ChinaDataMap liu
AnEmpiricalSoilLossEquation-tucson.ars.ag.gov
An Empirical Soil Loss EquationLiu Baoyuan, Zhang Keli and Xie YunDepartment of Resources and Environmental Sciences, Beijing Normal University, Key Laboratory of Environmental Change and Natural Disaster, the Ministry of Education of China,Beijing 100875, PR ChinaAbstract: A model was developed for estimating average annual soil loss by water on hillslope for cropland, which is called Chines Soil Loss Equation (CSLE). Six factors causing soil loss were evaluated based on soil loss data collected from experiment stations covering most regions of China and modified to the scale of Chinese unit plot defined. The model uses an empirical multiplicative equation, A=RKLSBET, for predicting interrill erosion from farmland under different soil conservation practices. Rainfall erosivity (R) was the product of rainfall amount and maximum intensity of 10min, and also was estimated by using daily rainfall data. The value of soil erodibility (K), the average soil loss of unit plot per rainfall erosivity, for 6 main soil types was calculated based on the data measured from unit plots and other data modified to the unit plot level. The method of calculating Kfrom soil survey data for regions without measured data was given. The slope length and steepness factors was calculated by using the equations in USLE if slope steepness is less than 11 degree, otherwise the steepness factor was evaluated by using a new seep slope equation based on the analysis of measured soil loss data from steep slope plots within China.According to the soil and water conservation practices in China, the values of bio-control, engineering-control, and tillage factors were estimated.Keywords: Chines soil loss equation, soil loss, unit plot1 IntroductionSoil loss equation is to predict soil loss by using mathematical methods to evaluate factors causing soil erosion. It is an effective tool for assessing soil conservation measures and making land use plans. Universal soil loss equation is an empirical equation developed during 1950’s that had been applied for natural resources inventory successfully in the US and revised in 1990’s. From 1980’s the process-based models for prediction of soil loss have been studied though the world, such as WEPP (Water Erosion Predict Project, Nearing et al., 1989), GUEST (Griffith University Erosion System Template, Misra and Rose, 1996), EUROSEM (the European Soil Erosion Model Morgan etal., 1998) and LISEM (Limburg Soil Erosion Model, De Roo and Wesseling, 1996). There have been many studies on soil erosion models and related experiments since 1940's, but the models were limited in local levels and difficult to expand to broad regions due to data collected without universal standard. So far there is not any soil loss equations that could be applied through China with minor errors. The objective of this study is to develop a soil loss equation used within China based on measured data from Chinese unit plots and data from many plots modified to Chinese unit plot, which is called Chinese soil loss equation (CSLE).2 Model descriptionSoil loss is a process of soil particle detachment by raindrops and then transported by runoff from the rainfall. Many factors like soil physical characteristics slope features, land surface cover etc. will influence soil loss amount, but they have interactions. It is necessary to distinct their effects on soil loss mathematically and to evaluate them on the same scale in order to improve the accuracy of the model. Unit plot is such a good method to solve the problem. The normalized data covering the China by modified to unit plot supported the development of Chines soil loss equation. In addition,22 two features of soil erosion in China are distinctive and should be considered in the equation. One issoil erosion with steep slope, and the other is the systematical practices for soil conservation during thelong history of combating soil erosion, which could be classified as biological-control, engineering-control and tillage measures. So the Chinese soil loss equation was express as followsafter the analysis of data collected from most regions of ChinaA = RKSLBET (1)where A is annual average soil loss (t/ha), R is rainfall erosivity (MJ mm/(h ha y)), K is soilerosibility (t ha h/(ha MJ mm y)), S and L are dimensionless slope steepness and slope lengthfactors, B , E , and T are dimensionless factors of biological-control, engineering-control, and tillagepractices respectively. The dimensionless factors of slope and soil conservation measures were defined as the ratio of soil loss from unit plot to actual plot with aimed factor changed but the samesizes of other factors as unit plot. Chinese soil loss equation is to predict annual average soil lossfrom slope cropland under different soil conservation practices.To evaluated factors in the equation, about 1841 plot-year data were analyzed. Of these, 214plot-year data from 12 plots and 1143 rainfall events from 14 weather stations were used to evaluaterainfall erosivity. The Chinese unit plot was determined by analyzing 384 plot size data, and about200 plot-year data from 12 plots modified to unit plot were used to evaluate erodibility for 6 types ofsoil. About 30 plot-year data from steep plots modified to unit plot was used to establish the steepslope factor equation. Other plot data was used to calculate the values of biological-control, engineering-control and tillage factors.3 Factor calculations for the equation3.1 Rainfall erosivity (R )A threshold for erosive rainfall of 12mm was estimated, close to that suggested by Wischmeierand Smith (1978), 12.7mm. After comprehensive considering the accuracy of rainfall erosivity, thedata availability and calculation simplicity, the rainfall index of a rainfall event for Chinese soil losserosion was defined. It is the product of rainfall amount (P ) and its maximum 10-min intensity (I 10),and the relationship between PI 10 and the universal rainfall index EI 30 was also estimated as follows:EI300.1773PI 10 R 20.902 (2)where E is the total energy for a rainfall event (MJ/ha), I 30 and I 10 are the rainfall maximum 30min and10min intensities respectively (mm/hr), P is the rainfall amount (mm). The annual rainfall erosivityis the sum of PI 10 for total rainfalls through the year. Actually, it is also difficult to get the rainfallevent data. To apply the weather data from weather stations covering the China, an equation functionfor estimating half-month rainfall erosivity by using daily rainfall data was developed.1010.184(n hm d d i i R P ==∑)IR 20.973 (3)where R hm is the rainfall erosivity for half-month (MJ mm/h ha), P d is the daily rainfall amount (mm)and I 10d is the daily maximum 10min rainfall intensivity (mm/h). I =1, …, n is the rainfall days withina half-month. If there is no I 10d available, R hm was also calculated by using only daily rainfall amount.1()n hm d i i R P βα==∑ (4)where α and β are fitted coefficients and other variables had the same meaning as above.Seasonal rainfall erosivity distribution could be estimated by the sum of R hm . To plot Chineseisoerodent map for estimation or interpolation of local values of average annual rainfall erosivity in23 any place, the empirical relationships by using different rainfall available data were estimated (not listed). Users can choose different equations to calculate average annual rainfall erosivity according to the data availability.3.2 Soil erodibility (K)Soil erodibility is defined as soil loss from unit plot with 22.1m long and 9% slope degree per rainfall erosion index unit (Olson and Wischmeier, 1963). Different from the US, much of soil loss was from steep slope in China. So the Chinese unit plot was defined as a 20m long, 5m wide and 15°degree slope plot with continuously in a clean-tilled fallow condition and tillage performed upslope and downslope. The suggestion of Chinese unit plot made data measured be used to evaluate K values as much as possible without large errors. Because 15° is the middle values for most plots in China. Modified data measured from both plots of less than 15° and larger than 15° to a unit plot had the relative minimum errors.Based on the K defination and Chines unit plot, soil erodibility for 6 main soil types in China was estimated. For example, the values of K for loess were 0.61, 0.33, and 0.44 t ha h/(ha MJ mm) in Zizhou, Ansai, and Lishi in Loess Plateau of China.3.3 Slope length (L) and slope steepness (S) factorsTopography is an important factor affecting soil erosion. It is significant to quantitatively evaluate the effects of topography on erosion for predicting soil loss. The effects of topography on erosion includes slope length and steepness in terms of soil-loss estimation. In soil loss equation, factors of slope length and steepenss were cited with dimensionless values. They are values of the ratio of the soil loss from the plot with actual slope steepness or slope length to that from the unit plot.The relationship between slope length and soil loss has been studied from field or lab data for a long time. Many studies showed that the soil loss per area is proportional to some power of slope length except that the values of the exponent are slightly different. For example, Zingg (1940) derived a value of 0.6 for the slope-length exponent. Musgrave (1947) used 0.35. USLE (Universal Soil Loss Equation ) published in 1965 suggested the values of 0.6 and 0.3 respectively for slopes steeper than 10% and very long slopes, and 0.5 for other conditions. In 1978, the USLE (Wischmeier and Smith, 1978) adjusted the exponent values for different cases, 0.5 for 5% slope or more, 0.4 for slopes between 3.5% and 4.5%, 0.3 for slopes between 1% and 3%, and 0.2 for slopes less than 1%. Revised USLE (RUSLE) published in 1997 used a continuous function of slope gradient for calculating slope-length exponent.Soil erosion from the steep slope is serious in China. How slope length influences soil loss on steep slopes needs further studies. For this end, the relationship between slope length and soil loss on steep slopes was examined based on the plot data obtained at Suide, Ansai, and Zizhou on the loess plateau of China and modified to the unit plot. The results indicated that the slope-length equation in the RUSLE could not be used for soil loss prediction under the steep slope conditions. The equation for calculating soil length factor in the USLE published in 1978 could be applied into China:22.13mLλ=(5)where λ is slope-length (m), m is the slope length exponent.Slope gradient is another topographical factor affecting soil erosion. Most studies have shown that the relation of soil loss to gradient may be expressed as some exponential function or quadratic polynomial. Zingg (1940) concluded that soil loss varies as the 1.4 power of percent slope, and Musgrave (1947) recommended the use of 1.35. Based on a substantial number of field data, Wischmeier and Smith (1965) derived a slope-gradient equation expressed as quadratic polynomial function of gradient percent. Having analyzed the data assembled from plots under natural and simulated rainfall, McCool et al., (1987) found that soil loss increased more rapidly from the slopes24 steeper than 5° than that from slopes less than 5°, and he recommended two different slope steepnessfactor equations for different ranges of slopes:S =10.8sin θ + 0.03 θ 5° (6-1)S =16.8 sin θ – 0.5 θ > 5°(6-2) These equations were established based on soil loss data from gentle slopes, and have not beentested for steep slope conditions. We used soil loss plot data from Suide, Ansai, and Tianshui on theloess plateau of China to test the equations. The results showed that great errors were produced whenusing equations suggested by McCool et al ., (1987) for predict soil loss from slopes steeper than 10°. After the slope degree was larger than 10°, soil loss from steep slopes increased ripedly. Based theregression analysis of our data, am equation to calculate slope steepness factor for seep slopes wasdeveloped:S =21.91 sin θ – 0.96 θ10°(6-3)So in Chinese soil loss equation, slope steepness factor could be estimated by using equation (6-1)to (6-3) under different slope conditions3.4 Bilogical-control (B ), engineering-control (E ), and tillage (T ) factorsDuring the development of the historical agriculture traditions in China, the systematical practicesfor soil and water conservation formed. They could be divided into three categories: biological-control, Engineering-control and tillage measures. Biological-control practices include theforest or grass plantation for reducing runoff and soil loss. Engineering-control practices refer to thechanges of topography to reduce runoff and soil loss by engineering construction like terrace, check-dams. Tillage practices are the measures taken by farmland equipment. The difference between engineering and tillage is that the latter does not change the topography and is only applied onthe farmland.Table 1 Estimated values of biological-control factor for cropsSeedbed Establishment Development Maturing crop Growing season Annual averageBuckwheat 0.71 0.54 0.19 0.21 0.74 0.74 Potato 1.00 0.53 0.47 0.30 0.47 0.50 Millet 1.00 0.57 0.52 0.52 0.53 0.55 Soybean 1.00 0.92 0.56 0.46 0.51 0.53 Winter wheat 1.00 0.17 0.23Maize intercropping with soybean1.00 0.40 0.26 0.03 0.28 Hyacinth Dolichos 1.00 0.70 0.46 0.57Table 2 Estimated values for factors of woodland and grassland vegetationSophora Korshinsk Peashrub Seabuckthorn Seabuckthorn & PoplarSeabuckthorn & Chinese Pine Erect Milkvetch Sainfoin Alfalfa First year Sweetclover Second year Sweetclover0.004 0.054 0.083 0.144 0.164 0.067 0.160 0.256 0.377 0.08325Many studies gave the B values for different biologic measures in China, but they were not from the universal calculated methods and could not be used directly in soil loss equation. Based on the defination of B values, the ratio of soil loss from plots with some biological-control practice to that from unit plot, we calculated B values for some types of biological-control practices (Table 1). Some values for typical engineering-control and tillage measures in China were summarized (not listed).References[1] Nearing, M.A., G.R. Foster, L.J. Lane, and S.C. Finkner. A process-based soil erosion modelfor USDA-water erosion prediction project technology. Transactions of The ASAE, 1989, 32(5):1587-1593.[2] Misra R K, Rose C W. Application and sensitivity analysis of process -based erosionmodel—GUEST[J]. European Journal Soil Science. 1996,10:593-604.[3] Morgan R P C, Quinton J N, Smith R E, et al., The European soil erosion model (EUROSEM): Adynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes and Landforms, 1998,23:527-544.[4] De Roo A P J. The LISEM project: an introduction. Hydrological Processes. 1996, vol.10:1021-1025.[5] Wischmeier W H, Smith D D. Predicting rainfall erosion losses[R]. USDA AgriculturalHandbook No.537. 1978.[6] Olson,T.C., and Wischmeier,W.H. 1963. Soil erodibility evaluations for soils on the runoff anderosion stations. Soil Science Society of American Proceedings 27(5):590-592.[7] Zingg A W. Degree and length of land slope as it affects soil loss in runoff[J]. AgriculturalEngineering, 1940,21: 59-64.[8] Musgrave G W. The quantitative evaluation of factors in water erosion A first approximation[J].Journal Soil and Water Cons, 1947, 2:133-138.[9] Renard K G,Foster G R,Weesies G A et al., RUSLE―A guide to conservation planning with therevised universal soil loss equation[R]. USDA Agricultural Handbook No.703. 1997.[10] McCool, D. K. Brown, L.C., Foster, G. R., et al., Revised slope steepness factor for theuniversal soil loss equation. TRANSACTIONS of the ASAE, 1987, 30(5): 1387-1396.。
23563416_西南三江杂岩带景洪南部地区晚泥盆世火山岩的发现及意义
1000 0569/2021/037(02) 0481 96ActaPetrologicaSinica 岩石学报doi:10 18654/1000 0569/2021 02 09西南三江杂岩带景洪南部地区晚泥盆世火山岩的发现及意义谢士稳1,2 刘福来2 王舫2XIEShiWen1,2,LIUFuLai2andWANGFang21 中国地质科学院地质研究所,北京离子探针中心,北京 1000372 中国地质科学院地质研究所,自然资源部深地动力学重点实验室,北京 1000371 BeijingSHRIMPCenter,InstituteofGeology,ChineseAcademyofGeologicalSciences,Beijing100037,China2 KeylaboratoryofDeep EarthDynamicsofMinistryofNaturalResources,InstituteofGeology,ChineseAcademyofGeologicalSciences,Beijing100037,China2020 09 25收稿,2020 12 13改回XieSW,LiuFLandWangF 2021 PetrogenesisofLateDevonianvolcanicrocksintheJinghongarea,southwesternSanjiangregionanditsgeologicalimplications ActaPetrologicaSinica,37(2):481-496,doi:10 18654/1000 0569/2021 02 09Abstract Inthisstudy,SHRIMPzirconU Pbage,Hf Oisotopes,andwhole rockgeochemicaldataarereportedforthenewly discoveredLateDevoniandaciticvolcanicrocksfromtheJinghongarea,southwesternSanjiangregion Newdatingresultsrevealthatthevolcanicrockswereformedat362 3±3 4Ma TheserockshavemoderateSiO2(62 87%~66 29%),MgO(2 15%~2 49%),andMg#(44~47)values TheyarecharacterizedbyhighNa2Ocontents(4 77%~5 51%)withNa2O/K2Oratiosof2 1~3 3,andlowY(12 5×10-6~15 3×10-6)andYb(1 38×10-6~1 70×10-6)contents Thesegeochemicalresultsaresimilartothoseofhigh SiO2adakites,indicatingthattheywerederivedbypartialmeltingofthesubductedoceanicslab ThelowzirconεHf(t)values(+0 87~+3 27)andrelativelyhighzirconδ18O(6 31‰~7 64‰)values,andwhole rockTh/Yb(4 86~7 78)and(La/Sm)N(3 62~4 56)suggestthatsubductedoceanicsedimentswereassimilatedintoorsediment derivedmeltincorporatedintothemagma IncombinationwithregionalPaleozoicmagmatismandstratigraphydata,itcanbeconcludedthatthesouthernLancangjiangbeltunderwenttheLateDevonianoceanicslabsubduction,andtheprocessislikelytorepresentthesubductionoftheback arcoceanicbasinrevealedbyDazhongheandDapingzhangvolcanicrocksandvolcanic hostedmassivesulfide(VHMS) Keywords SouthernLancangjiangbelt;Jinghong;Daciticvolcanicrocks;Slabsubduction;Tethys摘 要 本文对西南三江地区景洪南部新发现的晚泥盆世英安质火山岩进行了系统的锆石U Pb年龄、Hf O同位素以及全岩地球化学研究。
26422071_江南造山带深部边界及成矿制约:来自综合地球物理的认识
1000 0569/2022/038(02) 0544 58ActaPetrologicaSinica 岩石学报doi:10 18654/1000 0569/2022 02 16江南造山带深部边界及成矿制约:来自综合地球物理的认识严加永1,2,3 吕庆田1,2 张永谦1,2 刘卫强4 王栩1,2 陈昌昕1,2 徐 1,2 刘家豪1,2YANJiaYong1,2,3,L QingTian1,2,ZHANGYongQian1,2,LIUWeiQiang4,WANGXu1,2,CHENChangXin1,2,XUYao1,2andLIUJiaHao1,21 中国地质科学院,北京 1000372 中国地质调查局中国地质科学院地球深部探测中心,北京 1000373 东华理工大学地球物理与测控学院,南昌 3300134 中国石油大学(北京)地球物理学院,北京 1022491 ChineseAcademyofGeologicalSciences,Beijing100037,China2 ChinaDeepExplorationCenter,ChinaGeologicalSurvey&ChineseAcademyofGeologicalSciences,Beijing100037,China3 SchoolofGeophysicsandMeasurement controlTechnology,EastChinaUniversityofTechnology,Nanchang330013,China4 CollegeofGeophysics,ChinaUniversityofPetroleumBeijing,Beijing102249,China2021 08 28收稿,2021 11 25改回YanJY,LüQT,ZhangYQ,LiuWQ,WangX,ChenCX,XuYandLiuJH 2022 ThedeepboundariesofJiangnanorogenicbeltanditsconstraintsonmetallogenic:Fromtheunderstandingofintegratedgeophysics ActaPetrologicaSinica,38(2):544-558,doi:10 18654/1000 0569/2022 02 16Abstract TheJiangnanorogenicbelt,locatedbetweentheYangtzeandCathaysianblocks,isakeywindowtounderstandtheevolutionanddynamicprocessoftheSouthChinaBlock,andtorevealthelarge scalemagmatismandtheaccompaniedmetalmineralresourcesinthisarea Predecessorshavemadealotofprogressinitstectonics,petrologyandoredepositscience,buttherearelong termdisputesinitsdefinition,boundaries,formationageandevolutionprocess Thefundamentalreasonisthatthedeepstructureisunclear,therefore,itisurgenttocarryoutdeepexplorationtoprovidesupportfordisputeresolution ThispaperfocusesonthedeepboundariesofJiangnanorogenicbelt,anddetectsthedensityandmagnetismboundariesandinversesthedeepelectricalstructuremainlybyusinggravityandaeromagneticdatatogetherwithsupplementedmagnetotelluricdata Combinedwiththeclusteranalysisresultsof75elementstreamsedimentgeochemicaldata,itisconsideredthattheQinhangjunctionbeltisthesoutheastboundaryoftheJiangnanorogenicbelt,andthepossibledeepboundaryinthenorthoftheJiangnanorogenicbeltisfurtherinferredanddetermined Onthisbasis,thefaultstructuresaroundtheJiangnanorogenicbeltareidentifiedandre determined,andthecontrolofregionalstructuresongoldandcopperdepositsisanalyzed ItisconsideredthatthedeepboundariesanddeepfaultsoftheJiangnanorogenicbeltplaytheroleof“oreguidepath”inthemetallogenicsystem,andprovidemineralswhichdominatedbymantlederivedcomponentssuchascopperandgoldfromthebeginningoftheformationofdeepfaults Themineralizationisinplaceattheappropriateposition,andthecomplextectonicmovementinthelaterstagereactivatesthelocalposition,enrichesandmigratestheore formingmaterialsagain,andformscoppergolddepositsofdifferentagesanddifferenttypesinfavorablepositionssuchassecondaryfaults Therefore,thefaulttectonicidentifiedframeworkinthispapercanalsoprovideanindicationfortheexplorationformantlecorrelatedmetaldepositsKeywords Jiangnanorogenicbelt;Gravityandmagneticdata;Integratedgeophysics;Resistivityinvertedfrommagnetotelluricdata;Geochemicalclusteranalysis;Pathwayofmineralsystem摘 要 江南造山带位于组成华南大陆的扬子地块和华夏地块之间,是揭示华南陆块演化及其动力学过程、探索该地区大规模岩浆多金属成矿作用的关键窗口。
用Matlab绘制中国行政区划地图
⽤Matlab绘制中国⾏政区划地图步骤1:从⽹站下载数据⽂件。
选择 Country: China,再选择 Shapefile,会下载得到⼀个名为 “gadm36_CHN_shp.zip” 的压缩⽂件。
步骤2:解压数据⽂件。
解压得到⼀系列⽂件,其中 *.shp 是 Matlab 绘图⽤到的。
其中,gadm36_CHN_0.shp、gadm36_CHN_1.shp、gadm36_CHN_2.shp、gadm36_CHN_3.shp,分别表⽰国、省、市、县四级⾏政区划的详细经纬度界线。
步骤3:加载数据⽂件。
使⽤ shaperead 函数可以直接加载 Shapefile 数据⽂件。
ShapeFile = 'D:\data\gadm36_CHN_shp\gadm36_CHN_0.shp';MapData = shaperead(ShapeFile);MapData.GeometryMapData.BoundingBocMapData.LontMapData.GID_0_0步骤 App:台湾省地图缺失问题的解决步骤1-2加载的 <China> 地图,缺少了台湾省,并不是完整的中国!需要重新执⾏步骤1⾄步骤2,选择“Taiwan”,下载得到台湾省的省、市、县、镇四级⾏政区划地图。
⽽且,台湾省的地图级别设置不对,在步骤3合并CHN 和 TWN 的地图时,需要调整对应的级别,使它的“国”属性消失,才能正常显⽰。
这⾥给出⼀个中国的省级⾏政区划绘制的⽰例:ShapeFile = 'D:\data\gadm36_CHN_shp\gadm36_CHN_1.shp'; % CHN的省界划分ShapeFile_TWN = 'D:\data\gadm36_TWN_shp\gadm36_TWN_0.shp'; % TWN 的省界划分MapData = shaperead(ShapeFile);MapData_TWN = shaperead(ShapeFile_TWN);hold on;plot(MapData.Lon, t, '.')plot(MapData_TWN.Lon, MapData_t, '.')。
中国基于哈蒙德方法的自动化地貌分类说明书
Journal of Computer and Communications, 2020, 8, 23-30https:///journal/jccISSN Online: 2327-5227 ISSN Print: 2327-5219Automated Landform Classification of China Based on Hammond’s MethodBaoying YeSchool of Land Science and Technology, China University of Geosciences, Beijing, ChinaAbstractThe automatic classification of Macro landforms was processed with the pro-gram developed by Hammond’s Manual procedures, which based on proper-ties of slope, local relief, and profile type, which consists of 5 landform types, 24 landform class and 96 landform subclasses. This program identified land-form types by moving a square window with size of 9.8 km × 9.8 km. The da-ta includes 816 sheets of topological map with a scale of 1:250,000. The DEM were buildup with the contours and mark points based on this data with a cell size of 200 m, and merge into one sheet. The automated classification was processed on this DEM data with a AML program of ArcGIS 10.X Worksta-tion. The result indicates it produced a classification that has good resemblance to the landforms in China. The maps were produced respectively with 5 types, 16 classes and, 90 subclasses The 5 Landform types of landforms were Plains (PLA), 20.25% of whole areas; Tablelands (TAB) of 3.56%; Plains with Hills or Mountains (PHM) of 32.84%; Open Hills and Mountains (OHM) of 18.72%; H ills and Mountains(H M) of 24.63%. In the result of 24 landform classes, there are not some classes, such as irregular plains with low relief; open very low hills, open low hills; very low hills, low hills, moderate hills. The result of 96 landform subclass is similar to the 24 class.KeywordsLandform Classification, Hammond, DEM1. IntroductionTo some degree, landforms influence the distribution and evolution of ecology and other environmental factor, which is the core and the basic content of geography [1]. Landform morphological classification is the basic unit of landform, and al-so the first step in solving geomorphic problems. The landform classifications of large scale were started in 1950 in China. In 1956, the 1:4,000,000 Landform Clas-H ow to cite this paper: Ye, B.Y. (2020) Automated Landform Classification of China Based on H ammond’s Method. Journal of Computer and Communications , 8, 23-30. https:///10.4236/jcc.2020.86003Received: June 1, 2020 Accepted: June 26, 2020 Published: June 29, 2020B. Y. Yesifications and Region Planning Map of China, according to the altitude and sur-face cutting degree (Table 1). In 1979, the Mapping Standard of 1:1,000,000Landform Classifications in China were completed, and classified the landformtypes with the altitude, relative altitude and the surface cutting degree, accordingto the classification schemes of З.A.Cварицевская (1975). Until 1989, only 15sheets landform maps (1:1,000,000 scale) were completed. This mission was sus-pended for a long time. Until 2009, the 1:1,000,000 scale landform atlases ofwhole China is accomplished [2]. The two landform classifications schemes above,is based on manual process.The 1:40,000,000’s scheme is based on forms and exogenic forces, and manyparameters are not quantitative. There were many quantitative factors is introducedinto the 1:1,000,000’s scheme, such as altitude, local relief, and slope. The localrelief is classified into 4 classless, less than 500 m is low relief hills; 500 - 1000 mis moderate relief hills, 1000 - 2500 m is high relief mountains and more than2500 m is very high relief mountains [3]. There are also some papers adoptedlocal reliefs but different classes in whole China’s landform scheme. Cai Zongxin(1986) classified grade into 5 classes, less than 20 m is plains; 20 - 200 m is hills,200 - 500 is low mountains, 500 - 1500 m is middle mountains and more than1500 m is high mountains (Table 2) [3]. Tu Hanming et al. [4] classified localrelief of China into 7 classes based on the statistics of samples from whole China’sDEMs. In 2009, Zhou Chenghu et al., classified the landform of China into 7types and 25 classes, according to slope, relief and altitude (Table 3).In 1990’s, there are some scholars contributing to extracting the single landformparameters in China, such as ridge line and valley line [5] [6] [7], summit [8],shoulder line of valleys [9] [10], micro topography [11]. All above are based onthe regions of simple landforms evolutions. There are many limits to automaticallywhole China’s landform classifications. Liu Aili et al. (2006) [12] attempted toautomate classify the landforms of whole China based on image classificationsmethods. But the sampling cell is 1000 m × 1000 m, which is coarse enough toomit many small landform units.Table 1. Mountain and hills classification of China.Class Subclass Altitude(m) Surface cutting degreeExtremely high mountain >5000 >1000High mountainHigh mountain3500 - 5000>1000 Mid-high mountain 500 - 1000 Low-high mountain <500Middle mountain High-middle mountain1000 - 3500>1000 Middle mountain 500 - 1000 Low-middle mountain <500Low mountain Mid-low mountain500 - 1000500 - 1000 Low mountain 100 - 500Hills <500B. Y. Ye Table 2. The basic geomorphologic index of China.Types Relative altitudePlain <20Hills 20 - 200Low mountain 200 - 500Middle mountain 500 - 1500High mountain >1500Table 3. Basic morphological types of land geomorphology in China.Altitude Low altitude Mid-altitude High altitude Extremely highaltitude relief <1000 1000 - 3500 3500 - 5000 >5000Plain (<30) Low altitude plain Mid-altitudeplainHigh altitudeplainExtremely highaltitude plainPlatform > 30 Low altitudeplatform Mid-altitudeplatformHigh altitudeplatformExtremely highaltitude platformHills < 200 Low altitude hills Mid-altitude hills High altitude hills Extremely high altitude hillsSmall-relief mountain 200 - 500 Small-relief lowmountainSmall-reliefmid-mountainSmall-relief highmountainSmall-reliefExtremely highmountainMid-relief mountain 500 - 1000 Mid-relief lowmountainMid-reliefmid-mountainMid-reliefhigh mountainMid-reliefExtremely highmountainBig-relief mountain 1000 - 2500Big-reliefmid-mountainBig-reliefhigh mountainBig-reliefExtremelyhigh mountainExtremelyBig-relief mountain > 2500ExtremelyBig-reliefhigh mountainExtremelyBig-relief Extremelyhigh mountainIn this paper, we classified the landform of whole China in Hammond’s scheme according of slope, local relief, and profile type [13] [14]. We compare the result with and the scheme by Zhou Chenghu et al. (2009) [2]. The computer-program is based on the approach developed by Dikau et al. [15]. In order to compare with the international landform maps, the parameters of Hammond’s scheme are kept unchanged.2. Hammond Landform Classification2.1. ConceptHammond’s hierarchic landform classification is based on properties of slope, localrelief, and profile type.1) The slope is divided into 4 levels based on the percent of area gently sloping. If the inclination is below 8%, we call this gently slope (Figure 1). The percent area is calculated in moving widow (9.8 km × 9.8 km).B. Y. YeFigure 1.% area local gently sloping (4 × 4).A: 31.25%, B: 18.75%, C: 37.5%, D: 12.5%.2) Local relief is the difference between maximum and minimum elevation inmoving window. Local relief had a non-linear relationship with horizontal lengthby examining a variety of mountain belts [16]. Tu Hanming et al. [4]-[17] calcu-lated the length scale with the sampling data from the whole land China, 5 opti-mum statistical length was calculated corresponding to different map scale, whichis 2, 6, 16, 20, 22 (km2). In this paper, we choose the 9.8 km × 9.8 km in order tocompare with the Hammond’s classification.3) Profile type subdivide tablelands as upland units and plains with hills ormountains as lowland unit [15].With these three parameters, Hammond classified 96 landform subclasses theo-retically (Table 4, Table 5). Hammond used only 45 subclasses were common inU.S. [18]. He generalized his results by merging areas smaller than 2072 km2 intoadjacent units to avoid cluttering at a 1:5,000,000 map. Dikau et al. [15] devel-oped automated approach identified all 96 landforms units without generaliza-tion.2.2. MethodThe data were processed in ArcGIS 10.x Workstation with 64 bit windows OS inHp xw8400. The Python and ARC/INFO AML were the scripting languages forbatching the data. The procedures mainly include two steps, the DEM buildupand automated classification:The DEM buildup:The contours and mark points features were extractedfrom the terrain layer. For eliminating the boundary effect, 16 sheets merge intoone map before generation of DEM, then clipping the DEM with the boundaryof one sheet. The whole China consists of 61 maps with a scale of 1:1,000,000.The DEM were buildup with the contours and mark points with ARC/INFOcommand of “generate <>”, and merge into one sheet with 100 m.Automated classification: The DEM were resampled into 200m.The movingwindow is 49 × 49 (9.8 km × 9.8 km). The three parameter layers were derivedfrom DEM firstly, and then they were overplayed to generate one 96-subclasseslandform map. A AML was developed according to the Dikau’s approach. Wemerged the three parameter layers to yield a landforms map.B. Y. YeTable 4. Hammond’s landform classification.Percent of area gently sloping Local relief Profile type1) more than 80 1. 0 - 30 1. >75% in lowland2) 50 - 80 2. 30 - 91 2. 50% - 75% in lowland3) 20 - 50 3. 91 - 152 3. 25% - 50% in lowland4) less than 20 4.152 - 305 4. <25% in lowland5. 305 > 9146. 5 > 914Table 5. The landform classifications of China.Landform Class Subclass5 types area% 24 classes area% 96 subclasses area%Plains (PLA) 20.25 flat or nearly flat plains 10.86 111, 112, 113, 114 3.41 3.15 2.64 1.67smooth plains with some local relief 9.37 121, 122, 123, 124 4.78 2.51 1.52 0.56irregular plains with moderate relief 0.02 221, 222, 223, 224 0.02 0.01tablelands (TAB) 3.56 tablelands with moderate relief 1.34 133, 134, 233, 234 1.04 0.27 0.02tablelands with considerable relief 1.50 143, 144, 243, 244 0.77 0.22 0.38 0.13tablelands with high relief 0.70 153, 154, 253, 254 0.10 0.05 0.37 0.19tablelands with very high relief 0.03 163, 164, 263, 264 0.01 0.01 0.01plains with hills or32.84 plains with hills 7.25 131, 132, 231, 232 4.73 2.17 0.20 0.15 mountains (PHM)plains with high hills 12.64 141, 142, 241, 242 7.10 1.89 2.84 0.80plains with low mountains 12.45 151, 152, 251, 252 3.19 0.29 8.04 0.93plains with high mountains 0.50 161, 162, 261, 262 0.04 0.00 0.46 0.01Open hills and18.72 open high hills 1.14 341, 342, 343, 344 0.44 0.41 0.24 0.05 mountains (OPM)open low mountains 14.85 351, 352, 353, 354 10.37 2.53 1.34 0.61open high mountains 2.73 361, 362, 363, 364 2.25 0.19 0.12 0.16Hills and24.63 low mountains 7.10 451, 452, 453, 454 3.73 2.08 0.99 0.30 mountains (HMO)high mountains 17.52 461, 462, 463, 464 7.29 5.19 3.27 1.783. Study Area and DataThis automated process was tested on almost whole China, which consists ofmainland, Hainan and Taiwan islands. The data includes 816 sheets of topologi-cal map with a scale of 1:250,000, which were digitalized by National GeometricsCenter of China in 1998. The content consists of 14 layers: hydrological system,Residential, Railway, Road, boundary, Terrain, and some auxiliary ones. The ter-rain data include contours and mark point, and the contours interval is 50 or100 m.B. Y. Ye4. Result and AnalysisThe maps were constructed respectively with 5 types, 16 classes and 90 subclasses(Table 2, Figure 2, Figure 3). The whole area of China is 9482552.72 km2 be-sides some small island were not calculated. The 5 Landform types of landformswere Plains (PLA), 20.25% of whole areas; Tablelands (TAB) of 3.56%; Plainswith Hills or Mountains (PHM) of 32.84%; Open Hills and Mountains (OHM)of 18.72%; H ills and Mountains (H M) of 24.63%. The PLA were located inSongnen Plain, Sanjiang Plain, Huabei Plain, Huaihai Plain, Jianghai Plain, Ale-tai Basin, Talimu Basin, Loess Plateau, etc. The TAB were scattered in wholeChina, which each patch is small. The PHMs were located in Xiao-Xing’anlingMountains, Shandong peninsula, Inner-Mongolian, Qinghai-Tibet Plateau, SichuanBasin, Guangxi and H unan province. The OH M were located in Da-Xing’anlingMountains, Shaanxi province, Guizhou province and scatted in North of TibetPlateau. The HMO is located in East of Tibet Plateau, around the Sichuan Basin,Yunnan, Fujian Taiwan province. The result indicates it produced a classificationthat has good resemblance to the landforms in China.Some classes were not generated, such as irregular plains and low hill. ThePLA is primary flat or smooth without some relief. The altitude in hill or moun-tain region is high, so there are almost not low hill.According to Hammond’s scheme, the area of TAB is only 3.56%. The area oftableland in some manual scheme is much more than that [19]. There are severallarge tablelands, such as Qinghai-Tibet Plateau, Mongolia Plateau, Loess Plateau,Figure 2. 5-type landforms map of China land.B. Y. YeFigure 3. 24-classes landforms map of China land.Yun-gui Plateau. In Figure 2, Qinghai-Tibet Plateau is mainly classified into PHM; Mongolia Tableland and Loess Tableland is classified into PLA or PHM and the Yun-gui Tableland is classified into HMO. There are many hills or moun-tains in tableland in China. The basin is basically classified into PLA, but the Si-chuan Basin is mainly classified into PHM or PLA.5. ConclusionAutomated landform classification produced a classification that has good resem-blance to those of manual approach. However, some classes are different from manual method. There are much more complex landform in China, and the geo-morphologic evolution is much more different, so it needs to improve the me-thod to classified more reasonable. Furthermore, the effects of scale and genera-lization also should be paid special attention.Conflicts of InterestThe author declares no conflicts of interest regarding the publication of this pa-per.B. Y. YeReferences[1]Yan, S.X. (1985) Geomorphology. Shanghai High Education Press.[2]State Key Laboratory of Resources and Environmental Information System (2009).[3]Su, S.Y. and Li, J.Z. (1998) Geomorphology Mapping.[4]Tu, H.M. and Liu, Z.D. (1991) Study on Amplitude in China. Acta Geodaetica etCartographica Sinica, 20, 311-319.[5]Liu, Z.H. and Huang, P.Z. (2003) Derivation of Skeleton Line from TopographicMap with DEM Data. Science of Surveying and Mapping, 28, 33-38.[6]Jin, H.L., Gao, J.X. and Kang, J.R. (2005) A Study of Extracting Terrain FeatureLines Based on Vector Contour Data. Bulletin of Surveying and Mapping, 67, 54-55.[7]Qu, J.H., Cheng, J.L. and Cui, X.G. (2007) Automatic Extraction for Ridge and Val-ley by Vertical Sectional Method. Science of Surveying and Mapping, 32, 33-34.[8]Chen, P.P., Zhang, Y.S., Wang, C., et al. (2006) Method of Extracting Surface PeaksBased on DEM. Modern Surveying and Mapping, 29, 11-13.[9]Lu, G.N., Qian, Y.D. and Chen, Z.M. (1998) Study of Automated Extraction OfShoulder Line of Valley from Grid Digital Elevation Data. Scientia Geographica Si-nica, 18, 567-573.[10]Liu, P.J., Zhu, Q.K., Wu, D.L., et al. (2006) Automated Extraction of Shoulder Lineof Valleys Based on Flow Paths from Grid Digital Elevation Model (DEM) Data.Journal of Beijing Forestry University, 28, 72-75.[11]Zhou, F.B. and Liu, X.J. (2008) Research on the Automated Classification of MicroLandform Based on Grid DEM. Journal of Wuhan University of Technology(In-formation & Management Engineering), 30, 172-175.[12]Liu, A.L. and Tang, G.A. (2006) DEM Based Auto-Classification of Chinese Land-form. Geo-Information Science, 8, 8-14.[13]Hammond, E.H. (1954) Small-Scale Continental Landform Maps. Annals of the Asso-ciation of American Geographers, 44, 33-42.https:///10.1080/00045605409352120[14]Hammond, E.H. (1964) Analysis of Properties in Land Form Geography: An Ap-plication to Broad-Scale Land form Mapping. Annals of the Association of Ameri-can Geographers, 54, 11-19. https:///10.1111/j.1467-8306.1964.tb00470.x[15]Dikau, R., Brabb, E.E. and Mark, R.M. (1991) Landform Classification of New Mexicoby Computer. U.S. Geological Survey, Menlo Park, CA, Open-File Report 91-634.https:///10.3133/ofr91634[16]Ahnert, F. (1984) Local Relief and the Height Limits of Mountain Ranges. AmericanJournal of Science, 284, 1035-1055. https:///10.2475/ajs.284.9.1035[17]Tu, H.M. and Liu, Z.D. (1990) Demonstrating on Optimum Statistics Unit of ReliefAmplitude in China. Journal of Hubei University (Natural Science), 20, 311-319.[18]Brabyn, L. (1998) GIS Analysis of Macro Landform. Presented at the 10th Ann. Col-loquium Spatial Information Research Centre University of Otago./wfass/subjects/geography/staff/lars/landform/sirc98.html[19]Chen, Z.M. (1993) 1:4,000,000 Geomorphologic Map of China and Its Adjacent Area.China Map Press.。
一种城市路网多层次复合网格模式识别方法
㊀㊀第52卷㊀第11期测㊀绘㊀学㊀报V o l.52,N o.11㊀2023年11月A c t aG e o d a e t i c ae tC a r t o g r a p h i c aS i n i c a N o v e m b e r,2023引文格式:王安东,武芳,巩现勇,等.一种城市路网多层次复合网格模式识别方法[J].测绘学报,2023,52(11):1994G2006.D O I:10.11947/j.A G C S.2023.20220528.WA N G A n d o n g,WUF a n g,G O N GX i a n y o n g,e t a l.Ar e c o g n i t i o n a p p r o a c h f o r c o m p o u n d g r i d p a t t e r no f u r b a n r o a d n e t w o r k s [J].A c t aG e o d a e t i c a e tC a r t o g r a p h i c aS i n i c a,2023,52(11):1994G2006.D O I:10.11947/j.A G C S.2023.20220528.一种城市路网多层次复合网格模式识别方法王安东,武㊀芳,巩现勇,翟仁健,刘呈熠,邱㊀越,张寒雪信息工程大学地理空间信息学院,河南郑州450001A r e c o g n i t i o na p p r o a c h f o r c o m p o u n d g r i d p a t t e r no f u r b a n r o a dn e t w o r k s W A N G A n d o n g,W U F a n g,G O N G X i a n y o n g,Z H A IR e n j i a n,L I U C h e n g y i,Q I U Y u e,Z H A N GH a n x u eI n s t i t u t eo fG e o s p a t i a l I n f o r m a t i o n,I n f o r m a t i o nE n g i n e e r i n g U n i v e r s i t y,Z h e n g z h o u450001,C h i n aA b s t r a c t:A s t h es k e l e t o no fu r b a nc i t i e s,t h es p a t i a l p a t t e r nr e c o g n i t i o no f r o a dn e t w o r k s i so f g r e a t s i g n i f i c a n c ef o r m a p g e n e r a l i z a t i o n,s p a t i a ld a t a m i n i n g,a n d m u l t iGs c a l er e p r e s e n t a t i o n.T h i s p a p e r p r e s e n t sa na p p r o a c h t o r e c o g n i z i n g t h ec o m p o u n d g r i d p a t t e r no f r o a dn e t w o r k sw i t h l o c a l h e t e r o g e n e i t y b a s e do n r o a dm e s h e s.F i r s t l y,t h em u l t i l e v e l c o g n i t i v e c h a r a c t e r i s t i c s o f t h e l i n e a r a n d g r i d p a t t e r n o f r o a d m e s h e sa r ea n a l y z e d,a n dt h e m u l t i l e v e lc o g n i t i v eo r d e r,w h i c hf r o m b a s i c m e s h,c o m p o u n d m e s ht o r e g u l a r p a t t e r n,i s p r o p o s e d.S e c o n d l y,t h e r e c o g n i t i o n m e t h o d s o fi n c l u s i o n r e l a t i o n s h i p,p a r a l l e l r e l a t i o n s h i p,a n dl i n e a r p a t t e r n b e t w e e nr o a d m e s h e s a r e d e s i g n e d c o n s i d e r i n g t h e c o m p o s a b i l i t y, l i n e a r i t y,a n de x t e n s i b i l i t y o fc o m p o u n dl i n e a r p a t t e r n.F i n a l l y,t h el i n e a r p a t t e r n sa r ec o m b i n e d a n d d e c o m p o s e d t oe x t r a c t t h ec o m p o u n d g r i d p a t t e r no f r o a d m e s h e s.E x p e r i m e n t ss h o wt h a t t h e p r o p o s e d m e t h o d i s e f f e c t i v e f o r c o m p o u n d g r i d p a t t e r n r e c o g n i t i o nw i t h t h ea g r e e m e n t so f h u m a n s p a t i a l c o g n i t i v e c h a r a c t e r i s t i c s.K e y w o r d s:c a r t o g r a p h i c g e n e r a l i z a t i o n;r o a d n e t w o r k;r o a d m e s h e s;p a t t e r nr e c o g n i t i o n;m u l t i l e v e l c o g n i t i o n;g r i d p a t t e r n摘㊀要:道路网作为城市骨架,其模式识别对于地图综合㊁空间数据挖掘与多尺度表达具有重要意义.针对大比例尺数据中局部异质性明显的道路网格模式识别问题,提出基于网眼的城市道路多层次复合网格模式识别方法.首先分析了道路网眼直线和网格模式的多层次认知特点,提出了 基础网眼➝复合网眼➝规则模式 的多层次认知顺序;然后考虑复合直线模式的组合性㊁延伸性和直线性约束,设计了道路网眼直线模式㊁包含关系和并列关系的识别方法;最后通过对直线模式的组合分解,提取道路网眼的网格模式.试验表明本文方法能有效识别路网数据中的复合网格模式,识别结果符合人类认知特点.关键词:制图综合;道路网;网眼;模式识别;多层次认知;网格模式中图分类号:P208㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀文章编号:1001G1595(2023)11G1994G13㊀㊀城市道路网是城市范围内不同功能㊁等级㊁区位的道路,以一定密度和适当形式组成的网络结构[1].作为城市的基础骨架,其结构模式体现了城市的主要结构和空间格局,反映出城市的地形地貌特点㊁功能结构和规划治理情况,蕴含着大量城市形成和发展的内在机制[2].对其结构模式的挖掘和识别是地图综合㊁城市形成㊁更新和扩张㊁交通规划设计等领域的研究热点和难点[3G5].相关研究从不同研究重点出发,将道路网分为不同结构模式,如网格模式㊁环型模式㊁放射型模式㊁复杂道路交叉口等显式模式[6G11],以及城市中心㊁热点区域㊁城市建成区等隐式模式[12].网格模式作为城市道路网的典型结构模式,在城市布局中十分常见,在长达几千年的城市发展史上,都得到广泛的采用[13].道路网格模式的识别对城市空间特征挖掘㊁交通规划及地图自动综合具第11期王安东,等:一种城市路网多层次复合网格模式识别方法有重要意义.根据识别的基本模式单元,现有道路网格模式的识别方法可大体分为两类.(1)基于路段的识别方法.此类方法多将道路网抽象为图结构,以图中顶点作为基本处理单元,从顶点的几何㊁上下文关系特征中抽象出与路网结构相关的特征项,借助图论㊁统计学或机器学习方法进行处理或学习,实现网格模式识别.例如,基于道路结点和改进的霍夫变换策略来实现规则格网的识别[14];通过构建道路网对偶图,采用交㊁并㊁联合等图运算来提取基础格网模式[15];基于道路结点的几何㊁拓扑特征,利用多项式评定模型识别道路网中的典型结构模式[16];基于道路网的线性单元剖分,提出5种特征参量,采用支持向量机分类来提取网格模式[17G18];在构建道路网原始图的基础上,利用图卷积神经网络模型,通过学习人工标注样本,实现网格模式的识别[19]等. (2)基于网眼的识别方法.此类方法将道路网中路段围成的闭合区域转化为面,即道路网眼,通过计算网眼与邻近网眼的形状㊁方向㊁尺寸相似性及排列特征,采用邻近搜索㊁任务分类㊁隶属度计算或自组织映射聚类等方法完成网格模式的识别.例如,通过计算网眼的几何特征相似性,采用区域生长算法识别网格模式[20G21];基于网眼的形状和关系描述参量,采用机器学习算法识别网格模式,以减少参数阈值设置的人工干预[22G25],等.然而,当前研究中至少存在如下问题有待解决:①根据定义,道路网格模式的基本特征是由两组几乎平行的道路垂直相交构成,网眼形状大多为近似矩形或平行四边形.然而,基于路段的识别方法大多以道路网结构中的 正交性 原则为依据,设计网格模式的特征因子,忽略了网格模式中相邻网格间的尺寸㊁形状相似性和分布的延伸性.从结构模式的定义来看,这些研究的部分识别结果更接近于道路网的 正交模式 或 方格模式 ,而非 网格模式 .②基于网眼的已有识别方法均以单个网眼面要素及相邻网眼间 一对一 的邻近关系作为研究对象,对于整体规则㊁局部破碎的网眼群组,无法将其作为一个整体参与模式构建.为了解决具有局部异质性的道路网格模式识别问题,本文基于道路网眼,顾及视觉认知的层次性,提出一种城市道路网多层次复合网格模式的识别方法,主要解决两个问题:①道路网眼分布模式的多层次认知特征和定义;②网眼复合直线模式和复合网格模式的识别.1㊀道路网眼分布模式的多层次认知特点道路网眼是指道路网中路段围成的闭合区域.与其他面状地图要素相似,道路网眼群组具有丰富的分布模式,直线模式和网格模式是两种典型的分布模式.直线模式中道路网眼有规律地呈直线分布,网眼间具有相似的几何特征,如方向㊁尺寸等;网格模式由若干组近似平行的直线模式与另外若干组近似平行的直线模式,以近似正交的方式相交构成.作为道路对空间划分的结果,其分布模式与道路结构模式有着密切联系.道路网眼的直线和网格模式是道路网格模式的两种表现形式,图1中模式1㊁2分别为网眼的直线和网格模式,两组模式均表现为道路网的网格模式.因此,本文以道路网眼为基本模式单元,通过提取其直线和网格模式,实现道路网格模式的识别.图1㊀道路网结构模式与网眼分布模式F i g.1㊀T h es t r u c t u r a l p a t t e r no f r o a dn e t w o r k sa n dt h ed i s t r i b u t i o n p a t te r no fm e s h依据格式塔认知准则[26]和 大范围优先 的视知觉认知理论[27G28],人类更倾向于以 主体ң细节 的顺序来认知事物.道路网眼群组具有丰富复杂的几何㊁拓扑特征,人类的认知过程也必然遵循一定的顺序,从而形成了其空间关系的层次性.观察者观看地图时,首先关注道路网眼的整体特征,如图2(a)红色方框中网眼整体具有明显的网格模式特征;然后,才会注意到局部网眼间的细节特征,如图2(b)所示,蓝色网眼间的几何形态差异和复杂拓扑关系会被进一步感知.然而,当前相关研究仅考虑相邻单个网眼间的 一对一 关系,难以识别由多个不规则的网眼多边形拼接而成的网格网眼,对于大比例尺地图中局部异质性明显的道路网格模式,识别结果并不符合人类认知[29].5991N o v e m b e r 2023V o l .52N o .11A G C Sh t t p :ʊx b .c h i n a s m p .c om 图2㊀整体到局部的认知过程F i g .2㊀T h e c o gn i t i o n p r o c e s s f r o m w h o l e t o p a r t ㊀㊀为解决网格模式中局部网眼破碎的问题,本文引入 复合道路网眼 的概念.复合道路网眼的直线和网格模式具有多层次认知的特点:宏观尺度下,道路网眼整体呈直线或网格模式分布;中观尺度下,模式由几何特征相似㊁排列规律相近的简单或复合矩形网眼构成;微观尺度下,根据简单网眼的组合方式,复合矩形网眼进一步划分为包含关系和并列关系复合网眼.复合道路网眼直线和网格模式的多层次认知关系如图3所示.以图4(a)中道路网为例,各层次的具体含义如下.图3㊀道路网眼多层次认知关系F i g .3㊀T h e r e l a t i o n s h i p o fm u l t i l e v e l c o gn i t i on 图4㊀多层次认知过程F i g .4㊀T h em u l t i l e v e l c o gn i t i v e p r o c e s s ㊀㊀(1)整体层,包括直线模式和网格模式,其中直线模式的识别是网格模式识别的前提和保障.网眼直线模式具有以下的表现形式:①模式内部的各个网眼具有相似的形状㊁大小和方向特征;②模式内相邻网眼方向一致,且模式的全局方向与各网眼组件方向近似相同或正交;③模式内相邻网眼的公共边近似为两最小面积外界矩形的长边或短边,图4(b )中红色虚线分别表示呈直线模式分布的网眼.网格模式由多组直线模式近似垂直相交构成,处于更高的认知层次,如图4(b )中9组直线模式以近似正交的方式相交构成网格模式.(2)组件层,构成单元为近似矩形的道路网眼.根据矩形网眼所中的基础网眼数量,分为简单矩形网眼和复合矩形网眼,分别如图4(c )中网眼3㊁9和网眼1㊁2㊁4㊁5㊁6㊁7㊁8.其中,简单矩形网眼形状为近似矩形;复合矩形网眼包含多个任意形状的道路网眼,组合后形状为近似矩形.从矩形网眼与基础网眼的空间对应关系的角度来看,组件层中包含1ʒ1(简单网眼)和1ʒn (复合网眼)的空间对应关系.(3)原子层,构成单元为由道路网结点㊁路段直接围成的封闭区域多边形,即简单网眼.根据邻接关系,将组件层复合网眼中简单网眼间关系划分为包含关系和并列关系.包含关系复合网眼由一个主体网眼和若干次要网眼组成,如图4(d)中灰色网眼5㊁6,网眼8㊁9,网眼10㊁11和网眼17㊁18.主次网眼间空间邻近,整体轮廓互补.其中,主体网眼的面积相对较大,在视觉认知中占主导地位,反映该复合网眼的主要形状特征,如图4(d )中网眼6㊁8㊁10和18;次要网眼的面积相对较小,在视觉认知中占从属地位,如图4(d )中网眼5㊁9㊁11和17.并列关系复合网眼由若干简单网眼组成,网眼为任意形状多边形,组合后形状为近似矩形,并与相邻网眼构成直线模式.网眼间并列关系难以通过自底向上的组合方法进行探测,6991第11期王安东,等:一种城市路网多层次复合网格模式识别方法其关系的识别依赖于复合网眼邻域的模式特征.图4(d)中蓝色网眼1㊁2㊁3㊁4,网眼12㊁13和网眼14㊁15㊁16分别为具有并列关系的简单网眼.2㊀道路网多层次网格模式识别结合道路网眼的多层次认知特点,本文采用自底向上与自顶向下相结合的策略,提出一种多层次道路网眼直线和网格模式的识别方法,整体框架如图5所示,基本思想和关键步骤如下.(1)根据视知觉感知理论中完整性㊁规则性等心理倾向,采用自底向上的策略,合并具有包含关系的网眼,将整体规则㊁局部不规则的相邻网眼组合为视觉感知上更高级的复合网眼.(2)考虑相邻网眼间的尺寸㊁形状相似性和分布的直线性,构建直线模式结构化参数,以此为约束提取直线模式.(3)根据直线模式分布的延伸性,自顶向下构建直线模式连续匹配模板,搜索合并直线模式两端具有并列关系的道路网眼,实现复合直线模式的提取.(4)采用降维的思想,将直线模式网眼组以二维的线段表示,对其进行分解和组合,实现道路网眼网格模式的提取.图5㊀本文方法整体框架F i g.5㊀T h e f r a m e w o r ko f t h e p r o p o s e dm e t h o d道路网眼形状为近似矩形是其作为直线和网格模式的组成单元的必要条件[20G24].本文采用矩形度(R e c)和凹凸度(C o n v)[29]作为网眼矩形相似度的度量参数,具体含义与计算方法见表1.表1㊀网眼矩形相似度的度量参数T a b.1㊀T h em e t r i c s o f r o a dm e s h r e c t a n g l e s i m i l a r i t y参数参数含义计算方法矩形度R e c描述多边形呈矩形的程度网眼自身面积与其最小面积外接矩形面积的比值凹凸度C o n v描述道路网眼多边形的凹凸程度网眼面积与其凸包面积的比值2.1㊀简单直线模式识别简单直线模式由当前数据中的简单网眼构成,其正确识别是复合直线模式识别的基础.考虑直线模式中网眼的相似性㊁直线性和延伸性等结构特征,结合格式塔认知准则,从道路网眼的大小相似性㊁直线性和对齐程度3个方面引入识别道路网眼直线模式的结构化参数(表2).表2㊀网眼直线模式结构化参数T a b.2㊀T h e s t r u c t u r a l p a r a m e t e r s o f r o a dm e s h l i n e a r p a t t e r n参数参数含义计算方法面积比R a r e a描述两邻接道路网眼之间面积大小差异相邻网眼间较小网眼与较大网眼面积的比值方向差异D o r i e n t描述3个相邻道路网眼之间的直线性相邻3个网眼间质心连线的夹角公共边长度比R c e描述相邻道路网眼之间的对齐程度相邻网眼公共边与网眼最小外接矩形边长度比值的较小值㊀㊀根据直线模式的组织规律,同一模式内部要素间具有相似的几何形态结构.对于道路网眼,其几何形态结构主要表现为形状和大小.其中形状依靠上文中矩形相似度参数进行约束;大小相似度利用网眼面积比进行度量,面积比越大,网眼间大小相似程度越高.为保证模式中的网眼沿直线分布,以表2中方向差异参数作为约束,方向差异D o r i e n t越接近于180ʎ,模式的直线性越强.考虑到直线模式相邻网眼间具有相互对齐的特点,引入公共边长度比R c e对模式内相邻网眼间对齐程度进行约束.如图6所示,对于相邻网眼M1㊁M2,定义其公共边长度比R(c e)1,2为公共边(P1P2)长度与公共边对应网眼最小外接矩形边(E M1㊁E M2)长度的比值的较小值,公共边长度比7991N o v e m b e r 2023V o l .52N o .11A G C Sh t t p :ʊx b .c h i n a s m p .c o m 越接近于1,网眼对齐程度越高.图6㊀公共边长度比F i g .6㊀T h e l e n g t h r a t i oo f c o mm o ne d ge 综上,本文识别网眼简单直线模式的步骤如下.步骤1:根据网眼间是否具有公共边,构建相邻网眼间邻近关系,同时提取网眼群中矩形度和凹凸度分别大于阈值δR e c 和δC o n v 的简单矩形网眼,加入列表L i s t S G M .步骤2:选取L i s t S G M 中任一网眼M i 及其邻接网眼M j ,计算M i 与M j 的面积比(R a r e a )i ,j 和公共边长度比(R c e )i ,j ,若(R a r e a )i ,j >δa r e a 且(R c e )i ,j >δc e (式中δa r e a 和δc e 分别为人工设定的面积比和公共边长度比参数阈值),则将网眼M i 与M j 的邻近边e i ,j 加入直线模式临时列表t L i s t L P ,否则,返回步骤2.步骤3:设当前直线模式一侧搜索方向为{i ,j },即S e a r c h L e f t ={i ,j },另一侧搜索方向为{j ,i },即S e a r c h R i gh t ={j ,i },以S e a r c h L e f t ={i ,j }为起始搜索方向,选取M j 的邻接网眼M k ,若M j 除M i 不存在其他邻近网眼,则此搜索方向终止,以S e a r c h R i gh t ={j ,i }方向继续搜索.步骤4:计算M j 与M k 的面积比(R a r e a )j ,k 和公共边长度比(R c e )j ,k ,若(R a r e a )j ,k >δa r e a 且(R c e )j ,k >δc e ,则执行步骤5,否则,返回步骤3.步骤5:计算M i ㊁M j ㊁M k 的方向差异D o r i e n t ,若D o r i e n t >δo r i e n t ,则将e j ,k 添加至当前直线模式列表t L i s t L P 中,并令j =k ,否则,返回步骤3.步骤6:若当前直线模式向两侧搜索均终止,则该组直线模式识别结束,将当前直线模式列表t L i s t L P 加入直线模式识别结果列表L i s t L P 中,返回步骤2.循环步骤2 6,直至L i s t S G M 中全部网眼均被遍历.以图7(a)中道路网数据为例,经上述步骤识别的网眼简单直线模式如图7(b )中红色线段所示.受道路网中较低等级道路影响,一些在大尺度上认知为整体的网眼被分割成若干小网眼,呈现出局部破碎的现象,如图7(b )中网眼1㊁2㊁3.由图7(c )中网眼邻近关系可以看出,简单直线模式的提取方法仅利用简单网眼间 一对一 的邻近关系(蓝色线段),难以反映道路网的整体结构模式,需要进一步利用复合直线模式识别方法,提取局部破碎㊁整体规则的直线模式.图7㊀道路网眼简单直线模式识别结果F i g .7㊀T h e r e c o g n i t i o n r e s u l t s o f s i m pl e l i n e a r p a t t e r n 2.2㊀复合网眼构建与复合直线模式识别复合直线模式的识别是解决网眼局部异质性,实现由低级基础网眼到高级认知模式过渡的关键,其难点在于组件层中复合矩形网眼的识别和构建.对于复合矩形网眼中的包含关系和并列关系,本文分别采用自底向上和自顶向下的策略对其进行识别.2.2.1㊀包含关系识别根据包含关系网眼间轮廓互补的特点,参考文献[30]中对相离面要素主次关系识别的方法,引入公共边长周长比(R l e n g t h )和约束面积比(R c a )两个参数,分别从一维和二维两个维度描述相邻网眼之间的包含程度.以图8中道路网眼为例,红色线段P 2P 3P 4表示相邻网眼M 1㊁M 2间公共边,虚线矩形为M 2最小面积外接矩形S M B R M 2,灰色多边形P 1P 2P 3P 4为S M B R M 2与M 1的公共区域多边形,参数含义及计算方法见表3.8991第11期王安东,等:一种城市路网多层次复合网格模式识别方法图8㊀包含关系参数F i g .8㊀T h e i n c l u s i o n r e l a t i o n s h i ppa r a m e t e r 表3㊀包含关系识别参数T a b .3㊀T h e r e c o g n i t i o n p a r a m e t e r s o f i n c l u s i o n r e l a t i o n s h i p参数参数含义计算方法公共边周长比R L 描述两相邻网眼边界的包含程度相邻网眼公共边长度与网眼周长的比值约束面积比R c a描述两相邻网眼区域的包含程度网眼与相邻网眼最小面积外接矩形交集面积与网眼面积的比值根据包含关系参数和网眼矩形相似度参数,识别包含关系复合矩形网眼的步骤如下.步骤1:计算网眼矩形度R e c 和凹凸度C o n v ,将R e c <δR e c 或C o n v <δC o n v 的网眼加入列表m L i s t 中.从中选取网眼M i ,计算其与邻近网眼M j 的公共边周长比(R l e n g t h )i ,j 和约束面积比(R c a )i ,j ,若(R l e n g t h )i ,j >δL 且(R c a )i ,j >δc a ,则将网眼M i 和M j 记为包含关系组,其中δl e n g t h 和δc a 分别为人工设定的公共边周长比和约束面积比参数阈值.步骤2:合并网眼M i 与M j ,记新网眼为M n ,若R e c n >δR e c 或C o n v n >C o n v i ,说明次要网眼对主要网眼的规则程度具有补充作用,将M n 加入列表m L i s t 中,并从中删除M i 和M j ,否则删除M n .步骤3:循环步骤1㊁2,直至列表m L i s t 中的元素数量不再减少为止,此时全部具有包含关系的复合矩形网眼均被识别.以图7中道路网眼为例,利用上述步骤识别㊁合并包含关系网眼的过程如图9所示.图9(a )为步骤1包含关系的识别结果,粉色线段表示网眼间的包含关系.图9(b )为步骤2包含关系第一次合并结果(深色网眼),粉色线段表示所产生的新的包含关系.经数轮迭代,具有包含关系网眼的最终合并结果如图9(c )所示,其中深色网眼为合并后的包含关系复合网眼.图9㊀包含关系复合网眼识别与合并过程F i g .9㊀T h e r e c o g n i t i o na n d c o m b i n a t i o n p r o c e s s o f c o m p o u n dm e s h e sw i t h i n c l u s i o n r e l a t i o n s h i p2.2.2㊀并列关系识别及复合直线模式提取从认知角度来看,并列关系复合网眼产生于邻域内直线模式的延伸,例如对于图9(c )中邻近关系相似的网眼对1㊁2和2㊁3,网眼1㊁2更容易被组合为复合网眼.因此,本文利用网眼邻域的模式特征,采用自顶向下的匹配策略,识别具有并列关系的复合网眼.基本思想为:首先根据直线模式两端网眼确定初始匹配模板的几何特征;然后结合直线模式延伸性构建连续匹配模板,向两端搜索㊁匹配待识别网眼;最后结合直线模式约束条件,判定待识别网眼组合后能否构成直线模式,实现复合直线模式的提取.结合图9(a)中道路网眼,说明并列关系及复合直线模式识别方法的具体步骤.步骤1:合并具有包含关系的矩形网眼(图9(c )),提取简单直线模式(图10(a)中红色线段),存入S L P L i s t 中.步骤2:选取任意一组直线模式S L P i (图10(a)中红色加粗线段),提取其首㊁末端网眼的最小面积外接矩形,以首㊁末端网眼与其邻接网眼几何中心的相对距离d ㊁方向o 为约束,沿直线模式两端延伸方向计算匹配模板的位置,匹配模板分别记为T l ㊁T r (图10(a)中蓝色矩形).步骤3:搜索与T l 和T r 存在面状交集的网9991N o v e m b e r 2023V o l .52N o .11A G C Sh t t p :ʊx b .c h i n a s m p .c o m 眼,记为M s ,如果其模板重叠度(R t o )s ,l >δt o 或(R t o )s ,r >δt o ,则将M s 存入并列关系候选列表M L i s t 中,执行步骤4,否则,则执行步骤2,式中δT C 为人为设定的模板重叠度参数阈值.步骤4:若M l i s t 中网眼数量大于1,合并M L i s t 中全部网眼,记为M n ,如图10(b )中蓝色网眼,若R e c (M n )>δR e c ,则根据2.1节中方法,判断其能否满足直线模式结构化参数约束,若满足,执行步骤5,否则终止该侧搜索.步骤5:当直线模式S L P i 向两侧搜索均终止时,将其存入复合直线模式列表M L P L i s t,并从S L P L i s t 中移除,执行步骤2.循环步骤1 5,直至S L P L i s t 为空时,结束循环.识别结果如图10(c)所示,其中红色线段表示网眼直线模式.图10㊀并列关系网眼与直线模式识别过程F i g .10㊀T h e r e c o gn i t i o n p r o c e s s o f p a r a l l e l r e l a t i o nm e s h e s a n d l i n e a r p a t t e r n 2.3㊀网格模式提取道路网眼的网格模式由近似正交的直线模式相交构成,处于更高的认知层次.由网格模式概念可知,组成网格模式的直线模式之间需满足以下3项条件:①各组直线模式近似平行或正交;②正交的直线模式间具有相交关系;③各直线模式构成闭合回路.对于条件①,由于在直线模式中,网眼为方向一致的近似矩形,网眼构成的直线模式方向基本确定,若任意两组直线模式包含同一网眼,则其关系为近似正交;若任意两组不相交直线模式间,存在其他直线模式同时包含以上两组直线模式中的网眼,则两组直线模式近似平行.故条件①可由条件②代替.另外,若多组直线模式构成闭合回路,则相互正交的直线模式间必然相交,故条件③为条件②的充分条件.综上,本文通过对直线模式网眼构成闭合回路进行识别,提取其中的网格模式.当前研究大多采用图论中算法识别多组直线模式中的闭合回路[31G32],算法实现较为复杂.本文从几何角度出发,通过对直线模式邻近图中由结点和线段形成的封闭多边形进行聚类,实现网格模式的提取.以图11(a )道路数据为例,说明算法具体步骤.步骤1:以各直线模式中网眼几何中心为结点,依次连接相邻网眼,构建直线模式关系图G l(图11(b)中红色线段).步骤2:提取G l 中封闭区域多边形P (图11(b )中晕线多边形P 1㊁P 2㊁P 3),将其存入列表T P L i s t.步骤3:遍历T P L i s t ,若两多边形P i ㊁P j 间存在公共边(图11(b )中多边形P 2㊁P 3),则将其聚类为一组,存入列表C l u s t e r L i s t 中.图11㊀网格模式提取过程F i g.11㊀T h e e x t r a c t i o n p r o c e s s o f g r i d p a t t e r n 0002第11期王安东,等:一种城市路网多层次复合网格模式识别方法㊀㊀步骤4:根据聚类结果,提取每组聚类内多边形顶点所对应的道路网眼,记为一组网格模式网眼G r i d m ,存入G r i d _l i s t 中,如图11(c )中蓝色和黄色线段对应网眼分别为两组网格模式.3㊀试验与讨论3.1㊀试㊀验本文基于P y t h o n 和Q G I S 编程实现以上算法.试验分为两组,数据分别采用不同空间结构模式的国内外道路网数据.试验中网眼矩形度和凹凸度阈值的设置影响简单矩形网眼以及包含关系㊁并列关系的识别,结合前人的研究成果[29,33],取δR e c =0.9㊁δC o n v =0.95.算法中所涉及其他阈值设置的指导思想为:面积比和公共边长度比的阈值越大,方向差异的阈值越小,模式的直线性越强.在识别包含关系矩形网眼时,公共边周长比和约束面积比的阈值越大,主要网眼对次要网眼的包含程度越强;在识别并列关系矩形网眼时,模板重合度的阈值越大,模式的同质性越强.试验区域1为国外某地区道路网,数据来自O p e n S t r e e t M a p.如图12所示,所选试验区域内道路分布密度较高,密度不均匀,没有全局平稳的特征,存在支离破碎的短小路段,但大部分呈垂直交错结构分布,视知觉上呈现出明显的网格模式特征.试验区域包含2469个道路简单网眼.经反复测试,试验参数设置见表4.图12(b )中灰色和蓝色网眼分别为识别出的具有包含和并列关系的复合网眼,提取的直线模式和网格模式分别如图12(c )㊁(d)所示.图12㊀试验1直线模式和网格模式识别结果F i g .12㊀T h e r e c o g n i t i o n r e s u l t s o f l i n e a r p a t t e r na n d g r i d p a t t e r no f e x pe r i m e n t 1表4㊀参数阈值设置T a b .4㊀A d v i s a b l e p a r a m e t e r s e t t i n g试验简单直线模式识别包含关系识别并列关系识别面积比阈值方向差阈值公共边长度比阈值公共边周长比阈值约束面积比阈值模板重合度阈值试验10.510ʎ0.90.40.50.8试验20.410ʎ0.80.40.50.71002。
控制玉米株高基因PHR1的基因克隆
作物学报ACTA AGRONOMICA SINICA 2024, 50(1): 55-66 / ISSN 0496-3490; CN 11-1809/S; CODEN TSHPA9E-mail:***************DOI: 10.3724/SP.J.1006.2024.33011控制玉米株高基因PHR1的基因克隆杨晨曦1周文期1,2,*周香艳1,*刘忠祥2周玉乾2刘芥杉1杨彦忠2何海军2王晓娟2连晓荣2李永生21甘肃农业大学生命科学技术学院, 甘肃兰州, 730070; 2甘肃省农业科学院作物研究所, 甘肃兰州730070摘要: 株高属于玉米理想株型育种的一个重要指标, 不但影响玉米机械化收获, 更与玉米的倒伏性和生物产量密切相关。
本研究以低剂量快中子(4.19 Gy)辐照诱变玉米自交系KWS39获得的矮秆低穗位突变体为研究对象, 该突变体命名为plant height reducing mutant-1 (phr-1), 开展了表型性状的田间调查分析, 并利用phr-1×B73获得的F2分离群体, 借助极端性状混池测序分析法(BSA-seq)及目标区段重组交换鉴定的方法, 基于B73参考基因组对目标区段内的基因进行挖掘和功能注释, 定位候选基因。
研究结果表明, 在1号染色体Bin1.06 区间可能存在变异位点, 进而利用大的分离群体结合目标区段多态性标记开发, 将目标区段精细定位分子标记到Umc1122和Umc1583a两个标记之间约600 kb区间, 该区段内存在一个控制株高的已知基因Brachytic2 (BR2), BR2编码一个调控玉米茎秆中生长素极性运输的糖蛋白。
候选基因测序结果表明, phr-1是BR2基因在第4个外显子处插入了165 bp的序列, 导致第547位氨基酸变为终止子, 蛋白翻译提前终止。
phr-1的基因突变位点和变异方式与已报道的br2-1单个碱基发生变异位点完全不同, 通过等位杂交实验证明了phr-1突变体就是br2-1的一个新等位突变体, 候选基因就是BR2基因。
基于网络药理学探讨黄芪治疗代谢相关脂肪性肝病作用机制
第 44 卷第 1期2021 年 1月《袷,|(河1Drug Evaluation Research Vol. 44 No. 1January 2021•89 •基于网络药理学探讨黄芪治疗代谢相关脂肪性肝病作用机制赵鑫,吕文良,刘爽,曹正民,徐蕾,陈静,李娟梅‘中国中医科学院广安门医院感染疾病科,北京100053摘要:目的使用网络药理学方法探讨黄芪治疗代谢相关脂肪性肝病(MAFLD)的作用机制。
方法根据TCMSP数据 库、GeneCards数据库和比较毒物基因组学数据库数据库,预测和筛选黄芪的活性成分和MAFLD的相关基因,得到黄芪治 疗MAFLD的潜在靶点,使用Cytoscape3.8.0软件和STRING数据库,构建黄芪活性成分与MAFLD相关靶点的成分-靶点网 络,分析网络获得重要靶点,并利用Metascape数据库对其进行GO和KEGG通路富集分析。
结果从黄芪中筛选得到叶酸、槲皮素、山柰酚、异鼠李素等20个活性成分,能够作用于91个MAFLD相关靶点,其中丨L4、EGFR、MAPK8、TNF、HIF-la等27个靶点是重要靶点,可能通过调控糖尿病并发症AGE-RAGE信号通路、白细胞介素-17信号通路、流体剪切应 力与动脉粥样硬化等通路,参与调节MAFLD脂质代谢、氧化应激反应和炎症反应等多种生物过程。
结论黄芪可以通过多 靶点、多途径参与MAFLD的治疗。
关键词:黄芪;代谢相关脂肪性肝病;网络药理学;富集分析;作用机制中图分类号:R284.3 文献标志码:A 文章编号:1674-6376 (2021) 01-0089-09D O I:10.7501/j.issn. 1674-6376.2021.01.012Mechanism of A stra g a li R a d ix in treatment of metabolic associated fatty liver disease based on network pharmacologyZHAO Xin,LU Wenliang,LIU Shuang,CAO Zhengmin,XU Lei,CHEN Jing,LI JuanmeiDepartment of Infectious Diseases, China Academy of Chinese Medical Sciences, Guang 'anmen Hospital, Beijing 100053, ChinaAbstract: Objective To investigate the mechanism of Astragali Radix in treatment of metabolic associated fatty liver disease (MAFLD) by means of network pharmacology. Methods According to TCMSP database, GeneCards database, and Comparative Toxicogenomics database, predict and screen the active ingredients of Astragali Radix and related genes of MAFLD, obtain the potential targets oiAstragali Radix for treating MAFLD. Cytoscape 3.8.0 software and STRING database was used to construct a component-target network between active ingredients and potential targets. Analyze the network to obtain important targets, and use Metascape database to annotate important targets with gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Results Astragali Radix contains 20 active components such as quercetin, kaempferol, isorhamnetin and folic acid, which can act on 91 MAFLD targets. Among them, 27 targets are key targets, such as IL4, EGFR, MAPK8, TNF and HIF-la, which can regulate AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, fluid shear stress and atherosclerosis, involved lipid metabolism, oxidative stress and inflammatory response and other biological processes. Conclusion Astragali Radix play a role in treatment of MAFLD through multiple targets and pathways.Key words: Astragali Radix', MAFLD; network pharmacology; enrichment analysis; mechanism非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD),是一种多系统代谢功能紊乱累及 肝脏的疾病,现更名为代谢相关脂肪性肝病(metabolic associated fatty liver disease,*MAFLD)m,其病理机制主要是肝细胞内脂质的积 聚导致肝细胞损伤和凋亡,造成肝脏炎症和纤维化 及肝功能受损。
高精度轨道电子地图生成系统设计与应用
DOI: 10.3969/j.issn.1673-4440.2023.11.003高精度轨道电子地图生成系统设计与应用孙 哲1,王 嵩2,赵 佳1 (1.中铁工程设计咨询集团有限公司,北京 100055;2.中国铁路设计集团有限公司,天津 300308)摘要:针对轨道电子地图数据类型多、人工编制工作量大且准确性不高的问题,提出一种高精度轨道电子图源数据描述方式和数据结构,设计并实现一种适用于中低运量轨道交通的高精度轨道电子地图生成系统,该系统可自动完成对仿真标注数据和现场采集数据的处理和校验,最终生成电子地图数据文件。
通过搭建移动式定位数据采集平台,系统在芜湖轨道交通1、2号线得到了实际应用,应用结果表明,系统生成的高精度轨道电子地图能准确、有效地实现车辆位置匹配和图形化显示功能。
关键词:高精度;轨道电子地图;中低运量;数据生成;系统设计中图分类号:U284.48 文献标志码:A 文章编号:1673-4440(2023)11-0014-06Design and Implementation ofHigh Precision Track Electronic Map Generation SystemSun Zhe1, Wang Song2, Zhao Jia1(1. China Railway Engineering Design & Consultant Group Co., Ltd., Beijing 100055, China)(2. China Railway Design Corporation, Tianjin 300308, China)Abstract: Aiming at the problems of large amount of track electronic map data, heavy workload ofmanual compilation and low accuracy, this paper proposes a high-precision track electronic map source data description method and data structure. A high-precision track electronic map generation system suitable for medium and low traffic volume rail transit is designed and implemented. The system can automatically complete data processing and data verification in simulation and actual scenarios, and finally generate electronic map data file. Through the establishment of mobile positioning data acquisition platform, the system has been applied in Wuhu rail transit line 1 and 2. The application results show that the high-precision track electronic map generated by the system can accurately and effectively realize the functions of vehicle position matching and graphical display.Keywords: high precision; track electronic map; medium and low traffic volume; data generation;system design收稿日期:2023-06-01;修回日期:2023-11-01基金项目:中铁工程设计咨询集团有限公司科技开发项目(软2022-4)第一作者:孙哲(1992—),男,工程师,硕士,主要研究方向:轨道交通信号智能运维技术,邮箱:****************。
element-china-area-data 使用方法
element-china-area-data 使用方法[elementchinaareadata 使用方法]1. 引言:elementchinaareadata 是一个功能强大的在线地理信息系统(GIS) 工具,可以用于在中国范围内可视化和分析空间数据。
本文将逐步介绍如何使用elementchinaareadata 进行数据可视化、分析和地理空间查询。
2. 注册和登录:首先,您需要访问elementchinaareadata 的官方网站,并创建一个免费的账号。
注册完成后,使用您的用户名和密码登录到elementchinaareadata 的平台。
3. 数据导入:一旦登录成功,您可以开始导入您自己的数据集。
进入elementchinaareadata 主界面,点击左上角的"导入数据"按钮。
根据您的需求选择合适的导入方式,支持的格式包括Shapefile、GeoJSON、CSV、KML 等。
上传完成后,您的数据集将出现在elementchinaareadata 平台上的数据列表中。
4. 数据可视化:现在您可以开始创建地理空间可视化图层。
在elementchinaareadata平台上的数据列表中,选择您想要可视化的数据集,并点击"创建图层"按钮。
根据您的需求,选择合适的图层类型,例如点图层、线图层、面图层等。
在图层编辑界面,您可以进行一些自定义设置,如图例、标签、样式等。
完成设置后,点击"保存"按钮,您的图层将出现在地图视图中。
5. 空间查询和分析:elementchinaareadata 提供了强大的空间分析功能,可以帮助您根据地理位置进行数据查询和分析。
在地图视图中,点击工具栏上的"查询"按钮,然后选择适当的查询方式,如点查询、线查询、邻近查询等。
根据您的选择,输入相关的查询条件,然后点击"查询"按钮,elementchinaareadata 将在地图上显示符合条件的数据集。
胶莱盆地东北缘前垂柳金矿床S、Pb同位素组成:对成矿物质来源的指示
第42卷 第3期2023年 5月 地质科技通报B u l l e t i n o f G e o l o g i c a l S c i e n c e a n d T e c h n o l o g yV o l .42 N o .3M a y 2023韩小梦,郭云成,段留安,等.胶莱盆地东北缘前垂柳金矿床S ㊁P b 同位素组成:对成矿物质来源的指示[J ].地质科技通报,2023,42(3):210-221.H a n X i a o m e n g ,G u o Y u n c h e n g ,D u a n L i u a n ,e t a l .S a n d P b i s o t o p i c c o m p o s i t i o n s o f t h e Q i a n c h u i l i u G o l d D e po s i t o n t h e n o r t h -e a s t e r n m a r g i n o f t h e J i a o l a i B a s i n :I m p l i c a t i o n o n t h e s o u r c e o f o r e -f o r m i n g m a t e r i a l [J ].B u l l e t i n o f G e o l o g i c a l S c i e n c e a n d T e c h n o l o g y,2023,42(3):210-221.胶莱盆地东北缘前垂柳金矿床S ㊁P b 同位素组成:基金项目:国家重点研发计划(2022Y F C 2903605);中国地质调查局金矿重点勘查区资源潜力评价工程项目 山东牟平辽上金矿资源潜力评价 (D D 20230392);重点勘查区战略性矿产资源勘查工程 胶西北地区金矿资源勘查 项目(Z D 20220315)作者简介:韩小梦(1987 ),男,工程师,主要从事矿产勘查㊁矿床学研究工作㊂E -m a i l :943062435@q q.c o m 通信作者:段留安(1976 ),男,正高级工程师,主要从事矿产勘查㊁矿床地球化学等方面研究工作㊂E -m a i l :l i u a n d u a n @163.c o m对成矿物质来源的指示韩小梦1,郭云成1,段留安1,2,王建田1,赵鹏飞1,王利鹏1,喻光明3(1.中国地质调查局烟台海岸带地质调查中心,山东烟台264000;2.自然资源部深部金矿勘查开采技术创新中心/山东省深部金矿探测大数据应用开发工程实验室,山东威海264209;3.中国地质调查局自然资源综合调查指挥中心,北京100032)摘 要:前垂柳金矿为胶东胶莱盆地东北缘新发现的蚀变岩型金矿床,金矿体主要赋存于牧牛山岩体(二长花岗岩)㊁荆山群地层和鹊山岩体(糜棱岩化二长花岗岩)之间厚大的构造蚀变带内,截止目前推测资源量达到中型规模,但矿床的成矿物质来源尚不明确㊂基于前人研究及野外调查,选择典型矿体中含金黄铁矿作为研究对象,开展了S ㊁P b 同位素分析,探讨了矿床的成矿物质来源㊂测试结果显示:矿石硫化物δ34S 值总体为10.13ɢ~12.39ɢ,极差为2.26ɢ,平均值10.98ɢ,均一程度高,具高δ34S 值特征,反映了深部成矿流体上侵过程中混染了更多的地层中的硫,显示了荆山群地层对成矿有一定贡献;矿石铅同位素206P b /204P b 比值为17.149~18.886,207P b /204P b 比值为15.482~15.677,208P b /204P b 比值为37.860~40.073,显示前垂柳金矿铅为壳幔混合来源,且具有下地壳铅的特征㊂该矿床S ㊁P b 同位素特征显示成矿物质来源为壳幔混源,与周边辽上㊁蓬家夼等典型矿床成矿物质来源一致,反映了该区燕山期大规模成矿事件,预示了胶莱盆地东北缘具有较大的找矿潜力㊂关键词:胶莱盆地东北缘;前垂柳金矿;S 同位素;P b 同位素;物质来源中图分类号:P 618.51 文章编号:2096-8523(2023)03-0210-12 收稿日期:2022-11-25d o i :10.19509/j .c n k i .d z k q.t b 20220659 开放科学(资源服务)标识码(O S I D ):S a n d P b i s o t o p i c c o m p o s i t i o n s o f t h e Q i a n c h u i l i u G o l d D e po s i t o n t h e n o r t h e a s t e r n m a r gi n o f t h e J i a o l a i B a s i n :I m p l i c a t i o n o n t h e s o u r c e o f o r e -f o r m i n g ma t e r i a l H a n X i a o m e n g 1,G u o Y u n c h e n g 1,D u a n L i u a n 1,2,W a n g Ji a n t i a n 1,Z h a o P e n g f e i 1,W a n g L i p e n g 1,Y u G u a n g m i n g3(1.Y a n t a i G e o l o g i c a l S u r v e y C e n t e r o f C o a s t a l Z o n e ,C h i n a G e o l o g i c a l S u r v e y ,Y a n t a i S h a n d o n g 264000,C h i n a ;2.M i n i s t r y o f N a t u r a l R e s o u r c e s T e c h n o l o g y I n n o v a t i o n C e n t e r f o r D e e p Go l d R e s o u r c e s E x p l o r a t i o n a n d M i n i n g /S h a n d o n g P r o v i n c i a l E n g i n e e r i n g L a b o r a t o r y o f A p p l i c a t i o n a n d D e v e l o pm e n t o f B i g D a t a f o r D e e p G o l d E x p l o r a t i o n ,W e i h a i S h a n d o n g 264209,C h i n a ;3.C o mm a n d C e n t e r o f N a t u r a l R e s o u r c e s C o m p r e h e n s i v e S u r v e y ,C h i n a G e o l o g i c a l S u r v e y ,B e i j i n g 100032,C h i n a )A b s t r a c t :T h e Q i a n c h u i l i u G o l d D e p o s i t o n t h e n o r t h e a s t e r n m a r g i n o f t h e J i a o l a i B a s i n i s a n e w l y di s c o v e r d a l t e r e d r o c k t y p e g o l d d e p o s i t ,a n d i s a m e d i u m -s i z e d g o l d d e po s i t h o s t e d i n t h e s t r u c t u r a l a l t e r a t i o n z o n e Copyright ©博看网. All Rights Reserved.第3期韩小梦等:胶莱盆地东北缘前垂柳金矿床S㊁P b同位素组成:对成矿物质来源的指示b e t w e e n M u n i u s h a n,J i n g s h a n G r o u p a n d Q u e s h a n m o n z o n i t ic g r a n i t e s.H o w e v e r,t h e s o u r c e o f o r e-f o r m-i n g m a t e r i a l s a nd t he o r e g e n e s i s a r e n o t c l e a r.B a s e d o n p r e v i o u sf i e l d a n d a n a l y t i c a l s t u d i e s,t h e a u t h o r s c o n d u c t e d s u l f u r a n d l e a d i s o t o p i c a n a l y s e s o ng o l d-b e a r i n g p y r i t e f r o m t y p i c a l o r e s a s th e r e s e a r c h t a r g e t. T h eδ34S v a l u e s a r e hi g h a n d h o m o g e n e o u s r a n g i n g f r o m10.13ɢ-12.39ɢ,w i t h a n a v e r a g e o f10.98ɢa n d p o l a r o d d s o f2.26ɢ.T h e s e s u l f u r i s o t o p i c r e s u l t s r e v e a l a m i x i n g p r o c e s s o f s u l f u r i n t h e J i n g s h a n G r o u p d u r i n g t h e u p w e l l i n g o f d e e p o r e-f o r m i n g f l u i d.T h e r a t i o s o f206P b/204P b,207P b/204P b,a n d 208P b/204P b v a r y f r o m17.149-18.886,15.482-15.677,a n d37.860-40.073,r e s p e c t i v e l y,s u g g e s t i n g a c r u s t-m a n t l e m i x e d s o u r c e.I n c o n c l u s i o n,s u l f u r a n d l e a d i s o t o p e a n a l y s i s r e s u l t s o f t h e Q i a n c h u i l i u G o l d D e p o s i t s h o w a c r u s t-m a n t l e m i x e d s o u r c e a n d a r e s i m i l a r t o t h o s e o f t y p i c a l g o l d d e p o s i t s i n t h i s r e g i o n. T h e g o l d d e p o s i t s o n t h e n o r t h e a s t e r n m a r g i n o f t h e J i a o l a i B a s i n f o r m e d a t t h e l a r g e-s c a l e Y a n s h a n i a n m e t a l l o g e n i c e v e n t,i n d i c a t i n g g r e a t p r o s p e c t i n g p o t e n t i a l i n t h i s a r e a.K e y w o r d s:n o r t h e a s t e r n m a r g i n o f t h e J i a o l a i B a s i n;Q i a n c h u i l i u G o l d D e p o s i t;s u l f u r i s o t o p e;l e a d i s o-t o p e;m a t e r i a l s o u r c e胶莱盆地东北缘位于华北板块和秦岭-大别-苏鲁碰撞造山带交汇部位(图1-a),区内岩浆活动强烈,构造发育,总体受区内北东向的桃村断裂㊁郭城断裂㊁朱吴-崖子左行走滑断裂构造及其形成的拉分盆地边缘的铲式滑脱构造系统控制[2-4](图1-b)㊂区内分布有辽上(特大型)㊁土堆-沙旺(大型)㊁蓬家夼(大型)㊁发云夼(大型)㊁西涝口(大型)和西井口(中型)等一系列金矿床,累计探获金资源量超过200t,是继胶东中东部牟乳成矿带之后新发现的重要金矿集中区[5-8]㊂因此近年受到国内外地质学者[9-17]重点关注,对该区金矿勘查找矿㊁成矿理论和成矿预测等开展了一系列研究,取得了诸多重要进展㊂例如 辽上式 新类型金矿的发现[14],丰富了胶东金矿成矿理论体系㊂前人研究认为胶莱盆地东北缘地区典型金矿床成矿流体㊁成矿物质来源具有多元性,主要观点有:成矿物质来源于牧牛山岩体和地壳深部,成矿流体来源于深部岩浆演化[15];成矿物质来源于幔源岩浆流体[16];成矿物质来源于壳幔混源[2-3,17-18],总体上尚未形成统一认识㊂前垂柳矿区位于胶莱盆地东北缘的辽上金矿和西涝口金矿之间,依据段留安等[19]提出的找矿思路,经2年的勘查工作,提交推断资源量已近大型规模,为近年来该区新发现的金矿床㊂D u a n等[20]初步总结了该区控矿规律为 近东西向构造控矿 ,指出辽上㊁前垂柳㊁西涝口深部矿体为一个整体的东西向矿体,赋存在深部东西向产状缓倾的大型构造破碎蚀变带内㊂目前该区已开展了岩浆岩锆石年龄等研究[1,19-20],但尚未开展成矿物质来源研究工作㊂为查清矿床成因,笔者选取含金黄铁矿进行S㊁P b 同位素分析研究,并与区域典型金矿床㊁赋矿围岩S㊁P b同位素特征进行对比分析,初步探讨前垂柳矿区成矿物质来源,为区域成矿规律研究及下步工作提供支撑㊂1区域地质背景前垂柳金矿处于胶莱盆地东北缘成矿区中部(图1-b),区内壳幔作用强烈,构造岩浆活动频繁,成矿条件优越㊂区内分布地层由老到新主要为:①古元古界荆山群,总体呈北东向展布,主要分布在郭城断裂带下盘,岩性主要为黑云片岩㊁斜长透辉岩㊁黑云变粒岩㊁大理岩等,原岩为经受高角闪岩相区域变质的海相碎屑岩㊂在该区域范围内,古元古界荆山群往往作为金矿赋矿围岩[21-22]㊂②中生代地层从下到上依次为莱阳群㊁青山群和王氏群㊂莱阳群广泛分布在蓬家夼南部胶莱盆地内,与玲珑序列二长花岗岩和荆山群呈断层或角度不整合接触,为一套陆相碎屑沉积岩㊂青山群分布于郭城断裂带和桃村断裂带之间,岩性为凝灰质砂岩㊁砾岩㊁安山岩㊁流纹岩等,为一套陆相中基性㊁中酸性火山岩㊂王氏群仅少量分布在区域西北部,为一套陆相碎屑沉积岩㊂③新生界第四系,主要分布于河流两侧㊁沟谷及河床地带,沉积类型为残坡积㊁冲洪积,岩性为砂㊁砾石㊁砂质亚黏土[21-24]㊂区内断裂构造发育,按展布方向可分为N E向㊁N N E向㊁近E W向㊁NW向4组㊂①N E向郭城㊁桃村㊁崖子和育黎等区域性超壳断裂带,为盆地边界断裂带,控制了盆地的形成与演化,同时也是深部岩浆作用的重要通道,辽上㊁土堆㊁南果子等金矿即位于郭城断裂带下盘[18]㊂②N N E向断裂,主要为郭城断裂带旁侧的次级断裂,倾角较缓,属压扭性断裂,为该区金矿的主要控矿构造,土堆㊁南果子金矿即受该组断裂控制㊂③近E W向断裂,以蓬家夼断裂为主,位于蓬家夼至东井口一带,处于荆山群与玲珑花岗岩衔接部位的荆山群中㊂蓬家夼大型金矿和西井口金矿即受该断裂控制㊂④NW向断裂,出露规模一般较小,多为N E向断裂的共轭断裂,与金矿形成112Copyright©博看网. All Rights Reserved.h t t p s ://d z k j q b .c u g.e d u .c n 地质科技通报2023年1.水库;2.第四系;3.下白垩统陆相沉积岩㊁火山岩;4.古元古界变质岩;5.前寒武纪侵入岩;6.晚侏罗世二长花岗岩;7.早白垩世花岗闪长岩;8.燕山晚期岩脉;9.地质界线;10.断裂;11.韧性剪切带;12.金矿床(点);13.钼矿床;14.铜矿点;15.铅锌矿点;16.胶莱盆地东北缘前垂柳矿区位置;Ⅰ.华北板块;Ⅰ1.胶莱-胶北断隆;Ⅰ11.胶北断隆;Ⅰ21.胶莱断陷;Ⅱ.秦岭-大别-苏鲁碰撞造山带;Ⅱ1.胶南-威海断隆;Ⅱ11.文登-威海断拱;Ⅱ21.胶莱断陷;Ⅱ31.胶南-临沭断拱图1 前垂柳金矿区及周边金矿区地质简图[1]F i g .1G e o l o g i c a l m a p o f t h e Q i a n c h u i l i u G o l d M i n i n g a r e a a n d n e a r b y g o l d m i n e r a l d e po s i t s 关系不大㊂区内侵入岩发育,按照时代大致分为三大类:前寒武纪侵入岩(牧牛山岩体)㊁晚侏罗世二长花岗岩(鹊山岩体)和早白垩世花岗闪长岩(伟德山岩体)㊂前寒武纪牧牛山岩体呈N E 向展布于郭城断裂带下盘,为下地壳重融型二长花岗岩(1840M a)[1];晚侏罗世鹊山岩体主要分布于胶莱盆地东北缘外侧,呈岩株状分布于荆山群地层中,岩性为弱片麻状细中粒含石榴二长花岗岩(163~149M a)[5],为陆壳重熔型花岗岩,与金矿床有着密切的空间联系,是区内成矿期主要的近矿围岩;而早白垩世伟德山花岗闪长岩(125~110M a)[23]主要分布在区域西北部和东南部地区,与荆山群㊁晚侏罗世玲珑花岗岩体呈侵入㊁渐变过渡或断层接触关系,与金矿化关系密切[19-21]㊂另外发育少量燕山晚期幔源型中基性岩脉,岩性主要为闪长玢岩㊁煌斑岩脉(125~112M a )[5],中基性岩脉多呈N E ㊁N E E 向高角度侵位于荆山群地层和牧牛山岩体中㊂2 矿床地质特征前垂柳金矿位于烟台市牟平区观水镇西南约18k m 处,行政区划属牟平区观水镇,矿区西侧为辽上金矿,南东侧为西涝口金矿和西井口金矿㊂区内出露地层主要为古元古界荆山群,少量中生界白垩系莱阳群及新生界第四系㊂矿区构造整体受N E 向郭城断裂带㊁崖子断裂带和近E W 向蓬家夼层间滑脱断裂带共同影响,主要发育近E W 向㊁N E 向和NW 向3组次级断裂构造,其中近E W 向㊁N E 向构造最为发育,是区内主要的导矿和容矿构造㊂岩浆岩主要出露于矿区中南部,根据前人研究[1,20]地表出露岩浆岩为牧牛山岩体弱片麻状中粗粒二长花岗岩,岩石中可见透镜体状㊁层状和块状地层捕虏体(图2),捕虏体岩性为斜长角闪岩㊁大理岩和变粒岩等,常被后期多期次煌斑岩脉和闪长玢岩脉穿插㊂区内矿化蚀变发育,其中黄铁矿化㊁绢英岩化和碳酸盐化与金矿化关系密切㊂前垂柳金矿截止目前累计施工钻孔9个,共发现金矿体17条,主要金矿体6条,共计圈算推断资源量近20t ㊂金矿体主要分布在16线㊁32线(图2),走向近东西向,倾向南,倾角13ʎ~21ʎ,控制长度80~640m 不等,呈透镜状㊁脉状㊁似层状分布于厚大的破碎蚀变带中㊂其中Ⅰ-4号主矿体赋存标高-303~-450m ,控制长度640m ,倾向控制延深212Copyright ©博看网. All Rights Reserved.第3期韩小梦等:胶莱盆地东北缘前垂柳金矿床S ㊁P b 同位素组成:对成矿物质来源的指示图2 前垂柳金矿区16线和32线钻孔剖面图F i g .2 D r i l l i n g pr o f i l e o f L i n e 16a n d L i n e 32i n t h e Q i a n c h u i l i u G o l d M i n e a r e a 220m (未封闭),平均铅垂厚度12.07m ,平均金品位3.02g /t ,最高金品位90.90g /t,矿石主要为含碳酸盐脉黄铁绢英岩化花岗质碎裂岩,具自形-半自形粒状㊁碎裂结构,浸染状㊁细脉状㊁网脉状㊁团块状构造,矿石矿物以黄铁矿为主,少量黄铜矿㊁辉钼矿等㊂脉石矿物主要有石英㊁钾长石㊁斜长石㊁白云石㊁绢云母等㊂主要载金矿物为黄铁矿,其次白云石和石英㊂通过野外和室内观察,并对比周边辽上金矿和西涝口金矿矿化特征,初步将前垂柳金矿划分为3个成矿阶段:①早阶段的钾长石-金-黄铁矿-白云石脉阶段,肉红色钾长石和白色白云石中共生有粗粒自形-半自形五角十二面体和立方体黄铁矿,呈团块状或脉状展布(图3-a );②中阶段的金-黄铁矿-碳酸盐-石英脉阶段,烟灰色石英脉和白色碳酸盐脉,脉体细小,主要产出微细粒半自形黄铁矿,以及少量自然金和辉钼矿㊂自然金多呈树枝状㊁浑圆状㊁星点状分布于碳酸盐㊁石英或黄铁矿裂隙中(图3-b ~h ),该阶段为主要金成矿阶段,构成品位低㊁厚度大的矿体,局部富集形成自然金颗粒;③晚阶段的黄铁矿-碳酸盐细脉阶段,此阶段见白色碳酸盐脉,少量中-细粒黄铁矿,偶尔可见黄铜矿和方铅矿㊂3 样品采集及测试方法本次分析测试的样品均采自前垂柳金矿区矿体的16线和32线钻孔岩心,其中Ⅰ-4号矿体最具代表性,为重点采样区㊂采样位置详见图2,所测样品均为主成矿阶段载金黄铁矿㊂本次样品的S ㊁P b 同位素分析测试均在核工业北京地质研究院分析测试研究中心完成㊂其中S 同位素分析采用的仪器为D e l t a v p l u s 气体同位素质谱仪,样品以‘D Z /T 0184.15-1997:硫酸盐中硫同位素组成的测定“为检测方法和依据,采用V -C D T 国际标准㊂试验流程为:称取适量的样品(含硫15m g 左右),利用碳酸钠-氧化锌半熔法,提取出硫酸钡㊂取350~400μg 硫酸钡与五氧化二钒按1ʒ3.5的质量比混合均匀,装入锡囊中,采用F l a s h 2000型元素分析仪和D e l t a v p l u s 型稳定同位素气体质谱仪对样品进行硫同位素组成的分析,选择参考气离子流强度为3V ,C o n f l o Ⅳ-H e 载气压力为1.01ˑ105P a ,E A 系统H e 载气流量为100m L /m i n,氧气流量为180m L /m i n,加氧时间为3s ,反应炉温度为1020ħ,色谱分离柱温度为90ħ㊂测量结果以C D T 为标准,记为δ34S V -C D T ㊂分析精度优于ʃ0.2ɢ㊂硫化物参考标准为I A E A -S O -5,I A E A -S O -6和N B S -127,其δ34S 分别是0.45ɢʃ0.16ɢ㊁-34.2ɢʃ0.18ɢ和20.30ɢʃ0.19ɢ[25]㊂P b 同位素分析测试采用I S O P R O B E -T 热表面电离质谱仪,仪器编号7734,相对湿度为30%,温度为20ħ,误差以2σ计㊂试验流程为:准确称取0.1~0.2g 粉末样品于低压密闭溶样罐(P F A )中,用混合酸(H F+H N O 3+H C l O 4)溶解24h ㊂待样312Copyright ©博看网. All Rights Reserved.h t t p s ://d z k j q b .c u g.e d u .c n 地质科技通报2023年图3 前垂柳金矿床矿石照片和显微照片F i g .3 P h o t o g r a p h s a n d p h o t o m i c r o g r a p h s o f t h e Q i a n c h u i l i uG o l d D e po s i t 品完全溶解后,蒸干,加入6m o l /L 的盐酸转为氯化物蒸干㊂用1m L 0.5m o l /L H B r 溶解,离心分离,清液加入阴离子交换柱(250μL A G 1ˑ8孔径0.154~0.071mm (100~200目)),用0.5m o l /LH B r 淋洗杂质,用1m L 6m o l /L 的H C l 解析铅于聚四氟乙烯的烧杯中,蒸干备用㊂用磷酸硅胶将样品点在铼带上,用静态接受方式测量P b 同位素比值㊂N B S 981未校正结果:208P b /206P b=2.164940ʃ0.000015,207P b /206P b =0.914338ʃ0.000007,204P b /206P b =0.0591107ʃ0.0000002,全流程本地P b <100p g,以‘D Z /T 0184.12-1997:岩石㊁矿物中微量铅的同位素组成的测定“为检测方法和依据,通过重复样分析结果的对比,误差优于10%,说明分析结果可靠㊂4 分析结果4.1硫同位素本次测试的17件载金黄铁矿样品均从矿石粉末中挑选,样品的采样情况和S 同位素测试结果见表1,结果表明:前垂柳金矿床浅部和深部矿体的硫同位素组成基本相同,δ34S 为10.13ɢ~12.39ɢ,极差为2.26ɢ,平均值为10.98ɢ,样品硫同位素组成呈明显的正态分布,呈现变异小㊁较富集特征,说明硫同位素均一程度高㊂412Copyright ©博看网. All Rights Reserved.第3期韩小梦等:胶莱盆地东北缘前垂柳金矿床S㊁P b同位素组成:对成矿物质来源的指示表1前垂柳金矿床矿石硫同位素组成T a b l e1 S u l f u r i s o t o p e c o m p o s i t i o n o f t h e Q i a n c h u i l i u G o l d D e p o s i t 样品编号采样位置矿石中黄铁矿赋存特征测试矿物δ34S/% Z K3201-6432线Z K3201孔117.2m细脉状黄铁矿黄铁矿11.20 Z K3201-9732线Z K3201孔204.2m条带状黄铁矿黄铁矿11.23 Z K3201-12832线Z K3201孔258.2m细脉状石英自形黄铁矿黄铁矿10.28 Z K3201-13132线Z K3201孔262.1m细脉状石英黄铁矿黄铁矿12.39 Z K3201-33832线Z K3201孔577m细脉状石英黄铁矿黄铁矿11.46 Z K3201-34032线Z K3201孔579m细脉状石英黄铁矿黄铁矿10.13 Z K3201-34332线Z K3201孔583m细脉状石英黄铁矿黄铁矿10.94 Z K1603-39116线Z K1603孔543.16m细脉状黄铁矿黄铁矿10.80 Z K1603-39316线Z K1603孔546.16m网脉状石英黄铁矿黄铁矿10.80 Z K1603-39516线Z K1603孔548.46m网脉状石英黄铁矿黄铁矿10.60 Z K1603-40116线Z K1603孔555.06m网脉状石英黄铁矿黄铁矿10.30 Z K1603-40316线Z K1603孔557.46m网脉状石英黄铁矿黄铁矿11.10 Z K1603-40516线Z K1603孔560.26m网脉状石英黄铁矿黄铁矿10.90 Z K1603-40716线Z K1603孔562.96m网脉状石英黄铁矿黄铁矿11.10 Z K1603-40916线Z K1603孔565.86m网脉状石英黄铁矿黄铁矿11.20 Z K1603-41116线Z K1603孔568.76m网脉状石英黄铁矿黄铁矿11.40 Z K1603-41316线Z K1603孔571.76m网脉状石英黄铁矿黄铁矿10.904.2铅同位素本次测试的15件样品均为典型矿石中的载金黄铁矿,从分析结果(表2)看,P b同位素具有如下特征:206P b/204P b比值为17.149~18.886,平均值为18.007,极差为1.737;207P b/204P b比值为15.482~15.677,平均值为15.568,极差为0.195; 208P b/204P b比值为37.860~40.073,平均值为38.717,极差为2.213㊂特征参数μ范围为9.40~ 9.57,平均值为9.46;ω范围为36.30~43.26,平均值为39.74;κ范围为3.71~4.39,平均值为4.07㊂表2前垂柳金矿床矿石铅同位素组成T a b l e2 L e a d i s o t o p e c o m p o s i t i o n o f t h e Q i a n c h u i l i u G o l d D e p o s i t样品编号测试矿物206P b/204P b207P b/204P b208P b/204P bμωκΔαΔβΔγZ K1603-391黄铁矿17.14915.48237.8609.4140.584.1762.2215.2952.05 Z K1603-392黄铁矿17.17815.49837.9179.4440.824.1863.7416.3153.49 Z K1603-393黄铁矿17.94115.54038.4329.4038.613.9867.1715.4544.73 Z K1603-394黄铁矿17.54415.51538.0009.4138.914.0064.7915.4644.54 Z K1603-395黄铁矿17.39015.49737.9959.4039.714.0963.2314.9648.55 Z K1603-399黄铁矿18.62515.61838.6269.4836.303.7175.6618.6732.25 Z K1603-401黄铁矿17.75315.53538.2279.4238.813.9966.6815.9145.01 Z K1603-402黄铁矿17.95315.55538.4889.4338.923.9968.6216.4846.66 Z K1603-403黄铁矿18.88615.67739.6769.5739.564.0088.2122.3958.86 Z K1603-404黄铁矿18.79715.64539.1859.5237.833.8583.0920.3045.75 Z K1603-407黄铁矿18.01915.56638.6009.4439.114.0169.7517.0148.16 Z K1603-408黄铁矿18.05915.56639.5279.4442.824.3969.7616.8571.99 Z K1603-411黄铁矿18.47415.64440.0739.5443.264.3977.8820.9577.37 Z K1603-412黄铁矿17.79015.56238.7569.4741.204.2169.2517.7059.66 Z K1603-413黄铁矿18.55215.61339.3959.4839.724.0575.0018.5254.87注:P b同位素特征参数μ为238U/204P b㊁ω为232T h/204P b㊁κ为T h/U㊁Δα为[α/αm(t)-1]ˑ1000㊁Δβ为[β/βm(t)-1]ˑ1000㊁Δγ为[γ/γm(t)-1]ˑ1000,其中α㊁β㊁γ为测定值㊁αm(t)㊁βm(t)㊁γm(t)为t时的地幔值,各参数使用G e o K i t软件计算得到[26-27]512Copyright©博看网. All Rights Reserved.h t t p s://d z k j q b.c u g.e d u.c n地质科技通报2023年5讨论5.1硫的来源硫同位素是热液型金矿床成矿物质来源最好的指示剂,同时也指示硫的来源㊂因此根据前人研究[28-31],可以依据矿石硫化物δ34S值所获得的成矿溶液的总硫同位素组成推测矿石中硫的来源,从而探讨与金属硫化物伴生的成矿物质的来源㊂在低氧逸度㊁不存在硫酸盐条件下[30-32],硫化物δ34S值可以大致代表热液总硫同位素组成㊂通过对前垂柳金矿床矿石矿物组成研究可知,金属硫化物主要为黄铁矿,少量辉钼矿等,不含硫酸盐矿物,测试的主体矿物为含金黄铁矿,因此本次测试的δ34S值可以代表前垂柳金矿热液总硫同位素组成㊂不同来源硫的同位素组成不同[33-36]:地幔源硫的δ34S值接近于0,来自于海水的δ34S值最高可达+20ɢ左右㊂已有胶东地区各类金矿床赋矿围岩δ34S值显示(图4):荆山群(9.90ɢ)>昆嵛山花岗岩(9.30ɢ)>玲珑花岗岩(7.30ɢ)>中基性脉岩(6.90ɢ)>郭家岭花岗岩(6.70ɢ)>胶东岩群(5.40ɢ)的特征,同时具有牟乳成矿区(8.5ɢ~13.0ɢ)>胶莱盆地东北缘成矿区(9.77ɢ~ 11.12ɢ)>胶西北成矿区(6.0ɢ~10.0ɢ)>栖蓬福成矿区(5.5ɢ~8.5ɢ)的特征㊂牟乳成矿区金矿床赋矿围岩为富δ34S昆嵛山花岗岩,相应该区金矿床的δ34S值最高;栖蓬福成矿区主要由相对贫δ34S 早前寒武纪T T G岩系和胶东岩群组成,相应金矿床的δ34S值是胶东最低的㊂这说明金矿床的硫同位素组成与其赋矿围岩有关,成矿流体与赋矿围岩发生了充分的水-岩相互作用,围岩中的硫被活化并萃取到成矿流体中[36]㊂产于荆山群中金矿体硫同位素值略高,产于玲珑花岗岩中金矿体则硫同位素值略低[34-38]㊂综上所述,胶莱盆地东北缘金矿床δ34S整体上略大于胶西北成矿区典型金矿床δ34S,预示了该区深部成矿流体在侵位过程中混染了更多的荆山群地层参与成矿㊂总体上,胶东地区金矿床及赋矿围岩δ34S具有相似性,具有较高的δ34S,尤其是代表幔源特征的中基性脉岩δ34S也远高于玄武岩㊁地幔δ34S值,这说明该区金成矿物源与流体可能源于深部岩浆热液,深部含矿流体在上升过程中进一步萃取了围岩中的金,近地表有天水的加入在深部热源的持续热动力作用下,混合的含矿流体最终因物理化学条件的变化在特定的环境下富集成矿㊂图4胶莱盆地东北缘典型金矿床硫化物δ34S值对比分布图(图中数据综合本文及文献[31-37])F i g.4 D i s t r i b u t i o n o f s u l f i d eδ34S v a l u e s o f t y p i c a l g o l d d e p o s i t s o n n o r t h e a s t e r n m a r g i n o f t h e J i a o l a i B a s i n前垂柳金矿床δ34S测试结果为10.13ɢ~12.39ɢ,平均为10.98ɢ,高于地幔值(δ34Sʈ0),小于海水的δ34S值(δ34Sɤ20ɢ),呈明显的正态分布,较富集δ34S,呈均一程度高的特征,位于荆山群㊁玲珑花岗岩及中基性脉岩硫同位素组成范围的高值部分(图4),这与胶莱盆地东北缘金矿床δ34S特征相似(图5),反映了同属于胶东地区金成矿事件,具有相似的物质来源㊂前人研究表明胶莱盆地东北缘土堆-沙旺金矿床成矿热液的硫源为混合硫,继承了伴生脉岩深部岩浆源区同位素及元素比值特点,并萃取了围岩荆山群中的硫[2,16,39];辽上金矿成矿物质来源于地幔,部分来源于地壳,为壳幔混合作用的产物[18];而西涝口金矿成矿物质则来源于富集地幔区或源区混染[11]㊂李大兜[3]认为胶莱盆地东北缘成矿物质来源于深源岩浆的混合区,含矿流体在向上运移的过程中萃取了荆山群地层中的成矿物质㊂612Copyright©博看网. All Rights Reserved.第3期韩小梦等:胶莱盆地东北缘前垂柳金矿床S ㊁P b 同位素组成:对成矿物质来源的指示图5 前垂柳金矿床与区域典型金矿床硫同位素对比直方图(图中数据综合本文及文献[31-37])F i g .5 C o m p o r i n g h i s t o g r a m s o f s u l f u r i s o t o p e s i n t h e Q i a n c h u i l i u G o l d D e p o s i t a n d r e g i o n a l g o l d d e po s i t s 总体上,该区金矿成矿物质来源于壳幔混源,前垂柳金矿位于辽上金矿与西涝口金矿之间㊁土堆-沙旺金矿北部地区,它们的矿床地质背景㊁矿石类型㊁δ34S 等特征一致,表明其物质来源一致,成矿流体均来源于深部,在上升过程中混染了大量地壳中荆山群中的硫,形成更加富金的成矿流体,并在特定条件下富集成矿㊂5.2铅的来源热液环境中沉淀的硫化物(黄铁矿)不含U ㊁T h 或含U ㊁T h 极低,在矿物形成后不再受放射性成因铅的影响,其铅同位素组成特征主要取决于源区初始铅㊁μ值㊁ω值㊁κ值和形成时间,成矿过程中的物理㊁化学作用不会改变其组成,只是随着矿质运移和沉淀而运动㊂因此铅同位素组成是示踪成矿物质来源最直接㊁最有效的一种方法[31,38-40]㊂从前垂柳金矿主成矿阶段载金黄铁矿中的铅同位素组成来看,其变化范围相对较大,表明铅同位素来源可能不来自同一源区,可能为混合来源㊂从其铅同位素特征值来看,μ值为9.40~9.57,平均值为9.46,略低于地壳正常μ值9.58,明显高于地幔μ值7.3~8.0[41-43],说明铅源主要来源于地壳;ω值为36.30~43.26,平均值为39.74,高于地壳ω值36.50;κ值范围为3.71~4.39(表2),平均值为4.07,高于地幔κ值3.45,与地壳T h /U 比值(约为4)相当,表明成矿物质来自U 亏损型源区[41-43]㊂在207P b /204P b-206P b /204P b 铅同位素增长曲线图(图6-a )中,数据点均落在上地壳和地幔演化曲线之间,主要集中在造山带演化曲线两侧,呈线性分布趋势,表明铅为古老的异常铅,并具有多阶段演化特点;在206P b /204P b -208P b /204P b 铅同位素增长曲线图(图6-b )中,数据点主要落在下地壳和造山带演化曲线之间,个别落在下地壳和造山带曲线上,显示壳幔混合铅特征;在铅同位素构造环境判别图(图6-c)中,数据点主要落在下地壳和造山带中,显示下地壳铅和壳幔混合铅的特征㊂在铅同位素构造环境判别图(图6-d )中,数据点主要落在下地壳区,个别落在造山带区,显示下地壳铅特征㊂另外在铅同位素Δβ-Δγ成因判别图解(图7)上,数据点主要落在造山带与上地壳铅的交界区域内,个别落在岩浆作用铅范围,显示壳幔混合铅的特征㊂综合上述图解可以看出,前垂柳金矿铅同位素为壳幔混合铅源,具明显下地壳铅的特征㊂区域上辽上金矿铅以壳幔混合铅源为主[18];西涝口金矿铅具多源性,成矿物质主要来源于下地壳,并有少量地幔物质参与成矿[33];蓬家夼和发云夼金矿铅为古老的异常铅,并具有多阶段演化的特点,以壳幔混合铅源为主[35];土堆-沙旺金矿铅来源于上地幔,成矿物质在迁移沉淀的过程中混合了部分壳源物质[3]㊂研究表明胶东群地层和胶东基性岩分布在地幔演化线的两侧[44-45],玲珑花岗岩具有陆壳重熔型花岗岩的特征,郭家岭型花岗岩为壳幔混合成因[46],昆嵛山岩体则是沉积岩与幔源岩浆岩的混合[5,38],从图6-a 可以看出,三者投点几乎都落在造山带与地幔演化曲线之间,表明铅同位素来自于壳幔混合来源㊂通过对辽上㊁土堆-沙旺㊁蓬家夼及前垂柳等金矿矿石铅同位素数据进行统计发现,206P b /204P b 值为16.920~18.886,207P b /204P b值为15.307~15.677,208P b /204P b 值为37.359~39.676,Δβ值为3.13~25.03,Δγ值为22.77~64.03㊂在铅同位素模式图(图6-a ,b)㊁构造环境判712Copyright ©博看网. All Rights Reserved.h t t p s ://d z k j q b .c u g.e d u .c n 地质科技通报2023年图6 前垂柳金矿床矿石铅同位素模式图(a ~b )及构造环境判别图(c ~d )(底图据文献[42];投影点数据综合本文及文献[33-39])F i g .6 P l u m b o t e c t o n i c m o d e l o f l e a d i s o t o p e (a -b )a n d d i a g r a m f o r d i s c r i m i n a t i n g t h e t e c t o n i c s e t t i n g (c -d )o f t he Q i a n c h u i l i u G o l d D e po s it 1.地幔源铅;2.上地壳源铅;3.上地壳与地幔混合的俯冲铅:3a .岩浆作用铅;3b .沉积作用铅;4.化学沉积型铅;5.海底热水作用铅;6.中深变质作用P b ;7.深变质下地壳铅;8.造山带铅;9.古老页岩上地壳铅;10.退变质铅图7 前垂柳金矿床矿石铅同位素Δγ-Δβ成因判别图解(底图据文献[42];投影点数据综合本文及文献[33-39])F i g .7 Δγ-Δβge n e t i c c l a s s if i c a t i o n d i ag r a m sh o wi n g o r e m i n e r a l l e a d i s o t o pi c d i s t r i b u t i o n i n t h e Q i a n c h u i l i u G o l d D e po s i t 别图(图6-c ,d )㊁铅同位素Δβ-Δγ成因判别图解(图7)上可以看出,数据点整体略显分散,主体相对均一,指示该区金矿床具有相同或相似的成矿构造背景和铅源,即铅源以壳幔混合铅源为主,具有明显下地壳铅的特征,说明该区成矿物质来源一致,应为同一成矿背景下发生的成矿作用[34,44]㊂总体上,胶莱盆地东北缘典型金矿床矿石铅与各时代地质体铅具有较大范围的重叠,说明该区典型金矿床矿石铅同位素在成矿物质来源方面与围岩具有一定的继承性与差异性[5,34-39]㊂综上认为,前垂柳金矿与区域典型金矿床具有相似的矿石硫和铅同位素来源,其成矿物质来源于壳幔混合,它们是同一成矿背景下成矿作用的产物㊂深部成矿流体在上升过程中混染了不同围岩中的硫和铅,萃取了其中的金元素,形成的含矿流体在合适的条件下富集成矿㊂同时也造成不同成矿区(胶西北㊁牟乳㊁胶莱盆地东北缘等)金矿床矿石硫和铅同位素略有差异的特性㊂812Copyright ©博看网. All Rights Reserved.。
器物类文物超高清三维数字化流程的规范化研究
学术研讨器物类文物超高清三维数字化流程的规范化研究■ 黄墨樵1 刘 欢2 侯琛琛1(1.故宫博物院; 2.中兵勘察设计研究院有限公司)摘 要:随着我国文物数字化保护利用需求的不断提高,对文物三维数字化的要求逐步迈向超高清阶段,即获取兼具高精度几何信息和高还原度颜色信息的文物超高清三维模型数据,以满足迅速更新迭代的应用终端和各类符合高质量发展要求的应用场景。
目前成果一致性好、可工程化实施的文物三维数字化流程还没有得到规模化应用。
本文通过对比已有标准化文件,梳理完善数字化流程,探讨优化数据加工、质量控制和成果量化评价流程的方法,以期提高文物三维数字化效率、提升文物三维数字化成果质量,为文物保护单位采用三维数字化技术方法采集获取文物超高清三维数据提供参考性依据和可操作性方案。
关键词:器物类文物,超高清,文物三维数字化,流程设置,标准化DOI编码:10.3969/j.issn.1002-5944.2023.22.005Standardization Study on Ultra-high Defi nition 3D Digitalization Processof Cultural RelicsHUANG Mo-qiao1 LIU Huan2 HOU Chen-chen1(1. The Palace Museum; 2. China Ordnance Industry Survey and Geotechnical Institute Co., Ltd.)Abstract:As the demand for digital preservation and utilization of cultural relics intensifies in China, the 3D digitalization of cultural relics is evolving towards ultra-high definition, aiming to obtain model data with precise geometric information and realistic colors to meet the requirements of rapidly upgrading application terminals and various application scenarios for high-quality development. At present, there is no scale application of 3D digitalization process of cultural relics that can be implemented in projects with good consistency. Comparing existing standardized documents, this paper teases out and refines the digitalization processes, discusses the method of optimizing data processing, quality control, and quantitative evaluation process of results, which is expected to improve the effi ciency and quality of 3D digitalization, and provide valuable guidance and operable schemes for cultural preservation institutions to use 3D digitalization to collect 3D ultra-high defi nition data of cultural relics.Keyword: cultural relics, ultra-high defi nition, 3D digitalization of cultural relics, process setup, standardization0 引 言文物三维数字化包括文物三维数字化采集和加工流程,是将文物实体以数字技术等技术方法转化生成具有三维空间特征的数字虚拟可视化数据形态。
沁河流域上游沁源县生态地质脆弱性评价与分区
第11卷 第2期中 国 地 质 调 查Vol.11 No.22024年4月GEOLOGICALSURVEYOFCHINAApr.2024doi:10.19388/j.zgdzdc.2024.02.12引用格式:刘淼,刘义,苗志加,等.沁河流域上游沁源县生态地质脆弱性评价与分区[J].中国地质调查,2024,11(2):97-107.(LiuM.LiuY,MiaoZJ,etal.EcologicalgeologicalvulnerabilityassessmentandzoningofQinyuanCountyintheupperreachesofQinheRiverBasin[J].GeologicalSurveyofChina,2024,11(2):97-107.)沁河流域上游沁源县生态地质脆弱性评价与分区刘淼1,2,3,刘义1,2,3,苗志加2,许凯然1,2,史佩东1,2(1.中国地质调查局廊坊自然资源综合调查中心,河北廊坊 065000;2.河北地质大学,河北省高校生态环境地质应用技术研发中心,河北石家庄 050031;3.中国地质大学(北京),北京 100083)摘要:沁河流域作为黄河中游重要支流,研究其生态保护修复工作对黄河流域实现高质量发展具有重要意义。
根据生态地质调查工作成果,选取了地质背景和自然环境相关的11项影响沁源县生态地质脆弱性的主要因素,构建了评价指标体系,利用地理信息系统,采用层次分析法建立的评价模型,开展了沁源县生态地质脆弱性评价与分区,对不同的生态地质脆弱性分区,提出了具有针对性的生态保护修复分类施策建议。
结果表明:沁源县生态地质轻度脆弱区域主要分布于沁河及其支流河谷,面积占比为1.1%;中度脆弱区域主要分布于王陶乡西部至灵空山镇西北部一带、郭道镇东部至法中乡北部一带,面积占比为81.16%;高度脆弱区域主要分布于县域北部王和镇—郭道镇—官滩乡一带及县域中南部李元镇—灵空山镇一带,面积占比为17.74%;无极脆弱区域。
vEcharts中国地图(增加主题色切换)(颜色填充img纹理填充设置)
vEcharts中国地图(增加主题⾊切换)(颜⾊填充img纹理填充设置)<template><div class="map-chart"><v-echarts autoresize :options="mapOpt" style="width:100%;height:100%;"/><img ref="dot" hidden src="../../../assets/images/equipment/dot1.png"><img ref="dot2" hidden src="../../../assets/images/equipment/dot2.png"></div></template><script>import 'echarts/map/js/china'import vEcharts from 'vue-echarts/components/ECharts'export default {components: {vEcharts},props: {mapdata: { default: function() {return []}, type: Array }},data: function() {return {mapOpt: {},mapObj: null}},computed: {theme() {return this.$store.state.app.theme}},watch: {theme(newVal, oldVal) {// 切换地图相关颜⾊ switch map colorif (newVal === 'dark') {this.mapOpt.geo.itemStyle.normal.areaColor = 'rgba(225,233,240,0.13)'// '#E1E9F022'// this.mapOpt.geo.itemStyle.normal.areaColor.image = this.$refs.dot2this.mapOpt.geo.itemStyle.normal.borderColor = '#2e8492'} else {this.mapOpt.geo.itemStyle.normal.areaColor = 'rgba(225,233,240,0.13)'// '#E1E9F022'// this.mapOpt.geo.itemStyle.normal.areaColor.image = this.$refs.dotthis.mapOpt.geo.itemStyle.normal.borderColor = '#b6d1e8'}}},mounted: function() {this.setMapOpt()},methods: {setMapOpt() {this.mapOpt = {grid: {right: '1%',top: '15%',bottom: '10%',width: '20%'},tooltip: {trigger: 'item' // hover触发器},geo: {map: 'china',show: true,silent: true,roam: true,zoom: 1.2,center: [107, 36],label: {emphasis: {show: false}},itemStyle: {normal: {borderColor: this.theme === 'dark' ? '#2e8492' : '#b6d1e8',borderWidth: 3,borderType: 'doted',// // 纹理填充// areaColor:{// image: this.theme === 'dark' ? this.$refs.dot2 : this.$refs.dot, // ⽀持为 HTMLImageElement, HTMLCanvasElement,不⽀持路径字符串// repeat: 'repeat' // 是否平铺, 可以是 'repeat-x', 'repeat-y', 'no-repeat'// },areaColor: 'rgba(225,233,240,0.13)' // 颜⾊填充// shadowColor: 'rgba(255, 255, 255, 1)',// shadowOffsetX: -1,// shadowOffsetY: 1,// shadowBlur: 1}// emphasis: {// areaColor: '#389BB7',// borderWidth: 0// }}},series: [{// ⽂字和标志name: 'light',type: 'scatter',coordinateSystem: 'geo',data: this.mapdata,symbolSize: 15,tooltip: {trigger: 'item',formatter: function(params, ticket, callback) {return '名称:' + + '<br/>' + '序列号:' + params.data.code}},label: {normal: {show: false},emphasis: {show: false}},itemStyle: {normal: {color: 'rgba(48, 159, 251, 0.2)', // '#309FFB33',borderColor: '#309FFB'}}}]}}}}</script><style scoped lang="scss">.dark-theme{.map-chart{background:$dark_bg;box-shadow: 1px 1px 5px 0px #0e323b;}}.map-chart{width:100%;height:100%;background: $bg;box-shadow: 1px 1px 5px 0px #dedede;border-radius: 10px;}</style>。
基于YOLOv5s的导盲系统障碍物检测算法
第13卷㊀第11期Vol.13No.11㊀㊀智㊀能㊀计㊀算㊀机㊀与㊀应㊀用IntelligentComputerandApplications㊀㊀2023年11月㊀Nov.2023㊀㊀㊀㊀㊀㊀文章编号:2095-2163(2023)11-0220-07中图分类号:TP394.1文献标志码:A基于YOLOv5s的导盲系统障碍物检测算法刘昕斐,张荣芬,刘宇红,刘㊀源,程娜娜,杨㊀双(贵州大学大数据与信息工程学院,贵阳550025)摘㊀要:由于盲人缺乏视觉感知能力,因此在户外独立出行时具有较大的风险㊂为了增强盲人户外场景下的环境感知能力,本文针对导盲系统的实际应用,提出一种基于YOLOv5s改进的导盲系统障碍物检测算法㊂首先,为了降低整体模型的计算量,使用MobileNetV3代替原网络的主干特征提取网络;然后,引入CA注意力机制使模型更好地关注训练过程中的有效特征;最后,采用EIoU边界框损失函数替换原模型的CIoU,优化了预测框的回归速度与精度㊂在服务器上进行模型验证,实验结果表明本文所提算法相较原模型计算量降低了59%,参数量降低了49.3%,同时mAP提高了2.3%,具有一定的实用价值㊂关键词:YOLOv5s;轻量化;注意力机制;障碍物检测AnobstacledetectionalgorithmforguidesystembasedonYOLOv5sLIUXinfei,ZHANGRongfen,LIUYuhong,LIUYuan,CHENGNana,YANGShuang(CollegeofBigDataandInformationEngineering,GuizhouUniversity,Guiyang550025,China)Abstract:Becauseblindpeoplelackvisualperception,theyareatgreaterriskwhentravelingoutdoorsindependently.Inordertoenhancetheenvironmentperceptionabilityofblindpeopleinoutdoorscenes,thispaperproposesanobstacledetectionalgorithmforguidesystembasedonYOLOv5sforthepracticalapplicationofguidesystem.Firstly,inordertoreducethecalculationamountoftheoverallmodel,MobileNetV3isusedinsteadofthebackbonefeatureextractionnetworkoftheoriginalnetwork.Then,theCAattentionmechanismisintroducedtomakethemodelpaybetterattentiontotheeffectivefeaturesinthetrainingprocess.Finally,theEIoUboundingboxlossfunctionisusedtoreplacetheCIoUoftheoriginalmodel,andtheregressionspeedandaccuracyofthepredictionboxareoptimized.Comparedwiththeoriginalmodel,theexperimentalresultsshowthatcomparedwiththeoriginalmodel,thealgorithmproposedinthispaperreducesthecalculationamountby59%,thenumberofparametersisreducedby49.3%,andthemAPisincreasedby2.3%,whichhascertainpracticalvalue.Keywords:YOLOv5s;lightweight;attentionmechanism;obstacledetection基金项目:贵州省基础研究(自然科学)项目黔科合基础-ZK[2021]重点001资助㊂作者简介:刘昕斐(1996-),男,硕士研究生,主要研究方向:目标检测;刘宇红(1963-),男,教授,主要研究方向:计算机视觉㊁智能图像处理㊂通讯作者:张荣芬(1977-),女,博士,教授,主要研究方向:机器视觉㊁智能算法㊁智能硬件㊂Email:rfzhang@gzu.edu.cn收稿日期:2023-01-070㊀引㊀言根据世界卫生组织(WHO)的调查,全世界约有2.85亿人患有视力疾病[1]㊂目前,国内约有500万盲人,且盲人数量正在以每年约40万的速度增加[2]㊂视力障碍人群对日常生活辅助服务的需求不断加强㊂视力障碍人士在独自出行的过程中需要足够外部环境信息提示以避免发生碰撞,这些信息包括路面凸起(如石头)㊁隔离桩㊁随意停放的自行车和摩托车等障碍物,以及斑马线㊁盲道㊁路面坑洼等路面情况,由于很多城市在建设过程中没有充分考虑盲人的出行需求,因此当前存在盲道设置不科学与盲道维护不及时的问题,这就在一定程度上限制了盲人在室外独自出行的活动㊂而当前导盲辅助服务㊁如专人陪同或导盲犬对使用者的经济水平有较高要求㊂传统的盲人出行辅助器材大多基于超声波㊁红外传感器,很难满足当前的盲人出行需求,随着深度学习技术的迅速发展,基于计算机视觉领域的目标检测研究为导盲算法提供了新的发展方向㊂2012年,Krizhevsky等学者[3]在ImageNet图像分类竞赛中使用了深度卷积神经网络(CNN)模型,大幅度超越了传统的机器学习算法,这也成功标志着深度学习在计算机视觉领域的应用开始进入快速发展的阶段㊂2015年,Girshick等学者[4]提出了RCNN模型,该模型使用基于候选的方法,显著提高了目标检测的准确率㊂随后,各种优秀的算法如FastRCNN[5]㊁FasterRCNN[6]㊁MaskRCNN[7]等模型算法相继被提出㊂在2016年,Redmon等学者[8]首次提出了YOLO(YouOnlyLookOnce)检测模型,使得目标检测算法的精度进一步上升,且模型运行的计算量需求有了大幅度下降㊂2018年,李林等学者[9]使用MobileNet网络基于迁移学习方法对盲道障碍物图片进行分类㊂2022年白俊卿等学者[10]使用ECA注意力结合YOLOv4进行无人机障碍物检测㊂刘力等学者[11]使用YOLOv4模型对铁路上的入侵障碍物进行检测,取得了良好的效果㊂本文针对视力障碍人群在出行时可能碰到的各种情况,提出了一种改进型YOLOv5s障碍物检测算法,来解决导盲系统使用过程中的障碍物感知问题㊂1㊀YOLOv5s目标检测模型及改进1.1㊀YOLOv5网络介绍YOLOv5是目前流行的目标检测算法之一,YOLOv5的网络结构如图1所示㊂YOLOv5针对不同的部署环境提出了4种模型结构,分别是YOLOv5s㊁YOLOv5m㊁YOLOv5l和YOLOv5x,其中YOLOv5s网络参数量最少,另外3种网络以此为基础进行不同程度的加深加宽,精度相应地有一定的提升,但是对计算资源的需求也逐渐提高㊂YOLOv5s网络结构主要分为3个部分:主干网络(Backbone)㊁颈部(Neck)和检测头(Head)㊂其中,Backbone主要负责提取特征,由CBS㊁CSP1和SPPF三部分组成㊂研究可知,CBS是由卷积(Conv)㊁批量归一化(BatchNormalizetion,BN)和SiLU激活函数构成;CSP1是一种残差结构[12],可以使计算过程中的参数量变小,速度更快,并且通过残差模块可以控制模型的深度,CSP1_X,CSP2_X的X表示该模块使用的串接次数㊁即深度;SPPF的作用是对特征图进行多次池化,对高层特征提取并融合,比SPP-Net拥有更快的推理速度㊂Neck采用PANet[13]结构,主要作用是进行特征融合,PANet由CBS㊁上采样(Upsample)㊁CSP2组成㊂C B S C B S C S P1_1 C B S C S P1_2 C B S C S P1_3 C B S C S P1_1 S P P EC o n c a tu p s a m p l eC B SC S P2_1C o n c a tu p s a m p l eC B SC S P2_1C B SC o n c a tC S P2_1C B SC o n c a tC S P2_1I N P U TB a c k b o n e N e c kD e t e c tD e t e c tD e t e c t H e a dC B S C o n v B N S i L u R e s x C B S C B S A d d C S P1C B S R e s x c o n c a t C B SC B SC S P2C B S C B S C B S c o n c a t C B SC B S图1㊀YOLOv5网络结构Fig.1㊀YOLOv5networkarchitecture122第11期刘昕斐,等:基于YOLOv5s的导盲系统障碍物检测算法1.2㊀改进后的模型整体网络本文使用MobileNetV3[14]网络替换YOLOv5s的主干特征提取网络,以减少参数量,降低计算量,提高运算速度㊂在主干特征提取网络和特征融合网络中插入CA注意力,使模型更好地聚焦于有效特征㊂使用EIoU边界框损失函数替换原网络的CIoU边界框损失函数,提高了模型的回归精度㊂改进后的模型整体网络结构如图2所示㊂I N P U T(640?640?3)c o n v _b n _h s w i s h (320?320?16)M o b i l e N e t _b n e c k (160?160?16)M o b i l e N e t _b n e c k (80?80?24)?2M o b i l e N e t _b n e c k (40?40?40)?3M o b i l e N e t _b n e c k (40?40?48)?2M o b i l e N e t _b n e c k (20?20?96)?2B a c k b o n e N e c kC AC A C A c o n c a t u p s a m p l e C B S C S P 2_1c o n c a t u p s a m p l e C B SC S P 2_1C B S c o n c a t C S P 2_1C B S c o n c a t C S P 2_1C S P 2C B SC B S C B Sc o n c a tC B SC B SC B SC o n v B NS i L uH e a dD e t e c tD e t e c tD e t e c t图2㊀改进后的模型整体网络结构Fig.2㊀Theoverallnetworkstructureoftheimprovedmodel1.3㊀MobileNetV3轻量化计算网络MobileNetV3是由Google团队在2019年提出的一种轻量级卷积神经网络,被广泛应用于移动设备等计算资源有限的场景中㊂相比于以前的版本,MobileNetV3在速度和精度上都有着显著提升㊂MobileNetV3的设计思路主要有3个:减少计算量和内存占用㊁优化神经网络架构㊁增加非线性变换㊂MobileNetV3的在具体实现上表现在3个方面㊂(1)MobileNetV3引入了 深度可分离卷积(DepthwiseSeparableConvolution)来代替标准的卷积操作,减少了网络的计算量㊂深度可分离卷积将标准卷积分解为逐通道和逐点卷积两层,前者用于在通道维度上处理输入特征图,后者用于在空间维度上处理特征图㊂通过使用深度可分离卷积,MobileNetV3可以显著减少参数量和计算量,并提高网络的运行速度㊂MobileNetV3的block组成如图3所示㊂㊀㊀在深度可分离卷积中逐通道卷积是通过一个一维的卷积核对一个通道进行卷积操作后再对卷积后的结果进行汇总,如图4所示㊂一张三通道的彩色图片通过逐通道卷积运算后可以得到3张特征图,因此在逐通道卷积的过程中无法提高通道数,可以使用逐点卷积对逐通道卷积后的信息进行整合㊂1?1,N LD w i s e ,N LP o o lF C ,R e l u F C ,Ha r d -α图3㊀MobileNetV3blockFig.3㊀MobileNetV3block图4㊀逐通道卷积Fig.4㊀Channelbychannelconvolution㊀㊀逐点卷积的卷积核大小为1ˑ1ˑM,其中M为输入数据的维度,逐点卷积可以通过加权组合的方222智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀式对逐点卷积形成的特征图进行信息提取并生成新的特征图,如图5所示㊂一张3通道的彩色图片用4个1ˑ1ˑ3的逐点卷积进行计算后可以形成4个新的特征图㊂图5㊀逐点卷积Fig.5㊀Pointbypointconvolution㊀㊀在使用标准卷积计算的情况下,设输入数据为DFˑDFˑM,卷积核为DKˑDKˑN,卷积步长为1时,标准卷积的参数量为:Params=DKˑDKˑMˑN(1)㊀㊀对应的计算量为:Flops=DFˑDFˑDKˑDKˑMˑN(2)㊀㊀在同样的情况下使用深度可分离卷积时对应的参数量为:Params=DKˑDKˑM+MˑN(3)㊀㊀此时的计算量为:Flops=DFˑDFˑDKˑDKˑM+DFˑDFˑMˑN(4)因此,深度可分离卷积与标准卷积的参数量与计算量之比均为:F=1N+1DK(5)㊀㊀因此可知,使用深度可分离卷积可以极大地降低参数量与计算量㊂(2)MobileNetV3使用了非线性激活函数h-swish和h-sigmoid,能够显著减少模型的计算量,同时保持较高的准确率㊂h-swish是一个可微的连续函数,其形式类似于ReLU激活函数,但是比ReLU要更加平滑,从而可以减少梯度爆炸和梯度消失的问题㊂而h-sigmoid则是对sigmoid函数的一种变体,可以减少运算量并提高网络的计算效率㊂(3)MobileNetV3使用了SqueezeandExcitation(SE)注意力模块,可以自适应地对不同的通道㊁进行加权,加强重要的通道而减弱不重要的通道㊂通过使用SE模块,MobileNetV3可以更加有效地利用有限的计算资源,提高网络的精度和效率㊂1.4㊀CA注意力机制Hou等学者[15]在2021年提出了CA(CoordinateAttention)注意力机制㊂CA注意力模块结构如图6所示㊂CA注意力机制可以在基本没有增大计算开销的情况下插入神经网络中,提高网络检测性能㊂CA注意力机制相比当前流行的SE[16]㊁CBAM[17]有显著的优点,既关注了通道维度又关注了空间维度㊁且解决了长距离依赖问题㊂C ?H ?WO u t p u t R e -w e i g h t C ?H ?1R e s i d u a lC ?H ?WI n p u t XA v g P o o l YA v g P o o lC o n c a t +C o n v 2d B a t c h N o r m +N o n -l i n e r C o n v 2d C o n v 2d S i g m o i dS i g m o i dC ?1?W图6㊀CA注意力模块结构Fig.6㊀CAattentionmodulestructure㊀㊀CA注意力机制可以对网络中的任意中间特征张量:X=[x1,x2,...,xc]ɪRHˑWˑC(6)㊀㊀进行转化后输出同样尺寸的张量;Y=[y1,y2,...,yc]ɪRHˑWˑC(7)㊀㊀CA注意力机制对通道关系和空间关系进行编码的过程可以分为坐标信息嵌入和注意力生成两个阶段㊂在进行坐标信息嵌入时,对输入的特征图在X和Y两个方向进行池化操作,用以保留特征图的空间结构信息㊂因此高度为h的第c个通道可以表示为:zhc(h)=1Wð0£i<Wxc(h,i)(8)㊀㊀同样,宽度为w的第c通道输出可以写成zwc(w)=1Hð0£j<Hxc(j,w)(9)㊀㊀接着,X和Y方向的特征图进行拼接,再对其进行卷积操作,使其维度降低为原来的Cr,然后将经322第11期刘昕斐,等:基于YOLOv5s的导盲系统障碍物检测算法过批量归一化处理的特征图F1送入Sigmoid激活函数得到形如1ˑ(W+H)ˑCr的特征图f,计算公式如下:f=δ(F1([zh,zw]))(10)㊀㊀在此基础上,将特征图f按照输入数据的高度和宽度进行的卷积,分别得到通道数与原来一样的特征图Fh和Fw,经过σ激活函数后分别得到特征图在高度和宽度上的注意力权重gh和在宽度方向的注意力权重gw㊂其数学公式可写为:gh=σ(Fh(fh))(11)gw=σ(Fw(fw))(12)㊀㊀经过上述计算后将会得到输入特征图在高度方向的注意力权重和在宽度方向的注意力权重㊂最后,在原始特征图上通过乘法加权计算,得到最终在宽度和高度方向上带有注意力权重的特征图,如式(13)所示:yc(i,j)=xc(i,j)ˑghc(i)ˑgwc(j)(13)1.5㊀边界框损失函数改进在YOLOv5s网络中,边界框回归损失函数使用的是CIoU损失函数,CIoULoss虽然考虑了边界框回归的重叠面积㊁中心点距离㊁纵横比,但是通过在计算过程中只考虑了纵横比的差异,而忽略了宽高分别与其置信度的真实差异㊂针对这一问题,本文使用EIoU[18]边界框损失函数替代原模型使用的CIoU边界框损失函数,用来加快模型的收敛速度,提高模型的精度㊂EIoU损失函数的公式为:LossEIoU=1-IoU+ρ2(b,bgt)c2+ρ2(w,wgt)c2w+ρ2(h,hgt)c2h(14)其中,LossEIoU为EIoU损失函数的值;b,bgt为预测框和真实框的中心点;ρ为计算2个中心点之间的欧氏距离;w为框的宽度;h为框的高度;c为能够同时包含预测框和真实框的最小外接矩形的对角线距离;ch㊁cw为以2个中心点构成的矩形的高和宽㊂2㊀实验与结果分析2.1㊀实验数据集本文针对盲人出行时常见的障碍物数据集进行收集,具体包括3种类型的障碍物,分别是:路面情况,如因年久失修造成的路面坑洼;人为设置的路面的障碍,如隔离桩㊁三角锥和石墩等;以及路面上出现的随机障碍,如随意停放的自行车㊁路上的行人或街道上常见的猫㊁狗等㊂本文的数据集从互联网㊁实地拍摄人行道的障碍物以及VOC等公共数据集上进行收集,并对收集的图片采用labelimg图像注释工具进行数据标注㊂实验数据集将检测障碍物分为20类,共计26872张图片㊂各类别具体数量见表1㊂训练集和验证集按9ʒ1的比例随机进行划分㊂表1㊀数据集的种类与数量Tab.1㊀Typesandquantityofdatasets种类数量种类数量自行车2016隔离柱1657石球820杆1540长椅1903垃圾桶1205台阶1498楼梯920轿车1680路锥1120摩托车1209坑1203禁止横栏1130人2230消防栓1060狗1180公交车1098猫1180斑马线1559红绿灯9232.2㊀实验细节本文实验均在服务器Ubuntu20.04操作系统下运行,计算机处理器型号为AMD3900X,显卡型号为NVIDIAGTX3090,内存为24G㊂采用Pytorch1.7.1框架,所使用的编程语言Python3.7㊂模型训练时使用sgd优化器,设定batchsize为32,初始学习率为0.01,最小学习率为0.0001,动量因子为0.937㊂设置训练轮数为300㊂2.3㊀实验结果分析2.3.1㊀实验评价指标本文采用准确率P(Precision)和召回率R(Recall)计算出所有检测类别的平均精度(mAP)来对模型的检测效果进行评估,使用计算量(Flops)和参数量(Params)两个指标来整体评估模型对计算资源的占用程度㊂其中,AP与mAP的计算公式为:P=TPTP+FP(15)R=TPTP+FN(16)AP=ʏ10P(R)dR(17)mAP=ðni=1APin(18)㊀㊀其中,TP㊁FP㊁FN分别表示正确检测的数量㊁错误检测的数量㊁没有检测出的数量㊂422智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀2.3.2㊀不同模型实验数据对比为了验证本文算法的检测性能,将FasterRCNN[19]㊁Centernet[20]㊁YOLOv3[21]㊁YOLOv4[22]㊁YOLOv5s和本文算法在同一数据集下进行对比实验,结果见表2㊂表2㊀不同算法对比Tab.2㊀Comparisonofdifferentalgorithms模型mAP@0.5/%Params/MFlops/GFPSFasterRCNN44.628.5470.125Centernet43.332.722.167YOLOv474.164.129.990YOLOv5s74.87.116.196本文算法77.13.66.61162.3.3㊀消融实验为验证本文改进算法的有效性,对本文算法的改进部分,分别进行消融实验得到表3㊂由表3的实验结果可知,使用MobileNetV3轻量化主干特征提取网络之后计算量和参数量明显下降,计算精度轻微下降,表明采用MobileNetV3轻量化主干网络可以有效实现网络的轻量化,在添加CA注意力与改进边界框损失函数后,计算精度有所上升,表明CA注意力机制可以使模型有效地聚焦于被检测目标的有效特征,与此同时计算量和参数量轻微上升㊂㊀㊀由对比实验与消融实验可知,在盲人出行道路障碍物检测精度上可以达到77.1%,本文模型精度上优于FasterRCNN㊁Centernet㊁YOLOv4㊁YOLOv5s等模型,参数量和计算量明显小于对比算法,计算速度有所提升㊂表3㊀不同模块对模型整体影响Tab.3㊀TheoverallimpactofdifferentmodulesonthemodelModelMobileNetV3CAEIoUmAP@0.5/%Params/MFlops/GFPS174.87.116.1962ɿ73.93.66.51253ɿ75.67.316.7894ɿ75.17.116.1955ɿɿ76.93.66.61186ɿɿ74.73.66.51237ɿɿɿ77.13.66.61162.3.4㊀模型运行效果图改进前与改进后的模型检测效果如图7所示㊂改进后的模型检测精度有所上升,在被检测物体之间存在遮挡情况下,因为改进后模型的特征提取能力较强,可以检测到原模型的部分漏检情况㊂(b)本文算法(a)Y O L O v5s图7㊀YOLOv5s模型与改进后的模型检测效果对比Fig.7㊀ComparisonofdetectionperformanceofYOLOv5smodelandimprovedperformancemodel3㊀结束语为了解决导盲系统的实际需求,本文提出了一种基于YOLOv5s的改进模型㊂通过将主干特征提取网络替换为MobileNetV3,显著降低了网络的计算量和参数量,在网络中融入CA注意力机制,有效地提升了检测模型的精度;采用EIoU边界框损失函数,使得对目标的定位更加精准㊂实验结果表明,本文算法在速度上满足了实时检测的需求,检测目标的准确率也优于现有的YOLOv4㊁YOLOv5s等算法,mAP达到了77.1%,单张检测速度达到了116FPS㊂由于条件有限,本文的研究还有部分不足之处㊂一,数据集多为光照条件良好时拍摄的照片,因此模型在夜晚的识别能力有所下降;二,模型算法仍需要6.6GFlops的计算量,对部分算力不高的边缘计算设备仍存在一定的压力㊂后续将对数据集扩充部分夜间拍摄的图片,以及采用模型剪枝㊁知识蒸馏等措施对模型进行进一步压缩,实现算法在边缘计算设备上的流畅运行㊂522第11期刘昕斐,等:基于YOLOv5s的导盲系统障碍物检测算法参考文献[1]ACKLANDP,RESNIKOFFS,BOURNER.Worldblindnessandisualimpairment:despitemanysuccesses,theproblemisrowing[J].CommunityEyeHealth,2017,30:71-73.[2]武曌晗,荣学文,范永.导盲机器人研究现状综述[J].计算机工程与应用,2020,56(14):1-13.[3]KRIZHEVSKYA,SUTSKEVERI,HINTONGE.ImageNetclassificationwithdeepconvolutionalneuralnetworks[J].AdvancesinNeuralInformationProcessingSystems,2012,25(2):1097-1105.[4]GIRSHICKR,DONAHUEJ,DARRELLT,etal.Region-basedconvolutionalnetworksforaccurateobjectdetectionandsegmentation[J].IEEETransactionsonPatternAnalysisandMachineIntelligence,2015,38(1):142-158.[5]GIRSHICKR.FastR-CNN[C]//ProceedingsoftheIEEEInternationalConferenceonComputerVision(ICCV).Santiago:IEEE,2015.[6]RENShaoqing,HEKaiming,GIRSHICKR,etal.FasterR-CNN:Towardsreal-timeobjectdetectionwithregionProposalnetworks[J].IEEETransactionsonPatternAnalysis&MachineIntelligence,2017,39(6):1137-1149.[7]HEKaiming,GEORGIAG,PIOTRD,etal.MaskR-CNN[J].arXivpreprintarXiv:1703.06870,2017.[8]REDMONJ,DIVVALAS,GIRSHICKR,etal.Youonlylookonce:Unified,real-timeobjectdetection[C]//ProceedingsoftheIEEEConferenceonComputerVisionandPatternRecognition.LasVegas:IEEE,2016:779-788.[9]李林,李小舜,吴少智.基于迁移学习和显著性检测的盲道识别[J].计算机工程与应用,2018,54(11):8-14,29.[10]白俊卿,张文静.基于YOLOv4优化的轻量级无人机障碍物检测方法[J].电子测量技术,2022,45(22):87-91.[11]刘力,苟军年.基于YOLOv4的铁道侵限障碍物检测方法研究[J].铁道科学与工程学报,2022,19(2):528-536.[12]LINTY,DOLLARP,GIRSHICKR,etal.Featurepyramidnetworksforobjectdetection[C]//Proceedingsof2017IEEEConferenceonComputerVisionandPatternRecognition.NewYork:IEEEPress,2017:936-944.[13]LIUShu,QILu,QINHaifang,etal.Pathaggregationnetworkforinstancesegmentation[C]//Proceedingsof2018IEEE/CVFConferenceonComputerVisionandPatternRecognition.NewYork:IEEEPress,2018:8759-8768.[14]HOWARDA,SANDLERM,CHENB,etal.SearchingforMobileNetV3[C]ʊProceedingsof2019IEEE/CVFInternationalConferenceonComputerVision(ICCV).Seoul:IEEE,2019:1314-1324.[15]HOUQibin,ZHOUDaquan,FENGJiashi.Coordinateattentionforefficientmobilenetworkdesign[C]ʊProceedingsof2021IEEE/CVFConferenceonComputerVisionandPatternRecognition(CVPR).Nashville,TN,USA.NewYork:IEEEPress,2021:13708-13717.[16]HUJie,SHENLi,ALBANIES,etal.Squeeze-and-excitationnetworks[J].IEEETransactionsonPatternAnalysisandMachineIntelligence,2018,42(8):2011-2023.[17]WOOS,PARKJ,LEEJY,etal.CBAM:Convolutionalblockattentionmodule[C]//ProceedingsoftheEuropeanConferenceonComputerVision(ECCV).Munich,Germany:Springer,2018:3-19.[18]ZHANGYifan,RENWeiqiang,ZHANGZhang,etal.FocalandefficientIOUlossforaccurateboundingboxregression[J].arXivpreprintarXiv:2101.08158v1,2021.[19]RENShaoqing,HEKaiming,GIRSHICKR,etal.Faster-RCNN:Towardsreal-timeobjectdetectionwithregionproposalnetworks[C]//ProceedingsofInternationalConferenceonNeuralInformationProcessingSystems.MITPress,2015:91-99.[20]ZHOUXY,WANGDQ,KRAHENBUHLP.Objectsaspoints[C]//ProceedingsofIEEEConferenceonComputerVisionandPaternRecognition.LongBeach:IEEE,2019:7263-7271.[21]REDMONJ,FARHADIA.YOLOv3:Anincrementalimprovement[J].arXivpreprintarXiv:1804.02767,2018.[22]BOCHKOVSKIYA,WANGCY,LIAOHYM.YOLOv4:Optimalspeedandaccuracyofobjectdetection[J].arXivpreprintarXiv:2004.10934,2020.622智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀。
国家标准《中比例尺公开基础地图数据规范》的体系设计与研究
第27卷 第1期2020年2月地理信息世界GEOMATICS WORLD2020.2Vol.27 No.1国家标准《中比例尺公开基础地图数据规范》的体系设计与研究作者简介:王桂芝(1964-),女,黑龙江双鸭山人,高级工程师,硕士,主要从事空间数据库建设、GIS开发与应用、数据库驱动制图技术研究和生产应用、《国家普通地图集》编研等工作。
E-mail:wmj@收稿日期:2019-06-25王桂芝1,乔俊军2,王东华1,刘建军1(1. 国家基础地理信息中心,北京 100830;2. 武汉大学 测绘学院,湖北 武汉 430079)【摘要】随着国家基础地理信息数据库的建设和数字地图的开发利用,广大公众对基础地图数据产品的需求日益增长。
为了满足这一需求,规范基础地图数据产品的形式,确立对外发布基础地图数据产品的基础性、权威性、完整性、公开性和现势性,从国家层面对中比例尺基础地图数据产品进行了需求分析和社会调研,设计了《中比例尺公开基础地图数据规范》的图表式内容框架;通过指标调整,生产验证,参考相关技术标准和规范,确立了中比例尺公开基础地图数据的技术指标;经脱密处理、法规印证,编制了《中比例尺公开基础地图数据规范》,为中比例尺公开基础地图数据进一步开放提供了标准和依据。
【关键词】国家标准;中比例尺;公开版;基础地图数据规范;体系设计与研究【中图分类号】P283.1 【文献标识码】A 【文章编号】1672-1586(2020)01-089-07System Design and Research of National Standards on Specification for Medium ScalePublic Fundamental Map DataWANG Guizhi1, QIAO Junjun2, WANG Donghua1, LIU Jianjun1(1. National Geomatics Center of China, Beijing 100830, China;2. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China)Abstract:With the construction of national fundamental geographic information database and the development andutilization of digital maps, the public's demands for fundamental map data products are increasing day by day. In orderto meet this demand, the standardization of the form of fundamental map data products, and establishment of a series offundamental, authoritative, integrative, open and up-to data external fundamental map data products has become urgent.This paper carries out the demand analysis and social investigation on medium-scale fundamental map data productsat the national level, and designs the graphic content framework of specifications for medium scale public fundamentalmap data. Then through index adjustment and production validation, with reference to relevant technical standards andspecifications, this paper establishes technical indicators of medium-scale public fundamental map data.After decryptingprocessing and verification of laws and regulations, we finally compile the specifications for medium scale publicfundamental map data, which provides standards and basis for further opening of medium-scale public fundamental mapdata.Key words:national standards; medium scale; public version; specification of fundamental map data; system designand research引文格式:王桂芝,乔俊军,王东华,等. 国家标准《中比例尺公开基础地图数据规范》的体系设计与研究[J].地理信息世界,2020,27(1):89-95.0 引 言随着我国社会经济的高速发展,标准已经成为国家经济发展、国际经济竞争、企业发展水平高低的重要标志和组成部分[1]。
Echarts中国地图各个省市自治区自定义颜色
Echarts中国地图各个省市⾃治区⾃定义颜⾊前⾔最近接了⼀个外包的项⽬,其中有个需求是这样的,需要展⽰⼀个中国的统计地图,要求每个省市区都是不⼀样的颜⾊,必须特别区分开。
以及隐藏南海部分。
看了Echats相关⽂档,发现有类似的demo,但不是特别符合要求。
于是⾃⼰仔细读⽂档研究。
找到解决问题于是分享⼀下。
正⽂废话不多少,直接上代码⽅法1 (在数据中直接添加样式)需要后台配合的data数据结构如下:data: {{name: '北京',value: 11,itemStyle:{normal:{areaColor:#fff,label:{show:false}}}},{name: '天津',value: 22,itemStyle:{normal:{areaColor:#fff,label:{show:false}}}},{name: '上海',value: 33,itemStyle:{normal:{areaColor:#fff,label:{show:false}}}},{name: '重庆',value: 44,itemStyle:{normal:{areaColor:#fff,label:{show:false}}}},{name: '河北',value: 55,itemStyle:{normal:{areaColor:#fff,label:{show:false}}}},{name: '河南',value: 66,itemStyle:{normal:{areaColor:#fff,label:{show:false}}}},{name: '云南',value: 77,itemStyle:{normal:{areaColor:#fff,label:{show:false}}}},{name: '辽宁',value: 88,itemStyle:{normal:{areaColor:#fff,label:{show:false}}}},{name: '湖南',value: 99,itemStyle:{normal:{areaColor:#fff,label:{show:false}}}},{name: '南海诸岛',value: 99,itemStyle:{normal:{opacity:0,label:{show:false}}}},..........}// areaColor 就是省的⾃定义颜⾊值// opacity 就是某个省透明,⼀般有业务需求要求隐藏南海诸岛(虽然业务有要求,但是⼀定要记住南海永远是中国的⼀部分,南海永远是中国的⼀部分,南海永远是中国的⼀部分,重要的事情说三遍!)前端配置信息option = {....... 省略⼤堆配置series: [{type: 'map',name: 'tips名字',data: data}]}⽅法2 (在配置中添加样式,数据中定义颜⾊)需要后台配合的data数据结构如下:data: {{"name": "北京", "value": 34, "count": 500, "color": "#f00"},{"name": "天津", "value": 33, "count": 300, "color": "#ff0"},{"name": "上海", "value": 32, "count": 50, "color": "#f0f"},{"name": "重庆", "value": 31, "count": 50, "color": "#0f0"},{"name": "河北", "value": 30, "count": 120, "color": "#00f"},........}前端配置信息// data需要进⾏⼀次循环,填⼊设置。
中国天文数据中心数据管理系统技术路线图
CAsDC-ROADMAP-2017-2020中国天文数据中心数据管理系统技术路线图v0.1中国虚拟天文台版本历史版本日期负责人备注v0.02017-06-22何勃亮开始v0.12017-07-07何勃亮第一个小阶段版本更新时间:2017年7月18日目录第1章前言1第2章目标与路线32.1目标 (3)2.2预期典型应用场景 (3)2.2.1主数据中心 (3)2.2.2子数据中心或望远镜运行中心 (4)2.2.3个人用户 (4)2.2.4定制用户 (5)2.2.5虚拟天文台程序 (5)2.2.6手机端 (5)2.3路线图与工作计划 (5)2.3.1近期目标(2017.12) (6)2.3.2中期目标(2018.12) (6)2.3.3长期目标(2020.12) (6)第3章元数据73.1数据元数据 (8)3.1.1望远镜元数据 (8)3.1.2数据集元数据 (9)3.1.3专题库元数据 (9)3.1.4数据表元数据 (9)3.1.5文件元数据 (9)3.2运行数据 (10)3.2.1观测日志 (11)3.2.2运行日志 (11)3.3服务数据 (11)3.3.1论文数据 (11)3.3.2项目数据 (12)3.3.3成果数据 (12)3.3.4新闻报道数据 (13)第4章朱雀系统架构154.1网络拓扑 (15)4.2系统架构 (16)4.3单机模式 (17)4.4系统功能流程 (17)4.5功能模块 (17)4.6底层存储架构 (20)4.7节点数据存储架构 (20)4.8数据库体系架构 (22)第5章结语25插图图4-1网络拓扑 (15)图4-2系统架构 (16)图4-3单机模式 (17)图4-4系统功能流程 (18)图4-5功能模块 (19)图4-6分布式存储节点 (20)图4-7底层存储架构 (21)图4-8节点 (21)图4-9节点数据存储架构 (22)图4-10数据库体系架构 (23)第1章前言1第1章前言本文的目标是简要说明构建满足中国天文数据中心与数据相关的管理与运行需要的一系列基础设施的技术路线图(2017-2020),目标是构建一个综合性的天文数据管理系统,技术路线是从两个方面入手:一是构建数据的元数据体系,二是构建朱雀分布式数据管理系统。
element-china-area-data简介 -回复
element-china-area-data简介-回复elementchinaareadata是一个数据可视化库,它为用户提供了丰富的图形化元素,可以帮助用户快速创建各种数据可视化图表。
本文将会详细介绍elementchinaareadata的基本特点、使用方法以及其在数据可视化领域的应用。
一、elementchinaareadata的基本特点elementchinaareadata是一款基于JavaScript的数据可视化库,它具有以下几个基本特点:1. 强大的图形化元素库:elementchinaareadata提供了丰富的图形化元素,包括折线图、柱状图、饼图、地图等。
用户可以根据自身需求选择合适的图形进行数据展示。
2. 简单易用的API接口:elementchinaareadata的API接口设计简单易用,用户只需按照一定的格式传入数据和设置相应的参数即可快速生成所需的图表。
3. 可定制化的样式和交互效果:elementchinaareadata支持用户对图表的样式和交互效果进行定制,包括调整图表的颜色、字体、边框等样式,以及添加滚动、拖拽、缩放等交互效果。
4. 支持数据的实时更新:elementchinaareadata提供了实时数据更新的功能,用户可以通过监听数据变化的事件,实现图表的动态更新。
二、elementchinaareadata的使用方法使用elementchinaareadata进行数据可视化的主要步骤如下:1. 引入elementchinaareadata库:在HTML文件中引入elementchinaareadata的库文件,可以通过下载本地文件或使用CDN 方式引入。
2. 创建容器元素:在HTML中创建一个容器元素,用于承载生成的图表。
3. 准备数据:将需要展示的数据整理成符合elementchinaareadata要求的格式,通常是一个数组或对象的形式。
4. 设置图表参数:通过elementchinaareadata的API接口,设置图表的样式、尺寸、数据等参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国数据地图工具
只要您输入各省数据,设置分档数值和填充底色,即可快[原创] ExcelPro的图表博客 红色标注标识下的填色区域为您需要填的地方。
不要修改1、输入你的数据,没有的可填0。
--->>>2、设置数据分档及图例。
--->>>
安徽anhui918.11分档参考:0color1
北京beijing491.31100color2
重庆chongqing647.91最大值:953.44200color3
福建fujian646.37最小值:8.66500color4
甘肃gansu262.59800color5
广东guangdong434.97
广西guangxi938.49
贵州guizhou953.44
海南hainan275.40
河北hebei455.72
黑龙江heilongjiang273.61
河南henan562.69
湖北hubei185.73
湖南hunan535.83
江苏jiangsu8.66
江西jiangxi721.16
吉林jilin202.84
辽宁liaoning273.73
内蒙古neimenggu413.26
宁夏ninxia645.21
青海qinghai293.93
山东shandong556.29
上海shanghai58.72
陕西shanxi3630.86
山西shanxi1449.55
四川sichuan512.37
台湾taiwan638.35
天津tianjin549.78
新疆xinjiang784.13
西藏xizang923.22
云南yunnan697.66
浙江zhejiang433.25
档数值和填充底色,即可快速生成专业的中国数据地图!
您需要填的地方。
不要修改其他地方,以免出现错误。
3、点击按钮开始填色。
--->>>
4、OK!可以复制下面的数据地图了。
0-100
100-200
200-500
500-800
800+
您可根据此文件改造出成省、市的分区数据地图!。