激光原理复习总结

合集下载

激光原理考点总结

激光原理考点总结

激光原理考点总结激光(Laser)是指一种由集中的电磁辐射所产生的具有高度单色性、相干性和方向性的光。

激光原理是激光器工作的基础,其中涉及到激光的产生和放大过程。

下面将从以下几个方面总结激光原理的考点。

1.电磁辐射:激光器利用电磁辐射的原理产生激光。

电磁辐射是由电场和磁场相互作用产生的波动现象,包括广义上的光波,其中可见光是电磁辐射的一种。

了解光波的特性和传播方式对理解激光原理很重要。

2.反射和吸收:激光器中的反射是激光产生和放大的关键过程。

反射镜的设置可以实现光的反复来回传播,使得光能够在增益介质中多次通过,增强光的能量。

另一方面,激光器中的吸收是影响激光输出功率和效率的因素之一、吸收是指光被介质吸收和转化为热能的过程。

3.激射和跃迁:激射是指从低能级向高能级跃迁的过程。

在激光器中,通过能量输入或外部激发,使得电子从基态跃迁到激发态。

而跃迁是指电子从一个能级到另一个能级的过程。

了解能级和电子跃迁的类型对激光器的设计和调谐至关重要。

4.反转粒子数和增益:激光器中的反转粒子数是指在激光器工作过程中,高能级粒子数目大于低能级粒子数目的情况。

这种不平衡的粒子数分布是产生和放大激光的关键。

通过提供能量,例如光或电能,可以增加反转粒子数,增强激光的输出功率。

5.波长选择和模式锁定:激光器的波长选择是指产生特定波长的激光。

波长选择可以通过选择合适的增益介质和谐振腔的设计来实现。

激光器中的模式锁定是指使光场处于稳定、精确的频率和相位关系的状态。

这对于精密测量、光谱分析和通信应用非常重要。

6.激光器结构和组成:激光器的结构和组成也是激光原理的考点。

激光器通常包括三个主要部分:激活介质(液体、固体或气体)、谐振腔(用于反射和放大光)和泵浦源(提供能量,如光波或电流)。

不同类型的激光器具有不同的结构,如气体激光器、固体激光器和半导体激光器。

综上所述,激光原理的考点包括电磁辐射、反射和吸收、激射和跃迁、反转粒子数和增益、波长选择和模式锁定以及激光器的结构和组成。

第7章激光原理复习总结

第7章激光原理复习总结

饱和吸调Q ,是一种被动式的快开关类型,结构简单,使用方便,
没有电的干扰,产生调Q脉冲的时刻有一定的随机性,不能人为
地控制。染料易变质,需经常更换,输出不稳定。
16/23
四、转镜调Q
利用改变反射镜的平行度反射损耗来控制Q值的方法。如图所示
的是转镜调 Q激光器的示意图。它是把脉冲激光器谐振腔的全反
射镜用一直角棱镜取代,该棱镜安装在一个高速旋转马达的转
①任务:a.提供标准频率。b.频率鉴别:当激光器振 荡频率偏离标准频率时,能够鉴别出来。
②对鉴频器的要求:a.中心频率要稳定,标准频率不 能有漂移。b.灵敏度要高,微小变化能鉴别。
③ 鉴频器的类型:以原子谱线本身作为鉴频器、以 外界标准频率做鉴频器
9/23
三、稳频方法
兰姆凹陷稳频 塞曼稳频
饱和吸收稳频(反兰姆凹陷稳频 )
不同,衍1射损耗不同。
N( a2 )
L
2/23
横模选择方法: 谐振腔参数g、N选择(谐振腔设计) 小孔光阑 非稳腔 微调谐振腔
3/23
小孔光阑选横模
小孔
小孔光阑选模
基本思路: 减小谐振腔的菲涅耳数,增加衍射损耗 TEM00模和其它高阶模有不同的光斑尺寸
特点:方法简单 不易获得大功率输出
子上,由于它绕垂直于腔的轴线作周而复始的旋转,因此构成
一个Q值作周期变化的谐振腔。
镜架
棱镜 磁头
激光介质
半反 激光
磁钢
光泵
电动机 触发电路
电源 转镜调Q 属于慢开关类型 目前已基本上不采用。
17/23
四、脉冲透射式调Q (腔倒空 cavity depletion)
谐振腔由全反射镜M1和可控反射镜M2组成。t<0时,M2镜全反 射,谐振腔处于高Q值状态,激光器振荡但无输出。激光能量储存 于谐振腔中。t=0时,控制M2镜使其透射率达100%,储存于腔内 的激光能量迅速逸出腔外,于是输出一巨脉冲。这种调Q方式称 作脉冲透射式调Q或腔倒空.由于这种调Q方式是在全透射情况 下输出光脉冲,光子逸出谐振腔所需最长时间为2L'/c(L'为谐振腔 光程长),所以输出光脉冲持续时间约等于2L'/c,脉宽仅为数纳秒.

激光知识点总结

激光知识点总结

激光知识点总结一、激光的工作原理激光是由激光管或半导体激光器等激光器件产生的一种特殊的光,其产生过程涉及到激发、放大和辐射三个过程。

激发过程是激光器内部能级的粒子被外部能量激发,处于高能级,即被激发态。

放大过程是被激发态的粒子受到反射膜的作用,在激光谐振腔内不断来回运动,使得光子通过受激辐射不断放大,形成激光能量。

辐射过程是形成激光光束的过程,激光能量通过谐振腔的光学放大产生足够的光强,经过半透过膜射出。

二、激光的分类根据激光器产生的机理、工作波长和应用领域不同,激光可以分为不同的类型。

常见的激光器包括气体激光器、固体激光器、半导体激光器等。

气体激光器主要包括CO2激光器、氩离子激光器等,工作波长主要在10.6微米和0.5微米左右。

固体激光器主要包括Nd:YAG激光器、Nd:YVO4激光器等,工作波长主要在1微米左右。

半导体激光器主要包括GaAs激光器、InGaN激光器等,工作波长主要在可见光和红外光区域。

三、激光的应用激光在各个领域都有着广泛的应用,包括医学、通信、材料加工等。

在医学领域,激光可以用于手术、治疗、检测等,例如激光近视手术、激光溶脂手术等。

在通信领域,激光可以用于光纤通信、激光雷达等,实现了信息的高速传输和大容量存储。

在材料加工领域,激光可以用于切割、焊接、打标等,高精度、高效率、非接触等优点,深受制造业的青睐。

四、激光的安全问题激光的应用虽然带来了很多便利,但同时也伴随着一些安全问题。

激光具有高能量密度、强聚焦性和直线传播性,如果被不当使用,可能会导致眼睛、皮肤等组织的损伤。

因此,在激光使用过程中,需要采取一系列的安全措施,包括佩戴防护眼镜、设置相应的警示标识、限制激光输出功率等,确保激光的安全使用。

总之,激光作为一种重要的光学技术,在科研和工程实践中有着广泛的应用,具有很高的经济和社会效益。

通过深入理解其工作原理、分类和应用等,可以更好地把握激光的特点和优势,更好地应用于实际工作中。

激光原理知识点总结

激光原理知识点总结

激光原理知识点总结激光的产生原理激光是一种与常规光具有本质不同的光。

它是通过一种叫做“受激辐射”的过程产生的,这是量子力学的一种结果。

激光的产生原理主要涉及三个主要过程:光的激发、光的放大和光的辐射。

首先是光的激发。

激光的产生需要通过能量输入来激发原子或分子的能级。

当外界能量激发物质的能级时,原子或分子的电子会从低能级跃迁到高能级,形成“受激辐射”所需的激发态。

然后是光的放大。

在受激辐射的过程中,当一个光子与处于激发态的原子或分子碰撞时,它会与其相互作用,导致后者释放出另一个同频率、同相位和同偏振的光子,并回到低能级。

这个新的光子与已有的光子具有相同的频率、相位和偏振,因此它们会在相互作用的同时相互放大,形成一支激光光束。

最后是光的辐射。

当受激辐射的过程一直不断地发生时,光子会在光学共振腔中来回反射,产生一支具有高度相干性、高亮度和高直线度的激光光束。

这种光具有很强的聚焦能力和穿透能力,因此在很多领域有着广泛的应用价值。

激光的特点激光具有以下几个主要特点:1.高度相干性。

激光光束的波长一致、频率一致、相位一致,因此具有很高的相干性。

这使得激光在干涉、衍射和频谱分析等方面具有很大的优势。

2.高亮度。

激光的辐射强度非常集中,因此具有很高的亮度。

这使得激光可用于制备高清晰度的成像系统和高精度的测量装置。

3.高直线度。

激光的传播路径非常直线,几乎不具有散射,因此具有很高的直线度。

这使得激光在通信、激光雷达和光刻等领域有着广泛的应用。

激光器件的工作原理和应用激光器件是产生激光光束的重要设备,其工作原理一般基于受激辐射过程。

目前常用的激光器件主要包括气体激光器、固体激光器、半导体激光器和光纤激光器。

气体激光器是将气体放电或者由光泵浦的气体装置转变成激光的光源。

其中最著名的就是氦氖激光器。

使用稳态直流电源或者交变电源将氦气充入放电管,并保持一定的氦气气压。

然后用电子束或者泵浦光源来使得氦原子激发至高能级,然后在碰撞的作用下通过受激辐射作用形成激光光束。

激光知识点归纳总结

激光知识点归纳总结

激光知识点归纳总结一、激光的基本概念1. 激光的定义:激光是指一种纯准直性极好的光线,其光子是高度同步的单色光子。

2. 激光的产生:激光是由受激发射产生的,利用三能级或四能级的原子,分子或离子系统,通过外加能量使体系转移到激发态,再利用其辐射产生激光光子。

3. 激光的特性:激光具有单色性、准直性、明暗对比度高、相干性强等特点。

4. 激光的种类:激光可以分为气体激光器、固体激光器、液体激光器和半导体激光器等。

二、激光的基本原理1. 激光的受激辐射:当原子、分子或离子处于激发态时,通过外界刺激的辐射能引起它们从激发态向稳态跃迁,再发出与外界激发辐射相同特性的电磁波,即受激辐射。

2. 激光的稳态条件:产生激光需要满足稳态条件,即发射和吸收的粒子数要平衡,从而实现能量的持续放大和稳定输出。

3. 激光的放大作用:在激光器内,通过激发态原子、分子或离子吸收外界光子能量,使它们跃迁到更高激发态,从而放大光子,产生激光。

4. 激光的光学谐振腔:激光器内部常常设置光学谐振腔,用来反射和增强激光,从而实现激光的输出。

三、激光的应用领域1. 激光测距与测速:激光雷达通过测量反射光的飞行时间来实现测距,同时通过多普勒效应测速。

2. 激光材料加工:激光可用于金属切割、焊接、打孔等材料加工过程。

3. 激光医学应用:激光可用于眼科手术、皮肤治疗、激光治疗仪等医疗设备。

4. 激光通讯:激光可以传输更大带宽、更高速率的信息,用于通讯领域。

5. 激光导航:激光雷达可用于无人飞行器、自动驾驶汽车等导航系统。

6. 激光防御:激光武器可用于导弹防御、激光束武器等领域。

四、激光器的分类1. 气体激光器:以气体为工作物质的激光器,常见的包括二氧化碳激光器、氦氖激光器等。

2. 固体激光器:以固体为工作物质的激光器,常见的包括Nd:YAG激光器、激光二极管等。

3. 半导体激光器:以半导体为工作物质的激光器,可用于激光打印机、光纤通信等领域。

4. 液体激光器:以液体为工作物质的激光器,常见的包括染料激光器等。

激光原理总结

激光原理总结

激光原理总结⼀共四章§Chapter 1爱因斯坦系数/激光产⽣条件/激光结构/激光优点1. ⾃发辐射: 上能级粒⼦,⾃发地从E2能级跃迁到E1能级,并辐射出光⼦2. 受激辐射: 上能级粒⼦,遇到能量等于能级差的光⼦,在光⼦激励下,粒⼦从E2能级跃迁到E1能级,并辐射出⼀个与⼊射光⼦完全相同的光⼦3. 受激吸收: 下能级粒⼦,遇到能量等于能级差的光⼦,在光⼦激励下,粒⼦从E1能级跃迁到E2能级,并吸收⼀个⼊射光⼦三个爱因斯坦系数:dn21=A21n2dt(⾃发辐射)dn′21=B21n2ρv dt(受激辐射)dn12=B12n1ρv dt(受激吸收)三个爱因斯坦系数的关系:A21 B21=8πhν3 c3B12g1=B21g2粒⼦数反转分布状态:dn′21 dn12=g1n2g2n1>1受激辐射⼤于受激吸收,打破波尔兹曼分布。

此时可称“得到增益”。

⽽普通情况下,受激辐射/⾃发辐射较⼩(计算参看讲义)。

总结:产⽣激光的基本条件是“粒⼦数反转分布和增⼤⼀⽅向上的光能密度”激光器的基本结构:1. ⼯作物质:增益介质/粒⼦数反转/上能级为亚稳态2. 激励装置:能源/光/电3. 谐振腔:反馈/光强/模式三能级系统:亚稳态寿命长,阈值⾼,转换效率低。

如红宝⽯激光器四能级系统:阈值低,连续运转,⼤功率。

如He-Ne激光器的优点:1. 相⼲性好:受激辐射的光具有相⼲性,相⼲长度L c=λ2Δλ,相⼲时间τ=L cc2. ⽅向性好:谐振腔3. 单⾊性好4. 亮度⾼:受激辐射的光强⼤§Chapter 2稳定性/模式分析/⾼斯光束腔的分类参考Ch2-P1光腔的稳定性条件:傍轴模在腔内往返⽆限多次不逸出腔外,数学形式如下g 1=1−L R 1,g 2=1−L R 20≤g 1g 2≤1按照稳定性得到三种腔♥0<g 1g 2<1稳定腔♥g 1g 2=0org 1g 2=1临界腔♥g 1g 2<0org 1g 2>1⾮稳腔 ♥ ♥ ♥ ♥♥ ♥ bbx ♥ nnx 图解法判断腔的稳定条件Ch2-P2⽤上述条件判断各种腔的稳定性,注意曲率R 的⽅向"凹⾯向着腔内时(凹⾯镜),R >0;凸⾯向着腔内时(凸⾯镜),R <0"。

激光原理复习总结要点

激光原理复习总结要点

激光原理复习要点 第一章 激光的基本原理一、激光的基本性质:1.光子的能量与光波频率对应νεh =;2.光子具有运动质量22ch cm νε==;3.光子的动量与单色波的波失对应k n mc p ==0;4.光子具有两种可能的偏振态,对应光波场的两个独立偏振方向;5.光子具有自旋,且自旋量子数为整数。

二、光子的相干性:1.相干性:在不同的空间点上,在不同的时刻的光波场的某些特性(例如光波场的相位)的相关性。

2.相干体积:在空间体积为c V 内的各点光波场都具有明显的相干性。

3.相干长度:光波波列的长度。

4.光源的单色性越好,则相干时间越长。

5.关于相干性的两个结论:(1)相格空间体积以及一个光波模式或光子偏振态占有的空间都等于相干体积。

(2)属于同一状态的光子或同一个模式的光波是相干的,不同状态的光子、不同模式的光波是不相干的。

三、光子简并度:同一状态的光子数、同一模式的光子数、处于相干体积的光子数、处于同一相格的光子数。

四、自发辐射:处于高能级的一个原子自发地向低能级跃迁,并发射出一个能量为νh 的光子,这种过程叫自发跃迁,由原子自发跃迁发出的光成为自发辐射。

五、受激辐射:处于上能级的原子在频率为ν辐射场作用下,跃迁至低能级,并辐射出一个能量为νh 的光子,受激辐射跃迁发出的光成为受激辐射。

六、受激吸收:处于低能级的一个原子,在频率为ν的辐射场作用下,吸收一个能量为νh 的光子并向高能级跃迁。

七、辐射跃迁:自发辐射跃迁、受激辐射跃迁,非辐射跃迁:受激吸收八、增益系数:用来表示光通过单位长度激活物质后光强增长的百分比。

()()z I dz z dI g 1=。

九、饱和增益:增益系数g 随着z 的增加而减小,这一现象称为饱和增益。

十、引起饱和增益的原因:1.光强I 的增加是以高低能级粒子数差的减小为代价的。

2.光强越大,高低能级的粒子数差减小的就越多,所以g 也随z 的增大而减小。

十一、光谐振腔的作用:1.模式选择,保证激光器单模振荡,从而提高相干性。

(完整版)激光原理期末知识点总复习材料,推荐文档

(完整版)激光原理期末知识点总复习材料,推荐文档

激光原理期末知识点总复习材料2.激光特性:单色性、方向性、相干性、高亮度3.光和物质的三种相互作用:自发辐射,受激吸收,受激辐射4.处于能级u 的原子在光的激发下以几率 向能级1跃迁,并发射1个与入射光子全同的光子,Bul 为受激辐射系数。

5.自发辐射是非相干的。

受激辐射与入射场具有相同的频率、相位和偏振态,并沿相同方向传播,因而具有良好的相干性。

6.爱因斯坦辐射系数是一些只取决于原子性质而与辐射场无关的量,且三者之间存在一定联系。

7.产生激光的必要条件:工作物质处于粒子数反转分布状态8.产生激光的充分条件:在增益介质的有效长度内光强可以从微小信号增长到饱和光强Is9.谱线加宽特性通常用I 中频率处于ν~ν+d ν的部分为I(ν)d ν,则线型函数定义为线型函数满足归一化条件:10.的简化形式。

11.四能级比三能级好的原因:更容易形成粒子数反转 画出四能级系统的能级简图并写出其速率方程组()()()() Rll l l l N N n f f n dt dN nn n n n A n W n s n dtdn S n S A n N n f f n dt dn A S n W n dtdn τυννσυννσ-⎪⎪⎭⎫ ⎝⎛-==++++-=++-⎪⎪⎭⎫ ⎝⎛--=+-=021112203213030010103232121202111222313230303,,ρul ul B W =1)(=⎰∞∞-ννd g 121212)(-+=S A τ12E 2112.13.14.15.程的本征函数和本征值。

研究方法:①几何光学分析方法②矩阵光学分析方法③波动光学分析方法。

处于运转状态的激光器的谐振腔都是存在增益介质的有源腔。

16.腔模沿腔轴线方向的稳定场分布称为谐振腔的纵模,在垂直于腔轴的横截面内的稳定场分布称为谐振腔的横模。

17.腔长和折射率越小,纵模间隔越大。

对于给定的光腔,纵模间隔为常数,腔的纵模在频率尺上是等距排列的不同的横模用横模序数m,n 描述。

激光原理重要知识点总结

激光原理重要知识点总结

激光原理重要知识点总结一、光的增益作用光的增益作用是指当激光器原子、分子或离子受到外界激励时,电子由基态跃迁到激发态的过程,然后通过受激辐射过程,释放出同频的光子,光子与原子、分子或离子碰撞后,再次受激辐射产生的光子数量比刚开始辐射的光子相同,这样逐渐增加,形成激光。

1. 受激辐射当自由的电子和可激发的原子或离子发生碰撞时,后者的电子可以从较低的激发态跃迁到高的激发态,此时发射的辐射光子就与入射的引激光的频率相同。

这种过程称为受激辐射。

2. 反转分布在激光器的工作状态下,使激光材料中原子、分子或离子的激发态的密度大于基态的密度,这种特殊的能级布局称为反转分布。

只有当反转分布具有足够的时间持续性,才能形成激光输出。

二、激光共振腔激光共振腔是由两个反射镜构成的,其中一个为半透反射镜,另一个为全反射镜。

它的主要功能是将光共振在腔内,使得只有与激光器频率一致的光才得以通过反射镜输出,而其它频率的光则在腔内循环反射,形成激光输出。

激光腔外的泵浦装置则通过激发工作物质的原子或离子的跃迁将能量传递给激光材料,使得激光器能够继续工作。

三、激光输出当光共振在激光器内部形成激光,并且通过激光腔的半透反射镜输出激光后,激光通过调制器、色散系统、光阑以及辐射器等设备,再通过光阑进行空间裁剪,在目标面形成所需要的光斑。

激光在输出过程中还需要考虑各种参数的调节和控制,以保证激光输出质量。

总的来说,激光技术以其高亮度、高品质、高能量密度、高单色性、高直线偏振度和相干度等优异的特性,已经在通信、医学、材料加工、军事、精密定位等领域得到了广泛的应用。

同时,激光技术的应用也在不断地拓展中,为各行各业带来更多的机遇和挑战。

激光原理复习资料整理总结

激光原理复习资料整理总结

第一章1.1900年,普朗克(M.Planck)提出辐射能量量子化假说,精确的解释了黑体辐射规律。

获得1918年诺贝尔物理学奖。

能量子概念:物质吸收和发射电磁能量是一份一份的进行的。

2.1905年,爱因斯坦(A. Einstein)为解释光电效应定律提出光量子假说。

获得1921年诺贝尔物理学奖。

光量子:简称光子或者photon,即光场本身的能量就是一份一份的。

3.光量子的概念(爱因斯坦):光量子简称光子或者photon,即光场本身的能量就是一份一份的。

爱因斯坦假设:光、原子、电子一样具有粒子性,光是一种以光速c运动的光子流,光量子假说成功地解释了光电效应。

光子(电磁场量子)和其他基本粒子一样,具有能量、动量和质量等。

粒子属性:能量、动量、质量;波动属性:频率、波矢、偏振4.光子既是粒子又是波,具有波粒二象性!5.属性:①光子的能量:ε=hv,普朗克常数: h=6.626x10−36J.s②光子的运动质量m:m=εc2=ℎvc2③光子的动量P⃑:P⃑=mcn0⃑⃑⃑⃑ =ℎvc n0⃑⃑⃑⃑ =ℎ2π2πλn0⃑⃑⃑⃑④光子的偏振态:光子具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。

⑤光子的自旋:光子具有自旋,并且自旋量子数为整数,处于同一状态的光子数目是没有限制的。

6.光子相干性的重要结论:①相格空间体积以及一个光波模式或光子状态占有的空间体积都等于相干体积②属于同一状态的光子或同一模式的光波是相干的,不同状态的光子或不同模式的光波是不相干的。

7.光子简并度:处于同一光子态的光子数称为光子简并度。

具有以下几种相同的含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。

好的相干光源:高的相干光强,足够大的相干面积,足够长的相干时间(或相干长度)。

8.1913年,玻尔(Niels Bohr)建立氢原子结构模型,成功解释并预测了氢原子的光谱。

获得1922年诺贝尔物理学奖9.1946年,布洛赫(Felix Bloch)提出粒子数反转概念。

激光原理复习知识点

激光原理复习知识点

激光原理复习知识点
激光(Laser)是一种特殊的光源,具有高亮度、高单色性和高直线度等特点,广泛应用于医疗、通信、材料加工等领域。

激光的产生是基于激光原理,本文将围绕激光原理展开复习,帮助读者更好地理解激光的工作原理及常见应用。

1. 光的特性:
光是电磁波的一种,具有波粒二象性。

在光学中,我们常常将光看作是一束光线,使得光的传播更易于理解。

光的主要特性包括波长、频率、振幅和相位等。

2. 激射过程:
激光的产生是通过光子在外部受激辐射的作用下,从处于激发态的原子或分子中重新退激而产生。

这个过程需要一种激光介质,如气体、固体或液体,以及与之匹配的能量源,如泵浦光源或电子束。

3. 受激辐射:
在激光介质中,经过泵浦作用,一部分原子或分子被激发到激发态。

当这些处于激发态的粒子受到外界能量刺激时,会从高能级跃迁到较低能级,释放出额外的光子,这就是受激辐射。

这些受激辐射的光子可以与其他激发态粒子进行相互作用,进一步增强受激辐射的效果。

4. 波导结构:
为了通过受激辐射实现激光的放大和反射,激光器通常采用波导结构。

波导结构允许激光光束在其中传播,而不会发生较大的损耗。

波导结构可以是导光纤、半导体器件或光学腔等形式。

5. 消谐:
在激光器中,为了保持单一频率的输出,需要进行消谐。

消谐可以通过调整激光介质的性质或使用消谐元件来实现。

消谐的目的是确保激光器输出的光具有较窄的频谱宽度,以便于在通信和光谱分析等应用中的有效使用。

6. 光的放大:。

激光原理复习知识点

激光原理复习知识点

一 名词解释1. 损耗系数及振荡条件: 0)(m ≥-=ααS o I g I ,即α≥o g 。

α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。

2. 线型函数:引入谱线的线型函数pv p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。

按上式定义的v ∆称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。

定义p v P w Q ξπξ2==。

ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。

v 为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。

激光原理考点总结

激光原理考点总结

激光原理考点总结激光是一种特殊的光,具有高度的单色性、方向性和相干性。

其原理涉及光的发射、吸收和放大过程,同时也与原子、分子的能级结构有关。

以下是激光原理的一些重要考点总结。

1.激光的产生机制激光的产生是通过受激辐射过程实现的。

首先需要有一个激发源,如电流激励、光激励或化学激发。

该激发源提供能量,使散乱的原子或分子处于高能级。

然后,这些激发态粒子会通过受激辐射的过程,跃迁到低能级。

在跃迁的过程中,它们会辐射出与激发源同频率、相位一致的光子,从而形成激光。

2.激光的放大过程激光放大需要使用一个激光介质,其中包含大量的激发态粒子。

当激发源激发介质时,激发态粒子在介质中传播并与其他原子或分子发生碰撞。

在这些碰撞过程中,激发态粒子会通过受激辐射的过程辐射出同相、同频的光子,从而使光波的能量得以增加。

在辐射出的光子中,一部分会被吸收,而另一部分会继续在介质中传播,进一步增强光的能量。

通过这一连续的过程,激光的能量得以放大。

3.激光的构成激光由三个基本部分组成:激发源、激光介质和光学共振腔。

激发源提供能量,使介质中的原子或分子激发到激发态。

介质通过受激辐射的过程,将激发态粒子的能量转化为光子。

光学共振腔则用于放大和反射光子,从而形成激光束。

共振腔通常由两个反射镜构成,其中一个为半透镜,允许一部分光子透过。

4.激光的性质激光具有几个重要的性质。

首先是高单色性,即激光只有一种频率。

这是由于激发态粒子跃迁到低能级时,辐射出的光子具有唯一的能量差。

其次是方向性,激光束呈现出非常狭窄的发散度,可用于远距离通信和激光切割等应用。

最后是相干性,激光光波的振动方式高度一致,相位间的关系是稳定的。

5.激光的应用激光在许多领域中得到了广泛应用。

在医学中,激光可用于激光手术、皮肤治疗和眼科手术等。

在科学研究中,激光常用于光谱分析和原子物理实验。

激光也被用于通信技术,例如光纤通信和光盘。

此外,激光还可用于制造业,如激光切割、激光焊接和激光打印等。

激光原理与技术各章重点(基本补全)

激光原理与技术各章重点(基本补全)

激光原理与技术期末总复习第1章1.激光产生的必要条件(粒子数反转分布)2.激光产生的充分条件(在增益介质的有效长度内光强可以从微小信号增长到饱和光强)3.饱和光强定义:使激光上能级粒子数减小为小信号值的1/2时的光强为饱和光强4.谱线加宽的分类:均匀加宽和非均匀加宽两种加宽的本质区别?5激光器泵谱技术的分类:直接泵谱缺点:首先从基态E1到激光上能级E3往往缺乏有效途径,即B13(对光泵浦)或σ13(对粒子泵浦)太小,难以产生足够的增益;其次即使存在E1 E3的有效途径,但同一过程可能存在由E1到激光下能级E2的有效途径,结果是W12/W13太大难以形成粒子反转分布。

这些缺点是直接泵浦方式对很多激光器来说是不适用的。

间接泵谱:分为自上而下、自下而上和横向转移三中方式)间接泵谱的优点:首先,中间能级具有远大于激光上能级的寿命,且可以是很多能级形成的能带,因而,Ei 上很容易积累大量的粒子;其次,在有些情况下,将粒子从基态激发到Ei 的几率要比激发到Eu 的几率大得多,这就降低了对泵浦的要求;最后,依据选择定则,可以使Ei 向Eu 的弛豫过程比Ei 向激光下能级Ei 的弛豫过程快得多6..频率牵引有源腔中的纵模频率总是比无源腔中同序数频率更接近工作物质的中心频率7.能画出激光工作物质三能级系统能级图,说明能级间粒子跃迁的动态过程?8.当粒子反转数大于零时,在激光谐振腔中能够自激振荡吗?为什么?9. 激光的特性(单色性、方向性、相干性和高亮度)10. 证明光谱线型函数满足归一化条件证明: ⎰⎰⎰+∞∞-+∞∞-+∞∞-====1)()()(ννννννd g I d Ig d I I则 11.激光器的输出特性。

(43页)???第2章1.光学谐振腔的分类和作用分类:能否忽略侧面边界,可将其分为开腔,闭腔以及气体波导腔按照腔镜的形状和结构,可分为球面腔和非球面腔是否插入透镜之类的光学元件,或者是否考虑腔镜以外的反射表面,可以分为简单腔和符合腔 u u u u S h A c h I τσντνπν11228==)211(2121111τττπν++++=∆∑∑u jj i ui H A A N D M T Mc kT 072/120)1016.7(])2(ln 2[2ννν-⨯==∆⎰+∞∞-=1)(ννd g根据腔中辐射场的特点,可分为驻波腔和行波腔从反馈机理的不同,可分端面反馈腔和分布反馈腔根据构成谐振腔反射镜的个数,可分为两镜腔和多镜腔作用:①提供轴向光波模的光学反馈;②控制振荡模式的特性2.光学谐振腔的损耗分类:几何损耗、衍射损耗、输出腔镜的透射损耗和非激活吸收、散射等其他损耗计算:单程损耗:12m βδ==D 为平平腔镜面的横向尺寸(反射镜的直接)β两镜面直接的小角度L 两镜面直接的距离(腔长))单程衍射p59开始带图3.推导平平腔的两个相邻纵模的频率间隔证明:4.以平-平腔为例理解光学谐振腔横模的形成过程5. 用g 参数表示的谐振腔稳定性条件6..高斯光束高斯光束既不是平面波、也不是一般的球面波,在其传播轴线附近可以近似看作是一种非均匀高斯球面波。

激光原理考试复习资料.doc

激光原理考试复习资料.doc

1•激光原理(概念,产生):激光的意想、是“光的受激辐射放大”或“受激发射光放人”,它包含了激光产生的由来。

刺激、激发,散发、发射,辐射2•激光特性:(1)方向性好(2)亮度高(3)单色性好(4)相干性好:3•激光雷达:激光雷达,是激光探测及测距系统的简称。

丄作在红外和町见光波段的雷达称为激光雷达。

4.激光的回波机制:激光雷达的探测对象分为两大类,即软目标与硕目标。

软目标是指大气和水体(包括其中所包含的气溶胶等物质)等探测对象,而硕FI标则是指陆地、地物以及空间飞行物等宏观实体探测对象。

软目标的回波机制:(1)Mie散射是一种散射粒了的氏径与入射激光波长相当或比之更人的一种散射机制。

M ie 散射的散射光波长与入射光波氏相当,散射时光与物质Z间没冇能量交换发生。

因此是一种弹性散射。

(2)Rayleigh散射(瑞利散射):指散射光波长等于入射光波长,而散射粒了远远小于入射光波长,没有频率位移(无能量变化,波长相同)的弹性光散射。

(3)Raman散射(拉曼散射):拉曼散射是激光与大气和水体中各种分子之间的一种非弹性相互作用过程,英最大特点是散射光的波长和入射光不同,产生了向长波或煎波方向的移动。

而且散射光波长移动的数值与散射分子的种类密切相关。

(4)共振荧光:原子、分子在吸收入射光后再发射的光称为荧光.当入射激光的波长与原子或分子内能级Z间的能量差相等时,激光与原子或分子的相互作用过程变为共振荧光。

(5)吸收:吸收是指当入射激光的波长被调整到与原了分了的基态与某个激发态之间的能量差相等时,该原子、分子对入射激光产生明显吸收的现象。

硬冃标的冋波机制:激光与由宏观实体构成的硕冃标作用机制反射、吸收和透射。

当一束激光射向硬目标物体时,一部分激光能量从物体表面反射、一•部分激光能量被物体吸收、而剩下的激光能量则将穿透该物体。

硕冃标对激光能量的反射机制最为重耍。

硬目标冋波机制包括:镜面反射、漫反射,方向反射1•机载激光雷达系统组成:机载LiDAR系统由测量激光发射点到被测点间距离的激光扫描仪、测量扫描装置主光轴的空I'可姿态参数的高精度惯性导航系统(IMU)、用丁•确定扫描投影中心的空间位置的动态差分全球导航定位系统(DGPS)、确保所冇部分Z间的时间同步的同步控制装置、搭载平台等部分纽成。

激光原理复习自整理详解

激光原理复习自整理详解

第一章 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 波尔兹曼定律:根据统计规律,大量粒子组成的系统,在热平衡条件下,原子数按能级分布服从波尔兹曼定律:kT E i i i eg -∞n 推论:假设gi=gj1.当E2-E1很小,且12-E E E =∆<< kT 时,112n =n , 2.当E2>E1时,n2<n1. 说明高能粒子数密度总是较小3.当E1为基态,E2距离很远时,即E2>E1,012n =n ,说明绝大多数粒子为基态 普朗克公式:11h 8hv 33v -=kT e c v πρ 爱因斯坦关系:自发辐射,受激辐射,受激吸收之间的关系332121hv 8cB A π= 212121g B g B = 光子简并度g :处于同一光子态的光子数。

含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 特点:1各粒子自发,独立的发射光子;2非相干光源光功率密度:212)()t (q A t hvn =自受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量为hv的光子特点:1只有外来光频率满足12hv E E -=;2 受激辐射所发射的光子与外来光特征完全相同,相干光源【频率,相位,偏振方向,传播方向】,光场中相同光子数量增加,光强增加,入射光被放大,即光放大过程光功率密度:v B t hvn t ρ212)()(q =激光功率密度比:v v hv ρπλρπh88c q q 333==自激 增益系数:光通过单位长度激活物质后光强增长的百分数增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。

谱线宽度:线型函数在ν0时有最大值,下降至最大值的一半,对应得宽度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案:① 满足腔的谐振条件,成为腔的梳状模之一。
② 频率落入工作物质的谱线线型范围 ΔνF 内。 ③ 小信号增益系数大于阈值增益系数。
一、均匀加宽激光器的模竞争 1、增益曲线均匀饱和引起的纵模自选模作用 (1) 参与竞争的模:q1、q、q1 ,都落入 F 内
各自都有: g0 gt
3/18
(2) 竞争或自选模过程
(c)
形成条件是: ①驻波腔(烧孔间距在波长量级)
②粒子空间转移速度较慢
(4)纵模空间烧孔的消除
①使激活粒子在空间迅速转移,抹平烧孔。
②加上光隔离器形成环形行波腔,无轴向空间烧孔。 7/18
(5)横向空间烧孔
横模在横截面内的光强分布不均匀导致横向的增益 分布不均匀而形成。
(6)横模的空间竞争
I00 n0
大值,此后,N仍然增加,
△n↓的速率进一步增加,光
子产生使△n↓的速率>泵浦使
△n ↑的速率,△n总效开始下
降,但仍然大于△nth ,N 继 续增长,而且增长非常迅速,
△n快速↓到△n=△nth 时N达
到最大值。
腔内光子数和粒子反转数随时间的变化
12/18
N 第三阶段(t3一t4): N达到最大后,此时N比 较大,它使△n↓的速率> 泵浦使△n ↑的速率,结果 使△n < △nth ,增益小于 损耗,光子数密度N↓并急 剧下降。
横向 烧孔尺度较大 (mm量级) ,粒子的迁 移不能消除这种不均匀 性。所以, 当激励作 用足够强时, 不同横模 可以 分别使用不同横
向空间的激活粒子而形 成 多横模振荡。
n n
TEM00 x
I10
TEM10 x
8/18
第三节 输出功率与能量
9/18
第四节弛豫振荡
产生弛豫振荡的主要原因:当激光器的工作物质被泵浦,上 能级的粒子反转数超过阈值条件时,即产生激光振荡,使腔内光 子数密度增加,而发射激光。随着激光的发射,上能级粒子数大 量被消耗,导致粒子反转数降低,当低于阀值时,激光振荡就停 止。这时,由于光泵的继续抽运,上能级粒子反转数重新积累,
2、空间烧孔引起的多纵模振荡 (1) 激光强时,均匀加宽激光器为多纵模振荡,激发越 强,达到阈值从而参与竞争而振荡的纵模数越多。
5/18
理由:腔内驻波场分布要引起增益空间烧孔效应。
(2)增益的轴向(或纵向)空间烧孔效应
由于腔内的驻波场分
布,波腹处光强大, 波节处光强小,由于 Iq
饱和效应,则反转集
gt
nt 21,0
l
2、振荡条件:
g0
gt
l
nth
21,0 l
不同纵模具有相同的损耗 ,因而具有相同 gt 。
不向的横模具有不同的损耗 ,因而有不同 gt ,
高次横模的 gt 比基模的大。
2/18
第二节 激光器的振荡模式
试说明某个频率的光最终要成为激光的纵模输出, 它必须突破几个关口。
居数从而增益系数在 波腹处最小,在波节
n
L (a)
n0
处最大,形成增益系
(b)
数的轴向空间分布。
—增益的轴向(或纵向)空间烧孔效应
6/18
(3)纵模的空间竞争 Iq
若一纵模的波腹与 另一个纵模的波节 n 重合较好,则两模 可分用纵向不同空 间的反转粒子而同 Iq ' 时振荡。
L
n0
(a)
(b)
轴向空间烧孔的
第四阶段(t4一t5):
光子数减少到一定程度,N使△n↓的速率<泵浦使△n ↑的速率,泵浦
又起主要作用,于是△n又开始回升,到t5时刻△n又达到阈值△nth , 于是又开始产生第二个尖峰脉冲。因为泵浦的抽运过程的持续时间
要比每个尖峰脉冲宽度大得多,于是上述过程周而复始,产生一系
列尖峰脉冲。泵浦功率越大,尖峰脉冲形成越快,因而尖峰的时间间
q1 0 q益曲线继续下降,使 g q1 gt ,Iq-1 熄灭。
4/18
当降到曲线3时: g q gt Iq停止上升,
由于没有其他的纵模使增益曲线下降,则激光器 就稳定在 Iq 上, 从而输出单纵模激光。 结论:理想情况下,均匀加宽稳态激光器的输出 应是单纵模,其频率在增益曲线中心频率附近, 其它纵模被抑制而熄灭。在模的竞争过程中,频 率越远离中心频率的光越先熄灭。
第一节 激光器的振荡阈值
一、阈值种类 ①阈值反转集居数密度
②阈值增益系数
③连续或长脉冲激光器的阈值泵浦功率 ④短脉冲激光器的阈值泵浦能量 二、阈值反转集居数密度
1、阈值反转集居数密度 l :工作物质的长度
nth
21,0 l
2、振荡条件:
n0
nth
21,0 l
1/18
三、阈值增益系数
1、阈值增益系数:
第一阶段(t1一t2):激光振荡刚开始时,△n= △nth, N =0;由于 光泵作用, △n继续增加,与此同时,腔内光子数密度N也开始增
加,由于N的增长而使△n↓的速率<泵浦使△n ↑的速率,因此△n一
直增加。 N
第二阶段(t2一t3) : 由于N的 不断↑使△n↓的速率不断增加
到=泵浦使△n ↑的速率时达最
如图,开始时: g 0 gt
g 0
Iq , Iq1 , Iq1
1
由于饱和效应,增 益曲线下降。
当降到曲线1时: g q1 gt
2
gth
3
Iq+1停止上升,而Iq-1和 Iq继续上升,增益曲线
继续下降,使 g q1 gt
Iq+1迅速减小并熄灭。
当降到曲线2时: g q1 gt
隔越小.
13/18
第五节 单模激光器的线宽极限
弛豫振荡产生的物理过程,可以用图5.1-2来描述。它示出了在弛 豫振荡过程中粒子反转数△n 和腔内光子数N的变化,每个尖峰可 以分为四个阶段 (在t1时刻之前,由于泵浦作用,粒子反转数△n 增长,但尚未到达阈值△nth因而不能形成激光振荡。)
N
图5.1-2 腔内光子数和粒子反转数随时间的变化 11/18
当超过阈值时,又产生第二个脉冲,如此不断重复上述过程,直 到泵浦停止才结束。每个尖峰脉冲都是在阈值附近产生的,因此 脉冲的峰值功率水平较低。增大泵浦能量也无助于峰值功率的提 高,而只会使小尖峰的个数增加。
问题核心: 1.△n的变化:泵浦使△n↑,受激辐射即光子的产生使 △n↓。△n的↑or↓由△n↑和△n↓速率决定。 2.光子数密度N的变化。△n在阈值之前没有光子产生, 在阈值之上有光子产生(N↑),否则光子被吸收(N↓)。 10/18
相关文档
最新文档