Kidney repair using stem cells
衰老与肾纤维化之间相关机制的研究进展
第39卷第3期20 2 1年3月中华中医药学刊C H I N E S E A R C H I V E S O F T R AD I T I O N A L C H I NE S E M E D I C I N EV〇l.39 No. 3Mar. 2 0 2 1D01:10. 13193/j. issn. 1673-7717.2021.03.031衰老与肾纤维化之间相关机制的研究进展朱婧婧1,何伟明2,高坤,陶佳音,刘不悔,孙伟(1.南京中医药大学,江苏南京210029;2.南京中医药大学附属医院,江苏南京210029)摘要:衰老是生物体随时间推移、细胞功能逐渐丧失的必然规律,这一现象集中显现在某一组织器官中,则可引起衰老性疾病。
中医尤其强调肾脏在衰老中的重要性,中医理论认为“肾气”的盛衰是调控机体生长、发育、衰老的内在影响因素。
而肾纤维化是各种不同因素导致的慢性肾脏病终末期不可逆转的常见病理通路。
在肾脏中,衰老与结构和生理变化有关,肾脏衰老与肾功能下降之间存在线性关系。
近年来许多研究发现肾纤维化与衰老具有相关性,国内外研究发现衰老与肾纤维化相关的信号通路包括T G F-p/S m a d信号通路、W m信号通路及S〖R T通路等。
目前,衰老与疾病导致器官纤维化的关系受到高度关注,发现更多针对肾纤维化与衰老相关的治疗靶点,进一步促进对肾纤维化及衰老过程的相关药物的研发与筛选,可改变衰老细胞的微环境,优化干细胞的修复潜力、减少持续损伤、减轻肾脏纤维化,增加抗衰老和修复机制,为防治贤纤维化提供新的研究思路,对慢性肾脏病患者的治疗寻找新的切入点。
研究衰老相关的肾纤维化,对指导临床治疗衰老相关肾纤维化、减缓或逆转慢性肾脏病的进程、改善肾脏功能、提高慢性肾脏病患者特别是老年慢性肾脏病患者的生活质量具有重要意义。
关键词:肾纤维化;衰老;中医药中图分类号:R269.92文献标志码:A文章编号=1673-7717(2021)034)1244)5R e s e a r c h P r o g r e s s o n M e c h a n i s m s o f A g i n g a n d R e n a l F i b r o s i sZ H U Jingjing' ,H E W e i m i n g2,G A O K u n.T A O Jiayin,LIU B u h u i,S U N W e i(1. Nanjing University of Chinese Medicine, Nanjing 210029 ,Jiangsu,China;2. Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 ,Jiangsu,China)Abstract :Aging i s an inevitable law of the gradual loss of cell function over time and this ph e n o m e n o n can be concentrated in a certain tissue and organ,which can cause aging diseases. Traditional Chinese medicine emphasizes the importance of kidney in aging. According to the theory of traditional Chinese medicine,the deficiency and excess of kidney Qi i s an intrinsic influencing factor that regulates the growth,development and aging of the body. Renal fibrosis is a c o m m o n pathological pathway that i s irreversible in the end stage of chronic kidney disease caused by various factors. In the kidney,aging i s associated with structural and physiological changes,and there i s a linear relationship between renal aging and decreased renal function. In recent years, m a n y studies have found a correlation between renal fibrosis and aging. Studies at h o m e and abroad have found that the signaling pathways related to aging and renal fibrosis include T G F-p/S m a d signaling pat h w a y,W n t signaling pathway and S I R T pathway, etc. At present,the relationship between aging and disease leading to organ fibrosis is highly concerned. If more therapeutic targets related to renal fibrosis and aging are found,it will further promote the development and screening of related drugs for renal fibrosis and aging. These breakthroughs will further change the micro -environment of aging cells,optimize the repair potential of stem cells,reduce persistent d a m a g e and renal fibrosis,and increase anti —aging and repair mechanisms. Moreover,these studies can provide n e w research ideas for the prevention and treatment of renal fibrosis and find out n e w entry points for the treatment of patients with chronic kidney disease. T h e study of aging related renal fibrosis is of great significance in guiding clinical treatment of aging related renal fibrosis,slowing or reversing the progress of chronic kidney disease,improving renal function and the quality of life of patients with chronic kidney disease,especially the elderly patients with chronic kidney disease.Keywords:renal fibrosis;aging;traditional Chinese medicine衰老是机体在生长发育达到成熟后对外界适应力逐渐减 弱,形态结构和生理功能出现一系列退行性改变的不可逆转的基金项目:国家自然科学基金(8丨774269)作者简介:朱婧婧(1994 -),女,江苏宿迁人,硕士研究生,研究方向:中医内科学肾脏病临床。
胚胎干细胞尾静脉注射移植糖尿病肾病大鼠的氧化应激反应
胚胎干细胞尾静脉注射移植糖尿病肾病大鼠的氧化应激反应樊志刚;樊红亮【摘要】背景:近年来研究资料显示,糖尿病并发症的发生、发展与机体内氧化应激的平衡破坏程度有着密切的相关性。
目的:探讨胚胎干细胞对糖尿病肾病大鼠氧化应激反应的影响。
方法:原代培养小鼠胚胎干细胞,观察细胞形态,免疫组化检测表面抗原标志表达。
腹腔注射柠檬酸钠-柠檬酸缓冲液稀释的链脲佐菌素建立糖尿病肾病SD大鼠模型,细胞实验组经尾静脉注射胚胎干细胞,模型对照组注射等量PBS,正常对照组不造模,一次性腹腔注射柠檬酸钠-柠檬酸缓冲液,共注射2次,末次注射细胞后5周,检测各组大鼠血糖、肾功能指标(尿蛋白/尿肌酐、血尿素氮和血肌酐),测定肾组织氧化应激产物丙二醛及蛋白羰基含量,免疫印迹检测超氧化物歧化酶的表达水平。
结果与结论:胚胎干细胞为椭圆形或圆形,边界清晰,折光性好,高表达Oct-4、SSEA-1;与正常对照组比较,模型对照组和细胞实验组肾功生化指标、丙二醛、蛋白羰基含量均明显升高,超氧化物歧化酶表达量显著下降(P<0.05);与模型对照组比较,细胞实验组肾功生化指标、丙二醛、蛋白羰基含量明显下调,超氧化物歧化酶表达量明显回升(P<0.05)。
结果表明胚胎干细胞可以通过抑制氧化应激反应的进程从而逆转糖尿病肾病的发生发展。
%BACKGROUND:Occurrence and development of diabetic complications is closely related to the severity of oxidative stress imbalance in the body. OBJECTIVE:To investigate the effect of embryonic stem cel s on oxidative stress response of rats with diabetic nephropathy. METHODS:Primarily cultured rat embryonic stem cel s were observed for cel morphology and surface antigen detection. Sprague-Dawley rats were divided into experimental group (two injections of embryonic stem cel svia the tail vein), model group (injection of the same volume of PBS), and normal control group (with no modeling, intraperitoneal injection of sodium citrate-citrate buffer). In the former two groups, the rats were intraperitoneal y injected sodium citrate-citrate buffer diluted streptozotocin to establish diabetic nephropathy models before treatment. At 5 weeks after the last injection, blood glucose level, renal function indicators (urine protein/urine creatinine, blood urea nitrogen and serum creatinine) were tested in each group;contents of malondialdehyde and protein carbonyl were detected in the kidney;the expression level of superoxide dismutase was detected by western blot assay. RESULTS AND CONCLUSION:The embryonic stem cel s were oval or round, with clear boundary and good refraction, and highly expressed Oct-4 and SSEA-1. Compared with the control group, renal biochemical indicators, malondialdehyde and protein carbonyl contents were significantly increased, while the expression level of superoxide dismutase was decreased dramatical y in the model group and experimental group(P<0.05);compared with the model group, the renal biochemical indicators, malondialdehyde and protein carbonyl contents were dropped significantly in the experimental group, but the expression of superoxide dismutase was significantly rebounded (P<0.05). Taken together, embryonic stem cel s can reverse the occurrence and development of diabetic nephropathy by inhibiting oxidative stress in progress.【期刊名称】《中国组织工程研究》【年(卷),期】2015(000)014【总页数】6页(P2199-2204)【关键词】干细胞;移植;胚胎干细胞;糖尿病肾病;氧化应激;丙二醛;蛋白羰基;超氧化物歧化酶【作者】樊志刚;樊红亮【作者单位】河南医学高等专科学校,河南省郑州市 451191;河南医学高等专科学校,河南省郑州市 451191【正文语种】中文【中图分类】R394.2文章亮点:1 糖尿病肾病是糖尿病的慢性微血管并发症之一,对于糖尿病肾病目前尚缺乏有效的治疗手段,而干细胞治疗给人们带来了新的方向。
Klotho通过抑制氧化应激对肾小管上皮细胞低氧再氧化损伤的影响
・1458・Modern Practical Medicine,December2020,Vol.32,No.12thromboembolic events in atrial fibrillation with chronic kidney disease[J].Stroke,2015,46(1):157-163.[7]Lau WL,Huisa BN,Fisher M.The Cerebrovascular-chronic kidney disease connection:perspectives and mechanisms[J].Transl Stroke Re,2017,8(1):67-76. [8]Mohebbi S,Ghabaee M,Ghaftarpour M,et al.Predictive role of high sensitive C-reactive protein in early onset mortalityafter ischemic stroke[J].Tran J Neurol,2012,11(4):135-139.[9]Whiteley W,Jackson C,Lewis S,et al.Association of circulating inflammatorymarkers with recurrent vascular eventsafter stroke:a prospective cohort study[J].Stroke,2011,42(0:10-16.[10]Kumai Y,Kamouchi M,Hata J,et al.Proteinuria and clinical outcomes after ischemicstroke[J].Neurology,2012,78(24):1909-1915.[11]Liu ZR,Zhao H,Chen YR,et al.Effects ofstatins on delayingprogression of chronickidneydisease:a meta-analysis[J].NanFang Yi Ke Da Xue Xue Bao,2016,36(4):445-454.[12]Wang W,Zhang B.Statins for the prevention of s troke:a meta-analysis of r andomized controlled trials[J].PLoS One,2014,9(3):e92388.收稿日期=2020-07-15(本文编辑:孙海儿)Klotho通过抑制氧化应激对肾小管上皮细胞低氧/再氧化损伤的影响邵驾宇,应奇素,钱盈盈,杨秀,费晓,王鸣【摘要】目的探讨Klotho蛋白对肾小管上皮细胞低氧/再氧化损伤的保护机制。
间充质干细胞对慢性间质性肾炎大鼠肾小管上皮细胞表型的影响
间充质干细胞对慢性间质性肾炎大鼠肾小管上皮细胞表型的影响李维;杨园园;姜红【摘要】目的观察慢性间质性肾炎大鼠模型肾脏病理变化,以及间充质干细胞对肾小管上皮细胞表型相关细胞因子表达的影响.方法将30只雌性Wistar大鼠随机分为对照组、治疗组、非治疗组.对照组大鼠饮用水灌胃12周,治疗组和非治疗组大鼠关木通水煎剂灌胃12周.第12周末,治疗组经尾静脉输入间充质干细胞,非治疗组和对照组经尾静脉注射等量生理盐水.尾静脉注射后第8周末处死大鼠,留取血、尿、肾组织标本.肾组织连续切片,分别用免疫组化、Western blotting及半定量逆转录PCR (RT-PCR)方法检测细胞角蛋白18 (CK18)蛋白和mRNA的表达情况.结果与对照组和治疗组相比,非治疗组肾损伤严重、肾间质纤维化明显,而治疗组肾组织损伤减轻、纤维化明显改善.免疫组化染色显示,治疗组肾脏CK18阳性表达明显多于非治疗组,但仍低于对照组.RT-pCR检测显示,治疗组CK18 mRNA表达量明显增加,非治疗组CK18的表达明显减少甚至消失;肾脏Western blotting分析显示同样的变化趋势.结论间充质干细胞通过上调肾小管上皮细胞CK18的表达,减少肾脏肾小管上皮细胞向肌成纤维细胞转分化,从而减轻肾组织病理损害和肾间质纤维化.【期刊名称】《中国医科大学学报》【年(卷),期】2018(047)011【总页数】4页(P989-992)【关键词】慢性间质性肾炎;间充质干细胞;上皮-间充质转化【作者】李维;杨园园;姜红【作者单位】中国医科大学附属第一医院儿科,沈阳110001;中国医科大学附属第一医院儿科,沈阳110001;中国医科大学附属第一医院儿科,沈阳110001【正文语种】中文【中图分类】R69慢性间质性肾炎是一组以肾小管萎缩、基膜增厚、间质纤维化和不同程度细胞浸润为主要表现的疾病[1],引起间质性肾炎的原因很多,含马兜铃酸的中草药导致的慢性肾小管间质性肾炎统称为慢性马兜铃酸肾病(chronic aristolochic acid nephropathy,CAAN)。
211170111_肾小管上皮细胞损伤后的适应性修复异常及其机制的研究进展
*基金项目:山西省重点研发计划(指南)项目(201703D421024)①山西省中医药研究院 山西 太原 030012②山西中医药大学通信作者:刘光珍肾小管上皮细胞损伤后的适应性修复异常及其机制的研究进展*郑博文① 刘华亭② 陈晨② 侯彦婕① 范晓阳① 刘光珍① 【摘要】 肾小管上皮细胞是肾单位重要的组成结构之一,对维持肾脏正常生理功能具有重要作用。
近年研究提示,近端小管严重损伤或多次损伤将导致不可逆的结构破坏和功能丢失,引起间质小管炎症和纤维化、肾小球硬化,以及毛细血管稀疏等慢性化表现。
当肾小管上皮细胞损伤后,会发生适应性修复异常,具体机制包括细胞衰老、代谢紊乱和部分上皮细胞-间充质转化等,这将导致肾脏纤维化的发生发展。
在大多数存活的患者中,尤其是在轻度损伤的情况下,可以观察到肾小管的再生和成功的肾修复。
在适应性修复中,存活的肾小管上皮细胞经历去分化和增殖,以恢复功能。
然而在严重、重复性损伤或肾脏老化的情况下,肾小管上皮细胞可能会出现适应性修复异常的情况,这会导致进行性肾脏纤维化。
本文就近年来肾小管上皮细胞损伤后的适应性修复异常及其机制的研究进展做如下综述。
【关键词】 肾小管上皮细胞 适应性修复异常 损伤机制 Advances in Adaptive Repair Abnormalities and Mechanisms of Renal Tubular Epithelial Cells Damage/ZHENG Bowen, LIU Huating, CHEN Chen, HOU Yanjie, FAN Xiaoyang, LIU Guangzhen. //Medical Innovation of China, 2023, 20(10): 169-173 [Abstract] Renal tubular epithelial cells are one of the important structural components of nephrons and play an important role in maintaining the normal physiological function of the kidney. Recent studies have suggested that severe damage or multiple damage to the proximal tubules will lead to irreversible structural destruction and functional loss, causing interstitial tubulitis and fibrosis, glomeruloscerosis, and capillary rarefaction and other chronic manifestations. When the renal tubular epithelial cells are damaged, adaptive repair abnormalities will occur, with specific mechanisms including cell senescence, metabolic disorders and partial epithelial-mesenchymal transition, which will lead to the development of renal fibrosis. Tubular regeneration and successful renal repair can be observed in most surviving patients, especially in the setting of mild damage. In adaptive repair, surviving renal tubular epithelial cells undergo dedifferentiation and proliferation to restore function. However, in the cases of severe, repeated damage or renal aging, renal tubular epithelial cells may exhibit adaptive repair abnormalities that lead to progressive renal fibrosis. In this paper, the research progress of adaptive repair abnormalities and its mechanism after renal tubular epithelial cells damage in recent years is reviewed as follows. [Key words] Renal tubular epithelial cells Adaptive Repair Abnormalities Damage mechanism First-author's address: Shanxi Academy of Traditional Chinese Medicine, Taiyuan 030012, China doi:10.3969/j.issn.1674-4985.2023.10.040 通常肾小管上皮细胞具有强大的自我更新能力,当损伤因素去除后可以快速修复。
肾脏的再生机制
万方数据暨照遗董适堑竖整煎苤姜筮12踅笙!翅婴!!生堕旦14周时CD24+CDl33+前体细胞明显减少,此时终末分化的肾单位已经出现,在发育成熟的肾脏中,此类细胞占的比例不足2%¨引。
最近,有研究在成年小鼠模型中进一步证实了肾小球壁层上皮细胞代表了一群具有再生能力的肾脏固有前体细胞。
而且,体外诱导壁层上皮细胞上皮一问充质细胞转分化可使其表达胚肾前体细胞的表型,再将其注射至单侧肾切除小鼠模型后,在植入3周后可以再生新的肾脏组织,包括小球和小管结构01肾小管的再生机制急性肾小管损伤后,肾脏可启动再生机制,从而使大部分患者的肾功能得以恢复,但是对再生细胞的来源却知之甚少…。
目前研究认为急性肾小管损伤的修复主要是由邻近未受损小管上皮细胞增殖完成,增殖细胞霞新衬附在裸露的小管基膜上,最终修复肾小管的结构和功能19J。
而且,目前也有一些研究表明小管上皮细胞可以在急性肾损伤时自我更新,分化的小管细胞迁移至邻近部位替代死亡细胞¨5J。
因为小管上皮细胞停留在G1期而不是G0期,所以在损伤后可以迅速启动增殖反应,修复肾小管。
然而,在慢性或广泛性的肾小管损伤时,上述机制则难以奏效,此时肾脏固有干细胞被活化并在小管再生中起关键作用¨引。
近来发现的定位于鲍曼囊尿极的CD24+CDl33+前体细胞可能正是参与小管再生的固有细胞。
从结构特点来看,虽然近曲小管从鲍曼囊发出的角度不一,但是在管球连接部至少有部分细胞是中间类型,在壁层上皮细胞上有典型的小管微绒毛结构¨川,这些发现说明壁层上皮细胞可能转化为小管上皮。
相应地,离体的成人肾脏CD24+CDl33+前体细胞在急性肾损伤的小鼠模型中可以再生新的小管结构,在结构和功能上减轻肾脏损伤¨k121。
在梗阻性肾病、中毒性。
肾病、慢性移植肾肾病等慢性小管间质性疾病中,管球连接部损伤是临床上的一个普遍特征¨8|。
综合上述研究结果可以看出,小管再生在大多数情况下由邻近小管细胞增殖所完成,但在重度或慢性损伤时,位于鲍曼囊尿极的壁层上皮细胞可能参与小管再生过程(图1),其具体机制仍需进~步研究阐明。
间充质干细胞在肾病治疗中的应用演示课件
可以分化为 造血实质,
从而支持 造血干细胞的增长
还可分化为 造血以外的组织细胞: 软骨细胞、脂肪细胞、 成骨细胞、心肌细胞
以及神经细胞等
4
什么是间质干细胞?
5
缺乏特异性的表面 标志,排异较轻
高度自我更新能力
MSCs 特点
存在于骨髓 ,及脂肪 组织、肝脏、外周血 等其他组织中
可以分化为 造血实质,
从而支持 造血干细胞的增长
还可分化为 造血以外的组织细胞: 软骨细胞、脂肪细胞、 成骨细胞、心肌细胞
以及神经细胞等
3
什么是间质干细胞?
间质干细胞(mesenchymal stem cell, MSCs): 具有自我更新能力和向多种中胚层来源间质干
细胞分化能力的一种多能干细胞 最早由Frieden-stein于1968年发现,当时称其
间充质干细胞可向肾小管上皮细胞分化
间充质干细胞能选择性的修复外髓部的肾小管坏死并加速肾小管上皮 细胞的再生。
Mesenchymal stem cells are renotropic,helping torepair the kidney and improve function in acute renal failure.J Am Soc Nepbrol.2004
13
SUCCESS
THANK YOU
2019/5/13
可编辑
MSCs治疗肾脏疾病
狼疮性肾炎
1.调节B淋巴细胞 2.调节T淋巴细胞 3.对树突状细胞(DCs)的调节 4.对IL-10、MCP-1、PGE2等细胞因子的调节
人脐带间充质干细胞治疗狼疮性肾炎的研究进展,山东医药2013 15
MSCs治疗肾脏疾病
干细胞治疗肾脏病的研究进展
干细胞治疗肾脏病的研究进展徐繁潘兴华干细胞是一类具有自我更新和多系分化能力的细胞,按生存阶段可以分为胚胎干细胞和成体干细胞。
目前,干细胞的相关研究已成为生命科学研究的热点,而干细胞移植治疗疾病又是其研究的重点,有研究报道干细胞对一些肾脏病有较好的治疗作用,如IgA肾病、慢性马兜铃酸肾病、局灶节段性肾小球硬化、急进性肾小球肾炎、狼疮性肾炎(LN)、急性及慢性肾衰竭等。
本文就胚胎干细胞和骨髓干细胞在肾脏病研究中的应用、前景展望。
胚胎干细胞胚胎干细胞由囊胚期内细胞团或原始生殖细胞经体外分化抑制培养,在体外筛选出的细胞,具有全能性,即可以在适合的条件下分化为所有3个胚层,但不能分化为胚外组织。
胚胎干细胞比骨髓发育早、更原始、幼稚、自我更新能力强,具有较长的端粒及较高的端粒酶活性,具有较小的免疫原性和较弱的免疫活性,对逆转录病毒介导的基因转染更敏感。
研究人员体外培养小鼠胚胎干细胞使其分化成各种类型的心肌细胞和肾脏固有细胞,还通过控制体外培养的环境获得了小鼠胚胎干细胞来源的脂肪细胞、软骨细胞、肝细胞,还获得了分泌胰岛素及其他胰腺内泌激素的细胞,并形成胰岛样结构[ 。
,有证据显示胚胎干细胞还可分化为肾脏实质细胞,嵌合型胎儿的胚胎生殖细胞可形成肾脏组织_3]。
Thomson等[4 将人胚胎干细胞注入免疫缺陷小鼠,形成了胎肾组织。
目前,将胚胎干细胞用于治疗肾脏疾病技术已经趋于成熟。
能在体内生成有功能的肾组织,并且能在体外对胚胎干细胞预分化。
将胚胎干细胞直接引入肾实质,能形成肾组织,而胚胎干细胞分化为肾脏细胞的体内外调节因子至今还不清楚。
胚胎干细胞移植用于肾脏病的治疗很多问题得到解决,前景可观。
二、自体骨髓间充质干细胞成体干细胞是成体组织中保留的未完全分化的那部分原始细胞,具有多能性或为专能性干细胞,骨髓干细胞是成体干细胞的一种,它的研究始于上世纪60年代。
近十年来,由于生物细胞实验技术的快速发展,极大地推动了骨髓干细胞的研究,人们对骨髓干细胞生物学特性的认识有了显著的提高。
移植免疫ppt优秀课件
移植排斥反应机制
T 细胞是介导排斥反应的关键 ➢ 裸鼠不产生排斥反应 ➢ B细胞缺陷鼠可产生排 斥反应 ➢ 排斥反应能够通过T细胞 被动转移
Role of CD4+ versus CD8 T+ cells
CD40+ Th1 细胞是主要的效应细胞
T细胞识别同种抗原的机制
1. 直接识别 指受者的同种反应性T细胞直接识别供者APC表面
移植排斥反应的效应机制
针对移植物的体液免疫应答 受者体内产生针对同种异型抗原的特异性抗
体,抗体发挥调理作用、ADCC和CDC作用等,通过激活 补体、损伤血管内皮细胞、介导凝血、血小板聚集、 溶解移植物细胞和释放炎性介质等多种机制参与排斥 反应。
Rejection Response
Rejection Response
移植免疫
基本概念
移植:在医学上应用自体或异体的正常细胞、组织或 器官置换病变的或功能缺损的细胞、组织、器 官,以维持和重建机体生理功能,这种治疗方 法称为细胞/组织/器官移植。
移植排斥反应:移植术后,受者免疫系统可识别移植 物抗原并产生应答,移植物中的免疫细胞也可 识别受者组织抗原并产生应答,称为移植排斥 反应。是机体的免疫应答反应。
间接识别在急性排斥反应中晚期 和慢性排斥反应中起重要作用
移植排斥反应的效应机制
针对移植物的细胞免疫应答
➢ 受者T细胞通过直接或间接途径识别移植物抗原并被激活; ➢ 移植物局部出现Th1和巨噬细胞为主的细胞侵润; ➢ 活化的Th1细胞、巨噬细胞等释放多种炎性细胞因子,导致
迟发型超敏反应性炎症,造成移植物组织的损伤。 ➢ 活化的CD8+CTL 杀伤移植物靶细胞
移植排斥反应的效应机制
氯化壳聚糖水凝胶促进脂肪间充质干细胞治疗小鼠肾缺血再灌注损伤的作用要点
DOI:10.3760/cma.j.issn.1000-6702.2016.02.作者单位:361003厦门大学附属第一医院泌尿外科(刘荣福、杨宇峰);九江市第一人民医院泌尿外科(高加胜);福建医科大学第一临床医学院(张杰)通信作者:刘荣福,Email:lliurf@126.com・基础研究・氯化壳聚糖水凝胶促进脂肪间充质干细胞治疗小鼠肾缺血再灌注损伤的作用刘荣福 高加胜 张杰 杨宇峰【摘要】 目的 探讨温敏性氯化壳聚糖(CSCI)水凝胶作为可注射性支架携带脂肪间充质干细胞(ADMSCs)移植治疗缺血再灌注引起的急性肾损伤的疗效及安全性。
方法 构建急性肾损伤大鼠模型后,将所有大鼠随机分为ADMSCs/PBS组、ADMSCs/CSCI水凝胶组、PBS组和CSCI水凝胶组4个实验组。
采用Live/Dead染色检测CSCI水凝胶与ADMSCs的细胞相容性;采用二氢乙啶(DHE)染色检测体内活性氧(ROS)的水平;活体生物发光成像仪(BLI)检测荧光素酶-单体红色荧光蛋白(fluc-mrfp)标记的ADMSCs在大鼠肾脏内的滞留和存活情况。
采用HE染色检测CSCI水凝胶与肾脏组织的生物相容性和可降解性。
通过检测血清肌酐和尿素氮的水平评价肾功能的改善情况。
结果Live/Dead染色证实,CSCI水凝胶和ADMSCs复合后有良好的细胞相容性。
CSCI水凝胶可以通过降低ROS水平,明显改善急性肾损伤肾脏组织的微环境;PBS注射组的DHE染色阳性率达68.8%±8.5%,CSCI水凝胶DHE染色阳性率达38.5%±5.8%(P<0.05)。
CSCI水凝胶可以改善移植的ADMSCs在肾脏内的滞留率和存活率;ADMSCs/CSCI水凝胶组,BLI荧光信号一直持续到第14天,第21天消失,BLI信号ROI值从第1天的38.0×105p/(s・cm2・sr)下降到第14天的8.5×105p/(s・cm2・sr)。
从中医肾精论干细胞-何丽娟,初杰
142第17卷 第7期 2015 年 7 月辽宁中医药大学学报JOURNAL OF LIAONING UNIVERSITY OF TCMVol. 17 No. 7 Jul .,2015关于干细胞,在19世纪末就已有医学家在文献中做有关描述,但是干细胞的研究是在上个世纪90年代才取得了突飞猛进的发展。
而干细胞目前尚无明确的概念定义,依据大部分生物学家和医学家的论述,可以认为干细胞是一类增殖分化能力很强并且可以自我更新的细胞,可以分化为多种祖细胞,并且能产生与自己完全相同表现型与基因型的子细胞。
干细胞具有以下5大特征[1]:一是自我维持与自我更新;二是具有多种分化潜能并且有分化为本系大多数类型细胞的能力;三是增殖与分裂的能力;四是可以长时间自我更新与多向分化,甚至可能终生;五是对机体损伤和疾病具有一定的反应能力[2]。
从上述特征可以看出在机体发育的不同阶段同时在不同组织中均存在着干细胞,只是随着发育阶段的不同干细胞的数量和分化潜能均逐渐变化。
1 中医“肾精”之理论内涵1.1 中医之“精”中鸿砚教授曾总结《内经》“精”之十三义,引经据典,甚为精辟,可说是囊括了中医“精”之大意。
这十三义分别是“病”“目光”“生殖之精、肾精”“精神、神志”“精华、纯净”“明”“阴液”“旺盛、强健”“气”“正”“精细”“聪爽”“‘静’之通假字”。
古代医籍中言及之“精”多指在人体内之“精”,也就是广义之精。
比如脏腑之精气、生殖之精、真阴、津液、正气、男子的精液等等。
今之医籍中言及“精”多指“肾精”,也就是狭义之精,或特指生殖之精。
1.2 中医“肾精”涵义“肾精”一词并未出现在《内经》中,而有“肾者,封藏之本,精之处也”(《素问·六节藏象论》)和“肾者主水,受五脏六腑之精而藏之”(《素问·上古天真论》)的记载。
中医理论中“肾精”的含义有二:一是指先天之精,也即《内经》中所讲的生殖之精,是禀受于父母先天,受后天水谷精微所养;二是指后天之精,是指受五脏六腑之精而藏之于肾之精。
干细胞治疗盆底功能障碍性疾病的研究进展
618GuangxC Medical Journal ,Mar. 2021, HO 43 ,Nv. 5综述干细胞治疗盆底功能障碍性疾病的研究进展▲耿朋博2魏志军1(1广东省深圳市中医院肛肠科,2广州中医药大学第四临床医学院,深圳市 518033 ,电子邮箱:1530454228@ qq. com )【摘要】盆底功能障碍性疾病(PFD )多发于中老年女性,主要表现为压力性尿失禁、盆底器官脱垂、排便障碍和性功能障碍等,其发病率较高,并且随着我国人口老龄化的加剧,发病率呈增高趋势。
目前对该病的治疗仍以手术为主,但具有创伤大、易复发和并发症多等缺点。
干细胞可以修复及再生盆底神经、肌肉和组织,近年来将其应用于PFD 的治疗取得了很多的成果和经验,本文就干细胞在PFD 治疗中作用的研究进展进行综述。
【关键词】 干细胞;盆底功能障碍性疾病;压力性尿失禁;盆底器官脱垂;排便障碍;综述【中图分类号】R711.5 【文献标识码】ADOI :10.11675/j. issn. 0253-4304.2021.05.23【文章编号】0253-4304(2021 )05-0618-03近年来,随着我国人口老龄化速度的加快和二胎 政策的放开,盆底功能障碍性疾病(pe/ic 2x 0dysfunction ,PFD )的发病率逐渐上升。
PFD 发生与盆 底退行性改变和机械性损伤相关,临床上可有压力性尿失禁(stress u/nag incontinence , SUI )、盆底器官脱 垂(pe/ic organ prolapse ,POP )、排便障碍和性功能障 碍等表现,该病虽然不会对患者造成严重的生命威 胁,但会严重影响患者正常的社交活动,患者常常饱受心理压力⑴&目前PFD 的治疗方式仍以手术治疗 为主,但具有创伤大、易复发和并发症多等缺点。
随着组织工程和干细胞移植技术的快速发展,为PFD 的治疗提供了更安全、更有效的选择,其在PFD 的治 疗上具有广阔的应用前景&本文就干细胞在PFD 治 疗中的应用进展做一综述&1 PFD 概述PFD 是一组由盆腔支持结构的损伤、退化或功能缺 陷所引起的疾病,多见于中老年女性,临床表现主要为 SUI 、POP 、排便障碍和性功能障碍等[2] &流行病学调查发现,PFD 在成年女性中的患病率为20% ~40%[3-4]; 约1/3的妇女在分娩后有SUI ,10%的妇女在分娩后有大便失禁或排便困难,1/7以上的妇女在产后有 POP 现象⑸&这些临床表现往往相互交错,同时出 现,严重影响患者的生活质量和心理健康& PFD 的病 主 方 , 是盆底 构的 性病 ,▲基金项目:广东省中医药局科研项目(20191270)作者简介:耿朋博(1996 -),男,在读硕士研究生,研究方向:脊神经源性肛肠疾病的中西医诊疗&通信作者:魏志军(1962 -),男,本科,主任医师,研究方向:脊神经源性肛肠疾病的中西医诊疗,电子邮箱:773005311@qq. com.着年龄的增长,盆底肌肉、韧带等结构发生退行性变化,而且雌激素有维持盆底成纤维细胞的正常骨架结构的作用,绝经后雌激素水平下降,成为PFD 的诱发 因素之一⑷;二是盆底的机械性损伤,如妊娠、分娩、肥胖、长期便秘等[7],这些机械性损伤一方面直接对盆底肌肉造成损害,另一方面通过损伤盆底神经,从而对盆底肌肉造成间接损害[8] &目前对PFD 的治疗 仍以手术治疗为主,但具有创伤大、易复发和并发症多等缺点,长期效果并不理想&2干细胞概述干细胞是具有自我更新及多向分化潜能的细胞,其以未分化或低分化状态存在&干细胞是组织器官再生的种子细胞,是实践再生医学的最重要的先决条 件[9] &根据干细胞的分化潜能可以分为全能干细胞(胚胎干细胞)、多能干细胞(成体干细胞)和单能干细胞(特定谱系干细胞)&全能干细胞具有较大的伦理学压力及致癌风险,单能干细胞的分化潜力低,而成体干细胞致癌风险很低,所受伦理学争议较少,且不存在组织相容性的问题,其在科研和临床中具有重要的价值[10_11] o 间充质干细胞"mesenchymal stemcell ,MSC )是目前细胞治疗和组织再生应用最广泛、研究最热门的成体干细胞& MSC 具有良好的自我更新和 分化能力,且分布范围广泛,存在于骨髓、脂肪、脐带组织、脐血等组织中&应用于PFD 的治疗最常见的MSC 主要是骨髓来源间充质干细胞(bone mawow-de/vedmesenchymaesiem ce e , BMSC ) 、脂肪 质干( adopose-deeoeed mesenchymaesiem ce e , ADSC ) 肌质 干 ( muscee-deeoeed mesenchymae stem cell ,MDSC )[12-13] & BMSC 具有多向分化潜能,能 向 成肌、 成 、 成 、 神广"#$2021年3月第43卷第5期619细胞分化,可在体外分离、培养和扩增,具有免疫排斥性小、变应原性低的优点[14]。
干细胞英文
Inner cells (forms fetus)
Culture cells
Day 5-6 Blastocyst
“Special sauce” (largely unknown)
6/15/2021
精选2021版课件
Kidney Heart muscle
Heart repaire12d
6/15/2021
精选2021版课件
3
2004 - Ballot measure for $3 Billion bond for stem cells
Stem Cell – Definition (干细胞的定义)
• A cell that has the ability to continuously divide and differentiate (develop) into various other kind(s) of cells/tissues
Fetal tissue, cord blood, and adult stem cells
6/15/2021
精选2021版课件
6
Stem Cell Differentiation(干细胞分 化)
6/15/2021
精选2021版课件
7
Princeton University
Kinds of Stem Cells
精选2021版课件
10
Princeton University
Stages of Embryogenesis (胚胎发育的阶段)
Day 1 Fertilized egg
Day 2 2-cell embryo
Day 3-4 Multi-cell embryo
DiO (细胞膜绿色荧光探针) 说明书
DiO (细胞膜绿色荧光探针)产品编号 产品名称包装 C1038DiO (细胞膜绿色荧光探针)10mg产品简介:DiO 即DiOC18(3),全称为3,3′-dioctadecyloxacarbocyanine perchlorate ,是最常用的细胞膜荧光探针之一,呈现绿色荧光。
DiO 是一种亲脂性膜染料,进入细胞膜后可以侧向扩散逐渐使整个细胞的细胞膜被染色。
DiO 在进入细胞膜之前荧光非常弱,仅当进入到细胞膜后才可以被激发出很强的荧光。
DiO 被激发后可以发出绿色的荧光,DiO 和磷酯双层膜结合后的激发光谱和发射光谱参考下图。
其中,最大激发波长为484nm ,最大发射波长为501nm 。
DiO 的分子式为C 53H 85ClN 2O 6,分子量为881.72,CAS number 为34215-57-1。
DiO 可以溶解于无水乙醇、DMSO 和DMF ,其中在DMSO 溶解度大于为10mg/ml 。
发现较难溶解时可以适当加热,并用超声处理以促进溶解。
DiO 被广泛用于正向或逆向的,活的或固定的神经等细胞或组织的示踪剂或长期示踪剂(long-term tracer)。
DiO 通常不会明显影响细胞的生存力(viability)。
DiO 对于细胞膜染色的荧光强度通常要低于DiI ,有时对于某些经过固定的组织的染色效果欠佳。
DiO 除了最简单的细胞膜荧光标记外,还可以用于检测细胞的融合和粘附,检测发育或移植过程中细胞迁移,通过FRAP(Fluorescence Recovery After Photobleaching)检测脂在细胞膜上的扩散,检测细胞毒性和标记脂蛋白等。
用于细胞膜荧光标记时,DiO 的常用浓度为1-30μM ,最常用的浓度为5-10μM 。
DiO 可以直接染色活的细胞或组织,染色时间通常为5-20分钟。
对于固定的细胞或组织,通常宜使用配制在PBS 中的4%多聚甲醛进行固定,使用其它不适当的固定液会导致荧光背景较高。
损伤的修复 病生学
永久性细胞 Permanent cell —非分裂细胞 没有再生能力 神经C、骨骼肌C、 心肌C。
细胞周期与细胞再生能力
Labile (epithelium of skin, respiratory tract, gastrointestinal tract and urinary tract, lymphoid cell, et al)
第一节 再 生(regeneration)
一、概念 再生是指组织、细胞损伤后,缺损周围健康细胞的 分裂增殖。再生可分为生理性再生和病理性再生。
生理性再生:生理过程中,细胞、组织老化、消耗, 由新生的同种细胞不断补充,保持原有 结构和功能
病理性再生:病理状态下细胞、组织缺损后发生的 再生。可为完全再生,也可不完全再生
(2) 黏连蛋白 作用:与细胞表面的特异性受体结合,另一方面也与基质 成分,如Ⅳ型胶原和硫酸肝素结合,还可介导细胞与结缔 组织基质黏附。
(3) 整合素:是细胞表面受体的主要家族,对细胞和细胞外基质 的黏附起介导作用。
4.基质细胞蛋白
是一类新命名的分泌性蛋白,可与基质蛋白、细胞表面 受体及能作用于细胞表面的其它分子(如生长因子、 细胞因子或蛋白水解酶)相互作用。
生长因子
血小板源性生长因子(PDGF):来源于血小板的α颗粒 作用:能引起成纤维细胞、平滑肌细胞和单核细胞的 增生和游走,并能促进胶质细胞的增生。
成纤维细胞生长因子(FGF):生物活性十分广泛,几 乎可刺激所有间叶细胞,但主要作用于内皮细胞,特 别在毛细血管的新生过程中,能使内皮细胞分裂并诱 导其产生蛋白溶解酶。
间叶组织在胚胎中起着支持、填充及构成新组 织和器官的作用。在人类和成体动物的结缔组织 中,常保留有原始状态的间叶组织,需要时可分 化成新的组织。
间充质干细胞肾包膜下注射对甘油所致急性肾损伤的保护作用
间充质干细胞肾包膜下注射对甘油所致急性肾损伤的保护作用【摘要】目的:观察肾包膜下注射间充质干细胞对甘油所致急性肾损伤小鼠肾脏的保护作用。
方法:健康雄性C57BL/6小鼠(8-12周龄)30只,随机分为3组:Sham+NS(normal saline)组:肾包膜下生理盐水注射组;RM(rhabdomyolysis)+NS组:甘油肌肉注射加肾包膜下生理盐水注射组;RM+MSCs(mesenchymal stem cells)组:甘油肌肉注射加MSCs肾包膜下注射组。
RM+NS和RM+MSCs组给予双后肢肌肉注射50%甘油生理盐水8ml/kg。
甘油肌肉注射造模3d后检测血肌酐、尿素氮等,行肾脏病理PAS染色检查。
结果:RM+NS组小鼠血肌酐、尿素氮、较Sham组明显升高,出现肾小管损伤;MSCs治疗组小鼠血肌酐、尿素氮较模型组降低(P<0.05),肾小管损伤明显减轻。
结论:肾包膜下注射间充质干细胞对甘油诱导小鼠急性肾损伤具有保护作用。
【关键词】急性肾损伤;间充质干细胞;肾包膜【中图分类号】R692【文献标识码】A【文章编号】2096-0867(2016)-2-367-02前言急性肾衰竭是由肾小球滤过率急骤下降导致体内血肌酐、尿素氮等代谢物积聚,引起相应临床表现的综合征,是临床常见的危重急症。
横纹肌溶解是指横纹肌细胞的完整性受到损害,肌细胞内的成分释放进入细胞外液和血液循环[1]。
急性肾损伤(acute kidney injury,AKI)是横纹肌溶解的严重并发症[2]。
甘油为高渗性物质,在肌肉注射甘油后即可引起局部肌肉坏死以及红细胞溶解,肌红蛋白和血红蛋白分子量小,容易通过肾小球滤过进入肾小管,造成严重的肾小管损伤[3]。
通过给小鼠肌肉注射甘油建立AKI动物模型,可用于模拟临床上横纹肌溶解并发的AKI,甘油所致肾损伤模型是一个较为成熟的AKI动物模型。
肾包膜下移植,是上世纪八十年代以来发展起来的一种预测人体肿瘤对化疗药物敏感性的实验方法。
nmn对肝脏有副作用吗,nmn的副作用,谨记才能避免!
nmn对肝脏有副作用吗,nmn的副作用,谨记才能避免!nmn对肝脏有副作用吗,nmn的副作用,谨记才能避免!人到中年吃NMN对肝脏有什么作用?有副作用和危害吗?NMN对肝脏功能的修复以及促琎肝脏的新陈代谢都是很有效果的,NAD+是维持人体脏器功能和细胞活性不可或缺的。
nmn对肝脏有副作用吗,nmn的副作用,在人年纪到中年之前,NAD+可以在身体里被合成,但是随着年龄增长,身体中产生的NAD+越来越少,从而导致线粒体和细胞核之间的相互作用被削弱,这样心脏、肝脏和肾脏的代谢功能和细胞自我修复功能就会下降,所以才会有肝脏疾病发生。
NMN(美国W+NMN12000)在人体内转化为NAD+,到达人的血液、肝脏、大脑和肾以及心脏还有肌肉,从而对这些部位受到损害的细胞进行修复。
NMN (US W+NMN12000) is transformed into NAD+in human body, reaching human blood, liver, brain, kidney, heart and muscle, so as to repair damaged cells in these parts.nmn对肝脏有副作用吗,nmn的副作用,NMN除了对人体的作用,会不会有副作用呢?NMN的副作用是服用者反馈过来的,且只有少数的服用者才会有,主要表现为嘴角炎症,口干,便秘等症状。
通俗来说,这种表现是身体营养过剩产生的一种上火现象;用专业的话说,就是NMN在身体内产生治愈效果的一种表现。
其原因是NMN作为单靶点物质,某些体质的人在服用NMN初期,体内能量水平猛然提高,同时由于自身的调节能力不够,会在某些营养素的代谢上出现不平衡,从而出现上火的现象,所以这是人体的正常反应,不需要太担心。
其原因是NMN作为单靶点物质,某些体质的人在服用NMN初期,体内能量水平猛然提高,同时由于自身的调节能力不够,会在某些营养素的代谢上出现不平衡,从而出现上火的现象,所以这是人体的正常反应,不需要太担心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
143/jnonline – Thorough CriTiCal appraisalEPHROL JN (2010;:02)143-14623© 2010 Società Italiana di Nefrologia - ISSN 1121-8428Kidney repair using stem cells:myth or reality as a therapeutic option?hirotsugu iwatani, Enyu imaiDepartment of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka - JapanI ntroductIonThe kidney has been considered a highly terminally differen-tiated organ of the body, and indeed its proliferative potential is much lower than that of epithelial cells of the intestine. The-se characteristics of kidney are borne out by the incidence of malignant tumors, as the kidney is less likely to be the origin of a tumor than is the gastrointestinal tract. The lower prolife-rative fate of the kidney may be due to gene programming of its constituent cells. More precisely, partial and programmed gene inactivation of genomic DNA that is controlled in time and space, may be involved in the regulation of kidney fate. For these reasons, kidney has been thought of as a most un-likely organ for regeneration. Moreover, regeneration of cells alone is not sufficient for organ regeneration, especially for regeneration of the kidney, because it is composed of manycell types that function as a tissue unit and not as individual cells, making up a highly organized and elaborately structu-red organ with a sophisticated architecture. Restoration of organ architecture, which requires the placement of specific cell types adjacent to each other in a proper spatial fashion, is extremely important for kidney regeneration.However, the kidney has some regenerative potential. It can recover from acute kidney injury such as acute tubular ne-crosis. As for chronic kidney disease, if diabetic nephropathy patients can maintain long-term optimal blood glucose levels by pancreas transplantation, then the amelioration of the le-sions of diabetic nephropathy has been observed (1). The-refore, although the capacity of the kidney for proliferation is lower than that of other organs, renal repair is both theoreti-cally and actually possible. What remains to be determined is how to elicit the regenerative potential of damaged kidney and how to use this potential to the best advantage.Stem/progenitor cells and the proper microenvironment are essential for the repair or regeneration of damaged kidney. A suitable microenvironment includes the presence of lo-cal cytokines as well as of extracellular matrix which can function as a scaffold and give rise to cytokine or growth factors around the stem/progenitor cell.b one mArrow -derIved stem cellsThere have been many attempts to establish the existence of extrarenal kidney stem/progenitor cells. In the early 2000s, pluripotent bone marrow–derived stem cells were thought to contribute to kidney repair. Bone marrow includes several cell types such as hematopoietic stem cells (HSCs), mesen-chymal stromal cells (MSCs), which is often referred to as mesenchymal stem cells, and endothelial progenitor cells.Bone marrow–derived stem cells appeared to have a capaci-ty for transdifferentiation and to be able to replace damaged renal tissue by replacing tubular epithelial cells (2), mesangial cells (3, 4), endothelial cells (5) and even podocytes (6, 7). The experimental method used to analyze their ability to mediate kidney repair was the transplantation of bone marrow–derived stem cells. In many cases, cells of donor origin were tracedIwatani and Imai: Myth or reality as a therapeutic option?by labeling the cells with green fluorescent protein or, if the donor was male, Y chromosome–positive cells were identified by in situ hybridization. Engraftment of bone marrow–derived stem cells to kidney component cells is often confirmed by double staining the cells of donor origin and kidney-specific markers. Investigation of the DNA karyotype of engrafted cells confirmed the existence of double the content of the normal genomic DNA. Therefore, cell fusion events appear to represent a part of the previously reported transdifferentiation cases. The strict meaning of transdifferentiation is conversion from one cell lineage to another, different lineage with con-version of cellular functions and markers and maintenance of a normal karyotype. Although, cell phenotype is transmitted via the transplant method, it appears that cell fusion as well as transdifferentiation occurs under these circumstances. In studies of this period, the concept of transdifferentiation was loosely defined, and clear transdifferentiation was not demonstrated in many of the studies. These studies should therefore be interpreted with caution.m esenchymAl stromAl cells Transplantation of bone marrow–derived pluripotent MSCs, but not HSCs, has been shown to result in engraftment to tubular epithelial cells in an experimental kidney injury model and did induce recovery of lost renal function in re-cipients (8). Although bone marrow contains several cell types including HSC, MSC and endothelial progenitor cells, engraftment of bone marrow–derived cells to kidney com-ponent cells is most likely to have been due to the MSC population (8, 9). Therefore, MSC are more promising as a source of stem/progenitor cells than crude bone marrow–derived cells. Furthermore, it has recently been reported that kidney-derived MSCs contribute to vasculogenesis, angiogenesis and endothelial repair (10). This finding sup-ports the possibility that MSCs residing in kidney can par-ticipate in kidney repair or regeneration.t herApeutIc mechAnIsm of cell trAnsplAntAtIonRecent studies argue against direct transdifferentiation of bone marrow–derived stem cells or MSCs into kidney. The engraftment frequency of bone marrow–derived stem cells was reported to be relatively small, ranging from 3% to 22% (11). This finding means that the majority of the regenerating cells were derived from resident kidney cells and not from extrarenal cells such as bone marrow–derived cells. Fur-thermore, the observed improvement in renal function did not appear to be attained via the engrafted cells but through other mechanisms. Studies of a renal ischemia/reperfusion model indicated that endogenous kidney cells rather than bone marrow–derived cells contributed to the repair of tubu-lar epithelial cells (12). Although the percentage of engraft-ment of donor cells to kidney component cells is very small, functional recovery of the injured kidney is apparent when MSCs are transplanted. This may be because various cyto-kines excreted by MSCs may make an appropriate microen-vironment in autocrine or paracrine fashion and finally work to promote kidney repair not as a cell basis. Indeed, MSCs have the ability to secrete various cytokines such as vascu-lar endothelial growth factor (VEGF), hepatocyte growth fac-tor (HGF) and insulin-like growth factor 1 (IGF-1) (13). Con-sistent with a potential cytokine-producing role for MSCs, it has been reported that injection of bone marrow–derived stromal cells into the peritoneal cavity reduced the severity of cisplatin-induced acute renal failure without any integra-tion of the donor cells into tubular cells. Furthermore, the conditioned media obtained from culture of these stromal cells induced migration and proliferation of kidney-derived epithelial cells and significantly diminished cisplatin-induced proximal tubule cell death (14). The findings of this study the-refore provide new evidence that it is humoral factors pro-duced from bone marrow–derived MSCs, and not the bone marrow–derived MSC themselves, which are important for kidney repair or recovery. The combined reports suggest that what is important for kidney repair or recovery is not the local engraftment of MSCs to kidney, but secretion of humo-ral factors by MSCs that modulate the injured kidney.w hAt Are the humorAl fActors?If this is the case, then what are the humoral factors that are important for mediating kidney repair or regeneration? Many factors have been proposed as candidate factors to fulfill this role. One report indicated that administration of MSCs to a rat model of ischemia-reperfusion-induced acu-te renal failure improved renal function, whereas admini-stration of syngeneic fibroblasts did not. This study further indicated that the growth factors VEGF, HGF and IGF-1 were more highly expressed in MSCs than in fibroblasts (13). Some of these factors are known to modulate kidney function or repair. For example, VEGF attenuates glomeru-lar inflammation and accelerates glomerular capillary repair (15). HGF, an angiogenic growth factor, prevents epithelial cell death and enhances regeneration and remodeling of injured or fibrotic renal tissue (16). The described effects of these growth factors on kidney regeneration are effects of the administration of individual growth factors. However, if a mixture of several of these growth factors were to be admi-144145EPHROL JN (2010;:02)143-14623nistered, or if the timing of their administration was altered, their effects would be more complicated. Recently, other than soluble factors, a new mechanism of communication among cells was proven: microvesicles. Microvesicles de-rived from MSCs activate the proliferation of surviving renal tubular cells after injury by transferring mRNA (17). Thus, MSCs can repair the damaged tubules by secreting micro-vesicles which function in a paracrine fashion.r enAl stem /progenItor cellsA second question is, what are the cellular targets of these humoral factors? Of course, these targets would be renal stem/progenitor cells. Many researchers have taken on the challenge of searching for resident tissue stem/progenitor cells in the kidney. Using the characteristics that stem cells must be label-retaining cells because of slow-cycling, renal stem cells have been reported to exist in renal papilla (18) or tubular epithelial cells (19). Bowman’s capsule (20) and the S3 segment of the proximal tubules (21) have also been re-ported to contain renal stem/progenitor cells. CD133+ CD24+ cells within the population of parietal epithelial cells are re-ported to engraft to tubular cells. Analysis of side population (SP) phenotypes has been adopted as an approach to search for renal stem cells that have no markers. Under our expe-rimental conditions, kidney-derived SP cells did not convert to kidney component cells (22). It has also been reported that kidney-derived SP cells can differentiate into multiple lineages in vitro and that injection of these cells ameliorates lost renal function without significant engraftment to kid-ney component cells (23). These data indicate that humoral factors may account for the observed improvement in renal function, and SP cells are essentially heterogeneous. It still remains elusive as to whether kidney-derived SP cells are stem cells of the kidney.e xtrArenAl source of stem cellsIf an extrarenal source of stem cells is required for kidney repair, the target cells will be embryonic stem (ES) cells and induced pluripotent stem (iPS) cells. The ES cells, which are derived from the inner cell mass of the blastocyst, are pluri-potent. However, transplantation of nondifferentiated ES cel-ls induces teratomas. Therefore, it is essential to differentiate ES cells to some degree before transplantation. Cultured ES cells can be induced to express markers of the intermediate mesoderm from which kidneys arise, by the application of retinoic acid, activin-A and Bmp7. Moreover, when injected into a developing metanephros, ES cells are incorporated into tubular epithelial cells with almost 100% efficiency (24).ES cells are therefore one of the best cell sources for kidney repair and represent a powerful tool for this purpose. Howe-ver, there are ethical and legal problems in the creation and manipulation of human ES cells. An alternative to ES cells are the recently developed iPS cells (25). Retroviral transfer of just 4 genes (Oct3/4, Sox2, Klf4 and c-Myc ) into cultured somatic cells converts the cells into pluripotent ES-like cel-ls. The 4 genes in question are transcription factors related to pluripotency. It was later shown that iPS cells can be cre-ated without addition of the oncogene c-Myc (26). Recently, human iPS cells have been successfully induced from skin fibroblasts (27). Since iPS cells, similar to ES cells, are pluri-potent and, furthermore, can be created from adult somatic cells, it is possible to prepare patient-specific pluripotent cells without manipulating germ cells. This means that there is no ethical problem with the use of iPS cells, and therefore iPS cells are a very promising source of cells for kidney re-pair or regeneration. However, even if a cell source for kid-ney repair is available, the induction or differentiation of this cell into kidney remains a difficult problem. One major pro-blem is that the risk of forming teratomas from transplanted undifferentiated iPS cells is just as high as it is for ES cells (25). Nevertheless, successful differentiation of iPS cells into cells of the cardiovascular and hematopoietic lineages has been reported (28-30).In conclusion, iPS cells are one of the most promising sources of stem cells for kidney repair and regeneration. Ho-wever, the method of induction of stem/progenitor cells to differentiated kidney component cells remains to be clarified. Therefore, the most important future issue is identification of tissue stem/progenitor cells in the kidney and recruitment of these cells in response to injury. A detailed observation and elucidation of the microenvironment of kidney cells after injury would then be the second step toward kidney repair using stem cells. Highly innovative techniques or approaches that are capable of grasping and reorganizing multifactorial changes in the milieu of time and space around the stem cells would be essential to ultimately solve this issue.Financial support: No financial support.Conflict of interest statement: None declared.Address for correspondence:Hirotsugu Iwatani, MD, PhD Department of NephrologyOsaka University Graduate School of Medicine Box B62-2 Yamadaoka, Suita Osaka 565-0871, Japan hiro@kid.med.osaka-u.ac.jpIwatani and Imai: Myth or reality as a therapeutic option?r eferencesFioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M.1.Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339:69-75.Poulsom R, Forbes SJ, Hodivala-Dilke K, et al. Bone marrow 2.contributes to renal parenchymal turnover and regeneration.J Pathol. 2001;195:229-235.Imasawa T, Utsunomiya Y, Kawamura T, et al. The potential 3.of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol. 2001;12:1401-1409.Ito T, Suzuki A, Imai E, Okabe M, Hori M. Bone marrow is a 4.reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol. 2001;12:2625-2635.Rookmaaker MB, Smits AM, T olboom H, et al. Bone-marrow-5.derived cells contribute to glomerular endothelial repair in expe-rimental glomerulonephritis. Am J Pathol. 2003;163:553-562.Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri 6.R. Bone-marrow-derived stem cells repair basement mem-brane collagen defects and reverse genetic kidney disease.Proc Natl Acad Sci U S A. 2006;103:7321-7326.Prodromidi EI, Poulsom R, Jeffery R, et al. Bone marrow-de-7.rived cells contribute to podocyte regeneration and ameliora-tion of renal disease in a mouse model of Alport syndrome.Stem Cells. 2006;24:2448-2455.Morigi M, Imberti B, Zoja C, et al. Mesenchymal stem cells are 8.renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol. 2004;15:1794-1804.Krause D, Cantley LG. Bone marrow plasticity revisited: pro-9.tection or differentiation in the kidney tubule? J Clin Invest.2005;115:1705-1708.Chen J, Park HC, Addabbo F, et al. Kidney-derived mesen-10.chymal stem cells contribute to vasculogenesis, angiogene-sis and endothelial repair. Kidney Int. 2008;74:879-889.Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Can-11.tley LG. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest. 2003;112:42-49.Duffield JS, Park KM, Hsiao LL, et al. Restoration of tubular 12.epithelial cells during repair of the postischemic kidney oc-curs independently of bone marrow-derived stem cells. J Clin Invest. 2005;115:1743-1755.Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Ad-13.ministered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent me-chanisms. Am J Physiol Renal Physiol. 2005;289:F31-F42.Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG. Stromal 14.cells protect against acute tubular injury via an endocrine ef-fect. J Am Soc Nephrol. 2007;18:2486-2496.Shimizu A, Masuda Y, Mori T, et al. Vascular endothelial 15.growth factor165 resolves glomerular inflammation and ac-celerates glomerular capillary repair in rat anti-glomerular basement membrane glomerulonephritis. J Am Soc Nephrol.2004;15:2655-2665.Matsumoto K, Nakamura T. Hepatocyte growth factor: reno-16.tropic role and potential therapeutics for renal diseases. Kid-ney Int. 2001;59:2023-2038.Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem 17.cell-derived microvesicles protect against acute tubular inju-ry. J Am Soc Nephrol. 2009;20:1053-1067.Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q.18.The renal papilla is a niche for adult kidney stem cells. J Clin Invest. 2004;114:795-804.Maeshima A, Yamashita S, Nojima Y. Identification of renal pro-19.genitor-like tubular cells that participate in the regeneration pro-cesses of the kidney. J Am Soc Nephrol. 2003;14:3138-3146.Sagrinati C, Netti GS, Mazzinghi B, et al. Isolation and cha-20.racterization of multipotent progenitor cells from the Bow-man’s capsule of adult human kidneys. J Am Soc Nephrol.2006;17:2443-2456.Kitamura S, Yamasaki Y, Kinomura M, et al. Establi-21.shment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J.2005;19:1789-1797.Iwatani H, Ito T, Imai E, et al. Hematopoietic and nonhemato-22.poietic potentials of Hoechst(low)/side population cells isola-ted from adult rat kidney. Kidney Int. 2004;65:1604-1614.Challen GA, Bertoncello I, Deane JA, Ricardo SD, Little MH.23.Kidney side population reveals multilineage potential and re-nal functional capacity but also cellular heterogeneity. J Am Soc Nephrol. 2006;17:1896-1912.Kim D, Dressler GR. Nephrogenic factors promote differentia-24.tion of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol. 2005;16:3527-3534.Takahashi K, Yamanaka S. Induction of pluripotent stem cells 25.from mouse embryonic and adult fibroblast cultures by defi-ned factors. Cell. 2006;126:663-676.Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of in-26.duced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26:101-106.Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluri-27.potent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861-872.Schenke-Layland K, Rhodes KE, Angelis E, et al. Repro-28.grammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells.2008;26:1537-1546.Mauritz C, Schwanke K, Reppel M, et al. Generation of fun-29.ctional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 2008;118:507-517.Narazaki G, Uosaki H, Teranishi M, et al. Directed and syste-30.matic differentiation of cardiovascular cells from mouse indu-ced pluripotent stem cells. Circulation. 2008;118:498-506.Received: March 05, 2009Revised: August 26, 2009Accepted: September 30, 2009146。