Luminescence of Co-doped SrTiO3 : Pr 3+
雷帕霉素增强RSL3对睾丸癌细胞I-10的增殖、侵袭与迁移的抑制作用
睾丸癌是青年人群中最常见的恶性肿瘤[1]。
西方国家发病率在过去20年中上升,手术和以顺铂为基础的化学疗法的结合使得睾丸癌患者的治愈率大于90%[2]。
尽管如此,10%~20%患有转移性疾病的睾丸癌患者不能通过基于顺铂的化疗治愈[3]。
因此,探索治疗睾丸肿瘤的新方法具有研究价值。
铁死亡是一种铁依赖形式的非凋亡细胞死亡,其特征是脂质ROS 的积累[4]。
在细胞和小鼠中进行的遗传学研究确定硒酶谷胱甘肽过氧化物酶(GPX4)是这种形式的细胞死亡的关键调节因子。
GPX4将脂质氢过氧化物转化为脂质醇,这一过程阻止了铁(Fe 2+)依赖的有毒脂质活性氧(ROS )的形成。
GPX4功能的抑制导致脂质过氧化,并可诱导铁死亡[5,6]。
近年来,人们在设计和开发基于铁死亡诱导的抗癌药物方面做了大量工作,在癌症治疗中引入铁死亡具有很好的治疗潜力[7]。
RSL3是一种常用的铁死亡诱导剂,通过抑制谷胱甘肽Rapamycin enhances inhibitory effect of RSL3on proliferation,invasion and migration of testicular cancer I-10cells in vitroLI Bin,WANG Yue,HOU Fengwei,DU Jiaru,TONG XuhuiSchool of Pharmacy,Bengbu Medical College,Anhui Provincial Engineering Research Center for Biochemical Pharmaceuticals,Bengbu 233030,China摘要:目的探究雷帕霉素增强RSL3对睾丸癌细胞I-10的增殖、侵袭与迁移能力的抑制作用。
方法MTT 法检测RSL3(Type II )及合用雷帕霉素(RAPA )作用后I-10细胞的存活率。
将RSL3(0~16μmol/L )分别以及联合16μmol/L 雷帕霉素作用于睾丸癌细胞I-10,采用MTT 法检测I-10细胞增殖抑制情况,利用集落克隆形成实验检测细胞增殖能力,采用划痕实验和Transwell 小室检测I-10细胞的迁移与侵袭能力,采用流式细胞术检测I-10细胞的脂质活性氧水平,采用GSH 和MDA 检测试剂盒检测细胞中GSH 和MDA 含量,利用Western blot 检测细胞GPX4蛋白表达。
Sc_(2)(WO_(4))_(3)∶Er^(3+)Yb^(3+)的上转换发光及其温度传感特性
第42卷第1期2021年1月发光学报CHINESE JOURNAL OF LUMINESCENCEVol.42No.1Jan.,2021文章编号:1000-7032(2021)01-0091-07SC2(WO4)3:Er3+/Yb3+的上转换发光及其温度传感特性金叶;,2*,李坤1,罗旭1,马力2,王笑军2(1.重庆理工大学理学院,重庆400054; 2.美国佐治亚南方大学物理系,佐治亚斯泰茨伯勒30460)摘要:通过高温固相法制备岀一系列新型上转换材料Sc;(WO4)3:Er3+/Yb3+°在980nm激光激发下,Sc2(W°4)3:Er3+/Yb3+样品发岀肉眼可见的强绿光°利用荧光光度计测得样品的发光光谱,在500~600nm 之间有强绿光发射,分别归因于Er3+的;H i“T4I i”;和4S3/2^4I i5/2跃迁发射。
在650~700nm位置处,有对应于Er3+离子4F9/2^4I i5/2跃迁的较弱的红光发射。
随着掺杂浓度的变化,样品的红绿分支比发生变化。
当样品掺杂Er3+浓度为0.05%、Yb3+浓度等于0.1%时,样品发射的绿光强度是红光强度的27倍。
另外,利用荧光强度比方法研究了Er3+的两个热耦合能级在303~573K范围内的发光温度特性。
393K时,样品的灵敏度达到最大为0.0068K-i°对比于其他荧光粉材料,Sc;(WO4)3:Er3+/Yb3+的灵敏度处于较高水平,在实际测温中具有更好的应用前景°关键词:掺杂;上转换材料;发光;温度传感中图分类号:0482.31文献标识码:A DOI:10.37188/CJL.20200326Upconversion Luminescence andTemperature Sensing Properties for Sc2(WO4)3:Er3+/Yb3+JIN Ye1,2*,LI Kun1,LUO Xu1,MA Li2,WANG Xiao-jun2(1.School of Science,Chongqing University of Technology,Chongqing400054,China;2.Department of Physics,Georgia Southern University,Statesboro GA30460,USA)*Corresponding Author,E-mail:jinye@Abstract:A series of upconversion materials Er3*/Yb3*co-doped Sc;(W°4)3have been prepared by a high-temperature solid-phase method.Under the980nm near-infrared laser,the green emission intensity of the up-conversion luminescence is greater than that of the red,and the green light is visible to the naked eyes.When0.05%Er3*and0.1%Yb3*are doped,the green emission is27 times more than the red emission.Furthermore,the fluorescence intensity ratio method was used to describe the optical temperature sensor with two thermal coupling energy levels of Er3*in the range of303〜573K.At393K,the sensitivity of the sample reached the pared with some reported materials,the sensitivity of Sc;(W0)3:Er3*/Yb3*is higher and it has a better prospect in temperature measurement.Key words:doping;upconversion materials;luminescence;temperature sensing收稿日期:2020-10-29;修订日期:2020-11-26基金项目:国家自然科学基金(11704054);国家留基委项目(201908500037);重庆市科委项目(cstc2017jcyjA0925,cstc2017jcxjAX0046);重庆市教委项目(KJQN201901134,KJ1704071)资助Supported by National Natural Science Foundation of China(11704054);China Scholarship Council Fund(201908500037);Chongqing Research Program of Basic Research and Frontier Technology(cstc2017jcyjA0925,cstc2017jcyjAX0046);Science andTechnology Research Program of Chongqing Municipal Education Commission(KJQN201901134,KJ1704071)92发光学报第42卷1引言近年来,稀土离子掺杂的上转换发光材料由于其良好的发光特性一直受到人们关注。
通过Pr^(3+)掺杂SrZnOS实现应力发光颜色调控及其应力发光机理
第42卷㊀第6期2021年6月发㊀光㊀学㊀报CHINESE JOURNAL OF LUMINESCENCEVol.42No.6June,2021文章编号:1000-7032(2021)06-0818-11㊀㊀收稿日期:2021-03-17;修订日期:2021-03-31㊀㊀基金项目:国家自然科学基金(51772185,U1832159,11905122);中国博士后科学基金(2019M651469)资助项目Supported by National Natural Science Foundation of China(51772185,U1832159,11905122);China Postdoctoral Science Foun-dation(2019M651469)†:共同贡献作者通过Pr 3+掺杂SrZnOS 实现应力发光颜色调控及其应力发光机理李㊀婷1,2†,杨云凌2†,范雨婷2,袁佳勇2,申玉芳1∗,张志军2∗(1.桂林理工大学材料科学与工程学院,广西桂林㊀541000;㊀2.上海大学材料科学与工程学院,上海㊀200444)摘要:采用高温固相法成功制备出新型Sr 1-2x Pr x Li x ZnOS 应力发光材料㊂通过XRD㊁扫描电镜㊁漫反射㊁光致发光㊁荧光衰减㊁应力发光和热释光等测试详细研究了晶体结构㊁形貌㊁光致和力致发光性能及其发光机理㊂在298nm 激发下,Sr 1-2x Pr x Li x ZnOS 的发光位于522nm 和674nm,分别来自于Pr 3+离子从激发态3P 0到3H 5㊁3F 2的跃迁㊂随着Pr 3+浓度增加,发光强度先增加后减小,在x =0.015时发光最强,且衰减时间从17.79μs 减短到5.93μs㊂在载荷为5000N 激发下可以获得Pr 3+离子的522nm 和674nm 的应力发光发射带㊂位于522nm 和674nm 的两个发射带的相对强度I G /I R 随着掺杂浓度的增加呈线性减小,且在色坐标图(CIE)和实物应力发光照片中均能观测到应力发光的颜色从黄绿光到橙黄光的转变㊂该材料的研究将为应力发光领域提供调控颜色的新思路,在压力显示成像和应力传感领域具有潜在的应用价值㊂关㊀键㊀词:应力发光;SrZnOS;Pr 3+中图分类号:O482.31㊀㊀㊀文献标识码:A㊀㊀㊀DOI :10.37188/CJL.20210094Pr 3+Doped SrZnOS to Achieve Tunable MechanoluminescenceColor and Mechanoluminescence MechanismLI Ting 1,2†,YANG Yun-ling 2†,FAN Yu-ting 2,YUAN Jia-yong 2,SHEN Yu-fang 1∗,ZHANG Zhi-jun 2∗(1.School of Materials Science and Engineering ,Guilin University of Technology ,Guilin 541000,China ;2.School of Materials Science and Engineering ,Shanghai University ,Shanghai 200444,China )∗Corresponding Authors ,E-mail :yuffangshen @ ;zhangzhijun @Abstract :The development of new mechanoluminescence(ML)materials for stress sensor and ima-ging is of great importance,owing to their unique physical,chemical,and optical properties.A se-ries of novel Sr 1-2x Pr x Li x ZnOS phosphor were successfully synthesized by the high temperature solid state reaction method.The crystal structure,morphology,photoluminescence(PL),ML properties and luminescence mechanism of Sr 1-2x Pr x Li x ZnOS were studied in detail.The unit cell volume ofSr 1-2x Pr x Li x ZnOS decreased from 0.15352to 0.15305nm 3with the concentration Pr 3+increasing from x =0.005to 0.04.The emission bands of the Pr 3+ion at 522and 674nm originated from the transition from excited state 3P 0to lower energy levels 3H 5and 3F 2.The PL intensity reaches the maximum when the Pr 3+ion concentration reached 0.015.The decay time decreases from 17.79to 5.93μs with increasing Pr 3+concentration.At the same time,the emission peaked at 522and 674nm were observed under the load of 5000N.Meanwhile,the ML intensity first increases reaching㊀第6期李㊀婷,等:通过Pr3+掺杂SrZnOS实现应力发光颜色调控及其应力发光机理819㊀the maximum of the Pr3+ion concentration at x=0.02,and then decreases with the doped concen-tration increasing.In addition,the relative intensity I G/I R value of the two emission bands at522 and674nm decreased with the Pr3+concentration increasing from x=0.005to0.04.Moreover,the ML color transition from yellow-green light to orange-yellow light emission can be observed in both the color coordinate diagram and the sample photos under pressure.Therefore,these materials offer a new approach to controlling luminescent colors in the ML field,with potential applications in the fields of stress display,imaging and stress sensors.Key words:mechanoluminescence;SrZnOS;Pr3+1㊀引㊀㊀言应力发光材料是一种可以在应力刺激下产生发光的新型发光材料[1]㊂近年来,由于应力发光材料在应力传感㊁应力成像㊁应力探测㊁应力分布可视化㊁人造皮肤及人机交互界面等领域具有极大的应用前景,引起了人们的广泛关注[2-4]㊂近二十年,应力发光材料发展十分迅速㊂1999年,Xu等开发出具有高发光亮度的红色应力发光材料ZnSʒMn2+以及绿色长余辉应力发光材料SrAl2O4ʒEu2+,这些应力发光材料在应力可视化显示㊁应力传感器㊁应力探测损伤等领域获得了一定的应用[5-8]㊂2005年,Wang等开发出具有红色发光的复合相BaTiO3-CaTiO3ʒPr3+应力发光材料[9]㊂2007年,Xu等发现SrAl2O4ʒCe3+和SrAl2O4ʒCe3+,Ho3+在紫外波段能够产生应力发光,可以为不同的磷光体提供激发源[10]㊂2018年,LiNbO3ʒPr3+由于应力发光强度高㊁应力探测阈值低等优点,在微应力传感㊁损伤诊断和电-力-光转换领域具有很大的应用前景[11]㊂2019年, Tu等开发出Sr3Sn2O7ʒNd3+填补了应力发光在近红外波段的空白[7]㊂到目前为止,虽然应力发光材料实现了从紫外到近红外光谱的全覆盖,但是具有优异应力发光性能的材料种类较少,且单一基质中的发光颜色固定㊁发光机理尚未完全清楚等问题还亟待解决[12-13]㊂压电材料氧硫化物CaZnOS由于其优异的光学性能而受到人们广泛关注[14-16]㊂CaZnOSʒMn2+㊁CaZnOSʒBi3+以及稀土离子掺杂的CaZnOS 都是优异的应力发光材料[17-21]㊂Ca2+和Zn2+两种不同配位环境的阳离子位点也为掺杂激活离子提供了多种可能[18]㊂近期,Zhang等发现与CaZn-OS同构的SrZnOS掺杂Mn2+也具有较好的应力发光性能[22-23]㊂SrZnOS属于六方晶系且具有压电效应,与CaZnOS相同的层状结构可以有效地分离和移动电子空穴对[24],使得它成为一个合适的能够在机械应力刺激下产生较强的应力发光的基质㊂并且为了解决单一基质中的发光颜色固定问题,研究发现稀土掺杂的材料由于稳定性好㊁发射范围广以及转换效率高等优点占有重要的一席之地[17]㊂其中Pr离子是典型的可见波段稀土发光离子,发射可以从蓝光覆盖到深红光波段㊂目前,已经报道的Pr3+掺杂BaTiO3-CaTiO3[9]㊁m CaO㊃Nb2O5(m=1,2,3)[25]㊁LiNbO3[11]㊁M2Nb2O7(M= Sr,Ca)[26]基质中应力发光均为红色,而在Ca-ZnOS中为绿色[17]㊂因此,在不同的基质及配位环境中,Pr3+发光颜色取决于4f2ң4f2跃迁的强度比㊂由此,具有宽光谱范围450~800nm的稀土Pr3+掺杂SrZnOS十分具有研究价值㊂本研究在SrZnOS基质中引入不同浓度的Pr3+离子,并对其晶体结构㊁光致发光㊁应力发光性能和发光机理进行了详细的研究,实现了在单一基质中应力发光颜色从黄绿光到橙黄光的调控,在应力可视化探测㊁显示和应力传感器等方面具有潜在的应用前景㊂2㊀实㊀㊀验2.1㊀样品制备通过高温固相法合成了一系列Sr1-2x Pr x Li x ZnOS (x=0.005,0.015,0.02,0.03,0.04)应力发光材料㊂将原料SrO(AR,郑州艾克姆化工有限公司)㊁ZnS(AR,国药化学试剂有限公司)㊁Li2CO3 (99.99%,上海阿拉丁生化科技股份有限公司)和Pr6O11(99.99%,国药化学试剂有限公司)按照一定的化学计量比进行称重,混合,研磨㊂然后,在氩气气氛下1050ħ烧结10h㊂烧结后再次研820㊀发㊀㊀光㊀㊀学㊀㊀报第42卷磨成粉末,进行二次烧结以减少样品中的杂相㊂烧结过程完成后,将样品研磨均匀以备进一步表征㊂2.2㊀样品表征在X 射线衍射仪(Rigaku D /max 2500)上收集所制备样品的粉末X 射线衍射图谱(XRD)㊂扫描电子显微镜(Zeiss Gemini SEM300)观测粉末样品的形貌㊁粒径大小㊁能量分散谱以及元素分析㊂使用紫外/可见分光光度计(U-3900H)在室温条件下测量样品的紫外-可见漫反射光谱㊂使用搭载了CCD 相机(CCD-20259,Andor)的光谱仪(SR-193i-B1Andor )㊁光电倍增管(C13796,Hamamatsu Photonics)和岛津通用万能应力试验机(AGS-X 10KN STD,Shimadzu)搭建而成的综合测试系统测量应力发光光谱㊂利用爱丁堡型荧光光谱仪(FLS1000)采集样品的激发和发射光谱㊁荧光衰减曲线㊂使用热释光光谱仪(TOSL-3DS)测试了样品的热释光光谱,样品在测试前先在X 射线下照射10min,然后从100K 加热到600K,升温速率为1K㊃s -1㊂3㊀结果与讨论3.1㊀Sr 1-2x Pr x Li x ZnOS 的晶体结构Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)样品的粉末X 射线衍射图与SrZnOS 的标准卡片(ICSDNo.431819)如图1(a)所示㊂结果显示样品的衍射峰与标准卡片的衍射峰一致,表明成功制备出纯相的SrZnOS㊂众所周知,Pr 3+的离子半径(CN =6,r =0.099nm)远大于Zn 2+的离子半径(CN =4,r =0.060nm),但与Sr 2+的离子半径(CN =6,r =0.118nm)较为相近㊂因此,Pr 3+离子更容易占据SrZnOS 中Sr 2+的晶体学位置㊂如图1(b)所2兹/(°)I n t e n s i t y /a .u .102030405060708090(a )SrZnOS theoretical patternx =0.005x =0.015x =0.02x =0.03x =0.04xU n i t c e l l v o l u m e /n m -30.010.020.030.04(b )0.1540.1550.1530.1520.1510(c )ZnS 3OSrS 3O 3acb Zn Sr/Pr S O图1㊀(a)Sr 1-2x Pr x Li x ZnOS (0.005ɤx ɤ0.04)的粉末X 射线衍射图谱与SrZnOS 标准衍射卡片(ICSD No:431819);(b)Sr 1-2x Pr x Li x ZnOS (0.005ɤx ɤ0.04)的晶胞体积与Pr 3+浓度之间的关系;(c)Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)的晶体结构㊂Fig.1㊀(a)X-ray powder diffraction patterns of Sr 1-2x Pr x Li x ZnOS (0.005ɤx ɤ0.04),SrZnOS theoretical pattern(ICSD No.431819).(b)Relationship between the unit cell volumes of the Sr 1-2x Pr x Li x ZnOS phosphors and Pr 3+concentration.(c)Crystal structure of Sr 1-2x Pr x Li x ZnOS (0.005ɤx ɤ0.04).㊀第6期李㊀婷,等:通过Pr3+掺杂SrZnOS实现应力发光颜色调控及其应力发光机理821㊀示,指标化结果显示,晶胞体积随着Pr3+浓度的增加从0.1536nm3减小到0.1530nm3,也证明了半径小的Pr3+离子占据了Sr2+的位置㊂如图1(c)所示,SrZnOS与CaZnOS均为层状晶体结构,属于六方晶系,空间群为P63mc(No.186)[22]㊂SrZnOS的晶体结构由ZnS3O四面体和SrO3S3八面体组成[27]㊂1个Zn原子与3个S原子和1个O原子形成ZnS3O四面体㊂1个Sr原子与3个S原子和3个O原子组成SrO3S3畸变的八面体,连接SrZnOS的四面体和八面体以形成三维层状结构㊂3.2㊀Sr1-2x Pr x Li x ZnOS的形貌及元素分析通过SEM和EDS能谱对合成的样品进行形貌观察和元素分析㊂图2(a)为Pr3+掺杂浓度为1.5%的SrZnOS的SEM图㊂从图中可以看出粒径分布主要集中在5~20μm㊂如图2(b)~(h)所示,为样品的EDS能谱㊁EDS选区图片及Sr㊁Pr㊁Zn㊁O㊁S的元素分布图,表明Pr离子在样品中分布均匀㊂EDS能谱计算的Pr3+的浓度为1.28%,与Pr3+的实验掺杂浓度(1.5%)较为接近㊂20滋mSSrZnOPrPr PrPrZnZn Sr Sr图2㊀(a)Sr0.96Pr0.02Li0.02ZnOS的SEM图片;(b)EDS能谱;(c)EDS元素扫描图片;(d)~(h)EDS选区图片,分别为Sr㊁Pr㊁Zn㊁O㊁S的元素分布图㊂Fig.2㊀(a)SEM images of Sr0.96Pr0.02Li0.02ZnOS.(b)EDS elemental mapping image.(c)Overlapping elements.Independent element mapping of Sr(d),Pr(e),Zn(f),O(g)and S(h).3.3㊀Sr1-2x Pr x Li x ZnOS的漫反射光谱、光致发光光谱及荧光衰减曲线从图3(a)中可以看出,在650~800nm范围内的漫反射光谱包含了高反射率平台,在448~494nm范围内的吸收峰为Pr3+离子的4f跃迁㊂在494,476,448nm处的吸收峰分别属于3H4ң3P0㊁3H4ң3P1和3H4ң3P2跃迁㊂350~200nm的吸收带是来源于SrZnOS基质晶格吸收㊂为了研究掺杂Pr3+离子后对SrZnOS的光学带隙的影响,通过Kubelka-Munk方程由漫反射光谱计算得到吸收谱再计算光学带隙㊂Kubelka-Munk(K-M)方程为:F(R)=K/S=(1-R)2/2R,(1)其中R是样品的漫反射率,S是散射系数,K是吸收系数[20]㊂由Kubelka-Munk方程计算得到的Sr1-2x Pr x Li x ZnOS的吸收谱如图3(a)中的插图所示㊂通过外推法使Kubelka-Munk方程中的K/S= 0[28],计算得到Sr1-2x Pr x Li x ZnOS的光学带隙为3.7eV左右㊂如图3(b)所示,随着Pr3+离子掺杂浓度从x=0.005增加到x=0.04,Sr1-2x Pr x-Li x ZnOS的光学带隙从3.70eV减小到3.66eV㊂如图4(a)所示,对于Sr1-2x Pr x Li x ZnOS(0.005ɤxɤ0.04),监测波长为522nm时,250~350nm822㊀发㊀㊀光㊀㊀学㊀㊀报第42卷10080300姿/nmD i f f u s e r e f l e c t i o n /%4005006007008003H4→3P 0,1,23H4→1D 26543210→Host absorption 300400500600700800姿/nm(a )0.00560402000.0150.020.030.04K /S3.713.700xO p t i c a l b a n d g a p /e V0.020.030.04(b )3.693.683.670.013.66图3㊀(a)Sr 1-2x Pr x Li x ZnOS (0.005ɤx ɤ0.04)的紫外-可见漫反射光谱,插图是由Kubelka-Munk 方程计算得到的Sr 1-2x -Pr x Li x ZnOS 的吸收谱;(b)Sr 1-2x Pr x Li x ZnOS 光学带隙(E g )与不同Pr 3+浓度的变化曲线㊂Fig.3㊀(a)Ultraviolet-visible diffuse reflectance spectra of Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04).The inset shows the absorp-tion spectrum of Sr 1-2x Pr x Li x ZnOS calculated with the Kubelka-Munk formula.(b)Variation curve of the optical bandgap(E g )with different Pr 3+concentrations.250I n t e n s i t y /a .u .350400450(a )3000.0050.0150.020.030.04姿em =522nm3P 0→3H 4Host absorption3H 4→3P 2,3P 1500400I n t e n s i t y /a .u .600700(b )0.0050.0150.020.030.04姿ex =298nm3P 0→3H 53P 0→3F 28003P 0→3F 3,3F 43P 0→3H 4500姿/nm姿/nm图4㊀(a)监测波长为522nm 的Sr 1-2x Pr x Li x ZnOS (0.005ɤx ɤ0.04)的激发光谱;(b)激发波长为298nm 的Sr 1-2x Pr x -Li x ZnOS 的发射光谱㊂Fig.4㊀(a)Excitation spectra of Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)monitoring at 522nm.(b)Emission spectra of Sr 1-2x Pr x -Li x ZnOS under 298nm excitation.处表现出强烈的吸收,这主要来自于带间跃迁㊂同时,可以在440~500nm 范围内的激发光谱中观察到Pr 3+离子的4f 2ң4f 2跃迁(3P 0ң3H 4㊁3H 4ң3P 1和3H 4ң3P 2),这与漫反射光谱相对应㊂因此,在298nm 激发下可以直接观察到Pr 3+离子的典型4f 2ң4f 2发射㊂3P 1㊁3P 0和1D 2是Pr 3+离子的3个潜在的4f 发射状态㊂Pr 3+的发光颜色取决于固定能量下4f 2ң4f 2跃迁的强度比,激发光的强度取决于晶体的晶格常数[16,29]㊂如图4(b)所示,在激发波长为298nm 的发射光谱中,可以观察到在450~800nm 波长范围内Pr 3+离子典型的4f 2ң4f 2发射峰,它们分别是3P 0ң3H 4(~494nm)㊁3P 0ң3H 5(~522nm)㊁3P 0ң3F 2(~674nm)和3P 0ң3F 3,3F 4(~759,775nm)跃迁[20,27]㊂如图5(a)㊁(b)所示,在298nm 激发下,在450~570nm 和600~700nm 范围内的发光强度随着Pr 3+的浓度先增加后减小,最佳浓度为x =0.015㊂由于具有不同Pr 3+浓度的样品具有相似的光谱曲线,并且在较高Pr 3+离子浓度下未观察到发光峰位置偏移㊂超过临界浓度后,由于Pr 3+离子之间的非辐射能量转移降低了发射强度,使得发射强度逐渐降低㊂当掺杂浓度达到一定值时,Pr 3+离子之间的距离变小,引起激活剂之间的能量迁移,并产生猝灭效应[30]㊂因此,I G /I R 的积分强度比先增大后减小,发光颜色从浅绿变深绿然后又变为浅绿色,与色坐标图中的结果一致㊂图6(a)是在激发波长为298nm 和监测波长522nm 下,不同浓度掺杂的Sr 1-2x Pr x Li x ZnOS (0.005ɤx ɤ0.04)的荧光衰减曲线㊂所有样品的衰减曲线均为双指数衰减,使用双指数函数拟合,公式如下[31]:I (t )=A 1exp(-t /τ1)+A 2exp(-t /τ2),㊀(2)其中I (t )是发光强度,A 1㊁A 2是常数,t 是时间,而τ1和τ2是发射的衰减时间㊂平均衰减时间τ可㊀第6期李㊀婷,等:通过Pr 3+掺杂SrZnOS 实现应力发光颜色调控及其应力发光机理823㊀0.50.5xy520540560580600620700380470480490500A0.60.70.80.40.30.20.104600.100.20.30.40.60.7E D CB0.80.9(b )xIG /IR1.751.500.005(a )0.0150.0200.0300.0402.00图5㊀(a)光致发光峰范围在450~570nm 和600~700nm 的积分强度比I G /I R ;(b)激发波长为298nm 下的Sr 1-2x Pr x -Li x ZnOS 的CIE 坐标图㊂Fig.5㊀(a)I G /I R ratio with different Pr 3+concentrations.(b)CIE chromaticity diagram corresponding to Sr 1-2x Pr x Li x ZnOS un-der 298nm excitation.100t /msI n t e n s i t y /a .u .1000100001001010(a )200300400姿ex =298nm 姿em =522nm0.0050.0150.020.030.040.01D e c a y t i m e /滋s18(b )0.020.030.04姿ex =298nm 姿em =522nm16Decay time 1412108640x图6㊀(a)Sr 1-2x Pr x Li x ZnOS (0.005ɤx ɤ0.04)的荧光衰减曲线;(b)衰减时间与Pr 3+浓度之间的关系㊂Fig.6㊀(a)Decay curves of Sr 1-2x Pr x Li x ZnOS (0.005ɤx ɤ0.04).(b)Relationship between the decay time and Pr 3+concen-tration.以通过以下公式来进行运算:τ=(A 1τ21+A 2τ22)/(A 1τ1+A 2τ2),(3)根据计算结果,Sr 1-2x Pr x Li x ZnOS 在x =0.005,0.0015,0.002,0.003,0.04时的衰减时间分别为17.79,14.67,12.08,6.08,5.93μs㊂图6(b)为Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)的荧光衰减时间随着Pr 3+浓度的变化关系,从图中可以清楚地看到,随着Pr 3+浓度的增大,Sr 1-2x Pr x Li x ZnOS 的衰减时间逐渐减小,在其他掺Pr 3+的发光材料中有类似的情况[32-33]㊂当Pr 3+离子掺杂到一定含量时,两个相邻的Pr 3+离子之间的距离非常短,导致一部分能量迁移到猝灭剂㊂在能量交叉弛豫过程中,施主离子将一部分能量转移到受体离子上,致使它们都转移到亚稳态,然后通过非辐射衰减返回基态,从而导致能量损失㊂由于3P 1㊁3P 0和1D 2的交叉弛豫,这些状态转变为较低能级的可能性变弱,尤其是在高掺杂浓度的Pr 3+中[34-35]㊂因此,随着Pr 3+含量的增加,Sr 1-2x -Pr x Li x ZnOS 的平均荧光寿命逐渐减小㊂3.4㊀Sr 1-2x Pr x Li x ZnOS 的应力发光、热释光光谱以及应力发光机理Sr 1-2x Pr x Li x ZnOS 在5000N 压力下的应力发光光谱与在298nm 激发下的光致发光光谱类似,如图7(a)所示㊂应力发光和光致发光两种类型的光谱都显示了Pr 3+离子的3P 0ң3H 5和3P 0ң3F 2跃迁引起的绿光和红光发射带[36]㊂在紫外光298nm 激发下,发射的绿光和红光相对强度比I G /I R 的值均大于1,整体表现出绿光发射㊂相比之下,陷阱控制的应力发光光谱中发光相对强度比I G /I R 的值均略小于1,这表明在加压时红光发射略微占主导㊂因此,在Sr 1-2x Pr x Li x ZnOS 系统中光致发光为绿色而应力发光为橙黄色㊂在加压过程中,由于Pr 3+离子周围晶体场环境发生改变,可能导致Pr 3+内部能级3H 4ң3F 4交叉驰豫效应824㊀发㊀㊀光㊀㊀学㊀㊀报第42卷增多,使得3P 0到3F 2的非辐射弛豫概率增大,从而使发光颜色变化[36-38]㊂如图7(d)㊁(e)所示,随着外加载荷的增大,应力发光增强,相应的绿光发射带的强度持续增加㊂Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)在5000N压力下的应力发光光谱如图7(b)所示㊂从应力发光光谱可以清晰地看到3P 0ң3H 4的绿光发射带(522nm)和3P 0ң3F 2的红光发射带(674nm)㊂从图7(b)还可以清楚地看到,随着Pr 3+掺杂浓度的增加,应力发光强度先增大后减小,Pr 3+离子的最佳掺杂浓度为x =0.02㊂随着掺杂浓度的增加,3P 0ң3H 4(522nm)和3P 0ң3F 2(674nm)两个峰相对强度发生改变,这是由于在外力作用下破坏了发光中心的发光环境而导致了应力发光猝灭[39]㊂在图7(c)中可以清楚看到I G /I R 的值逐渐减小,说明位于674nm 的发射峰逐渐增强,材料的发光颜色逐渐变红㊂500姿/nmI n t e n s i t y /a .u .(a )I n t e n s i t y /a .u .674495522PL 姿ex =298nm MLLoad=5000N400600700800500I n t e n s i t y /a .u .(b )4006007008000.0050.0150.020.030.04姿/nm0.01I G /I R(c )0.020.03姿/nm0.60.81.00.40.20.04500(d )600姿/nm700400800I n t e n s i t y /a .u .2000N 3000N 4000N 5000NSr 0.96Pr 0.02Li 0.02OSI G /I R(e )30004000Load /N0.60.80.40.2500020001.0Sr 0.96Pr 0.02Li 0.02OS图7㊀(a)Sr 0.96Pr 0.02Li 0.02ZnOS 的光致发光光谱和应力发光光谱;(b)在施加压力为5000N 下的Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)的应力发光光谱;(c)在压力为5000N 时,应力发光峰在522nm 和674nm 的积分强度比I G /I R ;(d)在不同压力下,Sr 0.96Pr 0.02Li 0.02ZnOS 的应力发光光谱;(e)在不同压力下,应力发光峰在522nm 和674nm 的积分强度比I G /I R ㊂Fig.7㊀(a)PL and ML spectra of Sr 0.96Pr 0.02Li 0.02ZnOS.(b)Compression induced ML spectra of Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)combined with resin under the external load of 5000N.(c)Ratio I G /I R of ML integrated intensity with load at5000N.(d)ML spectra of Sr 0.96Pr 0.02Li 0.02ZnOS at different external load.(e)Integrated intensity ratio I G /I R for the ML peaks at 522nm and 674nm at different external load.从图8的CIE 图和实物发光照片中也可以清晰地看出,随着Pr 3+离子掺杂浓度的增加,样品从黄绿色到橙黄色的颜色变化㊂由于Pr 3+离子在SrZnOS 基质中的环境是非中心对称的,且Pr 3+离子能级跃迁与Pr 3+离子周围的配位环境有关[30]㊂因此,随着Pr 3+的浓度增加,离子之间的距离减小,影响了Pr 3+离子周围的配位环境,从而影响了不同能级跃迁之间的相对发射强度㊂应力发光材料特性通常与材料中的陷阱机制密切相关,利用热释光谱恰好能分析材料中的陷阱特性,这为研究应力发光性能与机理提供了很多有效的信息,包括陷阱深度㊁陷阱密度和陷阱分㊀第6期李㊀婷,等:通过Pr 3+掺杂SrZnOS 实现应力发光颜色调控及其应力发光机理825㊀布[40]㊂图9为Pr 3+的掺杂浓度x =0.015的二维热释光谱图,热释光峰位对应的温度为243K㊂根据一般动力学模型的拟合结果,有五种不同深度的陷阱,并且可以使用以下公式计算陷阱深度[41]:I (t )=n 0S exp(-E /kT )ˑ[(b -1)(s /β)㊃ʏTT 0exp(-E /kTᶄ)d Tᶄ+1]-b /(b +1),(4)其中E 是陷阱的能级深度,S 是频率因子,b 是方程的动力学级,k 是玻尔兹曼常数,β是加热速率(1K㊃s-1),T 0(K)是初始温度,n 0是在T 0时捕获的电子的浓度㊂通过计算得到Pr 3+的掺杂浓度x =0.015样品的陷阱深度分别为0.182,0.363,0.50.5xy5205405605806006203804704804905000.60.70.80.90.40.30.20.104600.100.20.30.40.60.70.80.020.0150.0050.030.040.040.030.0150.020.005图8㊀在压力为5000N 下的Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)的色坐标图,插图为在施加压力为5000N 下的Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)的应力发光照片㊂Fig.8㊀CIE chromaticity diagram corresponding to Sr 1-2x Pr x -Li x ZnOS (0.005ɤx ɤ0.04)under compressive load of 5000N.The inset shows ML images of Sr 1-2x Pr x -Li x ZnOS (0.005ɤx ɤ0.04)under compressive loadof 5000N.1.6×104400T /KI n t e n s i t y /a .u .500300200Exp.Cumulative fit peak Fit peak1Fit peak2Fit peak3Fit peak4Fit peak51.8×1042.0×1041.4×1041.2×1041.0×1048.0×1034.0×1032.0×1036.0×103图9㊀Sr 0.97Pr 0.015Li 0.015ZnOS 的热释光强度随着温度的变化关系Fig.9㊀Thermoluminescence curve of Sr 0.97Pr 0.015Li 0.015ZnOSas a function of temperature0.523,0.755,0.928eV㊂Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)的应力发光过程机理如图10所示㊂一些电子可以借助热能(即晶格振动)或光激发能逸出至导带,在机械应力刺激下,基质中的陷阱能级能有效捕获自由电子,并释放到导带上㊂当施加应力时产生晶格变形,在压电区域产生应变能并产生局部电场,然后将这些被陷阱俘获的电子去俘获并将电子激发到导带,电子通过与空穴复合或者直接传递给发光中心(隧穿效应)两种途径将能量传递给Pr 3+离子使其跃迁到激发态3P 0能级㊂最后,电子弛豫回Pr 3+的3H 4和3F 2能级从而产生黄绿光发射㊂Trap5Trap4Trap3Trap2Trap1T u nn e l i n gEnergy transferLoadHolesElectronsU V e x c i t a t i o nVBPr 3+3H 43H 53F 23F 33F 4CB775nm 759nm 675nm 522nm 494nm 3P 0图10㊀Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)应力发光机理示意图Fig.10㊀Schematic diagram of mechanism for mechanolumi-nescence of Sr 1-2x Pr x Li x ZnOS(0.005ɤx ɤ0.04)4㊀结㊀㊀论本研究通过高温固相反应成功合成了新型的应力发光荧光粉Sr 1-2x Pr x Li x ZnOS (0.005ɤx ɤ0.04)㊂研究了Sr 1-2x Pr x Li x ZnOS 的结构㊁光致发光性能㊁应力发光性能及其发光机理㊂XRD 结果表明,Pr 3+离子占据了Sr 2+离子的位置,并且随着Pr 3+掺杂浓度的增加,晶胞体积减小㊂光致发光光谱结果表明,在298nm 激发下得到位于522nm 和674nm 的Pr 3+离子发射带,这源于从激发态3P 0到3H 5㊁3F 2的辐射跃迁㊂光致发光的发光强度随着Pr 3+浓度的增加先增强后减弱,在x =0.015时达到峰值㊂与此同时,随着Pr 3+离子浓度的增加,其寿命逐渐缩短㊂应力发光方面,在5000N 压力下,应力发光的发射颜色随掺杂浓度的增加实现了从黄绿光到橙黄光的转变㊂热释光光谱表明Sr 1-2x Pr x Li x ZnOS 中存在5个不同的陷阱深度,并由此提出了Sr 1-2x Pr x Li x ZnOS 应力发光826㊀发㊀㊀光㊀㊀学㊀㊀报第42卷机理㊂作为一种新型的应力发光材料,Sr1-2x Pr x-Li x ZnOS在应力发光颜色可调㊁应力传感和应力成像等领域具有巨大的应用潜力㊂本文专家审稿意见及作者回复内容的下载地址: /thesisDetails#10.37188/ CJL.20210094.参㊀考㊀文㊀献:[1]MATSUI H,XU C N,LIU Y,et al..Origin of mechanoluminescence from Mn-activated ZnAl2O4:triboelectricity-inducedelectroluminescence[J].Phys.Rev.B,2004,69(23):235109.[2]JEONG S M,SONG S,KIM H.Simultaneous dual-channel blue/green emission from electro-mechanically powered elasto-meric zinc sulphide composite[J].Nano Energy,2016,21:154-161.[3]MA Z D,ZHOU J Y,ZHANG J C,et al..Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing bysimultaneously utilizing instantaneous and persistent mechanoluminescence[J].Mater.Horiz.,2019,6(10):2003-2008.[4]WANG F L,WANG F L,WANG X D,et al..Mechanoluminescence enhancement of ZnSʒCu,Mn with piezotronic effectinduced trap-depth reduction originated from PVDF ferroelectric film[J].Nano Energy,2019,63:103861-1-7. [5]ONWONA-AGYEMAN B,XU C N,SHI W S,et al..Triboluminescence of ZnSʒMn films deposited on quartz substrateswith ZnO buffer layers[J].Jpn.J.Appl.Phys.,2002,41(8R):5259-5261.[6]LIU L S,XU C N,YOSHIDA A,et al..Scalable elasticoluminescent strain sensor for precise dynamic stress imaging andonsite infrastructure diagnosis[J].Adv.Mater.Technol.,2019,4(1):1800336.[7]TU D,XU C N,KAMIMURA S,et al..Ferroelectric Sr3Sn2O7ʒNd3+:a new multipiezo material with ultrasensitive andsustainable near-infrared piezoluminescence[J].Adv.Mater.,2020,32(25):1908083-1-9.[8]XU C N,YAMADA H,WANG X S,et al..Strong elasticoluminescence from monoclinic-structure SrAl2O4[J].Appl.Phys.Lett.,2004,84(16):3040-3042.[9]ZHANG J C,WANG X S,YAO X,et al..Strong elastico-mechanoluminescence in diphase(Ba,Ca)TiO3ʒPr3+with self-assembled sandwich architectures[J].J.Electrochem.Soc.,2010,157(12):G269.[10]ZHANG H W,YAMADA H,TERASAKI N.Ultraviolet mechanoluminescence from SrAl2O4ʒCe and SrAl2O4ʒCe,Ho[J].Appl.Phys.Lett.,2007,91(8):081905.[11]TU D,XU C N,YOSHIDA A,et al..LiNbO3ʒPr3+:a multipiezo material with simultaneous piezoelectricity and sensitivepiezoluminescence[J].Adv.Mater.,2017,29(22):1606914-1-4.[12]WU C,ZHENG S S,WANG Z F,et al..Efficient mechanoluminescent elastomers for dual-responsive anticounterfeitingdevice and stretching/strain sensor with multimode sensibility[J].Adv.Funct.Mater.,2018,28(34):1803168-1-8.[13]ZHANG H,WEI Y,HUANG W.Recent development of elastico-mechanoluminescent phosphors[J].J.Lumin.,2019,207:137-148.[14]DUAN C J,DELSING A C A,HINTZEN H T.Photoluminescence properties of novel red-emitting Mn2+-activated M ZnOS(M=Ca,Ba)phosphors[J].Chem.Mater.,2009,40(25):1010-1016.[15]ZHANG Z J,FENG A,ZHANG S L,et al..Mechanical properties of layered oxysulfide CaZnOS from first principle calcu-lations[J].J.Alloys Compd.,2016,670:41-47.[16]ZHOU S,LIN D B,SU Y M,et al..Enhanced dielectric,ferroelectric,and optical properties in rare earth elements dopedPMN-PT thin films[J].J.Adv.Ceram.,2021,10(1):98-107.[17]DU Y Y,JIANG Y,SUN T Y,et al..Mechanically excited multicolor luminescence in lanthanide ions[J].Adv.Mater.,2019,31(7):1807062.[18]YANG Y L,LI Q L,YANG X C,et al..Color manipulation of Bi3+-activated CaZnOS under stress with ultra-high efficiency andlow threshold for anticounterfeiting applications[J].J.Mater.Chem.C,2020,8(10):3308-3315.[19]ZHANG J C,ZHAO L Z,LONG Y Z,et al..Color manipulation of intense multiluminescence from CaZnOSʒMn2+byMn2+concentration effect[J].Chem.Mater.,2015,27(21):7481-7489.[20]ZHANG Z J,FENG A,CHEN X Y,et al..Photoluminescence properties and energy levels of RE(RE=Pr,Sm,Er,Tm)in layered-CaZnOS oxysulfide[J].J.Appl.Phys.,2013,114(21):213518-1-8.㊀第6期李㊀婷,等:通过Pr3+掺杂SrZnOS实现应力发光颜色调控及其应力发光机理827㊀[21]LI X Y,SNETKOV I L,YAKOVLEV A,et al..Fabrication and performance evaluation of novel transparent ceramics REʒTb3Ga5O12(RE=Pr,Tm,Dy)toward magneto-optical application[J].J.Adv.Ceram.,2021,10(2):271-278. [22]LIU W,LAI K T,ECKHARDT K,et al..Synthesis and characterization of sulfide oxide SrZnSO with strongly polar crystalstructure[J].J.Solid State Chem.,2017,246:225-229.[23]ZHOU Y,YANG Y L,FAN Y T,et al..Intense red photoluminescence and mechanoluminescence from Mn2+-activatedSrZnSO with a layered structure[J].J.Mater.Chem.C,2019,7(26):8070-8078.[24]LONG Z W,WEN Y G,ZHOU J H,et al..No-interference reading for optical information storage and ultra-multiple anti-counterfeiting applications by designing targeted recombination in charge carrier trapping phosphors[J].Adv.Opt.Ma-ter.,2019,7(10):1900006.[25]ZHANG J C,LONG Y Z,YAN X,et al..Creating recoverable mechanoluminescence in piezoelectric calcium niobatesthrough Pr3+doping[J].Chem.Mater.,2016,28(11):4052-4057.[26]PAN C,ZHANG J C,ZHANG M,et al..Trap-controlled mechanoluminescence in Pr3+-activated M2Nb2O7(M=Sr,Ca)isomorphic perovskites[J].Opt.Mater.Express,2018,8(6):1425-1434.[27]CHEN C J,ZHUANG Y X,TU D,et al..Creating visible-to-near-infrared mechanoluminescence in mixed-anion com-pounds SrZn2S2O and SrZnSO[J].Nano Energy,2020,68:104329.[28]RESHAK A H,ABBASS N M,BILA J,et al..Noncentrosymmetric sulfide oxide M ZnSO(M=Ca or Sr)with stronglypolar structure as novel nonlinear crystals[J].J.Phys.Chem.C,2019,123(44):27172-27180.[29]ZHANG Z J,TEN KATE O M,DELSING A,et al..Photoluminescence properties and energy level locations of RE3+(RE=Pr,Sm,Tb,Tb/Ce)in CaAlSiN3phosphors[J].J.Mater.Chem.C,2012,22(19):9813-9820.[30]BASAVARAJ R B,NAGABHUSHANA H,et al..Mimosa pudica mediated praseodymium substituted calcium silicatenanostructures for white LED application[J].J.Alloys Compd.,2017,690:730-740.[31]LI K,FAN J,SHANG M M,et al..Sr2Y8(SiO4)6O2ʒBi3+/Eu3+:a single-component white-emitting phosphor via energytransfer for UV w-LEDs[J].J.Mater.Chem.C,2015,3(38):9989-9998.[32]DEOPA N,RAO A S,MAHAMUDA S,et al..Spectroscopic studies of Pr3+doped lithium lead alumino borate glasses forvisible reddish orange luminescent device applications[J].J.Alloys Compd.,2017,708:911-921.[33]SUTHANTHIRAKUMAR P,BASAVAPOORNIMA C,MARIMUTHU K.Effect of Pr3+ions concentration on the spectroscopicproperties of Zinc telluro-fluoroborate glasses for laser and optical amplifier applications[J].J.Lumin.,2017,187:392-402.[34]YI G Q,LI W W,SONG J H,et al..Preparation and characterizations of Pr3+ʒCaF2transparent ceramics with differentdoping concentrations[J].Ceram.Int.,2019,45(3):3541-3546.[35]庹娟,王林香,叶颖,等.金属离子Li+,Na+,K+,Ca2+,Ba2+掺杂Lu2O3ʒPr3+荧光粉的制备及发光特性研究[J].发光学报,2018,39(3):307-314.TUO J,WANG L X,YE Y,et al..Preparation and luminescence properties of Lu2O3ʒPr3+phosphors codoped with Li+, Na+,K+,Ca2+,Ba2+ions[J].Chin.J.Lumin.,2018,39(3):307-314.(in Chinese)[36]ZHANG J C,FAN X H,YAN X,et al..Sacrificing trap density to achieve short-delay and high-contrast mechanolumines-cence for stress imaging[J].Acta Mater.,2018,152:148-154.[37]PAN Z W,LU Y Y,LIU F.Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gal-logermanates[J].Nat.Mater.,2012,11(1):58-63.[38]VAN DEN EECKHOUT K,POELMAN D,SMET P F.Persistent luminescence in non-Eu2+-doped compounds:a review[J].Materials,2013,6(7):2789-2818.[39]LI L J,WONDRACZEK L,PENG M Y,et al..Force-induced1540nm luminescence:role of piezotronic effect in energytransfer process for mechanoluminescence[J].Nano Energy,2020,69:104413.[40]ZHENG W X,WU H Y,JU G F,et al..Crystal field modulation-control,bandgap engineering and shallow/deep traps tai-loring-guided design of a color-tunable long-persistent phosphor(Ca,Sr)Ga4O7ʒMn2+,Bi3+[J].Dalton Trans.,2019,48(1):253-265.[41]ZHOU H,DU Y D,WU C,et al..Understanding the mechanoluminescent mechanisms of manganese doped zinc sulfidebased on load effects[J].J.Lumin.,2018,203:683-688.828㊀发㊀㊀光㊀㊀学㊀㊀报第42卷李婷(1994-),女,广西贵港人,硕士研究生,2018年于烟台大学获得学士学位,主要从事应力发光材料的研究㊂E-mail:LT9455@.cn 申玉芳(1977-),女,河北保定人,博士,副教授,2012年于广西大学获得博士学位,主要从事无机材料的研究㊂E-mail:yuffangshen@gmail.com杨云凌(1995-),女,四川达州人,博士研究生,2018年于上海大学获得硕士学位,主要从事应力发光材料的研究㊂E-mail:yyl520zsl@.cn张志军(1982-),男,安徽黄山人,博士,教授,2009年于中国科学院上海硅酸盐研究所获得博士学位,主要从事无机光功能材料(单晶㊁陶瓷㊁薄膜)与器件(主要包括闪烁发光材料㊁光谱转换材料㊁应力发光材料以及相关器件)制备的研究㊂E-mail:zhangzhijun@青年编委介绍:张志军(1982-),博士,教授,2009年于中国科学院上海硅酸盐研究所获得博士学位,2009 2012年在荷兰埃因霍温理工大学(TU/e)从事博士后研究㊂2014年4月至今任上海大学特聘研究员和教授㊂担任上海大学材料学院能量转换材料与器件课题组组长㊁无机材料教研室副主任,Current Chinese Science:Electronic and Crystal Structures 编委㊁‘发光学报“和Journal of Advanced Ceramics青年编委㊂长期从事无机光功能材料(超快高分辨闪烁材料㊁应力发光材料㊁光谱转换材料)与器件制备及应用研究㊂主持和参与10余项国家自然科学基金和上海市重大研发计划项目㊁上大新材料(泰州)研究院项目等㊂至今发表高水平SCI论文近120篇,他引2300余次㊂申请国家发明专利18项,授权12项㊂。
经皮穿刺椎间盘髓核射频靶点消融联合臭氧注射治疗腰椎间盘突出症疗效观察
经皮穿刺椎间盘髓核射频靶点消融联合臭氧注射治疗腰椎间盘突出症疗效观察刘锋,温建生,陈明凤,寇艳艳北京中医药大学孙思邈医院周围血管病科,陕西铜川727106【摘要】目的观察经皮穿刺椎间盘髓核射频靶点消融联合臭氧注射治疗腰椎间盘突出症的疗效。
方法选取2020年5月至2022年5月期间北京中医药大学孙思邈医院收治的102例腰椎间盘突出症患者作为研究对象,按照随机数表法分为研究组和对照组各51例。
对照组患者给予臭氧注射治疗,研究组患者则给予经皮穿刺椎间盘髓核射频靶点消融联合臭氧注射治疗。
比较两组患者的术后优良率、术前及术后10d 的视觉模拟疼痛(V AS)评分、日本矫形外科协会(JOA)评分及炎症因子白细胞介素-6(IL -6)、白细胞介素-8(IL -8)、肿瘤坏死因子-α(TNF -α)水平。
结果研究组患者的术后优良率为96.08%,明显高于对照组的82.35%,差异具有统计学意义(P <0.05);术前,两组患者的V AS 评分、JOA 评分比较差异均无统计学意义(P >0.05),术后10d ,两组患者的V AS 评分均降低,且研究组患者的V AS 评分为(1.35±0.16)分,明显低于对照组的(2.46±0.72)分,但两组患者的JOA 评分较术前均升高,且研究组患者的JOA 评分为(21.46±4.06)分,明显高于对照组的(15.43±3.84)分,差异均具有统计学意义(P <0.05);术前,两组患者的IL -6、IL -8、TNF -α水平比较差异均无统计学意义(P >0.05),术后10d ,两组患者的IL -6、IL -8、TNF -α水平均降低,且研究组患者的IL -6、IL -8、TNF -α水平分别为(93.54±6.48)pg/mL 、(111.32±30.85)μg/L 、(95.18±13.48)pg/mL ,明显低于对照组的(120.48±7.62)pg/mL 、(132.68±31.46)μg/L 、(124.28±10.28)pg/mL ,差异均具有统计学意义(P <0.05)。
Effect of mixing process on the luminescent properties of SrAl_2O_4Eu~2+,Dy~3+ long afterglow ph
JOURNAL OF RARE EARTHS,Vol.28,No.1,Feb.2010,p.150F j y f N y x T U y f (N T 6)LX (x @;T 63535)DOI 6S ()66Effect of mixing pr ocess on the luminescent proper ties of SrAl 2O 4:Eu 2+,Dy 3+long after glow phosphor sL Xiao (吕霄)1,Sun Meng (孙猛)2,Zhang Junying (张俊英)1,Wang Tianmin (王天民)1(1.School of Physics and Nuclear Energy Engineering,B eihang University,Beiji ng 100191,C hina;2Department of Technology and Physics ,Zhengzhou Univers ity of Light Indus try,Zhengzhou 450002,China)Received 23December 2008;revised 27July 2009Abstract:A new mixing method was developed for solid-state reaction synthesis of SrAl 2O 4:Eu 2+,Dy 3+long afterglow phosphors.The mor-phology and crystal structure of the phosphors were analyzed with scanning electron microscope (SEM)and X-ray diffractometer (XRD).The excitation and emission spectra of the long afterglow phosphors were measured,and the main emission band was around 514nm.The decay time of the product was measured and compared with the phosphors prepared using dry-mixing method and wet-mixing method.It was found that the aggregates and impurities in the phosphors prepared using dry-mixing method and wet-mixing method impaired the lumines-cent properties.The phosphors synthesized using the new mixing method had high initial brightness and slow decay speed.This method is considered of great potential applications in industry.Keywords:long afterglow;phosphor;SrAl 2O 4;trap level;decay;rare earthsRecently,there has been an increasing interest in lumi-nescence materials.Phosphors have been the most promising candidates for applications in fluorescent lamps and flat panel display (FPD)devices,such as electroluminescence (EL)panels,plasma display panels (PDPs)and field emis-sion displays (FEDs),etc.[1,2]The photoluminescence of divalent europium ions (Eu 2+)and trivalent dysprosium ions (Dy 3+)co-doped alkaline earth aluminates MAl 2O 4:Eu 2+,Dy 3+(M=Ca,Sr,Ba)phosphors has been widely studied because these phosphors have good luminescent properties,such as high initial brightness,long lasting time,suitable emitting color and satisfactory chemi-cal stability [3–7],which result in an unexpectedly large field of applications,such as luminous paints in highways,air-ports,buildings and ceramics products [8].SrAl 2O 4:Eu 2+,Dy 3+,as one of the persistent luminescence materials,has been studied extensively because it can provide emission in yel-low-green region [9–11].Normally,SrAl 2O 4:Eu 2+,Dy 3+phosphors are prepared in industry by solid-state reaction process.In this process,the methods usually used to mix raw materials are dry-mixing and wet-mixing methods.It is difficult for dry-mixing method to mix various ingredients homogeneously,thus causing insufficient reaction of raw materials during the cal-cining process.In addition,the products aggregate seriously and have high degree of hardness.Therefore,it is necessary to strengthen the grinding and milling process in the classi-fication of these powders,which influences the structure and surface of phosphors powders and deteriorates the lumines-cent properties.For wet-mixing method,it is necessary toadd disperser and acid in the raw materials.Although these disperser and acid volatilize during the drying process,vari-ous ingredients inevitably react with these additives,which also affect the luminescent properties.In this paper,we developed a new and feasible method to mix the raw materials to improve the luminescent properties of the final phosphors.The SrAl 2O 4:Eu 2+,Dy 3+long after-glow phosphors were prepared and the crystal structure and morphology of the phosphors were analyzed systematically with XRD and SEM measurements.The luminescent prop-erties of phosphors prepared using the new mixing method were compared with phosphors prepared using dry-mixing and wet-mixing methods.The results showed that the phos-phors fabricated by our new mixing method had better lu-minescent properties.1ExperimentalAl 2O 3,SrCO 3,Eu 2O 3,Dy 2O 3,H 3BO 3were employed as raw materials (these materials are all of analytical grade).The raw materials were mixed homogeneously by dry-mixing method,wet-mixing method and our new mixing method sequentially and the mixture ratio of raw materials are all Al 2O 3(3060g),SrCO 3(4350g),Eu 2O 3(53g),Dy 2O 3(140g),H 3BO 3(180g).These mixture powders were cal-cined at 1350C for 2h and sieved through a 30μm screen to get the fine phosphor powder.The thus-obtained long af-terglow phosphors were marked as product A (by using dry-mixing method),product B (by using wet-mixing method)and product C (by using the new mixing method),respectively.ound at ion ite m:Pro ect supported b the Program or ew Ce ntur E ce llent a lents in the niversit o China CE -0-0179Corre sponding a uthor :ia o E-ma il:lv ia o t el.:8-10-8211:10.101/1002-072109009-7L Xiao et al.,Effect of mixing process on the luminescent properties of SrAl2O4:Eu2+,Dy3+long afterglow phosphors151The three mixing methods are as follows:First,component powders were weighed according to the mixture ratio,and the mixture powders were ground by ball mill for30min.Second,component powders were weighed according to the mixture ratio,and Eu2O3was dissolved in the diluted HNO3.The mixture powders,Eu3+solution and some amount of alcohol were added in the wet-mixing machine together and ground for30min.The obtained slurry was then sprayed and dried.Third,component powders were weighed and the mixture powders were ground by ball mill for30min.Then the powders were added in the wet-mixing machine,and small amount of deionized water was added during stirring.Ten minutes later,a kind of thick slurry was obtained and dried at 150 C.The XRD spectra were measured in the2θrange of 15–70with a RegakuD/MaxIIIB using Cu Kαradiation (0.15418nm)at40kV.SEM images were recorded on a Hitachi S-450transmission electron microscope operating at 200kV.The decay curves of long afterglow phosphors were measured with a PR-305brightness meter,and the samples were irradiated by the standard Xe lamp for10min.A Hi-tachi F-4500Fluorescence Spectrophotometer was used to detect the excitation and emission spectra of the products.2Results and discussionFig.1shows respectively the SEM images of product A, B,and C fabricated by the three mixing methods.There is a noticeable difference on the microstructure of the phosphors powders.The product A,prepared by using dry-mixing method,has shown irregular and seriously aggregated grains in comparison with the products B and C.The products B and C have good dispersity,and there are many pores be-tween particles.The particle size of the product C is about4μm,somewhat bigger than the particle size of the product B of about1.5μm.The densely packed grains in the product A indicate that the product A have high degree of hardness.It is thus necessary to increase the time and strength of grind-ing and milling,which will influence the structure and sur-face of the phosphors powders and hence impair the lumi-nescent properties.Additionally,the grinding and balling process will increase the chance of importing impurities in the raw materials and thus lower the luminescent properties.On the other hand,the powders of Products B and C are loose,which means that it is easy to ball-mill the products B and C.The X-ray diffraction patterns of the three products are shown in Fig.2.The results prove that the phosphors pre-pared in this work are all of SrAl2O4phase mainly,and the co-doped Eu and Dy ions have no influence on the crystal structure of luminescent materials.The peaks in XRD pat-terns of the products A and C are similar to each other and are both attributed to SrAl2O4monoclinic phase.The XRD pattern of the product B prepared by wet-mixing method has many additional peaks,some ascribed to SrAl4O7and SrAl12O19,some to other phases and impurities,which in-fluence the luminescent properties of the product B.The excitation and the emission spectra of the products A, B,and C are shown in Figs.3and4,respectively.The exci-tation spectra show a broad band in UV and visible region which indicates that the sunlight could excite readily long afterglow phosphors.Excitation spectrum of the product B shows obvious difference from those of the products A and C,due to the presence of second phases and impurities.The doped Eu2+ions in the phosphors give rise to an emission band at514nm,which is ascribed to the typical4f65d1-4f7 transitions of Eu2+.There are no special emissions of Dy3+ and Eu3+in the spectra,which implies that Eu3+ions have been changed to Eu2+completely.With respect to Dy3+,it induces the formation of the holes trap levels and can pro-long the afterglow.In Fig.4,the emission spectra of prod-ucts A,B and C are same to each other,whereas the product C has the best luminance,which is ascribed to the difference of microstructure,particle size and purity of the phosphors powders.From the decay curves of the three phosphors as shown in Fig.5,we can find that the initial brightness and the decay speed of long afterglow phosphors are different from each other.The initial brightness of the products A,B,and C is 9963,11490and14663mcd/m2,respectively.The decay time of the products A,B,and C is15,19,and24h,pared with the products A and B prepared by us-ing dry-mixing and wet-mixing method,the product C has higher initial brightness and slower decay speed.Therefore, the product C has better long-lasting phosphorescence.The poor long-lasting phosphorescence properties of the products A and B can be due to particle aggregate and impurities.For F S M f(),B()()ig.1E images o products A a b and C c152JOURNAL OF RARE EARTHS,Vol.28,No.1,Feb.2010Fig.2XRD patterns of products A (1),B (2)and C(3)Fig.3Excitation spectra of products A (1),B (2)and C(3)Fig.4Emission spectra of products A (1),B (2)and C(3)Fig.5Decay curves of products A (1),B (2)and C (3),F B,q luminescent property.The product C has longer persistence than the products A and B because of the good particle dis-persity and high phase-purity.3ConclusionsWe have developed a simple mixing method for solid-state reaction synthesis of SrAl 2O 4:Eu 2+,Dy 3+long after-glow phosphors.The phosphors have been prepared by the new mixing method,dry-mixing method and wet-mixing method.It was found that the phosphor mixed by dry-mixing method had serious aggregate,and the phosphors prepared by using wet-mixing method had some impurities and sec-ond phases,which thus deteriorated the luminescent property dramatically.The phosphors prepared by using the new mixing method had no seriously-agglomerated particles and impurities,which led to higher initial brightness and slower decay speed.This mixing process is considered to be supe-rior to other widely used approaches,and is of great potential for application in industry.References:[1]Smets B M J.Phosphors based on rare-earths,a new era in fluorescent lighting.Mater.Chem.Phys.1987,16(3-4):283.[2]Ronda C R.Recent achievements in research on phosphors for lamps and displays.J.Lumin.1997,72-74:49.[3]Jia W Y,Yuan H B,Lu L Z,Liu M H,Yen W M,Crystal growth and characterization of Eu 2+,Dy 3+:SrAl 2O 4and Eu 2+,Nd 3+:CaAl 2O 4by the LHPG method.J.Cryst.Growth,1999,200(1-2):179.[4]Holsa J,Jungner H,Lastusaari M,Niittykoski J.Persistent lu-minescence of Eu 2+doped alkaline earth aluminates MAl 2O 4:Eu 2+.J.Alloys Compd.,2001,323-324:326.[5]Nag A,Kutty T R N.Role of B 2O 3on the phase stability and long phosphorescence of SrAl 2O 4:Eu,Dy.J.A lloys Compd.,2003,354(1-2):221.[6]Matsuzawa T,Nabae T.Effects of composition on long phos-phorescence SrAl 2O 4:Eu,Dy phosphor crystals.J.Electro-chem.Soc.,1997,144(9):L243[7]Lin Y H,Zhang Z T,Zhang F,Tang Z L,Chen Q M.Prepara-tion of the ultrafine SrAl 2O 4:Eu,Dy needle-like phosphor and its optical properties.Mater.Chem.Phys.,2000,65(1):103.[8]Murayama Y,Takeuchi N,Aoki Y,Matsuzawa T.Phospho-rescent Patent 5424006(1995).[9]Matsuzawa T,Aoki Y,Takeuchi A N,Murayama Y.A new long phosphorescent phosphor with high brightness SrAl 2O 4:Eu 2+,Dy 3+.J.Electrochem.Soc.,1996,143:2670.[10]Lin Y H,Zhang Z T,Tang Z L,Zhang J Y,Zheng Z S,Lv X.Characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu 2O 3and Dy 2O 3.Mater.Chem.Phys.,2001,70(2):156.[11]Melendr ez R ,Arellano-Tanori O,Pedroza-Monter o M,Yen WM,Barboza-Flores M.Temperature dependence of persistent luminescence in β-irradiated SrAl 2O 4:Eu 2+,Dy 3+phosphor.J.Lumin.,2009,129(7):679.the product A grinding and milling process impaired the luminescent properties.or the product the impurities and the second phases act as a uenching center to impair the。
β-Ga2O3的p型掺杂研究进展
第 45 卷第 3 期2024年 3 月Vol.45 No.3Mar., 2024发光学报CHINESE JOURNAL OF LUMINESCENCELi(Sc, M)Si2O6∶Cr3+(M = Ga3+/Lu3+/Y3+/Gd3+)的近红外发光性能卢紫微1,2,刘永福2*,罗朝华2,孙鹏2,蒋俊2*(1. 宁波大学材料科学与化学工程学院,浙江宁波 315211;2. 中国科学院宁波材料技术与工程研究所,浙江宁波 315201)摘要:荧光转换型近红外发光二极管(NIR pc‐LED)具有体积小、谱带宽、峰位易调谐等优点,是新一代NIR光源发展的前沿,其关键在于研发可被蓝光有效激发的高效率宽带近红外荧光粉。
LiScSi2O6∶Cr3+荧光材料的激发波长为460 nm,发射峰位在845 nm,光谱带宽为156 nm,内量子效率为64.4%。
基于该体系,本文通过M离子(M = Ga3+,Lu3+,Y3+,Gd3+)取代Sc3+的方式对其性能进行调控。
结果表明,引入M离子易生成杂相或发生相变,降低了材料的发光性能。
本文从晶体结构出发对其调控过程进行了分析。
关键词:LiScSi2O6∶Cr3+;阳离子取代;晶体结构中图分类号:O482.31 文献标识码:A DOI: 10.37188/CJL.20230325Near-infrared Luminescence ofLi(Sc, M)Si2O6∶Cr3+(M = Ga3+/Lu3+/Y3+/Gd3+)LU Ziwei1,2, LIU Yongfu2*, LUO Zhaohua2, SUN Peng2, JIANG Jun2*(1. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China;2. Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China)* Corresponding Authors, E-mail: liuyongfu@; jjun@Abstract:Near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs) are expected to be the next-gen‐eration NIR light sources,which have the advantages of small size,broad bandwidth,and easy tuning of emission peaks. The key for NIR pc-LEDs is to develop highly efficient broadband NIR phosphors that can be effectively excit‐ed by blue light. LiScSi2O6∶Cr3+can be excited by blue light and emits NIR light peaked at 845 nm with a broad band‐width of 156 nm and an internal quantum efficiency of 64.4%. Herein, Sc3+ is replaced by M ions (M = Ga3+, Lu3+,Y3+, Gd3+) to regulate the NIR luminescence. The introduction of M ions is easy to form heterogeneous phases or un‐dergo phase transformation, thus reducing the NIR luminescence of the titled material. The regulation processes are analyzed based on the crystal structure.Key words:LiScSi2O6∶Cr3+; cation substitution; crystal structure1 引 言近红外光谱技术具有无损伤、穿透性好等优点,在无损检测、食品安全、夜视与医疗成像等领域具有广泛应用[1-5]。
骨瓜提取物注射液辅助治疗促进骨折切开复位内固定患者骨折愈合的作用
2018年4月骨瓜提取物注射液辅助治疗促进骨折切开复位内固定患者骨折愈合的作用许多富,陈鹏(勉县骨伤科医院,陕西汉中,724200)摘要:目的分析骨瓜提取物注射液辅助治疗促进骨折切开复位内固定患者骨折愈合的作用。
方法选取2015年2月至2016年9月124例在我院行骨折切开复位内固定术的患者随机分为观察组和辅助组,各62例。
观察组不给予任何促进骨折部位愈合药物,辅助组给予骨瓜提取物注射液进行治疗。
比较两组患者骨折愈合时间、VAS评分及功能恢复情况。
结果辅助组的肱骨髁上、尺桡骨、掌骨、股骨干及胫腓骨骨折愈合时间均短于观察组,差异具有统计学意义(P<0.05);治疗3d后,辅助组的VAS评分明显低于观察组(P<0.001);辅助组的功能恢复优良率为96.77%,明显高于观察组的82.26%(P<0.05)。
结论骨瓜提取物注射液辅助治疗骨折切开复位内固定患者,可有效加快患者骨折部位的愈合,缩短愈合时间,减轻患者疼痛,临床应用价值高,值得推广应用。
关键词:骨瓜提取物注射液;骨折切开复位内固定;功能恢复中图分类号:R683文献标志码:A文章编号:2096-1413(2018)11-0064-02Effect of cerrus and cucumis polypeptide injection on fracture healing in patientswith open reduction and internal fixation of fractureXU Duo-fu,CHEN Peng(the Orthopedics Hospital of Mian County,Hanzhong724200,China)ABSTRACT:Objective To analyze the effect of bone melon extract injection on fracture healing in open reduction and in-ternal fixation of fracture.Methods From February2015to September2016,124cases of fracture patients undergoing open reduction and internal fixation in our hospital were selected and randomly divided into observation group and auxiliary group,with62cases in each group.The observation group was not given any medicine which promoted the healing of the fracture site,and the auxiliary group was treated with cervus and cacumis pdypeptide injection.The fracture healing time, VAS scores and functional recovery of the two groups were compared.Results The fracture healing time of the humeral supracondylar,ulna and radius,metacarpal,femoral and tibial fractures in the auxiliary group were shorter than those in the observation group,and the differences were statistically significant(P<0.05).After treatment for3d,the VAS score in the auxiliary group was significantly lower than that in the observation group(P<0.001).The excellent and good rate of functional recovery in the auxiliary group(96.77%)was significantly higher than82.26%in the observation group(P<0.05).Conclusion Cerrus and cucumis pdypeptide injection is an adjunctive treatment for open reduction and internal fixation of fracture,which can effectively accelerate the healing of the fracture site of the patients,shorten the healing time and re-lieve the pain of the patients,and has high clinical application value,and it is worthy of popularization and application.KEYWORDS:cerrus and sucumis polypeptide injection;open reduction and internal fixation of fracture;functional recovery临床医学骨折患者行切开复位内固定术后常伴有周围软组织损伤,患者会出现局部疼痛,影响患者的生活质量[1]。
Au_NPs
激光生物学报ACTA LASER BIOLOGY SINICAVol. 32 No. 4Aug . 2023第32卷第4期2023年8月收稿日期:2023-05-05;修回日期:2023-06-13。
基金项目:新疆维吾尔自治区自然科学基金“青年科学基金”项目(2022D 01C 727,2022D 01C 715,2022D 01C 213)。
作者简介:海热古·吐逊,讲师,主要从事光学方面的研究。
* 通信作者:努尔尼沙·阿力甫,副教授,主要从事生物医学光学方面的研究。
E-mail: 11530034@ 。
Au NPs/UCNPs 复合纳米体系用于荧光成像引导下的肿瘤光热治疗的研究进展海热古·吐逊,黄高飞,张 弛,赵慧宇,樊慧敏,努尔尼沙·阿力甫*(新疆医科大学医学工程技术学院,乌鲁木齐 830011)摘 要:近红外(NIR )光诱导的光热治疗(PTT )因其无创、非侵入、毒副作用低、可精准靶向治疗等特性,已成为肿瘤精准治疗的新型手段。
凭借其独特的表面等离激元共振(SPR )特性及其高效的光热转换效率、生物毒性与良好的光稳定性,金纳米颗粒(Au NPs )已成为理想的光热治疗剂。
而高质量成像技术是实现有效光热治疗的可靠有力的工具,尤其是多模态成像技术,比起单一成像方式具有更卓越的性能,为更全面、更精准的肿瘤成像提供了可能,显著提高了非侵入性医学治疗的潜力。
NIR 光激发的稀土上转换纳米颗粒(UCNPs ),因其丰富的4f 电子结构展现出磁性、荧光、X 射线衰减和放射等多功能特性,使其作为造影剂在多模态成像领域展现了重要的应用前景。
因此, 构建NIR 光诱导的 Au NPs/UCNPs 复合纳米体系,可用于多模态成像引导下的光热治疗,有望成为癌症诊疗的一种新策略。
本文简单介绍了Au NPs 、UCNPs 的光学特性,重点综述了NIR 光诱导的UCNPs-Au NPs (纳米壳、纳米棒、纳米团簇)复合纳米体系在癌症光热治疗领域的最新研究进展,并对其实现诊疗一体化的未来进行了展望。
口腔科英语专业词汇
口腔科英语专业词汇翻译牵引钩hook铅毒性口炎lead stomatitis前导anterior guidance前弓anterior arch前弓区anterior arch area前磨牙premolars, bicuspid teeth ; 又称“双尖牙”。
X线头影测量机cephalometric X-ray machineX线头影测量片cephalometric roentgenogram[成釉器]星网状层stellate reticulum, enamel pulp; 又称“釉髓”。
[成釉器]中间层stratum intermedium[家族性]巨颌症cherubism[牙]根管root canal[牙]根尖孔apical foramen[牙]龈瘤epulis咬合occlusion; 下颌静止位时,上下牙的接触关系。
咬合叉bite fork, face-bow fork咬合叉固定夹bite fork clamp咬合垂直距离occlusal vertical dimension咬合堤occlusal rim咬合垫occlusal pad咬合干扰occlusal interference咬合夹板occlusal splint咬合架articulator咬合间记录interocclusal record咬合力occlusal force, biting force咬合力计occlusometer咬合面occlusal surface咬合面窝occlusal fossa咬合磨损occlusal wear咬合平衡occlusal equilibration咬合平面occlusal plane咬合平面导板occlusal guide plate咬合平面规occlusal plane guide咬合托bite plate咬合紊乱occlusion disorder咬合型occlusal pattern咬合学occlusion咬合翼片bite wing film咬合缘occlusal margin咬合支托occlusal rest咬合重建occlusal reconstruction咬合片occlusal filmⅠ类错咬合class ⅠmalocclusionⅠ型卡环type Ⅰclasp, pull type clasp, Aker clasp; 又称“拉型卡环”、“阿克卡环”。
抗骨质疏松胶囊治疗老年骨质疏松性髋部骨折近期疗效观察
·87·522105October抗骨质疏松胶囊治疗老年骨质疏松性髋部骨折近期疗效观察张上上,刘志刚,张鹏,毕梦娜,李钟,陈经勇(四川省骨科医院,四川成都610041)摘要:目的观察抗骨质疏松胶囊治疗老年骨质疏松性髋部骨折的近期临床疗效。
方法将我院接受治疗的130例老年骨质疏松性髋部骨折患者随机分为中医组与西医组各65例,在骨专科治疗基础上,西医组应用西药进行抗骨质疏松治疗,中医组应用抗骨质疏松胶囊治疗,对比两组患者骨折治疗效果、髋关节功能以及各项临床指标。
结果治疗前,两组患者髋关节功能评分(Harris )、治疗优良率差异不明显(>0.05);治疗结束后两组血清骨钙素(BGP )、Ⅰ型胶原交联羧基末端肽(CTX )、脱氧吡啶啉(DPD )指标水平相比,中医组优于西医组(<0.05);两组不良反应发生率相比,中医组低于西医组(<0.05)。
结论抗骨质疏松胶囊治疗老年骨质疏松性髋部骨折能够获得满意的近期临床疗效,有标本兼顾的作用,能帮助患者促进骨折愈合,改善相关指标,调节机体整体状况,且有较高的用药安全性。
关键词:老年骨质疏松;髋关节骨折;抗骨质疏松胶囊;不良反应;髋关节功能中图分类号:R274.1文献标识码:Bdoi :10.3969/j.issn.1008987x.2020.05.24The Short-term Efficacy of Anti-osteoporosis Capsule in Treatment of SenileOsteoporotic Hip FractureZHANG Shangshang ,LIU Zhigang ,ZHANG Peng ,BI Mengna ,LI Zhong ,CHEN Jingyong(Sichuan Provincial Orthopaedic Hospital ,Chengdu 610041)Abstracts :Objective To observe the short-term clinical efficacy of Anti-osteoporosis Capsule in treatment of senile os-teoporotic hip fracture.Methods A total of 130elderly patients with osteoporotic hip fractures were randomly divided intoTCM group and western medicine group ,65cases in each.On the basis of bone specialist treatment ,western medicine group received western medicine for anti-osteoporosis treatment ;TCM group received Anti-osteoporosis Capsule.The fracture treatment effects ,hip functions and various clinical indicators were compared between the two groups.Results There was no significantdifference in Harris score and total effective rate between the two groups (>0.05);BGP ,CTX ,DPD and other indicators were better in TCM group than those in control group ;the incident rate of adverse reactions of TCM group was lower than that of western medicine group ,and the difference was significant (<0.05).Conclusion Anti-osteoporosis Capsule can achieve sat-isfactory of short-term clinical effect in treatment of senile osteoporotic hip fracture.It can help patients to promote fracture healing ,improve related indicators ,and adjust the overall condition of the body ,with higher medication safety.Keywords :senile osteoporosis ;hip fracture ;Anti-osteoporosis Capsule ;adverse reactions ;hip function骨质疏松症多发老年人群,是指骨量减少,同时骨质成份中,骨矿物质与基质的比例发生改变,相对减少,通过显微镜可以发现骨组织显微结构已经有退化的趋势。
Ce3+掺杂对NaYF4∶Yb3+,Tm3+纳米粒子上转换发光性能的影响及其荧光温度特性应用
第42卷㊀第11期2021年11月发㊀光㊀学㊀报CHINESE JOURNAL OF LUMINESCENCEVol.42No.11Nov.,2021文章编号:1000-7032(2021)11-1763-11㊀㊀收稿日期:2021-07-05;修订日期:2021-07-20㊀㊀基金项目:广西重点科研项目(2016GXNSFDA380026)资助Supported by Key Scientific Research Projects in Guangxi(2016GXNSFDA380026)Ce 3+掺杂对NaYF 4ʒYb 3+,Tm 3+纳米粒子上转换发光性能的影响及其荧光温度特性应用蒙铭周,张㊀瑞,法信蒙,杨江华,欧㊀俊∗(桂林理工大学材料科学与工程学院,广西有色金属及特色材料加工重点实验室,广西桂林㊀541004)摘要:采用溶剂热法制备了一系列不同Ce 3+含量的Yb 3+/Tm 3+/Ce 3+共掺NaYF 4纳米粒子㊂样品在980nm激光激发下,可以观察到强烈的上转换蓝色荧光㊂探究了不同Ce 3+含量对发光强度的影响,发现在Ce 3+含量从0%增加到0.5%的过程中,紫外到可见的上转换发光随着Ce 3+浓度的增加先增强后减弱,在0.2%时荧光达到最强,比不掺Ce 3+时荧光增强高达5倍左右,其中475nm 的蓝光更是增强了6倍㊂此外,对其机理进行了深入细致的探究,一方面,掺杂Ce 3+后,Tm 3+中的(3F 3,3H 4)与Ce 3+中的(2F 7/2,2F 5/2)发生交叉弛豫,有效地防止了电子跃迁回到基态,以致整体荧光明显增强;另一方面,当掺入Ce 3+后,形成的(Yb 3+-Yb 3+-Ce 3+)Trimers 把能量传递给1G 4能级,发出475nm 的蓝光,导致蓝光很强㊂将其应用于荧光强度比测温,绝对灵敏度高达0.0350K -1㊂关㊀键㊀词:Ce 3+掺杂;上转换发光;强蓝光;(Yb 3+-Yb 3+-Ce 3+)Trimers;荧光强度比测温中图分类号:O482.31㊀㊀㊀文献标识码:A㊀㊀㊀DOI :10.37188/CJL.20210227Effect of Ce 3+Doping on Upconversion Luminescence of NaYF 4ʒYb 3+,Tm 3+Nanoparticles and Application of Fluorescence Temperature CharacteristicsMENG Ming-zhou,ZHANG Rui,FA Xin-meng,YANG Jiang-hua,OU Jun ∗(Guangxi Key Laboratory of Nonferrous Metals and Special Materials Processing ,College of Material Science and Engineering ,Guilin University of Technology ,Guilin 541004,China )∗Corresponding Author ,E-mail :gloujun @Abstract :A series of Yb 3+/Tm 3+/Ce 3+co-doped NaYF 4nanoparticles with different Ce 3+contents were produced by solvothermal method.Strong upconversion blue fluorescence can be observed un-der 980nm laser excitation.The influence of different Ce 3+content on the luminescence intensity was investigated.It was found that the upconversion luminescence from UV to visible enhanced firstlyand then weakened with the increase of Ce 3+concentration when the mole fraction of Ce 3+increased from 0%to 0.5%.The fluorescence intensity reached the maximum at 0.2%,which was about 5times stronger than that without Ce 3+doping,and the blue light at 475nm was enhanced by 6times.In addition,the mechanism was explored in detail.On the one hand,the cross relaxation be-tween(3F 3,3H 4)in Tm 3+and (2F 7/2,2F 5/2)in Ce 3+occured after doping Ce 3+,which effectivelyprevented the electron transition from going back to the ground state,resulting in the overall fluores-cence enhancement.On the other hand,the (Yb 3+-Yb 3+-Ce 3+)Trimers formed by doping Ce 3+transfered energy to 1G 4level and emitted 475nm blue light,which led to strong blue light.When it1764㊀发㊀㊀光㊀㊀学㊀㊀报第42卷was applied to the fluorescence intensity ratio thermometry measurement,the absolute sensitivity wasas high as0.0350K-1.Key words:Ce3+doped;upconversion luminescence;strong blue light;(Yb3+-Yb3+-Ce3+)Trimers;fluorescence intensity ratio thermometry1㊀引㊀㊀言上转换发光是指当一束长波长的光激发时,物质会转换发出短波长的光,这是一种反斯托克斯发光现象,即把能量低的光子转换成能量高的光子[1-3]㊂它独特的发光特性在生物荧光成像㊁医疗㊁能源等多方面得到了广泛应用[4-6]㊂目前, 980nm红外激光器比较高效且价格低廉,可为上转换纳米材料发光提供稳定可靠的激励能量,因此上转换发光材料的应用前景显得越来越重要㊂在许多镧系基质中,氟化物具备声子能量低㊁稳定性好以及透光率高等优势[7],NaYF4声子能量只有360cm-1,因此NaYF4成为最理想的基质材料[8-9]㊂Tm3+作为目前发光效率较高的稀土元素,成为纳米晶理想的激活剂㊂Yb3+与980nm 激发光能量匹配,为激活剂提供能量传递作用,可作为纳米晶理想的敏化剂㊂因此,NaYF4ʒYb3+, Tm3+是目前较为理想的上转换纳米晶[10-12]㊂但目前稀土上转换发光效率依然非常低,为了解决这一问题,进一步增强纳米粒子发光强度,使NaYF4ʒYb3+,Tm3+更好地满足日益旺盛的社会需求,人们往往只是通过控制纳米粒子的大小[13]㊁改变掺杂离子的百分比等方式提高发光效率,但其有一定的局限性㊂然而,近年来,王元生课题组把Ca2+掺入NaGdF4ʒYb3+,Er3+上转换纳米粒子中,发现发光强度比不掺Ca2+时大幅度提高[6,8-9,13-15]㊂显然,通过掺杂异质离子可以明显提高上转换发光效率,是一种非常可行且有效的方法[16-18]㊂Ce3+掺杂引起了研究人员的广泛关注㊂李英杰课题组发现Ce3+提高了CaO表面电子的电导率,增加了CO2捕集,促使水煤气变换和蒸汽甲烷重整反应[19]㊂杨振东课题组发现与纯Zn-CO2O4相比,Ce3+掺杂的ZnCO2O4纳米球具有较高的过氧化物酶样活性和较弱的氧化酶样活性[20]㊂Jacobsohn课题组通过沉淀法制备了Ce3+掺杂的六方相BiPO4,观察到Ce3+与宿主之间的强相互作用,Ce3+的掺入导致在约445nm(2.79 eV)和490nm(2.53eV)处产生两个部分重叠的带[21]㊂这些结果使人们对Ce3+掺杂材料内在和外在特性的认识得到了增强㊂目前,Ce3+的掺杂很大程度上促进了材料本身的性能,因此把Ce3+掺杂到NaYF4ʒYb3+,Tm3+纳米粒子中是提高其各方面性能的可行方法㊂本文通过溶剂热法制备出Ce3+掺杂的NaYF4ʒYb3+,Tm3+纳米粒子,并调控Ce3+的浓度,有效地使更多电子布居在3H4能级,防止电子跃迁回到基态,从而使更多电子向更高能级跃迁㊂尽管稀土上转换纳米粒子中发光离子在980nm处吸收截面小㊁上转换量子效率低[22],但通过掺杂Ce3+,即不需要高功率激光激发也可发出明亮的荧光㊂结果表明,Ce3+的掺杂可以明显提高其发光性能,并在475nm出现强烈的蓝光,且寿命长㊂通过光谱分析,结合稀土元素的能级结构,对Ce3+掺杂NaYF4ʒYb3+,Tm3+上转换荧光增强的机理进行了详尽的讨论㊂近年来,基于稀土上转换发光的光学温度传感引起了国内外的广泛关注㊂传统以氧化物为基质的测温材料,不仅上转换效率低,而且测温灵敏度也低,无法满足目前的社会需求,因此急需研究一种快捷㊁灵敏的测温技术㊂通过荧光强度比(FIR)测温提供了一种新型的非接触式测温方法,该方法只与材料本身荧光特性有关,因此可以有效地避免传统测温方法对测温环境的依赖㊂另外,稀土元素拥有丰富的能级结构,能够更好地满足现代生产生活对测温的需求㊂本文将合成的高荧光强度NaYF4ʒYb3+, Tm3+,Ce3+纳米粒子应用于灵敏的测温技术,其最大绝对灵敏度高达0.0350K-1㊂2㊀实㊀㊀验2.1㊀试剂与仪器氯化钇(YCl3㊃6H2O)㊁氯化镱(YbCl3㊃6H2O)㊁氯化铥(TmCl3㊃6H2O)㊁氯化铈(CeCl3㊃7H2O)㊁油酸(OA)㊁一-十八烯(ODE),均为分析㊀第11期㊀㊀蒙铭周,等:Ce3+掺杂对NaYF4ʒYb3+,Tm3+纳米粒子上转换发光性能的影响及其荧光温度特性应用1765㊀纯(AR),阿拉丁化学试剂有限公司;氢氧化钠(NaOH)㊁氟化铵(NH4F)㊁无水甲醇㊁无水乙醇㊁环己烷,均为分析纯(AR),西陇化工股份有限公司;高纯氩气(99.999%),桂林弘润气体㊂通过X射线粉末衍射仪(X Pert-pro,荷兰帕纳科计分析仪器公司)表征上转换发光纳米粒子的晶相结构;场发射透射电子显微镜(TEM)(JSF 2100F,日本高新技术公司/英国牛津)表征纳米粒子的形貌;粒度与Zeta电位分析仪(ZEN3600,英国马尔文公司)表征粒径大小;VARIAN荧光分光光度仪(美国安捷伦公司)表征纳米子的荧光强度;QuantaMater8000瞬态稳态荧光光谱仪(美国HORIBA公司)表征荧光寿命和变温荧光㊂2.2㊀样品制备将含YCl3㊃6H2O㊁YbCl3㊃6H2O㊁TmCl3㊃6H2O㊁CeCl3㊃7H2O不同比例㊁总稀土离子含量为0.5mmol的水溶液(1mL)加入到50mL烧瓶中,在磁力搅拌器的作用下,搅拌蒸发溶液中的水分;待水分完全蒸发后,先后加入3.75mL油酸(OA)和7.5mL1-十八烯(ODE),并在氩气保护下使混合物加热至120ħ,保持30min,以除去OA和ODE中的水分㊂升高体系的温度到160ħ,反应60min后自然冷却到室温㊂在剧烈搅拌下,逐滴加入5mL含1.25mmol NaOH和2mmol NH4F 的甲醇溶液,并在室温下剧烈搅拌30min;随后在通入保护气的条件下升高体系温度到100ħ,除去反应混合液中的甲醇溶液㊂最后,待甲醇除干净后,在氩气保护下将温度迅速升温至300ħ,且保持90min,反应结束后停止加热㊂待反应体系自然冷却到室温后,用过量的无水乙醇沉淀产物,并用无水乙醇㊁环己烷的混合溶液对产物进行多次洗涤㊂最后将反应产物在常温下真空干燥24 h,即得到β-NaYF4ʒYb3+,Tm3+,Ce3+纳米粒子㊂3㊀结果与讨论3.1㊀结构表征掺杂不同Ce3+含量的NaYF4ʒ18%Yb3+, 0.5%Tm3+纳米粒子样品经过干燥后,对其进行X射线衍射(XRD)表征,通过表征图(图1(a))可以看出所有样品的衍射位置很好地对应标准JDPDS卡片No.28-1192中的各个衍射峰位置㊂在基质NaYF4中掺入Ce3+,既不会产生任何NaYF4新峰,也不会破坏任何现有的NaYF4衍射峰,这证明得到的是纯β相的NaYF4㊂图1㊀(a)Ce3+掺杂(0.1%/0.2%/0.3%/0.4%/0.5%)NaYF4ʒ18%Yb3+,0.5%Tm3+(Ⅱ㊁Ⅲ㊁Ⅳ㊁Ⅴ㊁Ⅵ)和无Ce3+掺杂NaYF4ʒ18%Yb3+,0.5%Tm3+(Ⅰ)纳米粒子的XRD图,(100)㊁(110)㊁(101)㊁(201)㊁(211)晶面对应衍射峰在图中标注;(b)放大不同Ce3+浓度的纳米粒子(201)晶面的XRD图谱㊂Fig.1㊀(a)XRD patterns of Ce3+-doped(0.1%/0.2%/0.3%/0.4%/0.5%)NaYF4ʒ18%Yb3+,0.5%Tm3+(Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ)and Ce3+-free NaYF4ʒ18%Yb3+,0.5%Tm3+(Ⅰ)nanoparticles,the corresponding diffraction peaks of (100),(110),(101),(201),(211)crystal planes are indicated.(b)X-ray diffraction patterns of(201)nanoparti-cle with different Ce3+concentration.为了更深入验证Ce3+是否成功掺入β-NaYF4ʒYb3+,Tm3+纳米粒子的基质晶格中,我们选取(201)晶面对应的衍射角进行局部放大,如图1(b)所示㊂根据布拉格方程2d sinθ=kλ[23],其中d为晶面间距,θ为衍射角,k为正整数,λ为X射线的波长㊂掺杂Ce3+后,(201)晶面对应的衍射角向小角度偏移,即衍射角θ比不掺Ce3+的要小,而k和λ不变,因此d值变大,这说明晶格1766㊀发㊀㊀光㊀㊀学㊀㊀报第42卷发生膨胀㊂由于Ce3+的半径(102pm)大于Y3+的半径(90pm),因此进一步证明了纳米粒子(201)晶面间距变大是由于Ce3+(10个配位数)被成功掺进基质晶格中取代了Y3+(8个配位数)的位置㊂一个Ce3+的掺入会引起两个空位的形成,进而导致晶格收缩,使得发光中心Tm3+附近晶体场的对称性遭到破坏,提高了宇称禁阻4f-4f 的跃迁几率[24-25],使得上转换发光明显增强㊂此外,Ce3+的半径(102pm)大于Tm3+的半径(88pm),当掺入的离子比发光中心离子大时, Yb3+与Ce3+距离更近,促使Yb3+与Ce3+能级结合形成新的能级,把能量传递给Tm3+激发态1G4,发出475nm的蓝色荧光,增强了蓝光强度㊂3.2㊀形貌表征图2(a)是NaYF4ʒ18%Yb3+,0.5%Tm3+, 0.2%Ce3+样品的透射电镜图,可以看出纳米粒子排列有序㊁尺寸分布均匀,无团聚现象,形貌近似呈六方结构㊂其他掺杂比例的样品大小和均匀情况与之类似㊂NaYF4的高分辨TEM图像(图2(b))图2㊀(a)NaYF4ʒ18%Yb3+,0.5%Tm3+,0.2%Ce3+LR-TEM;(b)HR-TEM;(c)DLS图㊂Fig.2㊀LR-TEM(a),HR-TEM(b)and DLS(c)of NaYF4ʒ18%Yb3+,0.5%Tm3+,0.2%Ce3+.显示其晶面间距为0.28nm,对应NaYF4的(110)晶面,表明合成的纳米粒子结晶性良好㊂粒度与Zeta电位分析仪表征的NaYF4纳米粒子样品的粒径分布如图2(c)所示,可以看出样品的水合动力学直径d=(29.5ʃ1.46)nm,粒径较小㊂根据Debye-Scheller公式[26],d=KλB M cosθ, NaYF4纳米颗粒的粒径可由XRD最强衍射峰的半峰宽计算,其中K=0.89为Scherrer常数,λ= 0.154056nm为Cu Kα射线的波长,B M是衍射峰的半峰宽,θ是最大衍射峰对应的布拉格角㊂由此估算出平均晶体尺寸为28~32nm,进一步表明与粒径分析仪测得的粒径一致㊂图3是上转换纳米粒子的TEM能谱图,从图中清晰地看出F㊁Y㊁Yb㊁Tm㊁Ce各掺杂元素的面扫描分布,可知各元素分布都很均匀,这再次表明成功合成了Ce3+掺杂NaYF4ʒYb3+,Tm3+上转换纳米粒子㊂图3㊀NaYF4ʒ18%Yb3+,0.5%Tm3+,0.2%Ce3+的TEM 及其面扫描图Fig.3㊀NaYF4ʒ18%Yb3+,0.5%Tm3+,0.2%Ce3+TEM and its surface scan3.3㊀荧光光谱分析在980nm近红外光激发下测定了NaYF4ʒ18%Yb3+,0.5%Tm3+,x%Ce3+的荧光光谱,从图4中可以看出合成的纳米粒子发射出强烈的蓝光和紫外光,发射峰主要集中在362,451,475, 646,700nm附近,分别对应1D2ң3H6㊁1D2ң3F4㊁1G4ң3H6㊁1G4ң3F4和3F3ң3H6㊂为了实现多光子上转换发射,我们根据文献[27]报道的18% Yb3+和0.5%Tm3+的比例合成该纳米粒子,另外通过掺杂不同含量的Ce3+发现荧光强度明显增强㊂当掺入Ce3+含量由0升至0.2%时,荧光强㊀第11期㊀㊀蒙铭周,等:Ce 3+掺杂对NaYF 4ʒYb 3+,Tm 3+纳米粒子上转换发光性能的影响及其荧光温度特性应用1767㊀度随着掺入量增大而明显增强;当Ce 3+含量继续增加时,荧光强度逐渐减弱;当Ce 3+含量为0.2%时,荧光强度最强,比不掺Ce 3+增强5倍左右;特别是在可见光475nm (1G 4ң3H 6)波段出现强烈的蓝光,比不掺Ce 3+增强高达6倍左右㊂并且从图中可以看出475nm 蓝光很强,为其应用于荧光成像奠定了基础㊂图4㊀不同Ce 3+含量掺杂的NaYF 4ʒYb 3+,Tm 3+,Ce 3+(18%,0.5%,x %)(x =0.1,0.2,0.3,0.4,0.5)荧光光谱,插图为上转换荧光积分强度之和随Ce 3+掺杂浓度的变化(激光器:980nm,功率密度:7.5W /cm 2)㊂Fig.4㊀Fluorescence spectra of NaYF 4ʒYb3+,Tm3+,Ce3+(18%,0.5%,x %)(x =0.1,0.2,0.3,0.4,0.5)doped with different Ce3+content,the illustrationshows the change of the sum of upconversion fluores-cence integral intensity with Ce 3+doping concentra-tion(laser:980nm,power density:7.5W /cm 2)3.4㊀荧光寿命分析为了进一步研究掺杂Ce 3+对上转换荧光增强原理,以475nm 发射波长为例,在室温下通过980nm 激光器测量不同Ce 3+浓度的NaYF 4ʒYb 3+,Tm 3+纳米粒子的荧光寿命㊂从图5可以看出,随着Ce 3+掺杂浓度由0%增加至0.2%,发光中心Tm 3+中1G 4能级的寿命由0.72ms 增加到0.76ms;而当Ce 3+浓度继续增加时,寿命明显降低㊂根据荧光寿命公式[28]τ=1k =1k F + k i,其中k F 表示荧光发射速率的衰减常数,ki表示各种辐射过程的衰减常数㊂由于Ce 3+掺杂增加了稀土离子4f-4f 间的跃迁几率,因此使非辐射跃迁得到有效抑制,从而使ki减小,荧光寿命增加㊂这表明Ce 3+掺杂的NaYF 4ʒYb 3+,Tm 3+相对于没有Ce 3+掺杂的NaYF 4ʒYb 3+,Tm 3+纳米粒子来说,Tm 3+的1G 4能级上的电子有更大的几率发射辐射跃迁,从而产生更强的发射荧光㊂然而,当Ce 3+含量从0.2%增加到0.5%时,荧光寿命缩短,表明Ce 3+浓度猝灭,导致非辐射弛豫增加,荧光寿命缩短㊂图5㊀不同Ce 3+含量掺杂的NaYF 4ʒYb 3+,Tm 3+在475nm发射波长处的上转换荧光衰减曲线(激光器:980nm,功率密度:4W /cm 2)Fig.5㊀Upconversion fluorescence decay curves of NaYF 4ʒYb 3+,Tm 3+doped with different Ce 3+contents at475nm emission wavelength(laser:980nm,power density:4W /cm 2)目前,生物示踪㊁荧光标记㊁细胞成像等方面紧紧依靠于可见光来辨别目标部位㊂对于NaYF 4ʒYb 3+,Tm 3+纳米粒子而言,特别需要依靠475nm 处的可见光,而本课题组研制出的0.2%Ce 3+掺杂的NaYF 4ʒYb 3+,Tm 3+(18/0.5%),其发射波长在475nm 处,不仅达到荧光最强,而且荧光寿命也最长㊂3.5㊀基于荧光强度比的测温荧光峰值强度比(FIR)测温技术需满足两个条件,其一是辐射跃迁的荧光强度足够大,足以避免光学噪音对测温的影响;其二是两个能级向下跃迁的荧光强度变化趋势相反,且它们之间的能级差大约为200~2000cm -1[34-35]之间㊂我们结合图6和图7可以看出,646nm 和800nm 的荧光强度随着温度的升高逐渐降低,700nm 的荧光强度随温度的升高而增大㊂且通过计算可知,Tm 3+发光中心波长646nm 和800nm 与700nm 的能级差分别为1255cm -1和1790cm -1,均符合热耦合能级的要求㊂这表明Ce 3+㊁Tm 3+㊁Yb 3+三掺杂的NaYF 4纳米粒子可用于灵敏测温㊂1768㊀发㊀㊀光㊀㊀学㊀㊀报第42卷表1 不同样品的灵敏度对比Tab.1㊀Sensitivity comparison of different samples材料㊀㊀辐射跃迁绝对灵敏度/K -1测温范围/K参考文献NaYF 4ʒYb 3+/Tm 3+/Ce 3+1G 4ң3F 4,3F 3ң3H 60.0350300~495本文α-NaYF 4ʒYb 3+/Tm 3+@CaF 23H 4(α),3H 4(β)ң3H 60.0043313~373[29]Y 2TiO 7ʒLi +/Yb 3+/Er 3+2H 11/2,4S 3/2ң4I 15/20.0067298~673[30]NaLuF 4ʒYb 3+/Er 3+/Tm 3+4F 9/2ң4I 15/2,3F 3ң3H 60.0076300~600[31]Gd 2O 3ʒYb 3+/Ho 3+5F 4,5S 2ң5I 80.0092300~673[32]NaLuF 4ʒYb 3+/Tm 3+1D 2,1G 4ң3H 60.0047300~550[33]图6㊀NaYF 4ʒYb 3+,Tm 3+,Ce 3+纳米晶在不同温度下的荧光光谱,插图为发射波长在300~750nm 的放大荧光光谱(激光器:980nm,功率密度:4W /cm 2)㊂Fig.6㊀Fluorescence spectra of NaYF 4ʒYb 3+,Tm 3+,Ce 3+nanocrystals at different temperatures,the illustra-tion shows the fluorescence spectra with emission wavelengths ranging from 300nm to 750nm (laser:980nm,power density:4W /cm 2)㊂根据两个热耦合能级的电子从高能级向低能级跃迁辐射的荧光强度比公式[36-41]ln R =-ΔEkT+ln C ,其中R 为荧光强度比,C =ω2A 20g 2ω1A 10g 1,ΔE 为能级差对应的能量,k 为玻尔兹曼常数,T 为开尔文温度㊂将700nm 与646nm 和700nm 与800nm 两对荧光强度比的对数与温度的倒数做线性拟合得到如图8,拟合结果良好,表明合成的纳米粒子在温度传感方面具有独特优势㊂根据灵敏度的数学定义可知[42-46],S A =d Rd T=R ΔE kT ,S R =1R d R d T ʈΔE kT 2,S A 为绝对灵敏度,S R 为相对灵敏度㊂拟合曲线如图9所示,可知在室温图7㊀不同发射波长峰位荧光强度随温度的变化Fig.7㊀Variation of fluorescence intensity at different emis-sion wavelengths with temperature至200ħ的测温范围内,Ce 3+掺杂的NaYF 4ʒYb 3+,Tm 3+纳米粒子在980nm 激光器的激发下应用于FIR 测温技术得到的绝对灵敏度曲线随着温度升高而单调递增,而相对灵敏度曲线随着温度升高而单调递减㊂这说明FIR 绝对增长速率越来越快,但同时FIR 也在变大,因此FIR 的相对变化越来越小,表明该能级更适用于较低温度的测量㊂但不同荧光峰位FIR 应用于测温,灵敏度各不相同㊂值得一提的是,由图9(a)可知3F 3ң3H 6(700nm)与1G 4ң3F 4(646nm)热耦合能级对的绝对灵敏度从0.0061K -1升至0.0350K -1,最大灵敏度高达0.0350K -1,比3F 3ң3H 6(700nm)㊀第11期㊀㊀蒙铭周,等:Ce 3+掺杂对NaYF 4ʒYb 3+,Tm 3+纳米粒子上转换发光性能的影响及其荧光温度特性应用1769㊀图8㊀(a)700nm 与646nm 的荧光强度峰值比与温度的线性拟合;(b)700nm 与800nm 的荧光强度峰值比与温度的线性拟合㊂Fig.8㊀(a)Linear fitting of fluorescence intensity peak ratio at 700nm and 646nm with temperature.(b)Linear fitting of the ra-tio of peak fluorescence intensity at 700nm to 800nm withtemperature.图9㊀(a)FIR 测温的绝对灵敏度曲线;(b)FIR 测温的相对灵敏度曲线㊂Fig.9㊀(a)Absolute sensitivity curve of FIR temperature measurement.(b)Relative sensitivity curve of FIR temperature meas-urement.与3H 4ң3H 6(800nm)能级对的绝对灵敏度高两个数量级,进一步说明700nm 与646nm 热耦合能级对更有应用优势㊂主要原因是Ce 3+掺杂的NaYF 4ʒYb 3+,Tm 3+纳米粒子非辐射跃迁减少,导致上能级与下能级粒子数之比增大,从而使得向下辐射的上转换荧光强度比增大,这不仅可以带来更大的测温灵敏度,还能带来更好的测试分辨率㊂在现代生产生活中,测温具有很大的应用前景㊂3.6㊀机理分析3.6.1㊀多光子发射机理分析在980nm 低功率激光器激发下,可以清晰地看出Ce 3+掺杂的NaYF 4ʒYb 3+,Tm 3+纳米粒子发出明亮的上转换发光㊂但这种发光不仅仅可以通过直观的可见光发光证实,更重要的是,可以通过相关的功率依赖关系证明这种上转换发光是一种非线性多光子发光过程㊂根据发光强度(I UC )与980nm 激光功率密度(P NIR )的关系可知,I UC ɖP n NIR[47],即I UC 与P NIR 的n 次方成正比,其中n 代表的是上转换UC 发光过程发射一个光子需要吸收980nm 近红外光的光子数㊂1I 6ң3H 6㊁1D 2ң3H 6㊁1D 2ң3F 4㊁1G 4ң3H 6和1G 4ң3F 4的荧光强度与功率密度依赖关系如图10所示㊂通过线性拟合结果可知,1I 6ң3H 6能级跃迁的n 值为4.39,表明该能级为五光子吸收过程;1D 2ң3H 6㊁1D 2ң3F 4能级跃迁n 值分别为3.72和3.14,表明该能级为四子吸收过程;1G 4ң3H 6能级跃迁的n 值为2.82,表明该能级为三光子吸收过程;1G 4ң3F 4能级跃迁的n 值为1.83,表明该能级为双光子吸收过程㊂这些跃迁过程涉及多光子吸收均与Yb 3+ңTm 3+能量传递涉及的多光子数目相同㊂NaYF 4ʒYb 3+,Tm 3+,Ce 3+纳米粒子中,NaYF 4作为基质,Yb 3+作为敏化剂,Tm 3+作为激活剂㊂1770㊀发㊀㊀光㊀㊀学㊀㊀报第42卷图10㊀在980nm 激发下,NaYF 4ʒYb3+,Tm3+,Ce3+的上转换发射强度与激发光功率密度的双对数关系㊂Fig.10㊀Double logarithm relationship between upconversionemission intensity and excitation light power density of NaYF 4ʒYb 3+,Tm 3+,Ce 3+excited at 980nm图11㊀(a)980nm 激光激发下的NaYF 4ʒYb 3+,Tm 3+,Ce 3+纳米粒子上转换发射原理图;(b)纳米粒子的能量转移机制示意图㊂Fig.11㊀(a)NaYF 4ʒYb 3+,Tm 3+,Ce 3+nanoparticle upcon-version emission principle diagram under 980nm la-ser excitation.(b)Schematic diagram of the energytransfer mechanism of nanoparticles.980nm 激光与Yb 3+中2F 7/2与2F 5/2的能级差能量吻合,在980nm 激光的激发下,Yb 3+粒子吸收激光能量后,从基态2F 7/2能级跃迁到激发态2F 5/2能级,由于激发态不稳定,很容易跃迁回到基态2F 7/2,在该过程能量以光子的形式释放出去,释放出去的能量传递给Tm 3+,使得Tm 3+中产生3H 6ң3H 5㊁3F 4ң3F 3㊁3H 4ң1G 4㊁1G 4ң1D 2和1D 2ң3P 2能级跃迁[48]㊂在传统方法不掺入Ce 3+时,发光中心Tm 3+绝大多数电子吸收两个光子跃迁到3F 3后以光子的形式辐射回到基态,只有少数电子继续往上跃迁㊂当掺入Ce 3+后,Tm 3+中(3F 3,3H 4)与Ce 3+中(2F 2/7,2F 2/5)发生交叉弛豫㊂从图11我们可以看出,交叉弛豫过程(3F 3,3H 4)ң(2F 2/7,2F 2/5),使更多的电子布居在3H 4能级中,有效地防止了电子跃迁回到基态,从而使更多的电子向更高的能级跃迁,使得三光子㊁四光子㊁五光子跃迁几率大大增加㊂进一步说,由于发光中心Tm 3+-Tm 3+容易发生交叉弛豫,产生非辐射跃迁,导致荧光降低[49]㊂Ce 3+的掺入既减少了Tm 3+之间的交叉弛豫,又能有效地增加辐射跃迁㊂当Ce 3+含量大于0.2%时,Ce 3+的掺入量较大,过量的Ce 3+阻断了敏化剂离子把能量传递给激活剂离子的过程,造成Tm 3+不能很好地与Yb 3+配位,使得Yb 3+吸收980nm 红外光后不能有效地传递给Tm 3+,从而导致发光效率低㊂然而,当掺杂量为0.2%时,Ce 3+的掺入恰好与Tm 3+匹配,没有多余的Ce 3+,也不会因为掺杂量过多导致Ce 3+没有完全进入晶格而形成的杂质㊂因此,Ce 3+掺杂量为0.2%时,结晶度最好㊂且结合图4不同Ce 3+含量掺杂的荧光光谱可以看到,Ce 3+掺杂量为0.2%时,发光效率最高㊂3.6.2㊀强蓝光机理分析结合图4,我们可以看出NaYF 4ʒ18%Yb 3+,0.5%Tm 3+,0.2%Ce 3+中1G 4ң3H 6(475nm)对应的峰非常尖锐㊂从图12原理图可以看出,这是由于掺入稀土Ce 3+后,在980nm 激光的激发下,Yb 3+中4f 层中的电子吸收能量后,由2F 7/2基态跃迁到2F 5/2激发态,Ce 3+中4f 层的电子吸收能量后,由2F 5/2跃迁到2F 7/2㊂两个同处激发态且距离相近的Yb 3+合作跃迁形成(Yb 3+-Yb 3+)dimers [50-52],再与处于激发态的Ce 3+形成(Yb 3+-Yb 3+-Ce 3+)Trimers㊂两个Yb 3+能级差约为20800cm -1,一个Ce 3+能级差约为2257cm -1,即(Yb 3+-Yb 3+-Ce 3+)Trimers 能级差约为23057cm -1[53],而一个Tm 3+激发态1G 4与基态的能级差为21172cm -1㊂由于(Yb 3+-Yb 3+-Ce 3+)Trimers 能级与Tm 3+的1G 4㊀第11期㊀㊀蒙铭周,等:Ce3+掺杂对NaYF4ʒYb3+,Tm3+纳米粒子上转换发光性能的影响及其荧光温度特性应用1771㊀能级非常匹配,因此(Yb3+-Yb3+-Ce3+)Trimers把能量传递给Tm3+,基态3H6吸收该能量后跃迁到激发态1G4,由于1G4能级非常不稳定,很容易往低能级跃迁回到基态(1G4ң3H6)发出相应的荧光,该荧光刚好对应荧光光谱中475nm波段的蓝光,从而使得蓝光大大增强㊂图12㊀980nm激光激发下的上转换纳米粒子发射强蓝光(475nm)机理示意图Fig.12㊀Mechanism of strong blue light(475nm)emitted by upconversion nanoparticles excited by980nm laser 4㊀结㊀㊀论本文采用溶剂热法制备出高荧光强度㊁长寿命蓝光发射的NaYF4ʒYb3+,Tm3+,Ce3+上转换纳米粒子㊂通过TEM和XRD对其形貌和结晶度进行分析,结果表明我们制备的纳米粒子呈六方相结构,分布均匀且结晶度良好㊂通过瞬态稳态荧光光谱仪对其荧光寿命进行分析,结果表明当Ce3+含量为0.2%时,475nm可见光对应的荧光寿命最长㊂在探究不同Ce3+百分比对荧光的影响时,通过荧光分光光度计对其表征分析,结果表明,掺杂Ce3+比不掺时荧光强度明显增大,当Ce3+含量为0.2%时,荧光最强,比不掺Ce3+增强了5倍左右㊂我们对此进行了机理分析,一方面,掺杂Ce3+后,Tm3+中(3F3,3H4)与Ce3+中(2F7/2,2F5/2)发生交叉弛豫,使更多电子布居在3H4能级中,有效地防止了电子跃迁回到基态,以致整体荧光明显增强;另一方面,当掺入Ce3+后,(Yb3+-Yb3+)dimers 会与Ce3+形成(Yb3+-Yb3+-Ce3+)Trimers,它与激活剂Tm3+的激发态1G4能级非常匹配,吸收能量后跃迁回到基态,发出475nm的蓝光,导致蓝色荧光增强㊂通过FIR测温的对比分析可知,700nm (3F3ң3H6)与646nm(1G4ң3F4)热耦合能级对的绝对灵敏度高达0.0350K-1㊂综上所述,我们制备出的上转换纳米粒子在测温以及生物成像领域均具有很大的应用价值㊂本文专家审稿意见及作者回复内容的下载地址: /thesisDetails#10.37188/ CJL.20210227.参㊀考㊀文㊀献:[1]AUZEL F.Upconversion and anti-stokes processes with f and d ions in solids[J].Chem.Rev.,2004,104(1):139-174.[2]DONG H,SUN L D,YAN C H.Energy transfer in lanthanide upconversion studies for extended optical applications[J].Chem.Soc.Rev.,2015,44(6):1608-1634.[3]WU M,YAN L,WANG T,et al.Controlling red color-based multicolor upconversion through selective photon blocking[J].Adv.Funct.Mater.,2019,29(25):1804160-1-11.[4]OU J,ZHENG W H,XIAO Z Y,et al.Core-shell materials bearing iron(Ⅱ)carbonyl units and their CO-release via anupconversion process[J].J.Mater.Chem.B,2017,5(41):8161-8168.[5]WANG Y,GAI S L,NIU N,et al.Synthesis of NaYF4microcrystals with different morphologies and enhanced up-conver-sion luminescence properties[J].Phys.Chem.Chem.Phys.,2013,15(39):16795-16805.[6]LEI L,CHEN D Q,XU J,et al.Highly intensified upconversion luminescence of Ca2+-doped Yb/ErʒNaGdF4nanocrystalsprepared by a solvothermal route[J]n J.,2014,9(3):728-733.[7]SUYVER J F,GRIMM J,KRAMER K W,et al.Highly efficient near-infrared to visible up-conversion process in NaYF4ʒEr3+,Yb3+[J].J.Lumin.,2005,114(1):53-59.[8]WANG F,LIU X G.Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J].Chem.Soc.Rev.,2009,38(4):976-989.[9]YI G S,CHOW G M.Water-soluble NaYF4ʒYb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significantenhancement of upconversion fluorescence[J].Chem.Mater.,2007,19(3):341-343.[10]SHEN J,SUN L D,YAN C H.Luminescent rare earth nanomaterials for bioprobe applications[J].Dalton Trans.,2008,1772㊀发㊀㊀光㊀㊀学㊀㊀报第42卷(42):5687-5697.[11]WANG L Y,LI Y D.Green upconversion nanocrystals for DNA detection[J]mun.,2006,(24):2557-2559.[12]HU H,XIONG L Q,ZHOU J,et al.Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells[J].Chem.Eur.J.,2009,15(14):3577-3584.[13]WANG F,LIU X G.Upconversion multicolor fine-tuning:visible to near-infrared emission from lanthanide-doped NaYF4nanoparticles[J].J.Am.Chem.Soc.,2008,130(17):5642-5643.[14]ZHAO Q,SHAO B Q,LÜW,et al.Doping alkaline-earth:a strategy of stabilizing hexagonal GdF3at room temperature[J].Dalton Trans.,2013,42(43):15482-15488.[15]LEI L,CHEN D Q,HUANG P,et al.Modifying the size and uniformity of upconversion Yb/ErʒNaGdF4nanocrystalsthrough alkaline-earth doping[J].Nanoscale,2013,5(22):11298-11305.[16]WANG M,MI C C,WANG W X,et al.Immunolabeling and NIR-excited fluorescent imaging of hela cells by using NaYF4ʒYb,Er upconversion nanoparticles[J].ACS Nano,2009,3(6):1580-1586.[17]HAASE M,SCHÄFER H.Upconverting nanoparticles[J].Angew.Chem.Int.Ed.,2011,50(26):5808-5829.[18]WANG F,HAN Y,LIM C S,et al.Simultaneous phase and size control of upconversion nanocrystals through lanthanide do-ping[J].Nature,2010,463(7284):1061-1065.[19]YAN X Y,LI Y J,SUN C Y,et al.Hydrogen production from absorption-enhanced steam gasification of Enteromorpha pro-lifera and its char using Ce-doped CaO material[J].Fuel,2021,287:119554-1-12.[20]YIN D X,YANG H,WANG S,et al.Ce-doped ZnCo2O4nanospheres:synthesis,double enzyme-like performances,catalytic mech-anism and fast colorimetric determination for glutathione[J].Colloids Surf.A Physicochem.Eng.Aspects,2020,607:125466.[21]PAN L,KOEHLER K,JACOBSOHN L G.Luminescence of undoped and Ce-doped hexagonal BiPO4[J].J.Lumin.,2020,228:117626.[22]ZHOU J,LIU Q,FENG W,et al.Upconversion luminescent materials:advances and applications[J].Chem.Rev.,2015,115(1):395-465.[23]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,1990.YANG N R.Testing Methods of Inorganic Nonmetallic Materials[M].Wuhan:Wuhan University of Technology Press, 1990.(in Chinese)[24]JUDD B R.Optical absorption intensities of rare-earth ions[J].Phys.Rev.,1962,127(3):750-761.[25]PATRA A,FRIEND C S,KAPOOR R,et al.Effect of crystal nature on upconversion luminescence in Er3+ʒZrO2nanocrys-tals[J].Appl.Phys.Lett.,2003,83(2):284-286.[26]WARREN B E.X-ray Diffraction[M].New York:Dover Publications Inc.Press,1990.[27]ZHANG X,TIAN G,YIN W Y,et al.Controllable generation of nitric oxide by near-infrared-sensitized upconversion nano-particles for tumor therapy[J].Adv.Funct.Mater.,2015,25(20):3049-3056.[28]房喻,王辉.荧光寿命测定的现代方法与应用[J].化学通报,2001,64(10):631-636.FANG Y,WANG H.Fluorescence lifetime measurements:modern methods and applications[J].Chemistry,2001,64(10):631-636.(in Chinese)[29]WU R Z,ZHOU J J,LEI L,et al.α-NaYF4ʒYb3+-Tm3+@CaF2nanocrystals for NIR-to-NIR temperature sensing[J].Chem.Phys.Lett.,2017,667:206-210.[30]SINGH B P,PARCHUR A K,NINGTHOUJAM R S,et al.Enhanced up-conversion and temperature-sensing behaviour ofEr3+and Yb3+co-doped Y2Ti2O7by incorporation of Li+ions[J].Phys.Chem.Chem.Phys.,2014,16(41): 22665-22676.[31]LU H Y,HAO H Y,SHI G,et al.Optical temperature sensing inβ-NaLuF4ʒYb3+/Er3+/Tm3+based on thermal,quasi-thermal and non-thermal coupling levels[J].RSC Adv.,2016,6(60):55307-55311.[32]SINGH P,SHAHI P K,RAI A,et al.Effect of Li+ion sensitization and optical temperature sensing in Gd2O3ʒHo3+/Yb3+[J].Opt.Mater.,2016,58:432-438.[33]LI H,ZHANG Y D,SHAO L,et al.High performance silica micro-tube optical temperature sensor based onβ-NaLuF4ʒYb3+/Tm3+nanocrystals[J].Opt.Mater.,2017,69:238-243.[34]DU P,LUO L H,YU J S.Upconversion emission,cathodoluminescence and temperature sensing behaviors of Yb3+ions。
SrTiO3 CP
Available online at ScienceDirectJournal of the European Ceramic Society34(2014)1755–1760Giant permittivity and low dielectric loss of SrTiO3ceramics sintered innitrogen atmosphereZhijian Wang,Minghe Cao∗,Zhonghua Yao∗,Qi Zhang,Zhe Song,Wei Hu,Qi Xu,Hua Hao,Hanxing Liu,Zhiyong YuState Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan430070,Hubei,PR China Received20November2013;received in revised form10January2014;accepted10January2014Available online30January2014AbstractThe dielectric properties of SrTiO3ceramics sintered in nitrogen(N2)exhibit a weak temperature-and frequency-dependent giant permittivity (>104)as well as a very low dielectric loss(mostly<0.02)over a broad temperature range from−100to200◦C.Based on the results of ac conductivity and structural analysis,the giant permittivity and low dielectric loss were due to the fully ionized oxygen vacancies and giant defect-dipoles.When further sintering these ceramics in air,the materials exhibit a large temperature-and frequency-dependent high dielectric loss,which were due to the ionization and motion of oxygen vacancies.©2014Elsevier Ltd.All rights reserved.Keywords:SrTiO3;Nitrogen atmosphere;Giant permittivity;Low dielectric loss;Oxygen vacancy1.IntroductionDielectric ceramics with high permittivity and low dielectric loss are widely required for applications such as bypass capaci-tors in microelectronics and energy-storage devices.Recently,a new kind of Pb-free dielectric material,CaCu3Ti4O12(CCTO) exhibits an unusually high(∼105)permittivity with a weak temperature and frequency dependence.1,2However,the rela-tively high dielectric loss(∼0.1)in CCTO frustrates its practical applications.The origin of this notable behavior is scientifi-cally interesting and has been extensively investigated.Several reports2–10have shown that many factors,such as electrodes, grain boundaries,and/or domain boundaries,are responsible for the high permittivity and further improvements in dielec-tric properties have been studied.However,the dielectric loss remains high.Therefore,it is necessary to seek materials that show high permittivity,low dielectric loss and weak tempera-ture and frequency dependence.Though a series of dielectric materials have been investigated,including(M,N)-doped NiO (M=Li,Na,K and N=Ti,Al,Si,Ta),11Re2/3Cu3Ti4O12∗Corresponding authors.Tel.:+862787885812;fax:+862787885813.E-mail addresses:caominghe@(M.Cao),yaozhhua@(Z.Yao).(Re=trivalent rare earth or Bi),12,13Fe-containing complex perovskites A(Fe1/2B1/2)O3(A=Ba,Sr,Ca and B=Nb,Ta, Sb),14,15and BaTi1−x(Ni1/2W1/2)x O3,16the problem remains unresolved except(Nb+In)co-doped TiO2,17where hopping electrons are localized by designated lattice defect states to gen-erate giant defect-dipoles and result in a large temperature-and frequency-independent giant permittivity(>104)as well as a low dielectric loss(mostly<0.05)over a very broad temperature range from80to450K.As quantum paraelectrics,SrTiO3(ST)ceramic,which has standard perovskite structure and lacks spontaneous polariza-tion and Curie point caused by structure phase transition,has been extensively studied in order to enhance its permittiv-ity,such as Sr1−x Ba x TiO3(0<x<1)(BST)18ceramics which have a low dielectric loss and temperature-and frequency-dependent dielectric properties due to the ferroelectric phase; Bi3+and/or trivalent rare earth(Re3+)doped ST ceramics19–21 which have a giant permittivity and a high dielectric loss as well as temperature-and frequency-dependent dielectric properties due to the ionization of oxygen vacancies;19SrTiO3-based grain boundary barrier layer capacitors22,23which have a giant permit-tivity and a high dielectric loss due to the interfacial effects.In this work,ST samples were sintered in N2,which consequently obtained a large temperature-and frequency-independent giant permittivity and a low dielectric loss,which based on the results0955-2219/$–see front matter©2014Elsevier Ltd.All rights reserved. /10.1016/j.jeurceramsoc.2014.01.0151756Z.Wang et al./Journal of the European Ceramic Society 34(2014)1755–1760Fig.1.XRD patterns of the SrTiO 3ceramics sintered in air and N 2.(a)2θfrom 10to 80◦and (b)2θfrom 39to 50◦.of ac conductivity and structural analysis,were due to the gen-eration of giant defect-dipoles in the materials.2.Experimental proceduresThe ST ceramics were prepared by solid-state reactions.The starting materials,high purity SrCO 3(>99.0%)and TiO 2(>99.0%)were mixed according to the stoichiometric ST com-position.After ball-milled in alcohol for 24h,the slurry was dried,then calcined in a closed environment at 1150◦C for 2h in air.The calcined powder was ball-milled and dried again to obtain homogeneous powder.Pellets with 12mm in diam-eter and about 0.5mm in thickness were uniaxially pressed at 200MPa using 5%PV A binder.Slow heating at 600◦C for 2h burned out the binder.The samples were put in an atmosphere furnace.The furnace was vacuumized to about −0.08MPa and recharged with nitrogen and vacuumized again for 5cycles at least to excrete oxygen.The samples were sintered at 1440◦C for 2h in pure nitrogen with the flow of 50ml/min.Some sam-ples were sintered at the same temperature for the same length of time in air.Some N 2sintered samples were annealed in air at 1000◦C for 10h.The annealed temperature is lower than the calcined temperature to avoid changing the microstructure and Bi-doped ST ceramics 19were treated the same.The relative densities of all the sintered samples are more than 97%.The crystalline structure and microstructure of the sintered samples were examined by X-ray diffraction (XRD,PANa-lytical X’Pert PRO)and scanning electron microscopy (SEM,JSM-7100F)measurements,respectively.The valence states of elements were analyzed by X-ray photoelectron spectroscopy (XPS,VG Multilab 2000).Average grain sizes of the ceramics were statistically calculated by using Image Pro plus software,which were simulated by the average length of diameters passing through objects’centroids measured at 2◦intervals.For the elec-trical measurements,the sintered ceramics were smoothed and coated with silver electrodes on both faces.Dielectric properties and ac conductivity were measured with a precision impedanceanalyzer (Agilent 4980A)in a wide temperature (−100to 400◦C)and frequency range (20Hz–800kHz).3.Results and discussion3.1.Structural analysisThe XRD patterns of the ST ceramics sintered in air and N 2are shown in Fig.1.As shown in Fig.1(a),a cubic symmetry is detected without any secondary phase.The pattern is identical to the ST ceramics sintered in air and no systematic variation of the lattice parameter is observed.A careful examination of the XRD patterns reveals that the diffraction peaks of the sample sintered in N 2shift toward high angle,evident from the enlarged view of the peaks (111)and (200)shown in Fig.1(b),indicating small cell volume obtained.X-ray photoelectron peak shapes of the titanium 2p spectrum of the ST sample sintered in N 2are shown in Fig.2.The Ti 2p 3/2peak can be divided into the contributions from Ti 3+and Ti 4+by fitting the spectrum with two Gaussian–Lorentzian curves.The curves assigned as the Ti 3+and Ti 4+states have peak positionsofFig.2.XPS spectrum of the titanium 2p peak of the SrTiO 3ceramic sintered in N 2.Z.Wang et al./Journal of the European Ceramic Society34(2014)1755–17601757Fig.3.SEM micrographs of the cross-section of the SrTiO3ceramic sintered in N2(a)and the N2sintered ceramic annealed in air(b).Fig.4.Temperature dependences of permittivity(a)and dielectric loss(b)of the SrTiO3ceramic sintered in N2measured at different frequencies.457.824and458.8eV,25which is within the range of published Ti3+and Ti4+2p3/2binding energies.As shown in Fig.2,the intensity of Ti3+peak is much larger than that of Ti4+,implying that Ti4+ions are easily to be reduced to Ti3+ions,when ST ceramics are sintered in N2.Though the radius(0.670˚A)of Ti3+is larger than that(0.605˚A)of Ti4+,Ti3+ions and oxygen vacancies coexist in the ceramics and O2−has larger radius (1.40˚A),which results in the small cell volume obtained and the peaks in Fig.1(b)shifted to higher angle.Fig.3shows the SEM micrographs of the cross-section of the ST ceramic sintered in N2and the N2sintered ST ceramic annealed in air and reveals rather dense microstructure.No obvi-ous changes in structure and grain size are observed and all of the samples display rather large grains with a mean value of2.2m.3.2.Dielectric propertiesFig.4shows the temperature dependences of the dielectric properties of the ST ceramic sintered in N2.The permittivities are>6×104at−100◦C,slightly decrease with increasing tem-perature,and rapidly increase at above250◦C.Thedielectric Fig.5.Frequency dependences of permittivity(a)and dielectric loss(b)of the SrTiO3ceramic sintered in N2measured at different temperatures.1758Z.Wang et al./Journal of the European Ceramic Society34(2014)1755–1760Fig.6.Temperature dependences of the dielectric loss of the N2sintered SrTiO3 ceramic annealed in air measured at different frequencies.losses exhibit a very low value(mostly<0.02)over a very broad temperature range from−100to200◦C at evaluated frequen-cies and increase with the increase of temperature and display one set of relaxation peaks above350◦C,as shown in Fig.4b.The frequency dependences of the dielectric properties of the ST ceramic sintered in N2are shown in Fig.5.Giant permittivi-ties(>104)and low dielectric losses(mostly<0.02)with almost frequency independence between20Hz to500kHz have been observed between20to150◦C.Both permittivities and dielec-tric losses at high frequencies increase with increasing frequency and display a dispersion that shifts to higher frequency.When the temperature is above150◦C,the dielectric losses at low fre-quencies increase rapidly with the temperature and one set of dielectric loss relaxation peaks is detected above250◦C.It is well known that oxygen vacancies are unavoidable if oxide ceramics are sintered in N2.Generally,the smaller the oxygen concentrations,the more the oxygen vacancies are in the ceramics.If it is true,oxygen vacancies certainly play an important role in the dielectric properties of the ST ceramics sintered in N2.Three sets of relaxation peaks are expected to be observed at different temperature scopes,representing the first,second ionization of oxygen vacancies and doubly ionized oxygen vacancies,19respectively.Meanwhile,the permittivi-ties and dielectric losses over a broad temperature range are also expected to be high.However,for this ST ceramic sin-tered in N2,only one set of relaxation peaks is observed at high temperatures in the permittivity and dielectric loss curves (Figs.4and5b)and over a broad temperature and frequency range,it reveals a giant permittivity and a very low dielectric loss.When the N2sintered ST ceramics are annealed in air, the dielectric properties show significant changes.Figs.6and7 show the temperature and frequency dependences of dielectric losses for the N2sintered ST ceramic annealed in air,respec-tively.As shown in Fig.6,the dielectric loss is high(tanδ>0.04) at room temperature and the curves exhibit two sets of relaxation peaks below200◦C and above300◦C,respectively.Similarly, at the same temperature ranges,two sets of relaxation peaks appear at the dielectric loss vs.frequency curves,as shown in Fig.7.These results are compelling and will be analyzed below.3.3.Conductivity analysisFig.8shows the frequency dependences of the ac conduc-tivities(σac)of the ST ceramic sintered in N2measured at different temperatures.Theσac indicates a dispersion that shifts to higher frequency with increasing temperature,and it almost monotonously and linearly decreases with decreasing frequency but never saturates to a constant value at low frequencies,indi-cating that the dielectric behavior of the ceramics at evaluated temperatures does not belong to the Maxwell–Wagner polariza-tion.The dc conductivity can be described by Arrhenius law:σDC=σ 1exp−E ak B T(1)whereσ 1is a constant,E a is the activation energy,k B is the Boltzmann constant,and T is the absolute temperature.The dc conductivities of the ST ceramic sintered in N2beforeand Fig.7.Frequency dependences of the dielectric loss of the N2sintered SrTiO3ceramic annealed in air measured at different temperatures.Z.Wang et al./Journal of the European Ceramic Society34(2014)1755–17601759Fig.8.Frequency dependences of the ac conductivities(σac)of the SrTiO3 ceramic sintered in N2measured at different temperatures.after annealing in air are estimated from the lowest-frequencyac conductivity data.The activation energies are calculatedaccording to the Arrhenius law,as shown in Table1.In theceramics,the activation energy E a corresponds to the relaxationand characterizes the effective traps energy in the defects wherepolarizability is modified and where charge and energy localiza-tion can occur.26When the ST ceramics are sintered in N2,thecalculated activation energies are0.69eV from200to300◦Cand0.97eV from330to400◦C which could mean the motionof the electrons around the V••O and the short-range motion ofthe oxygen vacancies(V••O),19respectively.When the N2sin-tered ST ceramics are annealed in air,Three activation energies(0.31,0.60and1.02eV)are obtained,which are consistent withBi-doped ST ceramics19at the same temperature ranges,due tothefirst,second ionization of oxygen vacancies and short-rangemotion of the V••O,respectively.In ST ceramics sintered in air,the[Ti4+O Ti4+]bonds areformed.When ST ceramics are sintered in N2,oxygen vacanciesare mainly in the form of V••O and some Ti4+ions are reduced toTi3+ions.A Ti3+can be viewed as a Ti4+that traps an electron(Ti4+·e)which means the[Ti4+·e−V••O−Ti4+·e]bonds are formed.Under this condition,electrons will be bound by thefully ionized oxygen vacancies(V••O).Then giant defect-dipolesare produced,which result in a giant permittivity and a very lowdielectric loss.These electrons bound by the V••O move at hightemperatures,leading to the activation energy of E a=0.69eV,identified with the value of Bi-doped SrTiO3ceramics.19Whentemperatures continue to rise,the oxygen vacancies(V••O)beginmoving,leading to the activation energy of E a=0.97eV.Whilethe N2sintered ST ceramics are annealed in air at1000◦CTable1The activation energies of the N2sintered SrTiO3ceramic and the N2sintered SrTiO3ceramic annealed in air.Sample E a(eV)E a(eV)E a(eV)20–130◦C200–300◦C330–400◦C N2sintered ST ceramic–0.690.97N2sintered ST ceramic annealed in air 0.310.60 1.02for10h,some V••O will be transformed into V••O and/or V O.Then the dielectric behavior will also be dependent on thefirstand/or second ionization of oxygen vacancies,leading to largetemperature-and frequency-dependent dielectric properties andsome sets of relaxation peaks at the corresponding temperatureranges.These phenomenons are different from that in ferroelec-tric perovskite due to the absence of domain-wall motion inparaelectric ST dielectric ceramics.4.ConclusionsThe giant permittivity and very low dielectric loss proper-ties in SrTiO3ceramics sintered in N2are paredwith other giant permittivity materials,the permittivity anddielectric loss of the SrTiO3ceramics sintered in N2wereshown as47,601and0.0058,at room temperature and1kHz,respectively.Both the permittivity and dielectric loss display aweak temperature dependence over a broad temperature rangefrom−100to200◦C as well as a weak frequency depend-ence between20Hz to500kHz.When the N2sintered SrTiO3ceramics are annealed in air,the dielectric losses show signif-icant changes and some sets of relaxation peaks are observed.According to the ac conductivity measurements and structuralanalysis,when the SrTiO3ceramics are sintered in N2,thedielectric behavior of the ceramics does not belong to theMaxwell–Wagner polarization.The giant permittivity and verylow dielectric loss are due to the fully ionized oxygen vacanciesand giant defect-dipoles[Ti4+·e−V••O−Ti4+·e].While theN2sintered SrTiO3ceramics are annealed in air,the dielectricproperties are ascribed to the ionization and motion of oxygenvacancies,which are very similar to Bi3+and/or trivalent rareearth(Re3+)doped ST ceramics.19–21AcknowledgementsThis work was supported by the Key program of NaturalScience Foundation of China(No.50932004),InternationalScience and Technology Cooperation Program of China(2011DFA52680),Natural Science Foundation of China(No.51102189,51372191),the program for New Century ExcellentTalents in University(No.NCET-11-0685)and the FundamentalResearch Funds for the Central Universities(2012-Ia-005).References1.Homes CC,V ogt T,Shapiro SM,Wakimoto S,Ramirez AP.Opti-cal response of high-dielectric-constant perovskite-related oxide.Science2001;293:673–6.2.Subramanian MA,Dong L,Duan N,Reisner BA,Sleight AW.High dielectricconstant in ACu3Ti4O12and ACu3Ti3FeO12phases.J Solid State Chem2000;151(2):323–5.3.Sinclair DC,Adams TB,Morrison FD,West AR.CaCu3Ti4O12:one-stepinternal barrier layer capacitor.Appl Phys Lett2002;80:2153–5.4.Yuan W,Hark SK.Investigation on the origin of the giant dielectric constantin CaCu3Ti4O12ceramics through analyzing CaCu3Ti4O12–HfO2compos-ites.J Eur Ceram Soc2012;32(2):465–70.5.Lunkenheimer P,Fichtl R,Ebbinghaus SG,Loidl A.Nonintrinsic ori-gin of the colossal dielectric constants in CaCu3Ti4O12.Phys Rev B2004;70:1721021–4.1760Z.Wang et al./Journal of the European Ceramic Society34(2014)1755–17606.Schmidt R,Stennett MC,Hyatt NC,Pokorny J,Prado-Gonjal J,Li M,et al.Effects of sintering temperature on the internal barrier layer capac-itor(IBLC)structure in CaCu3Ti4O12(CCTO)ceramics.J Eur Ceram Soc 2012;32(12):3313–23.7.Zhang L.Electrode and grain-boundary effects on the conductivity ofCaCu3Ti4O12.Appl Phys Lett2005;87:0229071–4.8.Thomas P,Dwarakanath K,Varma KBR.Effect of calcium stoichiome-try on the dielectric response of CaCu3Ti4O12ceramics.J Eur Ceram Soc 2012;32(8):1681–90.9.Thongbai P,Jumpatam J,Yamwong T,Maensiri S.Effects of Ta5+dopingon microstructure evolution:dielectric properties and electrical response in CaCu3Ti4O12ceramics.J Eur Ceram Soc2012;32(10):2423–30.10.Yuan W.Impedance and electric modulus approaches to investigate fourorigins of giant dielectric constant in CaCu3Ti4O12ceramics.Solid State Sci2012;14(3):330–4.11.Wu JB,Nan CW,Lin Y,Deng Y.Giant dielectric permittivity observed inLi and Ti doped NiO.Phys Rev Lett2002;89:2176011–4.12.Liang P,Yang Z,Chao X,Liu Z.Giant dielectric constant and goodtemperature stability in Y2/3Cu3Ti4O12ceramics.J Am Ceram Soc 2012;95(7):2218–25.13.Liu JJ,Duan CG,Yin WG,Mei WN,Smith RW,Hardy rge dielectricconstant and Maxwell–Wagner relaxation in Bi2/3Cu3Ti4O12.Phys Rev B 2004;70(14):1441061–7.14.Wang Z,Chen XM,Ni L,Liu YY,Liu XQ.Dielectric relaxationsin Ba(Fe1/2Ta1/2)O3giant dielectric constant ceramics.Appl Phys Lett 2007;90:1029051–3.15.Shah DD,Mehta PK,Desai MS,Panchal CJ.Origin of giant dielectric con-stant in Ba[(Fe1−x Co x)1/2Nb1/2]O3.J Alloys Compd2011;509(5):1800–8.16.Zhao F,Yue Z,Pei J,Yang D,Gui Z,Li L.Dielectric abnormities inBaTi0.9(Ni1/2W1/2)0.1O3giant dielectric constant ceramics.Appl Phys Lett 2007;91:0529031–3.17.Hu W,Liu Y,Withers RL,Frankcombe TJ,Noren L,Snashall A,et al.Electron-pinned defect-dipoles for high-performance colossal permittivity materials.Nat Mater2013;12:821–6.18.Wu T,Pu Y,Gao P,Liu D.Influence of Sr/Ba ratio on the energy storageproperties and dielectric relaxation behaviors of strontium barium titanate ceramics.J Mater Sci:Mater Electron2013;24(10):4105–12.19.Ang C,Yu Z,Cross LE.Oxygen-vacancy-related low-frequency dielec-tric relaxation and electrical conduction in Bi:SrTiO3.Phys Rev B 2000;62:228–36.20.Yu Z,Ang C,Cross LE.Oxygen-vacancy-related dielectric anomalies inLa:SrTiO3.Appl Phys Lett1999;74:3044–6.21.Wang X,Hu Q,Li L,Lu X.Effect of Pr substitution on structural anddielectric properties of SrTiO3.J Appl Phys2012;112:0441061–4.22.Wernicke R.Formation of second-phase layers in SrTiO3boundary layercapacitors.In:Levinson LM,Hill DC,editors.Advances in ceramics.Columbus,OH:American Ceramic Society;1981.p.261–71.23.Wernicke R.Two-layer model explaining the properties of SrTiO3bound-ary layer capacitors.In:Levinson LM,Hill DC,editors.Advances in ceramics.Columbus,OH:American Ceramic Society;1981.p.272–81.24.Lu CJ,Kuang AX,Huang GY.Xray photoelectron spectroscopy study oncomposition and structure of sol gel derived PbTiO3thinfilms.J Appl Phys 1996;80(1):202–6.25.Murata M,Wakino K,Ikeda S.X-ray photoelectron spectroscopic studyof perovskite titanates and related compounds:an example of the effect of polarization on chemical shifts.J Electron Spectrosc Relat Phenom 1975;6(5):459–64.26.Touzin M,Goeuriot D,Fitting HJ,Guerret-Piecourt C,Juve D,TreheuxD.Relationships between dielectric breakdown resistance and charge trans-port in alumina materials—effects of the microstructure.J Eur Ceram Soc 2007;27(2-3):1193–7.。
碳点制备总结
碳量子点和碳纳米管、石墨烯一样是一种新型碳纳米材料,除了碳材料本身的低毒特性,原材料丰富,生物相容性好之外,碳量子点还有一系列其他的独特的性质,例如:多色荧光性、荧光稳定性、导电性和催化特性等。
常用来制备碳量子点的方法分为自上而下和自下而上两种方法,其中自上而下的方法是指大分子碳材料通过一定的物理、化学等方法破碎成小分子的碳纳米颗粒,包括:电解法、酸刻蚀、激光刻蚀和高温热解等方法。
而自下而上的方法是指将小分子的碳材料通过一定的化学手段合成团聚成更大分子量的碳纳米颗粒,其中包括:化学合成法、水热法、溶剂热法、等方法。
其中我们主要挑选了几种比较常见的制备碳量子点的方法。
自上而下中最长用的是酸刻蚀自然界存在的碳源,或者人工合成出来具有特定结构的碳源,前者是对自然存在的碳源加以利用,后者是为了得到更好的碳结构而处理的。
常用酸刻蚀的自然界的碳源包括动物毛发、植物纤维等,例如酸刻蚀人类头发[3],这类材料最大的特点就是原料丰富,价格低廉,是材料多级利用很好的选择。
另外常用碳纤维、石墨烯、氧化石墨烯、碳纳米管等结构有序的碳材料[4-8]作为碳点的制备原材料,这类材料可以给碳量子点提供更加规则,具有高度结晶特性的结构。
碳量子点一般选择硫酸和硝酸等稳定的浓酸作为溶剂刻蚀碳材料,硝酸和硫酸按体积比3:1的混酸是现在酸刻蚀碳材料制备碳量子点的主要方法。
这种方法可以根据不同的需要来调节碳量子点表面的含氧基团,是一种表面改性的很好的方法。
但是由于酸的引入很难简单地分离和纯化,这也是限制这种方法发展的主要原因。
此外除了酸刻蚀方法外,电化学方法点解石墨棒也得到了很大的发展[1]。
将电极两端接上一定的电压电解成碳量子点溶液,这种方法简单,易操作,而且基本不引入其他杂质,很好的提纯和分离,是这种方法得到广泛的关注。
高温热解碳材料是一种传统的制备碳量子点的方法,一般将碳源材料在高温下人分解成小分子碳点,通过溶剂提取,从而分离纯化,但是这种方法的产率太低,因此发展受到很大的限制。
Tm^(3+)Ho^(3+)共掺含BaF_(2)纳米晶氟硅酸盐玻璃陶瓷2μm发光性能
第42卷第1期2021年1月发光学报CHINESE JOURNAL OF LUMINESCENCEVol.42No.1Jan.,2021文章编号:1000-7032(2021)01-0037-07Tm3+/Ho3+共掺含BaF2纳米晶氟硅酸盐玻璃陶瓷2pm发光性能傅燕青1,康世亮1*,关尚升1,郭跃琪S陈旦1,刘雪云1,徐铁峰心,林常规1*(1.宁波大学高等技术研究院红外材料及器件实验室,浙江宁波315211; 2.宁波海洋研究院,浙江宁波315211)摘要:由于在人眼安全、光电探测、中红外超连续谱产生等方面的应用,2.0帆波段中红外激光器引起了人们越来越广泛的关注。
本文采用熔融-淬冷法制备了含BaF2纳米晶、Tm3+离子单掺及Ho"/Tm"共掺的85SiO2-7.5KF-7.5BaF2(SKB)玻璃陶瓷,表征了样品的拉曼光谱、吸收光谱、808nm泵浦下在2.0^m处的发光性能,得到了实验过程中Ho"/Tm"的最佳掺杂浓度。
结果发现,Ho2O3、Tm2O3掺杂浓度均为1.0%时,2.0帆处Ho3+:1—工发射峰强度达到最大,并对Ho3+和Tm3+之间的能量转移机制进行了详细分析和讨论。
研究表明,Tm3+/Ho3+共掺的BaF2纳米晶SiO2-KF-BaF2玻璃陶瓷有望成为2.0^m波段中红外固体激光器的增益基质。
关键词:硅酸盐玻璃;稀土离子掺杂;2.0发光;BaF2;中红外发光中图分类号:O482.31文献标识码:A DOI:10.37188/CJL.20200310Luminescence Properties of Tm3+/Ho3+Doped BaF2Nanocrystalline Fluorosilicate Glass Ceramics at2.0pmFU Yan-qing1,KANG Shi-liang1*,GUAN Shang-sheng1,GUO Yue-qi1,CHEN Dan1,LIU Xue-yun1,XU Tie-feng1,2,LIN Chang-gui1*(boratory of Infrared Materials and Devices,Research Institute of Advanced Technologies,Ningbo University,Ningbo315211,China;2.Ningbo Institute of Oceanography,Ningbo315211,China)*Corresponding Authors,E-mail:ks!0118@;linchanggui@Abstract:2.0(xm band mid-infrared lasers have attracted more and more attention due to their applications in human eye safety,photoelectric detection,and generation of mid-infrared supercontinuum.In this paper,Tm3+ion doped and Ho3+/Tm3+co-doped85SiO2-7.5KF-7.5BaF2(SKB)glass containing BaF2nanocrystalline were prepared by melt-quenching method.The Raman spectrum, absorption spectrum and mid-infrared fluorescence performances of the samples at2.0(xm exited by 808nm laser diode were studied.The optimal doping concentration of Ho3+/Tm3+was obtained during the experiment.The measured fluorescence spectra manifest that the maximal emission intensity of Ho3+:订?一5I8at2.0(xm can be achieved at the concentration of1.0%H02O3and 1.0% Tm O3in this component glass.Besides,the energy transfer mechanisms between Ho3+and Tm3+ were also analyzed and discussed in detail.The results show that Tm3+/Ho3+co-doped SiO z-KF-BaF?收稿日期:2020-10-18;修订日期:2020-11-30基金项目:国家自然科学基金(61775110,51802299);国家重点研究开发计划(2016YFB0303802,2016YEB0303803);宁波大学王宽诚幸福基金资助项目Supported by National Natural Science Foundation of China(61775110,51802299);National Key Research and DevelopmentProgram of China(2016YFB0303802,2016YFB0303803);K. C.Wong Magna Fund in Ningbo LDiversity38发光学报第42卷glass ceramics can be used as the gain matrix for2.0Rm band mid-infrared solid-state laser.Key words:silicate glass;rare earth ion doped;2.0Rm fluorescence;BaF2;mid-infrared emission1引言工作在2.0Rm区域的固体激光器在遥感、大气污染监测、激光医学手术等领域的应用受到了越来越多的关注[1-3-°为了获得良好的稀土掺杂2.0Rm激光材料,首先需要选择合适的稀土离子。
探讨后腹腔镜下输尿管切开取石术与经尿道输尿管软镜钬激光碎石术在治疗嵌顿性输尿管上段结石的疗效和并发症
临床医学China &Foreign Medical Treatment 中外医疗探讨后腹腔镜下输尿管切开取石术与经尿道输尿管软镜钬激光碎石术在治疗嵌顿性输尿管上段结石的疗效和并发症比较陈克明济南市第三人民医院泌尿外科,山东济南 250132[摘要] 目的 研究嵌顿性输尿管上段结石经后腹腔镜下输尿管切开取石术与经尿道输尿管软镜钬激光碎石术的临床价值。
方法 随机选取2021年8月—2023年8月济南市第三人民医院泌尿外科治疗的60例嵌顿性输尿管上段结石患者为研究对象,根据不同的治疗方式分成软镜组与腹腔镜组,各30例。
软镜组患者行输尿管软镜下钬激光碎石术,腹腔镜组行经后腹腔镜下输尿管切开取石术。
比较两组患者的术后发热、结石清除以及并发症发生情况,比较两组患者手术相关指标,包括手术时间、术后疼痛评分、住院时间。
结果 两组术后发热、结石清除以及并发症发生情况对比,差异无统计学意义(P 均>0.05);软镜组手术时间(57.23±10.34)min 、住院时间(4.10±0.54)d 、术后疼痛评分(2.21±0.43)分均优于腹腔镜组,差异有统计学意义(t =6.879、9.195、8.181,P 均<0.05)。
结论 后腹腔镜下输尿管切开取石术在清除结石方面可能更有效。
然而,其伴随着较大的手术创伤和较多的术后疼痛。
相比之下,经尿道输尿管软镜钬激光碎石术具有更加明显的优势,可以减轻术后的疼痛,并降低手术和住院的时间,在选择治疗方法时应根据具体情况进行权衡。
[关键词] 输尿管;结石;并发症;疗效;手术时间;住院时间[中图分类号] R714.258 [文献标识码] A [文章编号] 1674-0742(2024)03(a)-0027-04Comparison of the Efficacy and Complications of Posterior Laparoscopic Ureterotomy and Lithotripsy with Transurethral Ureteral Flexible Hol⁃mium Laser Lithotripsy in the Treatment of Embedded Upper Ureteral StonesCHEN KemingDepartment of Urology, Jinan Third People's Hospital, Jinan, Shandong Province, 250132 China[Abstract] Objective To study the clinical value of holmium laser lithotripsy for embedded upper ureteral stones via posterior laparoscopic ureterotomy and transurethral ureteral flexible lens. Methods A total of 60 patients with embed⁃ded upper ureteral stones treated in the Department of Urology of Jinan Third People's Hospital from August 2021 to August 2023 were randomly selected as the study objects, and they were divided into the flexible lens group and the laparoscopic group according to different treatment, with 30 cases in each group. The flexible lens group received hol⁃mium laser lithotripsy under flexible ureteroscopy, and the laparoscopic group was treated with posterior laparoscopicureterotomy and lithotripsy. The occurrence of postoperative fever, stone removal, and complications were compared between the two groups, and the surgery-related indexes of the two groups were compared, including operation time, postoperative pain score, and hospitalization time. Results There was no statistically significant difference in the occur⁃rence of postoperative fever, stone removal, and complications between the two groups (all P >0.05). The operation time DOI :10.16662/ki.1674-0742.2024.07.027[作者简介] 陈克明(1981-),男,本科,副主任医师,研究方向为泌尿外科结石及肿瘤。
金属离子Bi^(3+)掺杂Lu_(1-x)O_(3)x%Ho^(3+)荧光粉的发光性能
第14卷第3期2021年5月Vol.14No.3May2021中国光学Chinese Optics文章编号2095-1531(2021)03-0528-08金属离子Bi3+掺杂L U1_x O3:x%Ho3+荧光粉的发光性能赵海琴陀3,王林香⑷:庹娟脚,叶颖⑷(1.新疆师范大学物理与电子工程学院,新疆乌鲁木齐830054;2.新疆师范大学矿物发光及其微结构重点实验室,新疆乌鲁木齐830054;3.新疆师范大学新型光源与微纳米光学实验室,新疆乌鲁木齐830054)摘要:采用高温固相法制备了金属离子Bi3+掺杂L u“O3:x%Ho3+系列荧光粉,研究了不同浓度Bi3+掺杂L u“O3:x%Ho3+荧光粉的晶体结构、L u2O3基质中Bi3+^Ho3+的能量传递规律及合成粉体的发光性质。
X射线衍射结果表明Bi3+、Ho3+掺杂对L u2O3的立方相结构没有影响。
在322nm激发波长下发射出位于551nm处Ho3+的5S2—I8跃迁;在551nm 监测下,合成的Ho3+、Bi3+共掺杂L u2O3荧光粉出现Bi3+的322nm特征激发峰以及Ho3+的448nm处的5I8^5F1跃迁。
当Bi3+掺杂浓度为1.5%时,Bi3^Ho3+的能量传递最有效,比单掺Ho3+样品发射强度提高了34.8倍。
L u98.5%“O3:1.5%H o3+, y%Bi3+(y=1,1.5,2)样品,随着Bi3+掺杂浓度增加,用980nm激发比322nm激发在551nm处获得的光强分别提高了13.3倍、16.8倍、14.2倍。
通过计算得到BF+和Ho3+之间的能量传递临界距离为2.979nm,且Bi3+与Ho3+之间的能量传递是通过偶极-四极相互作用实现的。
关键词:荧光粉;发光性能;能量传递;多极相互作用中图分类号:O482.31文献标志码:A doi:10.37188/CO.2019-0222Luminescence properties of Bi3+doped L u1-x O3:x%Ho3+metal ion phosphorsZHAO Hai-qin1-2-3,WANG Lin-xiang1-2-3*,TUO Juan®,ye Ying1-2-3(1.College of P hysics and Electronic Engineering-Xinjiang Normal University,Urumqi830054,China;2.Key Laboratory of M ineral Luminescence and M icrostructures-Xinjiang Normal University-Urumqi830054,China;boratory of N ovel Light Sources andMicro/Nano-Optics-Xinjiang Normal University-Urumqi830054-China)*Corresponding author,E-mail:wanglinxiang23@Abstract:Bi3+doped L u1-x O3:x%Ho3+metal ion phosphors were prepared using the high-temperature solidphase method.The crystal structures of Bi3+doped L u1-x O3:x%Ho3+phosphors-the Bi3+^Ho3+energy transfer rule in LU2O3matrix and the luminescent properties of synthetic powders with different doping concentrations were investigated.X-ray diffraction results showed that Bi3+and Ho3+doping had no effect on the cubic收稿日期:2019-11-26;修订日期:2020-01-21基金项目:新疆维吾尔自治区自然科学基金(No.2017D01A60);新疆维吾尔自治区高校科研计划(No.XJEDU2018Y032) Supported by Natural Science Foundation of Xinjiang(No.2017D01A60);Scientific Research Plan of Colleges and University in Xinjiang(No.XJEDU2018Y032)第3期赵海琴-等金属离子Bi3+掺杂L um O3:x%Ho3+荧光粉的发光性能529phase structure of LU2O3.LU2O3:Ho3+-Bi3+phosphor emitted%2—5【8transition of Ho3+at551nm under an excitation wavelength of322nm-and exhibited1S0^3P x characteristic transition of Bi3+at322nm and 5l8—5F]transition of Ho3+at448nm under an emission wavelength of551nm.When the doping concentration of Bi3+was1.5%-the effect was most effective for the energy transfer of Ho3+-which increased by a factor of34.8compared to that of the single-doped Ho3+sample.For LU98.5%—y O3:1.5%Ho3:y%Bi3+(y=1-1.52)-with the increase of Bi3+ions concentration-the luminescence intensity at551nm under980-nm excitation increased by a factor of13.3-16.8and14.2-respectively-compared to that of under322-nm excitation. The energy transfer critical distance between Bi3+and Ho3+was calculated to be2.979nm-and the energy transfer between Bi3+and Ho3+was achieved by dipole-quadrupole interaction.Key words:phosphor;luminescence propertie;energy transfer;multipolar interaction1引言稀土Ho3+离子因具有特殊的阶梯状能级结构、激发能级丰富并具有不同的激光作用机制、且亚稳态能级寿命较长等优点,被作为激活剂掺入基质材料,从而得到了广泛应用,该方向也是目前激光材料领域中的研究热点之一叫在合适的基质中掺入Ho3+离子,可以制成输出功率很高的激光介质,用于光学数据存储系统、传感器、医学诊断、三维(3D)显示系统,并作为光学放大器用于光通信窗口,以满足互联网日益增长的需求[2-4]0相比其他基质材料,氧化物的合成对环境条件要求低,其化学稳定性、热稳定性及力学稳定性优良,因此选择声子能量相对较低、透光范围宽且容易实现稀土离子掺杂的氧化镥同作为基质材料掺杂Ho3+离子,使其实现更长的绿色和红色激发能级寿命和更好的增益性能。
硫化锌电致发光材料在智能可穿戴领域研究进展
第43卷㊀第5期2022年5月发㊀光㊀学㊀报CHINESE JOURNAL OF LUMINESCENCEVol.43No.5May,2022文章编号:1000-7032(2022)05-0796-11硫化锌电致发光材料在智能可穿戴领域研究进展郭素文1∗,杨伟峰2,胡云浩2,郑㊀岩3,周金水3(1.上海洞舟实业有限公司,上海㊀201619;2.东华大学纤维材料改性国家重点实验室,上海㊀201620;㊀3.上海科润光电技术有限公司,上海㊀201100)摘要:近年来,伴随着柔性电子产业的快速发展,发光显示作为可穿戴集成器件中必不可少的组成部分,人们对其提出了柔性㊁可拉伸性㊁自愈合性等额外的需求㊂基于硫化锌材料的电致发光器件由于发光寿命长㊁发光组件结构简单等优点,在智能可穿戴领域得到了广泛的研究和关注㊂本文对硫化锌电致发光材料在智能可穿戴领域的研究进展进行梳理和总结,主要介绍了硫化锌电致发光材料的发光机理㊁研究热点及未来应用,以期对智能可穿戴领域起到有益的启示和指导作用㊂关㊀键㊀词:电致发光;柔性;可拉伸性;智能可穿戴中图分类号:O482.31㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.37188/CJL.20220027Progress of Zinc Sulfide ElectroluminescentMaterials in Intelligent Wearable FieldGUO Su-wen1∗,YANG Wei-feng2,HU Yun-hao2,ZHENG Yan3,ZHOU Jin-shui3(1.Shanghai Dongzhou Industrial Co.,Ltd.,Shanghai201619,China;2.State Key Laboratory for Modification of Chemical Fibers and Polymer Material,Donghua University,Shanghai201620,China;3.Shanghai Kerune Phosphor Technology Co.,Ltd.,Shanghai201100,China)∗Corresponding Author,E-mail:562747449@Abstract:In recent years,with the rapid development of flexible electronics industry,as an indis-pensable part of wearable integrated devices,light-emitting display has been put forward additional requirements such as flexibility,stretchability and self-healing.Electroluminescent devices based on zinc sulfide materials have received extensive research and attention in the field of intelligent weara-bles due to their advantages of long life and simple structure of luminescent components.In this pa-per,the research progress of zinc sulfide electroluminescent materials in the field of smart wearables is summarized,and the luminescence mechanism,research hotspots and future applications of zinc sulfide electroluminescent materials are mainly introduced,in order to play a beneficial enlighten-ment and guidance role in the field of smart wearables.Key words:electroluminescence;flexibility;extensibility;smart wearables㊀㊀收稿日期:2022-01-21;修订日期:2022-02-07㊀㊀基金项目:上海市产业协同创新项目(2021-cyxt1-kj36);上海市科技型中小企业技术创新资金(1603H1C1800)资助项目Supported by Shanghai Industrial Collaborative Innovation Project(2021-cyxt1-kj36);Shanghai Science and Technology Enter-prise Innovation Fund(1603h1c1800)㊀第5期郭素文,等:硫化锌电致发光材料在智能可穿戴领域研究进展797㊀1㊀引㊀㊀言电致发光 现象是1923年Lossew 最早在研究SiC 检波器时发现的㊂1936年,物理学家De-striau 发现含微量铜杂质的悬浮介质在交流电场下能发出可见光,因而这种发光现象也被称为Dessriau 效应㊂由于当时透明导电的氧化铟锡技术尚未成熟,导致随后二十年的研究进展十分缓慢[1]㊂直到1952年,Sylvania 电器公司在MIT 固体会议上展示了首块电致发光荧光屏[2]㊂在国内,北京物理所㊁长春物理所最早对这一领域进行研究,围绕发光亮度㊁稳定性㊁多色彩等方面取得了系列进展[3]㊂对于人体可穿戴器件来说,往往需要承受大尺度的复杂三维形变[4];而要实现硫化锌电致发光器件的可拉伸性,需保证多层材料中的每一层均有可拉伸性,且拉伸比需相互匹配㊂其中,透明可拉伸电极作为透光层是目前的研究难点和热点㊂传统电子系统在频繁操作过程中会发生疲劳㊁腐蚀或损坏,并随时间的推移而退化,从而导致电子设备故障㊂硫化锌电致发光器件已被广泛集成到柔性多功能电子系统中,起到了至关重要的发光部件的作用㊂这种发光器件的寿命和力学稳定性常常伴随着局部损坏而受到严重限制㊂此外,由于电致发光器件高频高压的驱动电源特性,当发光器件所受的应变超过机械承受极限时,容易导致局部电场过大使发光器件发生击穿而损坏[5]㊂硫化锌电致发光材料器件的制备与现有柔性电子器件通用的制备手段,如丝网印刷㊁喷墨打印等工艺相匹配,在电子皮肤领域成为了研究热点[6-8]㊂作为柔性显示器件,像素分辨率㊁防水及其微电路制造工艺是目前的难点㊂2㊀硫化锌电致发光器件工作原理以Cu 2+掺杂ZnS 的电致发光粉为例,其发光原理为:通过对硫化锌晶体进行金属离子掺杂,可以实现对ZnS 材料引入缺陷,进而形成浅层的缺陷能带,如图1所示㊂当对硫化锌电致发光粉施加交流电压时,电子在外加电场的作用下被加速成为过热电子;随后撞击ZnSʒCu 2+的发光中心使其激发或离化;而后发光中心的电子在退激发或者复合过程中会产生光㊂发光中心的的结构决定了发射光谱的形成,ZnSʒCu 2+的电致发光粉末具有两个发光中心,即绿色发光中心(处于Cu 2+的t 2态)和蓝色发光中心(处于Cu 2+的e 态),所以其发光颜色是两种发光中心共同作用的结果㊂蓝色发光中心比绿色发光中心更接近价带,因此蓝色发光中心的空穴更容易在电场作用下电离,即蓝色发光中心的空穴寿命比绿色发光中心更短㊂因此,在低频电场作用下,ZnS ʒCu 2+电致发光粉以绿色为主;而在高频电场作用下,主要显示为蓝色[9-12]㊂图1㊀Cu 2+掺杂ZnS 的电致发光粉工作原理[9-12]Fig.1㊀Working principle of Cu 2+doped ZnS electroluminescent powder [9-12]通常意义而言,硫化锌电致发光器件分为5层结构,如图2所示,从上到下依次为背面电极㊁介电层㊁发光层㊁透明电极及透明基板㊂其中,交流电压施加于背面电极和透明电极之间,介质层为高介电常数材料,如钛酸钡,主要用于调节发光层和介电层的交变电场分布㊁增强电致发光亮度,防止局部雪崩击穿,增加发光均匀性㊂透明电极和透明极板通常为氧化铟锡-聚对苯二甲酸乙二醇酯(ITO-PET)薄膜,使发光层通过透明层得以辐射[13-16]㊂在实际应用领域,为实现硫化锌电致发光器件的新型应用,往往对器件的形态进行重新设计,如电致发光纤维等[17-18]㊂798㊀发㊀㊀光㊀㊀学㊀㊀报第43卷图2㊀无机交流电致发光器件(EL)基本结构[13]Fig.2㊀Basic structure of inorganic AC electroluminescent de-vices [13]3㊀EL 器件在可穿戴领域研究热点近年来,伴随着柔性电子产业的快速发展,发光显示成为可穿戴集成器件中必不可少的组成部分㊂硫化锌电致发光材料由于其结构简单㊁发光稳定㊁颜色可调等优点,在柔性可穿戴领域展现了其独特的应用,成为近年来的研究热点,如图3㊂基于硫化锌电致发光材料的柔性可穿戴器件的研究方向主要包括提高光电器件的柔性及可拉伸性(Stretchability)[19-20]㊁赋予电极材料及介质材料的自愈性(Self-healing)[21-22]㊁拓展电致发光器件的图3㊀硫化锌电致发光材料在智能可穿戴领域的研究热点及未来应用㊂主要包括基础研究方向:电致发光器件的可拉伸性㊁自愈合性及多色彩转变特性等㊂应用领域:电子皮肤[24-25]㊁电子纺织品[26-27]㊁软体机器人[28-29]等㊂Fig.3㊀Research hotspots and future applications of ZnS electroluminescent materials in smart wearable field.It s research inter-ests include stretchability,self-healing and multi-color transformation properties of electroluminescent devices,etc .Ap-plication interests:electronic skin [24-25],electronics textile [26-27],soft robot [28-29],etc .颜色多样性及不同色彩间的切换(Multi-col-or)[23]㊂目前这种硫化锌基的电致发光材料主要应用于新型发光电子皮肤(Electronic skin)[24-25]㊁电子纺织品(Electronic textile)[26-27]以及软体机器人(Soft robot)[28-29]㊂3.1㊀可拉伸性对于硫化锌电致发光器件来说,除了柔性之外,其良好的可拉伸性也显得尤为重要㊂与需要克服拉伸性㊁机械稳定性和透明性难点的电子导电弹性体相比,本征可拉伸的离子导电弹性体可以很容易地与固体聚合物基体结合,并产生非凡的机械性能和透明度㊂因此,采用离子导电弹性体替代传统的电子导电体是目前解决电致发光器件可拉伸性的可行方案[21,30]㊂2016年,新加坡南洋理工大学Lee 教授团队[14]开发了一种基于离子导电的超可拉伸的电致发光器件㊂他们以高氯酸锂(LiClO 4)作为导电离子,将其与高分子碳酸丙烯酯(PC)和聚甲基丙烯酸甲酯复合,制备出一种具有可拉伸的透明离子导电薄膜(图4(a))㊂同时硫化锌电致发光粉㊀第5期郭素文,等:硫化锌电致发光材料在智能可穿戴领域研究进展799㊀图4㊀面向柔性可穿戴器件的高可拉伸电致发光器件[14]㊂(a)高透明离子导电弹性体原料及制备过程;(b)可拉伸电致发光器件在不用应变下的电阻变化率;(c)可拉伸电致发光器件在对角与单向拉伸示意图;(d)可拉伸电致发光器件的图案化及不用应变下的发光稳定性㊂Fig.4㊀Highly stretchable electroluminescent device for flexible wearable devices [14].(a )The raw material and preparationprocess of the highly transparent ionically conductive elastomer.(b)Rate of resistance change of the stretchable EL de-vice under no strain.(c)Schematic diagram of the stretchable electroluminescent device in diagonal and unidirectionalstretching.(d)Patterning of stretchable electroluminescent devices and luminescence stability without strain.体与Eco-flex 弹性体复合,以构成本征可拉伸发光层㊂这种多层的柔性电致发光器件能承受来自不同方向的应变并保持稳定的发光强度(图4(c)㊁(d)),其拉伸应变高达700%,完全能适应人体多种复杂的机械运动㊂3.2㊀自愈合性近年来,自修复化学作为一种极具前景的方法,被广泛用于构建机械稳定且自我修复的柔性电子材料设计中㊂下面将介绍自愈合电致发光器件的研究进展㊂2018年,中国香港城市大学支春义教授团队[31]首次报道了一种全层可修复的硫化锌电致发光器件(图5(a)㊁(b))㊂他们采用改性自修复聚丙烯酸凝胶作为电极,自修复聚氨酯作为荧光主体,每个功能化层的物理化学性质在遭受重大灾难性损害后可以有效地恢复㊂结果显示,自愈EL 器件的发光性能恢复良好,愈合效率高(非固定点10个愈合周期为83.2%,固定点20个愈合周期为57.7%)㊂此外,还开发了设备间修复,以在发光设备的级别上实现概念性的 乐高 式组装过程㊂即使在经历了致命的切割后,自愈合的EL 器件也可以实现恢复其性能并延长其使用寿命㊂2019年,韩国延世大学材料学院Park 教授团队[32]开发了一种形状可变形和自我修复的EL 显示器(SSELD)(图5(c))㊂他们将一定量的增塑剂Triton X-100添加到含有发光Cu 2+掺杂的ZnS 微粒的弹性聚氨基甲酸酯中,以获得易于变形和恢复的粘弹性复合材料㊂电容式的SSELD 在交流电(AC)下表现出频率相关的场致发光㊂通过机械混合具有不同EL 特性的两个或多个Cu 2+掺杂ZnS 微粒,可以方便地实现EL 的颜色混合和调谐㊂更重要的是,SSELD 会在电气故障后几分钟内自行恢复其电致发光性能,这种器件可以承受超过100次故障-恢复的操作循环㊂2020年,新加坡国立大学Tee 教授团队[22]开发了一种用于低电场驱动的透明自愈㊁高介电常数的可伸缩电致发光器件,这种新型的自愈合光电器件在可穿戴电子㊁人机界面和软体机器人等800㊀发㊀㊀光㊀㊀学㊀㊀报第43卷图5㊀面向柔性可穿戴器件的自愈合电致发光器件㊂(a)~(b)自修复聚丙烯酸凝胶基电致发光器件[32];(c)自修复聚氨基甲酸酯基电致发光器件[32];(d)~(e)离子液体-氟弹性体自修复电致发光器件[22]㊂Fig.5㊀Self-healing electroluminescent device for flexible wearable devices.(a)-(b)Self-healing polyacrylic gel-based elec-troluminescent device [32].(c)Self-healing polyurethane-based electroluminescent device [32].(d)-(e)Ionic liquid-flu-oroelastomer self-healing electroluminescent device [22].领域具有重要的应用价值(图5(d)㊁(e))㊂该团队引入氟弹性体-离子液体的聚合物复合介电材料,这种材料具有良好的透明度㊁可拉伸性及高介电常数㊂这种基于氟弹性体-离子液体的电致发光器件在23V 的交流电压和低于1kHz 的频率下开启,这是人机交互的安全操作条件㊂同时,该器件在2.5V㊃μm -1下实现了1460cd㊃m -2的亮度,稳定照明的同时表现出最大800%的应变㊂这种材料在被刺穿或被切断时也能通过机械和电子手段自我修复㊂3.3㊀多色彩转变EL 器件的颜色多样性和动态可调性对于显示和通信的应用至关重要㊂就像许多具有自我照明能力的深海鱼类(如中远洋乌贼)可以通过改变生物发光颜色来发出光信号,以伪装㊁保护㊁捕食或通信[33]㊂虽然已经有人尝试通过调节材料的组成或引入颜色转换层来实现多色发射,但生物激发电子学中常用的ACEL 器件还没有获得动态变色的能力㊂2021年,复旦大学彭慧胜教授团队[23]首次提出通过改变电场来实现发射颜色的实时调谐㊂基于电场在不同介电常数介质中的分布差异,设计了介质分辨双叠加的发射层(图6)㊂他们构筑了一层具有低介电常数介质的ZnSʒMn /SBS 橙色复合发射层,另一层是具有高介电常数的ZnS ʒCu /CR 蓝色复合发射层㊂在低电场下,首先激发橙色的发射层,随着电场的逐渐增加,蓝色的发射层逐渐被激活,它的颜色可以很容易地从橙色到白色再到蓝色㊂此外,通过调节驱动频率可以有效地扩大调色范围㊂这种颜色可调设备显示出了极佳的灵活性和鲁棒性,可以设计成任何图案用于伪装和通信㊂㊀第5期郭素文,等:硫化锌电致发光材料在智能可穿戴领域研究进展801㊀图6㊀面向柔性可穿戴器件的多色彩转变电致发光器件[23]㊂(a)~(c)多色转变电致发光器件的结构及形貌示意图;(d)不同电场强度下,电致发光器件的颜色转变可见光光谱;(e)图案化发光转变的柔性器件㊂Fig.6㊀Multi-color transition electroluminescent device for flexible wearable devices [23].(a)-(c)Schematic diagrams of thestructure and morphology of the multicolor transition electroluminescent device.(d)Visible light spectrum of the colortransition of the electroluminescent device under different electric field strengths.(e)Patterned luminescence transition flexible device.4㊀EL 器件在可穿戴领域的应用4.1㊀电子皮肤对于二维柔性薄膜显示器件来说,往往可以通过丝网印刷及喷墨打印技术来实现微纳电路的设计,其精度可达50μm㊂2019年,南京大学材料学院孔德胜教授团队[24]开发了极性弹性体-陶瓷纳米粒子的复合打印浆料㊂由于极性弹性体-图7㊀硫化锌电致发光材料应用于电子皮肤㊂(a)~(b)用于表皮交流电致发光可拉伸显示器[24];(c)~(d)用于水下及低温环境工作的发光电子皮肤[21];(e)用于高分辨指纹识别的电子皮肤[34]㊂Fig.7㊀ZnS electroluminescent material for electronic skin.(a )-(b )For epidermal alternating current electroluminescentstretchable displays [24].(c)-(d)Luminescent electronic skin for underwater work [21].(e)Electronic skin for high-resolution fingerprint recognition [34].802㊀发㊀㊀光㊀㊀学㊀㊀报第43卷陶瓷纳米复合材料表现出高介电常数㊁高可拉伸性以及良好的溶液加工特性,基于介电纳米复合材料制备的可拉伸EL 器件能实现在10~35V 的低电压驱动㊂他们设计的四位数㊁七段显示器的发光显示电子皮肤具有出色的变形能力,可与人体进行亲密和适形的互动,如图7(a)㊁(b)所示㊂2020年,西安交通大学丁书江教授团队[21]基于离子液体-自愈合高分复合电极开发了一种耐低温的发光电子皮肤(图7(c)㊁(d))㊂这种新型的电子皮肤能在水下保持出色的拉伸性且发光亮度不降低,为未来水下及抗冻电子皮肤器件的开发提出了一种新策略㊂2019年,Park 教授团队[34]基于硫化锌电致发光材料开发了一种高空间分辨的发光电子皮肤㊂他们提出以手指作为接地电极,并以柔性透明导电电极作为另一电极,从而实现了高分辨的发光指纹显示,如图7(e)㊂这种光学电子皮肤无需在柔性电极表面集成大量的晶体管及传感器即可实现高分辨的指纹识别,制备工艺简单,具有良好的应用前景㊂4.2㊀电子纺织品与电子皮肤的二维薄膜形态相比,纤维编织的智能服装在可穿戴性和适应性方面具有显著优势㊂其具有出色的透气性和透湿性,能够适应人体各种不规则的3D 变形,提供高电子精度的沉浸式交互体验[35]㊂因此,智能服装作为理想的可穿戴集成平台,成为新的关注焦点㊂对于硫化锌基电致发光纺织品来说,如何在受限的一位纤维形态中构筑复杂的多层结构且维持纤维器件的柔性及可拉伸性是当前该领域面对的主要问题[36]㊂对于电致发光的织物电子显示器件来说,目图8㊀硫化锌电致发光材料应用于电子纺织品㊂(a)~(c)具有可变显示图案的可穿戴发光电子纺织品[37];(d)~(f)可拉伸电致发光纤维[38];(g)~(i)集成功能系统的大面积织物显示[26]㊂Fig.8㊀ZnS electroluminescent materials applied to electronic textiles.(a)-(c)Wearable luminescent electronic textiles withvariable display patterns [37].(d)-(f)Stretchable electroluminescent fibers [38].(g)-(i)Large-area fabric display ofintegrated functional systems [26].㊀第5期郭素文,等:硫化锌电致发光材料在智能可穿戴领域研究进展803㊀前常用的制备思路有两种㊂一种是在现有二维导电织物的基础上,印刷电致发光层和介质增强层,并根据导电织物的多孔特点,光源透过多孔导电织物以实现织物显示的目的㊂如图8(a)~(c),加拿大温莎大学Carmichael 教授团队[37]开发了一种可拉伸超薄织物作为半透明电极,用于具有显示图案可变的可穿戴发光电子纺织品㊂他们以针织型导电织物作为基底,采用丝网印刷在其表面刮涂硫化锌电致发光层,随后在其表面覆盖图案化的半透明电极作为显示层㊂他们提出以图案化电极的方式来实现信息的发光显示㊂此外,另一种电致发光织物的显示器件的思路是从单根纤维出发,将发光电极与硫化锌电致发光材料制备成纤维状,通过刺绣的方式以实现图案化显示,如图8(f)㊁(g)所示㊂2018年,复旦大学彭慧胜教授团队[38]提出采用湿法纺丝的工艺,以两层离子导电的凝胶作为可拉伸电极层,发光层为硫化锌电致发光材料与水凝胶的复合材料㊂他们制备的电致发光纱线具有良好的拉伸性与电致发光强度,并展望了其在脑机接口等领域的应用㊂以上两种方案分别从二维的导电织物和一维的纱线出发,成功制备出具有良好电致发光性能的纺织品,并实现了图案化的功能㊂但是,仍未实现织物显示图案的实时切换功能,其本质原因在于发光纱线与织物无法实现单像素的独立显示㊂在此基础上,2021年,复旦大学彭慧胜教授团队[26]从一维纱线的角度出发,提出将电致发光纱线的两个电极分离,分别作为经纱和纬纱㊂他们首先制备了具有发光涂层的单电极发光纱线作为编织物的经纱,再以透明导电的纬纱作为电致发光的另一极㊂通过调控经纱和纬纱的电压,可成功实现在经纬纱交织处单个像素点的发光显示,如图8(h)~(i)所示㊂这种硫化锌电致发光显示方案在未来可穿戴电子与智能服装领域具有广阔的应用前景㊂4.3㊀软体机器人生物系统往往拥有多种视觉展示和伪装策略㊂例如,章鱼等头足类动物具有可拉伸的皮肤和颜色调节器官,可以通过改变皮肤颜色和纹理来模仿它们的环境㊂软体机器人仿生设计和可拉伸电子设备的最新发展揭示了使我们能够综合设计头足类皮肤的某些功能的策略[39]㊂例如,充满液体染料的微流体网络已被用作软体移动机器人的主动伪装和显示器,使它们能够通过颜色㊁纹理图9㊀硫化锌电致发光材料应用于软体机器人㊂(a)~(c)用于光学信号和触觉传感的高度可拉伸电致发光软体机器人[28];(d)~(e)基于3D 打印的电致发光软体机器人[22]㊂Fig.9㊀ZnS electroluminescent material applied to soft robot.(a)-(c)Highly stretchable electroluminescent soft robots for opti-cal signaling and tactile sensing [28].(d)-(e)3D printing-based electroluminescent soft robots [22].804㊀发㊀㊀光㊀㊀学㊀㊀报第43卷和发光来改变外观㊂自适应光电伪装系统已被用于模拟头足类皮肤的视觉外观㊂硫化锌类电致发光材料可在交流电下通过本征异质结内的激发发光㊂且这种材料与水凝胶㊁Eco-flex等软体机器人常用的弹性体材料具有良好的相容性㊂因此,这种材料被广泛用于软体机器人的开发中[40]㊂2016年,美国康奈尔大学Shepherd教授团队[28]开发了一种协同光学信号和触觉传感的高度可拉伸电致发光皮肤用于软体机器人中㊂该团队采用聚丙烯酰胺-氯化锂(PAM-LiCl)水凝胶作为可拉伸电极,Eco-flex作为可拉伸保护层㊂这种凝胶电极与本征弹性体的复合策略赋予了电致发光器件高达400%的拉伸应变㊂此外,他们还将这种高可拉伸性的电致发光薄膜与气动软体机器人结合,实现了软体机器人在运动的同时辐射可见光,从而实现了类章鱼的视觉交互功能㊂2020年,新加坡国立大学Tee教授团队[22]以高介电常数的氟弹性体作为电致发光介质,采用3D 方式,将电致发光器件嵌入到能够接收光学反馈的软体机器人夹具中,嵌入式的电致发光器件充当灵活的光源㊂与集成到夹具底座的光学传感器一起,用于在黑暗环境中感应物体的接近㊂同时,软体机器人抓手还采用现有的电子设备进行无线供电㊂这种基于无线供电的光电器件对新兴的弹性无绳软体机器人十分有用㊂5㊀总结和展望硫化锌电致发光材料作为一种传统的光电材料,在新型柔性电子的浪潮中重新引发了新一轮研究热点,受到学术界和工业界的广泛关注㊂随着科学研究的不断深入,可拉伸电致发光器件在可拉伸显示㊁照明和生物医疗等领域展现出了巨大的应用潜力,因此受到了广泛关注并取得了快速发展㊂与传统电子器件相比,可拉伸电子器件突破刚性硅基底的限制,可以在拉伸㊁压缩㊁弯曲等状态下保持正常功能运行㊂然而,当前基于交流电致发光的可拉伸器件发光层介电常数较低,需要较高的驱动电压才能达到足够的亮度㊂硫化锌交流电致发光器件的发光效率不高,与目前主流的OLED等有机电致发光相比还有差距;另外,由于器件制备工艺的限制,当前可拉伸发光显示仅能实现简单的图案显示㊂针对交流电致发光器件,高介电材料可有效增强电致发光颗粒处的激发电场,提高器件的发光亮度㊂基于以上原因,硫化锌基电致发光材料在柔性电子的产业化方向仍需不断努力探索㊂本文专家审稿意见及作者回复内容的下载地址: /thesisDetails#10.37188/ CJL.20220027.参㊀考㊀文㊀献:[1]管世振.薄膜㊁厚膜电致发光器件的研究[D].天津:天津理工大学,2007.GUAN S Z.Studies on Thin and Thick Dielectric Electroluminescent Device[D].Tianjin:Tianjin University of Technology, 2007.(in Chinese)[2]王余姜,柳兆洪,陈谋智,等.硫化锌交流电致发光薄膜结构与特性研究[J].固体电子学研究与进展,1999,19(3):294-297.WANG Y J,LIU Z H,CHEN M Z,et al.Studies of microstructure and ACEL characteristics in zinc sulfide thin films[J].Res.Prog.Solid State Electron.,1999,19(3):294-297.(in Chinese)[3]董国义,林琳,韦志仁,等.退火处理对ZnSʒCu,Mn电致发光材料亮度的影响[J].发光学报,2005,26(6):733-736.DONG G Y,LIN L,WEI Z R,et al.Effect of annealing on brightness of ZnSʒCu,Mn ACEL material[J].Chin.J.Lu-min.,2005,26(6):733-736.(in Chinese)[4]SHI J D,LIU S,ZHANG L S,et al.Smart textile-integrated microelectronic systems for wearable applications[J].Adv.Mater.,2020,32(5):1901958-1-37.[5]WANG J X,YAN C Y,CHEE K J,et al.Highly stretchable and self-deformable alternating current electroluminescent de-vices[J].Adv.Mater.,2015,27(18):2876-2882.[6]CAO Y,TAN Y J,LI S,et al.Self-healing electronic skins for aquatic environments[J].Nat.Electron.,2019,2(2):㊀第5期郭素文,等:硫化锌电致发光材料在智能可穿戴领域研究进展805㊀75-82.[7]ZHAO X,ZHANG Z,LIAO Q L,et al.Self-powered user-interactive electronic skin for programmable touch operation plat-form[J].Sci.Adv.,2020,6(28):eaba4294-1-8.[8]MA Z J,HUANG Q Y,XU Q,et al.Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithicstretchable electronics[J].Nat.Mater.,2021,20(6):859-868.[9]李长胜,陈佳,王伟岐,等.ZnSʒCu电致发光电压传感器及其温度漂移补偿[J].中国光学,2017,10(4):514-521.LI C S,CHEN J,WANG W Q,et al.ZnSʒCu electroluminescent voltage sensor and its temperature drift compensation [J].Chin.Opt.,2017,10(4):514-521.(in Chinese)[10]JEONG S M,SONG S,LEE S K,et al.Mechanically driven light-generator with high durability[J].Appl.Phys.Lett.,2013,102(5):051110-1-5.[11]吴峰.ZnSʒCu电致发光粉表面包覆SiO2的研究[D].保定:河北大学,2003.WU F.The Study of the Coating of Silicon Dioxide on the Surface of EL Phosphor ZnSʒCu[D].Baoding:Hebei University, 2003.(in Chinese)[12]周连祥.ZnSʒMn㊁Cu粉末直流电致发光器件直流和交流电致发光一致性的研究[J].发光学报,1993,14(2):145-153.ZHOU L X.Study of the consistence in DCEL and ACEL characteristics of powder ZnSʒMn,Cu DCEL devices[J].Chin.J.Lumin.,1993,14(2):145-153.(in Chinese)[13]李静怡.无机交流柔性电致发光纺织品的制备及其性能研究[D].上海:东华大学,2020.LI J Y.Preparation and Research of Flexible AC-Electroluminescent Textiles[D].Shanghai:Donghua University,2020.(in Chinese)[14]王现川.柔性/可拉伸ZnSʒCu电致发光器件的制备与应用研究[D].郑州:郑州大学,2019.WANG X C.Research on Preparation and Applications of Flexible/Stretchable ZnSʒCu Electroluminescent Device[D].Zhengzhou:Zhengzhou University,2019.(in Chinese)[15]邓朝勇,王永生,杨胜.无机薄膜电致发光研究进展[J].功能材料,2002,33(2):133-135.DENG C Y,WANG Y S,YANG S.Research on inorganic thin film electroluminescence[J].J.Funct.Mater.,2002,33(2):133-135.(in Chinese)[16]YANG Z L,WANG W W,PAN J,et al.Alternating current electroluminescent devices with inorganic phosphors for de-formable displays[J].Cell Rep.Phys.Sci.,2020,1(10):100213-1-27.[17]ZHOU X F,XU X J,ZUO Y,et al.A fiber-shaped light-emitting pressure sensor for visualized dynamic monitoring[J].J.Mater.Chem.C,2020,8(3):935-942.[18]YANG W F,GONG W,GU W,et al.Self-powered interactive fiber electronics with visual-digital synergies[J].Adv.Ma-ter.,2021,33(45):2104681-1-10.[19]WANG J X,YAN C Y,CAI G F,et al.Extremely stretchable electroluminescent devices with ionic conductors[J].Adv.Mater.,2016,28(22):4490-4496.[20]KANG J,TOK J B H,BAO Z N.Self-healing soft electronics[J].Nat.Electron.,2019,2(4):144-150.[21]SHI L,JIA K,GAO Y Y,et al.Highly stretchable and transparent ionic conductor with novel hydrophobicity and extreme-temperature tolerance[J].Research,2020,2020:2505619-1-10.[22]TAN Y J,GODABA H,CHEN G,et al.A transparent,self-healing and high-κdielectric for low-field-emission stretchableoptoelectronics[J].Nat.Mater.,2020,19(2):182-188.[23]ZUO Y,SHI X,ZHOU X F,et al.Flexible color-tunable electroluminescent devices by designing dielectric-distinguishingdouble-stacked emissive layers[J].Adv.Funct.Mater.,2020,30(50):2005200-1-9.[24]ZHOU Y L,ZHAO C S,WANG J C,et al.Stretchable high-permittivity nanocomposites for epidermal alternating-currentelectroluminescent displays[J].ACS Mater.Lett.,2019,1(5):511-518.[25]STAUFFER F,TYBRANDT K.Bright stretchable alternating current electroluminescent displays based on high permittivitycomposites[J].Adv.Mater.,2016,28(33):7200-7203.[26]SHI X,ZUO Y,ZHAI P,et rge-area display textiles integrated with functional systems[J].Nature,2021,591(7849):240-245.。
蛋黄胶体菌胚基质肥皂水说明书
Technical Data SheetEgg-Yolk Emulsion sterile, 50 %, for microbiology Ordering number: 1.03784.0001Egg-yolk Emulsion is used as an additive, e.g. for GranuCult™ MYP (Mannitol Egg Yolk Polymyxin) Agar (Base) acc. EN ISO 7932, ISO 21871 and FDA-BAM (article number 1.05267.0500) and PEMBA (Polymyxin pyruvate egg yolk mannitol bromothymol blue) agar.Mode of ActionEgg-yolk permits the detection of microbial lecithinase activity.Typical CompositionSterile Egg-Yolk 500 ml/lNaCl 4.25 g/l distilled water to give a final volume of 1000 mlPreparationShake the bottle well to suspend any sediment.For the preparation of MYP agar, mix under aseptic conditions 100 ml Egg-Yolk Emulsion with 900 ml of the culture medium which has been sterilized and cooled to 45-50 °C. Pour plates.When emptying the bottle of Egg-Yolk Emulsion, aseptic conditions have to be observed. StorageUsable up to the expiry date when stored dry and tightly closed at +2 °C to +8 °C. Quality ControlEgg-Yolk Emulsion is tested in GranuCult™ MYP (Mannitol Egg Yolk Polymyxin) Agar (Base) acc. ISO 7932, ISO 21871 and FDA-BAM (article number 1.05267.0500). Function Control strains Incubation Method ofcontrol Expected resultsProductivity Bacillus cereusATCC® 11778 21-27 to 40-48h at 29-31 °C QualitativeGood to very goodgrowth, pink colonieswith precipitation haloFunction Control strains Incubation Method of control Expected results Selectivity Escherichia coli ATCC ® 8739 40-48 h at 29-31 °C Qualitative Total inhibition Escherichia coli ATCC ® 25922 SpecificityBacillus subtilis ATCC ® 663340-48 h at 29-31 °CQualitativeYellow colonies without precipitation haloPlease refer to the actual batch related Certificate of Analysis.Staphylococcus aureus ATCC ® 6538Bacillus cereus ATCC ® 11778 on MYP agar on MYP agarLiteratureAPHA (2015): Compendium of Methods for the Microbiological Examination of Foods. 5th ed. American Public Health Association, Washington, D.C.FDA-BAM (2013): Chapter No. 14: Bacillus cereus. U.S. Food and Drug Administration - Bacteriological Analytical Manual.ISO International Standardisation Organisation. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of presumptive Bacillus cereus - Colony-count technique at 30 °C. EN ISO 7932:2004.ISO International Standardisation Organisation. Microbiology of food, animal feed and water - Preparation, production, storage and performance testing of culture media. EN ISO 11133:2014.ISO International Standardisation Organisation. Microbiology of food and animal feeding stuffs - Horizontal method for the determination of low numbers of presumptive Bacillus cereus - Most probable number technique and detection method. EN ISO 21871:2006.Merck, Millipore, and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. Detailed information on trademarks is available via publicly accessible resources. © 2019 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.Ordering Information ProductCat. No. Pack size Egg-Yolk Emulsion sterile, 50%, for microbiology1.03784.0001 10 x 100 ml GranuCult ™ MYP (Mannitol Egg Yolk Polymyxin)Agar (Base) acc. ISO 7932, ISO 21871 and FDA-BAM1.05267.0500 500 g Bacillus Cereus Selective Supplement1.09875.001010 x 1vialMerck KGaAFrankfurter Strasse 250 64293 Darmstadt, Germany Fax: +49 (0)61 51 / 72-60 80Find contact information for your country at:/offices For Technical Service, please visit: /techserviceFor more information, visit/biomonitoring。
荧光磷光基本原理
荧光量子产率():
发射的光量子数 吸收的光量子数
荧光量子产率与激发态能量释放各过程的速率常数有关 ,如外转换过程速度快,不出现荧光发射;
2.化合物的结构与荧光
(1)跃迁类型:* → 的荧光效率高,系间跨越过程的速率 常数小,有利于荧光的产生; (2)共轭效应:提高共轭度有利于增加荧光效率并产生红移 (3)刚性平面结构:可降低分子振动,减少与溶剂的相互作 用,故具有很强的荧光。如荧光素和酚酞有相似结构,荧光 素有很强的荧光,酚酞却没有。 (4)取代基效应:芳环 上有供电基,使荧光增 强。
产生不同吸收带但均回到第一激发单重态的最低振动能级再跃迁回到基态产生波长一定的荧光如l通常荧光发射光谱与它的吸收光谱与激发光谱形状一样成镜像对称关系
第一节 分子荧光与磷光
molecular fluorescence and phosphorescence
一、荧光与磷光的产生过程
luminescence process of molecular fluorescence phosphorescence
四、影响荧光强度的因素
relation between fluorescence and molecular structure
影响荧光强度的外部因素
1.溶剂的影响
除一般溶剂效应外,溶剂的极性、氢键、配位键的形成 都将使化合物的荧光发生变化;
2.温度的影响
荧光强度对温度变化敏感,温度增加,外转换去活的几
第一、第二、…电子激发三重态 T1 、 T2 … ;
2.电子激发态的多重度
电子激发态的多重度:M=2S+1 S为电子自旋量子数的代数和(0或1); 平行自旋比成对自旋稳定(洪特规则),三重态能级比相应 单重态能级低; 大多数有机分子的基态处于单重态; S0→T1 禁阻跃迁; 通过其他途径进入 (见能级图);进入的 几率小;