F04动力气象与数值预报
动力气象课后习题标准答案doc
动力气象课后习题标准答案.doc 动力气象课后习题标准答案1. 什么是动力气象学?动力气象学是研究大气运动和气象现象的科学。
它主要涉及大气力学、热力学和动力学等方面的知识,通过数学模型和物理规律来描述和预测大气中的各种运动和现象。
2. 什么是大气力学?大气力学是研究大气运动的科学。
它主要研究大气中的气体运动、气压分布、风场形成和演变等现象,以及它们与天气和气候的关系。
3. 什么是热力学?热力学是研究能量转化和热力传递的科学。
在动力气象学中,热力学主要研究大气中的能量转化和热力传递过程,包括辐射、传导和对流等,以及它们对大气运动和气象现象的影响。
4. 什么是动力学?动力学是研究物体运动的科学。
在动力气象学中,动力学主要研究大气中的运动方程和运动规律,包括质量、动量和能量守恒定律等,以及它们对大气运动和气象现象的影响。
5. 什么是大气稳定度?大气稳定度是指大气中的气块上升或下沉时,受到的抵抗力和推动力之间的平衡状态。
当气块受到的抵抗力大于推动力时,大气稳定,气块下沉;当推动力大于抵抗力时,大气不稳定,气块上升。
6. 什么是大气边界层?大气边界层是指大气中与地表直接接触并受地表摩擦影响的一层大气。
它的高度一般在几百米到几千米之间,对大气中的能量和物质交换具有重要影响。
7. 什么是风?风是指大气中的气体运动。
它的产生和变化与大气压力差、地转偏向力和摩擦力等因素有关,是大气环流和气象现象的重要组成部分。
8. 什么是气压场?气压场是指大气中不同地点的气压分布。
它是由大气中的气块运动和密度变化等因素引起的,对大气运动和天气变化具有重要影响。
9. 什么是风场?风场是指大气中不同地点的风速和风向分布。
它是由大气压力差和地转偏向力等因素引起的,是描述大气运动和气象现象的重要参数。
10. 什么是气象现象?气象现象是指大气中的各种现象,如降水、云层、气温和湿度等的变化。
它们是由大气运动和能量交换等因素引起的,对天气和气候的形成和演变具有重要影响。
成都理工大学硕士研究生考试专业目录
专业目录一、考生按招生专业录取,入学后再确定研究方向和导师。
二、“拟招人数”供考生初试报考时参照使用。
全校招生总计划数以教育部正式下达为准,学校将在复试阶段对生源不足的专业进行招生计划调整。
三、101思想政治理论、201英语一、204英语二、301数学一、302数学二、303数学三为统考科目;199管理类联考综合能力为全国联考科目;其它科目由我校自主命题。
学院代码及名称专业代码、名称及类型研究方向拟招人数初试科目复试科目备注001大气科学学院070600大气科学(学术型)01(全日制)天气动力学02(全日制)中尺度气象学03(全日制)数值天气预报04(全日制)高原气象学05(全日制)亚洲季风系统06(全日制)气候变化与气候模拟07(全日制)大气物理学与大气环境08(全日制)应用气象学09(全日制)公共气象服务10(全日制)气象灾害与防灾减灾11(全日制)环境气象全日制:97①101思想政治理论②201英语一③601高等数学④801天气学笔试:动力气象学同等学力加试:①数值天气预报②统计天气预报1.跨专业报考的考生原则上须已修《大气物理学》、《天气学原理》、《动力气象学》并考试合格。
2.《天气学》主要为天气学原理部分。
095132资源利用与植物保护(专业学位)01(全日制)气象防灾减灾02(全日制)气候与气候变化03(全日制)公共气象服务04(全日制)气象资源与社会发展05(非全日制)气象防灾减灾06(非全日制)气候与气候变化全日制:17非全日制:126①101思想政治理论②204英语二③339农业知识综合一④815天气学基础笔试:动力气象学同等学力加试:①数值天气预报②统计天气预报《农业知识综合一》包含《植物学》、《农业生态学》、《土壤学》三部分,各部分比例为1:1:1;《天气学基础》主要为天气学原理部分。
动力气象学
中国科学院海洋研究所硕士研究生入学考试《动力气象学》考试大纲本《动力气象学》考试大纲不仅适用于中国科学院海洋研究所气象学专业的硕士研究生入学考试,也适应于中国科学院研究生院气象学等相关专业的硕士研究生入学考试。
动力气象学是大气科学的重要分支,是相关学科专业(包括海洋气象学)的基础理论课程,它的主要内容包括大气运动的基本方程组和基本动力特征、涡旋运动与准地转模式、大气中的波动、大气不稳定理论、热带大气动力学以及大气环流及其数值模拟。
要求考生对其基本概念有较深入和清楚的了解,能够系统地掌握大气运动的基本理论和方法,理解天气系统演变的基本规律和机理,特别是海洋过程在全球天气系统变化中的作用机理。
掌握大气运动基本方程及其变形,掌握大气中的主要波动类型和小扰动方法,掌握大气中存在的主要的不稳定现象及其产生的条件,掌握热带大气动力学的特征及其与中、高纬度的差异,熟悉大气环流的主要特征并了解大气环流的数值模拟,并具有综合运用所学知识分析问题和解决问题的能力。
一、考试内容(一)大气运动的基本方程组1.地球和大气的基本特征2.运动方程3.连续性方程4.状态方程、热力学方程和水汽方程5.球坐标系中的大气运动方程组6.局地直角坐标系中的大气运动方程组7.β平面近似8. 能量守恒定律9. 尺度分析和基本方程组的简化10.地转风与热成风11.静力平衡(二)涡旋运动与准地转模式1.环流与环流定理2.涡度方程、位涡度方程3.浅水模型中的涡度方程4.散度方程与平衡方程5.准地转模式与准地转位涡度守衡定律6.准地转位势倾向方程和ω方程(三)大气中的波动1.小扰动的波动方程式2.声波3.重力波4.惯性内波与惯性振荡5.重力惯性外波和重力惯性内波6.罗斯贝波7.群速度和上游效应(四)不稳定理论1.不稳定的概念2.惯性不稳定3.正压不稳定4.斜压不稳定5.开尔文-赫姆霍兹不稳定(五)热带大气动力学1.热带大气运动的主要特征及其尺度分析2.混合罗斯贝-重力波和开尔文波3.积云对流加热参数化4.第二类条件不稳定(CISK)和台风的发展(六)大气环流1.大气环流2.角动量平衡和输送3.热量和水分平衡4.能量循环二、考试要求(一)大气运动的基本方程组1.熟悉并掌握地球自转角速度、地球的平均半径、标准大气压和标准大气密度的数值。
动力气象课后习题标准答案
1、大气运动方程组一般由几个方程组成?那些就是预报方程?哪些就是诊断方程?答:大气运动方程组一般由六个方程组成,分别就是三个运动方程、连续方程、热力学能量方程、状态方程;若就是湿空气还要加一个水汽方程。
运动方程、连续方程、热力学能量方程就是预报方程,状态方程就是诊断方程。
2、研究大气运动变化规律为什么选用旋转参考系?旋转参考系与惯性参考系中得运动方程有什么不同?答:地球以常值角速度Ω绕地轴旋转着,所以任何一个固定在地球上并与它一道运动得参考系,乃就是一个旋转参考系。
为了将牛顿第二定律应用于研究相对于旋转参考系得大气运动,不但要讨论作用于大气得真实力得性质,而且要讨论绝对加速度与相对加速度之间得关系。
相对于惯性参考系中得运动方程而言,旋转参考系中得运动方程加入了视示力(科里奥利力、惯性离心力)。
3、惯性离心力与科里奥利力有哪些异同点?答:都就是在旋转参考系中得视示力;惯性离心力恒存在,而大气相对于地球有运动时才会产生科里奥利力。
4、重力位势与重力位能这两个概念有何差异?答:重力位势:重力位势表示移动单位质量空气微团从海平面(Z=0)到Z 高度,克服重力所做得功。
重力位能:重力位能可简称为位能。
重力场中距海平面z 高度上单位质量空气微团所具有得位能为Φ=gz,引进重力位势后,g等重力位势面(等Φ面)相垂直,方向为高值等重力位势面指向低等重力位势面,其大小由等重力位势面得疏密程度来确定。
所以,重力位势得空间分布完全刻划出了重力场得特征。
5、试阐述速度散度得物理意义?速度散度与运动得参考系有没有关系?答:速度散度代表物质体积元得体积在运动中得相对膨胀率。
因,故速度散度与运动得参考系没有关系。
8、计算45°N跟随地球一起旋转得空气微团得牵引速度。
答:由速度公式可知,牵引速度为:大小为;方向为向东。
19、证明相对加速度可写成4 20、对于均质流体(p=常数)证明有以下能量方程21、假设运动就是水平得,对于均质流体,证明水平运动方程可以改写为。
动力气象学
参 考 书 目: 1 、叶笃正,李崇银,大气运动中的适应问题, 科学出版社,1965 2 、 Lorenz ,大气环流的性质和理论,科学出版 社,1976。 3 、 Haltiner, G, Numerical Prediction and Dynamical Meteorology, 1980(有中译本) 4、小仓义光,大气动力学原理,科学出版社, 1980 5 、 Holton , 动 力 气 象 学 引 论 , 科 学 出 版 社 , 1980 6、郭晓岚,大气动力学,江苏科技出版社, 1981
大 气 科 学 学 院 王 文
动 力 气 象 学
教材: 吕美仲等,动力象学,南京大学出版社,1996 2.HOLTON J. R. AN INTRODUCTION TO DYNAMIC METEOROLOGY, Academic Press, Fourth Version, 2004 3.刘式适等,大气动力学(第二版),北京大学出 版社,2011
参 考 书 目: 7、Pedlosky,地球物理流体动力学导论,海洋出 版社,1981 8、伍荣生等,动力气象学,上海科技出版社, 1983。 9、杨大升,刘余滨,刘式适,动力气象学,气 象出版社(修订本),1983 10、栗原宜夫,大气动力学入门,气象出版社, 1984 11、李崇银等,动力气象学概论,气象出版社, 1985 12、Pedlosky, J., Geophysical Fluid Dynamics, Springer-Verlag, 2nd ed, 1987
§1.1 基本假设 连续流体介质假设——质点力学的应用。
大气运动的速度、气压、密度和温度等物理量以及这 些场变量都是时间和空间的连续函数;
理想气体(无凝结); 动力过程和热力过程相互作用; 大气为可压缩连续流体
2020年智慧树知道网课《动力气象学》课后章节测试满分答案
绪论单元测试1【多选题】(2分)不同于普通流体,地球大气有哪些基本特征?A.受到重力场作用B.具有上下边界C.密度随高度变化D.旋转流体2【多选题】(2分)中纬度大尺度大气运动的特点包括A.准地转B.准水平无辐散C.准静力D.准水平3【单选题】(2分)以下哪种波动的发现及其深入研究,极大地推动了天气预报理论和数值天气预报的发展?A.惯性波B.声波C.重力波D.Rossby波4【判断题】(2分)动力气象学的发展与数学、物理学及观测技术的发展密不可分。
A.错B.对【判断题】(2分)大气运动之所以复杂,其中一个原因是其运动具有尺度特征,不同尺度的运动控制因子不同。
A.对B.错第一章测试1【单选题】(2分)以下关于惯性坐标系,的说法是A.惯性坐标系也称为静止坐标系B.惯性坐标系的垂直坐标轴与地球旋转轴重合C.惯性坐标系下测得的风速是地球大气相对于旋转地球的相对速度D.惯性坐标系不随地球旋转2【单选题】(2分)关于科里奥利力,以下的说法是A.只有当气块具有相对地球的运动速度时,科氏力才会起作用B.在全球大气的运动中,科里奥利力均使得大气运动方向右偏C.科里奥利力不会改变运动的大小D.科里奥利力是大气涡旋运动产生的原因之一3【多选题】(2分)物理量S(x,y,z,t)能够替代z作为垂直坐标需要满足哪些条件A.只要物理量S是z的函数即可B.S与z有一一对应关系C.要求S在大气中有物理意义D.需要满足一定的数学基础和物理基础4【多选题】(2分)。
南京信息工程大学2023考研大纲:F04动力气象学(含数值预报)2
南京信息工程大学2023考研大纲:F04动力气象学(含数值预报)1500字南京信息工程大学2023考研大纲:F04动力气象学(含数值预报)动力气象学是气象学的重要分支之一,主要研究大气运动的基本规律以及大气运动对气象现象的影响。
本课程主要包括动力气象学基本概念、大气平衡及运动的基本方程、大气边界层、大气波动等内容。
同时,还会包含数值预报的相关知识,将动力气象学理论与实际应用相结合。
以下是该课程的详细内容。
一、动力气象学基本概念1. 动力气象学的概念和发展历程2. 大气的基本性质和运动规律3. 动力气象学的研究方法和技术手段二、大气平衡及运动的基本方程1. 大气的水平平衡方程2. 大气的垂直平衡方程3. 大气的热力平衡方程4. 物质守恒方程和能量守恒方程三、大气边界层1. 大气边界层的概念和特征2. 大气边界层的发展和结构3. 大气边界层的运动和湍流4. 大气边界层的边界条件和变化规律四、大气波动1. 大气波动的基本类型和特征2. 大气波动的发生机制和扩散规律3. 大气波动的传播和变化规律4. 大气波动对气象现象的影响五、数值预报1. 数值预报的基本原理和方法2. 数值预报的模式和参数化方案3. 数值预报的数据来源和处理方法4. 数值预报的评估和检验方法以上是南京信息工程大学2023考研《动力气象学(含数值预报)》的大纲内容,总共约1500字。
本课程的学习将使学生掌握动力气象学的基本理论和数值预报的基本技术,能够理解大气运动的基本规律和模拟未来天气变化,为气象预报、气候变化等相关领域的研究提供基础支撑。
动力气象课后习题答案
1、大气运动方程组一般由几个方程组成?那些是预报方程?哪些是诊断方程?答:大气运动方程组一般由六个方程组成,分别是三个运动方程、连续方程、热力学能量方程、状态方程;若是湿空气还要加一个水汽方程。
运动方程、连续方程、热力学能量方程是预报方程,状态方程是诊断方程。
2、研究大气运动变化规律为什么选用旋转参考系?旋转参考系与惯性参考系中的运动方程有什么不同?答:地球以常值角速度Ω绕地轴旋转着,所以任何一个固定在地球上并与它一道运动的参考系,乃是一个旋转参考系。
为了将牛顿第二定律应用于研究相对于旋转参考系的大气运动,不但要讨论作用于大气的真实力的性质,而且要讨论绝对加速度与相对加速度之间的关系。
相对于惯性参考系中的运动方程而言,旋转参考系中的运动方程加入了视示力(科里奥利力、惯性离心力)。
3、惯性离心力与科里奥利力有哪些异同点?答:都是在旋转参考系中的视示力;惯性离心力恒存在,而大气相对于地球有运动时才会产生科里奥利力。
4、重力位势与重力位能这两个概念有何差异?答:重力位势:重力位势表示移动单位质量空气微团从海平面(Z=0)到 Z 高度,克服重力所做的功。
重力位能:重力位能可简称为位能。
重力场中距海平面 z 高度上单位质量空气微团所具有的位能为Φ=gz,引进重力位势后, g等重力位势面(等Φ面)相垂直,方向为高值等重力位势面指向低等重力位势面,其大小由等重力位势面的疏密程度来确定。
所以,重力位势的空间分布完全刻划出了重力场的特征。
5、试阐述速度散度的物理意义?速度散度与运动的参考系有没有关系?答:速度散度代表物质体积元的体积在运动中的相对膨胀率。
因,故速度散度与运动的参考系没有关系。
8、计算 45° N跟随地球一起旋转的空气微团的牵引速度。
答:由速度公式可知,牵引速度为:大小为;方向为向东。
19、证明相对加速度可写成20、对于均质流体(p=常数)证明有以下能量方程4 21、假设运动是水平的,对于均质流体,证明水平运动方程可以改写为。
南京信息工程大学2019考研大纲:F04动力气象学(含数值预报)
南京信息工程大学2019考研大纲:F04动力气象学(含数值预报)/ueditor/201810/25/3d3be150183860d03aa66c3b071db0 5a.jpg" title="1.jpg" alt="1.jpg" width="600" height="93" border="0" vspace="0" />4、了解数值模式的基本分类,理解过滤模式和原始方程模式的区别。
第十一章、地图投影坐标系中的大气运动基本方程组1、掌握地图投影的基本知识,尤其掌握正形投影的基本概念;2、熟悉常见的三种正形投影的定义、特点;3、理解正交曲线坐标系的基本概念,理解拉密系数的物理意义;4、掌握水平坐标变换的基本方法。
5、理解地图投影坐标系中拉密系数和地图放大系数的关系。
第十二章、数值计算方案1、理解差分方法的主要思想,掌握差分格式的构造方法;2、熟悉并能够应用常用的差分格式。
3、了解差分格式的基本性质;4、掌握确定差分格式线性稳定性判据的方法,能对不同类型差分格式的稳定性进行分析;5、掌握构造常用的时间积分格式的方法;6、了解常用的时间积分格式的特点。
7、了解有限差分格式所引起的各种误差;8、熟悉非线性计算不稳定和混淆误差的概念;9、理解非线性计算不稳定产生的原因,并熟悉其常用的抑制方法。
10、掌握三点平滑、五点平滑和九点平滑的方法;11、理解响应函数的物理意义;12、了解平滑公式的应用。
第十三章、正压原始方程模式1、了解正压原始方程模式的设计思想、模式的基本特点;2、会应用有关假设,导出模式的预报方程;3、了解正压原始方程模式具有的积分性质。
4、理解模式时间积分步长的选择依据。
5、理解守恒差分格式的概念;6、掌握差分算符的表示方法;7、熟悉一次守恒格式和二次守恒格式的概念及其构造方法,熟悉正压原始方程模式二次守恒格式的构造方法;8、掌握三步法时间积分格式的构造方法;9、掌握正压原始方程模式显式时间积分方案的设计方法;10、了解半隐式格式的构造方法及其特点。
《动力气象学》课程辅导资料
《动力气象学》课程辅导资料知识点归纳总结第一章绪论1. 研究地球大气运动时的基本假设连续介质假设:研究大气的宏观运动时,不考虑离散分子的结构,把大气视为连续流体。
从而,表征大气运动状态和热力状态的各种物理量,例如大气运动的速度、气压、密度和温度等可认为是空间和时间的连续函数,并且经常假设这些场变量的各阶微商也是空间和事件的连续函数。
是研究大气运动的基本出发点。
理想气体假设:气压、密度、温度之间的关系满足理想气体状态方程。
2. 地球大气的运动学和热力学特性有哪些?大气是重力场中的旋转流体:大气运动一定是准水平的;静力平衡是大气运动的重要性质之一。
科里奥利力的作用:大尺度运动中科里奥利力作用很重要;中纬度大尺度运动中,科里奥利力与水平气压梯度力基本上相平衡——地转平衡;地球旋转角速度随纬度的变化,与每日天气图上的西风带中的波动有关;起稳定性作用——位能、动能的转换——锋面。
大气是层结流体:大气的密度随高度是改变的——层结稳定度;不稳定层结大气中积云对流;稳定层结大气中重力内波。
大气中含有水份:相变潜热——低纬度扰动和台风的发展。
大气的下边界是不均匀的:湍流性;海陆分布和大气环流。
3. 大气运动的多尺度性大气运动无论在时间尺度还是在水平尺度上都具有很宽的尺度谱,不同尺度系统在性质上有很大差异,对天气的影响也不同,不同尺度运动系统之间还存在相互作用。
而根据流体力学和热力学原理建立起来的大气运动方程组,表征了大气运动普遍规律,从物理上讲,它几乎描述了各种尺度运动和它们之间的相互作用,方程组是高度非线性的,难以求解。
因此,在动力气象中,常对各种运动系统进行尺度分类,利用尺度分析法分析各类运动系统的一般性质,建立各类运动系统的物理模型(第三章)。
第二章描写大气运动的基本方程组1. 作用于大气的力,哪些是真实力,哪些是视示力?真实力:气压梯度力、地球引力、摩擦力,既改变气流的运动方向,也改变速度的大小视示力:科里奥利力、惯性离心力,只改变气流的运动方向,不改变速度的大小2. 描述大气运动的基本方程组和各自遵守的物理原理牛顿第二定律——运动方程质量守恒定律——连续方程理想气体实验定律——状态方程能量守恒定律——热力学能量方程水气质量守恒——水汽质量守恒方程3. 分析流体运动的两种基本方法拉格朗日方法:着眼于微团,研究其空间位置及其他物理属性随时间变化的规律,推广到整个流体运动。
动力气象知识点总结
动力气象知识点总结气象学是一门研究大气的学科,它研究大气的物理和化学过程,特别是力学和气象学。
气象学已经成为一门重要的学科,人们也越来越依赖气象学来规划和预测天气。
动力气象学是气象学的一个重要分支,它研究大气的动力学过程,特别是大气运动和大气现象的形成。
1. 大气运动大气运动是大气动力学的重要研究对象,它是指大气中空气的运动。
大气运动包括水平风和垂直风两种类型。
水平风是指大气中水平方向的空气运动,垂直风是指大气中垂直方向的空气运动。
大气运动的产生是由于地球的自转和太阳的辐射,因此大气运动与地球的地理位置、地形和气温分布有关。
大气运动对天气和气候有着重要的影响。
例如,水平风的方向和强度影响着气候的分布和形成,垂直风的运动则对大气中水汽和云的分布有重要影响。
同时,大气运动也是天气系统形成和发展的基础,气旋、锋面和高空急流等现象都与大气运动有关。
2. 气压和气流气压是指空气对地面单位面积的压力,是大气动力学的重要参量之一。
气压的分布和变化是天气系统形成和发展的基础,也是气象预报的重要依据。
一般来说,气压高的地方大气下沉、空气比较干燥,天气晴朗;气压低的地方大气上升、空气比较潮湿,天气多云或有降水。
气压分布和变化还与地形和季节有关,例如,在山地和海洋上空气压的分布和变化与平原地区有较大差异;夏季高温天气时气压分布的变化也与冬季不同。
气流是指大气中空气运动的流线,它是由气压差驱动的。
气流有着不同的类型,例如,副热带高压区的气流呈辐散状,中纬度地区的气流则呈螺旋状。
气流还可以分为地面风和高空急流两种,地面风是指地面上的水平风,它是天气系统和气象现象的重要参量,也是天气预报的主要依据;高空急流是指高空大气中的强风,它对飞行、气象预报和气候研究有着重要的影响。
3. 热带气旋热带气旋是指在热带地区形成的强烈的风暴系统,它包括台风、飓风和龙卷风等多种类型。
热带气旋的形成需要一定的条件,例如,暖海水和强热带动力,正是这些条件使得热带气旋成为了最强烈的风暴系统。
为什么气象数值模拟预报一直用的是wrf模式(转)
为什么⽓象数值模拟预报⼀直⽤的是wrf模式(转)⾸先应该要说明⼀下,⽓象上的开源数值模式并不仅仅只⽤WRF,例如ARPS,RegCM,CESM等模式也是常常使⽤的。
那么为什么会有中感觉WRF是⽓象上预报和模拟最常⽤的数值模式呢?我们来简单过⼀下这⼏个模式。
RegCM:全名是Regional Climate Model。
基于MM5发展起来的静⼒平衡区域⽓候模式。
主要⾯向区域⽓候模拟。
计算相对稳定。
WRF:全名是Weather Research and Forecast Model。
从名字上就可以看出,WRF的主要⾯向对象是天⽓预报和天⽓研究。
WRF中有NMM和ARW两种框架可以选择,可以作为全球模式进⾏天⽓预报,也可以作为区域模式进⾏天⽓现象的数值模拟。
WRF是⾮静⼒平衡的数值模式,垂直⽅向采⽤eta坐标。
CESM:Community Earth System Model。
地球系统模式。
⾥⾯的⼤⽓分量CAM(Community Atmospheric Model)也是⼀种常⽤的⾮静⼒平衡⼤⽓模式,主要⾯向⽓候⽅⾯的研究。
CAM垂直⽅向采⽤混合坐标。
ARPS:Advanced Regional Prediction System。
针对中⼩尺度天⽓研究开发的数值模式,垂直⽅向采⽤⾼度坐标。
从上⾯可以看到,其他⼏个模式是针对某⼀类型的问题细化的。
RegCM的设计主要是⾯向区域⽓候领域,计算稳定,静⼒平衡,整体计算规模会⽐WRF⼩⼀些。
CESM(CAM)只⽀持全球模拟,也是⾯向⽓候,环流等等研究,垂直⽅向上混合坐标,对于很多有强垂直运动的天⽓现象并不合适。
ARPS则是对天⽓研究进⾏了强化,垂直⽅向⾼度坐标能够更好地解析垂直速度,但是模式也很不稳定。
我们再看WRF。
⾮静⼒平衡,垂直⽅向eta坐标,能够满⾜⼤部分中尺度的天⽓研究。
最近⼏年WRF也开始作为区域⽓候模式使⽤,⼀定程度上也是因为eta坐标的特点和⾥⾯包含⼤量的物理参数化⽅案(WRF的扩展性是这些模式中最好的)。
《动力气象学》课程笔记
《动力气象学》课程笔记绪论1. 动力气象学发展史1.1 重大理论发现动力气象学的早期发展主要基于对大气运动的观测和理论推测。
19世纪,科学家们开始系统地研究大气运动,并逐渐揭示了影响大气运动的一些关键因素。
这些因素包括:- 科里奥利力:由法国物理学家加斯帕尔·科里奥利首次提出,它解释了地球自转导致的风的偏转现象。
- 地转偏向力:由于地球自转,大气中的气流会相对于地面产生偏转,这个力就是地转偏向力。
- 大气压力和密度变化:大气压力和密度的变化会影响大气运动,这些变化与温度、湿度等因素有关。
1.2 数值天气预报20世纪中叶,随着计算机技术的发展,动力气象学进入了一个新的时代。
科学家们开始利用计算机来求解大气运动方程组,这种方法被称为数值天气预报。
数值天气预报的出现极大地提高了天气预报的准确性,使得气象学成为了一门更加精确的科学。
1.3 动力气象学发展新阶段近年来,动力气象学在气候变化研究中的应用变得越来越重要。
科学家们通过研究大气运动、能量转换和波动等现象,揭示了气候变化的原因和规律。
此外,动力气象学在防灾减灾、水资源管理等领域也发挥着重要作用。
2. 动力气象学的基本概念2.1 大气运动方程组大气运动方程组是描述大气运动的物理方程,包括连续性方程、动量方程和能量方程。
这些方程组基于质量守恒、牛顿第二定律和能量守恒等物理定律,为我们提供了研究大气运动的基本工具。
2.2 涡旋运动大气中的涡旋运动是天气系统和气候变化的重要因素。
涡旋运动包括环流、涡度和螺旋度等概念。
了解涡旋运动有助于我们预测天气变化和气候趋势。
2.3 准地转运动准地转运动是指大气中接近地转平衡状态的运动。
在这种状态下,大气运动主要受到地转偏向力和压力梯度力的作用。
准地转运动为我们提供了一个简化的大气运动模型,便于研究和预测天气。
2.4 大气波动大气波动是大气运动中的周期性变化,包括重力波、惯性重力波和Rossby 波等。
这些波动在天气系统和气候变化中起着关键作用,了解它们有助于我们预测天气和气候。
动力气象学教材笔记
动力气象学教材笔记第一章引言1.1 研究背景与目的动力气象学,作为气象科学领域的一个重要分支,专注于探索大气运动的基本规律以及这些规律如何与天气和气候变化相互联系。
在全球气候变化日益严峻的背景下,动力气象学的研究不仅具有深远的科学意义,更对实际应用领域,如天气预报和气候预测,具有不可替代的指导价值。
随着全球气候变暖趋势的加剧,极端天气事件频繁发生,给人类社会和经济发展带来了巨大挑战。
这些极端天气事件背后的大气动力过程复杂多变,亟需通过深入的动力气象学研究来揭示其内在机制。
此外,提高天气预报和气候预测的准确性也离不开对动力气象学基本理论的深入理解和应用。
因此,本文旨在系统梳理和总结动力气象学的核心理论,以期为更好地理解和预测大气运动提供坚实的理论基础。
在动力气象学的研究中,大气运动的基本规律是核心内容。
这些规律包括了大气中的能量守恒、动量守恒、质量守恒等基本物理定律,以及由此衍生出的一系列重要理论,如大气动力学方程、大气稳定性理论等。
这些理论和规律为我们理解和解释大气中的各种现象提供了有力的工具。
例如,通过对大气动力学方程的研究,我们可以了解大气中能量的转换和传递过程,从而揭示出风暴、气旋等天气系统的发展演变机制。
动力气象学还关注大气运动与天气、气候变化的内在联系。
天气和气候是大气运动在不同时间和空间尺度上的表现,二者之间存在着密切的相互作用和反馈机制。
动力气象学通过研究这些相互作用和反馈机制,不仅有助于我们更全面地认识大气系统的复杂性,还能为改进天气预报和气候预测模型提供科学依据。
例如,近年来发展起来的基于动力气象学原理的数值天气预报模型,已经在实际应用中取得了显著的成效,大大提高了天气预报的准确性和时效性。
动力气象学的研究还涉及大气与地球其他圈层(如水圈、生物圈、岩石圈)的相互作用。
这些相互作用对全球气候系统的稳定和发展具有重要影响。
例如,海洋与大气之间的热量和水分交换是影响全球气候的重要因素之一;而地表植被的变化则可能通过改变地表的反射率和粗糙度来影响大气的温度和风速等。
数值
●数值预报:以计算机为工具,通过解流体力学,热力学,动力气象学组成的预报方程,来制作天气预报。
●数值模拟:将数值天气预报的方法应用于动力气象学的各分支,利用计算机模拟各种气象现象和大气运动。
●数值试验:变换数值天气预报模式的各种参数值,探讨各种不同的物理过程对大气运动的影响和作用机制、机理。
●模式大气:在不失去大气主要特征的情况下,把非常复杂的实际大气理想化、简单化的大气。
1.等温大气 2.多元大气 3.均质大气。
●大气模式:为了预报某种天气(如短期或中期预报),在一定的客观条件下,设计出的合适的描述模式大气的动力学和热力学方程组。
●●●预报方法集成就是将多种解释方法得到的结论集中在一起,采用一定的集成技术,得出综合结论。
●预报模式集成也叫异模式综合集成,就是把不同的数值预报模式所作出的产品,用同一种方法得出解释结论,然后采用一定的集成技术,得出综合结论。
它对不同的数值预报模式的性能起到取长补短的作用,因而其预报能力一般强于单独的一种模式预报。
●预报时效集成就是将这些不同时间用不同初值制作的关于某一时间的预报信息集中起来,采用一定的集成技术,得出综合解释结论。
一般来说,数值预报的预报时效越长准确性越差,因此,预报时效集成时通常给予近期的预报较大的权重。
●集合预报的集成解释就是将这些由不同初值得到的相似或相近的预报形势场,通过某种集成方法给出其综合解释结论。
●综合预报集成是指对多种数值预报产品(包括不同数值模式的产品和不同预报时效的产品)和多种解释应用方法的综合集成,也可视为是上述预报方法集成、预报模式集成、预报时效集成、集合预报集成结果的综合集成,是更广泛意义上的综合集成。
●线性回归集成法:应用一般多元线性回归方法的原理,取n种预报方法对某独立样本得出的预报结论{Yi}(i=1,…,n)作为预报因子,用最小二乘法建立多元线性回归方程。
●加权平均集成法:对用n种解释预报方法的预报结论{Yi}(i=1,…,n),每种预报方法的权重为ωi≥0,经加权平均法后,集成预报的结论。
数值天气预报简介
数值天气预报数值天气预报(Numerical Weather Prediction, NWP)是根据大气实际情况,在一定初值和边值条件下,通过数值计算,求解描写天气演变过程的流体力学和热力学方程组,预报未来天气的方法。
和一般用天气学方法、并结合经验制作出来的天气预报不同,这种预报是定量和客观的预报。
预报所用或所根据的方程组和大气动力学中所用的方程组相同,即由连续方程、热力学方程、水汽方程、状态方程和3个运动方程(见大气动力方程) 共7个方程所构成的方程组。
方程组中,含有7个预报量(速度沿x,y,z三个方向的分量u,v,w和温度T,气压P,空气密度ρ以及比湿q)和7个预报方程。
方程组中的粘性力F,非绝热加热量Q 和水汽量S一般都当作时间、空间和这7个预报量的函数。
通过高性能计算机求解方程组,获得未来7个未知数的时空分析,即未来天气分布。
数值天气预报与经典的以天气学方法作天气预报不同,它是一种定量的和客观的预报,正因为如此,数值天气预报首先要求建立一个较好的反映预报时段的(短期的、中期的)数值预报模式和误差较小、计算稳定并相对运算较快的计算方法。
其次,由于数值天气预报要利用各种手段(常规的观测,雷达观测,船舶观测,卫星观测等)获取气象资料,因此,必须恰当地作气象资料的调整、处理和客观分析。
第三,由于数值天气预报的计算数据非常之多,很难用手工或小型计算机去完成,因此,必须要用高性能的计算机。
在中国,1982年开展数值预报业务。
目前数值预报已经成为各种业务天气预报的最重要的基础和持续提高业务天气预报准确率的根本途径。
在全球气候变化的大背景下,今年以来中国极端天气事件发生频繁,且呈多灾并发、点多面广的特点,并有多项局部地区灾害强度超过历史纪录。
其中包括南方暴雨洪涝,淮河流域性大洪水;北方多省局地强降雨;川渝地区继去年有气象记录以来最严重干旱,今年又最强降雨;北方和南方同时出现长时间、大范围高温干旱;今年雷击致人死亡为历年之最。
动力气象学要点.
动力气象学要点.名词解释1、β平面近似及f 平面近似;所谓的β平面近似是对f 参数作高一级的近似,其主要内容是:⑴当f 处于系数地位不被微商时,取常数=?0f f ;⑵当f 处于对y 求微商时,取常数==βdydf 。
采用β平面近似的好处是:用局地直角坐标系讨论大尺度运动将是方便的,而球面效应引起的f 随纬度的变化对运动的作用被部分保留下来。
在低纬度大气动力学研究中,取0f ≌0,f ≌βy,这称为赤道β平面近似。
f 平面近似:这是对地转参数f=2Ωsin ?采用的一种近似。
在中纬度地区,若运动的经向水平尺度远小于地球半径时,可以取常数=?0f f ,即把f 作为常数处理,这种近似称为0f 近似。
这种近似完全没有考虑f 随纬度的变化。
2、斜压大气与正压大气;斜压大气是指:当大气中密度的分布不仅随气压而且还随温度而变时,即ρ≡ρ(P ,T),这种大气称为斜压大气。
所以斜压大气中等压面和等密度面(或等温面)是相交的,等压面上具有温度梯度,即地转风随高度发生变化。
在中高纬度大气中,通常是斜压大气。
大气中斜压结构对于天气系统的发生、发展有着重要意义。
正压大气是指:当大气中密度分布仅仅随气压而变时,即ρ≡ρ(P),这种大气称为正压大气。
所以正压大气中等压面也就是等密度面,由于p=ρRT,因此正压大气中等压面也就是等温度面,等压面上分析不出等温线。
由此,也没有热成风,也就是地转风随高度不发生变化。
3、地转偏差与地转运动;地转偏差是指实际风和地转风的矢量差,地转偏差和水平加速度方向垂直,在北半球指向水平加速度的左侧。
地转运动是指等压线为一族平行的直线时的平衡场,在地转运动中,水平气压梯度力和科里奥利相平衡。
4、Rossby 数与Rossby 参数;Lf U Ro 0==水平科氏力尺度水平惯性力尺度,称为罗斯贝数,它是一个无量纲参数, yf y y f f f β+=??+=00)/(若Ro 《1,表示水平惯性力相对于科氏力的量级要小得多,则水平气压梯度力与科氏力的量级相同(这被称为地转近似的充分条件及其物理意义);若Ro ~1,则水平惯性力、科氏力与水平气压梯度力的量级相同;若Ro 》1,则水平惯性力远大于科氏力,水平气压梯度力与水平惯性力量级相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京信息工程大学2014年硕士研究生招生入学考试
《动力气象与数值预报》考试大纲
科目代码:F
科目名称:动力气象与数值预报
第一部分目标与基本要求
一、目标:
应用物理学定律研究大气运动的动力过程、热力过程,从理论上探讨大气环流、天气系统演变的过程、规律和机理。
数值天气预报的基础知识、基本原理和基本方法。
二、基本要求:
要求学生掌握有关内容的基本概念、基本理论和基本方法,理解天气系统演变的基本规律和机理,提高分析问题、解决问题的能力,能理论联系实际并提高自己吸收新知识的能力。
系统地理解数值天气预报的基本概念、基本理论和基本方法;掌握制作数值天气预报的方法和初步具备设计数值天气预报模式的能力。
第二部分内容与考核目标
第一章、描写大气运动的基本方程组
1、理解描写大气运动的基本物理过程。
2、掌握旋转参照系、科氏力、压力梯度力的概念。
3、了解球坐标系中的基本方程组。
掌握局地直角坐标系中的基本方程组。
4、了解求解大气运动闭合方程组的定解问题。
第二章、尺度分析与自由大气中的风场
1、掌握尺度分析的基本概念和方法
2、掌握R o数的定义,理解其重要性。
3、掌握静力平衡的概念与p-坐标系的物理基础。
4、掌握地转运动、地转偏差的概念。
5、掌握斜压大气、正压大气、热成风的概念。
第三章、大气涡旋动力学
1、掌握环流定理与涡度方程。
2、掌握大气中涡旋系统演变的主要物理机制。
3、理解位涡的概念,了解位涡方程的推导,会初步应用位涡守恒定律解释
实际过程。
第四章、大气行星边界层
1、掌握湍流运动的特性,理解湍流运动的一般处理方法,了解平均运动方
程的推导。
2、掌握边界层的特点及大气分层。
3、理解混合长理论,掌握湍流输送通量与湍流粘性力的概念。
4、掌握近地面层中风随高度分布的特点及求解方法。
5、掌握Ekman层中风随高度分布的特点,了解其求解过程。
6、掌握Ekman抽吸、二级环流的概念,掌握大气旋转减弱的物理机制。
第五章、大气能量学
1、掌握大气能量的基本形态,掌握大气位能与内能关系及全位能的概念。
2、会推导质点动能方程,掌握闭合系统动能与全位能转换的条件与机制。
3、掌握有效位能的概念,了解有效位能的计算过程。
4、掌握纬向平均运动与涡旋运动的概念,了解纬向平均运动动能和有效位
能方程、涡旋运动动能和有效位能方程的推导过程。
5、掌握实际大气中能量循环过程及物理机制。
第六章、大气波动学
1、掌握波动的基本概念,掌握单波与群波的概念,掌握群速度的概念和求
法。
2、掌握微扰动的概念和线性化方法。
3、掌握声波产生的物理机制,了解其求解过程。
4、掌握重力、惯性波产生和传播的物理机制与性质,掌握重力外波的求解,
掌握浮力振荡的概念,了解重力内波和惯性波的求解过程。
5、掌握Rossby波产生的机制、性质、物理模型及求解过程。
6、理解波动滤波的概念及滤波条件。
第七章、大气运动的稳定性理论
1、掌握波动稳定性的概念及数学表述。
2、掌握惯性稳定度与静力稳定度的概念。
3、掌握正压不稳定的概念及判据,理解正压不稳定判据的推导过程。
4、掌握斜压不稳定的概念及条件,理解斜压二层模式,了解不稳定条件的
推导过程。
第八章、地转适应过程
1、掌握地转适应过程与准地转演变过程的概念及大气运动阶段性特点。
2、掌握地转适应过程与准地转演变过程的不同点。
3、掌握地转适应过程的物理机制,适应的结果与初始非地转扰动尺度的关
系。
4、了解斜压大气中的适应过程。
第九章、热带大气动力学
1、理解热带大气运动与中高纬度大气运动过程的不同点。
2、掌握CISK机制。
第十章、大气运动的基本方程组及垂直坐标变换
1、了解各种形式的大气运动方程组及其物理意义。
2、理解σ坐标系的定义及其σ坐标系方程组的优缺点;
3、掌握有关大气运动方程组垂直坐标变换的有关概念、基本方法和技巧,重点掌握P坐标向σ坐标系的坐标变换和表示方法。
4、了解数值模式的基本分类,理解过滤模式和原始方程模式的区别。
第十一章、地图投影坐标系中的大气运动基本方程组
1、掌握地图投影的基本知识,尤其掌握正形投影的基本概念;
2、熟悉常见的三种正形投影的定义、特点;
3、理解正交曲线坐标系的基本概念,理解拉密系数的物理意义;
4、掌握水平坐标变换的基本方法。
5、理解地图投影坐标系中拉密系数和地图放大系数的关系。
第十二章、数值计算方案
1、理解差分方法的主要思想,掌握差分格式的构造方法;
2、熟悉并能够应用常用的差分格式。
3、了解差分格式的基本性质;
4、掌握确定差分格式线性稳定性判据的方法,能对不同类型差分格式的稳定性进行分析;
5、掌握构造常用的时间积分格式的方法;
6、了解常用的时间积分格式的特点。
7、了解有限差分格式所引起的各种误差;
8、熟悉非线性计算不稳定和混淆误差的概念;
9、理解非线性计算不稳定产生的原因,并熟悉其常用的抑制方法。
10、掌握三点平滑、五点平滑和九点平滑的方法;
11、理解响应函数的物理意义;
12、了解平滑公式的应用。
第十三章、正压原始方程模式
1、了解正压原始方程模式的设计思想、模式的基本特点;
2、会应用有关假设,导出模式的预报方程;
3、了解正压原始方程模式具有的积分性质。
4、理解模式时间积分步长的选择依据。
5、理解守恒差分格式的概念;
6、掌握差分算符的表示方法;
7、熟悉一次守恒格式和二次守恒格式的概念及其构造方法,熟悉正压原始方程模式二次守恒格式的构造方法;
8、掌握三步法时间积分格式的构造方法;
9、掌握正压原始方程模式显式时间积分方案的设计方法;
10、了解半隐式格式的构造方法及其特点。
11、掌握模式数值求解的方法,能够根据模式的基本原理和设计流程。
第十四章、斜压原始方程模式
1、理解斜压原始方程模式与正压原始方程模式的差别;
2、了解设计斜压原始方程模式的基本思想;
3、熟悉斜压原始方程模式所采用的基本方程组及其积分性质。
4、掌握斜压模式的垂直分层和守恒的垂直差分格式的构造方法。
5、熟悉数值求解斜压原始方程模式的主要内容。
第十五章、正压涡度方程谱模式
1、了解谱模式展开函数的选择依据;
2、理解谱模式中因变量的选择原则;
3、了解谱模式与格点模式的差别。
4、掌握球谐函数的定义和性质、两种基本的波数截断方法;
5、熟悉球谐函数的性质的数学内涵、两种波数截断方式的特点;
6、了解离散傅里叶变换DFT与勒让德变换的基本数学过程;
7、掌握正压涡度方程谱模式的求解步骤;
第十六章、初边界条件及模式的物理过程参数化
1、掌握模式初始化的基本概念、基本方法;
2、掌握资料同化的概念,了解资料同化的基本方法
3、了解数值模式常用的边界条件的给定方法;
4、掌握嵌套边界条件的概念。
5、理解物理过程参数化的基本概念以及物理过程参数化在发展模式过程中的重要性。
6、了解大气行星边界层和湿热力过程参数化的基本思路
有关说明:本课程对各考核点能力要求一般分为三个层次:
较低要求――了解。
一般要求――理解、熟悉、会。
较高要求――掌握。