高三数学第一轮复习课时作业(57)分类加法计数原理与分步乘法计数原理
高考数学一轮复习第九章第1课时分类加法计数原理与分步乘法计数原理课时作业理新人教版
第九章计数原理第1课时 分类加法计数原理与分步乘法计数原理1. 分类加法计数原理完成一件事情可以有 n 类方案,在第1类方案中有m i 种不同的方法,在第2类方案中有m 种 不同的方法……在第 n 类方案中有m n 种不同的方法,那么完成这件事情共有 _____________ 种不同 的方法•2. 分步乘法计数原理 完成一件事情需要分成n 个步骤,做第1步有m i 种不同的方法,做第2步有m 2种不同的方法……做第n 步有m i 种不同的方法,那么完成这件事情共有 ____________ 种不同的方法. 1.4封不同的信投人三个不同的信箱屮+所有投法的种数是( A,3*B. 43C. A ;DN 4个人去借3本不同的书(全部借完)•所宥借法的种数是( A.3*B. 43 C A :D.3. 若从1,2,3,…,9这9个整数中同时取 4个不同的数,其和为偶数,则不同的取法共有 ( ). A. 60 种 C. 65 种4. 从班委会5名成员中选出3名,分别担任班级学习委员、 文娱委员与体育委员,其中甲、乙 二人不能担任文娱委员,则不同的选法共有 _________ 种.(用数字作答)5. ________________________ 有三只口袋装有小球,一只装有5个白球,一只装有6个黑球,B. 63 种 D. 66 种一只装有7个红球,若三种颜色的球各取一个,则有种不同的取法.♦分类加法计数原理和分步乘法计数原理的区别分类加法计数原理与分步乘法计数原理 别在于:分类加法计数原理与分类有关 这件事;分步乘法计数原理与分步有关 才算完成•♦混合问题混合问题一般是先分类再分布 •♦画图要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律考向一分类加法计数原理的应用 例1高三⑴班有学生50人,男30人,女20人;高三⑵ 班有学生60人,男30人,女30人; 高三⑶ 班有学生55人,男35人,女20人. (1) 从高三(1)班或(2)班或(3)班选一名学生任学生会主席,有多少种不同的选法?(2) 从高三(1)班、(2)班男生中,或从高三(3)班女生中选一名学生任学生会主席 ,有多少种不同的选法?【审题视点】 运用分类加法计数原理,先求出每类方案的取法,再进行相加即可•【方法总结】分类时,首先要根据问题的特点确定一个适合它的分类标准 ,然后在这个标准下进行分类;其次分类时要注意满足一个基本要求,就是完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法 ,只有满足这些条件,才可以用分类加法计数原理•1 •在所有的两位数中,个位数字小于十位数的两位数字共有多少个 ?,都涉及完成一件事情的不同方法的种数•它们的区,各种方法相互独立,用其中的任一种方法都可以完成 ,各个步骤相互依存,只有各个步骤都完成了 ,这件事考向二分步乘法计数原理的应用例2现要排一份5天的值班表,每天有一个人值班,共有5个人.每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法?【审题视点】运用分步乘法计数原理,先分别求出每一天可排的人数,再进行相乘即可•【方法总结】利用分步乘法计数原理解决问题:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各个步骤都完成了才算完成这件事.变式训练2. 已知集合M=-3,-2,-1,0,1,2}, P(a,b)表示平面上的点(a,b€ M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?⑶P可表示多少个不在直线y=x上的点?考向三两个计数原理的综合应用5个区域涂色(4种颜色全部使用),要求每个区域涂1A. 72 种例3如图,用4种不同的颜色对图中种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有().B. 96 种C.108 种 【审题视点】 分成1,3同色与1,3不同色两类,分别求出涂色法,再进行相加【方法总结】对于某些复杂的问题,有时既要用分类加法计数原理,又要用分步乘法计数原理 运用两个计数原理解题时是先分类、后分步,还是先分步、后分类,应视具体问题而定,并搞清分类或分步的具体标准是什么,完成事情的含义和标准是什么 •3. 用六种颜色给正四面体 A-BCD 的每条棱涂色,要求每条棱只涂一种颜色且共顶点的棱涂不 同的颜色,问:有多少种不同的涂色方法典例(2014 •福建)用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个 红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1 +b )的展开式1+a+b+ab 表示出来,如:“1 ”表示一个球都不取,“ a ”表示取出一个红球,而“ ab ”则表示把红球和蓝球都取出 来.依此类推,下列各式中,其展开式可用来表示从 5个无区别红球,5个无区别的蓝球、5个2 3 4+a+a+a+a+a )(1 +b )(1B. (1 +a 5)(1 +b+b 2+b 3+b 4+b 5)(1 +c )C. (1 +a ) 5(1 +b+b 2+b 3+b 4+b 5)(1 +C 5)D. (1 +a 5)(1 +b ) 5(1 +c+c 2+c+c 4+c 5)【解题指南】 运用加法原理与乘法原理的基本方法(穷举法)解决.【解析】 由题意可知:5个无区别的红球取出若干球可表示为1+a+a 2+a 3+a 4+a 5;5个无区别5的蓝球都取出或都不取出可表示为1+b ;5个有区别的黑球取出若干球可表示为 (1 +c )(1 +c )(1 +c )(1 +c )(1 +c ) =(1 +c ).由乘法 原理可得所有 取法可 表示为D.120 种有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法是( ).A. (1 +c )2 3 4 5 5 5(1+a+a+a+a+a)(1 +b) • (1 +c).故选A【答案】A1. (2014 •四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有().A. 192 种B. 216 种C.240 种D.288 种2. (2014 •安徽)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有().A.24 对B.30 对C.48 对D.60 对3. (2014 •重庆)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是().A.72B. 120C.144D. 1681. N=m+m+…+m n2n1. A2. B3.D4.365.210【例1】(1)从高三⑴班50人中选一人有50种选法;从高三⑵班60人中选一人有60种选法;从高三⑶班中选一人有55种选法,••• 共有50+60+55=165(种).⑵从高三(1)班、(2)班男生中选一人有30+30=60(种)选法,从高三⑶班女生中选有20种选法,•共有30+30+20=80(种).【例2】先排第一天,可排5人中的任一人,有5种排法;再排第二天,此时不能排第一天已排的人,有4种排法;再排第3天,此时不能排第二天已排的人,仍有4种排法;同理,第四、五两天均各有4种排法.由分步乘法计数原理可得值班表共有不同排法数5X 4 X 4X 4X 4=1280(种).【例:门B解析:若1,3不同色.则1沱,緘4必不同色•有3A}=72种涂色法;若1祷同色,有= 种涂色法-根据分类加法计数原理可知,共冇72 + 24 = 96(种)涂色法.1. 一个两位数由十位数字和个位数字构成,考虑一个满足条件的两位数时,可先确定个位数字后再考虑十位数字.一个两位数的个位数字可以是0,1,2,3,4,5,6,7,8,9, 把这样的两位数分成10类.(1)当个位数字为0时,十位数字可以是1,2,3,4,5,6,7,8,9, 有9个满足条件的两位数;(2)当个位数字为1时,十位数字可以是2,3,4,5,6,7,8,9, 有8个满足条件的两位数;(3)当个位数字为2时,十位数字可以是3,4,5,6,7,8,9, 有7个满足条件的两位数;以此类推,当个位数字分别是3,4,5,6,7,8,9 时,满足条件的两位数分别有6,5,4,3,2,1,0 个.由分类计数原理得,满足条件的两位数的个数为9+8+7+6+5+4+3+2+1 +0=45(个).2. (1)确定平面上的点P(a, b)可分两步完成:第一步确定a的值,共有6种取法;第二步确定b的值,共有6种取法.故P可表示平面上36个不同的点.⑵确定第二象限点,可分两步完成:第一步确定a,由于a<0,所以有3种取法;第二步确定b,由于b>0,所以有2种取法.由分步乘法计数原理,得到P可表示第二象限的点的个数是3X 2=6.⑶点P(a, b)在直线y=x上的充要条件是a=b,因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由⑴得P可表示不在直线y=x上的点共有36- 6=30(个).3.(1)若恰用二种颜色涂芭*则每织对棱必娥涂同一颜色•而这二组同的颜色不同.敏有A|种方法.(2)若恰川四种埶色涂色•则三组对K'Pff两组对棱涂阿色・但组与组之间不同色•抜有种方法.(3)若恰用五种顔色涂色,则三组对棱屮冇一组对棱涂同一种颜色. 故有&A;种方法.若恰用六种颜色涂色•则有A:种不同的方法*综上•满足题意的总的涂色方抵数为A*十QA善十GA舟十兀=4 080(种人1.B解析:根据甲、乙的位置要求分类解决,分两类.第一类:甲在左端-有Ai = 5X4X3X2Xl=12O(种)方法帛第二类’乙在最左端,有4A;=4X4X紡X2X 1 = 96(种)方袪* 所以殳有120 + 96 = 21仇种}方{£■2.C3.B解析:因为同类节目不相邻•故可用插空袪求解.先安排小品节目和相声节目•然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种广小品1,小品2,相声杆小品1•相声,小品旷和•相声,小品X小品2”■对干第一种悄况,形式为小品1,歌舞1 •小品2*□ +相声有AiC^A| = 36(种)安排方法*同理*第一种情况也有恥种安排方法•对于第二种悄况•三个节冃形成4个空. 梵形式为轨匚L小品■口,相声.□•小品2・口”・有AjAj = 48(种)安排方法•故共有范十36+48=120(种)安排方氐。
高考数学一轮复习学案:10.1 分类加法计数原理与分步乘法计数原理(含答案)
高考数学一轮复习学案:10.1 分类加法计数原理与分步乘法计数原理(含答案)10.1分类加法计数原理与分步乘法计数原理分类加法计数原理与分步乘法计数原理最新考纲考情考向分析1.理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”.2.能利用两个原理解决一些简单的实际问题.以理解和应用两个基本原理为主,常以实际问题为载体,突出分类讨论思想,注重分析问题.解决问题能力的考查,常与排列.组合知识交汇;两个计数原理在高考中单独命题较少,一般是与排列组合结合进行考查;两个计数原理的考查一般以选择.填空题的形式出现.1分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有Nmn种不同的方法2分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有Nmn种不同的方法3分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1在分类加法计数原理中,两类不同方案中的方法可以相同2在分类加法计数原理中,每类方案中的方法都能直接完成这件事3在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成4如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法mii1,2,3,,n,那么完成这件事共有m1m2m3mn 种方法5在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的题组二教材改编2P12A组T5已知集合M1,2,3,N4,5,6,7,从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一.第二象限内不同的点的个数是A12B8C6D4答案C解析分两步第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一.二象限内不同点的个数是326,故选C.3P10A组T4已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为A16B13C12D10答案C解析将4个门编号_________为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,共有不同走法3412种题组三易错自纠4从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为A24B18C12D6答案B解析分两类情况讨论第1类,奇偶奇,个位有3种选择,位有2种选择,百位有2种选择,共有32212个奇数;第2类,偶奇奇,个位有3种选择,位有2种选择,百位有1种选择,共有3216个奇数根据分类加法计数原理知,共有12618个奇数5.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有A24种B30种C36种D48种答案D解析需要先给C块着色,有4种方法;再给A块着色,有3种方法;再给B块着色,有2种方法;最后给D块着色,有2种方法,由分步乘法计数原理知,共有432248种着色方法6如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个答案12解析由题意知本题是一个分类计数问题当组成的数字有三个1,三个2,三个3,三个4时共有4种情况当有三个1时2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时2221,3331,4441,有3种,根据分类加法计数原理可知,共有12种结果题型一题型一分类加法计数原理的应用分类加法计数原理的应用1xx郑州质检满足a,b1,0,1,2,且关于x 的方程ax22xb0有实数解的有序数对a,b的个数为A14B13C12D10答案B解析当a0时,关于x的方程为2xb0,此时有序数对0,1,0,0,0,1,0,2均满足要求;当a0时,44ab0,ab1,此时满足要求的有序数对为1,1,1,0,1,1,1,2,1,1,1,0,1,1,2,1,2,0综上,满足要求的有序数对共有13个,故选B.2xx济南模拟如果一个三位正整数如“a1a2a3”满足a1a3,则称这样的三位数为凸数如120,343,275等,那么所有凸数的个数为A240B204C729D920答案A解析若a22,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个若a23,则百位数字有两种选择,个位数字有三种选择,则“凸数”有236个若a24,满足条件的“凸数”有3412个,,若a29,满足条件的“凸数”有8972个所以所有凸数有26122030425672240个3xx全国定义“规范01数列”an如下an共有2m项,其中m项为0,m项为1,且对任意k2m,a1,a2,,ak中0的个数不少于1的个数若m4,则不同的“规范01数列”共有A18个B16个C14个D12个答案C解析第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A24个,其中110100,110010,110001,101100不符合题意;三个1都不在一起时有C34个,共28414个思维升华分类标准是运用分类加法计数原理的难点所在,应抓住题目中的【关键词】,关键元素,关键位置1根据题目特点恰当选择一个分类标准2分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复3分类时除了不能交叉重复外,还不能有遗漏题型二题型二分步乘法计数原理的应用分步乘法计数原理的应用典例1xx 全国如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A24B18C12D9答案B解析从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E 点到G点的最短路径有6318条,故选B.2有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法答案120解析每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有654120种引申探究1本例2中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36729种2本例2中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63216种思维升华1利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事2分步必须满足两个条件一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成跟踪训练一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同除交汇点O外的游览线路有______种用数字作答答案48解析根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法由分步乘法计数原理知,共有64248种不同游览线路题型三题型三两个计数原理的综合应用两个计数原理的综合应用命题点1与数字有关的问题典例xx天津用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个用数字作答答案1080解析当组成四位数的数字中有一个偶数时,四位数的个数为C35C14A44960.当组成四位数的数字中不含偶数时,四位数的个数为A45120.故符合题意的四位数一共有9601201080个命题点2涂色.种植问题典例xx济南质检如图,用4种不同的颜色对图中5个区域涂色4种颜色全部使用,要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________答案96解析按区域1与3是否同色分类1区域1与3同色先涂区域1与3有4种方法,再涂区域2,4,5还有3种颜色有A33种方法区域1与3同色时,共有4A3324种方法2区域1与3不同色第一步涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有1种方法,第四步涂区域5有3种方法共有A2421372种方法故由分类加法计数原理可知,不同的涂色种数为247296.命题点3与几何有关的问题典例1如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是A48B18C24D36答案D解析第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有21224个;第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个所以正方体中“正交线面对”共有241236个2如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是A60B48C36D24答案B解析长方体的6个表面构成的“平行线面组”的个数为6636,另含4个顶点的6个面非表面构成的“平行线面组”的个数为6212,故符合条件的“平行线面组”的个数是361248.思维升华利用两个计数原理解决应用问题的一般思路1弄清完成一件事是做什么2确定是先分类后分步,还是先分步后分类3弄清分步.分类的标准是什么4利用两个计数原理求解跟踪训练1xx黄山模拟建造一个花坛,花坛分为4个部分如图现要栽种4种不同颜色的花不一定4种颜色都栽种,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有________种用数字作答1234答案108解析先栽第一块地,有4种情况,然后栽第二块地,有3种情况,第三块地有3种情况,第四块地有3种情况,则共有4333108种不同的栽种方法2用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有A144个B120个C96个D72个答案B解析由题意,首位数字只能是4,5,若万位是5,则有3A3472个;若万位是4,则有2A3448个,故比40000大的偶数共有7248120个故选B.利用两个基本原理解决计数问题典例1把3封信投到4个信箱,所有可能的投法共有A24种B4种C43种D34种2某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4次,轮船有3次,问此人的走法可有________种错解展示解析1因为每个信箱有三种投信方法,共4个信箱,所以共有333334种投法2乘火车有4种方法,坐轮船有3种方法,共有3412种方法错误答案1D212现场纠错解析1第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法2因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法共有437种答案1C27纠错心得1应用计数原理解题首先要搞清是分类还是分步2把握完成一件事情的标准,如典例1没有考虑每封信只能投在一个信箱中,导致错误。
高三数学一轮复习两个计数原理
分析和解决一些简单的实际问题.
1.分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m种 不同的方法,在第2类方案中有n种不同的方法.那 么完成这件事共有N= m+n 种不同的方法.
2.分步乘法计数原理 完成一件事需要两个步骤,做第1步有m种不同的方 法,做第2步有n种不同的方法,那么完成这件事共有 N= m×n 种不同的方法.
在所有的两位数中,个位数字大于十位数字的两 位数共有多少个? [思路点拨]
[课堂笔记] 法一:根据题意,将十位数上的数字分别是 1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的 两位数分别是8个,7个,6个,5个,4个,3个,2个,1 个. 由分类计数原理知:符合题意的两位数的个数共有: 8+7+6+5+4+3+2+1=36(个). 故共有36个.
解:(1)分四类,第一类,从一班学生中选1人,有7种选法; 第二类,从二班学生中选1人,有8种选法; 第三类,从三班学生中选1人,有9种选法; 第四类,从四班学生中选1人,有10种选法, 所以,共有不同的选法N=7+8+9+10=34(种). (2)分四步,第一、二、三、四步分别从一、二、三、四班学 生中选一人任组长,所以共有不同的选法 N=7×8×9×10=5 040(种).
第二类是用2做结尾的比2 000大的4位偶数,它可以分三 步去完成: 第一步,选取千位上的数字,除去2,1,0只有3个数字可以 选择,有3种选法; 第二步,选取百位上的数字,在去掉已经确定的首尾两 数字之后,还有4个数字可供选择,有4种选法;
第三步,选取十位上的数字,还有3种选法. 依据分步计数原理,这类数的个数有3×4×3=36个; 第三类是用4做结尾的比2 000大的4位偶数,其步骤同第二类. 对以上三类结论用分类计数原理,可得所求无重复数字的比 2 000大的4位偶数有4×4×3+3×4×3+3×4×3=120个.
高考数学第一轮复习_分类分步计数原理(例题解析含答案)
分类加法计数原理与分步乘法计数原理基础梳理1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事情共有N=m1×m2×…×m n种不同的方法.两个原理分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”.而分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.双基自测1.(人教A版教材习题改编)由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有().A.238个B.232个C.174个D.168个解析可用排除法由0,1,2,3可组成的四位数共有3×43=192(个),其中无重复的数字的四位数共有3A33=18(个),故共有192-18=174(个).答案 C2.(2010·广州模拟)已知集合A={1,2,3,4},B={5,6,7},C={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合,则一共可以组成多少个集合().A.24个B.36个C.26个D.27个解析C14C13+C14C12+C13C12=26,故选C.答案 C3.(2012·滨州调研)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有().A.6种B.12种C.24种D.30种解析分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种),故选C.4.(2010·湖南)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为().A.10 B.11 C.12 D.15解析若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C34;若恰有2个位置上的数字不同的信息个数为C24,由分类计数原理知满足条件的信息个数为1+C34+C24=11.5.某电子元件是由3个电阻组成的回路,其中有4个焊点A、B、C、D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有________种.解析法一当线路不通时焊点脱落的可能情况共有2×2×2×2-1=15(种).法二恰有i个焊点脱落的可能情况为C i4(i=1,2,3,4)种,由分类计数原理,当电路不通时焊点脱落的可能情况共C14+C24+C34+C44=15(种).考向一分类加法计数原理【例1】►(2011·全国)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有().A.4种B.10种C.18种D.20种[审题视点] 由于是两类不同的书本,故用分类加法计数原理.解析赠送一本画册,3本集邮册,共4种方法;赠送2本画册,2本集邮册共C24种方法,由分类计数原理知不同的赠送方法共4+C24=10(种).【训练1】如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个);第二类,有两条公共边的三角形共有8(个).由分类加法计数原理知,共有32+8=40(个).考向二分步乘法计数原理【例2】►(2011·北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答).[审题视点] 组成这个四位数须分4步完成,故用分步乘法计数原理.解析法一用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,因此满足条件的四位数共有16-2=14(个).法二满足条件的四位数可分为三类:第一类含有一个2,三个3,共有4个;第二类含有三个2,一个3共有4个;第三类含有二个2,二个3共有C24=6(个),因此满足条件的四位数共有2×4+C24=14(个).考向三涂色问题【例3】►如图,用5种不同的颜色给图中A、B、C、D四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,求有多少种不同的涂色方法?[审题视点] 根据乘法原理逐块涂色,要注意在不相邻的区域内可使用同一种颜色.解法一如题图分四个步骤来完成涂色这件事:涂A有5种涂法;涂B有4种方法;涂C有3种方法;涂D有3种方法(还可以使用涂A的颜色).根据分步计数原理共有5×4×3×3=180种涂色方法.法二由于A、B、C两两相邻,因此三个区域的颜色互不相同,共有A35=60种涂法;又D 与B、C相邻、因此D有3种涂法;由分步计数原理知共有60×3=180种涂法.【训练3】如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.解法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.由题设,四棱锥S-ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60种染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).法二以S、A、B、C、D顺序分步染色第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).规范解答20——如何解决涂色问题【问题研究】涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点. 【解决方案】涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.【示例】►(本小题满分12分)用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?[解答示范] 如图所示,将4,第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.(2分)①当第2个、第3个小方格涂不同颜色时,有A24=12种不同的涂法,第4个小方格有3种不同的涂法.由分步计数原理可知,有5×12×3=180种不同的涂法;(6分)②当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻西格不同色,因此,第4个小方格也有4种不同的涂法,由分步计数原理可知.有5×4×4=80种不同的涂法.由分类加法计数原理可得,共有180+80=260种不同的涂法.(12分)。
分类加法计数原理与分步乘法计数原理
自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理
北师大版高三数学(理)一轮复习《分类加法计数原理与分步乘法计数原理》课件
(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有
6种选法,第二个项目有5种选法,第三个项目只有4种选法,根据分步乘法
计数原理,可得不同的报名方法共有6×5×4=120种.
(3)每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参
赛,根据分步乘法计数原理,可得不同的报名方法共有63=216种.
关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分
步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都
完成了,这件事才算完成.
第十一章
11.1 分类加法计数原理与分步乘法计数原理
考纲要求
知识梳理
双双击击自自测测
核心考点
学科素养
-5-
12345
1.下列结论正确的打“√”,错误的打“×”.
考纲要求
知识梳理
双击自测
核核心心考考点点
学科素养
考点1
考点2
考点3 知识方法 易错易混
(2)如图,从A到O有
种不同的走法(不重复过一点).
-15-
关闭
分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O 和A→C→O 2种不同的走法;第三类,中间过两个点,有A→B→C→O和 A→C→B→O 2种不同的走法,由分类加法计数原理可得共有1+2+2=5种 关闭 不5 同的走法.
同的方法mi(i=1,2,3,…,n),那么完成这件事共有m1m2m3…mn种方法. (√ )
第十一章
11.1 分类加法计数原理与分步乘法计数原理
考纲要求
知识梳理
双双击击自自测测
核心考点
学科素养
-6-
12345
高三数学人教版A版数学(理)高考一轮复习试题:9.1分类加法计数原理与分步乘法计数原理Word版含答案
第一节分类加法计数原理与分步乘法计数原理两个原理分类加法计数原理、分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.知识点两个原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.易误提醒(1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.(2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步与步之间是相关联的.[自测练习]1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有() A.30 B.20 C.10 D.6解析:从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.答案:D2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.279解析:0,1,2…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).答案:B考点一分类加法计数原理|1.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同选法的种数是()A.20B.16C.10 D.6解析:当a当组长时,则共有1×4=4种选法;当a不当组长时,又因为a也不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.答案:B2.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析:法一:设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).法二:班级按a,b,c,d的顺序依次排列,为避免重复或遗漏现象,教师的监考顺序可用“树形图”表示如下:∴共有9种不同的监考方法.答案:B3.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A.6种B.12种C.18种D.20种解析:分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C23=6(种)情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C24=12(种)情形.所有可能出现的情形共有2+6+12=20(种).答案:D利用加法原理解决问题时的注意点(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事件的任何一种方法必须属于某一类,不能重复.考点二分步乘法原理|有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这项任务,不同的选法有()A.1 260种B.2 025种C.2 520种D.5 040种[解析]第一步,从10人中选派2人承担任务甲,有C210种选派方法;第二步,从余下的8人中选派1人承担任务乙,有C18种选派方法;第三步,再从余下的7人中选派1人承担任务丙,有C17种选派方法.根据分步乘法计数原理,知选法为C210·C18·C17=2 520种.[答案] C利用分步乘法计数原理解决问题时应注意(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c 的取法有2种,由分步乘法计数原理知共有3×3×2=18个二次函数.若二次函数为偶函数,则b =0,同上可知共有3×2=6个偶函数.答案:18 6考点三两个原理的应用|两个原理的应用类型主要有:1.涂色问题.2.几何问题.3.集合问题.探究一涂色问题1.(2015·湖南十二校联考)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.解析:第一步,从红、黄、蓝三种颜色中任选一种去涂标号为“1、5、9”的小正方形,涂法有3种;第二步,涂标号为“2、3、6”的小正方形,若“2、6”同色,涂法有2×2种,若“2、6”不同色,涂法有2×1种;第三步:涂标号为“4、7、8”的小正方形,涂法同涂标号为“2、3、6”的小正方形的方法一样.因此符合条件的所有涂法共有3×(2×2+2×1)×(2×2+2×1)=108(种).答案:108探究二几何问题2.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是() A.60B.48C.36 D.24解析:长方体的6个表面构成的“平行线面组”有6×6=36个,6个对角面构成的“平行线面组”有6×2=12个,共有36+12=48个,故选B.答案:B探究三集合问题3.(2015·保定市高三调研考试)已知集合M={1,2,3,4},集合A,B为集合M的非空子集.若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有______个.解析:当A={1}时,B有23-1种情况,当A={2}时,B有22-1种情况,当A={3}时,B有1种情况,当A={1,2}时,B有22-1种情况,当A={1,3},{2,3},{1,2,3}时,B均有1种情况,所以满足题意的“子集对”共有7+3+1+3+3=17个.答案:17用两个计数原理解决计数问题时,关键是明确需要分类还是分步(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成了任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析.21.分类不当致误【典例】(2016·沈阳模拟)一生产过程有四道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有________种.[解析]按甲先分类,再分步①若甲在第一道工序,则第四道工序只能是丙,其余两道工序的安排方法有4×3=12种,②若乙在第一道工序,则第四道工序从甲、丙两人中选一人.有2种方法,其余两道工序有4×3=12种方法,所以共有12×2=24种方法.综上可知,共有的安排方法有12+24=36种.[答案]36[易错点评]本题解题时分类不当易致误,分类时可按甲在第一道工序与乙在第一道工序分类.[防范措施]利用两个原理解题时,关键是根据要完成的事件恰当地选择唯一标准进行分类,切勿标准不统一,导致多解或少解,从而失误.[跟踪练习]如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.解析:分两类:①有一条公共边的三角形共有8×4=32(个);②有两条公共边的三角形共有8个.故共有32+8=40(个).答案:40A组考点能力演练1.如果把个位数是1,且恰好有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有()A.9个B.3个C.12个D.6个解析:当重复数字是1时,有C13·C13;当重复数字不是1时,有C13种.由分类加法计数原理,得满足条件的“好数”有C13·C13+C13=12个.答案:C2.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2,2,0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计:3+6+3+3=15个.答案:B3.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52解析:在8个数中任取2个不同的数共有8×7=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52(个).答案:D4.(2015·辽宁五校联考)甲、乙、丙三位志愿者安排在周一至周五参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方案共有() A.20种B.30种C.40种D.60种解析:可将安排方案分为三类:①甲排在周一,共有A24种排法;②甲排在周二,共有A23种排法;③甲排在周三,共有A22种排法,故不同的安排方案共有A24+A23+A22=20种.故选A.答案:A5.从集合{1,2,3,4,…,10}中,选出5个数组成的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个解析:先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共可组成2×2×2×2×2=32(个).答案:A6.从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是________.解析:从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法,故所求奇数的个数为3×3×2=18.答案:187.如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有________种.(用数字作答)解析:从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D有4种涂色方法.由分步乘法计数原理可知,共有6×5×4×4=480(种)涂色方法.答案:4808.形如45132的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为________.解析:由题意可得,十位和千位只能是4、5或者3、5.若十位和千位排4、5,则其他位置任意排1、2、3,则这样的数有A22A33=12(个);若十位和千位排5、3,这时4只能排在5的一边且不能和其他数字相邻,1、2在其余位置上任意排列,则这样的数有A22A22=4(个),综上,共有16个.答案:169.标号为A,B,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C 袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法?(2)若取出的两个球颜色相同,有多少种取法?解析:(1)若两个球颜色不同,则应在A,B袋中各取一个或A,C袋中各取一个或B,C袋中各取一个.∴应有1×2+1×3+2×3=11(种).(2)若两个球颜色相同,则应在B或C袋中取出2个.∴应有1+3=4(种).10.现有4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有多少种?解:先给最上面的一块着色,有4种方法,再给中间左边一块着色,有3种方法,再给中间右边一块着色,有2种方法,最后再给下面一块着色,有2种方法,根据分步乘法计数原理,共有4×3×2×2=48种方法.B组高考题型专练1.(2014·高考大纲全国卷)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种解析:从中选出2名男医生的选法有C26=15种,从中选出1名女医生的选法有C15=5种,所以不同的选法共有15×5=75种,故选C.答案:C2.(2014·高考广东卷)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 B.90C.120 D.130解析:设t=|x1|+|x2|+|x3|+|x4|+|x5|,t=1说明x1,x2,x3,x4,x5中有一个为-1或1,其他为0,所以有2·C15=10个元素满足t=1;t=2说明x1,x2,x3,x4,x5中有两个为-1或1,其他为0,所以有C25×2×2=40个元素满足t=2;t=3说明x1,x2,x3,x4,x5中有三个为-1或1,其他为0,所以有C35×2×2×2=80个元素满足t=3,从而,共有10+40+80=130个元素满足1≤t≤3.故选D.答案:D3.(2013·高考重庆卷)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).解析:按每科选派人数分3、1、1和2、2、1两类.当选派人数为3、1、1时,有3类,共有C33C14C15+C13C34C15+C13C14C35=200(种).当选派人数为2、2、1时,有3类,共有C23C24C15+C23C14C25+C13C24C25=390(种).故共有590种.答案:590。
分类加法计数原理分布乘法计数原理
分类加法计数原理和分布乘法计数原理一、回顾教材·知识梳理分类加法计数原理:完成一件事有n 类不同方案,在第1类方案中有m 1种不同的方法,在第2类方案中有m 2种不同的方法,.....在第n 类方案中有m n 种不同的方法,那么完成这件事共有 种不同的方法.(对应微体验1、2)分布乘法计数原理:完成一件事需要n 个步骤,做第1步有N 1种不同的方法,做第2步有N 2种不同的方法,…做第n 步有N O 种不同的方法,那么完成这件事共有 种不同的方法.(对应微体验3、4)分类加法计数原理 分步乘法计数原理 联系都是完成一件事的不同方法种数的问题 区别 1、 分类2、 每类办法都是独立完成,并且只需一种方法就可完成这件事。
3、 互斥且独立1、 分步2、 “步步相依”即各个步骤是相互依存的,必须每步都完成了,才算做完这件事 注意分类要“不重不漏” 分步要“步骤完整” 二、基础检测·查漏补缺微体验1:用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码? 微体验2:在填写高考志愿时,一名高中毕业生了解到,",#两所大学各有一些自己感兴趣的强项专业,如表:问1:如果这名同学只能选一个专业,那么他共有多少种选择?问2:在微体验2中,如果数学也是A 大学的强项专业,则A 大学共有6个专业可以选择,B 大学共有4个专业可以选择,那么用分类加法计数原理,得到这名同学可能的专业选择种数为6+4=10.这种算法有什么问题?微体验3:用前6个大写的英文字母和1~9个阿拉伯数字,以"1,"2…"9,#1,#2,…的方式给教室里的一个座位编号,总共能编出多少种不同的号码?微体验4:某班有男生30名,女生24名,从中任选男生和女生各1名代表班级参加比赛,共有多少种不同的选法?三、考点分类·全面突破考点一:分类加法计数原理的应用例1:在所有的两位数中,个位数字大于十位数字的两位数的个数为( )变式1:设a ,b ,c∈{1,2,3,4},若以a ,b ,c 为三条边的长构成一个等腰三角形,则这样的三角形有 个。
分类加法计数原理与分步乘法计数原理
分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法.分类加法计数原理的理解分类加法计数原理中的“完成一件事有两个不同方案”,是指完成这件事的所有方法可以分为两类,即任何一类中的任何一种方法都可以完成任务,两类中没有相同的方法,且完成这件事的任何一种方法都在某一类中.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.分步乘法计数原理的理解分步乘法计数原理中的“完成一件事需要两个步骤”,是指完成这件事的任何一种方法,都需要分成两个步骤.在每一个步骤中任取一种方法,然后相继完成这两个步骤就能完成这件事,即各个步骤是相互依存的,每个步骤都要做完才能完成这件事.判断正误(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(4)在分步乘法计数原理中,事情若是分两步完成的,那么其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.( )答案:(1)×(2)√(3)√(4)√某校开设A类选修课3门,B类选修课4门,若要求从两类课程中选一门,则不同的选法共有( )A.3种B.4种C.7种D.12种答案:C已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是( ) A.1 B.3C.6 D.9答案:D某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有________种.答案:3加工某个零件分三道工序,第一道工序有5人可以选择,第二道工序有6人可以选择,第三道工序有4人可以选择,每两道工序中可供选择的人各不相同,如果从中选3人每人做一道工序,则选法有________种.答案:120探究点1 分类加法计数原理[学生用书P2]在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【解】法一:按十位上的数字分别是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别有8个、7个、6个、5个、4个、3个、2个、1个.由分类加法计数原理知,满足条件的两位数共有8+7+6+5+4+3+2+1=36(个).法二:按个位上的数字分别是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个.由分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).[变问法]在本例条件下,个位数字小于十位数字且为偶数的两位数有多少个?解:当个位数字是8时,十位数字取9,只有1个.当个位数字是6时,十位数字可取7,8,9,共3个.当个位数字是4时,十位数字可取5,6,7,8,9,共5个.同理可知,当个位数字是2时,共7个,当个位数字是0时,共9个.由分类加法计数原理知,符合条件的两位数共有1+3+5+7+9=25(个).利用分类加法计数原理计数时的解题流程某校高三共有三个班,各班人数如下表:男生人数女生人数总人数高三(1)班30 20 50 高三(2)班30 30 60 高三(3)班 35 20 55(1)(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?解:(1)从每个班选1名学生任学生会主席,共有3类不同的方案:第1类,从高三(1)班中选出1名学生,有50种不同的选法;第2类,从高三(2)班中选出1名学生,有60种不同的选法;第3类,从高三(3)班中选出1名学生,有55种不同的选法.根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165(种)不同的选法.(2)从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:第1类,从高三(1)班男生中选出1名学生,有30种不同的选法;第2类,从高三(2)班男生中选出1名学生,有30种不同的选法;第3类,从高三(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80(种)不同的选法.探究点2 分步乘法计数原理[学生用书P2]从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为二次函数y =ax 2+bx +c 的系数a ,b ,c ,则可以组成抛物线的条数为多少?【解】 由题意知a 不能为0,故a 的值有5种选法; b 的值也有5种选法;c 的值有4种选法.由分步乘法计数原理得:5×5×4=100(条).1.[变问法]若本例中的二次函数图象开口向下,则可以组成多少条抛物线?解:需分三步完成,第一步确定a 有2种方法,第二步确定b 有5种方法,第三步确定c 有4种方法,故可组成2×5×4=40条抛物线.2.[变条件、变问法]若从本例的六个数字中选2个作为椭圆x 2m +y 2n=1的参数m ,n ,则可以组成椭圆的个数是多少?解:据条件知m >0,n >0,且m ≠n ,故需分两步完成,第一步确定m ,有3种方法,第二步确定n ,有2种方法,故确定椭圆的个数为3×2=6(个).利用分步乘法计数原理计数时的解题流程从1,2,3,4中选三个数字,组成无重复数字的整数,则满足下列条件的数有多少个?(1)三位数;(2)三位偶数.解:(1)分三步:第1步,排个位,有4种方法;第2步,排十位,从剩下的3个数字中选1个,有3种方法;第3步,排百位,从剩下的2个数字中选1个,有2种方法.故共有4×3×2=24个满足要求的三位数.(2)第1步,排个位,只能从2,4中选1个,有2种方法;第2步,排十位,从剩下的3个数中选1个,有3种方法;第3步,排百位,只能从剩下的2个数字中选1个,有2种方法.故共有2×3×2=12个满足要求的三位偶数.探究点3 两个计数原理的综合应用[学生用书P3]甲同学有5本不同的数学书、4本不同的物理书、3本不同的化学书,现在乙同学向甲同学借书,(1)若借1本书,则有多少种借法?(2)若每科各借1本书,则有多少种借法?(3)若任借2本不同学科的书,则有多少种借法?【解】(1)需完成的事情是“借1本书”,所以借给乙数学、物理、化学书中的任何1本,都可以完成这件事情.根据分类加法计数原理,共有5+4+3=12种借法.(2)需完成的事情是“每科各借1本书”,意味着要借给乙3本书,只有从数学、物理、化学三科中各借1本,才能完成这件事情.根据分步乘法计数原理,共有5×4×3=60种借法.(3)需完成的事情是“从三种学科的书中借2本不同学科的书”,可分三类:第1类,借1本数学书和1本物理书,只有2本书都借,事情才能完成,根据分步乘法计数原理,有5×4=20种借法;第2类,借1本数学书和1本化学书,有5×3=15种借法;第3类,借1本物理书和1本化学书,有4×3=12种借法.根据分类加法计数原理,共有20+15+12=47种借法.利用两个计数原理的解题策略用两个计数原理解决具体问题时,首先,要分清是“分类”还是“分步”,区分分类还是分步的关键是看这种方法能否完成这件事情.其次,要清楚“分类”或“分步”的具体标准,在“分类”时要遵循“不重不漏”的原则,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性;有些题目中“分类”与“分步”同时进行,即“先分类后分步”或“先分步后分类”.现有3名医生、5名护士、2名麻醉师.(1)从中选派1名去参加外出学习,有多少种不同的选法?(2)从这些人中选出1名医生、1名护士和1名麻醉师组成1个医疗小组,有多少种不同的选法?解:(1)分三类:第一类,选出的是医生,有3种选法;第二类,选出的是护士,有5种选法;第三类,选出的是麻醉师,有2种选法.根据分类加法计数原理,共有3+5+2=10(种)选法.(2)分三步:第一步,选1名医生,有3种选法;第二步,选1名护士,有5种选法;第三步,选1名麻醉师,有2种选法.根据分步乘法计数原理知,共有3×5×2=30(种)选法.1.某一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为( )A.8 B.15C.18 D.30解析:选A.共有5+3=8种不同的选法.2.已知集合A={1,2},B={3,4,5},从集合A、B中先后各取一个元素构成平面直角坐标系中的点的横、纵坐标,则可确定的不同点的个数为( )A.5 B.6C.10 D.12解析:选B.完成这件事可分两步:第一步,从集合A中任选一个元素,有2种不同的方法;第二步,从集合B中任选一个元素,有3种不同的方法.由分步乘法计数原理得,一共有2×3=6种不同的方法.3.体育场南侧有4个大门,北侧有3个大门,某人到该体育场晨练,则他进、出门的方案有( )A.12种B.7种C.14种D.49种解析:选D.要完成进、出门这件事,需要分两步,第一步进体育场,第二步出体育场,第一步进门有4+3=7种方法;第二步出门也有4+3=7种方法,由分步乘法计数原理知进、出门的方案有7×7=49种.4.现有高一学生50人,高二学生42人,高三学生30人,组成冬令营.(1)若从中选1人作总负责人,共有多少种不同的选法?(2)若每年级各选1名负责人,共有多少种不同的选法?(3)若从中推选两人作为中心发言人,要求这两人要来自不同的年级,则有多少种选法?解:(1)从高一选1人作总负责人有50种选法;从高二选1人作总负责人有42种选法;从高三选1人作总负责人有30种选法.由分类加法计数原理,可知共有50+42+30=122种选法.(2)从高一选1名负责人有50种选法;从高二选1名负责人有42种选法;从高三选1名负责人有30种选法.由分步乘法计数原理,可知共有50×42×30=63 000种选法.(3)①高一和高二各选1人作中心发言人,有50×42=2 100 种选法;②高二和高三各选1人作中心发言人,有42×30=1 260种选法;③高一和高三各选1人作中心发言人,有50×30=1 500种选法.故共有2 100+1 260+1 500=4 860种选法.[A 基础达标]1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,不同的选法种数是( )A.5 B.4C.9 D.20解析:选C.由分类加法计数原理求解,5+4=9(种).故选C.2.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系中第一、二象限不同点的个数是( )A.18 B.16C.14 D.10解析:选C.分两类:第一类M中取横坐标,N中取纵坐标,共有3×2=6(个)第一、二象限的点;第二类M中取纵坐标,N中取横坐标,共有2×4=8(个)第一、二象限的点.综上可知,共有6+8=14(个)不同的点.3.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A.81 B.64C.48 D.24解析:选A.每个同学都有3种选择,所以不同选法共有34=81(种),故选A.4.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是( )A.15 B.12C.5 D.4解析:选A.分情况讨论:①当x=1时,y=0,1,2,3,4,5,有6种情况;②当x=2时,y=0,1,2,3,4,有5种情况;③当x=3时,y=0,1,2,3,有4种情况.由分类加法计数原理可得,满足条件的有序自然数对(x,y)的个数是6+5+4=15.5.十字路口来往的车辆,如果不允许回头,则不同的行车路线有( )A.24种B.16种C.12种D.10种解析:选C.完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.6.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C中有且只有一个元素时,C的情况有________种.解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).答案:77.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有________种.解析:小张的报名方法有2种,其他3位同学各有3种,所以由分步乘法计数原理知共有2×3×3×3=54种不同的报名方法.答案:548.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.解析:若A或B中有一个为零时,有2条;当AB≠0时,有5×4=20条,则共有20+2=22(条),即所求的不同的直线共有22条.答案:229.(2018·云南丽江测试)现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).10.(1)如图,在由电键组A与B所组成的并联电路中,要接通电源且仅闭合其中一个电键,使电灯C发光的方法有多少种?(2)如图,由电键组A,B组成的电路中,要闭合两个电键接通电源,使电灯C发光的方法有几种?解:(1)只要闭合图中的任一电键,电灯即发光.由于在电键组A中有2个电键,电键组B 中有3个电键,且分别并联,应用分类加法计数原理,所以共有2+3=5(种)接通电源使电灯发光的方法.(2)只有在闭合A组中2个电键中的一个之后,再闭合B组中3个电键中的一个,才能使电灯的电源接通,电灯才能发光.根据分步乘法计数原理,共有2×3=6(种)不同的接通方法使电灯发光.[B 能力提升]11.(2018·郑州高二检测)从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为( )A.3 B.4C.6 D.8解析:选D.以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,所以所求的数列共有2×(2+1+1)=8(个).12.(2018·长沙高二检测)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13C.12 D.10解析:选B.对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.所以(a,b)的个数为4+9=13.故选B.13.已知集合M={-3,-2,-1,0,1,2},点P(a,b)表示平面上的点(a,b∈M).(1)点P可以表示平面上的多少个不同点?(2)点P可以表示平面上的多少个第二象限的点?(3)点P可以表示多少个不在直线y=x上的点?解:(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,点P可以表示平面上6×6=36(个)不同点.(2)根据条件,需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,点P 可以表示平面上3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,点P可以表示6×5=30(个)不在直线y=x上的点.14.(选做题)某节目中准备了两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑,分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400种结果.(2)幸运之星在乙箱中抽,同理有20×19×30=11 400种结果.因此共有不同结果17 400+11 400=28 800种.。
(完整版)分类加法计数原理与分步乘法计数原理例题
分类加法计数原理与分步乘法计数原理【基础知识】1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情,共有N =m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事情共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.[难点正本疑点清源]分类加法计数原理与分步乘法计数原理是解决排列、组合问题的基础并贯穿始终.分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”.而分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.【题型讲解】题型一分类加法计数原理的应用分类时,首先要根据问题的特点确定一个适合它的分类标准,然后在这个标准下进行分类;其次分类时要注意满足一个基本要求,就是完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?思维启迪:用分类加法计数原理.解 (1)完成这件事有三类方法第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三班任选一名学生共有55种选法,根据分类加法计数原理,任选一名学生任校学生会主席共有50+60+55=165种选法.(2)完成这件事有三类方法第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法.综上知,共有30+30+20=80种选法.例2 王刚同学衣服上左、右各有一个口袋,左边口袋装有30张英语单词卡片,右边口袋装有20张英语单词卡片,这些英语单词卡片都互不相同,问从两个口袋里任取一张英语单词卡片,有多少种不同的取法?[解析] 从口袋中任取一张英语单词卡片的方法分两类:第一类:从左边口袋取一张英语单词卡片有30种不同的取法;第二类:从右边口袋取一张英语单词卡片有20种不同的取法.根据分类加法计数原理,所以从口袋中任取一张英语单词卡片的方法种类为30+20=50(种). 例3 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?[分析] 该问题与计数有关,可考虑选用两个基本原理来计算,完成这件事,只要两位数的个位、十位确定了,这件事就算完成了,因此可考虑按十位上的数字情况或按个位上的数字情况进行分类.[解析] 解法一:按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分为8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数的个数共有8+7+6+5+4+3+2+1=36(个). 解法二:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理共有1+2+3+4+5+6+7+8=36(个).例4 方程x 2m +y 2n=1表示焦点在y 轴上的椭圆,其中m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},那么这样的椭圆有多少个?解 以m 的值为标准分类,分为五类.第一类:m =1时,使n >m ,n 有6种选择;第二类:m =2时,使n >m ,n 有5种选择;第三类:m =3时,使n >m ,n 有4种选择;第四类:m=4时,使n>m,n有3种选择;第五类:m=5时,使n>m,n有2种选择.∴共有6+5+4+3+2=20种方法,即有20个符合题意的椭圆.题型二分步乘法计数原理的应用探究提高利用分步乘法计数原理解决问题:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各个步骤都完成了才算完成这件事.例1已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数有多少个?[解析]圆方程由三个量a,b,r确定,a,b,r分别有3种,4种,2种选法,由分步乘法计数原理,表示不同的圆的个数为3×4×2=24(个).例1有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.思维启迪:可以根据报名过程,使用分步乘法计数原理.解(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).例1已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图像开口向上的二次函数.解(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx +c可以表示5×6×6=180(个)不同的二次函数.(2)y=ax2+bx+c图像的开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72(个)图像开口向上的二次函数.例1(1)有5本书全部借给3名学生,有多少种不同的借法?(2)有3名学生分配到某工厂的5个车间去参加社会实践,则有多少种不同分配方案?[解析](1)中要完成的事件是把5本书全部借给3名学生,可分5个步骤完成,每一步把一本书借出去,有3种不同的方法,根据分步乘法计数原理,共有N=3×3×3×3×3=35=243(种)不同的借法.(2)中要完成的事件是把3名学生分配到5个车间中,可分3个步骤完成,每一步分配一名学生,有5种不同的方法,根据分步乘法计数原理,共有N=5×5×5=53=125(种)不同的分配方案.题型三两个原理的综合应用例1一个三层书架的上层放有5本不同的数学书,中层放有3本不同的语文书,下层放有2本不同的英语书(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取三本书,其中数学书、语文书、英语书各一本,有多少种不同的取法?[解析](1)从书架上任取一本书,有三类方法:第一类方法:从书架上层任取一本数学书,有5种不同的方法;第二类方法:从书架中层任取一本语文书,有3种不同的方法;第三类方法:从书架下层任取一本英语书,有2种不同的方法.只要在书架上任意取出一本书,任务即完成,由分类加法计数原理知,不同的取法共有N=5+3+2=10(种).(2)从书架上任取三本书,其中数学书、语文书、英语书各一本,可以分成三个步骤完成:第一步:从书架上层取一本数学书,有5种不同的方法;第二步:从书架中层取一本语文书,有3种不同的方法;第三步:从书架下层取一本英语书,有2种不同的方法.由分步乘法计数原理知,不同的取法共有N=5×3×2=30(种).所以从书架上任取三本书,其中数学书、语文书、英语书各一本,共有30种不同的取法.例1一个科技小组中有4名女同学,5名男同学,从中任选一名同学参加学科竞赛,共有不同的选派方法________种;若从中任选一名女同学和一名男同学参加学科竞赛,共有不同的选派方法________种.[答案]920[解析]由分类加法计数原理得从中任选一名同学参加学科竞赛共5+4=9种,由分步乘法计数原理得从中任选一名女同学和一名男同学参加学科竞赛共5×4=20种.例1现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?[解析](1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法.根据分类加法计数原理共有5+2+7=14种不同的选法.(2)分为三步:国画、油画、水彩画各有5种、2种、7种不同的选法,根据分步乘法计数原理,共有5×2×7=70种不同的选法.(3)分为三类:第一类是一幅选自国画,一幅选自油画,由分步乘法计数原理知,有5×2=10种不同的选法.第二类是一幅选自国画,一幅选自水彩画,有5×7=35种不同的选法.第三类是一幅选自油画,一幅选自水彩画,有2×7=14种不同的选法,所以有10+35+14=59种不同的选法.例1有三只口袋装小球,一只装有5个白色小球,一只装有6个黑色小球,一只装有7个红色小球,若每次从中取两个不同颜色的小球,共有多少种不同的取法?[解析]分为三类:一类是取白球、黑球,有5×6=30种取法;一类是取白球、红球,有5×7=35种取法;一类是取黑球、红球,有6×7=42种取法.∴共有取法:30+35+42=107(种).例1如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.思维启迪:染色问题是常见的计数应用问题,可从选颜色、选顶点进行分类、分步,从不同角度解决问题.解方法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S—ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).方法二以S、A、B、C、D顺序分步染色.第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C 是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).方法三按所用颜色种数分类.第一类,5种颜色全用,共有A55种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法总数为A55+2×A45+A35=420(种).探究提高用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析.例1有一项活动,需在3名老师、8名男生和5名女生中选人参加.(1)若只需1人参加,有多少种不同选法?(2)若需老师、男生、女生各一人参加,有多少种不同的选法?(3)若需一名老师、一名学生参加,有多少种不同的选法?解(1)分三类:取老师有3种选法;取男生有8种选法;取女生有5种选法,故共有3+8+5=16种选法.(2)分三步:第一步选老师,第二步选男生,第三步选女生,故共有3×8×5=120种选法.(3)分两步:第一步选老师,第二步选学生.对第二步,又分为两类:第一类选男生,第二类选女生,故共有3×(8+5)=39种选法.对两个基本原理的特殊题型典例:(1)(5分)把3封信投到4个信箱,所有可能的投法共有() A.24种B.4种C.43种D.34种(2)(5分)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4趟,轮船有3次,问此人的走法可有________种.易错分析解决计数问题的基本策略是合理分类和分步,然后应用加法原理和乘法原理来计算.解决本题易出现的问题是完成一件事情的标准不清楚导致计算出现错误,对于(1),选择的标准不同,误认为每个信箱有三种选择,所以可能的投法有34种,没有注意....到一封信只能投在一个信箱中.............;对于(2),易混淆“类”与“步”,误认为到达乙地先坐火车后坐轮船,使用乘法原理计算.解析(1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.(2)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法可有4+3=7(种).答案(1)C(2)7温馨提醒(1)每封信只能投到一个信箱里,而每个信箱可以装1封信,也可以装2封信,其选择不是唯一的,所以应注意由信来选择信箱,每封信有4种选择.(2)在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什么.选择合理的标准处理事情,可以避免计数的重复或遗漏.用0,1,2,3,4,5可以组成多少个无重复数字的比2000大的四位奇数?[解析] 方法一:按末位是1,3,5分三类计数:第一类:末位是1,共有4×4×3=48个;第二类,末位是3的共有3×4×3=36个;第三类末位是5的共有3×4×3=36个,由分类加法计数原理知共有48+36+36=120(个).方法二:符合条件的数有3×4×4×3-2×4×3=120(个).3.从6人中选4人分别到巴黎,伦敦,悉尼,莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲,乙2个不去巴黎游览,则不同的选择方案共有()A.300种B.240种C.144种D.96种[答案] B[解析]能去巴黎的有4个人,依次去伦敦,悉尼,莫斯科的有5个人,4个人,3个人,故不同的选择方案为4×5×4×3=240(种).故选B.5.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有________种不同的播放方式.(结果用数值表示) [答案]48[解析]先安排首尾播放公益广告,共2种,再安排4种不同的商业广告共4×3×2×1=24种,由分步乘法计数原理得24×2=48种.方法与技巧1.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.混合问题一般是先分类再分步.3.分类时标准要明确,做到不重复不遗漏.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.失误与防范1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.1.(2011·大纲全国)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种答案 B解析依题意,就所剩余的一本画册进行分类计数:第一类,剩余的是一本画册,此时满足题意的赠送方法共有4种;第二类,剩余的是一本集邮册,此时满足题意的赠送方法共有C24=6(种).因此,满足题意的赠送方法共有4+6=10(种),选B.2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有________种.答案32解析每位同学有两种不同的报名方法,而且只有这5位同学全部报名结束,才算事件完成.所以共有2×2×2×2×2=32(种).3.教学大楼共有4层,每层都有东西两个楼梯,由一层到4层共有走法种数为() A.6B.23 C.42 D.44答案 B解析由一层到二层有2种选择,二层到三层有2种选择,三层到四层有2种选择,∴23=8.4.高三年级的三个班去甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种答案 C解析自由选择去四个工厂有43种方法,甲工厂不去,自由选择去乙、丙、丁三个工厂有33种方法,故不同的分配方案有43-33=37(种).5.有不同颜色的4件上衣与不同颜色的3件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是________.答案12解析由分步乘法计数原理,一条长裤与一件上衣配成一套,分两步,第一步选上衣有4种选法,第二步选长裤有3种选法,所以有4×3=12(种)选法.6.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当父母的血型中没有AB型时,子女的血型有可能是O型,若某人的血型是O型,则其父母血型的所有可能情况有()A.6种B.9种C.10种D.12种答案 B解析找出其父母血型的所有情况分二步完成,第一步找父亲的血型,依题意有3种;第二步找母亲的血型也有3种,由分步乘法计数原理得:其父母血型的所有可能情况有3×3=9种.7.现安排一份5天的工作值班表,每天有一个人值日,共有5个人,每个人都可以值多天或不值班,但相邻两天不能同一个人值班,则此值日表共有__________种不同的排法.答案 1 280解析完成一件事是安排值日表,因而需一天一天地排,用分步计数原理,分步进行:第一天有5种不同排法,第二天不能与第一天已排人的相同,所以有4种不同排法,依次类推,第三、四、五天都有4种不同排法,所以共有5×4×4×4×4=1 280种不同的排法.8.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,则大师赛共有________场比赛.答案16解析小组赛共有2C24场比赛;半决赛和决赛共有2+2=4(场)比赛;根据分类加法计数原理共有2C24+4=16(场)比赛.9.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为 ()A.42 B.30 C.20 D.12答案 A解析将新增的2个节目分别插入原定的5个节目中,插入第一个有6种插法,插入第2个时有7个空,共7种插法,所以共6×7=42(种).10.已知I={1,2,3},A、B是集合I的两个非空子集,且A中所有数的和大于B中所有数的和,则集合A、B共有()A.12对B.15对C.18对D.20对答案 D解析依题意,当A、B均有一个元素时,有3对;当B有一个元素,A有两个元素时,有8对;当B有一个元素,A有三个元素时,有3对;当B有两个元素,A有三个元素时,有3对;当A、B均有两个元素时,有3对;共20对,选择D.11.若从集合P到集合Q={a,b,c}所有的不同映射共有81个,则从集合Q到集合P所有的不同映射共有()A.32个B.27个C.81个D.64个答案 D解析可设P集合中元素的个数为x,由映射的定义以及分步乘法计数原理,可得P→Q 的映射种数为3x=81,可得x=4.反过来,可得Q→P的映射种数为43=64.12.有A、B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现在要从三名工人中选2名分别去操作以上车床,不同的选派方法有() A.6种B.5种C.4种D.3种答案 C解析若选甲、乙二人,包括甲操作A车床,乙操作B车床,或甲操作B车床,乙操作A车床,共有2种选派方法;若选甲、丙二人,则只有甲操作B车床,丙操作A车床这一种选派方法;若选乙、丙二人,则只有乙操作B车床,丙操作A车床这一种选派方法.故共2+1+1=4(种)不同的选派方法.故应选C.13.由1到200的自然数中,各数位上都不含8的有______个.答案162个解析一位数8个,两位数8×9=72个.3位数有9×9=81个,另外1个(即200),共有8+72+81+1=162个.14.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有________个.答案32解析和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两个数,即子集中的元素取自5个组中的一个数.而每个数的取法有2种,所以子集的个数为2×2×2×2×2=25=32.15.从正方体的6个表面中取3个面,使其中两个面没有公共点,则共有________种不同的取法.答案12解析分两步完成这件事,第一步取两个平行平面,有3种取法;第二步再取另外一个平面,有4种取法,由分步计数原理共有3×4=12种取法.16. 如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种答案 B解析分两类:第一类,涂三种颜色,先涂点A,D,E有A34种方法,再涂点B,C,F 有2种方法,故有A34×2=48(种)方法;第二类,涂四种颜色,先涂点A,D,E有A34种方法,再涂点B,C,F有3C13种方法,故共有A34·3C13=216(种)方法.由分类加法计数原理,共有48+216=264(种)不同的涂法.17.标号为A、B、C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法?(2)若取出的两个球颜色相同,有多少种取法?解析(1)若两个球颜色不同,则应在A、B袋中各取一个或A、C袋中各取一个,或B、C袋中各取一个.∴应有1×2+1×3+2×3=11种.(2)若两个球颜色相同,则应在B或C袋中取出2个.∴应有1+3=4种.18.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7个,B型血的共有9个,AB型血的有3个.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1个去献血,有多少种不同的选法?解析从O型血的人中选1个有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1个人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,这件“任选1人去献血”的事情已完成,所以由分类计数原理,共有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以用分步计数原理,共有28×7×9×3=5 292种不同的选法.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为() A.3 B.4 C.6 D.8答案 D解析以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9,共4个.把这四个数列顺序颠倒,又得到4个数列,故所求数列有8个.2.由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有() A.238个B.232个C.174个D.168个答案 C解析由0,1,2,3可组成的四位数共有3×43=192(个),其中无重复数字的四位数共有3A33=18(个),故共有192-18=174(个).3.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为() A.10 B.11 C.12 D.15答案 B解析方法一分0个相同、1个相同、2个相同讨论.。
一轮复习课时训练§12.1:分类加法计数原理与分步乘法计数原理
第十二章§1:分类加法计数原理与分步乘法计数原理(与一轮复习课件对应的课时训练)满分100,训练时间45钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.从集合{1,2,3,…,10}中,选出5个数组成子集,使得这5个数中任何两个数的和不等于11,则这样的子集共有A.10个B.16个C.20个D.32个2.某城市的电话号码由六位升为七位(首位数字均不为零),则该城市可增加的电话部数是A.9×8×7×6×5×4×3 B.8×96C.9×106 D.8.1×1063.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为A.324 B.328 C.360 D.6484.从正方体的8个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为A.56 B.52 C.48 D.405.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有A.6个B.9个C.18个D.36个二、填空题:本大题共3小题,每小题8分,共24分.6.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用数字作答)7.从集合U={a,b,c,d}的子集中选出4个不同的子集,需同时满足以下两个条件:(1)∅,U都要选出.(2)对选出的任意两个子集A和B,必有A⊆B或B⊆A.那么,共有________种不同的选法.8.某人有3种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各安装一个灯泡,要求同一条线段两端的灯泡不同色,则不同的安装方法共有________种.(用数字作答)三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分)某体育彩票规定,从01到36共36个号中抽出的7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把符合这种要求的号全买下,至少要花多少元钱?10.(本小题满分18分,(1)小问8分,(2)小问10分)有一个圆被两相交弦分成四块,现在用5种不同颜料给这四块涂色,要求共边两块颜色互异,每块只涂一色,共有多少种涂色方法?参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:先将数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6}.因为任何两个数的和不等于11,所以这5个数必须来自上面5组中的各一个,共可组成25=32个这样的子集.答案:D2.解析:电话号码是六位数字时,该城市可安装电话9×105部,同理升为七位数字时安装电话为9×106部.∴可增加的电话部数是9×106-9×105=8.1×106.答案:D3.解析:若组成没有重复数字的三位偶数,可分为两种情况:①当个位上是0时,共有9×8=72(种)情况;②当个位上是不为0的偶数时,共有4×8×8=256(种)情况.综上,共有72+256=328(种)情况.答案:B4.解析:从8个顶点中任选三个点组成三角形,有56个三角形.排除等边三角形8个(即每个顶点对应一个边长为2a的等边三角形,假设正方形边长为a).所以,总共有直角三角形56-8=48(个).答案:C5.解析:由题意知,1,2,3中必有某一个数字重复使用2次.第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.答案:C二、填空题:本大题共3小题,每小题8分,共24分.6.解析:可分两步解决.第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:第一步,先选学习委员有4种选法,第二步选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).答案:367.解析:将选法分成两类.第一类:其中一个是单元素集合,则另一集合为两个或三个元素且含有单元素集合中的元素,有C14×6=24种.第二类:其中一个是两个元素集合,则另一个是含有这两个元素的三元素集合,有C24×2 =12种.综上共有24+12=36(种).答案:368.解析:点A、B、C处安装三种颜色的灯泡共有3×2×1=6种不同的安装方法;三种颜色分别记作①、②、③,点A安装①色灯泡记作A①,则当A①,B②,C③时,对A1、B1、C1上安装灯泡有以下两种情况:故不同的安装方法共有6×2=12种.答案:12三、解答题:本大题共2小题,共36分.9.(本小题满分18分)解:第1步:从01到17中选3个连续号有15种选法;第2步:从19到29中选2个连续号有10种选法;第3步:从30到36中选1个号有7种选法.由分步乘法计数原理可知:满足要求的注数共有15×10×7=1 050注,故至少要花1 050×2=2 100元.10.(本小题满分18分)解:如图所示,分别用a,b,c,d表示这四块区域,a与c可同色也可不同色,可先考虑给a,c两块涂色,可分两类:①给a,c涂同种颜色共5种涂法,再给b涂色有4种涂法,最后给d涂色也有4种涂法.由分步乘法计数原理知,此时共有5×4×4=80种涂法.②给a,c涂不同颜色共有5×4=20种涂法,再给b涂色有3种涂法,最后给d涂色也有3种涂法,此时共有20×3×3=180种涂法.故由分类加法计数原理知,共有80+180=260种涂法.。
2023年高考新教材数学一轮复习 课时跟踪检测 第9章
课时过关检测(五十七) 计数原理A级——基础达标1.(2022·东莞一模)有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有()A.21种B.315种C.143种D.153种解析:C选出不属于同一学科的书2本,可分三类:一类:语文、数学各1本,共有9×7=63(种);第二类:语文、英语各1本,共有9×5=45(种);第三类:数学、英语各1本,共有7×5=35(种),因此共有63+45+35=143(种)不同选法.2.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52解析:D在8个数中任取2个不同的数共有8×7=56(个)对数值,但在这56个数值中,log24=log39,log42=log93,log23=log49,log32=log94重复了4个数值,要减去4,即满足条件的对数值共有56-4=52(个).3.将1,2,3,…,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法为()3 4A.6种C.18种D.24种12D34AC B 9解析:A5,6,7,8这4个数字,而8只能放在A或B处,若8放在B处,则可以从5,6,7这3个数字中选一个放在C处,剩余两个位置固定,此时共有3种方法,同理,若8放在A处,也有3种方法,所以共有6种方法.4.4人站成一排,重新站队时,恰有1个人站在自己原来的位置,则不同的站法共有() A.4种B.8种C.12种D.24种解析:B将4个人重排,恰有1个人站在自己原来的位置,有C14种站法,剩下3人不站原来位置有2种站法,所以共有C14×2=8(种)站法.5.(2022·绵阳模拟)从5名学生中选出4名分别参加数学、物理、化学、生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为()A.48 B.72C.90 D.96解析:D由于甲不参加生物竞赛,则安排甲参加另外3场竞赛或甲不参加任何竞赛.①当甲参加另外3场竞赛时,共有C13A34=72(种)选择方案;②当甲学生不参加任何竞赛时,共有A44=24(种)选择方案.综上所述,所有参赛方案有72+24=96(种).6.(多选)现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画,下列说法正确的有()A.从中任选一幅画布置房间,有14种不同的选法B.从这些国画、油画、水彩画中各选一幅布置房间,有70种不同的选法C.从这些画中选出两幅不同种类的画布置房间,有59种不同的选法D.要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,共有12种不同的挂法解析:ABC对于A:分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法,根据分类加法计数原理,共有5+2+7=14(种)不同的选法,A正确;对于B:分为三步:国画、油画、水彩画分别有5种、2种、7种不同的选法,根据分步乘法计数原理,共有5×2×7=70(种)不同的选法,B正确;对于C:分为三类:第一类是一幅选自国画,一幅选自油画.由分步乘法计数原理知,有5×2=10(种)不同的选法;第二类是一幅选自国画,一幅选自水彩画,有5×7=35(种)不同的选法;第三类是一幅选自油画,一幅选自水彩画,有2×7=14(种)不同的选法,所以共有10+35+14=59(种)不同的选法,C正确;对于D:从3幅画中选出2幅分别挂在左、右两边墙上,可以分两个步骤完成:第1步,从3幅画中选1幅挂在左边墙上,有3种选法;第2步,从剩下的2幅画中选1幅挂在右边墙上,有2种选法.根据分步乘法计数原理,不同挂法的种数N=3×2=6.D错误,故选A、B、C.7.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.解析:将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6(种)方法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.答案:248.如图所示的几何体是由一个三棱锥P-ABC与三棱柱ABC-A1B1C1组合而成的,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.解析:先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12(种)不同的涂法.答案:129.(2022·海南调研)某公司决定从10名办公室工作人员中裁去4人,要求甲、乙二人不能全部裁去,则不同的裁员方案的种数为________.解析:甲、乙中裁一人的方案有C12C38种,甲、乙都不裁的方案有C48种,故不同的裁员方案共有C12C38+C48=182(种).答案:18210.(2022·烟台模拟)从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c 的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)不同的二次函数.若二次函数为偶函数,则b=0,可知共有3×2=6(个)偶函数.答案:18 6B级——综合应用11.某校毕业典礼上有6个节目,考虑到整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校毕业典礼节目演出顺序的编排方案共有()A.120种B.156种C.188种D.240种解析:A记演出顺序为1~6号,按甲的编排进行分类:①当甲在1号位置时,丙、丁相邻的情况有4种,则有C14A22A33=48(种);②当甲在2号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36(种);③当甲在3号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36(种).所以编排方案共有48+36+36=120(种).12.如图,∠MON的边OM上有四点A1,A2,A3,A4,ON上有三点B1,B2,B3,则以O,A1,A2,A3,A4,B1,B2,B3为顶点的三角形个数为________.解析:法一:先从这8个点中任取3个点,最多构成C38个三角形,再减去三点共线的情形即可.共有C38-C35-C34=42(个).法二:分三类,用分类加法计数原理解得C24C13+C14C23+C14C13=18+12+12=42(个).答案:4213.(2022·武汉模拟)若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________. 解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数是2×10×5×3=300.答案:300课时过关检测(五十八) 二项式定理A 级——基础达标1.在⎝⎛⎭⎫2x +1x 6的展开式中,含x 4项的系数为( ) A .160B .192C .184D .186解析:B 二项式⎝⎛⎭⎫2x +1x 6的展开式的通项T r +1=C r 6(2x )6-r ⎝⎛⎭⎫1x r =C r 626-r x 6-2r ,当r =1时,T 2=C 16×25×x 4=192x 4,含x 4项的系数为192.故选B .2.已知⎝⎛⎭⎫x -2x n 的展开式中第3项是常数项,则n =( ) A .6B .5C .4D .3解析:A ⎝⎛⎭⎫x -2x n 的展开式的通项T k +1=(-2)k C k n x ,当k =2时,T 3=T 2+1=(-2)2C 2n x ,则n -62=0,解得n =6.故选A . 3.(1+3x )2+(1+2x )3+(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 1+a 2+a 3+a 4=( )A .49B .56C .59D .64解析:C 令x =1,a 0+a 1+a 2+a 3+a 4=(1+3)2+(1+2)3+(1+1)4=59.故选C .4.(x +y )(2x -y )6的展开式中x 4y 3的系数为( )A .-80B .-40C .40D .80解析:D (2x -y )6的展开式的通项为T k +1=C k 6(2x )6-k (-y )k ,当k =2时,T 3=240x 4y 2,当k =3时,T 4=-160x 3y 3,故x 4y 3的系数为240-160=80,故选D .5.已知⎝⎛⎭⎫1-x 2n 的展开式中所有项的系数和等于1256,则展开式中项的系数的最大值是( )A .72B .358C .7D .70解析:C 令x =1得⎝⎛⎭⎫1-12n =1256,∴n =8,∴⎝⎛⎭⎫1-x 28的展开式通项公式为T r +1=C r 8⎝⎛⎭⎫-x 2r ,要求展开式中项的系数的最大值,则r 必为偶数,∴T 1=C 08⎝⎛⎭⎫-x 20=1,T 3=C 28⎝⎛⎭⎫-x 22=7x 2,T 5=C 48⎝⎛⎭⎫-x 24=358x 4,T 7=C 68⎝⎛⎭⎫-x 26=716x 6,T 9=C 88⎝⎛⎭⎫-x 28=1256x 8,故选C . 6.(多选)已知⎝⎛⎭⎫1x -ax 2n (a <2)的展开式中第3项的二项式系数为45,且展开式中各项系数和为1 024,则下列说法正确的是( )A .a =1B .展开式中偶数项的二项式系数和为512C .展开式中第6项的系数最大D .展开式中的常数项为45解析:BCD 由题意,C 2n =n (n -1)2=45,所以n =10(负值舍去),又展开式中各项系数之和为1 024,所以(1-a )10=1 024,因为a <2,所以a =-1,故A 错误;偶数项的二项式系数和为12×210=12×1 024=512,故B 正确;⎝⎛⎭⎫1x +x 210展开式中的二项式系数与对应项的系数相同,所以展开式中第6项的系数最大,故C 正确;⎝⎛⎭⎫1x +x 210的展开式的通项T r +1=C r 10x -12(10-r )·x 2r =C r 10x 5r 2-5,令5r 2-5=0,解得r =2,所以常数项为C 210=45,故D 正确.故选B 、C 、D .7.(多选)关于多项式⎝⎛⎭⎫x +1x -24的展开式,下列结论中正确的有( ) A .各项系数之和为0B .各项系数的绝对值之和为256C .存在常数项D .含x 项的系数为-40解析:ABC 选项A :令x =1代入多项式,可得各项系数和为(1+1-2)4=0,故A 正确;选项B :取多项式⎝⎛⎭⎫x +1x +24,令x =1代入多项式可得(1+1+2)4=256,所以原多项式各项系数的绝对值之和为256,故B 正确;选项C :多项式可化为⎣⎡⎦⎤⎝⎛⎭⎫x +1x -24,则展开式的通项公式为T r +1=C r 4⎝⎛⎭⎫x +1x 4-r (-2)r ,当4-r =0,2,4即r =4,2,0时,⎝⎛⎭⎫x +1x 4-r 有常数项,且当r =0时,常数项为C 04C 24=6,当r =2时,常数项为C 24×2×(-2)2=48,当r =4时,常数项为(-2)4=16,故原多项式的展开式的常数项为6+48+16=70,故C 正确;选项D :当r =1时,展开式中含x 的项为C 14C 23x (-2)1=-24x ,当r =3时,含x 的项为C 34x (-2)3=-32x ,故原多项式的展开式中含x 的项的系数为-56,故D 错误,故选A 、B 、C .8.52 022除以4的余数是________.解析:由52 022=(1+4)2 022=C 02 022+C 12 022·4+C 22 022·42+…+C 2 0222 022·42 022,∴52 022除以4的余数是C 02 022=1.答案:19.已知(x +1)n 的二项式系数和为128,则C 0n -C 1n 2+C 2n 4+…+C n n (-2)n =________.解析:由已知可得2n =128,解得n =7,所以二项式(x +1)7=(1+x )7的展开式的通项公式为T r +1=C r 7x r ,令x =-2,则二项式的展开式为C 07(-2)0+C 17(-2)1+C 27(-2)2+…+C 77(-2)7=C 07-C 172+C 274+…+C 77(-2)7=(1-2)7=-1.答案:-110.若(1+2x )2 022=a 0+a 1x +…+a 2 022x 2 022(x ∈R ),则a 12+a 222+…+a 2 02222 022的值为________.解析:对于(1+2x )2 022=a 0+a 1x +…+a 2 022x 2 022,令x =12得,(1+1)2 022=a 0+a 12+a 222+…+a 2 02222 022, 令x =0得,(1+0)2 022=a 0,所以a 0=1,所以a 12+a 222+…+a 2 02222 022=22 022-1. 答案:22 022-1B 级——综合应用11.(2022·烟台一模)多项式(x 2+1)(x +1)(x +2)(x +3)展开式中x 3的系数为( )A .6B .8C .12D .13 解析:C 原式=x 2(x +1)(x +2)(x +3)+(x +1)(x +2)(x +3),所以展开式中含x 3的项包含(x +1)(x +2)(x +3)中含x 的项为1·2·x +2·3·x +1·3·x =11x ,和(x +1)(x +2)(x +3)中含x 3的项为x 3,这两项的系数和为11+1=12.故选C .12.(1+x +x 2+x 3)4的展开式中,奇次项系数的和是( )A .64B .120C .128D .256解析:C 设f (x )=(1+x +x 2+x 3)4,利用函数的奇偶性可知,f (x )=a 0+a 1x +a 2x 2+a 3x3+…+a 12x 12. f (1)=a 0+a 1+a 2+a 3+…+a 12=44,①f (-1)=a 0-a 1+a 2-a 3+…+a 12=0,②①-②,得2a 1+2a 3+…+2a 11=44,∴奇次项系数的和为442=128. 13.已知(33+2x )n (n ∈N *,1≤n ≤12)的展开式中有且仅有两项的系数为有理数,试写出符合题意的一个n 的值________.解析:(33+2x )n 的展开式的通项为T r +1=C r n ·(33)n -r ·(2)r x r ,r ≤n ,r ∈N .若系数为有理数,则r 2∈Z ,且n -r 3∈Z .当n =3时r =0;n =4时r =4;n =5时r =2;n =6时r =0,6;n =7时r =4;n =8时r =2,8;n =9时r =0,6;n =10时r =4,10;n =11时r =2,8;n =12时r =0,6,12.所以n 可取6,8,9,10,11中的任意一个值.答案:6(n 取6,8,9,10,11中任意一个值均可)14.在(1+x )5+(1-2x )6的展开式中,所有项的系数和等于________,含x 4的项的系数是________.解析:(1+x )5+(1-2x )6=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,将x =1代入得(1+1)5+(1-2)6=a 0+a 1+a 2+a 3+a 4+a 5+a 6=25+1=33.而a 4x 4=C 45x 4+C 46(-2x )4=245x 4.答案:33 24515.已知(x +2)⎝⎛⎭⎫a x -15的展开式中的常数项为13,则实数a 的值为________,展开式中的各项系数之和为________.解析:⎝⎛⎭⎫a x -15的展开式通项为T r +1=C r 5·⎝⎛⎭⎫a x 5-r ·(-1)r =(-1)r ·a 5-r C r 5·x r -5,则(x +2)⎝⎛⎭⎫a x -15的展开式通项为(-1)r ·a 5-r C r 5·x r -4+2(-1)r ·a 5-r C r 5·x r -5,当r =4时,(-1)r a 5-r C r 5x r -4产生常数项,当r =5时,2(-1)r a 5-r C r 5x r -5产生常数项,则常数项为(-1)4·a C 45+2×(-1)5C 55=13,即5a -2=13,解得a =3,令x =1,可得展开式中的各项系数之和为(1+2)⎝⎛⎭⎫31-15=96.答案:3 96C 级——迁移创新16.(多选)我国南宋数学家杨辉1261年所著的《详解九章算法》给出了著名的杨辉三角,以下关于杨辉三角的猜想中正确的有( )A.由“与首末两端‘等距离’的两个二项式系数相等”猜想:C m n=C n-mn B.由“在相邻的两行中,除1以外的每一个数都等于它‘肩上’两个数的和”猜想:+C k nC k n+1=C k-1nC.由“n行所有数之和为2n”猜想:C0n+C1n+C2n+…+C n n=2nD.由“111=11,112=121,113=1 331”猜想115=15 101 051解析:ABC由杨辉三角的性质以及二项式定理可知A、B、C正确;115=(10+1)5=C05105+C15104+C25103+C35102+C45101+C55=161 051,故D错误.。
2020高考数学(理)一轮复习课时作业57分类加法计数原理与分步乘法计数原理 含解析
课时作业57分类加法计数原理与分步乘法计数原理[基础达标]一、选择题1.一购物中心销售某种型号的智能手机,其中国产的品牌有20种,进口的品牌有10种,小明要买一部这种型号的手机,则不同的选法有()A.20种B.10种C.30种D.200种解析:分类完成此事,一类是买国产品牌,有20种选法,另一类是买进口品牌,有10种选法.由分类加法计数原理可知,共有20+10=30(种)选法.答案:C2.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选取,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选取,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A.180种B.360种C.720种D.960种解析:按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).答案:D3.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24B.48C.60D.72解析:先排个数,再排十位,百位,千位、万位,依次有2,4,3,2,1种排法,由分步乘法计数原理知:2×4×3×2×1=48.答案:B4.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3 B.4 C.6 D.8当中间数为8时,有7×8=56个;当中间数为9时,有8×9=72个;故共有2+6+12+20+30+42+56+72=240个.答案:A9.如图所示的五个区域中,现有四种颜色可供选择.要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.64 B.72C.84 D.96解析:分两种情况:(1)A,C不同色,先涂A有4种,C有3种,E有2种,B,D有1种,有4×3×2=24(种).(2)A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48(种).共有72种.答案:C10.A与B是I={1,2,3,4}的子集,若A∩B={1,2},则称(A,B)为一个理想配集,若将(A,B)与(B,A)看成不同的“理想配集”,则符合此条件的“理想配集”的个数是()A.4 B.8 C.9 D.16解析:对子集A分类讨论.当A是二元集{1,2},B可以为{1,2,3,4},{1,2,4},{1,2,3},{1,2}共4种情况;当A是三元集{1,2,3},B可以取{1,2,4},{1,2}共有2种情况;当A是三元集{1,2,4},B可以取{1,2,3},{1,2},共有2种情况;当A是四元集{1,2,3,4},此时B取{1,2}有1种情况,根据分类加法计数原理得4+2+2+1=9种,故符合此条件的“理想配集”有9个.故选C.答案:C二、填空题11.若x,y∈N*,且x+y≤6,则有序自然数对(x,y)共有________个.解析:当x=1时,y可取的值为5,4,3,2,1,共5个;当x=2时,y可取的值为4,3,2,1,共4个;当x=3时,y可取的值为3,2,1,共3个;当x=4时,y可取的值为2,1,共2个;当x=5时,y可取的值为1,共1个.即当x=1,2,3,4,5时,y的值依次有5,4,3,2,1个,由分类加法计数原理,得不同的数对(x,y)共有5+4+3+2+1=15(个).答案:1512.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b 都是集合{1,2,3,4,5,6}中的元素.又点P到原点的距离|OP|≥5,则这样的点P的个数为________.解析:依题意可知:当a=1时,b=5,6,两种情况;当a=2时,b=5,6,两种情况;当a=3时,b=4,5,6三种情况;当a=4时,b=3,5,6,三种情况;当a=5或6时,b各有五种情况.所以共有2+2+3+3+5+5=20种情况.答案:2013.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对任意x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有______个.解析:A={1}时,B有23-1=7种情况;A={2}时,B有22-1=3种情况;A={3}时,B有1种情况;A={1,2}时,B有22-1=3种情况;A={1,3},{2,3},{1,2,3}时,B均有1种情况,故满足题意的“子集对”共有7+3+1+3+3=17个.答案:1714.若三角形三边均为正整数,其中一边长为4,另外两边长为b,c,且满足b≤4≤c,则这样的三角形有________个.解析:当b=1时,c=4;当b=2时,c=4,5;当b=3时,c=4,5,6;当b=4时,c=4,5,6,7.故共有1+2+3+4=10个这样的三角形.答案:10[能力挑战]15.[2019·太原市高三模拟]某校组织高一年级8个班级的8支篮球队进行单循环比赛(每支球队与其他7支球队各比赛一场),计分规则是:胜一局得2分,负一局得0分,平局双方各得1分.下面关于这8支球队的得分情况叙述正确的是()A.可能有两支球队得分都是14分B.各支球队最终得分总和为56分C.各支球队中最高得分不少于8分D.得奇数分的球队必有奇数个解析:8支篮球队进行单循环赛,总的比赛场数为7+6+5+4+3+2+1=28,每场比赛两个队得分之和总是2分,∴各支球队最终得分总和为56分,故选B.答案:B16.若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,知值为1 942的“简单的”有序对的个数为2×10×5×3=300.答案:30017.如图所示的几何体由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.解析:先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有3×2×1×2=12种不同的涂法.答案:12。
高考数学总复习课时作业57分类加法计数原理与分步乘法计数原理理北师大版
A1.如是某汽修企业的修点形散布,企业在年初分派A、B、C、D四个修点某种配件各50 件.在使用前需将A、B、C、D四个修点的批配件分整40、45、 54、61 件,但整只好在相修点之行,那么要达成上述整,最少的件次( n件配件从一个修点整到相修点的件次n)()A. 15B. 16C. 17D. 182.(2011 ·温州模) 由 0,1,2,3,⋯,9十个数字和一个虚数位i ,能够成虚数的个数()A.100B. 10C.9D. 903. 5 位同学名参加两个外活小,每位同学限此中的一个小,不一样的名方法共有 ()A.10 种B.20种C.25 种D.32种4.高三年的三个班去甲、乙、丙、丁四个工厂参加社会践,但去何工厂可自由,甲工厂必有班要去,不一样的分派方案有()A.16 种B.18种C.37 种D.48种5.(2012 ·汕模 ) 如,有 6 种不一样的色把中A、B、C、D四地区分开,若相地区不可以涂同一种色,不一样的涂法共有()A. 400 种B. 460 种C.480 种D. 496 种6.如所示,在,B 有四个接点,若接点零落,可能致路不通,今AA、 B 之路不通,接点零落的不一样状况有________种.7.如所示,在接正八形的三个点而成的三角形中,与正八形有公共的三角形有________个.8.将数字 1,2,3,4, 5,6 排成一列,第i 个数 a i( i =1,2,⋯,6),若 a1≠1,a3≠3,a5≠5, a1< a3< a5,不一样的摆列方法有________种(用数字作答 ).9.从- 1,0,1,2四个数中三个不一样的数作函数 f ( x)= ax2+ bx+c 的系数,可成 ________个不一样的二次函数,此中偶函数有________个 ( 用数字作答 ) .10.某位工献血,在体合格的人中,O 型血的共有28 人, A 型血的共有7人, B 型血的共有9 人, AB型血的共有 3 人.(1)从中任 1 人去献血,有多少种不一样的法?(2)从四种血型的人中各 1 人去献血,有多少种不一样的法?11.有六名同学名参加三个智力目,在以下状况下各有多少种不一样的名方法? ( 不必定六名同学都能参加)(1)每人恰巧参加一,每人数不限;(2)每限一人,且每人至多参加一;(3)每限一人,但每人参加的目不限.B1.从会合 {1,2,3,4,⋯,10}中,出由 5 个数成的子集,使得 5 个数中随意两个数的和都不等于11,的子集有()A.32 个B. 34 个C.36 个D. 38 个2.如,用 4 种不一样的色中 5 个地区涂色 (4 种色所有使用) ,要求每个地区涂一种色,相的地区不可以涂同样的色,不一样的涂色种数有________.123453.号 A,B,C,D,E 的五个小球放在如所示的五个盒子里,要求每个盒子只好放一个小球,且 A 球不可以放在1,2 号,B球必放在与A球相的盒子中,求不一样的放法有多少种?解答案作 ( 五十七 )A1. B只要 AD 10件,BC 5件,CD 1件,共16件次.2. D第一步:先确立部,可从0,1,2,3,⋯, 9 10 个数字中任取一个共10 种取法.第二步:确立虚部,可从1,2,3,⋯, 9 中任取一个共 9 种取法.由分步乘法数原理得共可成虚数的个数10×9= 90.3. D分5步达成,每一步有两种不一样的方法,故不一样的名方法有 25=32( 种 ) .4. C 三个班去四个工厂不一样的分派方案共43种,甲工厂没有班去的分派方案共33种,所以足条件的不一样的分派方案共有43- 33= 37( 种 ) .5.C 从A 开始,有 6 种方 法,B 有 5种,C 有 4种, 、 A 同色 1种, 、A 不一样色3DD种,∴不一样涂法有 6×5×4×(1 + 3) = 480( 种 ) .6.分析:四个焊接点共有 24 种状况,此中使线路通的状况是: 1,4 都通,2和 3中起码有一个通时线路才通,共有3 种可能,故不通的状况有24-3=13( 种) .答案:137.分析:把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有 8×4= 32( 个 ) ;第二类,有两条公共边的三角形共有 8 个.由分类加法计数原理知,共有 32+8= 40( 个) .答案: 408.分析:分两步: (1) 先排1, 3 , 5,若a 1= 2,有 2 种排法;若a1=3,有 2 种排aa a法;若 a 1= 4,有 1 种排法,共有35 种排法; (2) 再排 a 2, a 4, a 6,共有 A 3=6 种排法,故不同的摆列方法有5×6= 30( 种 ) .答案: 309.分析:一个二次函数对应着a ,b ,c ( a ≠0) 的一组 取值, a 的取法有 3 种, b 的取法有 3 种, c 的取法有 2 种,由分步乘法计数原理知共有二次函数3×3×2= 18( 个 ) .若二次函数为偶函数,则 b = 0,同上可知偶函数共有3×2= 6( 个) .答案: 18610.分析: 从 O 型血的人中选 1 人有 28 种不一样的选法,从A 型血的人中选 1 人共有7 种不一样的选法 ,从 B 型血的人中选 1 人共有 9 种不一样的选法,从 AB 型血的人中选 1 人共有 3 种不一样的选法.(1) 任选 1 人去献血,即无论选哪一种血型的哪一个人,这件“任选 1 人去献血”的事情就已达成,所以用分类加法计数原理,有28+ 7+ 9+ 3=47 种不一样选法. (2) 要从四种血型的人中各选1 人,即要在每种血型的人中挨次选出 1 人后,这件“各选 1 人去献血”的事情才达成,所以用分步乘法计数原理,有 28×7×9×3= 5 292 种不一样的选法.11.分析:(1) 每人都能够从这三 个竞赛项目中选报一项,各有3 种不一样选法,由分步乘法计数原理,知共有选法36= 729( 种) .(2) 每项限报一人, 且每人至多参加一项, 所以可由项目选人, 第一个项目有 6 种选法,第二个项目有 5 种选法, 第三个项目只有 4 种选法, 由分步乘法计数原理, 得共有报名方法6×5×4= 120( 种 ) .(3) 因为每人参加的项目不限,所以每一个项目都能够从这六人中选出一人参赛,由分步乘法计数原理,得共有不一样的报名方法63= 216( 种 ) .31. A先把数字分红 5 组: {1,10},{2,9},{3,8},{4,7 },{5,6},因为选出的 5 个数中,随意两个数的和都不等于11,所以这 5 个数一定各来自上边5组中的一个元素,故共可构成2×2×2×2×2= 25= 32( 个 ) 这样的子集.故应选 A.2.分析:方法一:第一步:涂地区1,有4种方法;第二步:涂地区2,有 3 种方法;第三步:涂地区 4,有 2 种方法;第四步:涂地区3,( 此前三步已经用去三种颜色) 分两类:第一类, 3 与 1 同色,则地区 5 涂第四种颜色;第二类,地区 3 与 1 不一样色,则涂第四种颜色,此时地区 5 就能够涂地区 1 或地区 2 或地区 3 中的随意一种颜色,有 3 种方法.所以,不一样的涂色种数有4×3×2×(1 ×1+1×3) =96 种.方法二:由题意知,有且仅有两个地区涂同样的颜色,分为4类:1与5同;2与 5同;3 与 5 同; 1 与 3 同.关于每一类有4×3×2×1= 24 种涂法,共有4×24= 96 种方法.答案:963.分析:依据A球所在位置分三类:(1)若 A球放在3号盒子内,则B球只好放在 4 号盒子内,余下的三个盒子放球C、 D、E,则依据分步乘法计数原理得,3×2×1=6种不一样的放法;(2)若A 球放在 5号盒子内,则B球只好放在 4 号盒子内,余下的三个盒子放球、、C DE,则依据分步乘法计数原理得,3×2×1=6种不一样的放法;(3)若 A球放在4号盒子内,则 B 球能够放在 2 号、 3 号、 5 号盒子中的任何一个,余下3的三个盒子放球C、D、 E有A3=6种不一样的放法,依据分步乘法计数原理得,3×3×2×1=18种不一样方法.综上所述,由分类加法计数原理得不一样的放法共有6+ 6+ 18=30 种.。
备考2020年高考数学一轮复习:57 分类加法计数原理与分步乘法计数原理(理科专用)
备考2020年高考数学一轮复习:57 分类加法计数原理与分步乘法计数原理(理科专用)一、单选题(共11题;共22分)1.(2分)完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有()A.5种B.4种C.9种D.20种2.(2分)如图所示十字路口来往的车辆,如果不允许回头,共有不同的行车路线有()A.24种B.16种C.12种D.10种3.(2分)用10元、5元和1元来支付20元钱的书款,不同的支付方法的种数为()A.3B.5C.9D.124.(2分)某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A.8B.15C.18D.305.(2分)根据新高考改革方案,某地高考由文理分科考试变为“3+3”模式考试.某学校为了解高一年425名学生选课情况,在高一年下学期进行模拟选课,统计得到选课组合排名前4种如下表所示,其中物理、化学、生物为理科,政治、历史、地理为文科,“√”表示选择该科,“×”表示未选择该科,根据统计数据,下列判断错误的是()A.前4种组合中,选择生物学科的学生更倾向选择两理一文组合B.前4种组合中,选择两理一文的人数多于选择两文一理的人数C.整个高一年段,选择地理学科的人数多于选择其他任一学科的人数D.整个高一年段,选择物理学科的人数多于选择生物学科的人数6.(2分)如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有()A.24B.48C.96D.1207.(2分)牡丹江一中2019年将实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为北京大学环境科学专业,按照17年北大高考招生选考科目要求物、化必选,为该生安排课表(上午四节、下午四节,上午第四节和下午第一节不算相邻),现该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻,则该生该天课表有()种.A.444B.1776C.1440D.15608.(2分)2020年东京夏季奥运会将设置4×100米男女混合泳接力这一新的比赛项目,比赛的规则是:每个参赛国家派出2男2女共计4名运动员比赛,按照仰泳→蛙泳→蝶泳→自由泳的接力顺序,每种泳姿100米且由一名运动员完成,每个运动员都要出场. 现在中国队确定了备战该项目的4名运动员名单,其中女运动员甲只能承担仰泳或者自由泳,男运动员乙只能承担蝶泳或自由泳,剩下的男女各一名运动员则四种泳姿都可以上,那么中国队共有()种兵布阵的方式.A.B.C.D.9.(2分)现有5项工程由甲、乙、丙3个工程队承包,每队至少一项,但甲承包的项目不超过2个,不同的承包方案有()种A.130B.150C.220D.24010.(2分)从1,3,5三个数中选两个数字,从0,2两个数中选一个数字,组成没有重复数字的三位数,其中奇数的个数为()A.6B.12C.18D.2411.(2分)如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有()A.72种B.48种C.24种D.12种二、填空题(共7题;共7分)12.(1分)五一假期从5月1日至4日调休4天,某班6名同学准备五一期间去参加社会实践做志愿者,每人社会实践一天,且甲乙两人不在同一天的不同安排方案有种(用数字作答).13.(1分)用1、2、3、4、5、6组成没有重复数字的六位数,要求任何相邻两个数字的奇偶性不同,这样的六位数的个数是(用数字作答).14.(1分)如图,在A、B间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A、B 之间线路不通,则焊接点脱落的不同情况有种.15.(1分)已知集合A={(x,y)|1≤x≤4,1≤y≤4,x,y∈N},现从集合A中任意取出三个点,以这三个点为顶点能够得到个不同的直角三角形.16.(1分)如图,有7个白色正方形方块排成一列,现将其中4块涂上黑色,规定从左往右数,无论数到第几块,黑色方块总不少于白色方块的涂法有种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(五十七) 第57讲分类加法计数原理与分步乘法计数原理时间:45分钟分值:100分基础热身1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( )A.30个 B.42个C.36个 D.35个2.在“庆国庆、展才艺”国庆庆祝活动中,甲、乙、丙三位同学欲报名“朗诵比赛”、“歌唱比赛”,但学校规定每位同学限报其中的一个,且乙知道自已唱歌不如甲,若甲报唱歌,则乙就报朗诵,则他们三人不同的报名方法有( )A.3种 B.6种C.7种 D.8种3.记4名同学报名参加学校三个不同体育队,每人限报一队的不同报法种数为A;记3个班分别从5个风景点中选择一处游览的不同选法种数为B,则A,B分别是( )A.43,53 B.34,35C.34,53 D.43,354.设A,B是两个非空集合,定义A*B={(a,b)|a∈A,b∈B},若P={0,1,2},Q={1,2,3,4},则P*Q中元素的个数是( )A.4 B.7C.12 D.16能力提升5.如图K57-1,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )A.72种 B.48种C.24种 D.12种6.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A.6种 B.12种C.24种 D.30种7.从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A.36 B.48 C.52 D.548.2012·豫南九校摸底将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同的分配方案的种数为( )A.80 B.120C.140 D.509.2012·江西六校联考若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“良数”.例如:32是“良数”,因为32+33+34不产生进位现象;23不是“良数”,因为23+24+25产生进位现象.那么小于1000的“良数”的个数为( )A.27 B.36C.39 D.4810.十字路口来往的车辆,如果不允许回头,共有________种行车路线.11.2011·开封模拟将1,2,3,…,9这9个数字填在如图K57-2所示的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4________种.图K57-212.学校安排4名教师在六天里值班,每天只安排一名教师,每人至少安排一天,至多安排两天,且这两天要相连,那么不同的安排方法有________种(用数字作答).13.2012·安徽师大附中模拟 用红、黄、蓝三种颜色之一去涂图K57-3中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为1、5、9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.14.(10分)有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.15.(13分)某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法?难点突破16.(1)(6分)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A .56B .65C.5×6×5×4×3×22D .6×5×4×3×2 (2)(6分)如图K57-4所示,用四种不同颜色给图中的A 、B 、C 、D 、E 、F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有( )A .288种B .264种C .240种D .168种课时作业(五十七)【基础热身】1.C 解析b有6种取法,a也有6种取法,由分步乘法计数原理共可以组成6×6=36个虚数.2.B 解析从甲着手分析,分两类:若甲报唱歌,乙则报朗诵,丙可任选,有2种报名方法;若甲报朗诵,则乙、丙均可任选,有2×2=4(种)报名方法.所以共有2+4=6(种)不同的报名方法.3.C 解析 4名学生参加3个运动队,每人限报一个,可以报同一运动队,应该是人选运动队,所以不同的报法种数是34,故A=34;3个班分别从5个风景点中选择一处游览,应该是班选风景点,故不同的选法种数是53,故B=53.4.C 解析由分步乘法计数原理知有3×4=12个.【能力提升】5.A 解析先分两类:一是四种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24种涂法;二是用三种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C 同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72种.6.C 解析方法1:两人各选修2门的种数为C24C24=36,再求出两人所选两门都相同和都不同的种数均为C24=6,故恰好有1门相同的选法有24种.方法2:恰有1门相同,先从4门选1门,选法C14,然后甲从剩下的3门选1门,乙再从甲选后剩下的2门中选1门,根据乘法原理共有选法4×3×2=24种.7.B 解析若取出的数字含有0,则是2×A23=12个,若取出的数字不含0,则是C12C23A33=36个.根据加法原理得总数为48个.8.A 解析分两类:若甲组2人,则乙、丙两组的方法数是C13A22,此时的方法数是C25C13A22=60;若甲组3人,则方法数是C35A22=20.根据分类加法计数原理得总的方法数是60+20=80.9.D 解析一位良数有0,1,2,共3个;两位数的良数十位数可以是1,2,3,两位数的良数有10,11,12,20,21,22,30,31,32,共9个;三位数的良数有百位为1,2,3,十位数为0的,个位可以是0,1,2,共3×3=9个,百位为1,2,3,十位不是零时,十位个位可以是两位良数,共有3×9=27个.根据分类加法计数原理,共有48个小于1000的良数.10.12 解析由分步乘法计数原理有4×3=12.11.6 解析左上方只能填1,右下方只能填9,此时4的上方只能填2.右上方填5时,其下方填6,7,8;右上方填6时,其下方填7,8;右上方填7时,其下方只能填8,此时左下方的两个格填法随之确定.故只能有3+2+1=6种填法.12.144 解析有两名教师要值班两天,把六天分为四份,两个两天连排的是(1,2),(3,4);(1,2),(4,5);(1,2),(5,6);(2,3),(4,5);(2,3),(5,6);(3,4),(5,6),共六种情况,把四名教师进行全排列,有A44=24种情况,根据分步乘法计数原理,共有不同的排法6×24=144种.13.108 解析分步求解.只要在涂好1,5,9后,涂2,3,6即可,若3与1,5,9同色,则2,6的涂法为2×2,若3与1,5,9不同色,则3有两种涂法,2,6只有一种涂法,同理涂4,7,8,即涂法总数是C13(2×2+C12×1)×(2×2+C12×1)=3×6×6=108.14.解答 (1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步计数原理知共有方法36=729种.(2)每项限报一人,且每人至多限报一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步计数原理得共有报名方法6×5×4=120种.(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理得共有不同的报名方法63=216种.15.解答首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:第一类:2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第二类:2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有2×3×2=12种选法.再由分类计数原理知共有6+12=18种选法.第三类:2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.【难点突破】16.(1)A (2)B 解析 (1)因为每位同学均有5种讲座可选择,所以6位同学共有5×5×5×5×5×5=56种选择,故本题选A.(2)分三类:①B、D、E、F用四种颜色,则有A44×1×1=24种方法;②B、D、E、F用三种颜色,则有A34×2×2+A34×2×1×2=192种方法;③B、D、E、F用两种颜色,则有A24×2×2=48,所以共有不同的涂色方法24+192+48=264种.。