增;∴当x=a时,f(x)取得最小值f(a)=a﹣alna=a(1﹣lna),当0≤a<e时,f(a)>0,f(x)无零点,综上所述,当0≤a<e时,f(x)无零点,当a<0时,f(x)只有一个零点;(2)由已知有x﹣alnx≥ax a lnx﹣xe x⇒x+xe x≥alnx+alnx•x a⇒x+xe x≥alnx+alnx•e alnx,构造函数g(x)=x+xe x,g′(x)=1+e x(x+1)>0,故g(x)单调递增,故原不等式转化为g(x)≥g(alnx),即x≥alnx,即a≤xlnx,令h(x)=xlnx,(x>1),ℎ′(x)=lnx−1(lnx)2,令h′(x)>0,解得x>e,故h(x)在(1,e)单调递减,(e,+∞)单调递增,故h(x)的最小值为h(e)=elne=e,故a的取值范围是(﹣∞,e].。

上海市七宝中学2024-2025学年高三上学期期中考试数学试题(含答案)

上海市七宝中学2024-2025学年高三上学期期中考试数学试题(含答案)

七宝中学2024-2025学年高三上学期期中考试数学试题一、填空题(第1-6题每题4分,第7-12题每题5分,满分54分)1.函数的定义域为______.2.计算______.3.已知是1与9的等比中项,则正实数______.4.在的展开式中,的系数为______(用数字作答).5.在复平面内,复数对应的点位于第______象限。

6.已知,则______.7.已知集合,其中可以相同,用列举法表示集合中最小的4个元素所构成的集合为______.8.已知是函数的导函数,若函数的图象大致如图所示,则的极大值点为______(从中选择作答).9.已知函数.在中,,且,则______.10.如图,线段相交于,且长度构成集合,则的取值个数为______.11.抛物线的焦点为,准线为是拋物线上的两个动点,且满足.设线段y =(4log =a a =4(x -2x 2ii-π1sin 42θ⎛⎫+= ⎪⎝⎭πcos 4θ⎛⎫-= ⎪⎝⎭{}22,,A a a x y x y ==+∈N ,x y A ()f x '()f x ()f x y e '=()f x ,,,a b c d ()22cos 2xf x x =+ABC △()()f A f B =a b ≠C ∠=,AD BC O ,,,AB AD BC CD {}1,3,5,,90x ABO DCO ∠=∠=︒x 24y x =F ,,l A B π3AFB ∠=AB的中点在准线上的投影为,则的最大值是______.12.平面上到两个定点距离之比为常数的动点的轨迹为圆,且圆心在两定点所确定的直线上,结合以上知识,请尝试解决如下问题:已知满足,则的取值范围为______.二、选择题(本大题共4题,满分20分)13.已知是非零实数,则下列不等式中恒成立的是( )A .B .C .D14.已知直线,动直线,则下列结论正确的为()A .不存在,使得的倾斜角为B .对任意的与都不垂直C .存在,使得与重合D .对任意的与都有公共点15.一组学生站成一排.若任意相邻的3人中都至少有2名男生,且任意相邻的5人中都至多有3名男生,则这组学生人数的最大值是( )A .5B .6C .7D .816.若,有限数列的前项和为,且对一切都成立.给出下列两个命题:①存在,使得是等差数列;②对于任意的,都不是等比数列.则( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题三、解答题(本大题共有5题,满分76分)17.如图,为正方体,动点在对角线上(不包含端点),记.M l N MNAB(0,1)λλλ>≠,,a b c 1,2,1a c b a b ===⋅=1122c a c b ++-a 1a a>2211a a a a+≥+12a a+>-≥-1:10l x y --=()()2:10l k x ky k k +-+=∈R k 2l π21,k l 2l k 1l 2l 1,k l 2l 3n ≥12,,,n a a a k k S 1k k S S +>11k n ≤≤-3n ≥12,,,n a a a 3n ≥12,,,n a a a 1111ABCD A B C D -P 1BD 11D PD Bλ=(1)求证:;(2)若异面直线与所成角为,求的值.18.已知点是坐标原点.(1)若,求的值:(2)若实数满足,求的最大值.19.英语学习中学生喜爱用背单词"神器"提升自己的英文水平,为了解上海中学生和大学生对背单词“神器”的使用情况,随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款背单词“神器”,结果如下:百词斩扇贝单词秒词邦沪江开心词场中学生80604020大学生30202010假设大学生和中学生对背单词“神器”的喜爱互不影响.(1)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用“百词斩”的概率;(2)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X 为这3人中最喜爱使用“扇贝单词”的人数,求X 的分布列和数学期望;(3)记样本中的中学生最喜爱使用这四款背单词“神器”的频率依次为,其方差为;样本中的大学生最喜爱使用这四款背单词“神器”的频率依次为,其方差为的方差为.写出的大小关系.(结论不要求证明)20.在平面直角坐标系中,分别是椭圆的左右焦点,设不经过的直线与椭圆交于两个不同的点,焦点到直线的距离为.(1)求该粗圆的离心率;(2)若直线经过坐标原点,求面积的最大值;(3)如果直线的斜率依次成等差数列,求的取值范围.21.若斜率为的两条平行直线,曲线满足以下两条性质:(Ⅰ)分别与曲线至少有两个切点;(Ⅱ)曲线上的所有点都在之间或两条直线上.则称直线为曲线的一对“双夹线”,把“双夹线”之间的距离称为曲线在“方向上的宽度”,记为.已知曲线1AP B C ⊥AP 11D B π3λ()())1,1,1,1,,A B CO θθ-BC BA -=sin2θ,m n π,0,2mOA nOB OC θ⎛⎫+=∈ ⎪⎝⎭22(3)m n ++1234,,,x x x x 21s 1234,,,y y y y 2212341234;,,,,,,,s x x x x y y y y 23s 222123,,s s s 12,F F 22143x y +=1F l ,A B 2F l d l 2F AB △11,,AF l BF d k 12,l l ():C y f x =12,l l C C 12,l l 12,l l C C k ()d k.(1)判断时,曲线是否存在“双夹线”,并说明理由;(2)若,试问:和是否是函数的一对“双夹线”?若是,求此时的值;若不是,请说明理由.(3)对于任意的正实数,函数是否都存在"双夹线"?若是,求的所有取值构成的集合;若不是,请说明理由.2025届七宝中学高三(上)期中考试参考答案一、填空题1、; 2、; 3、3; 4.18; 5、四;6.;7、; 8、a ; 9、;10、4;11、1; 12、10、【答案】412、【答案】二、选择题13~16、BDBC三、解答题17、(1)证明:如图,连接.由已知可得,平面平面,所以,又是正方形,所以,又平面平面,所以平面,又动点在对角线上,所以平面,所以平面,所以.():sin C f x mx n x =+0,1m n ==C 1,1m n ==-1:1l y x =+2:1l y x =-()y f x =()d k ,m n ()y f x =()d k ()1,+∞3412{}0,1,2,4π311,BC AD AB ⊥111,BCC B B C ⊂11BCC B 1AB B C ⊥11BCC B 11B C BC ⊥1BC ⊂11,ABC D AB ⊂111,ABC D AB BC B = 1B C ⊥11ABC D P 1BD P ∈11ABC D AP ⊂11ABC D 1AP B C ⊥(2)以点为坐标原点,分别以所在的直线为轴,如图建立空间直角坐标系,设,则,则.由已知,可得,设点,则,所以,所以,即,所以,.又异面直线与所成角为,所以,即,解得或0,因为,所以满足条件.18、【答案】(1); (2)16.19、【答案】(1); (2); (3)20.【答案】(1); (2 (3).21、【答案】(1)存在;(2)是,3)是,C 1CD CB CC 、、x y z 、、1CD =()()()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,0,1,0,1,1,1,1,0C D B C D B A ()11111,1,0,D B D B =-=11D PD Bλ=11D P D B λ= ()000,,P x y z ()10001,,1D P x y z =-- 00011x y z λλλ-=-⎧⎪=⎨⎪-=-⎩00011x y z λλλ=-+⎧⎪=⎨⎪=-+⎩()1,,1P λλλ-+-+(),1,1AP λλλ=---+AP ==AP 11D B π311π1cos ,cos 42AP D B 〈==〉 11cos ,2AP D 1λ=01λ<<45λ=12-320[]34E X =222231s s s <<12()d k =()0)d k n =>。

2023-2024学年山东省淄博市高三(上)期中数学试卷【答案版】

2023-2024学年山东省淄博市高三(上)期中数学试卷【答案版】

2023-2024学年山东省淄博市高三(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={0,1,2,3},B ={x |x <3,x ∈N },则A ∩B =( ) A .{1,2}B .{1,2,3}C .{0,1,2,3}D .{0,1,2}2.已知复数z 满足(1+2i )z =3﹣2i (i 为虚数单位),则z 的虚部为( ) A .−15B .−85C .−15iD .−85i3.“|x |>2”的一个充分不必要条件是 ( ) A .﹣2<x <2B .﹣4<x ≤﹣2C .x >﹣2D .x >24.数列{a n }满足a 1=12,a n+1=1+a n1−a n(n ∈N ∗),则a 2023=( ) A .12B .3C .﹣2D .−135.已知O 为△ABC 的外心,且AO →=λAB →+(1−λ)AC →.若向量BA →在向量BC →上的投影向量为34BC →,则cos∠AOC 的值为( ) A .1B .√32C .√22D .126.杭州亚运会共设40个竞赛大项,包括31个奥运项目和9个非奥运项目,共设杭州赛区、宁波赛区、温州赛区、金华赛区、绍兴赛区、湖州赛区,现需从6名管理者中选取4人分别到温州,金华、绍兴、湖州四个赛区负责志愿者工作,要求四个赛区各有一名管理者,且6人中甲不去温州赛区,乙不去金华赛区,则不同的选择方案共有( ) A .108种B .216种C .240种D .252种7.已知函数y =xf (x )是R 上的偶函数,f (x ﹣1)+f (x +3)=0,当x ∈[﹣2,0]时,f (x )=2x ﹣2﹣x +x ,则( )A .f (x )的图象关于直线x =2对称B .4是f (x )的一个周期C .f(2023)=52D .f(12)>f(0.50.2)8.设函数f (x )={x +|lnx|−2,x >0,sin(ωx +π4)−12,−π≤x ≤0有7个不同的零点,则正实数ω的取值范围为( ) A .[134,174) B .[174,214) C .[4912,6512)D .[6512,7312)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.教育部办公厅“关于进一步加强中小学生体质健康管频率理工作的通知”中指出,各地要加强对学生体质健康0.06重要性的宣传,中小学校要通过体育与健康课程、大课间、课外体育锻炼、体育竞赛、班团队活动,家校协同联动等多种形式加强教育引导,让家长和中小学生007科学认识体质健康的影响因素.了解运动在增强体质、促进健康、预防肥胖与近视、锤炼意志、健全人格等方面的重要作用,提高学生体育与健康素养,增强体质健康管理的意识和能力,某学校共有2000名男生,为了了解这部分学生的身体发育情况,学校抽查了100名男生的体重情况.根据所得数据绘制样本的频率分布直方图如图所示,则( )A .样本的众数为6712B .样本的80%分位数为7212C .样本的平均值为66D .该校男生中低于60公斤的学生大约为300人10.正数a ,b 满足a <b ,a +b =2,则( ) A .1<b <2B .2a ﹣b >1C .√a +√b <2D .1a+2b≥311.甲罐中有3个红球,4个黑球,乙罐中有2个红球,3个黑球,先从甲罐中随机取出一个球放入乙罐,以A 表示事件“由甲罐取出的球是红球”再从乙罐中随机取出一球,以B 表示事件“由乙罐取出的球是红球”,则( ) A .P(A)=37B .P(B)=1742 C .事件A 与事件B 相互独立D .P(B|A)=1212.已知偶函数f(x)=cos(2ωx +φ)−√3sin(2ωx +φ)(ω>0,|φ|<π2)的周期为π,将函数f (x )的图象向右平移π6个单位长度,得到函数y =g (x )的图象,下列结论正确的是( )A .g(x)=2cos(2x −π6)B .函数g (x )的图象关于直线x =π6对称C .不等式g (x )≥1的解集为{x|kπ≤x ≤kπ+π3,k ∈Z} D .g(x)=12f 2(x 2)在(0,π2)上有两个相异实根 三、填空题:本题共4小题,每小题5分,共20分. 13.在(x 2√x )8的展开式中,含x 2项的系数为 . 14.已知向量a →=(−2,sinα),b →=(cosα,1),且a →⊥b →,则sin2α3−2sin 2α= .15.若项数为n 的数列{a n },满足:a i =a n +1﹣i (i =1,2,3,…,n ),我们称其为n 项的“对称数列”.例如:数列1,2,2,1为4项的“对称数列”;数列1,2,3,2,1为5项的“对称数列”.设数列{c n }为2k +1项的“对称数列”,其中c 1,c 2,…,c k +1是公差为﹣2的等差数列,数列{c n }的最小项等于﹣10,记数列{c n }的前2k +1项和为S 2k +1,若S 2k +1=﹣50,则k 的值为 . 16.若对任意的x 1,x 2∈[1,π2],x 1<x 2,x 2sinx 1−x 1sinx 2x 1−x 2>a 恒成立,则实数a 的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .从下面①②③中选取两个作为条件,证明另外一个成立.①a 2﹣c 2=bc ;②b +bcosA =√3asinB ;③sinA =√3sinC . 注:若选择不同的组合分别解答,则按第一个解答计分. 18.(12分)已知函数f(x)=(1x+1)ln(1+x).(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )的单调增区间.19.(12分)第19届亚运会于2023年9月23日至10月8日在杭州举行,为弘扬奥林匹克和亚运精神,增强锻炼身体意识,某学校举办一场羽毛球比赛.已知羽毛球比赛的单打规则是:若发球方胜,则发球方得1分,且继续在下一回合发球;若接球方胜,则接球方得1分,且成为下一回合发球方.现甲、乙二人进行羽毛球单打比赛,若甲发球,甲得分的概率为35,乙得分的概率为25;若乙发球,乙得分的概率为45,甲得分的概率为15.每回合比赛的结果相互独立.经抽签决定,第一回合由甲发球.(1)求第三回合甲发球的概率;(2)设前三个回合中,甲的总得分为X ,求X 的分布列及期望.20.(12分)已知公差为d 的等差数列{a n }和公比q >0的等比数列{b n }中,a 1=b 1=1,a 2+b 3=8,a 3+b 2=9.(1)求数{a n }列{b n }和的通项公式;(2)删去数列{b n }中的第a i 项(其中i =1,2,3,⋯),将剩余的项按从小到大的顺序排成新数列{c n },求数列{c n }的前n 项和S n .21.(12分)为传承和发扬淄博陶瓷,某陶瓷公司计划加大研发力度.为确定下一年度投资计划,需了解年研发资金x i (亿元)与年销售额y i (亿元)的关系.该公司对历史数据进行对比分析,建立了两个函数模型:①y =α+βx 2,②y =e λx +t ,其中α,β,λ,t 均为常数,e 为自然对数的底数.现该公司收集了近12年的年研发资金x i 和年销售额y i 的数据,i =1,2,⋯,12,并对这些数据作了初步处理,得到了散点图及一些统计量的值.令u i =x i 2(i =1,2,⋯,12),v i =lny i (i =1,2,⋯,12),经计算得如下数据:(1)设{u i }和{y i }的相关系数为r 1,{x i }和{v i }的相关系数为r 2,请从相关系数的角度,选择一个拟合程度更好的模型;(2)根据(1)的选择及表中数据,建立y 关于x 的回归方程(计算过程中保留到0.001,最后结果精确到0.01);(3)为进一步了解人们对新款式瓷器喜爱程度(分为“比较喜欢”和“不太喜欢”)是否跟年龄(分为“小于30岁”和“不小于30岁”)有关,公司从该地区随机抽取600人进行调查,调查数据如表:根据小概率α=0.001的独立性检验,分析该地区对新款式瓷器喜爱程度是否与年龄有关. 附:①相关系数r =∑(x i −x)(y −y)ni=1√∑(x i −x)2∑n i=1(y i −y)2i=1,回归直线y =a +bx 中斜率和截距的最小二乘估计公式分别为:b =∑x i y i −nxy ni=1∑x i 2−x2ni=1=∑(x i−x)(y i −y)ni=1∑ n i=1(x i −x)2,a =y −b x ;②χ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n =a +b +c +d ;③参考数据:308=4×77.22.(12分)已知函数f(x)=x2(lnx﹣a),a为实数.(1)求函数f(x)的单调区间;(2)若函数f(x)在x=e处取得极值,f′(x)是函数f(x)的导函数,且f′(x1)=f′(x2),x1<x2,证明:2<x1+x2<e.2023-2024学年山东省淄博市高三(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={0,1,2,3},B ={x |x <3,x ∈N },则A ∩B =( ) A .{1,2}B .{1,2,3}C .{0,1,2,3}D .{0,1,2}解:因为B ={x |x <3,x ∈N }={0,1,2},A ={0,1,2,3},因此A ∩B ={0,1,2}. 故选:D .2.已知复数z 满足(1+2i )z =3﹣2i (i 为虚数单位),则z 的虚部为( ) A .−15B .−85C .−15iD .−85i解:∵(1+2i )z =3﹣2i , ∴z =3−2i 1+2i =(3−2i)(1−2i)(1+2i)(1−2i)=−15−85i , ∴z 的虚部为−85. 故选:B .3.“|x |>2”的一个充分不必要条件是 ( ) A .﹣2<x <2B .﹣4<x ≤﹣2C .x >﹣2D .x >2解:由|x |>2解得:x <﹣2或x >2,找“|x |>2”的一个充分不必要条件,即找集合{x |x <﹣2或x >2}的真子集, ∵{x |x >2}⫋{x |x <﹣2或x >2},∴“|x |>2”的一个充分不必要条件是{x |x >2}. 故选:D .4.数列{a n }满足a 1=12,a n+1=1+a n1−a n(n ∈N ∗),则a 2023=( ) A .12B .3C .﹣2D .−13解:因为a 1=12,a n+1=1+an 1−a n(n ∈N ∗),所以a 2=1+a 11−a 1=1+121−12=3,a 3=1+a 21−a 2=1+31−3=−2, a 4=1+a31−a 3=1−21+2=−13,a 5=1+a 41−a 4=1−131+13=12,a 6=1+a 51−a 5=1+121−12=3,所以数列{a n }是周期为4的周期数列, 所以a 2023=a 505×4+3=a 3=﹣2. 故选:C .5.已知O 为△ABC 的外心,且AO →=λAB →+(1−λ)AC →.若向量BA →在向量BC →上的投影向量为34BC →,则cos∠AOC 的值为( ) A .1B .√32C .√22D .12解:因为AO →=λAB →+(1−λ)AC →=λAB →+AC →−λAC →, 所以CA →+AO →=λAB →+λCA →=λ(CA →+AB →),即CO →=λCB →,所以O 在BC 上,故△ABC 的外接圆以O 为圆心,BC 为直径, 所以△ABC 为直角三角形,且AC ⊥AB ,O 为BC 中点, 过A 作BC 的垂线AQ ,垂足为Q ,因为向量BA →在向量BC →上的投影向量为34BC →,所以OA →在BC →上的投影向量为OQ →=BQ →−BO →=34BC →−12BC →=14BC →, 因为|OA →|=12|BC →|,所以cos ∠AOC =|OQ||OA|=|OQ →||OA →|=14|BC →|12|BC →|=1412=12. 故选:D .6.杭州亚运会共设40个竞赛大项,包括31个奥运项目和9个非奥运项目,共设杭州赛区、宁波赛区、温州赛区、金华赛区、绍兴赛区、湖州赛区,现需从6名管理者中选取4人分别到温州,金华、绍兴、湖州四个赛区负责志愿者工作,要求四个赛区各有一名管理者,且6人中甲不去温州赛区,乙不去金华赛区,则不同的选择方案共有( ) A .108种B .216种C .240种D .252种解:根据题意,可分为四类:①当甲乙都未选中,则不同的选择方案有A44=24种;②当甲选中,乙未选中,则不同的选择方案有C43C31A33=72种;③当甲未选中,乙选中,则不同的选择方案有C43C31A33=72种;④当甲乙都选中,则由C42种选法,先安排甲,再安排乙,若甲去了金华赛区,则有A33=6;若甲未去金华赛区,则有C21C21A22=8,则不同的安排方案有C42×(6+8)=84种,由分类计数原理,可得共有24+72+72+84=252种不同的安排方案.故选:D.7.已知函数y=xf(x)是R上的偶函数,f(x﹣1)+f(x+3)=0,当x∈[﹣2,0]时,f(x)=2x﹣2﹣x+x,则()A.f(x)的图象关于直线x=2对称B.4是f(x)的一个周期C.f(2023)=52D.f(12)>f(0.50.2)解:∵函数y=xf(x)是R上的偶函数,∴﹣xf(﹣x)=xf(x),∴﹣f(﹣x)=f(x),即y=f(x)为奇函数,对于A:∵f(x﹣1)+f(x+3)=0,∴f(x)+f(x+4)=0,从而f(﹣x)+f(﹣x+4)=0,∴﹣f(x)+f(﹣x+4)=0即f(﹣x+4)=f(x),即f(x)的图象关于直线x=2对称,A正确;对于B:∵f(﹣x+4)=f(x),∴﹣f(x﹣4)=f(x),即f(x﹣4)+f(x)=0,∴f(x﹣8)+f(x﹣4)=0,∴f(x)=f(x﹣8),∴f(x)是以8为周期的函数,B错误;对于C:f(2023)=f(253×8−1)=f(−1)=12−2−1=−52,C错误;对于D:当x∈[﹣2,0]时,y=2x,y=﹣2﹣x,y=x均为单调递增函数,∴f(x)=2x﹣2﹣x+x在[﹣2,0]上单调递增,又y=f(x)为奇函数,∴y=f(x)在[0,2]上单调递增,又0<12=0.51<0.50.2<2,∴f(12)<f(0.50.2),D错误.故选:A.8.设函数f(x)={x+|lnx|−2,x>0,sin(ωx+π4)−12,−π≤x≤0有7个不同的零点,则正实数ω的取值范围为()A.[134,174)B.[174,214)C.[4912,6512)D.[6512,7312)解:∵当0<x<1时,f(x)=x﹣lnx﹣2,f′(x)=1−1x<0恒成立,f(x)单调递减,且f(e﹣2)=e﹣2>0,f(1)=﹣1<0,此时f(x)有且只有一个零点;当x≥1时,f(x)=x+lnx﹣2单调递增,且f(1)=﹣1<0,f(2)=ln2>0,此时f(x)有且只有一个零点,∴当﹣π≤x≤0时,f(x)=sin(ωx+π4)−12有5个零点,即方程sint=12在[−ωπ+π4,π4]上有5个实根,则−5π−π6<−ωπ+π4≤−4π+π6,即4912≤ω<6512.故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.教育部办公厅“关于进一步加强中小学生体质健康管频率理工作的通知”中指出,各地要加强对学生体质健康0.06重要性的宣传,中小学校要通过体育与健康课程、大课间、课外体育锻炼、体育竞赛、班团队活动,家校协同联动等多种形式加强教育引导,让家长和中小学生007科学认识体质健康的影响因素.了解运动在增强体质、促进健康、预防肥胖与近视、锤炼意志、健全人格等方面的重要作用,提高学生体育与健康素养,增强体质健康管理的意识和能力,某学校共有2000名男生,为了了解这部分学生的身体发育情况,学校抽查了100名男生的体重情况.根据所得数据绘制样本的频率分布直方图如图所示,则()A .样本的众数为6712 B .样本的80%分位数为7212C .样本的平均值为66D .该校男生中低于60公斤的学生大约为300人 解:对于选项A ,样本的众数为65+702=6712,故正确;对于选项B ,∵0.03×5+0.05×5+0.06×5=0.7<0.8, 0.03×5+0.05×5+0.06×5+0.04×5=0.9>0.8, ∴样本的80%分位数在(70,75]之间, 70+0.8−0.70.04×5×5=7212,故正确;对于选项C ,样本的平均值为57.5×0.03×5+62.5×0.05×5+67.5×0.06×5+72.5×0.04×5+77.5×0.02×5=66.75, 故错误; 对于选项D ,该校男生中低于60公斤的学生大约为2000×0.03×5=300人,故正确; 故选:ABD .10.正数a ,b 满足a <b ,a +b =2,则( ) A .1<b <2 B .2a ﹣b >1C .√a +√b <2D .1a+2b≥3解:因为a +b =2, 所以a =2﹣b ,由题意得2﹣b <b 且2﹣b >0, 故1<b <2,A 正确; 因为a <b ,即a ﹣b <0, 所以2a ﹣b <1,B 错误;因为(√a+√b 2)2≤a+b2=1,显然等号无法取得, 故√a +√b <√2,C 正确;1a+2b=a+b 2a+a+b b=32+b 2a+a b≥32+√2,当且仅当b =√2a 且a +b =2,即a =2√2−2,b =4﹣2√2时取等号,D 错误. 故选:AC .11.甲罐中有3个红球,4个黑球,乙罐中有2个红球,3个黑球,先从甲罐中随机取出一个球放入乙罐,以A 表示事件“由甲罐取出的球是红球”再从乙罐中随机取出一球,以B 表示事件“由乙罐取出的球是红球”,则( ) A .P(A)=37B .P(B)=1742 C .事件A 与事件B 相互独立D .P(B|A)=12解:由题意P(A)=37,故A 正确; P(B)=37×36+47×26=1742,故B 正确; P(AB)=37×36=314, 因为P(A)P(B)=37×1742=1798≠P(AB),所以事件A 与事件B 不相互独立,故C 错误; P(B|A)=P(AB)P(A)=31437=12,故D 正确.故选:ABD .12.已知偶函数f(x)=cos(2ωx +φ)−√3sin(2ωx +φ)(ω>0,|φ|<π2)的周期为π,将函数f (x )的图象向右平移π6个单位长度,得到函数y =g (x )的图象,下列结论正确的是( )A .g(x)=2cos(2x −π6)B .函数g (x )的图象关于直线x =π6对称C .不等式g (x )≥1的解集为{x|kπ≤x ≤kπ+π3,k ∈Z} D .g(x)=12f 2(x 2)在(0,π2)上有两个相异实根解:f(x)=cos(2ωx +φ)−√3sin(2ωx +φ)=2cos(2ωx +π3+φ), 则T =2π2|ω|=π,ω>0,解得,ω=1, 又f (x )为偶函数,所以π3+φ=kπ,k ∈Z ,即φ=−π3+kπ,k ∈Z , 又|φ|<π2,所以φ=−π3,所以f (x )=2cos2x ,其向右平移π6个单位长位得y =g(x)=2cos(2x −π3),A 错误;g(π6)=2cos(2×π6−π3)=2,所以函数g (x )的图象关于直线x =π6对称,B 正确; 令g(x)=2cos(2x −π3)≥1,解得kπ≤x ≤kπ+π3,k ∈Z ,C 正确:; g(x)=12f 2(x2),即2cos(2x −π3)=12(2cosx)2,整理得sin2x =√33,根据y =sin2x 的图象明显可得方程sin2x =√33在(0,π2)有两个相异实根,D 正确.故选:BCD .三、填空题:本题共4小题,每小题5分,共20分. 13.在(x 2√x )8的展开式中,含x 2项的系数为 1120 . 解:(x 2√x )8的展开式的通项公式为 T r +1=C 8r•(﹣2)r •x 8−3r2, 令8−3r 2=2,求得 r =4,可得含x 2项的系数为C 84×(﹣2)4=1120, 故答案为:1120.14.已知向量a →=(−2,sinα),b →=(cosα,1),且a →⊥b →,则sin2α3−2sin 2α=47.解:因为a →=(−2,sinα),b →=(cosα,1),且a →⊥b →, 所以a →⋅b →=−2cos α+sin α=0,所以tan α=2, 所以sin2α3−2sin 2α=2sinαcosα3(sin 2α+cos 2α)−2sin 2α=2sinαcosαsin 2α+3cos 2α=2tanαtan 2α+3=2×222+3=47.故答案为:47.15.若项数为n 的数列{a n },满足:a i =a n +1﹣i (i =1,2,3,…,n ),我们称其为n 项的“对称数列”.例如:数列1,2,2,1为4项的“对称数列”;数列1,2,3,2,1为5项的“对称数列”.设数列{c n }为2k +1项的“对称数列”,其中c 1,c 2,…,c k +1是公差为﹣2的等差数列,数列{c n }的最小项等于﹣10,记数列{c n }的前2k +1项和为S 2k +1,若S 2k +1=﹣50,则k 的值为 5或4. .解:由于c 1,c 2,⋯,c k +1是公差为﹣2的等差数列,故c 1,c 2,⋯,c k +1单调递减,所以c k +1=﹣10, 故c 1﹣2k =﹣10,则c 1=﹣10+2k ,c k =c k +1+2=﹣8.又S 2k +1=﹣50,故2(c 1+c 2+⋯+c k )+c k +1=﹣50,即c 1+c 2+⋯+c k =﹣20, 由等差数列前n 项和公式有k(−10+2k−8)2=−20,化简得k 2﹣9k +20=0,解得k =5或k =4. 故答案为:5或4.16.若对任意的x 1,x 2∈[1,π2],x 1<x 2,x 2sinx 1−x 1sinx 2x 1−x 2>a 恒成立,则实数a 的最大值为 ﹣1 .解:∵x 1<x 2,x 2sinx 1−x 1sinx 2x 1−x 2>a ,对任意的x 1,x 2∈[1,π2]恒成立,∴sinx 1x 1+a x 1<sinx 2x 2+a x 2对任意的x 1,x 2∈[1,π2]恒成立.令f(x)=sinx x +a x ,x ∈[1,π2], 即对任意的x 1,x 2∈[1,π2],当x 1<x 2时,f (x 1)<f (x 2), 则f(x)=sinx x +a x ,x ∈[1,π2]为单调递增函数, 即f ′(x)=xcosx−sinx−a x 2≥0在[1,π2]上恒成立,令g (x )=x cos x ﹣sin x ﹣a ,x ∈[1,π2], g ′(x )=cos x ﹣x sin x ﹣cos x =﹣x sin x <0, 即g (x )=x cos x ﹣sin x ﹣a 在[1,π2]上单调递减, 可得g(x)min =g(π2)=π2cos π2−sin π2−a ≥0, 即﹣1﹣a ≥0,解得a ≤﹣1. 即实数a 的最大值为﹣1. 故答案为:﹣1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .从下面①②③中选取两个作为条件,证明另外一个成立.①a 2﹣c 2=bc ;②b +bcosA =√3asinB ;③sinA =√3sinC . 注:若选择不同的组合分别解答,则按第一个解答计分. 证明:选①②当条件,③当结论 由②得sinB +sinBcosA =√3sinAsinB , 因为sin B >0,所以1+cosA =√3sinA ,即sin(A −π6)=12,0<A <π, 所以A =π3,则a 2=b 2+c 2﹣2bc cos A =b 2+c 2﹣bc ,由①知,a 2=c 2+bc ,代入可得,b =2c ,所以a =√3c , 即sinA =√3sinC ;选①③作条件,②当结论,由③得:a=√3c,因为a2=c2+bc,所以3c2=c2+bc,则b=2c,所以cosA=b2+c2−a22bc=12,0<A<π,所以A=π3,由③知,sinA=√3sinC,所以sinC=sinA√3=12,所以C=π6,所以B=π2,所以,b+bcosA=2c+c=3c=√3×√3c=√3a=√3asinB;选②③作条件,①当结论,由②得:sinB+sinBcosA=√3sinAsinB,而sin B>0,所以1+cosA=√3sinA,即√3sinA−cosA=1,根据辅助角公式可得,sin(A−π6)=12,所以,A=π3,由③,sinA=√3sinC,所以sinC=sinA3=12,得:C=π6,所以B=π2,所以sinA=√3sinC,sin B=2sin C,则a=√3c,b=2c,即:a2﹣c2=bc.18.(12分)已知函数f(x)=(1x+1)ln(1+x).(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)的单调增区间.解:(1)因为f(x)=(1x+1)ln(1+x),定义域为(﹣1,0)∪(0,+∞),所以f′(x)=−1x2ln(1+x)+(1x+1)11+x=x−ln(x+1)x2,又f′(1)=1﹣ln2,f(1)=2ln2,所以切线方程为y=(1﹣ln2)(x﹣1)+2ln2,即y=(1﹣ln2)x+3ln2﹣1.(2)函数f(x)定义域为(﹣1,0)∪(0,+∞),f′(x)=x−ln(x+1)x2,设g(x)=x﹣ln(x+1),x∈(﹣1,0)∪(0,+∞),所以g′(x)=1−1x+1=xx+1,当x∈(﹣1,0)时,g′(x)<0,函数单调递减,当x∈(0,+∞)时,g′(x)>0,函数单调递递增,所以g (x )min >g (0)=0,所以g (x )=x ﹣ln (x +1)>0恒成立, 所以f ′(x)=x−ln(x+1)x 2>0在(﹣1,0)∪(0,+∞)上恒成立, 所以函数f (x )在(﹣1,0)和(0,+∞)上单调递增, 所以函数f (x )单调增区间为(﹣1,0)和(0,+∞).19.(12分)第19届亚运会于2023年9月23日至10月8日在杭州举行,为弘扬奥林匹克和亚运精神,增强锻炼身体意识,某学校举办一场羽毛球比赛.已知羽毛球比赛的单打规则是:若发球方胜,则发球方得1分,且继续在下一回合发球;若接球方胜,则接球方得1分,且成为下一回合发球方.现甲、乙二人进行羽毛球单打比赛,若甲发球,甲得分的概率为35,乙得分的概率为25;若乙发球,乙得分的概率为45,甲得分的概率为15.每回合比赛的结果相互独立.经抽签决定,第一回合由甲发球.(1)求第三回合甲发球的概率;(2)设前三个回合中,甲的总得分为X ,求X 的分布列及期望.解:(1)若第三回合甲发球,则前三回合发球的顺序分别为甲甲甲,或者甲乙甲, 故第三回合甲发球的概率为35×35+(1−35)×15=1125.(2)设甲在第i 回合得分记为事件A i ,乙在第i 回合得分记为事件 B i ,i ∈{1,2,3}, 则P(A 1A 2A 3)=(35)3=27125,此时甲得3分, P(A 1A 2B 3)=(35)2×25=18125,此时甲得2分, P(A 1B 2A 3)=35×25×15=6125,此时甲得2分, P(A 1B 2B 3)=35×25×45=24125,此时甲得1分, P(B 1A 2A 3)=25×15×35=6125,此时甲得2分, P(B 1A 2B 3)=25×15×25=4125,此时甲得1分, P(B 1B 2A 3)=25×45×15=8125,此时甲得1分, P(B 1B 2B 3)=25×45×45=32125,此时甲得0分, 故X 的分布列为:故E(X)=0×32125+1×36125+2×30125+3×27125=176125. 20.(12分)已知公差为d 的等差数列{a n }和公比q >0的等比数列{b n }中,a 1=b 1=1,a 2+b 3=8,a 3+b 2=9.(1)求数{a n }列{b n }和的通项公式;(2)删去数列{b n }中的第a i 项(其中i =1,2,3,⋯),将剩余的项按从小到大的顺序排成新数列{c n },求数列{c n }的前n 项和S n .解:(1)由已知得{a 2+b 3=1+d +q 2=8a 3+b 2=1+2d +q =9,解得d =3,q =2,∴a n =3n −2,b n =2n−1;(2)由已知得数列{c n }:b 2,b 3,b 5,b 6,b 8,b 9,…, 当n 为偶数时,S n =(b 2+b 5+b 8+⋯+b 3(n 2)−1)+(b 3+b 6+b 9+⋯+b 3(n 2)) =2(1−8n 2)1−8+4(1−8n 2)1−8=6(8n2−1)7, 当n 为奇数(n ≥3)时,S n =b 2+(b 3+b 6+⋯+b3(n−12))+(b 5+b 8+b 11+⋯+b 3(n−12)+2) =2+4(1−8n−12)1−8+16(1−8n−12)1−8=20(8n−12−1)7+2,当n =1时,S 1=2,符合上式,故S n ={6(8n2−1)7,n 为偶数20(8n−12−1)7+2,n 为奇数.21.(12分)为传承和发扬淄博陶瓷,某陶瓷公司计划加大研发力度.为确定下一年度投资计划,需了解年研发资金x i (亿元)与年销售额y i (亿元)的关系.该公司对历史数据进行对比分析,建立了两个函数模型:①y =α+βx 2,②y =e λx +t ,其中α,β,λ,t 均为常数,e 为自然对数的底数.现该公司收集了近12年的年研发资金x i 和年销售额y i 的数据,i =1,2,⋯,12,并对这些数据作了初步处理,得到了散点图及一些统计量的值.令u i =x i 2(i =1,2,⋯,12),v i =lny i (i =1,2,⋯,12),经计算得如下数据:(1)设{u i }和{y i }的相关系数为r 1,{x i }和{v i }的相关系数为r 2,请从相关系数的角度,选择一个拟合程度更好的模型;(2)根据(1)的选择及表中数据,建立y 关于x 的回归方程(计算过程中保留到0.001,最后结果精确到0.01);(3)为进一步了解人们对新款式瓷器喜爱程度(分为“比较喜欢”和“不太喜欢”)是否跟年龄(分为“小于30岁”和“不小于30岁”)有关,公司从该地区随机抽取600人进行调查,调查数据如表:根据小概率α=0.001的独立性检验,分析该地区对新款式瓷器喜爱程度是否与年龄有关. 附:①相关系数r =∑(x i −x)(y −y)ni=1√∑(x i −x)2∑ n i=1(y i −y)2i=1,回归直线y =a +bx 中斜率和截距的最小二乘估计公式分别为:b =∑x i y i −nxy ni=1∑x i 2−x2ni=1=∑(x i−x)(y i −y)ni=1∑n i=1(x i −x)2,a =y −b x ;②χ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n =a +b +c +d ;③参考数据:308=4×77.解:(1)r 1=∑(u i −u)(y −y)12i=1√∑(u i −u)2i=1∑(y i −y)2i=1=3125000×200=2150025000=4350=0.86,r 2=∑(x i −x)(v i −v)12i=1√∑(x i −x)2i=1∑(v i −v)2i=1=14√770×0.308=1477×0.2=1011≈0.91,则|r1|<|r2|,因此从相关系数的角度,模型y=eλx+t的拟合程度更好.(2)先建立v关于x的线性回归方程,由y=eλx+t,得lny=t+λx,即v=t+λx,由于λ=∑(x i−x)(v i−v)12i=1∑(x i−x)212i=1=14770≈0.018,t=v−λx=4.20−0.018×20=3.84,所以v关于x的线性回归方程为v=0.02x+3.84,所以lny=0.02x+3.84,则y=e0.02x+3.84.(3)零假设为H0:对新款式瓷器喜爱程度与年龄无关,χ2=(200×150−100×150)2350×250×300×300≈0.029<10.828,根据小概率α=0.001独立性检验,没有充分证据推断H0不成立,即H0成立,该地区对新款式瓷器喜爱程度与年龄无关.22.(12分)已知函数f(x)=x2(lnx﹣a),a为实数.(1)求函数f(x)的单调区间;(2)若函数f(x)在x=e处取得极值,f′(x)是函数f(x)的导函数,且f′(x1)=f′(x2),x1<x2,证明:2<x1+x2<e.解:(1)函数f(x)=x2(lnx﹣a)的定义域为(0,+∞),f′(x)=2x(lnx﹣a)+x=x(2lnx﹣2a+1),令f′(x)=0,所以lnx=2a−12,得x=e2a−12,当x∈(0,e 2a−12),f′(x)<0,当x∈(e 2a−12,+∞),f′(x)>0,所以函数f(x)递减区间为(0,e 2a−12),递增区间为(e2a−12,+∞).(2)证明:因为函数f(x)在x=e处取得极值,所以x=e 2a−12=e,得a=32,所以f(x)=x2(lnx−32),f′(x)=x(2lnx﹣2)=2x(lnx﹣1),令g(x)=2x(lnx﹣1),g′(x)=2lnx,因为当x=1时,g′(x)=0,所以当x∈(0,1),g′(x)<0,当x∈(1,+∞),g′(x)>0,所以函数g(x)在(0,1)单调递减,在(1,+∞)单调递增,又当x∈(0,e)时,g(x)=2x(lnx﹣1)<0,当x∈(e,+∞)时,g(x)=2x(lnx﹣1)>0,所以0<x1<1<x2<e.①先证x1+x2>2,需证x2>2﹣x1,因为x2>1,2﹣x1>1,下面证明g(x1)=g(x2)>g(2﹣x1),设t(x)=g(2﹣x)﹣g(x),x∈(0,1),则f′(x)=﹣g′(2﹣x)﹣g′(x),t′(x)=﹣2ln(2﹣x)﹣2lnx=﹣2ln[(2﹣x)x]>0,所以t(x)在(0,1)上为增函数,所以t(x)<t(1)=g(1)﹣g(1)=0,所以t(x1)=g(2﹣x1)﹣g(x1)<0,则g(2﹣x1)<g(x1)=g(x2),又因为g(x)在(1,+∞)单调递增,所以2﹣x1<x2,即得x1+x2>2,②下面证明:x1+x2<e,因为x1∈(0,1),g(x1)=2x1(lnx1﹣1)<﹣2x1,当x∈(1,e)时,设h(x)=g(x)﹣(2x﹣2e)=2xlnx﹣4x+2e,因为在(1,e)上h′(x)=2lnx﹣2<0,所以h(x)在(1,e)上单调递减,所以h(x)>h(e)=2e﹣4e+2e=0,所以h(x2)>0,g(x2)>2x2﹣2e,因为g(x1)=g(x2),所以2x2﹣2e<g(x2)=g(x1)<﹣2x1,即x1+x2<e,所以2<x1+x2<e.。

河北省保定市2024-2025学年高三上学期10月期中考试数学试题(含答案)

河北省保定市2024-2025学年高三上学期10月期中考试数学试题(含答案)

2024年高三摸底考数学试题本试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题卡上.将条形码横贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和容题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.1.已知,则()A.B. C. D.2.已知是的共轭复数,则()A.0 B. C.2D.3.已知向量,且,则()A.1B.2C.D.04.若一个球的体积和表面积数值相等,则该球的半径的数值为()A.2B.3C.45.设函数为偶函数.当满足时,|有最小值2,则和的值分别是()A. B.C. D.6.若中,角所对的边分别为平分交于,且,则(){}1,{5,}A xx B x x x ==<∈N ∣∣…A B ⋂={}0,1{}1[]0,1(]0,1()21i ,1i z z -=+z z =2i 2-()()1,1,2,a b λ==- ()0b λ=> a b ⋅= 1-r ()()πcos 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭12,x x ()()122f x f x -=12x x -∣ωϕπ,0ωϕ==ππ,2ωϕ==ππ,22ωϕ==π,02ωϕ==ABC ,,A B C ,,,4,16,a b c a b CD ==ACB ∠AB D 4CD =BD =B.3C.D.7.已知且,则的最小值是()A.12 B.16 C.15 D.148.已知函数若关于的方程至少有5个不等的实数解,则的取值范围是()A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.函数的图象经过()A.第一象限 B.第二象限C.第三象限D.第四象限10.若是平面的一条斜线,,直线平面且直线,记直线与平面所成的角为,则下列说法正确的是()A.与是一对异面直线B.若点和分别为直线上和平面内异于点的点,则C.若和分别是直线与上的动点,则满足且的直线不唯一D.过直线有且只有唯一平面与直线平行11.若函数存在两个极值点,下列说法正确的是()A.时满足条件B.不存在实数使得均为正整数C.当时,D.对任意正整数,均存在对应的,使得三、填空题:本题共3小题,每小题5分,共计15分.12.已知曲线在处的切线斜率为4,则实数的值为__________.13.函数的最小正周期是__________,在上的单调递减区间是__________.0ab >21a b +=221a b ab++()()1,11,22,17,x x f x f x x ⎧--<⎪=⎨-⎪⎩………x ()f x a =a []1,0-[]2,0-[]4,0-[]8,0-()11x y a a a=->αl O α⋂=a ⊂αO ∉a αθa A B αO AOB ∠θ…M N a MN l ⊥MN a ⊥a ()21ln 2f x x x mx x =--()1221,x x x x >1m =m 12,x x 321x x …m n 12,x x ()222112ln x x n x x -=13e 1x y ax -=++1x =a ()2cos sin cos 1f x x x x =++()f x ()0,π14.已知递增数列共有项(为定值)且各项均不为零,末项.若从数列中任取两项和,当时,仍是数列中的项,则数列的通项公式__________(用含和的式子表示.)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知向量.(1)若,且,求的值;(2)设函数,求函数的值域.16.(15分)已知直三棱柱中,,且,点分别为线段和的中点.(1)证明:平面;(2)求平面与平面的夹角.17.(15分)在中,角的对边分别为.(1)求角;(2)若,求的值;(3)在(2)的条件下,若边,点为线段上的动点,点为线段上的动点,且线段平分的面积,求线段长度的最小值.18.(17分)已知函数.{}n a m *,m m ∈N 1m a ={}n a i a j a i j <j i a a -{}n a {}n a n a =m n ()3cos ,1,sin ,2a x b x ⎛⎫==- ⎪⎝⎭ a ∥b ()0,πx ∈sin cos x x -()()π2,0,4f x a b a x ⎡⎤=+⋅∈⎢⎥⎣⎦ ()f x 111ABC A B C -12AB BC BB ===AB BC ⊥,E F AC 1CC 1A E ⊥BEF 1ABC BEF ABC ,,A B C 2,,,cos cos b a c a b c B C-=B 2222b c ac =+cos C 2c =D AB E BC DE ABC DE ()()e sin 2,2cos x f x x x g x x =+-=-(1)已知直线是曲线的切线,求实数a 的值;(2)求函数的单调区间;(3)求证:恒成立.19.(17分)已知数列,其前项和为,对任意正整数恒成立,且.(1)证明:数列为等比数列,并求实数的值;(2)若,数列前项和为,求证:;(3)当时,设集合,集合中元素的个数记为,求数列的通项公式.0x y a -+=()[],0,πy g x x =∈()f x ()()f x g x …{}n a n n S ,2n n n S a μ=-1212a a +={}n a μ21log n n b a =()n b n n T 2ln 2n n T +>1n …{}123232,1n n n i j i j B a a a a i j ++=+⋅<+<⋅<∣…*,i j ∈N n B n c {}n c2024年高三数学摸底试题参考答案一、选择题:(每小题5分,共40分)1.A2.B3.C4.B5.D6.C7.D8.B8.解析:由题意的图象如图所示,问题转化为函数的图象与直线的至少有5个公共点,故的范围是B 正确.二、多选题:(每小题6分,共18分)9.ABC11.解析:当时在上单调递增.此时至多有一个极值点,不符合题意.当时,若;若.在上单调递增,在上单调递减.又当时.当时,故只需A 错误.此时且由于是的两个零点且.则若为正整数则.此时.()f x ()f x y a =a []2,0.-()()()()1ln 0;0mx f x x mx x f x x x'-=->='>'0m ≤()()0f x f x ≥∴'''()0,∞+()f x 0m >()10,,0x f x m ⎛⎫⎪⎭''∈> ⎝()1,,0x f x m ∞⎛⎫∈+⎭''< ⎪⎝()f x ∴'10,m ⎛⎫ ⎪⎝⎭1,m ∞⎛⎫+ ⎪⎝⎭0x +→()f x ∞'→-x ∞→+()f x ∞'→-1110ln 100.e f m m m '⎛⎫>⇒->⇒<< ⎪⎝⎭1e m>()()e 1e 0,10f m f m '=->-'=<12,x x ()f x '12x x <121e 1e x x m <<⎧⎪⎨>>⎪⎩1x 12x =()()2ln22ln2242ln242ln22ln2042f m m f m x '=-⇒=⇒='-=-=⇒=所以存在使得均为正整数,B 错误.由于和是函数与直线交点的横坐标.当时恰有.所以当时,必有当(注:由图象与直线交点变化情况可知m 越小,越小,越大.m 越大,越大,越小)所以当时,m正确..由于当时此时,当时此时故的取值范围是,即对任意正整数均存在使得.D 正确综上可知:CD 正确.三、填空题:(每个小题5分,共15分)12.113.;(开闭区间均给分)14.14.解析:由题意:,若则.而是递增数列中的项,这与是ln22m =12x x 111212212ln ln ln ln x mx x x m x x mx x x =⎧⇒==⇒⎨=⎩2x ()ln x g x x =y m ===m =12x x ==321x x =0m <≤321x x ≥m >321x x <ln x y x=y m =1x 2x 1x 2x 321x x ≥()()()()()22212121212121121212ln ln ln x x x x x x x x x x x x x x x x mx mx m+-+---===++0m +→21x x ∞-→+21x x m∞-→+1e m →210x x +-→210x x m-→()222112ln x x x x -()0,∞+n 12,x x ()222112ln x x n x x -=ππ5π,88⎡⎤⎢⎥⎣⎦n m 10a ≠10a <11m m a a a ->=1m a a -{}n a 1m a =数列的最大项矛盾.故必有.因为数列是单调递增数列,所以有.从而有且它们均为数列中的项.因此由上可知所以数列是以为首项,以为公差的等差数列.所以四、解答题:(本题共5小题,共77分)15.(13分)解:(1),,又,,;(2)由题意:10a >{}n a 12301m a a a a <<<<<=2131411m m a a a a a a a a a -<-<-<<-< {}n a 121212a a a a a =-⇒=23131213a a a a a a a =-⇒=+=34143114a a a a a a a =-⇒=+=.⋯⋯⋯11111m m m m a a a a a a ma --=-⇒=+=11a m ={}n a 11a m=1m n n a m=a ∥3,cos sin 2b x x ∴-= 3tan 2x ∴=-()0,πx ∈ sin x x ∴==sin cos x x ∴-=1cos sin ,2a b x x ⎛⎫+=+- ⎪⎝⎭ ()()()2122cos sin ,cos ,12cos 2sin cos 12f x a b a x x x x x x ⎛⎫∴=+⋅=+-⋅=+- ⎪⎝⎭ πsin2cos224x x x ⎛⎫=+=+ ⎪⎝⎭,的值域是16.(15分)(1)证明平面平面,又,又平面又平面.又即.又平面.(2)解:如图所示,以点为原点,为轴,为轴建立空间直角坐标系,易得设平面的法向量,则,取,则法向量.由(1)可知平面的法向量.平面与平面的夹角为.πππ3π0,,2,4444x x ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦ ()∴f x ⎡⎣1A A ⊥ ,ABC BE ⊂1,ABC A A BE ∴⊥,.AB BC AE EC BE AC ==∴⊥ 1A A AC A BE ⋂=∴⊥ 11ACC A 1A E ⊂ 111,A ACC A E BE ∴⊥1tan tan A EA EFC ∠∠== 11ππ22A EA EFC EFC FEC A EA FEC ∠∠∠∠∠∠∴=+=∴+= 1A E EF ⊥1.EF BE E A E ⋂=∴⊥BEFB BA x BC y 11(2,0,0),(0,0,0),(0,2,2),(2,0,2),(1,1,0)A B C A E ()()12,0,0,0,2,2,BA BC == 1ABC (),,n x y z = 120,220n BA x n BC y z ⋅==⋅=+= 1y =()0,1,1n =-()11,1,2A E =-- BEF 111cos ,||A E n A E n A E n ⋅∴<>===⋅ 1ABC BEF π617.(15分)解:(1),,,(2),又,(3)若边由(1)(2)可知,,令,则,又由余弦定理得:(当时等号成立).18.(17分)解:(1),,解得切点为,2,sin cos 2sin cos cos sin cos cos b a c B C A B B C B C -=∴=- sin cos cos sin 2sin cos B C B C A B∴+=1sin 2sin cos ,cos 2A A B B ∴=∴=()π0,π,3B B ∈∴=222π1,232B b a c ac =∴=+-⋅ 2222b c ac =+ 233,,22ac a a c b ∴=∴=∴=222cos 2a b c C ab +-∴===2c =π3,3a b B ===1sin 2ABC BDE S ac B S ∴==∴= ,BD m BE n ==132BDE S mn ==∴= 2221232DE m n mn mn =+-≥=m n ==DE ∴()[]sin ,0,πg x x x =∈' ()sin 1g x x ='∴=π,2x =∴π,22⎛⎫ ⎪⎝⎭ππ20,222a a ∴-+=∴=-(2),当时,单调递减当时,,单调递增,单调递递增.综上所述,在上单调递减,在上单调递增.(3)证明:恒成立恒成立恒成立.令,则令则单调递增,又,当时,,即单调递减;当时,,即单调递增;恒成立.19.(17分)解:(1)令可得,即.令可得,即,所以又.,两式相减可得,数列为首项为4,公比为2得等比数列.(2)证明:由(1)可知,所以.()e cos 2xf x x =+'- (],0x ∞∈-()()e 1,cos 1,0,xx f x f x ≤'≤≤∴[)0,x ∞∈+()e sin ,e 1,sin 1x xf x x x =-≥'≤'()()0,f x f x ≥'∴''∴()()()00,f x f f x ='≥'∴()f x (],0∞-[)0,∞+()()f xg x ≥e sin 2cos 20x x x x ⇔+-+-≥sin cos 2210e xx x x +--⇔+≥()sin cos 221e x x x x h x +--=+()()()()cos sin 2sin cos 222sin e e x x x x x x x x x h x ---+'---==()sin m x x x =-()()1cos 0,m x x m x =-≥∴'()00m = ∴(],0x ∞∈-()0m x ≤()()0,h x h x '≤[)0,x ∞∈+()0m x ≥()()0,h x h x '≥()()()()00,h x h f x g x ∴≥=∴≥1n =112S a μ=-1a μ=2n =222S a μ=-1222a a a μ+=-22a μ=1212,4a a μ+=∴= 112424n n n n S a S a --=-⎧⎨=-⎩ 1122,2n n n n n a a a a a --=-∴=∴{}n a 12n n a +=211log 1n n b a n ==+要证成立,只需证,即令,当时,单调递增,(3)时,集合,即3中元素个数,等价于满足的不同解,如果.则.盾!如果j ,则,矛盾!,又,,即,共个不同解,所以.11122,ln ln .121n n n i i n i T i i ==++==++∑∑ ∴2ln 2n n T +>12ln 11n n n +>++11ln 111n n ⎛⎫>+ ⎪++⎝⎭()()()()1ln 1,10,0,11x f x x x f x x x x ∞=-+==>'-∈+++∴()0,x ∞∈+()f x ()()()1ln 100,01f x x x f f n ⎛⎫=-+>=∴> ⎪+⎝⎭112ln 1,ln 112n n T n n +⎛⎫∴>+∴> ⎪++⎝⎭1n ≥{}123232n n n i j i j B a a a a ++=+⋅<+<⋅∣1*22232,1,,,n i j n n i j i j B +⋅<+<⋅≤<∈N 1322232n i j n +⋅<+<⋅(),i j 2j n <+1122222232i j i n n n n +++++=⋅……2n >+31222232i j i n n +++≥+>⋅2j n ∴=+()12223224232220n n n n n ++-⋅=+⋅-⋅=+> 1222212322222222232n n n n n n n n ++++++∴⋅<+<+<<+<+=⋅ 1,2,3,,i n = n (),i j ()1n c n n =≥。

2023-2024学年河北省保定市部分高中高三(上)期中数学试卷【答案版】

2023-2024学年河北省保定市部分高中高三(上)期中数学试卷【答案版】

2023-2024学年河北省保定市部分高中高三(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合 1.已知集合A ={x |x 2﹣2x ≤0},B ={x |0<x <2,x ∈N },则A ∩B =( ) A .[0,2)B .(0,2)C .{0,1}D .{1}2.已知复数z 满足z (1+i )=2﹣2i ,则z =( ) A .﹣2B .﹣2iC .2iD .23.已知单位向量a →,b →满足|a →+2b →|=2,则a →⋅b →=( ) A .1B .14C .−14D .124.已知m ,n ,l 是三条不同的直线,α,β是两个不同的平面,且α∩β=l ,m ⊂α,n ⊂β,下列命题正确的是( )A .若m ⊥n ,则α⊥βB .若m ∥n ,则m ∥lC .若m ∥β,n ⊥l ,则m ∥nD .若m ⊥l ,m ⊥n ,则α⊥β5.已知cos(α+π8)+2cos(α−3π8)=0,则tan(2α+π4)=( )A .12B .43C .﹣1D .−436.已知a >0,且10ab +a 2=1,则a +b 的最小值为( ) A .1B .2C .35D .2√11117.已知数列{a n }的前n 项和为S n ,且a n =n+22n ,若S n ≤k 恒成立,则k 的最小值是( ) A .72B .4C .92D .58.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹•布劳威尔,简单的讲就是对于满足一定条件的连续函数f (x ),存在一个实数x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,x 0为函数的不动点.设函数f (x )=e x ﹣1+e 1﹣x +x 2﹣x +a ,a ∈R .若f (x )在区间(0,3)上存在不动点,则a 的取值范围是( ) A .(﹣e 2﹣e ﹣2﹣3,﹣1]B .[﹣e 2﹣e ﹣2,﹣1]C .[﹣e 2﹣e ﹣2﹣7,﹣e ﹣e ﹣1]D .(﹣e 2﹣e ﹣2﹣5,﹣e ﹣e ﹣1]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要 9.已知函数f (x )=(x 2+a 2)(x +a ),下列结论正确的是( )A .若f (x )为奇函数,则a =0B .f (x )的图象关于点(﹣a ,0)中心对称C .f (x )没有极值点D .∀x ∈(﹣a ,+∞),f (x )>010.已知圆C 1:x 2+y 2−2x +2y −7=0,圆C 2:x 2+y 2+2x −4y −44=0,则( ) A .直线C 1C 2与直线4x +6y =0垂直 B .C 1与C 2没有公共点 C .C 1与C 2的位置关系为外离D .若P ,Q 分别为圆C 1与圆C 2上的动点,则|PQ |的最大值为10+√13 11.已知函数f (x )的定义域为(﹣∞,0)∪(0,+∞),f(xy)=f(x)y +f(y)x,则( ) A .f (1)=0 B .f (2)=1 C .f (x )为奇函数D .f (x )没有极值点12.如图,在一个有盖的圆锥容器内放入两个球体,已知该圆锥容器的底面圆直径和母线长都是√3,则( )A .这两个球体的半径之和的最大值为3+√32B .这两个球体的半径之和的最大值为23C .这两个球体的表面积之和的最大值为10π9D .这两个球体的表面积之和的最大值为(6+3√3)π 三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)={2x ,x <02−x ,x ≥0,则f (f (﹣1))= .14.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AB ⊥BC ,AB =BC =AA 1=2,D 是CC 1的中点,则异面直线AC 1与B 1D 所成角的余弦值为 .15.已知函数f(x)=sin(ωx +π3),f (x )的图象关于直线x =π3对称,且f (x )在(π36,π9)上单调,则ω的最大值为 .16.已知函数f (x )=ln |x |+|lnx 2|,若函数g (x )=f (x )﹣m 有4个零点,且其4个零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4)成等差数列,则m = .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知A =2π3,a =√13,b =3c . (1)求c 的值; (2)求sin B 的值.18.(12分)已知数列{a n }满足a 1=1,1a n+1−1a n=2n +1.(1)求{a n }的通项公式; (2)若b n =2a n2na n +1,求数列{b n }的前n 项和T n .19.(12分)已知函数f (x )=2x sin x ﹣x 2cos x .(1)求曲线y =f (x )在点(π,f (π))处的切线方程; (2)求f (x )在[0,2π]上的最值.20.(12分)如图,在五面体ABCDEF 中,四边形ABCD 为矩形,平面ADE ⊥平面ABCD ,且AB =4,正三角形ADE 的边长为2. (1)证明:EF ∥平面ABCD ;(2)若EF <AB ,且直线AE 与平面BCF 所成角的正弦值为√217,求EF 的值.21.(12分)圆x 2+y 2=a 2+b 2称为椭圆x 2a 2+y 2b 2=1(a >b >0)的蒙日圆.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为√22,C的蒙日圆方程为x2+y2=3.(1)求C的方程;(2)若F为C的左焦点,过C上的一点A作C的切线l1,l1与C的蒙日圆交于P,Q两点,过F作直线l2与C交于M,N两点,且l1∥l2,证明:|PQ|2+8√2|MN|是定值.22.(12分)(1)证明:当x>0时,lnx≤x﹣1<e x﹣2.(2)已知函数f(x)=ax2﹣lnx﹣x﹣lna,试讨论f(x)的零点个数.2023-2024学年河北省保定市部分高中高三(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合 1.已知集合A ={x |x 2﹣2x ≤0},B ={x |0<x <2,x ∈N },则A ∩B =( ) A .[0,2)B .(0,2)C .{0,1}D .{1}解:由x 2﹣2x ≤0⇒0≤x ≤2即A ={x |0≤x ≤2}, 又因为B ={x |0<x <2,x ∈N }={1},所以A ∩B ={1}. 故选:D .2.已知复数z 满足z (1+i )=2﹣2i ,则z =( ) A .﹣2B .﹣2iC .2iD .2解:由题意可知:z =2−2i 1+i =(2−2i)(1−i)2=(1−i)2=−2i . 故选:B .3.已知单位向量a →,b →满足|a →+2b →|=2,则a →⋅b →=( ) A .1B .14C .−14D .12解:已知单位向量a →,b →满足|a →+2b →|=2,则|a →+2b →|2=a →2+4b →2+4a →⋅b →=4,则a →⋅b →=−14.故选:C .4.已知m ,n ,l 是三条不同的直线,α,β是两个不同的平面,且α∩β=l ,m ⊂α,n ⊂β,下列命题正确的是( )A .若m ⊥n ,则α⊥βB .若m ∥n ,则m ∥lC .若m ∥β,n ⊥l ,则m ∥nD .若m ⊥l ,m ⊥n ,则α⊥β解:根据题意,依次分析选项:对于A ,若m ⊥n ,则α,β不一定垂直,A 错误;对于B ,若m ∥n ,必有m ∥β,由直线与平面平行的性质,可得m ∥l ,B 正确; 对于C ,若m ∥β,必有m ∥l ,而n ⊥l ,必有m ⊥n ,C 错误; 对于D ,若m ⊥l ,m ⊥n ,α,β不一定垂直,D 错误. 故选:B .5.已知cos(α+π8)+2cos(α−3π8)=0,则tan(2α+π4)=( )A.12B.43C.﹣1D.−43解:因为cos(α+π8)+2cos(α−3π8)=0,所以cos(α+π8)+2cos(α+π8−π2)=0,即cos(α+π8)+2sin(α+π8)=0,所以tan(α+π8)=sin(α+π8)cos(α+π8)=−12,所以tan(2α+π4)=2tan(α+π8)1−tan2(α+π8)=2×(−12)1−(−12)2=−43.故选:D.6.已知a>0,且10ab+a2=1,则a+b的最小值为()A.1B.2C.35D.2√1111解:由10ab+a2=1得b=1−a2 10a,故a+b=a+1−a210a=9a10+110a≥2√9a10⋅110a=35,当且仅当a=13,b=415时,等号成立.故选:C.7.已知数列{a n}的前n项和为S n,且a n=n+22n,若S n≤k恒成立,则k的最小值是()A.72B.4C.92D.5解:S n=32+422+523+⋯+n+22n,12S n=322+423+524+⋯+n+22n+1,两式相减可得:1 2S n=32+122+123+124+⋯+12n−n+22n+1,=32+122(1−12n−1)1−12−n+22n+1=2−n+42n+1,∴S n=4−n+42n,∵n+42n>0,∴4−n+42n<4,即S n<4恒成立,故k≥4.故选:B.8.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹•布劳威尔,简单的讲就是对于满足一定条件的连续函数f(x),存在一个实数x0,使得f(x0)=x0,那么我们称该函数为“不动点”函数,x0为函数的不动点.设函数f(x)=e x﹣1+e1﹣x+x2﹣x+a,a∈R.若f(x)在区间(0,3)上存在不动点,则a的取值范围是()A.(﹣e2﹣e﹣2﹣3,﹣1]B.[﹣e2﹣e﹣2,﹣1]C.[﹣e2﹣e﹣2﹣7,﹣e﹣e﹣1]D.(﹣e2﹣e﹣2﹣5,﹣e﹣e﹣1]解:由题意可得,f(x)=e x﹣1+e1﹣x+x2﹣x+a=x在(0,3)上有解,即e x﹣1+e1﹣x+x2﹣2x+1=1﹣a有解,令x﹣1=t,t∈(﹣1,2),则﹣a+1=e t+e﹣t+t2,令函数g(t)=e t+e﹣t+t2,g′(t)=e t﹣e﹣t+2t,当t∈(0,2)时,g′(t)>0,所以g(t)在(0,2)上单调递增,g(﹣t)=e﹣t+e t+(﹣t)2=e t+e﹣t+t2=g(t),所以g(t)为偶函数,所以g(t)在(﹣1,0)上单调递减.g(t)min=g(0)=2,g(t)<g(2)=e2+e﹣2+4,故﹣a+1∈[2,e2+e﹣2+4),a∈(﹣e2﹣e﹣2﹣3,﹣1].故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要9.已知函数f(x)=(x2+a2)(x+a),下列结论正确的是()A.若f(x)为奇函数,则a=0B.f(x)的图象关于点(﹣a,0)中心对称C.f(x)没有极值点D.∀x∈(﹣a,+∞),f(x)>0解:对于A选项,函数f(x)=(x2+a2)(x+a)的定义域为R,若f(x)为奇函数,则f(0)=a2•a=a3=0,解得a=0,此时,f(x)=x3为奇函数,合乎题意,A对;对于B选项,f(0)=a3,f(﹣2a)=5a2•(﹣a)=﹣5a3,当a≠0时,f(0)+f(﹣2a)=﹣4a3≠0,此时,函数f(x)的图象不关于点(﹣a,0)对称,对于C选项,f′(x)=2x(x+a)+x2+a2=3x2+2ax+a2=3(x+a3)2+2a23≥0,所以,函数f(x)在R上为增函数,函数f(x)没有极值点,C对;对于D选项,因为函数f(x)在R上为增函数,且f(﹣a)=0,所以,∀x∈(﹣a,+∞),f(x)>f(﹣a)=0,D对.故选:ACD.10.已知圆C1:x2+y2−2x+2y−7=0,圆C2:x2+y2+2x−4y−44=0,则()A.直线C1C2与直线4x+6y=0垂直B .C 1与C 2没有公共点 C .C 1与C 2的位置关系为外离D .若P ,Q 分别为圆C 1与圆C 2上的动点,则|PQ |的最大值为10+√13解:由题意可知圆C 1:(x −1)2+(y +1)2=9,则圆心C 1(1,﹣1),半径r 1=3, 圆C 2:(x +1)2+(y −2)2=49,则圆心C 2(﹣1,2),半径r 2=7, 则k C 1C 2=−1−21−(−1)=−32,直线4x +6y =0的斜率为−23,因为−32•(−23)≠﹣1,所以两条直线不垂直,故A 不正确;因为|C 1C 2|=√22+32=√13<7−3=4,所以圆C 1与圆C 2的位置关系为内含,故B 正确,C 不正确; 对于D ,|PQ |的最大值为|C 1C 2|+r 1+r 2=10+√13,故D 正确. 故选:BD .11.已知函数f (x )的定义域为(﹣∞,0)∪(0,+∞),f(xy)=f(x)y +f(y)x,则( ) A .f (1)=0 B .f (2)=1 C .f (x )为奇函数D .f (x )没有极值点解:令x =y =1,得f (1)=0,A 正确; 令x =2,y =1,得f(2)=f(2)1+f(1)2=f(2)+0, 故f (2)的值不确定,B 错误; 令x =y =﹣1,得f (﹣1)=0, 令y =﹣1,得f(−x)=−f(x)+f(−1)x=−f(x),则f (x )为奇函数,C 正确; 由f(xy)=f(x)y +f(y)x,可得xyf (xy )=xf (x )+yf (y ), 根据函数结构举例,当x >0时,可设xf (x )=lnx , 则f(x)={lnxx ,x >0ln(−x)x,x <0, 当x >0时,f(x)=lnx x ,f ′(x)=1−lnx x 2, 当x ∈(0,e )时,f ′(x )>0,当x ∈(e ,+∞)时,f ′(x )<0, 所以f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减, 此时f (x )有极值点,D 错误. 故选:AC .12.如图,在一个有盖的圆锥容器内放入两个球体,已知该圆锥容器的底面圆直径和母线长都是√3,则()A.这两个球体的半径之和的最大值为3+√3 2B.这两个球体的半径之和的最大值为2 3C.这两个球体的表面积之和的最大值为10π9D.这两个球体的表面积之和的最大值为(6+3√3)π解:当这两个球体的半径之和取最大值时,有一个球体和圆锥的底面相切,过底面圆的直径作截面,如图所示.过点O作OF⊥AB,垂足为F,过点O'作O'E⊥AB垂足为E,过点O'作O'D⊥OF,垂足为D.设圆O的半径为R,圆O'的半径为r,R的最大值为13√(√3)2−(√32)2=13×32=12,且R取最大值时,r取得最小值,最小值为r=13(23×32−12)=16,∴R∈[16,12],r∈[16,12].|OD|=R﹣r,|OO'|=R+r,|O′D|=|EF|=|AB|−|AF|−|BE|=√3−√3R−√3r.∵|OD|2+|O'D|2=|OO'|2,∴(R−r)2+(√3−√3R−√3r)2=(R+r)2,①整理得R=1−r3−23√3r−2r2.令函数f(r)=R+r=1−r3−23√3r−2r2+r=1+2r3−23√3r−2r2,r∈[16,12],则f ′(r)=√23√3r−2r2.令函数g(r)=2√3r −2r 2−3+4r ,g ′(r)=1√3r−2r 2+4>0,∴g (r )是增函数.又∵g(16)<0,g(12)>0,∴∃r 0∈[16,12],g (r 0)=0,∴当r ∈[16,r 0]时,g (r )<0,f ′(r )<0;当r ∈[r 0,12]时,g (r )>0,f ′(r )>0,∴f (r )在[16,r 0]上单调递减,在[r 0,12]上单调递增.∵f(16)=f(12)=23,∴f (r )的最大值为23,即这两个球体的半径之和的最大值为23;由①可得R 2+r 2=−12[(R +r)2−6(R +r)+3],这两个球体的表面积之和为4π(R 2+r 2)=﹣2π[(R +r )2﹣6(R +r )+3].令x =R +r ≤23,函数y =﹣2π(x 2﹣6x +3)在(−∞,23]上单调递增,∴y max =−2π×[(23)2−6×23+3]=10π9,即这两个球体的表面积之和的最大值为10π9.故选:BC .三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)={2x ,x <02−x ,x ≥0,则f (f (﹣1))= 32 .解:由题意得f(−1)=12,f(f(−1))=f(12)=2−12=32.故答案为:32.14.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AB ⊥BC ,AB =BC =AA 1=2,D 是CC 1的中点,则异面直线AC 1与B 1D 所成角的余弦值为√1515.解:取AC 中点E ,连接EB ,ED ,EB 1,∵D 是CC 1的中点,所以DE ∥AC 1,则∠EDB 1为异面直线夹角或其补角,又AB =BC =AA 1=2,AB ⊥BC ,三棱柱ABC ﹣A 1B 1C 1为直三棱柱,所以B 1D =√5,DE =√3,B 1E =√6,cos ∠EDB 1=DE 2+DB 12−B 1E 22DE⋅DB 1=3+5−62√3×√5=√1515, 故异面直线AC 1与B 1D 所成角的余弦值为√1515. 故答案为:√1515. 15.已知函数f(x)=sin(ωx +π3),f (x )的图象关于直线x =π3对称,且f (x )在(π36,π9)上单调,则ω的最大值为 192. 解:因为f (x )的图象关于直线x =π3对称, 所以πω3+π3=π2+kπ,k ∈Z ,解得ω=12+3k ,k ∈Z , 因为f (x )在(π36,π9)上单调,所以π9−π36=π12≤T 2, 即T =2π|ω|≥π6,解得|ω|≤12, 当ω=192时,f(x)=sin(19x 2+π3), 当x ∈(π36,π9)时,19x 2+π3∈(43π72,25π18), 所以当x ∈(π36,π9)时,f (x )单调递减, 所以ω的最大值为192. 故答案为:192. 16.已知函数f (x )=ln |x |+|lnx 2|,若函数g (x )=f (x )﹣m 有4个零点,且其4个零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4)成等差数列,则m = 34ln3 .解:f(x)=ln|x|+|lnx 2|={ 3lnx ,x ≥1,−lnx ,0<x <1,−ln(−x),−1<x <0,3ln(−x),x ≤−1.因为f (﹣x )=ln |﹣x |+|ln (﹣x )2|=ln |x |+|lnx 2|=f (x ),所以f (x )是偶函数,如图:所以x 1=﹣x 4,x 2=﹣x 3.因为x 1,x 2,x 3,x 4成等差数列,所以x 3﹣x 2=x 4﹣x 3,则3x 3=x 4.因为f (x 3)=f (x 4)=m ,所以﹣lnx 3=3lnx 4=3ln (3x 3),可得x 3−1=(3x 3)3⇒x 34=3﹣3, 所以x 3=3−34,m =f(x 3)=34ln3. 故答案为:34ln3. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知A =2π3,a =√13,b =3c . (1)求c 的值;(2)求sin B 的值.解:(1)因为a 2=b 2+c 2﹣2bc cos A ,所以13=b 2+c 2+bc ,又b =3c ,所以13=(3c )2+c 2+3c 2,解得c =1;(2)由(1)可得b =3c =3,因为b sinB =a sinA ,所以3sinB =√13sin 2π3, 解得sinB =3√3926. 18.(12分)已知数列{a n }满足a 1=1,1a n+1−1a n=2n +1. (1)求{a n }的通项公式;(2)若b n =2a n 2na n +1,求数列{b n }的前n 项和T n . 解:(1)因为1a n+1−1a n =2n +1,所以当n ≥2时,1a 2−1a 1=2×1+1=3,1a 3−1a 2=2×2+1=5,1a n −1a n−1=2n −1,1a n−1−1a n−2=2n −3,⋯,1a 2−1a 1=2×1+1=3, 累加得1a n −1a 1=3+5+⋯+(2n −1)=(n−1)(3+2n−1)2=n 2−1,又a 1=1,所以1a n =n 2,故a n =1n 2; (2)b n =2a n 2na n +1=2×1n 22n×1n 2+1=2n(n+2)=1n −1n+2, T n =1−13+12−14+13−15+⋯+1n −1n+2=1+12−1n+1−1n+2=32−2n+3(n+1)(n+2). 19.(12分)已知函数f (x )=2x sin x ﹣x 2cos x .(1)求曲线y =f (x )在点(π,f (π))处的切线方程;(2)求f (x )在[0,2π]上的最值.解:(1)因为f (x )=2x sin x ﹣x 2cos x ,所以f ′(x )=2sin x +2x cos x ﹣2x cos x +x 2sin x =(x 2+2)sin x ,则f ′(π)=0,f (π)=π2,故曲线y =f (x )在点(π,f (π))处的切线方程为y =π2.(2)因为f ′(x )=(x 2+2)sin x ,所以当x ∈(0,π)时,f ′(x )>0,当x ∈(π,2π)时,f ′(x )<0,则f (x )在(0,π)上单调递增,在(π,2π)上单调递减.所以当x =π,为f (x )在区间[0,2π]的极大值且为最大值,又f (0)=0,f (π)=π2,f (2π)=﹣4π2,所以f (x )在[0,2π]上的最大值为π2,最小值为﹣4π2.20.(12分)如图,在五面体ABCDEF 中,四边形ABCD 为矩形,平面ADE ⊥平面ABCD ,且AB =4,正三角形ADE 的边长为2.(1)证明:EF ∥平面ABCD ;(2)若EF <AB ,且直线AE 与平面BCF 所成角的正弦值为√217,求EF 的值.(1)证明:因为四边形ABCD 为矩形,所以AB ∥CD ,又AB ⊄平面CDEF ,CD ⊂平面CDEF ,所以AB ∥平面CDEF ,因为平面ABFE ∩平面CDEF =EF ,AB ⊂平面ABFE ,所以AB ∥EF ,又EF ⊄平面ABCD ,AB ⊂平面ABCD ,所以EF ∥平面ABCD ;(2)解:分别取AD ,BC 的中点O ,M ,连接OE ,OM ,因为平面ADE ⊥平面ABCD ,△ADE 为正三角形,以O 为坐标原点,OA ,OM ,OE 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (1,0,0),B (1,4,0),C (﹣1,4,0),E (0,0,√3),设F(0,m ,√3)(0<m <4),则AE →=(−1,0,√3),BC →=(−2,0,0),BF →=(−1,m −4,√3), 设平面BCF 的法向量为m →=(x ,y ,z),则由{BC →⋅m →=0BF →⋅m →=0,得{−2x =0−x +(m −4)y +√3z =0,令z =√3,得m →=(0,−3m−4,√3),因为直线AE 与平面BCF 所成角的正弦值为√217, 所以|cos <AE →,m →>|=|AE →⋅m →||AE →||m →|=32×√(m−4)2+3=√217,解得m =2或m =6(舍去),故EF =2.21.(12分)圆x 2+y 2=a 2+b 2称为椭圆x 2a 2+y 2b 2=1(a >b >0)的蒙日圆.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,C 的蒙日圆方程为x 2+y 2=3. (1)求C 的方程;(2)若F 为C 的左焦点,过C 上的一点A 作C 的切线l 1,l 1与C 的蒙日圆交于P ,Q 两点,过F 作直线l 2与C 交于M ,N 两点,且l 1∥l 2,证明:|PQ |2+8√2|MN|是定值. (1)解:由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,C 的蒙日圆方程为x 2+y 2=3. 可得{a 2+b 2=3e =c a =√22a 2=b 2+c2,得{a 2=2b 2=1c 2=1, 所以C 的方程为x 22+y 2=1. (2)证明:当l 1,l 2的斜率不等于0时,设l 1:x =my +t ,则l 2:x =my ﹣1.由{x =my +t ,x 22+y 2=1,得(m 2+2)y 2+2mty +t 2﹣2=0, 令Δ=(2mt )2﹣4(m 2+2)(t 2﹣2)=0,得t 2=m 2+2.设O 到l 1的距离为d ,则d =|0+0−t|√m 2+1=|t|√m +1, 得|PQ|=2√3−d 2=2√3m 2+3−t 2m 2+1=2√3m 2+3−(m 2+2)m 2+1=2√2m 2+1m 2+1. 设M (x 1,y 1),N (x 2,y 2),由{x =my −1,x 22+y 2=1, 得(m 2+2)y 2﹣2my ﹣1=0,则{y 1+y 2=2m m 2+2,y 1y 2=−1m 2+2, 则|MN|=√1+m 2√(y 1+y 2)2−4y 1y 2=√1+m 2√4m 2(m 2+2)2+4m 2+2=2√2(m 2+1)m 2+2.故|PQ|2+8√2|MN|=4(2m2+1)m2+18√2(m2+2)2√2(m2+1)=4(3m2+3)m2+1=12.当l1,l2的斜率等于0时,|PQ|=2√3−1=2√2,|MN|=2√2,所以|PQ|2+8√2|MN|=12.综上,|PQ|2+8√2|MN|是定值.22.(12分)(1)证明:当x>0时,lnx≤x﹣1<e x﹣2.(2)已知函数f(x)=ax2﹣lnx﹣x﹣lna,试讨论f(x)的零点个数.(1)证明:令函数g(x)=lnx−x+1,g′(x)=1−x x,当x∈(0,1)时,g′(x)>0;当x∈(1,+∞)时,g′(x)<0,所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以g(x)≤g(1)=0,即lnx≤x﹣1.令函数v(x)=e x﹣x﹣1(x>0),v′(x)=e x﹣1>0,所以v(x)在(0,+∞)上单调递增,所以v(x)>v(0)=0,即e x﹣x﹣1>0,即x﹣1<e x﹣2.综上,当x>0时,lnx≤x﹣1<e x﹣2.(2)解:f(x)的定义域为(0,+∞),且a>0,f′(x)=2ax2−x−1x.令函数2ax2﹣x﹣1=0,解得x1=1+√1+8a4a>0,x2=1−√1+8a4a<0,所以2ax12−x1−1=0,即a=x1+1 2x12.当x∈(0,x1)时,f′(x)<0;当x∈(x1,+∞)时,f′(x)>0.所以f(x)在(0,x1)上单调递减,在(x1,+∞)上单调递增,f(x)≥f(x1)=ax12−lnx1−x1−lna=x1+12−lnx1−x1−lnx1+12x12=−x12+12−ln(12+12x1),令函数u(x)=−x2+12−ln(12+12x),u′(x)=−(x−1)(x+2)2(x2+x),当x∈(0,1)时,u′(x)>0;当x∈(1,+∞)时,u′(x)<0,故u(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以u(x)在x=1处取得极大值.①因为当x=1时,u(1)=0,所以当x1=1,即a=1时,f(1)=0,此时f(x)只有一个零点.②因为当x∈(0,1)∪(1,+∞)时,u(x)<u(1)=0,所以当x1∈(0,1)∪(1,+∞),即a∈(0,1)∪(1,+∞)时,f(x1)<0,f(x)=ax2﹣ln(ax)﹣x≥ax2+1﹣ax﹣x=ax2﹣(a+1)x+1,令函数h(x)=ax2﹣(a+1)x+1(a>0),h(0)=1,h(x1)≤f(x1)<0,根据二次函数的图象及性质可得,∃x2∈(0,x1),h(x2)>0,∃x3∈(x1,+∞),h(x3)>0,即∃x2∈(0,x1),f(x2)>0,∃x3∈(x1,+∞),f(x3)>0,所以当x1∈(0,1)∪(1,+∞),即a∈(0,1)∪(1,+∞)时,f(x)有2个零点.综上,当a=1时,f(x)只有一个零点;当a∈(0,1)∪(1,+∞)时,f(x)有2个零点.。

2023-2024学年天津市七校高三(上)期中数学试卷【答案版】

2023-2024学年天津市七校高三(上)期中数学试卷【答案版】

2023-2024学年天津市七校高三(上)期中数学试卷一、选择题(本题共9小题,每题5分,共45分,在每小题给出的四个选项中只有一项是符合题目要求的)1.已知集合{1A =,2,3},{|21B y y x ==−,}x A ∈,则(A B = )A .{1,3}B .{1,2}C .{2,3}D .{1,2,3}2.已知在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则“sin 2sin 2A B =”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.已知45a =,8log 9b =,则232(a b −= ) A .59B .5C .259D .254.已知0.91.2x =,0.81.1y =, 1.2log 0.9z =,则( ) A .x z y >>B .y x z >>C .y z x >>D .x y z >>5.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,已知函数()y f x =的部分图象如图所示.则()y f x =的解析式可能是( )A .cos()()2()x x x f x e e π−=+B .cos()()2()x x x f x e e π−=−C .()cos()()2x x e e x f x π−−=D .()sin()()2x x e e x f x π−+=6.庑殿式屋顶是中国古代建筑中等级最高的屋顶形式,分为单檐庑殿顶与重檐庑殿顶.单檐庑殿顶主要有一条正脊和四条垂脊,前后左右都有斜坡(如图①),类似五面体FE ABCD −的形状(如图②),若四边形ABCD 是矩形,//AB EF ,且228AB EF BC ===,3EA ED FB FC ====,则三棱锥F ADE −的体积为( )A .83B .3C .43D .1637.函数()sin()(0f x A x ωϕω=+>,0)ϕπ<<的部分图象如图所示,则( )A .()f x 的单调递增区间是5[,],88k k k Z ππππ++∈ B .()f x 图象的一条对称轴方程是58x π=−C .()f x 图象的对称中心是(,0)8k ππ−,k Z ∈D .函数()f x 的图象向左平移78π个单位后得到的是一个奇函数的图象 8.已知在ABC ∆所在平面内,2BD AB =,E 、F 分别为线段AC 、AD 的中点,直线EF 与BC 相交于点G ,若DG BC ⊥,则( )A .tan BAC ∠的最小值为34B .tan BAC ∠的最小值为43 C .tan BAC ∠的最大值为34D .tan BAC ∠的最大值为439.已知函数2221,0(),0x x f x log x x +⎧−⎪=⎨>⎪⎩,若关于x 的方程2[()]()20f x mf x ++=恰有6个不同的实数根,则m 的取值范围是( ) A .11(,)[3,22)3−∞−−−B .11(,3−−C .1111(,)(,22)33−∞−−− D .[3,−−二、填空题(本题6小题,每题5分,共30分) 10.复数z 在复平面内对应的点为(2,1)−,则311i z +−的共轭复数的模为 . 11.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a=c =,cos 3A =,则ABC ∆的面积为 . 12.设向量a 、b 满足,3a b π〈〉=,且||2||a b =,若c 为b 在a 方向上的投影向量,并满足c a λ=,则λ= .13.在等比数列{}n a 中,3a ,7a 是函数321()4913f x x x x =++−的两个不同极值点,则5a = .14.设0x >,0y >,当x = 时,2)x y −−取最大值,最大值为 .15.折扇又名“撒扇”、“纸扇”,是一种用竹木或象牙做扇骨,韧纸或绫绢做扇面的能折叠的扇子,如图1.其展开几何图是如图2的扇形AOB ,其中120AOB ∠=︒,2OC =,5OA =,点E 在CD 上,则EA EB ⋅的最小值是 .三、解答题(本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(14分)已知函数()2cossin()0223f x x x ωωπω=−>,()f x 图象的两条相邻对称轴之间的距离为2π. (1)求()f x 的单调递减区间;(2)若3()25f θ=−,且5[,]66ππθ∈−,求5sin()6πθ−的值.17.(15分)在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c 2sin cos 2sin cos a B C c B A =+. (1)求角B 的大小; (2)设3a =,4c =, ①求b ,②求cos(2)A B +的值.18.(15分)在四棱锥P ABCD −中,PA ⊥底面ABCD ,且2PA =,四边形ABCD 是直角梯形,且AB AD ⊥,//BC AD ,2AD AB ==,4BC =,M 为PC 中点,E 在线段BC 上,且1BE =. (1)求证://DM 平面PAB ;(2)求直线PB 与平面PDE 所成角的正弦值; (3)求点E 到PD 的距离.19.(15分)已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足:13b =,*121()n n b b n N +=−∈.(1)证明:{1}n b −是等比数列;(2)设数列{}n c 的前n 项和为n T ,且221(1)(1)log (1)nn n n n a c a b +=−+−,求n T ;(3)设数列{}n d 满足:12222,,n n n n n na n a a d a nb ++⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数,证明:2194nk k d =<∑.20.(16分)已知函数()(1)1f x lnx a x =+++,a R ∈,()x g x xe =. (1)若曲线()f x 在点(1,f (1))处的切线的斜率为3,求a 的值; (2)当2x −时,函数()2y g x m =−+有两个不同零点,求m 的取值范围; (3)若(0,)x ∀∈+∞,不等式()()x g x f x e '−恒成立,求实数a 的取值范围.2023-2024学年天津市七校高三(上)期中数学试卷参考答案与试题解析一、选择题(本题共9小题,每题5分,共45分,在每小题给出的四个选项中只有一项是符合题目要求的)1.已知集合{1A =,2,3},{|21B y y x ==−,}x A ∈,则(A B = )A .{1,3}B .{1,2}C .{2,3}D .{1,2,3}解:根据题意,集合{1A =,2,3},而{|21B y y x ==−,}x A ∈, 则{1B =,3,5},则{1A B =,3},故选:A .2.已知在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则“sin 2sin 2A B =”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解:若sin 2sin 2A B =,则222A B k π=+,k Z ∈或222A B k ππ+=+,k Z ∈, 由于在三角形中,所以22A B =或22A B π+=,故A B =或2A B π+=,当A B =时,则a b =,但2A B π+=时,a ,b 关系不确定;反过来,若a b =,则必有A B =,sin 2sin 2A B =.故“sin 2sin 2A B =”是“a b =”的必要不充分条件. 故选:B .3.已知45a =,8log 9b =,则232(a b −= ) A .59B .5C .259D .25解:3228222425,9333a a log log logb =====,∴292322232339,229log b b log log log =====, ∴223325229a a bb −==. 故选:A .4.已知0.91.2x =,0.81.1y =, 1.2log 0.9z =,则( ) A .x z y >>B .y x z >>C .y z x >>D .x y z >>解:由于函数 1.2x y =在R 上单调递增,函数0.8y x =在(0,)+∞上单调递增, 所以0.90.80.81.2 1.2 1.10x y =>>=>,而 1.2log y x =在(0,)+∞上单调递增, 1.2 1.2log 0.9log 10y =<=,所以x y z >>. 故选:D .5.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,已知函数()y f x =的部分图象如图所示.则()y f x =的解析式可能是( )A .cos()()2()x x x f x e e π−=+B .cos()()2()x x x f x e e π−=−C .()cos()()2x x e e x f x π−−=D .()sin()()2x x e e x f x π−+=解:对于A ,函数的定义域为R ,且cos()cos ()()2()2()x x x x x xf x f x e e e e ππ−−−−===++, 则()f x 为偶函数,不合题意;对于B ,函数的定义域为(−∞,0)(0⋃,)+∞,不合题意;对于D ,1()sin (1)02e e f π−+==,不合题意. 故选:C .6.庑殿式屋顶是中国古代建筑中等级最高的屋顶形式,分为单檐庑殿顶与重檐庑殿顶.单檐庑殿顶主要有一条正脊和四条垂脊,前后左右都有斜坡(如图①),类似五面体FE ABCD −的形状(如图②),若四边形ABCD 是矩形,//AB EF ,且228AB EF BC ===,3EA ED FB FC ====,则三棱锥F ADE −的体积为( )A .83B .3C .43D .163解:如图,在线段CD 上取点H ,N ,使得2DH CN ==,4HN =, 在线段AB 上取点G ,M ,使得2AG MB ==,4GM =,连接EG ,EH ,GH ,FM ,FN ,MN ,设P ,Q 分别为GH ,MN 的中点,连接EP ,FQ ,由题意可得,EG EH FM FN ===4GH MN ==,EP FQ =,EP ⊥平面ABCD , 则1EP FQ ==,连接PQ ,则////PQ AB DC ,以Q 为原点,以QM ,QP ,QF 所在直线为x ,y ,z 轴建立空间直角坐标系,则(0F ,0,1),(2A ,6,0),(2D −,6,0),(0E ,4,1), 所以(4,0,0)AD =−,(2,2,1)AE =−−,(0,4,0)EF =−, 设平面ADE 的一个法向量为(,,)n x y z =, 则402210n AD x n AE x y ⎧⋅=−=⎪⎨⋅=−−+=⎪⎩,取1(0,,1)2n =,则点F 到平面ADE的距离为||2||55EFn h n ⋅===又142ADES ∆=⨯= 所以三棱锥F ADE −的体积为1183353ADE S h ∆⨯⨯=⨯=. 故选:A .7.函数()sin()(0f x A x ωϕω=+>,0)ϕπ<<的部分图象如图所示,则( )A .()f x 的单调递增区间是5[,],88k k k Z ππππ++∈ B .()f x 图象的一条对称轴方程是58x π=−C .()f x 图象的对称中心是(,0)8k ππ−,k Z ∈D .函数()f x 的图象向左平移78π个单位后得到的是一个奇函数的图象解:由图像可得3A =,32[()]88T πππ=−−=,∴22T πω==, ()3sin(2)f x x ϕ∴=+,将点(,3)8π−代入可得sin()14πϕ−+=,又0ϕπ<<,∴34πϕ=,所以函数3()3sin(2)4f x x π=+, 令3222242k x k πππππ−+++,解得588k x k ππππ−+−+,k Z ∈, 故函数()f x 的增区间为5[,]88k k ππππ−+−+,k Z ∈,故A 错误; 由553()3sin(2())3sin()38842f ππππ−=⨯−+=−=−, 所以58x π=−是函数()f x 的一条对称轴,故B 正确; 令324x k ππ+=,解得382k x ππ=−+, 所以函数()f x 的对称中心为3(,0)82k ππ−+,k Z ∈,故C 错误; 将函数()f x 的图像向左平移78π个单位, 得到7353sin[2()]3sin(2)3cos 2842y x x x πππ=++=+=, 该函数为偶函数,故D 错误. 故选:B .8.已知在ABC ∆所在平面内,2BD AB =,E 、F 分别为线段AC 、AD 的中点,直线EF 与BC 相交于点G ,若DG BC ⊥,则( )A .tan BAC ∠的最小值为34 B .tan BAC ∠的最小值为43 C .tan BAC ∠的最大值为34D .tan BAC ∠的最大值为43解:根据2BD AB =,且F 为线段AD 的中点, 可得1322AF AD AB ==,则CB CA AB =+,1322EF EA AF CA AB =+=+.设EG tEF =,则113113()()222222CG CE EG CA t CA AB t CA t AB =+=++=++,因为CB 和CG 共线,CB CA AB =+,所以113222t t +=,解得12t =,故G 为线段EF 的中点, 由34CG CB =,可得119122()4444DG DB BG AB BC AB BA AC AB AC =+=−+=−++=−+,结合BC AC AB =−,可知:若DG BC ⊥,则291915()()044442BC DG AC AB AB AC AB AC AB AC ⋅=−⋅−+=+−⋅=,即5913||||2442AB AC AB AC AB AC ⋅=+⋅,故3cos 5BAC∠,当且仅当229144AB AC =时,等号成立. 根据(0,)2BAC π∠∈,可得当tan BAC ∠的最大时,cos BAC ∠最小时,此时4sin 5BAC ∠==,sin 4tan cos 3BAC BAC BAC ∠∠==∠. 故选:D .9.已知函数2221,0(),0x x f x log x x +⎧−⎪=⎨>⎪⎩,若关于x 的方程2[()]()20f x mf x ++=恰有6个不同的实数根,则m 的取值范围是( ) A .11(,)[3,22)3−∞−−− B .11(,3−−C .1111(,)(,22)33−∞−−− D .[3,−−解:根据2221,0(),0x x f x log x x +⎧−⎪=⎨>⎪⎩,作出()f x 的大致图象如下:由图可知:当()0f x =时,此时有两个根,分别为2−,1, 当01t <<时,此时()f x t =有4个交点, 当13t 时,此时()f x t =有3个交点, 当3t >时,此时()f x t =有2个交点,故要使得2[()]()20f x mf x ++=有6个不同的零点, 则令()f x t =,220t mt ++=有6个不同的实数根,()0fx =显然不是2[()]()20f x mf x ++=的根,设2()2g t t mt =++的两个零点分别为1t ,2t ,且12t t ≠,故当101t <<,23t >时,此时1()f x t =有4个交点,2()f x t =有2个交点,满足题意, 故需要满足(0)20(1)30(3)1130g g m g m =>⎧⎪=+<⎨⎪=+<⎩,解得113m <−,当1213t t <时,此时1()f x t =有3个交点,2()f x t =有3个交点,满足题意,故需要满足213280(1)30(3)1130m m g m g m −⎧<<⎪⎪⎪=−>⎨⎪=+⎪=+⎪⎩,解得322m −<−综上可得322m −<−113m <−. 故选:A .二、填空题(本题6小题,每题5分,共30分) 10.复数z 在复平面内对应的点为(2,1)−,则311i z +−的共轭复数的模为解:由题意可得2z i =−, 所以3131(31)(1)42121122i i i i i i z i ++++−====−+−−, 故共轭复数为12i −−,则|12|i −−==.11.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a=c=,cos A =,则ABC ∆的面积为.解:由余弦定理得22222cos ,1832a b c bc A b b =+−=+− 解得5b =(负根舍去),又0,sin A A π<<===,所以11sin 52232ABC S bc A ∆==⨯=.. 12.设向量a 、b 满足,3a b π〈〉=,且||2||a b =,若c 为b 在a 方向上的投影向量,并满足c a λ=,则λ=14. 解:c 为b 在a 方向上的投影向量, 则||||b a ac a a a λ⋅=⨯=,即2||a b a λ⋅=, 向量a 、b 满足,3a b π〈〉=,且||2||a b =, 则221||||cos||||34a b a a πλ==,解得14λ=. 故答案为:14. 13.在等比数列{}n a 中,3a ,7a 是函数321()4913f x x x x =++−的两个不同极值点,则5a = 3− . 解:函数321()4913f x x x x =++−定义域为R ,且2()89f x x x '=++, 令()0f x '=,则2890x x ++=,因为△28490=−⨯>,所以方程2890x x ++=有两个不相等实数根1x ,2x ,不妨令12x x <,则当1x x <或2x x >时()0f x '>,当12x x x <<时()0f x '<,所以()f x 在1(,)x −∞,2(x ,)+∞上单调递增,在1(x ,2)x 上单调递减,所以()f x 在1x x =处取得极大值,在2x x =处取得极小值,又128x x +=−,129x x =,所以120x x <<,又3a ,7a 是函数321()4913f x x x x =++−的两个不同极值点, 所以379a a =且30a <,70a <,则50a <,又2375a a a =,所以53a ==−.故答案为:3−.14.设0x >,0y >,当x = 14 时,2)x y −−取最大值,最大值为 .解:0x >,0y >2)(2))22x y x y xy −−=−+−+2x y =时等号成立,设0t t =>,则函数2()f t t =−+开口向上,对称轴为t =,则当()max f t f ===且2x y =时,即11,48x y ==2)x y −−取最大值为16.故答案为:14. 15.折扇又名“撒扇”、“纸扇”,是一种用竹木或象牙做扇骨,韧纸或绫绢做扇面的能折叠的扇子,如图1.其展开几何图是如图2的扇形AOB ,其中120AOB ∠=︒,2OC =,5OA =,点E 在CD 上,则EA EB ⋅的最小值是 372− .解:如下图,2()()()EA EB EO OA EO OB EO EO OA OB OA OB ⋅=+⋅+=+⋅++⋅,若F 为弧AB 的中点,且120AOB ∠=︒,则OA OB OF +=, 则211717255()222EA EB EO OF EO OF OE OF ⋅=+⋅+⨯⨯−=⋅−=−⋅−, 要使其最小,只需,OE OF 共线,此时,由图知此时17173725cos010222EA EB ⋅=−⨯⨯︒−=−−=−. 故答案为:372−. 三、解答题(本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(14分)已知函数()2cos sin()0223f x x x ωωπω=−>,()f x 图象的两条相邻对称轴之间的距离为2π. (1)求()f x 的单调递减区间;(2)若3()25f θ=−,且5[,]66ππθ∈−,求5sin()6πθ−的值.(1)解:由1()2cos sin()2cos (sin )2232222222xx x x f x x ωωπωωω=−+=−+1sin sin()23x x x πωωω==−, 因为()f x 图象的两条相邻对称轴之间的距离为2π,可得22T π=,即T π=,所以22T πω==,可得()sin(2)3f x x π=−, 令3222,232k x k k Z πππππ+−+∈,解得511,1212k x k k Z ππππ++∈, 所以函数()f x 的单调递减区间为511[,],1212k k k Z ππππ++∈. (2)解:由()sin(2)3f x x π=−,可得3()sin()235f θπθ=−=−, 因为5[,]66ππθ∈−,可得[,]322πππθ−∈−,所以4cos()35πθ−=, 所以54sin()sin[()]cos()63235ππππθθθ−=−−=−−=−. 17.(15分)在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c 2sin cos 2sin cos a B C c B A =+.(1)求角B 的大小;(2)设3a =,4c =,①求b ,②求cos(2)A B +的值.解:(12sin cos 2sin cos a B C c B A =+.2sin sin cos 2sin sin cos B A B C C B A =+, 2sin (sin cos sin cos )2sin sin()B B AC C A B A C =+=+, 因为sin 0B>,所以sin()A C += 则sin()B π−=sin B =,且ABC ∆为锐角三角形, 所以3B π=;(2)①在ABC ∆中,由余弦定理及3a =,4c =,3B π=,由余弦定理可得2222cos 13b a c ac B =+−=,故b②由正弦定理,sin sin a bA B=,可得3sin sin a B A b===, ac <,即A C<,A ∴为锐角,故cos A ===则sin 22sin cos 2A A A ===, 21cos 22126A cos A =−=−, ∴23cos(2)cos 2cos sin 2sin 26A B A B A B +=−=−. 18.(15分)在四棱锥P ABCD −中,PA ⊥底面ABCD ,且2PA =,四边形ABCD 是直角梯形,且AB AD ⊥,//BC AD ,2AD AB ==,4BC =,M 为PC 中点,E 在线段BC 上,且1BE =.(1)求证://DM 平面PAB ;(2)求直线PB 与平面PDE 所成角的正弦值;(3)求点E 到PD 的距离.证明:(1)如图,取BC 中点F ,连接MF ,DF ,因为F 为BC 中点,//BC AD ,2AD AB ==,4BC =,所以BF AD =,//BF AD , 所以四边形ABFD 为平行四边形,所以//AB DF ,又DF ⊂/平面PAB ,AB ⊂平面PAB ,所以//DF 平面PAB , 因为F 为BC 中点,M 为PC 中点,则//MF PB ,又MF ⊂/平面PAB ,PB ⊂平面PAB ,所以//MF 平面PAB , 因为MF DF F =,MF ,DF ⊂平面MDF ,所以平面//MDF 平面PAB , 又DM ⊂平面MDF ,故//DM 平面PAB ;解:(2)根据题意,分别以AB ,AD ,AP 所在直线为x ,y ,z 轴,建立如图所示空间直角坐标系,由条件可得,(0A ,0,0),(0P ,0,2),(2B ,0,0),(0D ,2,0),(2E ,1,0), 则(2,0,2),(0,2,2),(2,1,2)PB PD PE =−=−=−,设平面PDE 的法问量为(n x =,y ,)z ,则220220PD n y z PE n x y z ⎧⋅=−=⎪⎨⋅=+−=⎪⎩,解得2y z y x =⎧⎨=⎩, 取2y =,则1x =,2z =,所以平面PDE 的一个法向量为(1n =,2,2), 设直线PB 与平面PDE 所成角为θ,则|||24sin |cos ,|6||||22PB n PB n PB n θ⋅−=<>===⋅⨯, 所以直线PB 与平面PDE 所成角的正弦值为6;(3)由(2)可知,(0,2,2),(2,1,2)PD PE =−=−,所以点E 到PD 22()2||PE PD PE PD ⋅−==. 19.(15分)已知数列{}n a 的前n 项和22n n n S +=,数列{}n b 满足:13b =,*121()n n b b n N +=−∈. (1)证明:{1}n b −是等比数列;(2)设数列{}n c 的前n 项和为n T ,且221(1)(1)log (1)n n n n n a c a b +=−+−,求n T ; (3)设数列{}n d 满足:12222,,n n n n n na n a a d a nb ++⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数,证明:2194n k k d =<∑. 解:(1)证明:由121n n b b +=−,得112(1)n n b b +−=−,又112b −=,所以{1}n b −是以2为首项,2为公比的等比数列,即1122n n b −−=⨯,故21n n b =+;(2)由数列{}n a 的前n 项和为22n n n S +=,可得: 当1n =时,有111a S ==,当2n 时,221(1)(1)22n n n n n n n a S S n −+−+−=−=−=,显然11a =也满足,故n a n =,又21n n b =+, 所以2111(1)(1)()(1)1nn n n c n n n n +=−=−+++, 故11111111(1)(1)1(1)223311n n nn T n n n =−−++−++−+−=−+−++; (3)证明:当n 为奇数时,22221111[](2)4(2)n n d n n n n +==−++, 则13521222222111111111...[1][1]4335(21)(21)4(21)4n d d d d n n n −++++=−+−++−=−<−++, 当n 为偶数时,22212n n n n n d =<+, 则246224201148412222444n n n n n d d d d −++++<+++=+++, 设01112444n n n Q −=+++, 则121112144444n n nn n Q −−=++++, 两式相减得12111311141...144444414n n n n n n n Q −−=++++−=−−, 得11634116()9949n n n Q −+=−<, 所以2462169n d d d d ++++<, 所以211161924944n k k d =<+<+=∑,故原式得证. 20.(16分)已知函数()(1)1f x lnx a x =+++,a R ∈,()x g x xe =.(1)若曲线()f x 在点(1,f (1))处的切线的斜率为3,求a 的值;(2)当2x −时,函数()2y g x m =−+有两个不同零点,求m 的取值范围;(3)若(0,)x ∀∈+∞,不等式()()x g x f x e '−恒成立,求实数a 的取值范围. 解:(1)由()(1)1f x lnx a x =+++,得1()1f x a x'=++, 所以f '(1)113a =++=,即1a =.(2)由题意()x g x xe =,()20g x m −+=,即()2g x m =−,所以()(1)x g x x e '=+,当1x >−时,()0g x '>,所以()g x 在(1,)−+∞单调递增; 当21x −<−时,()0g x '<,所以()g x 在(,1)−∞−单调递减;1[()](1)min g x g e=−=−,22(2)g e −=−,(0)0g =, 所以2122(,]m e e −∈−−,即212(2,2]m e e∈−+−+, 所以m 的取值范围为212(2,2]e e−+−+. (3)因为()()x g x f x e '−对(0,)x ∀∈+∞恒成立,所以(1)1(1)x x x e lnx a x e +−−−+对(0,)x ∀∈+∞恒成立, 即11x lnx a e x+−−对(0,)x ∀∈+∞恒成立. 设1()1x lnx h x e x +=−−,其中0x >,所以()min a h x , 222()x x lnx x e lnx h x e x x +'=+=, 设2()x u x x e lnx =+,其中0x >,则21()(2)0x u x x x e x'=++>, 所以函数()u x 在(0,)+∞上单调递增.因为1()202u ln <,u (1)0e =>, 所以存在01(,1)2x ∈,使得02000()0x u x x e lnx =+=, 当00x x <<时,()0h x '<,函数()h x 单调递减;当0x x >时,()0h x '>,函数()h x 单调递增,所以00001()1x min x e lnx h x x −−=−. 因为02000()0x h x x e lnx =+=,所以0010*********ln x x x e lnx ln e ln x x x x =−==, 由(2)得()x g x xe =,当0x >时,在(0,)+∞上为增函数,因为01(,1)2x ∈,则0112x <<,则010ln x >,由001001ln x x x e e ln x =,可得001()()g x g ln x =,所以0001x ln lnx x ==−, 所以0000()0x x lnx ln x e +==,可得001x x e =, 所以00000011()1()110x min x e lnx x h x x x −−−−−=−=−=,所以0a . 所以实数a 的取值范围为(−∞,0].。

【好题】高三数学上期中试卷带答案(3)

【好题】高三数学上期中试卷带答案(3)

【好题】高三数学上期中试卷带答案(3)一、选择题1.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .9002.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-3.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1SB .19SC .20SD .37S4.已知不等式2230x x --<的解集为A ,260x x +-<的解集为B ,不等式2+0x ax b +<的解集为A B I ,则a b +=( )A .-3B .1C .-1D .35.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4B .4C .14± D .146.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =,c =,30B =︒,则AB 边上的中线的长为( )AB .34 C .32或2D .34或27.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .58.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或79.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a= ( )A.8B.-8C.1D.-110.已知421 333 2,3,25a b c===,则A.b a c<<B.a b c<<C.b c a<<D.c a b<<11.若01a<<,1b c>>,则()A.()1abc<B.c a cb a b->-C.11a ac b--<D.log logc ba a<12.若0,0x y>>,且211x y+=,227x y m m+>+恒成立,则实数m的取值范围是()A.(8,1)-B.(,8)(1,)-∞-⋃+∞C.(,1)(8,)-∞-⋃+∞D.(1,8)-二、填空题13.在ABC∆中,内角A,B,C所对的边分别为a,b,c,2a=,且()()()2sin sin sinb A Bc b C+-=-,则ABC∆面积的最大值为______.14.已知数列{}n a、{}n b均为等差数列,且前n项和分别为n S和n T,若321nnS nT n+=+,则44ab=_____.15.已知实数,x y满足102010x yx yx y++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y=+的最大值为____.16.如图,无人机在离地面高200m的A处,观测到山顶M处的仰角为15°、山脚C处的俯角为45°,已知∠MCN=60°,则山的高度MN为_________m.17.已知数列{}n a是递增的等比数列,14239,8a a a a+==,则数列{}n a的前n项和等于 .18.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B 类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为__________元.19.若原点和点(1,2019)-在直线0x y a -+=的同侧,则a 的取值范围是________(用集合表示).20.若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a ,b 恒成立的是 (写出所有正确命题的编号).①ab≤1;; ③a 2+b 2≥2;④a 3+b 3≥3;112a b+≥⑤. 三、解答题21.在ABC V 中,5cos 13A =-,3cos 5B =. (1)求sinC 的值;(2)设5BC =,求ABC V 的面积.22.已知,,a b c 分别是ABC △的角,,A B C 所对的边,且222,4c a b ab =+-=. (1)求角C ;(2)若22sin sin sin (2sin 2sin )B A C A C -=-,求ABC △的面积. 23.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值. 24.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,14cos a C a+=,1b =. (1)若90A ∠=︒,求ABC V 的面积; (2)若ABC V的面积为2,求a ,c . 25.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式;(2)若6512n n S a n >--,求n 的取值范围; (3)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 26.已知函数()cos f x x x =-. (1)求函数()f x 在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域; (2)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,求a b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 2.C解析:C 【解析】 【分析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=,Q 数列{}n a 是等比数列,则11a =,故412λ+=, 解得2λ=-, 故选C . 【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础.3.D解析:D 【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.4.A解析:A 【解析】 【分析】根据题意先求出集合,A B ,然后求出=1,2A B -I (),再根据三个二次之间的关系求出,a b ,可得答案.【详解】由不等式2230x x --<有13x -<<,则(1,3)A =-. 由不等式260x x +-<有,则32x -<<,则(3,2)B =-. 所以=1,2A B -I ().因为不等式2+0x ax b +<的解集为A B I , 所以方程2+=0x ax b +的两个根为1,2-.由韦达定理有:1212a b-+=-⎧⎨-⨯=⎩,即=12a b -⎧⎨=-⎩. 所以3a b +=-. 故选:A. 【点睛】本题考查二次不等式的解法和三个二次之间的关系,属于中档题.5.A解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A . 【点睛】本题考查了等比中项的求法,属于基础题.6.C解析:C 【解析】 【分析】由已知利用余弦定理可得29180a a -+=,解得a 值,由已知可求中线12BD c =,在BCD V 中,由余弦定理即可计算AB 边上中线的长. 【详解】解:3,33,30b c B ===o Q ,∴由余弦定理2222cos b a c ac B =+-,可得239272332a a =+-⨯⨯⨯,整理可得:29180a a -+=,∴解得6a =或3.Q 如图,CD 为AB 边上的中线,则1332BD c ==,∴在BCD V 中,由余弦定理2222cos CD a BD a BD B =+-⋅⋅,可得:222333336()26222CD =+-⨯⨯⨯,或222333333()23222CD =+-⨯⨯⨯, ∴解得AB 边上的中线32CD =或37. 故选C .【点睛】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.7.A解析:A 【解析】 【分析】先画不等式组表示的平面区域,由图可得目标函数(0,0)z ax by a b =+>>何时取最大值,进而找到a b ,之间的关系式236,a b +=然后可得23123()(23)6a b a b a b+=++,化简变形用基本不等式即可求解。

【必考题】高三数学上期中试卷附答案(3)

【必考题】高三数学上期中试卷附答案(3)

【必考题】高三数学上期中试卷附答案(3)一、选择题1.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形2.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--3.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .34.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD.5.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .1406.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-7.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .28.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .239.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .5210.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S11.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30°,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A 33B 53C 73D 8312.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-二、填空题13.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令114(1)n n n n nb a a -+=-,则数列{}n b 的前100的项和为______. 14.已知数列111112123123n+++++++L L L ,,,,,,则其前n 项的和等于______. 15.已知实数x y ,满足2,2,03,x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩则2z x y =-的最大值是____.16.设数列{}n a 中,112,1n n a a a n +==++,则通项n a =___________. 17.已知等比数列{a n }的前n 项和为S n ,若a 3=32,S 3=92,则a 1的值为________. 18.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______. 19.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.20.正项等比数列{}n a 满足2418-=a a ,6290-=a a ,则{}n a 前5项和为________.三、解答题21.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且3cos cos (tan tan 1)1A C A C -=.(Ⅰ)求sin B 的值; (Ⅱ)若33a c +=,3b =,求的面积.22.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且asin B =-bsin 3A π⎛⎫+ ⎪⎝⎭.(1)求A ;(2)若△ABC 的面积S =34c 2,求sin C 的值. 23.设各项均为正数的数列{a n }的前n 项和为S n ,满足:对任意的n ∈N *,都有a n +1+S n +1=1,又a 112=. (1)求数列{a n }的通项公式; (2)令b n =log 2a n ,求12231111n n b b b b b b L ++++(n ∈N *) 24.已知{}n a 是递增的等差数列,2a ,4a 是方程的根.(1)求{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 25.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .26.已知各项均为正数的数列{}n a 的前n 项和为n S ,且11a =,1n n n a S S -(*n N ∈,且2n ≥) (1)求数列{}n a 的通项公式;(2)证明:当2n ≥时,12311113232n a a a na ++++<L【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅= 所以222sin sin sin sin cos sin cos333A A A A A πππ⎛⎫⎛⎫⋅-=⋅-⎪ ⎪⎝⎭⎝⎭21111132sin 2cos 2sin 2424442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<< 所以3A π=故选B 【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.2.B解析:B 【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率 1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.3.B解析:B 【解析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B .当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.4.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得42c =. 由余弦定理可得:()222222142214252b ac accosB =+-=+-⨯⨯⨯=. 5.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x x=.所以1n a n n =++,所以11nn n a =+-,故1121n S n n n n =+-+--++-L 11n =+-,由1110n S n =+-=解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.6.D解析:D 【解析】 【分析】由条件可得47a a ,的值,进而由27104a a a =和2417a a a =可得解.【详解】56474747822,4a a a a a a a a ==-+=∴=-=Q 或474,2a a ==-.由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====-1107a a ∴+=-故选D. 【点睛】本题主要考查了等比数列的下标的性质,属于中档题.7.D解析:D 【解析】作出不等式组20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,所表示的平面区域,如图所示,当0x ≥时,可行域为四边形OBCD 内部,目标函数可化为2z y x =-,即2y x z =+,平移直线2y x =可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,此时,max 2z =,当0x <时,可行域为三角形AOD ,目标函数可化为2z y x =+,即2y x z =-+,平移直线2y x =-可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,max 2z =, 综上,2z y x =-的最大值为2. 故选D .点睛:利用线性规划求最值的步骤: (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a++型)和距离型(()()22x a y b +++型). (3)确定最优解:根据目标函数的类型,并结合可行域确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 注意解答本题时不要忽视斜率不存在的情形.8.A解析:A 【解析】 【分析】设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222sin sin sin 22sin cos n n n n A C A A A+++===, 所以2cos 2n A n+=. 又根据余弦定理的推论得222(2)(1)5cos 2(2)(1)2(2)n n n n A n n n +++-+==+++.所以2522(2)n n n n ++=+,解得4n =, 所以453cos 2(42)4A +==+,即最小角的余弦值为34.故选A.【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.9.B解析:B【解析】【分析】设f(x)1221x x=+-,根据形式将其化为f(x)()1152221x xx x-=++-.利用基本不等式求最值,可得当且仅当x13=时()11221x xx x-+-的最小值为2,得到f(x)的最小值为f(13)92=,再由题中不等式恒成立可知m≤(1221x x+-)min,由此可得实数m的最大值.【详解】解:设f(x)11222211x x x x=+=+--(0<x<1)而1221x x+=-[x+(1﹣x)](1221x x+-)()1152221x xx x-=++-∵x∈(0,1),得x>0且1﹣x>0∴()11221x xx x-+≥-=2,当且仅当()112211x xx x-==-,即x13=时()11221x xx x-+-的最小值为2∴f(x)1221x x=+-的最小值为f(13)92=而不等式m1221x x≤+-当x∈(0,1)时恒成立,即m≤(1221x x+-)min因此,可得实数m的最大值为9 2故选:B.【点睛】本题给出关于x 的不等式恒成立,求参数m 的取值范围.着重考查了利用基本不等式求函数的最值和不等式恒成立问题的处理等知识,属于中档题.10.D解析:D 【解析】 【分析】将所给条件式变形,结合等差数列前n 项和公式即可证明数列的单调性,从而由870a a +<可得7a 和8a 的符号,即可判断n S 的最小值.【详解】由已知,得()11n n n S nS ++<, 所以11n n S S n n +<+, 所以()()()()1111221n n n a a n a a n n ++++<+, 所以1n n a a +<,所以等差数列{}n a 为递增数列. 又870a a +<,即871a a <-, 所以80a >,70a <,即数列{}n a 前7项均小于0,第8项大于零, 所以n S 的最小值为7S , 故选D. 【点睛】本题考查了等差数列前n 项和公式的简单应用,等差数列单调性的证明和应用,前n 项和最值的判断,属于中档题.11.B解析:B 【解析】 【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度. 【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即sin 45sin 30HB =︒︒,20HB =.∴sin 20sin 60103OH HB HBO =∠=︒=,3534623v ==(米/秒). 故选B .【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.12.A解析:A【解析】【分析】 将代数式21x y+与2x y +相乘,展开式利用基本不等式求出2x y +的最小值8,将问题转化为解不等式()2min 72m m x y +<+,解出即可.【详解】 由基本不等式得()2144224248y x y x x y x y x y x y x y ⎛⎫+=++=++≥⋅=⎪⎝⎭, 当且仅当()4,0y x x y x y=>,即当2x y =时,等号成立,所以,2x y +的最小值为8. 由题意可得()2min 728m m x y +<+=,即2780m m +-<,解得81m -<<.因此,实数m 的取值范围是(8,1)-,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.二、填空题13.【解析】【分析】首项利用已知条件求出数列的通项公式进一步利用裂项相消法求出数列的和【详解】解:设等差数列的首项为公差为2前n 项和为且成等比数列则:解得:所以:所以:所以:故答案为:【点睛】本题考查的 解析:200201【解析】首项利用已知条件求出数列的通项公式,进一步利用裂项相消法求出数列的和.【详解】解:设等差数列{}n a 的首项为1a ,公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.则:()2111(22)412a a a +=+,解得:11a =,所以:()12121n a n n =+-=-, 所以:111411(1)(1)2121n n n n n n b a a n n --+⎛⎫=-=-⋅+ ⎪-+⎝⎭, 所以:100111111335199201S ⎛⎫⎛⎫⎛⎫=+-++⋯-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12001201201=-=, 故答案为:200201【点睛】 本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.14.【解析】【分析】由题意可知此数列为将代入根据数列特点将通项公式化简利用裂项相消的求和方法即可求出前n 项和【详解】由题意可知此数列分母为以1为首项以1为公差的等差数列的前n 项和由公式可得:所以数列通项 解析:21n n + 【解析】【分析】 由题意可知此数列为1n S ⎧⎫⎨⎬⎩⎭,将n S 代入,根据数列特点,将通项公式化简,利用裂项相消的求和方法即可求出前n 项和.【详解】由题意可知此数列分母为以1为首项,以1为公差的等差数列的前n 项和,由公式可得:()12n n n S +=,所以数列通项:()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭, 求和得:122111n n n ⎛⎫-= ⎪++⎝⎭. 【点睛】本题考查数列通项公式与数列求和,当通项公式为分式且分母为之差为常数时,可利用裂项相消的方法求和,裂项时注意式子的恒等,有时要乘上系数. 15.7【解析】试题分析:根据约束条件画出可行域得到△ABC 及其内部其中A(53)B (﹣13)C (20)然后利用直线平移法可得当x=5y=3时z=2x ﹣y 有最大值并且可以得到这个最大值详解:根据约束条件画【解析】试题分析:根据约束条件画出可行域,得到△ABC 及其内部,其中A (5,3),B (﹣1,3),C (2,0).然后利用直线平移法,可得当x=5,y=3时,z=2x ﹣y 有最大值,并且可以得到这个最大值.详解:根据约束条件2,2,03,x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩画出可行域如图,得到△ABC 及其内部,其中A (5,3),B (﹣1,3),C (2,0)平移直线l :z=2x ﹣y ,得当l 经过点A (5,3)时,∴Z 最大为2×5﹣3=7. 故答案为7.点睛:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.16.【解析】∵∴将以上各式相加得:故应填;【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住中系数相同是找到方法的突破口;此题可用累和法迭代法等; 解析:()112n n ++【解析】∵112,1n n a a a n +==++∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦L()()()()11111111222n n n n n n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112n n ++; 【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住11n n a a n +=++中1,n n a a +系数相同是找到方法的突破口;此题可用累和法,迭代法等;17.或6【解析】【分析】由题意要分公比两种情况分类讨论当q =1时S3=3a1即可求解当q≠1时根据求和公式求解【详解】当q =1时S3=3a1=3a3=3×=符合题意所以a1=;当q≠1时S3==a1(1 解析:32或6 【解析】【分析】 由题意,要分公比1,1q q =≠两种情况分类讨论,当q =1时,S 3=3a 1即可求解,当q ≠1时,根据求和公式求解.【详解】当q =1时,S 3=3a 1=3a 3=3×32=92,符合题意,所以a 1=32; 当q ≠1时,S 3=()3111a q q --=a 1(1+q +q 2)=92, 又a 3=a 1q 2=32得a 1=232q ,代入上式, 得232q (1+q +q 2)=92,即21q +1q -2=0, 解得1q =-2或1q=1(舍去). 因为q =-12,所以a 1=23122⎛⎫⨯- ⎪⎝⎭=6, 综上可得a 1=32或6. 【点睛】本题主要考查了等比数列的性质及等比数列的求和公式,涉及分类讨论的思想,属于中档题.18.【解析】【分析】由等差数列的性质和求和公式可得原式代值计算可得【详解】∵{an}{bn}为等差数列∴∵=∴故答案为【点睛】本题考查等差数列的性质和求和公式属基础题 解析:1941【解析】【分析】由等差数列的性质和求和公式可得原式1111S T =,代值计算可得. 【详解】∵{a n },{b n }为等差数列, ∴939393657846666222a a a a a a a b b b b b b b b ++=+==++ ∵61111111111622a S a a T b b b +==+=211319411341⨯-=⨯-,∴661941a b =, 故答案为1941. 【点睛】 本题考查等差数列的性质和求和公式,属基础题.19.【解析】设等差数列的公差为d∵且成等差数列∴解得 ∴解析:21n -【解析】设等差数列{}n a 的公差为d ,∵35a =,且1S ,5S ,7S 成等差数列,∴111125,7211020a d a a d a d +=⎧⎨++=+⎩解得11,2a d =⎧⎨=⎩ ∴21n a n =- 20.93【解析】【分析】运用等比数列通项公式基本量的计算先求出首项和公比然后再运用等比数列前项和公式求出前项和【详解】正项等比数列满足即则有代入有又因为则故答案为【点睛】本题考查了求等比数列前项和等比数 解析:93【解析】【分析】运用等比数列通项公式基本量的计算,先求出首项和公比,然后再运用等比数列前n 项和公式求出前5项和.【详解】正项等比数列{}n a 满足2418-=a a ,6290-=a a ,即24222218,90a q a a q a -=-=则有()()()22222118,1190a q a q q -=-+=代入有221=5,4q q +=又因为0q >,则212,6,3q a a =∴== ()553129312S ⨯-∴==-故答案为93【点睛】本题考查了求等比数列前n 项和等比数列通项公式的运用,需要熟记公式,并能灵活运用公式及等比数列的性质等进行解题,本题较为基础.三、解答题21.(1 ; (2) 【解析】【分析】(Ⅰ)已知等式括号中第一项利用同角三角函数间基本关系化简,整理后求出cosB 的值,确定出sinB 的值,(Ⅱ)利用余弦定理表示出cosB ,利用完全平方公式变形后,将a+b ,b ,cosB 的值代入求出ac 的值,再由sinB 的值,利用三角形面积公式即可求出三角形ABC 面积.【详解】(Ⅰ)由()3cos cos tan tan 11A C A C -=得,sin sin 3cos cos 11cos cos A C A C A C ⎛⎫-= ⎪⎝⎭, 3sin sin cos cos )1A C A C ∴-=(,即()1cos 3A C ∴+=-, 1cos 3B ∴=,又0B π<< , sin 3B ∴=. (Ⅱ)由余弦定理得:2221cos 23a c b B ac +-== ()222123a c acb ac +--∴=,又a c +=,b =9ac =,1sin 2ABC S ac B ∆∴==. 【点睛】 本题考查了余弦定理,两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.22.(1)56π;(2)14 【解析】【分析】(1)利用正弦定理化简已知等式即得A=56π.(2)先根据△ABC 的面积S =4c 2得到b =c ,再利用余弦定理得到a c ,再利用正弦定理求出sin C 的值.【详解】(1)因为asin B =-bsin)3A π+(,所以由正弦定理得sin A =-sin )3A π+(, 即sin A =-12sin A-2cos A ,化简得tan A=-3, 因为A∈(0,π),所以A =56π. (2)因为A =56π,所以sin A =12,由S2=12bcsin A =14bc ,得bc , 所以a 2=b 2+c 2-2bccos A =7c 2,则ac ,由正弦定理得sin C=sin c A a =. 【点睛】本题主要考查三角恒等变换,考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理计算能力.23.(1) a n 12n =;(2) 1n n +. 【解析】【分析】(1)利用公式1n n n a S S -=-化简得到112n n a a +=,计算112a =,得到答案. (2)计算得到n b n =-,()1111111n n b b n n n n +==-++,利用裂项求和计算得到答案. 【详解】(1)根据题意,由a n +1+S n +1=1,①,则有a n +S n =1,②,(n ≥2)①﹣②得:2a n +1=a n ,即a n +112=a n ,又由a 112=, 当n =1时,有a 2+S 2=1,即a 2+(a 1+a 2)=1,解可得a 214=, 则所以数列{a n }是首项和公比都为12的等比数列,故a n 12n =; (2)由(1)的结论,a n 12n=,则b n =log 2a n =﹣n ,则()()()()()()()122311111111111223112231n n b b b b b b n n n n ++++=+++=+++-⨯--⨯--⨯--⨯⨯⨯+L L L L L =(112-)+(1231-)+……+(111n n -+)=1111n n n -=++. 【点睛】本题考查了求通项公式,裂项求和法计算前n 项和,意在考查学生对于数列公式的综合应用.24.(1)112n a n =+;(2)1422n n n S ++=-. 【解析】【分析】(1)方程的两根为2,3,由题意得233,2a a ==,在利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前n 项和公式即可求出.【详解】 方程x 2-5x +6=0的两根为2,3.由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而得a 1=32. 所以{a n }的通项公式为a n =12n +1. (2)设2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为S n , 由(1)知2n n a =122n n ++, 则S n =232+342+…+12n n ++122n n ++, 12S n =332+442+…+112n n +++222n n ++, 两式相减得12S n =34+311122n +⎛⎫+⋅⋅⋅+ ⎪⎝⎭-222n n ++ =34+111142n -⎛⎫- ⎪⎝⎭-222n n ++, 所以S n =2-142n n ++. 考点:等差数列的性质;数列的求和.【方法点晴】本题主要考查了等差数列的通项公式、“错位相减法”、等比数列的前n 项和公式、一元二次方程的解法等知识点的综合应用,解答中方程的两根为2,3,由题意得233,2a a ==,即可求解数列的通项公式,进而利用错位相减法求和是解答的关键,着重考查了学生的推理能力与运算能力,属于中档试题.25.(Ⅰ)21,n a n =+;(Ⅱ)8(41)3n n T -=. 【解析】【分析】(Ⅰ)由题意可得1, 2.p q ==则22n S n n =+,利用通项公式与前n 项和的关系可得21,n a n =+(Ⅱ) 由(1)可知212n n b +=,结合等比数列前n 项和公式计算可得数列{}n b 的前n 项和()8413n n T -=.【详解】 (Ⅰ)由14316424S p q S p q =+=⎧⎨=+=⎩ 得21, 2.2.n p q S n n ===+ 所以当1n =时,1 3.a =当2n ≥时,()()21121,n S n n -=-+-所以()()()221212121,n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦ 检验1 3.a =符合21,n a n =+(Ⅱ) 由(1)可知21,n a n =+所以2122n a n n b +==.设数列{}n b 的前n 项和为n T ,则:()()()1211212424242424444414214841.?3n nn n nn n T --=⨯+⨯++⨯+⨯=++++-=⨯--=L L 所以数列{}n b 的前n 项和为()8413n nT -=.【点睛】 本题主要考查数列通项公式与前n 项和公式的关系,等比数列前n 项和公式及其应用等知识,意在考查学生的转化能力和计算求解能力.26.(1) 21n a n =- (2)见证明【解析】【分析】(1)由题意将递推关系式整理为关于n S 与1n S -的关系式,求得前n 项和然后确定通项公式即可;(2)由题意结合通项公式的特征放缩之后裂项求和即可证得题中的不等式.【详解】(1)由n a =1n n S S --=+1(2)n =≥,所以数列1==为首项,以1为公差的等差数列,1(1)1n n =+-⨯=,即2n S n =,当2n ≥时,121n n n a S S n -=-=-, 当1n =时,111a S ==,也满足上式,所以21n a n =-; (2)当2n ≥时,111(21)(22)n na n n n n =<--111112(1)21n n n n ⎛⎫==- ⎪--⎝⎭, 所以123111123n a a a na +++⋅⋅⋅+1111111122231n n ⎛⎫<+-+-++- ⎪-⎝⎭L 313222n =-< 【点睛】给出n S 与n a 的递推关系,求a n ,常用思路是:一是利用1n n n a S S -=-转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .。

2023-2024学年北京市昌平一中高三(上)期中数学试卷【答案版】

2023-2024学年北京市昌平一中高三(上)期中数学试卷【答案版】

2023-2024学年北京市昌平一中高三(上)期中数学试卷一、本大题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项. 1.设集合A ={x |x ﹣1>0},集合B ={x |0<x ≤3},则A ∪B =( ) A .(1,3)B .(1,3]C .(0,+∞)D .(1,+∞)2.若复数z 满足z (1+i )=﹣2i (其中i 为虚数单位),则z 的共轭复数是( ) A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i3.如果a <b <0,那么下列不等式成立的是( ) A .1a<1bB .a 2<b 2C .ab<1D .ab >b 24.下列函数中是增函数的是( ) A .f (x )=﹣x B .f (x )=(23)xC .f(x)=−1xD .f(x)=√x5.已知角α的终点经过点(﹣3,4),则cos (π﹣α)=( ) A .35B .−35C .45D .−456.在△ABC 中,若a =7,b =8,cosB =17,则∠A 的大小为( ) A .π6B .π3C .5π6D .π3或2π37.已知两条不同的直线l ,m 和两个不同的平面α,β,下列四个命题中正确的是( ) A .若l ∥m ,m ⊂α,则l ∥α B .若l ∥α,m ⊂α,则l ∥m C .若α⊥β,l ⊂α,则l ⊥βD .若l ∥α,l ⊥β,则α⊥β8.设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.等差数列{a n }的公差d <0,且a 12=a 112,则数列{a n }的前n 项和S n 取得最大值时的项数n 是( ) A .5B .6C .5或6D .6或710.我们可以用下面的方法在线段上构造出一个特殊的点集:如图,取一条长度为1的线段,第1次操作,将该线段三等分,去掉中间一段,留下两段;第2次操作,将留下的两段分别三等分,各去掉中间一段,留下四段;按照这种规律一直操作下去.若经过n 次这样的操作后,去掉的所有线段的长度总和大于99100,则n 的最小值为( )(参考数据:lg 2≈0.301,lg 3≈0.477)A .9B .10C .11D .12二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡上.11.已知向量a →,b →满足a →+b →=(2,3),a →−b →=(﹣2,1),则a →−2b →= . 12.函数f (x )=sin 2(2x )的最小正周期是 . 13.已知不等式2x x 2+1≤a 对任意的x ∈R 都成立,则实数a 的最小值是 .14.已知函数f(x)={−x 2+ax +1,x ≤1ax ,x >1.①当a =1时,f (x )的极值点个数为 ;②若f (x )恰有两个极值点,则a 的取值范围是 .15.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,点M ,N 分别在线段AD 1和B 1C 1上. 出下列四个结论: ①MN 的最小值为2; ②四面体NMBC 的体积为43;③有且仅有一条直线MN 与AD 1垂直; ④存在点M ,N ,使△MBN 为等边三角形. 其中所有正确结论的序号是 .三、解答题:本大题共6小题,共85分.解答题应写出文字说明,演算步骤或证明过程. 16.(14分)已知函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)的部分图象如图所示. (Ⅰ)求f (x )的解析式;(Ⅱ)若函数g(x)=f(x)cos(x +π4),求g (x )在区间[−π4,π3]上的最大值和最小值.17.(14分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin B =√3b cos A . (Ⅰ)求角A 大小;(Ⅱ)再从以下三组条件中选择一组条件作为已知条件,使三角形存在且唯一确定,并求△ABC 的面积.第①组条件:a =√19,c =5; 第②组条件:cos C =13,c =4√2; 第③组条件:AB 边上的高h =√3,a =3.18.(14分)如图,在四棱锥P ﹣ABCD 中,平面PDC ⊥平面ABCD ,AD ⊥DC ,AB ∥DC ,AB =12CD =AD =1,M 为棱PC 的中点. (Ⅰ)证明:BM ∥平面P AD ; (Ⅱ)若PC =√5,PD =1, (i )求二面角P ﹣DM ﹣B 的余弦值;(ii )在线段P A 上是否存在点Q ,使得点Q 到平面BDM 的距离是2√69?若存在,求出PQ 的值;若不存在,说明理由.19.(14分)交通拥堵指数(TPI )是表征交通拥堵程度的客观指标,TPI 越大代表拥堵程度越高.某平台计算TPI 的公式为:TPI =实际行程时间畅通行程时间,并按TPI 的大小将城市道路拥堵程度划分为如下表所示的4个等级:某市2023年元旦及前后共7天与2022年同期的交通高峰期城市道路TP1的统计数据如图:(1)从2022年元旦及前后共7天中任取1天,求这一天交通高峰期城市道路拥堵程度为“拥堵”的概率;(2)从2023年元旦及前后共7天中任取3天,将这3天中交通高峰期城市道路TPI比2022年同日TPI 高的天数记为X,求X的分布列及数学期望E(X);(3)把12月29日作为第1天,将2023年元旦及前后共7天的交通高峰期城市道路TPI依次记为a1,a2,⋯,a7,将2022年同期TPI依次记为b1,b2,⋯,b7,记c i=a i﹣b i(i=1,2,⋯,7),c=17∑n i=1c i.请直接写出|c i−c|取得最大值时i的值.20.(14分)已知f(x)=e x﹣ax+12x2,其中a>﹣1.(Ⅰ)当a=0时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)当a=1时,求函数f(x)的极值;(Ⅲ)若f(x)≥12x2+x+b对于x∈R恒成立,求b﹣a的最大值.21.(15分)已知n为正整数,数列X:x1,x2,⋯,x n,记S(X)=x1+x2+⋯+x n,对于数列X,总有x∈{0,1},k=1,2,⋯,n,则称数列X为n项0﹣1数列.若数列A:a1,a2,⋯,a n,B:b1,b2,⋯,b n,均为n项0﹣1数列,定义数列A*B:m1,m2,⋯,m n,其中m k=1﹣|a k﹣b k|,k=1,2,⋯,n.(Ⅰ)已知数列A:1,0,1,B:0,1,1,直接写出S(A*A)和S(A*B)的值;(Ⅱ)若数列A,B均为n项0﹣1数列,证明:S((A*B)*A)=S(B);(Ⅲ)对于任意给定的正整数n,是否存在n项0﹣1数列A,B,C,使得S(A*B)+S(A*C)+S(B*C)=2n,并说明理由.2023-2024学年北京市昌平一中高三(上)期中数学试卷参考答案与试题解析一、本大题共10小题,每小题4分,共40分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典型题】高三数学上期中试卷(含答案)(3)一、选择题1.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=LA .0B .100C .100-D .102002.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④3.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸4.下列函数中,y 的最小值为4的是( )A .4y xx=+B .2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<<5.在ABC V 中,4ABC π∠=,AB =3BC =,则sin BAC ∠=( )A B C D 6.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .167.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40378.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .59.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B 相距6013km ,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .3km10.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形11.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9B .27C .54D .8112.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-1二、填空题13.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=.其中*m N ∈且2m ≥,则m =______.14.设0,0,25x y x y >>+=xy______.15.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.16.点D 在ABC V 的边AC 上,且3CD AD =,BD =,sin2ABC ∠=3AB BC +的最大值为______.17.在ABC ∆中,4a =,5b =,6c =,则sin 2sin AC=__________. 18.已知对满足4454x y xy ++=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为______.19.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______. 20.在△ABC 中,已知sinA:sinB:sinC=3:5:7,则此三角形最大内角的大小..为________.三、解答题21.设各项均为正数的数列{a n }的前n 项和为S n ,满足:对任意的n ∈N *,都有a n +1+S n +1=1,又a 112=. (1)求数列{a n }的通项公式; (2)令b n =log 2a n ,求12231111n n b b b b b b L ++++(n ∈N *) 22.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知0ccosB bsinC -=,2cosA cos A =.()1求C ;()2若2a =,求,ABC V 的面积ABC S V23.已知等差数列{}n a 中,235220a a a ++=,且前10项和10100S =. (1)求数列{}n a 的通项公式;(2)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 24.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式;(2)若6512n n S a n >--,求n 的取值范围; (3)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 25.已知函数()cos f x x x =-.(1)求函数()f x 在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域; (2)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,求a b 的取值范围.26.已知在等比数列{a n }中,2a =2,,45a a =128,数列{b n }满足b 1=1,b 2=2,且{12n n b a +}为等差数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:由题意可得,当n 为奇数时,()22()(1)121;n a f n f n n n n =++=-+=--当n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以()1231001399a a a a a a a ++++=+++L L ()()()2410021359999224610099100a a a ++++=-++++-++++++=L L L ,故选B.考点:数列的递推公式与数列求和.【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与运算能力,属于中档题.本题解答的关键是根据给出的函数()22(){()n n f n n n =-当为奇数时当为偶数时及()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分组求和的方法得到数列{}n a 前100项的和.2.C解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.3.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。

故选:B . 【点睛】本题考查等差数列应用问题,考查等差数列的前n 项和与通项公式的基本量运算,属于中档题.4.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值;选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).5.C解析:C 【解析】试题分析:由余弦定理得22923cos5,4b b π=+-⋅==.由正弦定理得3sin sin4BAC =∠sin BAC ∠= 考点:解三角形.6.A解析:A 【解析】 【分析】利用正弦定理角化边可构造方程2cos cos bC C a=,由cos 0C ≠可得2a b =;利用ABC ACD BCD S S S ∆∆∆=+可构造方程求得3cos 24C =,利用二倍角公式求得结果.【详解】由正弦定理得:22224cos a b c b C +-=则22224cos 2cos cos 22a b c b C bC C ab ab a+-===ABC ∆Q 为斜三角形 cos 0C ∴≠ 2a b ∴=ABC ACD BCD S S S ∆∆∆=+Q 1112sin sin 2sin 22222C Cb b C b b b b ∴⋅=⋅+⋅即:2sin 4sin cos 3sin 222C C CC ==()0,C π∈Q 0,22C π⎛⎫∴∈ ⎪⎝⎭ sin 02C ∴≠ 3cos 24C ∴= 291cos 2cos 1212168C C ∴=-=⨯-= 本题正确选项:A 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用、二倍角公式求三角函数值等知识;关键是能够通过面积桥的方式构造方程解出半角的三角函数值.7.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.8.A解析:A 【解析】 【分析】先画不等式组表示的平面区域,由图可得目标函数(0,0)z ax by a b =+>>何时取最大值,进而找到a b ,之间的关系式236,a b +=然后可得23123()(23)6a b a b a b+=++,化简变形用基本不等式即可求解。

相关文档
最新文档