6、1不等关系和不等式( 第一课时)
不等关系与不等式说课稿参考模板范本
不等关系与不等式各位评委、老师,大家下午好,我说课的题目是《不等关系与不等式》,下面我从教学背景分析、教学目标设置、教学对策分析、教学过程设计、教学后反思五个方面进行说课。
一、教学背景分析1、教学内容分析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》第一节《不等关系与不等式》的第一课时,本节主要内容是感悟不等关系,抽象数学模型,通过从大自然中的不等关系,现实世界日常生活中的不等关系让学生感受不等关系是客观存在的基本数量关系,我们要去学习它,就要用不等式(组)表示它。
初中学过一元一次不等式(组),所以本节课的学习既是对已学知识的深化,也是为后继学习其它不等式模型奠定基础。
不等式与方程,函数等知识有密切联系,并且是刻画和解决优化问题的重要工具,因此,本章的学习既有利于提高学生对数学各部分知识联系性的认识,又有助于学生体会优化思想和不等式在解决优化问题中的广泛应用。
2、学情分析学生在初中学过一元一次不等式(组),并且积累了的一些含不等关系的例子,也具备一定的抽象概括能力,但是从实际问题中挖掘不等关系,确立未知变量,寻找量与量之间的联系,建立不等式模型还有一定难度。
由教学内容分析和学情分析,确定以下重难点:重点:(1)学会运用不等式(组)表示实际问题中的不等关系。
(2)体会不等关系和不等式的意义和价值。
难点:用不等式(组)正确表示不等关系二、教学目标设置基于以上分析,依据课标要求,确定以下教学目标:(1)通过具体情境,感受在现实世界和日常生活中存在大量不等关系。
(2)会用不等式(组)表示不等关系。
(3)通过自主探究,合作交流,欣赏数学中的不等关系,在头脑中建立起不等观念。
三、教学对策分析为了让学生经历数学知识形成的过程,我采取创设情境,小组合作,展示交流,自主探究,问题引导等教学方法,并用多媒体辅助教学,充分调动学生参与课堂教学的主动性和积极性。
四、教学过程1、总体流程图2、具体过程说明(1)情境引入“横看成岭侧成峰,远近高低各不同”,把同学们带到美丽的大自然中老师:从美丽的自然风景回到我们的数学课堂中,你能从数学的角度观察不同的景色包含的数量关系吗?【设计意图】:引导学生找不等关系,让学生在诗情画意中感受不等关系的客观存在,唤起学生的学习热情,引出本节课题。
2.2基本不等式(第一课时)课件(人教版)
必须要满足条件:(1)
;
(2)
;
(3)
.
练一练
4.试判断x(2-x)(0<x<2)与 1 的大小关系.
解答:
+(2−) 2
x(2-x)≤(
) =1
2
, 只有x=1时才取等号
2.2.1 基本不等式
思维篇
知识篇
素养篇
问
核
心
素
养
之
题
逻
辑
推
理
分
(1)如果积xy等于定值P,那么当x=y时,和x+y有最小值2
二次式
a2+b2≥2ab
(a、b ∈R,当a=b时取等号)
a×a+b×b
≥
a×b+b×a
自乘的和
不小于
互乘的和
①
如果把两个数相乘看成一
次合作“圈地”(如图),那
b
a
b
a
么公式 ①折射诞生活的哲理:
自立自强比互相合作更
重要!
1 重要不等式
a2+b2≥2ab
(a、b ∈R,当a=b时取等号)
①
特别地:
;
1 2
(2)如果和x+y等于定值S,那么当x=y时,积xy有最大值 S .
4
提示:因为x,y都是正数,所以x+y ≥2 .
无论是“和”定还是“积”定,不等号的另一侧部分将会取得最
+
数
学
建
模
1.已知x,y都是正数,求证:
析
方
法
总
结
值,且都在x=y时取得等号.
基本不等式从一侧到另一侧,本质上是一种放大或缩小;当
李凤霞不等式学案
6、1 不等关系和不等式学案(第一课时)李凤霞学习目标1.通过现实情境感受现实世界和日常生活中存在的不等关系;2.通过类比等式理解不等式的意义,学会列不等式,体会类比思想;3.感受不等式和等式都是刻画现实世界中数量关系的模型,发展学生的符号感。
课堂探究一、导入新课前面我们学习了表示等量关系的式子,我们称为等式,例如方程、运算律等,其实在生活中存在着很多不等关系,例如:(大屏幕展示课本上的引例)从今天开始我们就来研究不等式,这一章的内容主要有认识不等关系和不等式,会求一个不等式(组)的解集,能利用不等式(组)来解决实际问题。
这一章的很多方面可以类比一元一次方程的学习。
探究(一)不等式的定义自学课本162页完成下列小题,你能利用不等式表示出这些不等关系吗?(1)火星到地球的距离s比地球到太阳的距离d大(2)2001年我国造林面积n不足500万公顷。
2002年我国造林面积m超过770万公顷.(3)一辆小型载客车的乘坐人数n不得超过15人(4)宋洪亮的体重a千克与孟亚的体重b千克不相等(5)我国公民受教育的年限y不得少于9年思考:你知道什么是不等式?总结:请你再举几个现实生活中的不等关系的例子。
设计意图:(引入不等式的概念,了解表示不等式的符号有哪些?如:>,<,≥,≤,体会不等式的关键词,如不少于,超过,不超过,至少,最多等)抢答1、判断下列式子中哪些是不等式?哪些是等式?(1)3>2 (2)a²+1>0(3)2x-1 (4)x<3x+1(5)x=2x+5 (6)a+b≠c(7)x²+4x<3x+1 (8)|x-1|≥0(9)3x ≤ -1 (10)a-1 ≤3探究(二)列不等式例1:用不等式表示1)b是非正数。
2)x的6倍减去3大于10。
与6的差小于1。
3)y的154)x不小于-35)a的3倍与9的和不超过15.将下列不等式用自然语言表示1)2y-5<02)a2+b2≥c2设计意图:体会两种语言的转化,进一步体现了数学语言的优越性解决实际问题例2、用不等式表示(1)某公司打算至多用1200元印制广告单,已知制版费50元,每印一张广告单还需支付0.3元的印刷费,由该公司可印制的广告单数量x(张)满足的不等式为。
等式性质与不等式性质(第一课时) 课件—高一上学期数学人教A版(2019)必修第一册
探究
下图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古
代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中
国人民热情好客.你能在这个图中找出一些相等关系和不等关系吗?
探究
将上图的"风车"抽象.在正方形 ABCD中有4个全等的直角三角形.设直角
等用等式表示,不等用不等式表示.
问题1
你能用不等式或不等式组表示下列问题中的不等关系吗?
(1)某路段限速40 km/h;
(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,
蛋白质的含量p应不少于2.3%;
(3)三角形两边之和大于第三边、两边之差小于第三边;
(4)连接直线外一点与直线上各点的所有线段中,垂线段最短.
三角形的两条直角边的长为a,b(a≠b),那么正方形的边长为 2 + 2 .这
样,4个直角三角形的面积和为2ab,正方形的面积为a2+b2.由于正方形
ABCD的面积大于4个直角三角形的面积和,我们就得到了一个不等式
a2+b2≥2ab
a
2
+
2
b
因为∀a,b∈R,(a-b)2≥0,当且仅当a=b时,等号成立,所以a2+b2-2ab≥0.
2.1等式性质与不等式性质
(第1课时)
第二章 一元二次函数、方程和不等式
学习任务
1
2
3
• 抽象不等关
• 比较大小的
• 重要不等式
系的素养
思想方法
数学问题
在现实世界和日常生活中,大量存在着相等关系和不等关系.
例如:多与少、大与小、长与短、高与矮、远与近、快与慢、
不等关系与不等式(第一课时)教案
3.1 不等关系与不等式(第一课时)大冶一中柯尊胜一、教学目标(1)通过实例,明确不等量关系的存在.通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,学会依据具体问题的实际背景分析问题、解决问题的方法.(2)学会依据具体问题的实际背景分析问题、解决问题的方法;在实际问题中抽象出不等关系,培养学生的抽象思维能力,正确运用数学语言的表述能力;通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯.二.教学的重点与难点重点:用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值.理解不等式的基本性质,并能用以解决简单的数学问题。
难点:用不等式(组)正确表示出不等关系.三、教学方法以广泛的相关事例为指导,辅以信息技术手段,采用问题式引导探究,并与讲解演练相结合,在实例中抽象,在抽象中提升。
四、教学基本流程创设情景,由实例引入新课用不等式表示不等关系不等式的基本性质及简单应用小结,用不等式表示不等关系、不等式基本性质五、教学过程实际问题中的不等关系引例1 今天的天气预报说:明天早晨最低温度为7℃,明天白天的最高温度为13℃;引例2 限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是:.引例3 某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%,用不等式可以表示为________.几何中的不等关系1、两点间直线段最短。
2、三角形两边之和大于第三边、两边之差小于第三边。
3. 设点A 与平面α的距离为d ,B 为平面α上的任意一点,则d 与两点的距离|AB|是什么关系?实数的基本不等关系1、正数大于零、负数小于零;2、非负数大于或小于零、非正数不大于零;3、实数的平方不小于零,实数的绝对值大于或等于零;4、“同号积为正,异号积为负。
6.1 不等关系和不等式(1)
6.1不等关系和不等式(1)初二备课组学习目标:1、通过探索数量间的不等关系的过程,了解不等式的意义2、初步感受数量间的变量意识。
学习重点:不等式的意义。
学习难点:不等式的意义。
学习过程:一.导入1.(1)用“<”或“>”填空①0.1_100 ②-2.8___-8.2 ③-100 ___-112.用式子表示:①X的一半小于-1__________②a与b的积是非负数__________二.自主学习这一节课我们主要来研究“2”中的问题,利用10分钟的时间,自学课本p162-163练习以上内容。
完成下列问题:1.填空:(1)在数学表达式①-2<0;②4x+5y>0;③x=5;④x≠-3;⑤x+y;⑥x+2>y+6;⑦x+2≥3中不等式有__________。
2.用不等式表示下列关系,并分别写出两个满足各不等式的数。
①y与4的和大于0.5____________________②a是负数____________________③b是非正数___________________三.合作交流向阳小队10人到学校图书馆参加装订杂志的劳动,开始两天,每人每天完成5本杂志。
问以后3天,每人每天必须完成基本杂志,才能超额完成300本杂志的装订任务?试列出不等式。
(注:根据题意列表达式是学生的难点,一定让学生注意题意词语的关键)四.精讲点拨什么样的语言表达才能用到不等式?*不等式在函数中的用途更大,在以后的学习中一定要注意。
五.达标测试1.p163练习12.y的2倍减3的差不大于1,用不等式表示为____________________3.m的绝对值与1的和大于1____________________六.拓展提升已知关于x的方程3x-3k=5(x-k)+1的解是正数,试列出关于k的不等式。
七.课后作业1 .p163练习22.学有余力的同学预习“p163实验与探究”。
高中数学_不等关系与不等式教学设计学情分析教材分析课后反思
教学设计:高中数学人教A版必修五第三章第一节§3.1不等关系与不等式(第一课时)【教学目标】一知识技能1通过具体问题情境,感受到现实世界和日常生活中存在着大量的不等关系.2会用不等式(组)表示实际问题中的不等关系.二过程与方法通过大量的现实世界和日常生活中例子,使学生感受到不等关系确实处处存在:同时也让学生去认真思考如何用不等式表示现实中的不等关系.三情感、态度与价值观1培养学生数形结合的思想:2培养学生严谨科学的态度:3培育学生的爱国情感和创新意识:4在参与观察、实验、猜想、证明等活动中发展演绎推理能力,培养学生观察问题、提出问题、分析问题、解决问题的科学探究能力.【教学重点】用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值.【教学难点】用不等式(组)正确表示出不等关系.【教学方法】通过让学生观察、思考、交流、讨论、发现现实世界和日常生活中存在着大量的不等关系.【教学手段】多媒体辅助教学.【教学过程】一创设情境,导入课题课前循环播放一组庐山照片,启发学生想到了苏轼的诗:“横看成岭侧成峰,远近高低各不同”.二新授过程,形成认识(一)不等关系:1 诗人苏轼有两句著名的诗句“横看成岭侧成峰,远近高低各不同”,从正面看庐山,它是一道横长的山岭:从侧面看庐山,它是一座高耸的山峰.你再从不同距离、不同高度去看吧,呈现在你眼前的庐山,都是各种互不相同的形象.标注:相对于庐山优美的风景,四川西部山区却是经常有洪灾发生,都江堰就是水利工程的一个典型代表.公元前256年,秦国人李冰作为蜀首,奉命治理岷江,李冰先用了3年的时间勘察水情、调查地形,制订了一整套凝聚着人类智慧与科学的治水方案.)标注:利用ppt播放《都江堰》的视频.让学生通过视频找出里面存在的不等关系,并随时记录在练习本上.(学生回答后出示答案:山区地势高低不同,内江、外江地势高低不同、水量不同、沙石不同(80%外江),水只有高出飞沙堰时,通过飞沙堰流出,有分洪和排沙的作用……)德育教育:都江堰建成后,成都平原的粮食产量成倍增长,这也为秦国统一中国奠定了物质基础.都江堰的设计和改造,最大程度的尊重和保护了自然,即使是2000多年后的今天,仍是水利专家追求的生态水利建设的最高境界.李冰用了3年时间攀登了700多里山路勘察水情、调查地形,他的坚韧不拔的毅力,科学严谨的治学精神, 我们就要应用到学习和生活中.2 (过渡:古代科学家凭借他们坚韧不拔的毅力充分利用了各种不等关系,创造了一个又一个的人类奇迹,在刚刚过去的奥运会上,我国奥运健儿摘金夺银,也取得了巨大的成绩,叶诗文就是其中的一个典型代表.)标注:2012年,伦敦奥运会上16岁的叶诗文以4分28秒43的成绩破世界纪录获得400米女子混合泳冠军,为中国摘得伦敦奥运会第四枚金牌. 随后,在200米女子混合泳的半决赛、决赛中,两次打破奥运会纪录,以2分07秒57夺冠,成为奥运会双冠王,创造中国泳坛历史.德育教育:叶诗文只有16岁,比我们同学都还小,就取得了如此大的成绩,不过同学们也不要不好意思,你们在很多方面比叶诗文还要强.练习1:观察图中存在的不等关系.叶诗文叶诗文与罗切特成绩比较标注:主要看红框中的两个数字和两人的总成绩.德育教育:通过两人成绩的比较,叶诗文在最后50m甚至超过了男子世界冠军的成绩,尽管西方媒体对此提出质疑,但最终的结论证明,她的成绩就是她努力训练的结果,如果要进一步改变西方媒体对中国人的看法,还需要同学们的拼搏努力.(过渡:我们再次回到我国古代)3 材料1:中国最早的一部数学著作——《周髀算经》中记载着在公元前1100年左右,我国古代数学家就已经发现了勾股定理.这比古希腊数学家毕达哥拉斯发现的时间早了500多年.德育教育:这足以说明我们的祖先早已经具有了超人的智慧.世界上最早对勾股定理进行证明的,是我国三国时期吴国的数学家赵爽.赵爽创制了一幅弦图,用形数结合的方法证明了勾股定理.德育教育:中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义.当代中国数学家吴文俊曾经说过“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续.”请同学们在赵爽的弦图中寻找一些不等关系.学生口答:直角三角形的三边不等,三个角不等,大小正方形的边长不等……,更重要的是要总结出222+≥.老师要说明这个公式a b ab非常重要,我们以后还要继续学习.练习2:请同学们自己举出现实世界和日常生活中存在的一些不等关系.(二)用不等式表示不等关系(过渡:通过刚才大量的图表和事实,我们可以感受到现实世界和日常生活中存在着大量的不等关系,其中有很多是可以用不等式表示的.)材料2: 观察下表,请同学们说出x、y、z的范围.2010 39.8 10.3 3.02011 47.2 9.2 3.3德育教育:这个表格隐含着的信息很多,2011年GDP是2006年的2倍还多,说明我国经济发展速度很快;另外,据统计我国1978年国民生产总值为3600亿元,而2011年国民生产总值为47.2万亿元,是1978年的130倍左右,这不仅仅是一个不等关系,更是一个巨大的增长,同时这也是改革开放的重大成就,所以我们只有坚持改革开放,才有可能取得如此大的成就.假设以后我国每年的经济增长率按8%计算,那么多少年后GDP总量将超过130万亿元?答案: 47.21.08130x>,解得14x≥,所以到2025年,我国的GDP将超过130万亿元.德育教育:如果按照现在美国的经济总量和发展速度计算,到2025年我国将超过美国,成为世界第一经济大国.到那时同学们已经是而立之年,各个事业有成!有的已经是著名的企业家,有的成了科学家,有的成了党政岗位上的重要领导人……但是这一切美好的前景都是建立在同学们努力拼搏的基础之上的.练习3:观察以下图形,写出图片中蕴含的不等关系:(过渡:食品中有不等关系,那么市场中有没有不等关系.)例1 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?(总收入=单价×销售量)答案:2.58*0.2200.1x x -⎛⎫-≥ ⎪⎝⎭例2 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 的两种.按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?解:设截得500mm 钢管x 根,截得600mm 钢管y 根,则:三 检测反馈,巩固知识1用不等式表示右图的不等关系:德育教育:我们在过马路的时候,一定要注意安全,要走人行横道,500600400030x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩要走斑马线;如果我们以后开车,也一定按照要求行驶,看看图中,车多人乱,确实很危险!我们应该切实注意自己和他人的安全.(2)某品牌酸奶的质量检查规定,酸奶中的脂肪含量 f 应不少于2.5%,蛋白质的含量 p 应不少于2.3%. 答案: 2.5%2.3%f p ≥⎧⎨≥⎩(3)如图,在一个面积为3502m 的矩形地基上建造一个仓库,四周是绿地.仓库的长L 大于宽W 的4倍.【归纳小结】(过渡:请同学自己总结本节课所学内容,先小组讨论,再请一个同学典型发言.)1通过同学们的总结,我们可以发现古今中外日常生活时时、事事、处处都存在着各种不等关系,通过我们的慧眼要发现并利用这些关系,就会取得超出前人的更大的成就.2 我们要善于利用不等式(组)表示实际问题中的不等关系.【作业】1.P75习题3.1A 组 第4、5题:2.课外探究:(1)有一个两位数大于50而小于60,其个位数字比十位数字大(10)(10)3504L W L W++=⎧⎨≥⎩2.试用不等关系表示上述关系,并求出这个两位数(用a和b分别表示两位数的个位数字和十位数字).(2)一辆汽车原来每天行驶x km,如果这辆汽车每天行驶的路程比原来多19 km,那么8天内它的行程就超过2200 km,写出不等式为_______________:如果它每天行驶的路程比原来少12 km,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为_______________.不等式学情分析高中数学新授课是对数学概念、定理、公式与性质的学习,课上不仅仅要让学生掌握一些基本的数学结论,更重要的是要让学生理解数学问题是怎样提出来的,概念是如何在具体背景中形成的,结论是怎样探索和猜测到的. 要充分利用数学的科学性和严谨性,让学生尊重知识,崇尚科学,坚定科学信念,学会科学思想方法,同时教师要更加关注学生在数学学习中所表现出来的情感、态度、价值观.树立一切为了“每一位学生的发展”的新课程理念,不但要关注每一位学生的数学学习,而且要关注每一位学生的道德生活和人格养成,发展学生的创新意识.只有在创新、求活的发展变化中才能真正提高学生的数学素养,培养学生的创新精神与个性品质.高中数学教材中,有丰富的爱国主义教育素材,在教学中应当适时地、自然地利用它们对学生进行思想教育,会达到事半功倍的效果.高中生正处于世界观逐渐形成的阶段,为了让学生有一个正确的世界观,用辩证唯物主义思想去认识世界,教师在讲授相应新课的同时,适时地、恰当地渗透些辩证唯物主义思想教育,不仅有利于学生对数学知识的深刻理解和对数学方法的熟练掌握,更重要的是有助于学生形成良好的思维品质和科学的世界观.不等式效果分析在课堂上应用的一个材料是有关都江堰工程的介绍,这一中国历史上的壮举,通过视频的形式让学生从视觉、听觉上得到冲击,探究、发现其中的不等关系的同时,也感悟中华文明的伟大与魅力,感悟中国人民的智慧与创新,同时激发学生学习李冰父子勤劳、坚毅、勇于创造的精神。
高考数学一轮复习 第6章 不等式 第1讲 不等关系与不等式的性质及一元二次不等式讲义 理(含解析)-
第六章不等式第1讲不等关系与不等式的性质及一元二次不等式[考纲解读] 1.不等式性质是进行变形、证明、解不等式的依据,掌握不等式关系与性质及比较大小的常用方法:作差法与作商法.(重点)2.能从实际情景中抽象出一元二次不等式模型,通过函数图象了解一元二次不等式与相应的二次函数,一元二次方程之间的联系,能解一元二次不等式.(重点、难点)[考向预测] 从近三年高考情况来看,本讲是高考中的一个热点内容,但一般不会单独命题.预测2020年将会考查:利用不等式的性质判断结论的成立性,求参数的取值X围;一元二次不等式的解法,对含参数的二次不等式的分类讨论等.命题时常将不等式与函数的单调性相结合.试题一般以客观题的形式呈现,属中、低档题型.1.两个实数比较大小的依据2.不等式的基本性质3.必记结论 (1)a >b ,ab >0⇒1a <1b.(2)a <0<b ⇒1a <1b.(3)a >b >0,0<c <d ⇒a c >b d. (4)0<a <x <b 或a <x <b <0⇒1b <1x <1a.(5)若a >b >0,m >0,则b a <b +ma +m; b a >b -m a -m (b -m >0);a b >a +m b +m ; a b <a -m b -m(b -m >0). 4.一元二次函数的三种形式(1)一般式:□01y =ax 2+bx +c (a ≠0). (2)顶点式:□02y =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a ≠0). (3)两根式:□03y =a (x -x 1)(x -x 2)(a ≠0). 5.三个二次之间的关系1.概念辨析(1)a>b⇔ac2>bc2.( )(2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c=0的两个根是x1和x2.( )(3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( )(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.()答案(1)×(2)√(3)×(4)×2.小题热身(1)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0] 答案 B解析 因为M ={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N =[0,4). (2)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0 答案 A解析 因为c <b <a ,且ac <0,所以a >0,c <0.b 的符号不确定,b -a <0,a -c >0,据此判断A 成立,B ,C ,D 不一定成立.(3)设M =2a (a -2),N =(a +1)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 答案 A解析 M -N =2a (a -2)-(a +1)(a -3)=a 2-2a +3=(a -1)2+2>0,故M >N . (4)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值X 围是________.答案 [-4,0]解析 当a =0时,f (x )=-1≤0成立, 当a ≠0时,若对∀x ∈R ,f (x )≤0,须有⎩⎪⎨⎪⎧a 2-4×a ×-1≤0,a <0,解得-4≤a <0.综上知,实数a 的取值X 围是[-4,0].题型 一 不等式性质的应用1.若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c答案 D 解析 解法一:⎭⎪⎬⎪⎫c <d <0⇒cd >0 c <d <0⇒⎭⎪⎬⎪⎫c cd <d cd <0⇒1d <1c <0⇒-1d >-1c >0 a >b >0⇒-a d >-b c ⇒a d <b c .故选D. 解法二:依题意取a =2,b =1,c =-2,d =-1, 代入验证得A ,B ,C 均错误,只有D 正确.故选D.2.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,则S 3a 3与S 5a 5的大小关系为________.答案S 3a 3<S 5a 5解析 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5. 当q >0且q ≠1时,S 3a 3-S 5a 5=a 11-q 3a 1q 21-q -a 11-q 5a 1q 41-q =q 21-q 3-1-q 5q 41-q =-q -1q 4<0,所以S 3a 3<S 5a 5.综上可知S 3a 3<S 5a 5.3.已知二次函数y =f (x )的图象过原点,且1≤f (-1)≤2,3≤f (1)≤4,求f (-2)的取值X 围.解 由题意知f (x )=ax 2+bx ,则f (-2)=4a -2b , 由f (-1)=a -b ,f (1)=a +b ,设存在实数x ,y ,使得4a -2b =x (a +b )+y (a -b ), 即4a -2b =(x +y )a +(x -y )b ,所以⎩⎪⎨⎪⎧x +y =4,x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =3,所以f (-2)=4a -2b =(a +b )+3(a -b ). 又3≤a +b ≤4,3≤3(a -b )≤6,所以6≤(a +b )+3(a -b )≤10, 即f (-2)的取值X 围是[6,10].1.判断不等式是否成立的方法(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.(2)在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断.2.比较两个数(式)大小的两种方法3.求代数式的取值X 围利用不等式性质求某些代数式的取值X 围时,一般是利用整体思想,通过“一次性”不等关系的运算求得整体X 围,是避免错误的有效途径.如举例说明3.1.若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式是( )A .①④B .②③C .①③D .②④ 答案 C解析 因为1a <1b <0,所以b <a <0,|b |>|a |,所以|a |+b <0,ln a 2<ln b 2,由a >b ,-1a>-1b 可推出a -1a >b -1b ,显然有1a +b <0<1ab,综上知,①③正确,②④错误. 2.若a >0,且a ≠7,则( ) A .77a a<7a a 7B .77a a =7a a 7C .77a a >7a a 7D .77a a与7a a 7的大小不确定 答案 C解析 显然77a a>0,7a a 7>0,因为77a a7a a 7=⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫a 7a =⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫7a -a =⎝ ⎛⎭⎪⎫7a 7-a.当a >7时,0<7a <1,7-a <0,⎝ ⎛⎭⎪⎫7a 7-a>1,当0<a <7时,7a>1,7-a >0,⎝ ⎛⎭⎪⎫7a 7-a>1. 综上知77a a>7a a 7.3.若1<α<3,-4<β<2,则α-|β|的取值X 围是________. 答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4,∴-4<-|β|≤0. ∴-3<α-|β|<3.题型 二 不等式的解法1.函数f (x )=1ln -x 2+4x -3的定义域是( )A .(-∞,1)∪(3,+∞) B.(1,3) C .(-∞,2)∪(2,+∞) D.(1,2)∪(2,3) 答案 D解析 由题意得⎩⎪⎨⎪⎧-x 2+4x -3>0,ln -x 2+4x -3≠0,即⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-4x +4≠0.解得1<x <3且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,3). 2.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 本题采用分类讨论思想. 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1满足题意; 当2a<-1,即0>a >-2,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≥2a或x ≤-1;当-2<a <0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫2a≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫-1≤x ≤2a .条件探究 把举例说明2中的不等式改为“ax 2-(a +1)x +1<0,a ∈R ”,如何解答? 解 若a =0,原不等式等价于-x +1<0,解得x >1.若a <0,则原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a或x >1.若a >0,原不等式等价于⎝⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a=1,⎝ ⎛⎭⎪⎫x -1a (x -1)<0无解;②当a >1时,1a <1,解⎝⎛⎭⎪⎫x -1a (x -1)<0得1a<x <1;③当0<a <1时,1a>1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0得1<x <1a.综上所述,当a <0时,解集为{x ⎪⎪⎪⎭⎬⎫x <1a或x >1;当a =0时,解集为{x |x >1};当0<a <1时,解集为{x ⎪⎪⎪⎭⎬⎫1<x <1a ;当a =1时,解集为∅;当a >1时,解集为{x ⎪⎪⎪⎭⎬⎫1a<x <1.1.解一元二次不等式的四个步骤2.分式不等式的解法求解分式不等式的关键是对原不等式进行恒等变形,转化为整式不等式(组)求解. (1)f xg x>0(<0)⇔f (x )·g (x )>0(<0);如巩固迁移2.(2)f xg x ≥0(≤0)⇔⎩⎪⎨⎪⎧f x ·g x ≥0≤0,g x ≠0.1.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72 C.154 D.152 答案 A解析 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52,故选A.2.不等式2x +1x -5≥-1的解集为________.答案 {x ⎪⎪⎪⎭⎬⎫x ≤43或x >5解析 将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧3x -4x -5≥0,x -5≠0,解得x ≤43或x >5.∴原不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≤43或x >5.题型 三 二次不等式中的任意性与存在性角度1 任意性与存在性1.(1)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),某某数a 的取值X 围; (2)若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,某某数a 的取值X 围. 解 (1)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞)⇔f (x )>0在(-∞,+∞)上恒成立⇔f (x )min >0,即f (x )min =-4a +a24>0,解得-4<a <0(或用Δ<0).(2)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )≤-3在(-∞,+∞)上能成立⇔f (x )min ≤-3,即f (x )min =-4a +a24≤-3,解得a ≤-6或a ≥2.角度2 给定区间上的任意性问题2.(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值X 围是________.(2)设函数f (x )=mx 2-mxx ∈[1,3],f (x )<-m +5恒成立,求m 的取值X 围. 答案 (1)⎝ ⎛⎭⎪⎫-22,0 (2)见解析解析 (1)要满足f (x )=x 2+mx -1<0对于任意x ∈[m ,m +1]恒成立,只需⎩⎪⎨⎪⎧ f m <0,f m +1<0,即⎩⎪⎨⎪⎧ 2m 2-1<0,m +12+m m +1-1<0,解得-22<m <0.(2)要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:解法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3),即7m -6<0,所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1),即m -6<0,所以m <6,所以m <0.综上所述,m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.解法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.角度3 给定参数X 围的恒成立问题3.已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值X 围为()A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3)答案 C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则由f (a )>0对于任意的a ∈[-1,1]恒成立,所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧ x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.故选C.形如f (x )≥0(f (x )≤0)恒成立问题的求解思路(1)x ∈R 的不等式确定参数的X 围时,结合二次函数的图象,利用判别式来求解. (2)x ∈[a ,b ]的不等式确定参数X 围时,①根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求参数的X 围;②数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式求X 围.如举例说明2.(3)已知参数m ∈[a ,b ]的不等式确定x 的X 围,要注意变换主元,一般地,知道谁的X围,就选谁当主元,求谁的X 围,谁就是参数.如举例说明3.1.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值X 围是________.答案 ⎝ ⎛⎭⎪⎫-235,+∞ 解析 由Δ=a 2+8>0,知方程x 2+ax -2=0恒有两个不等实数根,又知两根之积为负,所以方程x 2+ax -2=0必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值X 围为⎝ ⎛⎭⎪⎫-235,+∞. 2.函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,某某数a 的取值X 围;(2)当x ∈[-2,2]时,f (x )≥a 恒成立,某某数a 的取值X 围; (3)当a ∈[4,6]时,f (x )≥0恒成立,某某数x 的取值X 围.解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立,需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,∴实数a 的取值X 围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示): ①如图1,当g (x )的图象恒在x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2.②如图2,g (x )的图象与x 轴有交点,但当x ∈[-2,+∞)时,g (x )≥0, 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≤-2,g -2≥0,即⎩⎪⎨⎪⎧ a 2-43-a ≥0,-a 2≤-2,4-2a +3-a ≥0, 可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅. ③如图3,g (x )的图象与x 轴有交点,但当x ∈(-∞,2]时,g (x )≥0. 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≥2,g 2≥0,即⎩⎪⎨⎪⎧a 2-43-a ≥0,-a 2≥2,7+a ≥0, 可得⎩⎪⎨⎪⎧ a ≥2或a ≤-6,a ≤-4,a ≥-7.∴-7≤a ≤-6.综上,实数a 的取值X 围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h 4≥0,h 6≥0,即⎩⎪⎨⎪⎧ x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值X 围是(-∞,-3-6]∪[-3+6,+∞).。
不等关系与不等式(一)
[解] (1)x-y=(m4-m3n)-(n3m-n4) =m3(m-n)-n3(m-n) =(m-n)(m3-n3) =(m-n)2(m2+mn+n2), ∵m≠n,∴(m-n)2>0. n 2 3n2 又∵m +mn+n =(m+ ) + >0, 2 4
2 2
∴(m-n)2(m2+mn+n2)>0. ∴x-y>0.∴x>y.
• [点评] 实数大小比较的依据,给我们提供了比较两个实 数大小的方法,同时也是我们解决有些实际问题的有效途 径.
• 迁移变式4 • 如图1,y=f(x)反映了某公司产品 的销售收入 y 万元与销售量 x 吨的 函数关系, y = g ( x ) 反映了该公司 产品的销售成本与销售量的函数 关系,试问: • (1) 当销售量为多少时,该公司赢 利(收入大于成本); • (2) 当销售量为多少时,该公司亏 损(收入小于成本)?
• 解: (1) 当销售量大于 a 吨时,即 x > a 时,公司赢利,即 f(x)>g(x); • ( 2 ) 当 销售量 小 于 a 吨时 , 即 0 ≤ x < a 时 ,公 司 亏损, 即 f(x)<g(x).
• 1.比较实数大小的依据. • 实数集与数轴上的点集之间可以建立一一对应关系.那些 表示实数的点在数轴上有次序地(无缝隙地)排列.数轴上 的一个动点向着数轴的正方向运动时,它所对应的实数越 来越大,由此可以得到下面两个结论:
迁移变式 2
比较 3+ 7与 2 5的大小.
解:( 3+ 7)2-(2 5)2=(10+2 21)-20=2( 21-5). ∵( 21)2-52=21-25=-4<0, ∴2( 21-5)<0,∴ 3+ 7<2 5.
3.1不等式与不等关系(第一课时)
典例讲评 例2.若 若
x≠2
2
或
2
y ≠ −1x ≠ 2
M = x + y − 4x + 2y , N = − 5
求证: 求证:M
>N
Q 证明: M − N = x2 + y2 − 4x + 2y + 5 ----(1)作差 ( )
= x2 − 4x + 4 + y 2 + 2 y + 1
= ( x − 2) 2 + ( y + 1) 2 ------(2)变形 ( ) 又 x ≠ 2 或 y ≠ −1
课堂小结
3.用 差比法”比较两个实数的大小, 3.用“差比法”比较两个实数的大小,一 般分三步进行:作差→变形→定号→ 般分三步进行:作差→变形→定号 结论. 其中变形的目的在于判断差式的符号, 其中变形的目的在于判断差式的符号,常 用的变形手段有因式分解、配方等. 用的变形手段有因式分解、配方等.
a
b
大数对应的点位于小数对应的点的右边
新知探究
a -b >0
⇔
a> ⇔a>b
a-b=0
⇔a=b
新知探究
a -b <0 a -b >0 a-b=0 a -b <0
客观事实:(作差法比较大小的原理) 客观事实:(作差法比较大小的原理) :(作差法比较大小的原理
a< ⇔ a <b
a> ⇔a>b ⇔a=b a< ⇔ a<b
ì f ³ 2.5% ï ï í ï p ³ 2.3% ï ï î
某种杂志原以每本2.5元的价格销售, 某种杂志原以每本2.5元的价格销售, 2.5元的价格销售 可以售出8万本.据市场调查, 可以售出8万本.据市场调查,若单价 每提高0.1 0.1元 每提高0.1元,销售量就可能相应减少 2000本 若把提价后杂志的定价设为x 2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入 不低于20万元? 20万元 不低于20万元?
等式与不等式性质第一课时参考教学方案
《等式性质与不等式性质(第一课时)》教学设计教学重点:两个实数大小关系的基本事实及其简单应用.教学难点:从实际问题所蕴含的不等关系中抽象出不等式.GEOGEBRA、PPT课件,用纸做四个全等的直角三角形.一、整体感知问题1:请同学们阅读本章引言的文章,说说本章要学习的内容是什么?和初中所学的哪些内容有联系?对我们今后学习数学有什么作用?用什么方法来研究本章内容?师生活动:学生自主阅读后、讨论交流.预设的答案:1.本章主要研究的内容是方程和不等式,包括不等关系和不等式,基本不等式和一元二次不等式的研究,通过回顾、梳理初中学习的等式内容,提炼出其中蕴含的思想方法,用一次函数的观点看一次方程、不等式中蕴含的思想方法,用于研究不等式和一元二次不等式有关问题.2.方程和不等式是重要的数学工具,可以解决数学内外的各种问题,为今后学习作工具上的准备,另外,用函数的观点看方程和不等式是一种重要的思想方法,体现了数学知识之间的联系性和整体性,为今后的学习作思想方法上的准备.设计意图:一章的起始课,首先要从整体上把握所学内容,让学生明确本章内容的地位、作用、内在联系及研究方法,有助于学生良好认知结构的建立和完善.引语:相等关系和不等关系是数学中最基本的数量关系,首先来学习等式性质和不等式性质.(板书:等式性质和不等式性质)二、新知探究1.从实际问题所蕴含的不等关系中抽象出不等式问题2:你能用不等式或不等式组表示下列问题中的不等关系吗?(1)某路段限速40 km/h ;(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不小于2.5%,蛋白质的含量p 应不少于2.3%;(3)三角形两边之和大于第三边、两边之差小于第三边;(4)连接直线外一点与直线上各点的所有线段中,垂线段最短.师生活动:学生分别用不等式表达,若有表达不准确,或表达困难的,引导学生先用符号表示题中的量,再用不等号表示问题中的不等关系.预设的答案:(1)设速度为v km/h ,则0<v ≤40;(2)⎩⎨⎧≥≥%3.2%5.2p f ; (3)设△ABC 的三条边为a ,b ,c ,则a +b >c ,a -b <c ;(4)设C 是线段AB 外任意一点,CD ⊥AB ,垂足为D ,E 是线段AB 上不同于D 的任意一点,则CD <CE .追问1: 你还能举出几个具有相等与不等关系的实际问题的例子吗?这些不等关系如何用式子表示?师生活动:学生自己举例,并用等式和不等式表示,在这个过程中教师不断启发学生,使得结论更科学和严谨.追问2:在上述问题的解决中,你经历了怎样的思考过程?师生活动:学生总结,教师完善:阅读实际问题——引入变量——将实际问题的文字语言转化为符号语言——找到量之间的关系——获得需要的不等式.设计意图:通过创设问题情境,让学生经历从实际问题中抽象出不等式,明确数学的价值和作用,提高学生数学抽象素养.并通过这组问题的解决,提炼出所用的方法,为后面解决问题做好铺垫.2.研究不等式性质的必要性问题3:某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,杂志的单价每提高0.1元,销售就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万?师生活动:学生独立思考,分析数量关系后用不等式表达.设计意图:两个实数大小关系的基本事实的初步应用,让学生体会作差比较法在比较大小中的作用.4.重要不等式的探究和证明问题5:图1是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.你能在这个图中找出一些相等关系和不等关系吗?师生活动:首先让学生用四个全等的直角三角形拼接出图形,小组交流不同人的拼接图形中的不同,之后教师利用几何画板进图1行动态演示:改变直角三角形两直角边长,让学生直观感觉图形的变化.然后按照前面的程序,引入符号,比如用a,b表示直角三角形的两条直角边,寻找关系,写出不等式.然后以小组为单位合作探究,展示成果.预设方案1:学生已经发现重要不等式,让学生展示其发现过程.预设方案2:学生没有发现重要不等式,可以进一步启发.追问1:你能用字母表示出图中四个直角三角形和大正方形的面积吗?预设的答案:用a,b表示直角三角形的两条直角边,则直角三角形的面积为2ab,大正方形的面积为a2+b2.追问2:在变化过程中四个直角三角形的面积和大正方形面积之间存在着相等和不等关系,你能表示出来吗?师生活动:学生得到a2+b2>2ab.教师进一步变化图形,引导学生观察当a=b时,小正方形的面积为0,这时a2+b2=2ab.综合两类情况,得到a2+b2≥2ab,当a=b且仅当时取等号.追问3:上述过程中,a,b为正数,如果a,b∈R,式子是否成立?为什么?师生活动:引导学生分析问题,回归到用“两个实数大小关系的基本事实”作差比较,并规范证明过程.证明:∵a2+b2-2ab=( a-b)2≥0,∴a2+b2≥2ab,当且仅当a=b时,等号成立.设计意图:对实际问题深入分析,发现不等关系,引入符号,表示不等关系,感受到由“形”到“数”的转换过程.利用软件演示图形的动态变化,感受图形从量变到质变的过程,培养学生直观想象素养.通过追问,让学生经历猜想到证明不等式的一般过程,为不等式性质和基本不等式的学习奠定基础.对问题情境的分析中让学生感受数学文化的价值.三、归纳小结,布置作业问题6:本节课我们主要学习了哪些知识,为什么要研究这些内容?研究这些内容有什么作用?师生活动:师生一起总结.设计意图:通过梳理本节课的内容,能让学生更加明确研究两个实数大小关系的基本事实是为了研究不等式的性质,解决解不等式问题.两个实数大小关系的基本事实使数学运算参与问题解决之中,可以比较两个实数的大小.四、目标检测设计1.用不等式或不等式组表示下面的不等关系:(1)某高速公路规定通过车辆的车货高度h 从地面算起不超过4 m ;(2)a 与b 的和是非负实数;(3)如图,在一个面积小于350 m 2的矩形地基的中心位置上建造一个仓库,仓库的四周建成绿地,仓库的长L 大于宽W 的4倍.设计意图:考查从实际问题中抽象出不等式的能力.2.比较(x +3)(x +7)和(x +4)(x +6)的大小.设计意图:考查用两个实数大小关系的基本事实比较大小应用能力3.已知a >b ,证明b b a a >+>2. 设计意图:考查用两个实数大小关系的基本事实比较大小的应用能力.参考答案:1.(1)h ≤4 (2)a +b ≥0 (3)⎩⎨⎧><++WL W L 4350)10)(10( 2.(x +3)(x +7)<(x +4)(x +6)3.∵a >b ,。
《等式性质与不等式性质》一元二次函数、方程和不等式PPT教学课件(第一课时不等关系与不等式)
9
4.设 M=a2,N=-a-1,则 M、 M>N [M-N=a2+a+1=
N 的大小关系为________.
a+122+34>0,
∴M>N.]
栏目导航
10
合作探究 提素养
栏目导航
11
用不等式(组)表示不等关系 【例 1】 京沪线上,复兴号列车跑出了 350 km/h 的速度,这个速 度的 2 倍再加上 100 km/h,不超过民航飞机的最低时速,可这个速度已经 超过了普通客车的 3 倍,请你用不等式表示三种交通工具的速度关系.
栏目导航
23
解决决策优化型应用题,首先要确定制约着决策优化的关键量是哪 一个,然后再用作差法比较它们的大小即可.
栏目导航
24
3.甲、乙两家旅行社对家庭旅游提出优惠方案.甲旅行社提出:如 果户主买全票一张,其余人可享受五五折优惠;乙旅行社提出:家庭旅 游算集体票,按七五折优惠.如果这两家旅行社的原价相同,那么哪家 旅行社价格更优惠?
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质 第1课时 不等关系与不等式
2
学习目标
核心素养
1.会用不等式(组)表示实际问题中 1. 借助实际问题表示不等式,提升
的不等关系.(难点) 2.会用比较法比较两实数的大 小.(重点)
数学建模素养. 2. 通过大小比较,培养逻辑推理素 养.
栏目导航
14
1.用一段长为 30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长 18 m, 要求菜园的面积不小于 216 m2,靠墙的一边长为 x m.试用不等式表示其 中的不等关系.
栏目导航
15
[解] 由于矩形菜园靠墙的一边长为x m,而墙长为18 m,所以 0<x≤18,
【课件】等式性质与不等式性质+第一课时不等关系与不等式高一上学期数学人教A版(2019)必修第一册
限时小练
1.在开山工程爆破时,已知导火索燃烧的速度是每秒12厘米,人跑开的速度是 每秒 4 米,为了使点燃导火索的人能够在爆破时跑到 100 米以外的安全区,导 火索的长度 x(厘米)应该满足的不等式为( )
巩固与练习(3)
例 3. 已知 a>0,求证:a+a1≥2.
证明 法一利用 a2+b2≥2ab.
∵a>0, ∴a+a1=(
a)2+
1 2 a
≥2 a·1a=2. 当且仅当 a=1 时,等号成立.
法二
∵a+a1-2=(
a)2+
1a2-2
=
a- 1a2≥0,
∴a+a1≥2.
深化与思考
1.比较两数的大小或证明不等式,最基本的方法是作差比 较法,其关键是作差变形,判断差的符号.
全票,其余人可享受 7.5 折优惠.”乙车队说:“你们属团体票,按原价的 8 折
优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队
的收费哪家更优惠.
限时小练
限时小练
限时小练
简解答:
课堂作业
1、练习1,2,3 2、预习 本节剩余部分。
本节内容结束 THANKS
代数复习 等式
数式 不等式
复习引入 方程(组)
一元一次不等式(组)
函数
解不等式(组)的理论依据是什么? 方程(组)、不等式与函数之间有什么联系?
复习引入
常见的不等关系有哪些?你能用文字语言和符号语言 表述吗?
文字语言 大于 小于
大于或等于(不小于) 小于或等于(不大于)
符号语言 > < ≥ ≤
不等式性质1第一课时教案
不等式性质1第一课时教案不等式性质1:不等式性质的基础不等式是高中数学中很重要的一部分,是我们经常用到的数学工具之一。
作为一种描述数值大小关系的工具,不等式在实际应用中非常广泛。
我们可以通过不等式来描述各种数值大小的关系,包括整数、分数、根式、三角函数等。
掌握好不等式的性质是学习和理解更深入的数学知识的重要基础。
一、不等式的定义及表示不等号(≤或≥)是比较两个或多个数大小的数学符号。
不等式是指用这种符号把几个数或表达式连接起来的一种数学式子。
例如:2x+3≤9,其中“≤”就是不等号,整个式子就是不等式。
二、不等式的三种结构1. 一元一次不等式一元一次不等式是指含有未知数x的不等式,且x只有一次方程的不等式。
例如:4x+5>13,x-2<-72. 一元二次不等式一元二次不等式是指含有未知数x的不等式,x有平方项的不等式。
例如:x²+4x-5>0,4x²-4x+1≥03. 分式不等式分式不等式是指不等式中含有分式的不等式。
例如:x/(x+3)≥1,1/(x-1)-3/(x+2)>0三、不等式的基本性质1.等式两侧加(减)同一个数,不等式的成立方向不变。
例如:若a<b,则a+k<b+k;若a>b,则a-k>b-k,其中k是任意实数。
2.等式两侧乘以(除以)同一个正数,不等式的成立方向不变;两侧乘以(除以)同一个负数,不等式的成立方向改变。
例如:若a<b,则ka<kb(k>0),ka>kb(k<0)。
3.对于两个数a、b,它们的大小关系只有以下三种情况:a<b,a>b,a=b以上三个性质是不等式的基本性质,可以理解为不等式的“运算法则”,在不等式的解题中经常被使用。
四、不等式的解法1.根据是“大于”、“小于”解不等式。
例如:4x-5>13,x+2<72.四边同乘或同除一个不等式两侧的同一正(负)数,并注意不等式方向的变化。
不等式性质1第一课时教案
不等式性质1第一课时教案《不等式性质 1 第一课时教案》一、教学目标1、知识与技能目标学生能够理解并掌握不等式的性质 1,即不等式两边加(或减)同一个数(或式子),不等号的方向不变。
2、过程与方法目标通过观察、比较、推理等活动,培养学生的逻辑思维能力和推理能力。
3、情感态度与价值观目标让学生在自主探究和合作交流中,感受数学的乐趣,增强学习数学的信心。
二、教学重难点1、教学重点理解和掌握不等式的性质 1。
2、教学难点能正确运用不等式的性质 1 进行不等式的变形。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过回顾等式的性质,引导学生思考不等式是否也有类似的性质,从而引出本节课的主题——不等式的性质 1。
2、讲授新课(1)呈现一组不等式,如 5 > 3,5 + 2 > 3 + 2,5 2 > 3 2。
让学生观察这组不等式,思考不等号两边进行相同的加或减运算后,不等号的方向是否改变。
(2)引导学生进行讨论,并让学生发表自己的看法。
(3)总结学生的讨论结果,得出不等式的性质 1:不等式两边加(或减)同一个数(或式子),不等号的方向不变。
(4)用数学符号语言表示为:如果 a > b,那么 a + c > b + c,ac > b c。
3、例题讲解例 1:若 x > y,试判断 x + 3 与 y + 3 的大小关系。
解:因为 x > y,根据不等式的性质 1,两边同时加 3,不等号方向不变,所以 x + 3 > y + 3。
例 2:已知 m < n,用不等式表示 m 5 与 n 5 的大小关系。
解:因为 m < n,根据不等式的性质 1,两边同时减 5,不等号方向不变,所以 m 5 < n 5。
4、课堂练习(1)如果 a < b,那么 a + 1____b + 1。
(2)若 x >-3,则 x 5____ 3 5。
5、课堂小结(1)回顾不等式的性质 1 的内容。
(2)强调运用不等式性质 1 时需要注意的问题,如加减的数或式子必须是同一个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(四)达标测试
1、下列各式那些是等式?那些不是等式?那些既不是等式也不是不等式?
(1) (2)3 >7(3)5=2 +3(4) 2≥0
B a不大于3,可以表示为a<3
C 与4的差是负数,可以表示为 -4<0
D 不等于5,可以表示为 >5
)
六、课堂小结:完成数学日记
课题:_______日期:______
今天我学习了________知识,知道了_______,
在课堂上我经历了_______,我的收获是_______
我仍困惑的是_______。
(二)探究新知:
1.学生自主阅读课本第162页,你能利用不等号分别表示出上述3个问题中的不等关系吗?与同学交流一下。
2.相关知识链接:
某中学八年级(1)班50名学生在上体育课,老师说了这样一句话:我拿来了一些篮球,如果每5名同学玩一个篮球,有些同学没有篮球玩,如果每6名同学玩一个篮球,就会有一个篮球玩的人数少于6人,请同学们回答下面的问题:
七、作业布置:
1 .p163练习2及本节练习册相应题目
2.学有余力的同学预习“p163实验与探究”
为学生创设学数学、用数学的情境,让学生体验用数学知识解决实际问题的方法。
在对实际问题的数量关系进行比较分析、作出推断的过程中,提高学生参与数学活动,乐于接触社会环境中数学信息的兴趣。
并举例说明,阅读课本第162页的“加油站”。
6.1不等关系和不等式(第一课时)
一、教与学目标:
1.通过探索数量间的不等关系的过程,了解不等式的意义
2.使学生经历实际问题中数量关系的分析和抽象过程,感受不等式和等式都是刻画现实世界中数量关系的工具,发展学生的符号感.
二、教与学重点难点:
重点:不等式的意义以及会用不等式表示不等关系;
难点:在实际问题中用不等式表示不等关系.
6.如果x-y<0,那么x与y的大小关系是xy.(填<或>符号
三、教与学方法:
自主探究、合作交流
四、教与学过程:
(一)情境导入:
为支援灾区,直升飞机正往返运送救灾物资,一架载重为3000千克的直升飞机已经装载了80箱药品,平均每箱的质量为25千克.如果每顶帐篷的质量是50千克,那么这架飞机最多还能装载多少顶帐篷?(提示:设飞机最多还能装载 顶帐篷,根据题意列出不等式。
(5)2 -3 =1
2、下列不等关系正确的是()
A(-2)2>-22B -0.3<-1
C < D >
3医学规定:人的心脏每分钟跳动的次数a的正常范围不少于70次,且不多于75次,则()
A 70<a<75 B 70≤a≤75
C 70≤a<75 D 70<a≤75
4下面列出的不等式中,正确的是()
A a不是负数,可以表示为a>0
学生在完成上面的问题之后,老师可以做适当的点拨,让学生体会现实生活中处处存在的不等关系,能够理解什么样的语言表达才能用到不等式,不等式在函数中的用途更大,在以后的学习中一定要注意。
5、用不等式表示:
(1)a是正数
(2)b是非负数
(3) 的2倍与6的和比1小
(4) 2减去10不大于10
(5)设a,b,c为一个三角形的三条边长,两边之和大于第三边
温馨提示:数的比较大小方法:正数大于负数;两个负数比较大小,绝对值大的负数反而小.
思考讨论:
2006年2月5日扬州气象台预报本市气温是-2~4℃,这表示2月5日的最低气温是
℃,最高气温是℃.设扬州市2月5日某一时刻气温为t℃,则关于t的不等量关系是
温馨提示:根据题意列表达式是学生的难点,一定让学生注意题意词语的关键。
1y与4的和大于0.5____________________
2a是负数____________________
③b是非正数___________________
典例分析
例1用“>”或“<”号填空:
(1)-6+4-1+3; (2)5-20-2;
(3)6×23×2(4)-6×(-4)-2×(-4).
例2Байду номын сангаас不等式表示:
.你能把老师的这句话用三个式子表示出来吗?
.你列出的式子与我们以前学过的等式有什么不同?
3.不等式的概念:叫做不等式。
4.在数学表达式①-2<0;②4x+5y>0;③x=5;④x≠-3;⑤x+y;⑥x+2>y+6;⑦x+2≥3中不等式有__________。
5.用不等式表示下列关系,并分别写出两个满足各不等式的数。
(1)a是正数; (2)b是非负数; (3)c是负数; (4)d不小于2的数.
归纳:根据不等式的意义,常用的不等号有下面的4种形式.
种类
符号
读法
举例
小于号
<
小于
2+3<6,x<-4
大于号
>
大于
2+3>5,x>-10
小于或等于号
≤
小于或等于(不大于)
x≤8
大于或等于号
≥
大于或等于(不小于)
x≥5
(三)学以致用: