Variable Scaling for Time Series Prediction

合集下载

Functional-coefficient regression models for nonlinear time series

Functional-coefficient regression models for nonlinear time series

from with
the \curse of dimensionality".
Ui taking values in <k and Xi
tLaketinfgUvai;luXesi;inYi<g1ip=.?T1ypbiecajlolyintklyis
strictly small.
stationary Let E(Y12)
transpose of a matrix or vector. The idea to model time series in such a form is not new; see,
for example, Nicholls and Quinn (1982). In fact, many useful time series models may be viewed
This paper adapts the functional-coe cient modeling technique to analyze nonlinear time series
data. The approach allows appreciable exibility on the structure of tted model without su ering
Ui and Xi consist of some lagged values of Yi. The functional-coe cient regression model has the
form
m(u; x) = Xp aj(u) xj;
(1.2)j=1来自where aj( )'s are measurable functions from <k to <1 and x = (x1; : : :; xp)T with T denoting the

probabilistic transformer for time series analysis

probabilistic transformer for time series analysis

probabilistic transformer for time series analysis 概率转换器(ProbabilisticTransformer)是一种新型的机器学习算法,被广泛应用于时间序列分析领域。

它通过结合变分自编码器和深度神经网络的方法,可以实现高效、准确的时序数据建模和预测。

在传统的时间序列分析中,通常采用的是基于统计学的方法,比如ARIMA、SARIMA等。

这些方法在一定程度上能够对时间序列进行建模和预测,但是由于其基于线性模型的假设,对复杂、非线性的时间序列数据的建模和预测效果较差。

而概率转换器则能够更好地处理这些问题。

概率转换器的核心思想是将时间序列数据转换成一个潜在空间
中的分布,并通过采样的方式,生成新的时间序列数据。

这样,就可以利用统计学的方法对时间序列数据进行建模和预测。

同时,概率转换器还能够在训练过程中自动学习时间序列数据的特征,并通过对这些特征的学习,提高时间序列的建模和预测效果。

概率转换器在时间序列分析领域中的应用非常广泛,比如用于股票价格预测、气象数据分析、交通流量预测等。

与传统的时间序列分析方法相比,概率转换器具有更高的预测准确率和更好的泛化能力。

此外,概率转换器还能够处理缺失数据和异常数据,使得时间序列的建模和预测更加稳健。

总之,概率转换器是一种创新的时间序列分析方法,具有广泛的应用前景和研究价值。

通过不断探索和优化概率转换器的算法,相信将来它会在更多的领域得到应用,并为实现更精准的数据分析和决策
提供更好的技术支持。

Fractal and Multifractal Time Series

Fractal and Multifractal Time Series

2
• Self-affine system: Generalization of a fractal system, where different magnifications s and s = sH have to be used for different directions in order to obtain a statistically equivalent magnification. The exponent H is called Hurst exponent. Self-affine time series and time series becoming self-affine upon integration are commonly denoted as fractal using a less strict terminology. • Multifractal system: A system characterised by scaling laws with an infinite number of different fractal exponents. The scaling laws must be valid for the same range of the scale parameter. • Crossover: Change point in a scaling law, where one scaling exponent applies for small scale parameters and another scaling exponent applies for large scale parameters. The center of the crossover is denoted by its characteristic scale parameter s× in this article. • Persistence: In a persistent time series, a large value is usually (i. e., with high statistical preference) followed by a large value and a small value is followed by a small value. A fractal scaling law holds at least for a limited range of scales. • Short-term correlations: Correlations that decay sufficiently fast that they can be described by a characteristic correlation time scale; e. g., exponentially decaying correlations. A crossover to uncorrelated behaviour is observed on larger scales. • Long-term correlations: Correlations that decay sufficiently slow that a characteristic correlation time scale cannot be defined; e. g., power-law correlations with an exponent between 0 and 1. Power-law scaling is observed on large time scales and asymptotically. The term long-range correlations should be used if the data is not a time series. • Non-stationarities: If the mean or the standard deviation of the data values change with time, the weak definition of stationarity is violated. The strong definition of stationarity requires that all moments remain constant, i. e., the distribution density of the values does not change with time. Non-stationarities like monotonous, periodic, or step-like trends are often caused by external effects. In a more general sense, changes in the dynamics of the system also represent non-stationarities.

T.W. ANDERSON (1971). The Statistical Analysis of Time Series. Series in Probability and Ma

T.W. ANDERSON (1971). The Statistical Analysis of Time Series. Series in Probability and Ma

425 BibliographyH.A KAIKE(1974).Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes.Annals Institute Statistical Mathematics,vol.26,pp.363-387. B.D.O.A NDERSON and J.B.M OORE(1979).Optimal rmation and System Sciences Series, Prentice Hall,Englewood Cliffs,NJ.T.W.A NDERSON(1971).The Statistical Analysis of Time Series.Series in Probability and Mathematical Statistics,Wiley,New York.R.A NDRE-O BRECHT(1988).A new statistical approach for the automatic segmentation of continuous speech signals.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-36,no1,pp.29-40.R.A NDRE-O BRECHT(1990).Reconnaissance automatique de parole`a partir de segments acoustiques et de mod`e les de Markov cach´e s.Proc.Journ´e es Etude de la Parole,Montr´e al,May1990(in French).R.A NDRE-O BRECHT and H.Y.S U(1988).Three acoustic labellings for phoneme based continuous speech recognition.Proc.Speech’88,Edinburgh,UK,pp.943-950.U.A PPEL and A.VON B RANDT(1983).Adaptive sequential segmentation of piecewise stationary time rmation Sciences,vol.29,no1,pp.27-56.L.A.A ROIAN and H.L EVENE(1950).The effectiveness of quality control procedures.Jal American Statis-tical Association,vol.45,pp.520-529.K.J.A STR¨OM and B.W ITTENMARK(1984).Computer Controlled Systems:Theory and rma-tion and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.M.B AGSHAW and R.A.J OHNSON(1975a).The effect of serial correlation on the performance of CUSUM tests-Part II.Technometrics,vol.17,no1,pp.73-80.M.B AGSHAW and R.A.J OHNSON(1975b).The influence of reference values and estimated variance on the ARL of CUSUM tests.Jal Royal Statistical Society,vol.37(B),no3,pp.413-420.M.B AGSHAW and R.A.J OHNSON(1977).Sequential procedures for detecting parameter changes in a time-series model.Jal American Statistical Association,vol.72,no359,pp.593-597.R.K.B ANSAL and P.P APANTONI-K AZAKOS(1986).An algorithm for detecting a change in a stochastic process.IEEE rmation Theory,vol.IT-32,no2,pp.227-235.G.A.B ARNARD(1959).Control charts and stochastic processes.Jal Royal Statistical Society,vol.B.21, pp.239-271.A.E.B ASHARINOV andB.S.F LEISHMAN(1962).Methods of the statistical sequential analysis and their radiotechnical applications.Sovetskoe Radio,Moscow(in Russian).M.B ASSEVILLE(1978).D´e viations par rapport au maximum:formules d’arrˆe t et martingales associ´e es. Compte-rendus du S´e minaire de Probabilit´e s,Universit´e de Rennes I.M.B ASSEVILLE(1981).Edge detection using sequential methods for change in level-Part II:Sequential detection of change in mean.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-29,no1,pp.32-50.426B IBLIOGRAPHY M.B ASSEVILLE(1982).A survey of statistical failure detection techniques.In Contribution`a la D´e tectionS´e quentielle de Ruptures de Mod`e les Statistiques,Th`e se d’Etat,Universit´e de Rennes I,France(in English). M.B ASSEVILLE(1986).The two-models approach for the on-line detection of changes in AR processes. In Detection of Abrupt Changes in Signals and Dynamical Systems(M.Basseville,A.Benveniste,eds.). Lecture Notes in Control and Information Sciences,LNCIS77,Springer,New York,pp.169-215.M.B ASSEVILLE(1988).Detecting changes in signals and systems-A survey.Automatica,vol.24,pp.309-326.M.B ASSEVILLE(1989).Distance measures for signal processing and pattern recognition.Signal Process-ing,vol.18,pp.349-369.M.B ASSEVILLE and A.B ENVENISTE(1983a).Design and comparative study of some sequential jump detection algorithms for digital signals.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-31, no3,pp.521-535.M.B ASSEVILLE and A.B ENVENISTE(1983b).Sequential detection of abrupt changes in spectral charac-teristics of digital signals.IEEE rmation Theory,vol.IT-29,no5,pp.709-724.M.B ASSEVILLE and A.B ENVENISTE,eds.(1986).Detection of Abrupt Changes in Signals and Dynamical Systems.Lecture Notes in Control and Information Sciences,LNCIS77,Springer,New York.M.B ASSEVILLE and I.N IKIFOROV(1991).A unified framework for statistical change detection.Proc.30th IEEE Conference on Decision and Control,Brighton,UK.M.B ASSEVILLE,B.E SPIAU and J.G ASNIER(1981).Edge detection using sequential methods for change in level-Part I:A sequential edge detection algorithm.IEEE Trans.Acoustics,Speech,Signal Processing, vol.ASSP-29,no1,pp.24-31.M.B ASSEVILLE, A.B ENVENISTE and G.M OUSTAKIDES(1986).Detection and diagnosis of abrupt changes in modal characteristics of nonstationary digital signals.IEEE rmation Theory,vol.IT-32,no3,pp.412-417.M.B ASSEVILLE,A.B ENVENISTE,G.M OUSTAKIDES and A.R OUG´E E(1987a).Detection and diagnosis of changes in the eigenstructure of nonstationary multivariable systems.Automatica,vol.23,no3,pp.479-489. M.B ASSEVILLE,A.B ENVENISTE,G.M OUSTAKIDES and A.R OUG´E E(1987b).Optimal sensor location for detecting changes in dynamical behavior.IEEE Trans.Automatic Control,vol.AC-32,no12,pp.1067-1075.M.B ASSEVILLE,A.B ENVENISTE,B.G ACH-D EVAUCHELLE,M.G OURSAT,D.B ONNECASE,P.D OREY, M.P REVOSTO and M.O LAGNON(1993).Damage monitoring in vibration mechanics:issues in diagnos-tics and predictive maintenance.Mechanical Systems and Signal Processing,vol.7,no5,pp.401-423.R.V.B EARD(1971).Failure Accommodation in Linear Systems through Self-reorganization.Ph.D.Thesis, Dept.Aeronautics and Astronautics,MIT,Cambridge,MA.A.B ENVENISTE and J.J.F UCHS(1985).Single sample modal identification of a nonstationary stochastic process.IEEE Trans.Automatic Control,vol.AC-30,no1,pp.66-74.A.B ENVENISTE,M.B ASSEVILLE and G.M OUSTAKIDES(1987).The asymptotic local approach to change detection and model validation.IEEE Trans.Automatic Control,vol.AC-32,no7,pp.583-592.A.B ENVENISTE,M.M ETIVIER and P.P RIOURET(1990).Adaptive Algorithms and Stochastic Approxima-tions.Series on Applications of Mathematics,(A.V.Balakrishnan,I.Karatzas,M.Yor,eds.).Springer,New York.A.B ENVENISTE,M.B ASSEVILLE,L.E L G HAOUI,R.N IKOUKHAH and A.S.W ILLSKY(1992).An optimum robust approach to statistical failure detection and identification.IFAC World Conference,Sydney, July1993.B IBLIOGRAPHY427 R.H.B ERK(1973).Some asymptotic aspects of sequential analysis.Annals Statistics,vol.1,no6,pp.1126-1138.R.H.B ERK(1975).Locally most powerful sequential test.Annals Statistics,vol.3,no2,pp.373-381.P.B ILLINGSLEY(1968).Convergence of Probability Measures.Wiley,New York.A.F.B ISSELL(1969).Cusum techniques for quality control.Applied Statistics,vol.18,pp.1-30.M.E.B IVAIKOV(1991).Control of the sample size for recursive estimation of parameters subject to abrupt changes.Automation and Remote Control,no9,pp.96-103.R.E.B LAHUT(1987).Principles and Practice of Information Theory.Addison-Wesley,Reading,MA.I.F.B LAKE and W.C.L INDSEY(1973).Level-crossing problems for random processes.IEEE r-mation Theory,vol.IT-19,no3,pp.295-315.G.B ODENSTEIN and H.M.P RAETORIUS(1977).Feature extraction from the encephalogram by adaptive segmentation.Proc.IEEE,vol.65,pp.642-652.T.B OHLIN(1977).Analysis of EEG signals with changing spectra using a short word Kalman estimator. Mathematical Biosciences,vol.35,pp.221-259.W.B¨OHM and P.H ACKL(1990).Improved bounds for the average run length of control charts based on finite weighted sums.Annals Statistics,vol.18,no4,pp.1895-1899.T.B OJDECKI and J.H OSZA(1984).On a generalized disorder problem.Stochastic Processes and their Applications,vol.18,pp.349-359.L.I.B ORODKIN and V.V.M OTTL’(1976).Algorithm forfinding the jump times of random process equation parameters.Automation and Remote Control,vol.37,no6,Part1,pp.23-32.A.A.B OROVKOV(1984).Theory of Mathematical Statistics-Estimation and Hypotheses Testing,Naouka, Moscow(in Russian).Translated in French under the title Statistique Math´e matique-Estimation et Tests d’Hypoth`e ses,Mir,Paris,1987.G.E.P.B OX and G.M.J ENKINS(1970).Time Series Analysis,Forecasting and Control.Series in Time Series Analysis,Holden-Day,San Francisco.A.VON B RANDT(1983).Detecting and estimating parameters jumps using ladder algorithms and likelihood ratio test.Proc.ICASSP,Boston,MA,pp.1017-1020.A.VON B RANDT(1984).Modellierung von Signalen mit Sprunghaft Ver¨a nderlichem Leistungsspektrum durch Adaptive Segmentierung.Doctor-Engineer Dissertation,M¨u nchen,RFA(in German).S.B RAUN,ed.(1986).Mechanical Signature Analysis-Theory and Applications.Academic Press,London. L.B REIMAN(1968).Probability.Series in Statistics,Addison-Wesley,Reading,MA.G.S.B RITOV and L.A.M IRONOVSKI(1972).Diagnostics of linear systems of automatic regulation.Tekh. Kibernetics,vol.1,pp.76-83.B.E.B RODSKIY and B.S.D ARKHOVSKIY(1992).Nonparametric Methods in Change-point Problems. Kluwer Academic,Boston.L.D.B ROEMELING(1982).Jal Econometrics,vol.19,Special issue on structural change in Econometrics. L.D.B ROEMELING and H.T SURUMI(1987).Econometrics and Structural Change.Dekker,New York. D.B ROOK and D.A.E VANS(1972).An approach to the probability distribution of Cusum run length. Biometrika,vol.59,pp.539-550.J.B RUNET,D.J AUME,M.L ABARR`E RE,A.R AULT and M.V ERG´E(1990).D´e tection et Diagnostic de Pannes.Trait´e des Nouvelles Technologies,S´e rie Diagnostic et Maintenance,Herm`e s,Paris(in French).428B IBLIOGRAPHY S.P.B RUZZONE and M.K AVEH(1984).Information tradeoffs in using the sample autocorrelation function in ARMA parameter estimation.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-32,no4, pp.701-715.A.K.C AGLAYAN(1980).Necessary and sufficient conditions for detectability of jumps in linear systems. IEEE Trans.Automatic Control,vol.AC-25,no4,pp.833-834.A.K.C AGLAYAN and R.E.L ANCRAFT(1983).Reinitialization issues in fault tolerant systems.Proc.Amer-ican Control Conf.,pp.952-955.A.K.C AGLAYAN,S.M.A LLEN and K.W EHMULLER(1988).Evaluation of a second generation reconfigu-ration strategy for aircraftflight control systems subjected to actuator failure/surface damage.Proc.National Aerospace and Electronic Conference,Dayton,OH.P.E.C AINES(1988).Linear Stochastic Systems.Series in Probability and Mathematical Statistics,Wiley, New York.M.J.C HEN and J.P.N ORTON(1987).Estimation techniques for tracking rapid parameter changes.Intern. Jal Control,vol.45,no4,pp.1387-1398.W.K.C HIU(1974).The economic design of cusum charts for controlling normal mean.Applied Statistics, vol.23,no3,pp.420-433.E.Y.C HOW(1980).A Failure Detection System Design Methodology.Ph.D.Thesis,M.I.T.,L.I.D.S.,Cam-bridge,MA.E.Y.C HOW and A.S.W ILLSKY(1984).Analytical redundancy and the design of robust failure detection systems.IEEE Trans.Automatic Control,vol.AC-29,no3,pp.689-691.Y.S.C HOW,H.R OBBINS and D.S IEGMUND(1971).Great Expectations:The Theory of Optimal Stop-ping.Houghton-Mifflin,Boston.R.N.C LARK,D.C.F OSTH and V.M.W ALTON(1975).Detection of instrument malfunctions in control systems.IEEE Trans.Aerospace Electronic Systems,vol.AES-11,pp.465-473.A.C OHEN(1987).Biomedical Signal Processing-vol.1:Time and Frequency Domain Analysis;vol.2: Compression and Automatic Recognition.CRC Press,Boca Raton,FL.J.C ORGE and F.P UECH(1986).Analyse du rythme cardiaque foetal par des m´e thodes de d´e tection de ruptures.Proc.7th INRIA Int.Conf.Analysis and optimization of Systems.Antibes,FR(in French).D.R.C OX and D.V.H INKLEY(1986).Theoretical Statistics.Chapman and Hall,New York.D.R.C OX and H.D.M ILLER(1965).The Theory of Stochastic Processes.Wiley,New York.S.V.C ROWDER(1987).A simple method for studying run-length distributions of exponentially weighted moving average charts.Technometrics,vol.29,no4,pp.401-407.H.C S¨ORG¨O and L.H ORV´ATH(1988).Nonparametric methods for change point problems.In Handbook of Statistics(P.R.Krishnaiah,C.R.Rao,eds.),vol.7,Elsevier,New York,pp.403-425.R.B.D AVIES(1973).Asymptotic inference in stationary gaussian time series.Advances Applied Probability, vol.5,no3,pp.469-497.J.C.D ECKERT,M.N.D ESAI,J.J.D EYST and A.S.W ILLSKY(1977).F-8DFBW sensor failure identification using analytical redundancy.IEEE Trans.Automatic Control,vol.AC-22,no5,pp.795-803.M.H.D E G ROOT(1970).Optimal Statistical Decisions.Series in Probability and Statistics,McGraw-Hill, New York.J.D ESHAYES and D.P ICARD(1979).Tests de ruptures dans un mod`e pte-Rendus de l’Acad´e mie des Sciences,vol.288,Ser.A,pp.563-566(in French).B IBLIOGRAPHY429 J.D ESHAYES and D.P ICARD(1983).Ruptures de Mod`e les en Statistique.Th`e ses d’Etat,Universit´e deParis-Sud,Orsay,France(in French).J.D ESHAYES and D.P ICARD(1986).Off-line statistical analysis of change-point models using non para-metric and likelihood methods.In Detection of Abrupt Changes in Signals and Dynamical Systems(M. Basseville,A.Benveniste,eds.).Lecture Notes in Control and Information Sciences,LNCIS77,Springer, New York,pp.103-168.B.D EVAUCHELLE-G ACH(1991).Diagnostic M´e canique des Fatigues sur les Structures Soumises`a des Vibrations en Ambiance de Travail.Th`e se de l’Universit´e Paris IX Dauphine(in French).B.D EVAUCHELLE-G ACH,M.B ASSEVILLE and A.B ENVENISTE(1991).Diagnosing mechanical changes in vibrating systems.Proc.SAFEPROCESS’91,Baden-Baden,FRG,pp.85-89.R.D I F RANCESCO(1990).Real-time speech segmentation using pitch and convexity jump models:applica-tion to variable rate speech coding.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-38,no5, pp.741-748.X.D ING and P.M.F RANK(1990).Fault detection via factorization approach.Systems and Control Letters, vol.14,pp.431-436.J.L.D OOB(1953).Stochastic Processes.Wiley,New York.V.D RAGALIN(1988).Asymptotic solutions in detecting a change in distribution under an unknown param-eter.Statistical Problems of Control,Issue83,Vilnius,pp.45-52.B.D UBUISSON(1990).Diagnostic et Reconnaissance des Formes.Trait´e des Nouvelles Technologies,S´e rie Diagnostic et Maintenance,Herm`e s,Paris(in French).A.J.D UNCAN(1986).Quality Control and Industrial Statistics,5th edition.Richard D.Irwin,Inc.,Home-wood,IL.J.D URBIN(1971).Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test.Jal Applied Probability,vol.8,pp.431-453.J.D URBIN(1985).Thefirst passage density of the crossing of a continuous Gaussian process to a general boundary.Jal Applied Probability,vol.22,no1,pp.99-122.A.E MAMI-N AEINI,M.M.A KHTER and S.M.R OCK(1988).Effect of model uncertainty on failure detec-tion:the threshold selector.IEEE Trans.Automatic Control,vol.AC-33,no12,pp.1106-1115.J.D.E SARY,F.P ROSCHAN and D.W.W ALKUP(1967).Association of random variables with applications. Annals Mathematical Statistics,vol.38,pp.1466-1474.W.D.E WAN and K.W.K EMP(1960).Sampling inspection of continuous processes with no autocorrelation between successive results.Biometrika,vol.47,pp.263-280.G.F AVIER and A.S MOLDERS(1984).Adaptive smoother-predictors for tracking maneuvering targets.Proc. 23rd Conf.Decision and Control,Las Vegas,NV,pp.831-836.W.F ELLER(1966).An Introduction to Probability Theory and Its Applications,vol.2.Series in Probability and Mathematical Statistics,Wiley,New York.R.A.F ISHER(1925).Theory of statistical estimation.Proc.Cambridge Philosophical Society,vol.22, pp.700-725.M.F ISHMAN(1988).Optimization of the algorithm for the detection of a disorder,based on the statistic of exponential smoothing.In Statistical Problems of Control,Issue83,Vilnius,pp.146-151.R.F LETCHER(1980).Practical Methods of Optimization,2volumes.Wiley,New York.P.M.F RANK(1990).Fault diagnosis in dynamic systems using analytical and knowledge based redundancy -A survey and new results.Automatica,vol.26,pp.459-474.430B IBLIOGRAPHY P.M.F RANK(1991).Enhancement of robustness in observer-based fault detection.Proc.SAFEPRO-CESS’91,Baden-Baden,FRG,pp.275-287.P.M.F RANK and J.W¨UNNENBERG(1989).Robust fault diagnosis using unknown input observer schemes. In Fault Diagnosis in Dynamic Systems-Theory and Application(R.Patton,P.Frank,R.Clark,eds.). International Series in Systems and Control Engineering,Prentice Hall International,London,UK,pp.47-98.K.F UKUNAGA(1990).Introduction to Statistical Pattern Recognition,2d ed.Academic Press,New York. S.I.G ASS(1958).Linear Programming:Methods and Applications.McGraw Hill,New York.W.G E and C.Z.F ANG(1989).Extended robust observation approach for failure isolation.Int.Jal Control, vol.49,no5,pp.1537-1553.W.G ERSCH(1986).Two applications of parametric time series modeling methods.In Mechanical Signature Analysis-Theory and Applications(S.Braun,ed.),chap.10.Academic Press,London.J.J.G ERTLER(1988).Survey of model-based failure detection and isolation in complex plants.IEEE Control Systems Magazine,vol.8,no6,pp.3-11.J.J.G ERTLER(1991).Analytical redundancy methods in fault detection and isolation.Proc.SAFEPRO-CESS’91,Baden-Baden,FRG,pp.9-22.B.K.G HOSH(1970).Sequential Tests of Statistical Hypotheses.Addison-Wesley,Cambridge,MA.I.N.G IBRA(1975).Recent developments in control charts techniques.Jal Quality Technology,vol.7, pp.183-192.J.P.G ILMORE and R.A.M C K ERN(1972).A redundant strapdown inertial reference unit(SIRU).Jal Space-craft,vol.9,pp.39-47.M.A.G IRSHICK and H.R UBIN(1952).A Bayes approach to a quality control model.Annals Mathematical Statistics,vol.23,pp.114-125.A.L.G OEL and S.M.W U(1971).Determination of the ARL and a contour nomogram for CUSUM charts to control normal mean.Technometrics,vol.13,no2,pp.221-230.P.L.G OLDSMITH and H.W HITFIELD(1961).Average run lengths in cumulative chart quality control schemes.Technometrics,vol.3,pp.11-20.G.C.G OODWIN and K.S.S IN(1984).Adaptive Filtering,Prediction and rmation and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.R.M.G RAY and L.D.D AVISSON(1986).Random Processes:a Mathematical Approach for Engineers. Information and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.C.G UEGUEN and L.L.S CHARF(1980).Exact maximum likelihood identification for ARMA models:a signal processing perspective.Proc.1st EUSIPCO,Lausanne.D.E.G USTAFSON, A.S.W ILLSKY,J.Y.W ANG,M.C.L ANCASTER and J.H.T RIEBWASSER(1978). ECG/VCG rhythm diagnosis using statistical signal analysis.Part I:Identification of persistent rhythms. Part II:Identification of transient rhythms.IEEE Trans.Biomedical Engineering,vol.BME-25,pp.344-353 and353-361.F.G USTAFSSON(1991).Optimal segmentation of linear regression parameters.Proc.IFAC/IFORS Symp. Identification and System Parameter Estimation,Budapest,pp.225-229.T.H¨AGGLUND(1983).New Estimation Techniques for Adaptive Control.Ph.D.Thesis,Lund Institute of Technology,Lund,Sweden.T.H¨AGGLUND(1984).Adaptive control of systems subject to large parameter changes.Proc.IFAC9th World Congress,Budapest.B IBLIOGRAPHY431 P.H ALL and C.C.H EYDE(1980).Martingale Limit Theory and its Application.Probability and Mathemat-ical Statistics,a Series of Monographs and Textbooks,Academic Press,New York.W.J.H ALL,R.A.W IJSMAN and J.K.G HOSH(1965).The relationship between sufficiency and invariance with applications in sequential analysis.Ann.Math.Statist.,vol.36,pp.576-614.E.J.H ANNAN and M.D EISTLER(1988).The Statistical Theory of Linear Systems.Series in Probability and Mathematical Statistics,Wiley,New York.J.D.H EALY(1987).A note on multivariate CuSum procedures.Technometrics,vol.29,pp.402-412.D.M.H IMMELBLAU(1970).Process Analysis by Statistical Methods.Wiley,New York.D.M.H IMMELBLAU(1978).Fault Detection and Diagnosis in Chemical and Petrochemical Processes. Chemical Engineering Monographs,vol.8,Elsevier,Amsterdam.W.G.S.H INES(1976a).A simple monitor of a system with sudden parameter changes.IEEE r-mation Theory,vol.IT-22,no2,pp.210-216.W.G.S.H INES(1976b).Improving a simple monitor of a system with sudden parameter changes.IEEE rmation Theory,vol.IT-22,no4,pp.496-499.D.V.H INKLEY(1969).Inference about the intersection in two-phase regression.Biometrika,vol.56,no3, pp.495-504.D.V.H INKLEY(1970).Inference about the change point in a sequence of random variables.Biometrika, vol.57,no1,pp.1-17.D.V.H INKLEY(1971).Inference about the change point from cumulative sum-tests.Biometrika,vol.58, no3,pp.509-523.D.V.H INKLEY(1971).Inference in two-phase regression.Jal American Statistical Association,vol.66, no336,pp.736-743.J.R.H UDDLE(1983).Inertial navigation system error-model considerations in Kalmanfiltering applica-tions.In Control and Dynamic Systems(C.T.Leondes,ed.),Academic Press,New York,pp.293-339.J.S.H UNTER(1986).The exponentially weighted moving average.Jal Quality Technology,vol.18,pp.203-210.I.A.I BRAGIMOV and R.Z.K HASMINSKII(1981).Statistical Estimation-Asymptotic Theory.Applications of Mathematics Series,vol.16.Springer,New York.R.I SERMANN(1984).Process fault detection based on modeling and estimation methods-A survey.Auto-matica,vol.20,pp.387-404.N.I SHII,A.I WATA and N.S UZUMURA(1979).Segmentation of nonstationary time series.Int.Jal Systems Sciences,vol.10,pp.883-894.J.E.J ACKSON and R.A.B RADLEY(1961).Sequential and tests.Annals Mathematical Statistics, vol.32,pp.1063-1077.B.J AMES,K.L.J AMES and D.S IEGMUND(1988).Conditional boundary crossing probabilities with appli-cations to change-point problems.Annals Probability,vol.16,pp.825-839.M.K.J EERAGE(1990).Reliability analysis of fault-tolerant IMU architectures with redundant inertial sen-sors.IEEE Trans.Aerospace and Electronic Systems,vol.AES-5,no.7,pp.23-27.N.L.J OHNSON(1961).A simple theoretical approach to cumulative sum control charts.Jal American Sta-tistical Association,vol.56,pp.835-840.N.L.J OHNSON and F.C.L EONE(1962).Cumulative sum control charts:mathematical principles applied to their construction and use.Parts I,II,III.Industrial Quality Control,vol.18,pp.15-21;vol.19,pp.29-36; vol.20,pp.22-28.432B IBLIOGRAPHY R.A.J OHNSON and M.B AGSHAW(1974).The effect of serial correlation on the performance of CUSUM tests-Part I.Technometrics,vol.16,no.1,pp.103-112.H.L.J ONES(1973).Failure Detection in Linear Systems.Ph.D.Thesis,Dept.Aeronautics and Astronautics, MIT,Cambridge,MA.R.H.J ONES,D.H.C ROWELL and L.E.K APUNIAI(1970).Change detection model for serially correlated multivariate data.Biometrics,vol.26,no2,pp.269-280.M.J URGUTIS(1984).Comparison of the statistical properties of the estimates of the change times in an autoregressive process.In Statistical Problems of Control,Issue65,Vilnius,pp.234-243(in Russian).T.K AILATH(1980).Linear rmation and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.L.V.K ANTOROVICH and V.I.K RILOV(1958).Approximate Methods of Higher Analysis.Interscience,New York.S.K ARLIN and H.M.T AYLOR(1975).A First Course in Stochastic Processes,2d ed.Academic Press,New York.S.K ARLIN and H.M.T AYLOR(1981).A Second Course in Stochastic Processes.Academic Press,New York.D.K AZAKOS and P.P APANTONI-K AZAKOS(1980).Spectral distance measures between gaussian pro-cesses.IEEE Trans.Automatic Control,vol.AC-25,no5,pp.950-959.K.W.K EMP(1958).Formula for calculating the operating characteristic and average sample number of some sequential tests.Jal Royal Statistical Society,vol.B-20,no2,pp.379-386.K.W.K EMP(1961).The average run length of the cumulative sum chart when a V-mask is used.Jal Royal Statistical Society,vol.B-23,pp.149-153.K.W.K EMP(1967a).Formal expressions which can be used for the determination of operating character-istics and average sample number of a simple sequential test.Jal Royal Statistical Society,vol.B-29,no2, pp.248-262.K.W.K EMP(1967b).A simple procedure for determining upper and lower limits for the average sample run length of a cumulative sum scheme.Jal Royal Statistical Society,vol.B-29,no2,pp.263-265.D.P.K ENNEDY(1976).Some martingales related to cumulative sum tests and single server queues.Stochas-tic Processes and Appl.,vol.4,pp.261-269.T.H.K ERR(1980).Statistical analysis of two-ellipsoid overlap test for real time failure detection.IEEE Trans.Automatic Control,vol.AC-25,no4,pp.762-772.T.H.K ERR(1982).False alarm and correct detection probabilities over a time interval for restricted classes of failure detection algorithms.IEEE rmation Theory,vol.IT-24,pp.619-631.T.H.K ERR(1987).Decentralizedfiltering and redundancy management for multisensor navigation.IEEE Trans.Aerospace and Electronic systems,vol.AES-23,pp.83-119.Minor corrections on p.412and p.599 (May and July issues,respectively).R.A.K HAN(1978).Wald’s approximations to the average run length in cusum procedures.Jal Statistical Planning and Inference,vol.2,no1,pp.63-77.R.A.K HAN(1979).Somefirst passage problems related to cusum procedures.Stochastic Processes and Applications,vol.9,no2,pp.207-215.R.A.K HAN(1981).A note on Page’s two-sided cumulative sum procedures.Biometrika,vol.68,no3, pp.717-719.B IBLIOGRAPHY433 V.K IREICHIKOV,V.M ANGUSHEV and I.N IKIFOROV(1990).Investigation and application of CUSUM algorithms to monitoring of sensors.In Statistical Problems of Control,Issue89,Vilnius,pp.124-130(in Russian).G.K ITAGAWA and W.G ERSCH(1985).A smoothness prior time-varying AR coefficient modeling of non-stationary covariance time series.IEEE Trans.Automatic Control,vol.AC-30,no1,pp.48-56.N.K LIGIENE(1980).Probabilities of deviations of the change point estimate in statistical models.In Sta-tistical Problems of Control,Issue83,Vilnius,pp.80-86(in Russian).N.K LIGIENE and L.T ELKSNYS(1983).Methods of detecting instants of change of random process prop-erties.Automation and Remote Control,vol.44,no10,Part II,pp.1241-1283.J.K ORN,S.W.G ULLY and A.S.W ILLSKY(1982).Application of the generalized likelihood ratio algorithm to maneuver detection and estimation.Proc.American Control Conf.,Arlington,V A,pp.792-798.P.R.K RISHNAIAH and B.Q.M IAO(1988).Review about estimation of change points.In Handbook of Statistics(P.R.Krishnaiah,C.R.Rao,eds.),vol.7,Elsevier,New York,pp.375-402.P.K UDVA,N.V ISWANADHAM and A.R AMAKRISHNAN(1980).Observers for linear systems with unknown inputs.IEEE Trans.Automatic Control,vol.AC-25,no1,pp.113-115.S.K ULLBACK(1959).Information Theory and Statistics.Wiley,New York(also Dover,New York,1968). K.K UMAMARU,S.S AGARA and T.S¨ODERSTR¨OM(1989).Some statistical methods for fault diagnosis for dynamical systems.In Fault Diagnosis in Dynamic Systems-Theory and Application(R.Patton,P.Frank,R. Clark,eds.).International Series in Systems and Control Engineering,Prentice Hall International,London, UK,pp.439-476.A.K USHNIR,I.N IKIFOROV and I.S AVIN(1983).Statistical adaptive algorithms for automatic detection of seismic signals-Part I:One-dimensional case.In Earthquake Prediction and the Study of the Earth Structure,Naouka,Moscow(Computational Seismology,vol.15),pp.154-159(in Russian).L.L ADELLI(1990).Diffusion approximation for a pseudo-likelihood test process with application to de-tection of change in stochastic system.Stochastics and Stochastics Reports,vol.32,pp.1-25.T.L.L A¨I(1974).Control charts based on weighted sums.Annals Statistics,vol.2,no1,pp.134-147.T.L.L A¨I(1981).Asymptotic optimality of invariant sequential probability ratio tests.Annals Statistics, vol.9,no2,pp.318-333.D.G.L AINIOTIS(1971).Joint detection,estimation,and system identifirmation and Control, vol.19,pp.75-92.M.R.L EADBETTER,G.L INDGREN and H.R OOTZEN(1983).Extremes and Related Properties of Random Sequences and Processes.Series in Statistics,Springer,New York.L.L E C AM(1960).Locally asymptotically normal families of distributions.Univ.California Publications in Statistics,vol.3,pp.37-98.L.L E C AM(1986).Asymptotic Methods in Statistical Decision Theory.Series in Statistics,Springer,New York.E.L.L EHMANN(1986).Testing Statistical Hypotheses,2d ed.Wiley,New York.J.P.L EHOCZKY(1977).Formulas for stopped diffusion processes with stopping times based on the maxi-mum.Annals Probability,vol.5,no4,pp.601-607.H.R.L ERCHE(1980).Boundary Crossing of Brownian Motion.Lecture Notes in Statistics,vol.40,Springer, New York.L.L JUNG(1987).System Identification-Theory for the rmation and System Sciences Series, Prentice Hall,Englewood Cliffs,NJ.。

stata操作命令-xtreg

stata操作命令-xtreg

vcetype may be conventional, robust, bootstrap, or jackknife use divisor N − P instead of the default N multiply the robust variance estimate by (N − 1)/(N − P ) overrides the default scale parameter; parm may be x2, dev, phi, or #
control spacing and display of omitted variables and base and empty cells
† coeflegend
display coefficients’ legend instead of coefficient table
†coeflegend does not appear in the dialog box.
Between-effects (BE) model xtreg depvar indepvars if in , be BE options
Fixed-effects (FE) model xtreg depvar indepvars if in weight , fe FE options
ML random-effects (MLE) model xtreg depvar indepvars if in weight , mle MLE options
SE
vce(vcetype)
vcetype may be oim, bootstrap, or jackknife
Reporting
level(#) display options

高斯中的优化

高斯中的优化

优化第一步:确定分子构型,可以根据对分子的了解通过GVIEW和CHEM3D等软件来构建,但更多是通过实验数据来构建(如根据晶体软件获得高斯直角坐标输入文件,软件可在大话西游上下载,用GVIEW可生成Z-矩阵高斯输入文件),需要注意的是分子的原子的序号是由输入原子的顺序或构建原子的顺序决定来实现的,所以为实现对称性输入,一定要保证第一个输入的原子是对称中心,这样可以提高运算速度。

我算的分子比较大,一直未曾尝试过,希望作过这方面工作的朋友能补全它。

以下是从本论坛,大话西游及宏剑公司上下载的帖子。

将键长相近的,如B12 1.08589B13 1.08581B14 1.08544键角相近的,如A6 119.66589A7 120.46585A8 119.36016二面角相近的如D10 -179.82816D11 -179.71092都改为一致,听说这样可以减少变量,提高计算效率,是吗?在第一步和在以后取某些键长键角相等,感觉是一样的。

只是在第一步就设为相等,除非有实验上的证据,不然就是纯粹的凭经验了。

在前面计算的基础上,如果你比较信赖前面的计算,那么设为相等,倒还有些依据。

但是,设为相等,总是冒些风险的。

对于没有对称性的体系,应该是没有绝对的相等的。

或许可以这么试试:先PM3,再B3LYP/6-31G.(其中的某些键长键角设为相等),再B3LYP/6-31G(放开人为设定的那些键长键角相等的约束)。

比如键长,键角,还有是否成键的问题,Gview看起来就是不精确,不过基本上没问题,要是限制它们也许就有很大的问题,能量上一般会有差异,有时还比较大如果要减少优化参数,不是仅仅将相似的参数改为一致,而是要根据对称性,采用相同的参数。

例如对苯分子分子指定部分如下:CC 1 B1C 2 B2 1 A1C 3 B3 2 A2 1 D1C 4 B4 3 A3 2 D2C 1 B5 2 A4 3 D3H 1 B6 2 A5 3 D4H 2 B7 1 A6 6 D5H 3 B8 2 A7 1 D6H 4 B9 3 A8 2 D7H 5 B10 4 A9 3 D8H 6 B11 1 A10 2 D9B1 1.395160B2 1.394712B3 1.395427B4 1.394825B5 1.394829B6 1.099610B7 1.099655B8 1.099680B9 1.099680B10 1.099761 B11 1.099604 A1 120.008632 A2 119.994165 A3 119.993992 A4 119.998457 A5 119.997223 A6 119.980770 A7 120.012795 A8 119.981142 A9 120.011343 A10 120.007997 D1 -0.056843 D2 0.034114 D3 0.032348 D4 -179.972926 D5 179.953248 D6 179.961852 D7 -179.996436 D8 -179.999514 D9 179.989175参数很多,但是通过对称性原则,并且采用亚原子可以将参数减少为:XX 1 B0C 1 B1 2 A1C 1 B1 2 A1 3 D1C 1 B1 2 A1 4 D1C 1 B1 2 A1 5 D1C 1 B1 2 A1 6 D1C 1 B1 2 A1 7 D1H 1 B2 2 A1 8 D1H 1 B2 2 A1 3 D1H 1 B2 2 A1 4 D1H 1 B2 2 A1 5 D1H 1 B2 2 A1 6 D1H 1 B2 2 A1 7 D1B0 1.0B1 1.2B2 2.2A1 90.0D1 60.0对于这两个工作,所用的时间为57s和36s,对称性为C01和D6H,明显后者要远远优于前者。

SPSS中英文对照词典

SPSS中英文对照词典

SPSS中英文对照词典----------------------------------------------------------------------------- ---发表日期:2005年11月22日出处:社会学吧Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automa tic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 一般线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal ranges, 正常范围Normal value, 正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换SPSS新手速成作者:张佳转自中国统计网随着速度越来越快,计算机的功能越来越多,计算统计功能反而已经成为了计算机的一个次要部分。

Molecular Cloning_Technical guide

Molecular Cloning_Technical guide

Visit
22–23 Vector and Insert Joining
22–23 DNA Ligation 22 Protocol 22 Tips for Optimization 23 Product Selection
24 Transformation
5 Recombinational Cloning 8 cDNA Synthesis 9 Restriction Enzyme Digestion 9 Protocol 9 Tips for Optimization 10–15 Performance Chart 16–17 PCR 16 Protocol 16 Tips for Optimization 17 Product Selection
Molecular Cloning
Technical Guide
Overview
table of contents
3–5 Cloning Workflow Descriptions
Molecular Cloning Overview
Molecular cloning refers to the process by which recombinant DNA molecules are produced and transformed into a host organism, where they are replicated. A molecular cloning reaction is usually comprised of two components: 1. The DNA fragment of interest to be replicated 2. A vector/plasmid backbone that contains all the components for replication in the host DNA of interest, such as a gene, regulatory element(s), operon, etc., is prepared for cloning by either excising it out of the source DNA using restriction enzymes, copying it using PCR, or assembling it from individual oligonucleotides. At the same time, a plasmid vector is prepared in a linear form using restriction enzymes (REs) or Polymerase Chain Reaction (PCR). The plasmid is a small, circular piece of DNA that is replicated within the host and exists separately from the host’s chromosomal or genomic DNA. By physically joining the DNA of interest to the plasmid vector through phosphodiester bonds, the DNA of interest becomes part of the new recombinant plasmid and is replicated by the host. Plasmid vectors allow the DNA of interest to be copied easily in large amounts, and often provide the necessary control elements to be used to direct transcription and translation of the cloned DNA. As such, they have become the workhorse for many molecular methods such as protein expression, gene expression studies, and functional analysis of biomolecules. During the cloning process, the ends of the DNA of interest and the vector have to be modified to make them compatible for joining through the action of a DNA ligase, recombinase, or an in vivo DNA repair mechanism. These steps typically utilize enzymes such as nucleases, phosphatases, kinases and/or ligases. Many cloning methodologies and, more recently kits have been developed to simplify and standardize these processes. This technical guide will clarify the differences between the various cloning methods, identify NEB® products available for each method, and provide expert-tested protocols and FAQs to help you troubleshoot your experiments.

数学专业英语修改

数学专业英语修改
如果两个集合A、B所有的元素相同,称其相 等,记为A=B.
7
第8页/共31页
e.g . A ratio is always an abstract number; i.e., it has no units, a number considered apart from the measured units from which it came.
第27页/共31页
27
课堂作业 1
定义 设函数 y f (x) 在点 x0的某一邻域内有定义, 如
果 lim y x0
lim
x0
f
( x0
x)
f
(x0 )
0,
那么就称函数
y f (x)
在 x0连续.
第28页/共31页
28
课堂作业 2 Theorem 2. If f (x) is bounded on a,b and if it is
3、能用英语书写文章摘要、学术会议 通知、学术交流信件等。同时培养简单 的英语会话能力。 4、为部分优秀学生攻读研究生奠定数 学专业英语的基础,同时让大部分同学 了解数学专业英语与生活英语的区别, 为今后走 上工作岗位,特别是服务于IT业或外资 企业有独当一面的能力。
第3页/共31页
本课程分四部分讲解:
B(a,r), we have h(x)d (x) h(a) . B
第12页/共31页
特点二:科学内容的完整性与表达形式的精 炼性要求
1、长句较多 2、非限定动词使用频率高
科技文章要求叙述准确,推理谨严,因此一句话里包 含三四个甚至五六个分句的,并非少见.译成汉语时, 必须按照汉语习惯破成适当数目的分句,才能条理清楚, 避免洋腔洋调. 这种复杂长句居科技英语难点之首,要 学会运用语法分析方法来加以解剖,以便以短代长,化 难为易.

信号与系统英文课件

信号与系统英文课件
y(t ) cos[4(t 3)] cos[7(t 3)]
3.2 The Response of LTI Systems to Complex Exponentials
From this example, we see that if an input applied to an LTI system is a linear combination of complex exponentials, then the corresponding output response is also a linear combination of the same complex exponentials. sk t y(t ) ak H (sk )e sk t x(t ) ak e
k k
x[n] ak zk
k
n
y[n] ak H ( zk ) zk
k
n
3.2 The Response of LTI Systems to Complex Exponentials
If the input is a linear combination of sinusoids, then the output response is also a combination of the same sinusoids.
Conclusion: for an LTI system, if the input signal is a complex exponential, then the output response is the same complex exponential modified by H(s).
Compare it with y (t ) e H ( s)

计量经济学中英文词汇对照

计量经济学中英文词汇对照

Controlled experiments Conventional depth Convolution Corrected factor Corrected mean Correction coefficient Correctness Correlation coefficient Correlation index Correspondence Counting Counts Covaห้องสมุดไป่ตู้iance Covariant Cox Regression Criteria for fitting Criteria of least squares Critical ratio Critical region Critical value
Asymmetric distribution Asymptotic bias Asymptotic efficiency Asymptotic variance Attributable risk Attribute data Attribution Autocorrelation Autocorrelation of residuals Average Average confidence interval length Average growth rate BBB Bar chart Bar graph Base period Bayes' theorem Bell-shaped curve Bernoulli distribution Best-trim estimator Bias Binary logistic regression Binomial distribution Bisquare Bivariate Correlate Bivariate normal distribution Bivariate normal population Biweight interval Biweight M-estimator Block BMDP(Biomedical computer programs) Boxplots Breakdown bound CCC Canonical correlation Caption Case-control study Categorical variable Catenary Cauchy distribution Cause-and-effect relationship Cell Censoring

The Influence of Magnetic Field on Oscillations in the Solar Chromosphere

The Influence of Magnetic Field on Oscillations in the Solar Chromosphere

a r X i v :a s t r o -p h /0608314v 1 15 A u g 2006Draft version February 5,2008Preprint typeset using L A T E X style emulateapj v.12/14/05THE INFLUENCE OF MAGNETIC FIELD ON OSCILLATIONS IN THE SOLAR CHROMOSPHERED.Shaun Bloomfield 1,2,R.T.James McAteer 3,Mihalis Mathioudakis 1,and Francis P.Keenan 1Draft version February 5,2008ABSTRACTTwo sequences of solar images obtained by the Transition Region and Coronal Explorer in three UV passbands are studied using wavelet and Fourier analysis and compared to the photospheric magnetic flux measured by the Michelson Doppler Interferometer on the Solar Heliospheric Observatory to study wave behaviour in differing magnetic environments.Wavelet periods show deviations from the theoretical cutoffvalue and are interpreted in terms of inclined fields.The variation of wave speeds indicates that a transition from dominant fast–magnetoacoustic waves to slow modes is observed when moving from network into plage and umbrae.This implies preferential transmission of slow modes into the upper atmosphere,where they may lead to heating or be detected in coronal loops and plumes.Subject headings:Sun:chromosphere –Sun:magnetic fields –Sun:oscillations –Sun:UV radiation1.INTRODUCTIONIt has been believed for over forty years that oscilla-tory motions play an important role in the outer solar atmosphere (Leighton et al.1962).This is particularly true of the wide variety of perturbations that are possi-ble within the chromosphere,as this is the atmospheric layer which spans the transition from the domination of gas pressure to that of the magnetic field.These oscil-lations may be the signature of wave energy carried out-ward from the photosphere and deposited in the chro-mosphere,hence resulting in heating of the outer at-mosphere.As such,spatial variations in oscillatory be-haviour could yield information on the local topology of the magnetic environment (e.g.,Finsterle et al.2004).Fossum &Carlsson (2005a)showed that hydrodynamic,high–frequency waves in the range 5−50mHz do not contribute sufficient energy to heat the atmosphere in a region of weak magnetic field.Also,Socas–Navarro (2005)found that electric currents in the chromosphere above a sunspot do not show a substantial spatial cor-relation with regions of either high temperature or large temperature gradient.Hence,it appears entirely plausi-ble that differing forms of magnetoacoustic waves could supply some portion of the excess energy input through their existence in both extremes of the chromospheric environment.Previous work on chromospheric oscillatory behaviour has reported on differences between spatial regions such as “cell boundary”and “cell interior”(e.g.,Dam´e et al.1984;Deubner &Fleck 1990),or the (equally as ambigu-ously defined)magnetic “network”and non–magnetic “internetwork”(e.g.,Lites et al.1993;McAteer et al.2004).Although the findings of these authors are gener-ally discussed in relation to the magnetic environment,spatial distinctions were often not based upon any mag-netic field measurements,but instead on the magnitude of time–averaged emission within some spectral line orElectronic address:bloomfield@mps.mpg.de1Department of Physics and Astronomy,Queen’s University Belfast,Belfast,BT71NN,Northern Ireland,U.K.2Max Planck Institut f¨u r Sonnensystemforschung,37191Katlenburg–Lindau,Germany3NRC Research Associate,NASA /Goddard Space Flight Cen-ter,Solar Physics Branch,Code 682,Greenbelt,MD 20771,U.S.A.passband.This arbitrary form of classification may give the false impression that some sharp transition occurs when moving from the weak–field regime to that of higher field strengths.In reality,the observed distribution of solar magnetism shows a continuous variation of field strengths (Dom ´inguez Cerde˜n a et al.2006),suggesting that forms of oscillatory behaviour which are (in any manner)magnetically related should vary continuously as well (Lawrence et al.2003).The comparison of chromospheric oscillations to sur-faces of constant plasma–β,as determined by potential–field extrapolations from photospheric longitudinal mag-netic fields (McIntosh et al.2003;McIntosh &Smilie 2004;Finsterle et al.2004)has shown the spatial distri-bution of oscillatory power and propagation characteris-tics.We note that β,the ratio of gas to magnetic pres-sure,is given by (2/γ)(c S /v A )2,where c S is the sound speed (=γP/ρ),γis the ratio of specific heats (=5/3),P is the gas pressure,ρis the mass density,v A is the Alfv´e n speed (=B/√2 D.S.Bloomfield et al.TABLE1TRACE UV and mdi Data Set SummariesData Set Date TRACE mdiStart Time Frames Cadence Initial Pointing Start Time Frames Cadence Initial Pointing (UT)(s)(UT)(s) 12004Jul0315:5012816.0(6′′,−16′′)15:371···(−10′′,−122′′) 22000Sep2208:0031222.7(−174′′,124′′)08:0111860.0(−88′′,44′′)record the available distributions of wavepacket periods and durations.These parameters are of interest as oscil-lation periods can indicate which form of wave may exist (i.e.,acoustic or magnetic)while the duration in terms of oscillatory cycles indicates the degree of energy carried if an oscillation is indeed the signature of a propagating wave.A Fourier phase difference technique is then used to directly study wave propagationcharacteristics.The results are presented and discussed in§4in terms of wave behaviours and the plasma environment,while in §5the implications of our work are summarized.2.DATA REDUCTIONThe chromospheric data studied were obtained by the Transition Region and Coronal Explorer(TRACE; Handy et al.1999).Two256×256arcsec2regions were recorded in the TRACE UV passbands with a sampling of0.5arcsec pixel−1on2004July3and2000September 22,with no compensation for solar rotation.Details of both data sets are given in Table1while Figure1depicts the time–averaged1700˚A emissions.In set1,images were obtained in the order1600˚A,1700˚A,and1550˚A with a strict4s timing offset because of the TRACEfil-terwheel set up,resulting in an overall stable cadence of 16s for each individual passband,while set2comprised of successive1550˚A,1600˚A,1700˚A,and white–light images with an average cadence of22.7s.Initially,data from each UV passband were dark sub-tracted andflatfielded.Portions of any images with cor-rupted data were replaced by the temporal mean of the preceding and following images,and JPEG compression effects were removed.Following DeForest(2004),data were derippled in both space and time by thresholding and removing spikes in the spatio–temporal Fourier do-main.Afinal sweep of despiking was applied to remove cosmic ray hits and persistent“hot pixels”were removed from the data.After this processing,each UV passband datacube was co–aligned by spatially cross correlatingevery image to the mid–image of the respective time se-quence.Although difficult to attribute heights of forma-tion(HOF)to the broadband UV emissions(due to the large range of temperature coverage involved in their pro-duction,and the large HOF overlap between the1700˚A and1600˚A passbands),we assumed that the HOF in-creased from the1700˚A passband to1600˚A and then to 1550˚A(McAteer et al.2004;Fossum&Carlsson2005b). Mid–images of the1600˚A and1550˚A data were sepa-rately co–aligned to the mid–image of the1700˚A dat-acube for each data set,to achieve alignment between passbands.The1700˚A data were taken as the refer-ence for the alignment process because this passband has the response function with the lowest formation height in the solar atmosphere out of the TRACE passbands (formed around the temperature minimum;Judge et al. 2001),thus allowing for a better reference comparison forFig. 1.—Time–averaged TRACE1700˚A images for set 1(upper)and set2(lower).Overlaid thin(thick)contours mark the mdi|50|G(|500|G)level.the alignment to the underlying magneticfield data. Photospheric line–of–sight(LOS)magneticfield data were obtained by the Michelson Doppler Interferome-ter(mdi;Scherrer et al.1995)on board the Solar He-liospheric Observatory(SoHO;Fleck et al.1995).These data consist of longitudinal magneticfield measurements recorded with a spatial sampling of0.6arcsec pixel−1, as mdi was operating in high–resolution mode.The mdi magnetograms were processed to Level–1.8by the stan-dard data pipeline and compensated for the roll angle of the SoHO spacecraft as well as the difference in image scales due to the differing observing positions of the satel-TRACE UV Wave Dependence on Magnetic Field3Fig.2.—Upper:Frequency distribution of the total numberof pixels(ordinate)in the selected mdi absolutefield strengthintervals(abscissa)for set1.Lower:Percentages of the totalnumber of pixels which show detections in each of the threeTRACE UV passbands.The distributions for detections inthe1700˚A,1600˚A,and1550˚A data are shown in dotted,dashed,and dotted–dashed lines,respectively.lites.In the case of set2,magnetograms were co–alignedin the same manner as the UV datacubes before takingthe temporal mean.Finally,mdi pixels correspondingto the time–rotated TRACEfield–of–view(FOV)werere–sampled to the TRACE pixel size.The correlation ofthe co–spatial portions of the two data sets is shown bythe contours in Figure1.This form of mdi–to–TRACEalignment was verified by spatially cross correlating themagneticfield magnitude to the intensity of the TRACE1700˚A mid–image,achieving sub–pixel accuracy.It is important that thefield strengths presentedhere are,as for any magnetogram instrument,inter-preted as the integration of netflux over a pixel area.Berger&Lites(2003)have shown,through direct com-parison to the more reliable spectropolarimetry of theAdvanced Stokes Polarimeter(asp),that mdi system-atically underestimates the true longitudinalflux whenoperated in full–disk mode.However,we choose to re-port raw mdi values because our work makes use of mdidata obtained in high–resolution mode and the Berger&Lites correction factors may not be accurate—thedifference in pixel sampling,and thus spatialflux aver-aging,should affect the slope of the mdi–aspflux–fluxrelation.A magneticfield binning scheme was used in order tostudy oscillatory parameters in the TRACE UV data asa function of the absolute mdi magneticfield.Initiallyintervals of equal size were used,but the number of pix-els decreases rapidly with increasingfield strength.Tocounteract this,pixels withfield strength values above|20|G were instead separated into bins of systematicallyincreasing size(listed in thefirst column of Table2).Thelower limit to the mdi magneticfield strength intervals isdirectly based on the instrumental noise level being re-ported as∼|20|G(Scherrer et al.1995).The probabilitydistribution function(PDF)of pixels used in our workis illustrated for the case of set1in the upper panel ofFigure2,while the lower panel depicts the percentage ofpixels that contain wavelet oscillation detections.3.ANALYSIS METHODS3.1.Wavelet Power TransformOne of the most prevalent tools that has been recentlyused in observational studies of oscillatory behaviour isthe technique of wavelet analysis(see the excellent in-troduction provided by Torrence&Compo1998and itsapplication to solar data in,e.g.,De Moortel et al.2000,McAteer et al.2004,and McIntosh&Smilie2004).Thismultiscale analysis is better suited than Fourier analy-sis to both the spatial and temporal non–stationarityexhibited by oscillations in the solar atmosphere.Forour study of oscillatory signals we chose the standardMorlet wavelet,a Gaussian–modulated sine wave whichhas an associated Fourier period,P,corresponding to1.03s,where s is the wavelet scale.The wavelet trans-form is a convolution of the time series with the analyzingwavelet function whereby the complete wavelet transformis achieved by varying the wavelet scale,which controlsboth the period and temporal extent of the function,andscanning this through the time series.Regions exist atthe beginning and end of the wavelet transform wherespurious power may arise as a result of thefinite extent ofthe time series.These regions are referred to as the coneof influence(COI),having a temporal extent equal to thee–folding time of the wavelet function.For the case of theMorlet wavelet it has the form,t d=√2P/1.03.This time scale is effectively the response of the waveletfunction to noise spikes and is used in our detection crite-ria by requiring that oscillations have a duration greaterthan t d outside the COI.This imposes a maximum periodabove which we can not accept detections,since we aredealing withfinite time series of duration D tot.At thismaximum period it follows that P max=1.03D tot/3√4 D.S.Bloomfield et al.Fig.3.—Fourier phase differences(ordinate)between2420pairs of TRACE1700˚A and1600˚A time series as a func-tion of oscillatory frequency(abscissa).Larger symbols anddarker shading depicts increased weighting significance(i.e.,increased Fourier cross–power and coherence).The phase dif-ference gradient(M∆φ;solid line)was calculated by weightedleast–squaresfitting of afirst–order polynomial to all pointsin the range2.0−5.4mHz,indicated by vertical dotted lines.in all three TRACE passbands,the output comprises theduration in oscillatory cycles and the period of every de-tection.3.2.Fourier Phase DifferencesA Fourier phase difference analysis was used to fur-ther study possible propagation characteristics of wavesbetween the co–spatial1700˚A and1600˚A time se-ries.These passbands were chosen based on the proxim-ity of their peak formation heights(Fossum&Carlsson2005b).This form of Fourier analysis is a techniquewhich allows investigation of the difference in waveformsbetween two time ing the phase informationcontained within the complex Fourier transform,via theequations discussed in detail by Krijger et al.(2001),thedifference in cyclic phase,∆φ,can be determined foreach Fourier frequency component,ν,with the qualityof the values represented by the phase coherence.Thepairs of1700˚A and1600˚A time series in this study areextracted from the same(x,y)pixel location,but thesignals remain separated in the direction normal to thesolar surface.In this scenario,phase differences can beinterpreted as delays caused by thefinite propagationspeed of waves traveling between the formation heights.The1700˚A data were linearly interpolated to the1600˚A(equally–separated)times to compensate for timing off-sets that result from the TRACE UV data acquisition(§2).These offsets require removal as they produce driftsin phase difference spectra with frequency(Krijger et al.2001).At those frequencies over which a wave has a real solu-tion to its dispersion relation,and may thus propagate,phase difference spectra between emission signals formedat two separate heights are expected to have the form,∆h∆φ(ν)≈TRACE UV Wave Dependence on Magnetic Field5Fig.4.—Frequency distributions of TRACE1700˚A(lower),1600˚A(middle),and1550˚A(upper)wavelet periods(ordi-nate)as a function of the mdi photospheric magneticfluxmagnitude(abscissa).Distributions are normalized to theirpeak number of detections.Symbols mark centroid positionsof Gaussianfits to each period distribution,with bars ex-tending over the±1σwidth(detailed in Table2).Points areoverlaid at the mean mdi value of pixels showing detectionsin thatfield strength range.The dashed line marks the non–magnetic value of P ac forθ=0at the temperature minimum.where waves can only propagate at periods below theacoustic cutoff(P ac∝√6 D.S.Bloomfield etal.Fig.5.—AsFig.4,but for TRACE 1700˚A (lower ),1600˚A(middle ),and 1550˚A (upper )durations of wavelet detection (ordinate ).Symbols mark the most frequently detected du-ration,plotted at the mean field strength of pixels showing oscillations in that field strength range.4.2.Wavelet Duration DistributionsAn alternate way by which to characterize oscillations is their duration of observation,since this quantity can be interpreted as a measure of the energy associated with a wave.As such,detections were sampled in terms of their duration with uniform half–cycle binning.The resulting PDFs are shown separately in Figure 5for the 1700˚A ,1600˚A ,and 1550˚A data,where every PDF is again normalized to its peak number of detections.In these plots the most frequently detected duration is marked by a ‘+’symbol,and differing dependencies on the magnetic field are clearly seen.The 1700˚A data have oscillations of duration 2.5−3cycles most frequently observed across the majority of magnetic fields,while the 1600˚A data also peak at 2.5−3cycles over most field strengths.The large degree of similarity between the behaviours of these two sets of distributions strongly implies that both UV passbands are formed in essentially the same physical environment.However,the 1550˚A durations peak at 1.5−2cycles over low field strengths (|25−100|G)before changing to 2.5−3cycles for moderate magnetic fields (|100−450|G).The oscillation durations then shorten to 2−2.5cycles for nearly all higher field strengths.It appears that,if these oscillations are indeed waves,below |100|G some portion of the wave energy budget has been lost between the formation heights of 1600˚A and 1550˚A ,since the 1550˚A data exhibit durations shorter than both the 1700˚A and 1600˚A data.By con-trast,the wavelet detection durations are conserved in the stronger–field range |100−450|G which,in turn,indicates that the effective “boundary”previously ly-Fig. 6.—Fourier phase difference gradients (M ∆φ;ordi-nate )between the 1700˚A and 1600˚A intensity time series as a function of mdi magnetic flux magnitude (abscissa )—triangles correspond to set 1and squares to set 2.Symbols are plotted at the mean absolute field strength value,where horizontal bars denote the extent of the field strength range and vertical bars mark the ±1σuncertainty to the weighted least–squares linear fits.The values obtained over low–field values are displayed within the inset to highlight fine detail.ing between the 1600˚A and 1550˚AHOFs has been lowered in altitude to below the 1700˚A HOF.Incor-porating a potential–field extrapolation,Lawrence et al.(2003)interpret their change from 4–to 5–min periods at field strengths of ∼|150|G as resulting from the low-ering of the β–unity surface below the formation height of their Ca II K line emission.This is very close to our wavelet duration transition field strength of |100|G,while the disparity may be explained by the difference in passband formation heights and/or the assumption of the static,spatially–averaged VAL C model atmosphere (Vernazza et al.1981)in the extrapolation.4.3.Fourier Phase SpeedsAlthough highly versatile and a powerful tool for studying oscillatory behaviour,the wavelet analysis per-formed up to now has not been able to distinguish whether the detected oscillations are the signatures of propagating waves in the solar atmosphere.It is for this reason that Fourier phase difference analysis was applied to the same data.The results of the analysis,outlined in §3.2,are presented in Figure 6for both data sets as the weighted–fit values of phase difference gradient between the 1700˚A and 1600˚A time series pairings.If a spatially–invariant atmosphere is assumed,the ver-tical separation of UV HOFs will not vary when mov-ing into regions of increased magnetic field.As a re-sult,∆h is constant and Equation 1informs us that a change in Fourier phase difference gradient denotes the inverse of the change that has occurred in the wave phase speed.In the past,such forms of atmosphere have been used to implement potential–field extrapolations (e.g.,McIntosh et al.2003;Lawrence et al.2003).Unfortu-nately,these act to oversimplify the complexity of the magnetic atmosphere and the application of 1–D models that take account of the differences between regions of differing magnetic field will yield more appropriate re-sults.From consideration of Equation 1,it is possible thatTRACE UV Wave Dependence on Magnetic Field7the initial decrease of gradient values in Figure6could result from waves having the same phase speed but the HOF separations are reduced with increasing magnetic field.This suggests that M∆φshould continue decreas-ing for even strongerfields,but we detect a switch in behaviour to increasing M∆φin the range|125−550|G which requires increasing separations between the HOFs. This change in separation behaviour does not make qual-itative sense,so we proceed by assuming a spatially–invariant atmosphere that yields increasing wave phase speeds up to|100−125|G and a subsequent decrease in speeds up to|550|G.A decrease in TRACE UV phase difference gradient with increasing magneticfield has been previously observed by McIntosh et al.(2003) with no turnaround reported.The deviation of our re-sults can be explained by their quiet–Sun(inter)network data havingfields≤|50|G so theβ=1level was not low-ered below the UV HOFs,while wavelet durations imply that this occurs forfields≥|100|G in this study.The observed wave speed behaviour over low–to moderate–magneticfields may be interpreted as result-ing from a change in physical environment within our pixel sampling rather than merely a variation of mag-neticfield.In regions spatially removed from the large flux concentrations of sunspots and plage,photospheric magneticfields are believed to be unresolved kilo–Gauss elements,covering a small fraction of the pixel area (Lites2002;Dom´inguez Cerde˜n a&Kneer2003).In such cases the magneticfilling factor,f,is much less than unity and pixels will contain a contribution from both the ambient high–βplasma and low–βflux concentra-tions.In the high–βmaterial,magnetoacoustic slow modes have negligible density variations and are unob-servable to our broad UV passbands,while the compress-ible fast modes will propagate between c S andc2S+v2A. If theseflux concentrations satisfy certain requirements they may be thought of as“thinflux tubes”(Roberts 1985),in which slow modes propagate at the tube speed. Values of0.2−0.5are typically used for plasma–βin the modeling offlux tubes(e.g.,Hasan et al.2003,2005), yielding tube speeds of∼0.9c S and fast–mode speeds between∼(1.5−2.4)c S and∼(1.8−2.6)c S.In this pic-ture,the lowestfield strengths arise from small values of f so the measured speed is dominated by the“flux–external”sound speed,while for higherfield strengths thefilling factor increases and the contribution from the “flux–associated”speeds becomes more important. Eventually,afilling factor of unity is reached and the passbands are formed in an homogeneously distributed magnetic environment for greaterfield strengths.The change from inhomogeneous to homogeneous environ-ments ends the“flux tube”supported wave scenario. When f=1,the magneticfield has expanded tofill the entire pixel area,creating a“magnetic canopy”over the previously“flux–external”plasma.This marks the transition from mixed high–and low–βto entirely low–βenvironment(i.e.,theβ=1level)and is signaled by the change in trend of phase difference gradient atfields of |100−125|G.Although kilo–Gauss magnetic elements have been mentioned andfield strengths of|100−125|G are reported forfilling factors of unity,field values are measured at the photosphere while f corresponds to the region of the chromosphere where waves are detected and field lines have expanded into a greater spatial area. Inside the subsequent homogeneous low–βatmosphere, the fast–mode propagates at v A>c S,tending to≫c S whenβ≪1.The initial fast–mode speed in the ho-mogeneous situation(i.e.,whenβ=1)is expected to be at most∼√T)and the wave behaviours reported here occur between the same two UV passbands,which are formed over the same range of temperatures irrespective of magneticfield.The gradual decrease of wave speeds in the range|125−550|G is taken as a signature of both modes existing within our signal,with the mea-sured value of M∆φresulting from averaging between the two speeds.The increase of phase difference gradi-ent with increasing magneticfield towards a similar value as detected overfield strengths in the smallfilling factor range of|0−20|G implies that the wave speeds are tending toward the sound speed,and slow–mode waves become dominant in our strongerfield regions of plage and umbrae.An implication of slow–mode dominance in regions of strongerfield is that slow modes propagate higher into the atmosphere than fast modes(Osterbrock 1961)—the“magnetic canopy”occurs at lower altitudes when moving to higherfield strengths,the UV passbands are formed progressively further above theβ–unity level, and we detect only the speeds of modes which propa-gate higher into the atmosphere.The disclosure of these waves as slow modes provides a direct,and necessary, link to coronal studies(De Moortel et al.2002),where propagating intensity variations at3–and5–min periods are interpreted as slow–magnetoacoustic waves in loops anchored in umbrae and plage,respectively.We note a disparity between the abundance of wave signatures in the low chromosphere and the sparse detection of slow–mode associated phenomena in the transition region (De Pontieu et al.2004)and corona(De Moortel et al. 2002).Some mechanism is clearly required to quench most of these lower atmospheric waves with one possibil-ity being slow–mode driven Pedersen current dissipation (Goodman2000),theorised to be highly efficient in the chromosphere.The non–uniformity observed in the up-per atmosphere may highlight other selection effects at work on wave transmission,possibly based on p–mode in-terference with complexfield orientations.Field inclina-tions affected by p–modes may also help explain the tem-poral intermittency of waves by only providing suitable propagation conditions over short,repeating timescales. It should be noted that some penumbral pixels may be misinterpreted as weakerfield regions from of the LOS nature of mdi and the existence of highly–inclined, outer–penumbral magneticfields,e.g.,field strengths of |800−1000|G inclined80◦to the vertical(Solanki et al. 1992)will be recorded as|140−175|G.However,pixels misclassified as such will not greatly modify the phase8 D.S.Bloomfield et al.difference gradients,as the true weak–to–moderatefield pixels(|25−550|G)dominate the number statistics.In-stead they contribute to greater error–bar magnitudes at higherfield strengths,alongside the decrease in pixel rger errors associated with gradient val-ues above|550|G may arise from averaging between the sunspot∼3–and5–min distributions,if propagat-ing at different speeds.Decreased gradient values over |550−950|G from those atfields both above and below complements this interpretation,as period PDFs exhibit widening toward and the detection of5–min penumbral oscillations over this range.Hence,by causing decreased phase difference gradients,penumbral waves appear to either travel faster than those in umbrae and plage or ex-perience a reduction in the HOF separations,distinctly possible for a penumbral atmosphere stratified alongfield lines at inclinations of40−70◦(Mathew et al.2003).5.CONCLUSIONSChromospheric intensity variations have been studied using both time–localized wavelet and Fourier analysis. Investigation of the oscillation behaviours has identified three regimes with distinctly differing properties.The increase of wavelet period with mdifield over |25−100|G marks the modification of the magnetoacous-tic cutoffperiod byfield inclination effects.This arises from the“magnetic canopy”being pulled progressively closer to the sampled HOFs so that they experience more inclinedfields.Wavelet durations show a decrease in the 1550˚A data over those in the1600˚A and1700˚A data, indicating a loss of wave energy.This can be explained by waves undergoing mode conversion or reflection at the β–unity surface(Bogdan et al.2003).Fourier analysis indicates that wave phase speeds increase with magnetic field between the1700˚A and1600˚A formation heights. It is proposed here that this is due to an increase in mag-neticfilling factor within the pixel sampling,yielding a greater contribution to the observed wave speed from the low–β“flux–associated”fast–mode speed over the slower sound speed of the surrounding high–βplasma.The similarity of wavelet periods and durations over field strengths in the range|100−450|G implies that waves in this regime do not experience a drastic change in their environmental topology as evidenced by the weaker–field case.Theβ–unity surface is believed to lie below the formation height of1700˚A emission,no tran-sitional interface exists between the passbands,and wave energy(i.e.,wavelet duration)is conserved with altitude. In contrast to the weak–field regime wave speeds de-crease,which may be a signature of a change from dom-inant fast–mode magnetoacoustic waves to slow–mode waves when moving from network into plage.Wavelet period distributions broaden and display a doubly–distributed nature over|550−950|G,marking the sampling of sunspot regions.Interpretation of the 5–min component as being of penumbral origin is given strong support by the virtual disappearance of these higher–period components when samplingfield strengths ≥|950|G(i.e.,umbrae).The decrease of phase differ-ence gradient values over the mixed penumbral/umbral field strength range(|550−950|G)suggests that either penumbral waves travel at greater speeds than those in plage and umbral regions or the formation heights of the 1700˚A and1600˚A passbands are closer in altitude(e.g., because of inclinedfields)in the penumbra.In the future,we will be able to better determine the intricate relationship between magnetic topology and propagating waves using high–resolution,vector mag-neticfield information.Such data will soon be obtained by the full–Stokes spectropolarimeter in the instrument suite of the Solar Optical Telescope(sot)Focal Plane Package(fpp)on board Solar–B.Coordinated observa-tions between this instrument,TRACE,and the multi–wavelength tunablefilters also contained in the sot/fpp will yield diffraction–limited,high–cadence imaging at multiple heights through the outer Solar atmosphere un-paralleled by previous observations.The combination of these forms of data with a range of atmospheric models taking into account the differences in atmospheric strati-fication for differing magneticfields will yield a powerful diagnostic suite for studies of solar wave phenomena.The authors thank the referee,Scott McIntosh,for comments which improved the paper.This work was supported by the UK Particle Physics and Astronomy Research Council and a travel grant from ESA/SoHO. JMA is funded by a National Research Council Research Associateship,while FPK is grateful to AWE Aldermas-ton for the award of a William Penney Fellowship.REFERENCESBeckers,J.M.,&Schultz,R.B.1972,Sol.Phys.,27,61Bel,N.,&Mein,P.1971,A&A,11,234Berger,T.E.,&Lites,B.W.2003,Sol.Phys.,213,229Bogdan,T.J.,et al.2003,ApJ,599,626Dam´e,L.,Gouttebroze,P.,&Malherbe,J.–M.1984,A&A,130, 331DeForest,C.E.2004,ApJ,617,L89De Moortel,I.,Ireland,J.,&Walsh,R.W.2000,A&A,355,L23 De Moortel,I.,Ireland,J.,Hood,A.W.,&Walsh,R.W.2002,A&A, 387,L13De Pontieu,B.,Erd´e lyi,R.,&James,S.P.2004,Nature,430,536 Deubner,F.–L.,&Fleck,B.1990,A&A,228,506Dom´inguez Cerde˜n a,I.,&Kneer,F.2003,ApJ,582,L55Dom´inguez Cerde˜n a,I.,S´a nchez Almeida,J.,Kneer,F.2006,ApJ, 636,496Finsterle,W.,Jefferies,S.M.,Cacciani,A.,Rapex,P.,&McIntosh, S.W.2004,ApJ,613,L185Fleck, B.,Domingo,V.,&Poland, A.I.eds.1995,The SoHO Mission(Dordrecht:Kluwer)Fossum,A.,&Carlsson,M.2005a,Nature,435,919Fossum,A.,&Carlsson,M.2005b,ApJ,625,556Giovanelli,R.G.1972,Sol.Phys.,27,71Goodman,M.L.2000,ApJ,533,501Handy,B.N.,et al.1999,Sol.Phys.,187,229Hasan,S.S.,Kalkofen,W.,van Ballegooijen,A.A.,&Ulmschneider, P.2003,ApJ,585,1138Hasan,S.S.,van Ballegooijen,A.A.,Kalkofen,W.,&Steiner,O. 2005,ApJ,631,1270Judge,P.G.,Tarbell,T.D.,&Wilhelm,K.2001,ApJ,554,424 Krijger,J.M.,Rutten,R.J.,Lites,B.W.,Straus,Th.,Shine,R.A., &Tarbell,T.D.2001,A&A,379,1052Lawrence,J.K.,Cadavid, A.C.,Miccolis, D.,Berger,T.E.,& Ruzmaikin,A.2003,ApJ,597,1178Leighton,R.B.,Noyes,R.W.,&Simon,G.W.1962,ApJ,135,474 Lites,B.W.2002,ApJ,573,444Lites,B.W.,Rutten,R.J.,&Kalkofen,W.1993,ApJ,414,345 Mathew,S.K.,et al.2003,A&A,410,695McAteer,R.T.J.,Gallagher,P.T.,Bloomfield, D.S.,Williams, D.R.,Mathioudakis,M.,&Keenan,F.P.2004,ApJ,602,436 McIntosh,S.W.,Fleck,B.,&Judge,P.G.2003,A&A,405,769。

06_transient_analysis

06_transient_analysis

6-2
HSPICE User’s Manual © 1996 Meta-Software, Inc
Simulation and Analysis
6_transient_analysis.man
3 Thu Feb 15 13:34:03 1996
Transient Analysis
.TRAN Statement
ABSV=x ABSVAR=x ACCURATE BYTOL=x CHGTOL=x DELMAX=x FAST MBYPASS MU RELQ=x RELTOL RELV=x RELVAR=x SLOPETOL=x TIMERES TRTOL=x VNTOL
Limit
AUTOSTOP BKPSIZ DVTR=x FS=x FT=x GMIN=x IMAX=x IMIN=x ITL3=x ITL4=x ITL5=x RMAX=x RMIN=x VFLOOR
Initial Conditions for Transient Analysis
Transient Analysis
Some circuits, such as oscillators or circuits with feedback, do not have stable operating point solutions. For these circuits, either the feedback loop must be broken so that a DC operating point can be calculated or the initial conditions must be provided in the simulation input. The DC operating point analysis is bypassed if the UIC parameter is included in the .TRAN statement. If UIC is included in the .TRAN statement, a transient analysis is started using node voltages specified in a .IC statement. If a node is set to 5 V in a .IC statement, the value at that node for the first time point (time 0) is 5 V. The .OP statement can be used to store an estimate of the DC operating point during a transient analysis. Example .TRAN 1ns 100ns UIC .OP 20ns The .TRAN statement UIC parameter in the above example bypasses the initial DC operating point analysis. The .OP statement calculates transient operating points at t=0 and t=20 ns during the transient analysis. Although a transient analysis might provide a convergent DC solution, the transient analysis itself can still fail to converge. In a transient analysis, the error message “internal timestep too small” indicates that the circuit failed to converge. The convergence failure might be due to stated initial conditions that are not close enough to the actual DC operating point values.

RMSNumpress包的说明书

RMSNumpress包的说明书

Package‘RMSNumpress’October12,2022Type PackageTitle'Rcpp'Bindings to Native C++Implementation of MS NumpressVersion1.0.1Date2021-02-04Description'Rcpp'bindings to the native C++implementation of MS Numpress,that pro-vides two compression schemes for numeric data from mass spectrometers.The library pro-vides implementations of3different algorithms,1designed to compressfirst or-der smooth data like retention time or M/Z arrays,and2for compress-ing non smooth data with lower requirements on precision like ion count arrays.Re-fer to the publication(Teleman et al.,(2014)<doi:10.1074/mcp.O114.037879>)for more details. License BSD_3_clause+file LICENSEImports Rcpp(>=1.0.3)LinkingTo RcppSuggests testthatRoxygenNote7.0.2NeedsCompilation yesAuthor Justin Sing[cre,aut],Johan Teleman[aut]Maintainer Justin Sing<*********************>Repository CRANDate/Publication2021-02-0417:20:09UTCR topics documented:RMSNumpress-package (2)decodeLinear (4)decodePic (5)decodeSlof (6)encodeLinear (7)encodePic (8)encodeSlof (8)1optimalLinearFixedPoint (9)optimalLinearFixedPointMass (9)optimalSlofFixedPoint (10)Index11 RMSNumpress-package Rcpp bindings to native C++implementation of MS NumpressDescriptionMS Numpress===========Implementations of two compression schemes for numeric data from mass spectrometers.The library provides implementations of3different algorithms,1designed to compressfirst order smooth data like retention time or M/Z arrays,and2for compressing non smooth data with lower requirements on precision like ion count arrays.Numpress Pic===========MS Numpress positive integer compressionIntended for ion count data,this compression simply rounds values to the nearest integer,and stores these integers in a truncated form which is effective for values relatively close to zero.Numpress Slof===========MS Numpress short loggedfloat compressionAlso targeting ion count data,this compression takes the natural logarithm of values,multiplies bya scaling factor and rounds to the nearest integer.For typical ion count dynamic range these valuesfits into two byte integers,so only the two least significant bytes of the integer are stored.The scaling factor can be chosen manually,but the library also contains a function for retrieving the optimal Slof scaling factor for a given data array.Since the scaling factor is variable,it is stored asa regular double precisionfloatfirst in the encoding,and automatically parsed during decoding.Numpress Lin===========MS Numpress linear prediction compressionThis compression uses afixed point representation,achieve by multiplication by a scaling factor and rounding to the nearest integer.To exploit the assumed linearity of the data,linear prediction is then used in the following way.Thefirst two values are stored without compression as4byte integers.For each following value a linear prediction is made from the two previous values:Xpred=(X(n)-X(n-1))+X(n)Xres=Xpred-X(n+1)The residual Xres is then stored,using the same truncated integer representation as in NumpressPic.The scaling factor can be chosen manually,but the library also contains a function for retrieving theoptimal Lin scaling factor for a given data array.Since the scaling factor is variable,it is stored asa regular double precisionfloatfirst in the encoding,and automatically parsed during decoding.Truncated integer representation===========This encoding works on a4byte integer,by truncating initial zeros or ones.If the initial(mostsignificant)half byte is0x0or0xf,the number of such halfbytes starting from the most significantis stored in a halfbyte.This initial count is then followed by the rest of the ints halfbytes,in little-endian order.A count halfbyte c of0<=c<=8is interpreted as an initial c0x0halfbytes9<=c<=15is interpreted as an initial(c-8)0xf halfbytesExamples:int c rest0=>0x8-1=>0xf0xf23=>0x60x70x1Author(s)Maintainer:Justin Sing<*********************>ReferencesSee:https:///ms-numpress/ms-numpressSee AlsoencodeLinear,decodeLinear,encodeSlof,decodeSlof,encodePic,decodePic,optimalLinearFixedPoint, optimalSlofFixedPoint,optimalLinearFixedPointMass,Examples##Not run:#Encode Numpress Linear##Retention time arrayrt_array<-c(4313.0,4316.4,4319.8,4323.2,4326.6,4330.1)##encode retention time arrayrt_encoded<-encodeLinear(rt_array,500)#>[1]407f400000000000d4e7200078ee2000888623#Decode Numpress Linear##Retention time data that is encoded with encodeLinear and is zlib compressed###NOTE:For the sake of this example,I have broken the raw vector into several parts###to avoid Rd line widths(>100characters)issues with CRAN build checks.rt_raw1<-c("78","9c","73","50","61","00","83","aa","15","0c","0c","73","80")4decodeLinear rt_raw2<-c("b8","a3","5d","fe","47","07","84","28","fc","8f","c4","40","e5")rt_raw3<-c("61","51","84","a9","85","08","e1","06","00","06","be","41","cf")##Add all character representation of raw data back together and convert back to hex raw vector rt_blob<-as.raw(as.hexmode(c(rt_raw1,rt_raw2,rt_raw3)))##Decompress blobrt_blob_uncompressed<-as.raw(Rcompression::uncompress(rt_blob,asText=FALSE))##Decode to rentention time double valuesrt_array<-decodeLinear(rt_blob_uncompressed)##End(Not run)decodeLinear decodeLinearDescriptionDecodes data encoded by encodeLinear.UsagedecodeLinear(data)Argumentsdata pointer to array of bytes to be decoded(need memorycont.repr.)Detailsresult vector guaranteed to be shorter or equal to(|data|-8)*2Note that this method may throw a const char*if it deems the input data to be corrupt,i.e.that the last encoded int does not use the last byte in the data.In addition the last encoded int need to use either the last halfbyte,or the second last followed by a0x0halfbyte.Valuethe number of decoded doubles,or-1if dataSize<4or4<dataSize<8See Also[encodeLinear]Examples##Not run:##Retention time data that is encoded with encodeLinear and is zlib compressed###NOTE:For the sake of this example,I have broken the raw vector into several parts###to avoid Rd line widths(>100characters)issues with CRAN build checks.rt_raw1<-c("78","9c","73","50","61","00","83","aa","15","0c","0c","73","80") rt_raw2<-c("b8","a3","5d","fe","47","07","84","28","fc","8f","c4","40","e5")decodePic5 rt_raw3<-c("61","51","84","a9","85","08","e1","06","00","06","be","41","cf") ##Add all character representation of raw data back together and convert back to hex raw vector rt_blob<-as.raw(as.hexmode(c(rt_raw1,rt_raw2,rt_raw3)))##Decompress blobrt_blob_uncompressed<-as.raw(Rcompression::uncompress(rt_blob,asText=FALSE))##Decode to rentention time double valuesrt_array<-decodeLinear(rt_blob_uncompressed)##End(Not run)decodePic decodePicDescriptionDecodes data encoded by encodePicresult vector guaranteed to be shorter of equal to|data|*2UsagedecodePic(data)Argumentsdata pointer to array of bytes to be decoded(need memorycont.repr.)DetailsNote that this method may throw a const char*if it deems the input data to be corrupt,i.e.that the last encoded int does not use the last byte in the data.In addition the last encoded int need to use either the last halfbyte,or the second last followed by a0x0halfbyte.Valuethe number of decoded doublesSee Also[encodePic]6decodeSlof decodeSlof decodeSlofDescriptionDecodes data encoded by encodeSlofThe return will include exactly(|data|-8)/2doubles.UsagedecodeSlof(data)Argumentsdata pointer to array of bytes to be decoded(need memorycont.repr.)DetailsNote that this method may throw a const char*if it deems the input data to be corrupt.Valuethe number of decoded doublesSee Also[encodeSlof]Examples##Not run:##Intensity array to encode###NOTE:For the sake of this example,I have broken the intensity vector into several parts ###to avoid Rd line widths(>100characters)issues with CRAN build checks.int_array1<-c(0.71773432,0.43443741, 1.71883610,0.13220307,0.90664242)int_array2<-c(0.00000000,0.00000000,0.64213755,0.43443741,0.47221479)##Comcatenate into one intensity arrayint_array<-c(int_array1,int_array2)##Encode intensity array using encodeSlofint_encode<-encodeSlof(int_array,16)##End(Not run)encodeLinear7 encodeLinear encodeLinearDescriptionEncodes the doubles in data byfirst using a-lossy conversion to a4byte5decimalfixed point representation-storing the residuals from a linear prediction afterfirst two values-encoding by encodeInt(see above)The resulting binary is maximally8+dataSize*5bytes,but much less if the data is reasonably smooth on thefirst order.This encoding is suitable for typical m/z or retention time binary arrays.On a test set,the encoding was empirically show to be accurate to at least0.002ppm.UsageencodeLinear(data,fixedPoint)Argumentsdata pointer to array of double to be encoded(need memorycont.repr.)fixedPoint the scaling factor used for getting thefixed point repr.This is stored in the binary and automatically extracted on decoding(see optimalLinearFixedPointor optimalLinearFixedPointMass)Valuethe number of encoded bytesSee Also[decodeLinear]Examples##Not run:##Retention time arrayrt_array<-c(4313.0,4316.4,4319.8,4323.2,4326.6,4330.1)##encode retention time arrayrt_encoded<-encodeLinear(rt_array,500)#>[1]407f400000000000d4e7200078ee2000888623##End(Not run)8encodeSlof encodePic encodePicDescriptionEncodes ion counts by simply rounding to the nearest4byte integer,and compressing each integer with encodeInt.UsageencodePic(data)Argumentsdata pointer to array of double to be encoded(need memorycont.repr.)DetailsThe handleable range is therefore0->4294967294.The resulting binary is maximally dataSize* 5bytes,but much less if the data is close to0on average.Valuethe number of encoded bytesSee Also[decodePic]encodeSlof encodeSlofDescriptionEncodes ion counts by taking the natural logarithm,and storing afixed point representation of this.This is calculated asunsigned short fp=log(d+1)*fixedPoint+0.5UsageencodeSlof(data,fixedPoint)Argumentsdata pointer to array of double to be encoded(need memorycont.repr.)fixedPointfixed point to use for encoding(see optimalSlofFixedPoint)optimalLinearFixedPoint9 Detailsthe result vector is exactly|data|*2+8bytes longValuethe number of encoded bytesSee Also[decodeSlof]optimalLinearFixedPointoptimalLinearFixedPointDescriptionCompute the maximal linearfixed point that prevents integer overflow.UsageoptimalLinearFixedPoint(data)Argumentsdata pointer to array of double to be encoded(need memorycont.repr.)Valuethe linearfixed point safe to useoptimalLinearFixedPointMassoptimalLinearFixedPointMassDescriptionCompute the optimal linearfixed point with a desired m/z accuracy.UsageoptimalLinearFixedPointMass(data,mass_acc)10optimalSlofFixedPointArgumentsdata pointer to array of double to be encoded(need memorycont.repr.)mass_acc desired m/z accuracy in ThValuethe linearfixed point that satisfies the accuracy requirement(or-1in case of failure).NoteIf the desired accuracy cannot be reached without overflowing64bit integers,then a negative value is returned.You need to check for this and in that case abandon numpress or use opti-malLinearFixedPoint which returns the largest safe value.optimalSlofFixedPoint optimalSlofFixedPointDescriptionCompute the maximal natural logarithmfixed point that prevents integer overflow.UsageoptimalSlofFixedPoint(data)Argumentsdata pointer to array of double to be encoded(need memorycont.repr.)Valuethe sloffixed point safe to useIndex∗packageRMSNumpress-package,2decodeLinear,3,4,7decodePic,3,5,8decodeSlof,3,6,9encodeLinear,3,4,7encodePic,3,5,8encodeSlof,3,6,8optimalLinearFixedPoint,3,9 optimalLinearFixedPointMass,3,9 optimalSlofFixedPoint,3,10RMSNumpress(RMSNumpress-package),2 RMSNumpress-package,211。

时间序列数据处理包 'tsrobprep' 的说明说明书

时间序列数据处理包 'tsrobprep' 的说明说明书

Package‘tsrobprep’October14,2022Title Robust Preprocessing of Time Series DataVersion0.3.2Date2022-02-21Description Methods for handling the missing values outliers are introduced inthis package.The recognized missing values and outliers are replacedusing a model-based approach.The model may consist of both autoregressivecomponents and external regressors.The methods work robust and efficient,and they are fully tunable.The primary motivation for writing the packagewas preprocessing of the energy systems data,e.g.power plant productiontime series,but the package could be used with any time series data.Fordetails,see Narajewski et al.(2021)<doi:10.1016/j.softx.2021.100809>.Depends R(>=3.2.0)License MIT+file LICENSEEncoding UTF-8Imports glmnet,MASS,Matrix,mclust,quantreg,Rdpack,splines,textTinyR,zooRdMacros RdpackLazyData trueRoxygenNote7.1.1NeedsCompilation noAuthor MichałNarajewski[aut,cre](<https:///0000-0002-3115-0162>), Jens Kley-Holsteg[aut],Florian Ziel[aut](<https:///0000-0002-2974-2660>)Maintainer MichałNarajewski<****************************>Repository CRANDate/Publication2022-02-2210:30:01UTCR topics documented:auto_data_cleaning (2)detect_outliers (3)12auto_data_cleaning GBload (7)impute_modelled_data (8)model_missing_data (9)robust_decompose (12)Index14 auto_data_cleaning Perform automatic data cleaning of time series dataDescriptionReturns a matrix or a list of matrices with imputed missing values and outliers.The function au-tomatizes the usage of functions model_missing_data,detect_outliers and impute_modelled_data.The function is designed for numerical data only.Usageauto_data_cleaning(data,S,tau=NULL,st.indices.to.fix=S[1],indices.to.fix=NULL,model.missing.pars=list(),detect.outliers.pars=list())Argumentsdata an input vector,matrix or data frame of dimension nobs x nvars containing miss-ing values;each column is a variable.S a number or vector describing the seasonalities(S_1,...,S_K)in the data,e.g.c(24,168)if the data consists of24observations per day and there is a weeklyseasonality in the data.tau the quantile(s)of the missing values to be estimated in the quantile regression.Tau accepts all values in(0,1).If NULL,then the weighted lasso regression isperformed.st.indices.to.fixa number of observations in the tail of the data to befixed,by default set to S.indices.to.fix indices of the data to befixed.If NULL,then it is calculated based on the st.indices.to.fix parameter.Otherwise,the st.indices.to.fix pa-rameter is ignored.model.missing.parsnamed list containing additional arguments for the model_missing_data func-tion.detect.outliers.parsnamed list containing additional arguments for the detect_outliers function.DetailsThe function calls model_missing_data to clean the data from missing values,detect_outliers to detect outliers,removes them andfinally applies again model_missing_data function.For details see the functions’respective help sections.ValueA list which contains a matrix or a list of matrices with imputed missing values or outliers,theindices of the data that were modelled,and the given quantile values.ReferencesNarajewski M,Kley-Holsteg J,Ziel F(2021).“tsrobprep—an R package for robust preprocessing of time series data.”SoftwareX,16,100809.doi:10.1016/j.softx.2021.100809.See Alsomodel_missing_data,detect_outliers,impute_modelled_dataExamples##Not run:autoclean<-auto_data_cleaning(data=GBload[,-1],S=c(48,7*48),st.indices.to.fix=dim(GBload)[1],model.missing.pars=list(consider.as.missing=0,min.val=0))autoclean$replaced.indices##End(Not run)detect_outliers Detects unreliable outliers in univariate time series data based onmodel-based clusteringDescriptionThis function appliesfinite mixture modelling to compute the probability of each observation being outliying data in an univariate time series.By utilizing the Mclust package the data is assigned in G clusters whereof one is modelled as an outlier cluster.The clustering process is based on features, which are modelled to differentiate normal from outlying observation.Beside computing the prob-ability of each observation being outlying data also the specific cause in terms of the responsible feature/feature combination can be provided.Usagedetect_outliers(data,S,proba=0.5,share=NULL,repetitions=10,decomp=T,PComp=F,detection.parameter=1,out.par=2,max.cluster=9,G=NULL,modelName="VVV",feat.inf=F,ext.val=1,...)Argumentsdata an one dimensional matrix or data frame without missing data;each row is anobservation.S vector with numeric values for each seasonality present in data.proba denotes the threshold from which on an observation is considered as being out-lying data.By default is set to0.5(ranging from0to1).Number of outliersincreases with decrease of proba threshold.share controlls the size of the subsample used for estimation.By default set to pmin(2*round(length(data)^(sqrt( length(data))/length(data)(ranging from0to1).In combination with the rep-etitions parameter the robustness and computational time of the method can becontrolled.repetitions denotes the number of repetitions to repeat the clustering.By default set to10.Allows to control the robustness and computational time of the method.decomp allows to perform seasonal decomposition on the original time series as pre-processing step before feature modelling.By default set to TRUE.PComp allows to use the principal components of the modelled feature matrix.By de-fault set to FALSE.detection.parameterdenotes a parameter to regulate the detection sensitivity.By default set to1.Itis assumed that the outlier cluster follows a(multivariate)Gaussian distributionparameterized by sample mean and a blown up sample covariance matrix of thefeature space.The covariance matrix is blown up by detection.parameter*(2*log(length(data)))^2.By increase the more extrem outliers are detected.out.par controls the number of artifially produced outliers to allow cluster formationof oultier cluster.By default out.par ist set to2.By increase it is assumedthat share of outliers in data increases.A priori it is assumed that out.par*ceil-ing(sqrt(nrow(data.original)))number of observations are outlying observations.max.cluster a single numeric value controlling the maximum number of allowed clusters.By default set to9.G denotes the optimal number of clusters limited by the max.cluster paramter.Bydefault G is set to NULL and is automatically calculated based on the BIC.modelName denotes the geometric features of the covariance matrix.i.e."EII","VII","EEI", "EVI","VEI","VVI",etc..By default modelName is set to"VVV".The helpfile for mclustModelNames describes the available models.Choice of model-Name influences thefit to the data as well as the computational time.feat.inf logical value indicating whether influential features/feature combinations should be computed.By default set to FALSE.ext.val denotes the number of observations for each side of an identified outlier,which should also be treated as outliyng data.By default set to1....additional arguments for the Mclust function.DetailsThe detection of outliers is addressed by model based clustering based on parameterizedfinite Gaus-sian mixture models.For cluster estimation the Mclust function is applied.Models are estimated by the EM algorithm initialized by hierarchical model-based agglomerative clustering.The optimal model is selected according to BIC.The following features based on the introduced data are used in the clustering process:org.series denotes the scaled and potantially decomposed original time series.seasonality denotes determenistic seasonalities based on S.gradient denotes the summation of the two sided gradient of the org.series.abs.gradient denotes the summation of the absolute two sided gradient of org.series.rel.gradient denotes the summation of the two sided absolute gradient of the org.series with sign based on left sided gradient in relation to the rolling mean absolut deviation based on mostrelevant seasonality S.abs.seas.grad denotes the summation of the absolute two sided seasonal gradient of org.series based on seasonalties S.In case PComp=TRUE,the features correspond to the principal components of the introduced feature space.Valuea list containing the following elements:data numeric vector containing the original data.outlier.pos a vector indicating the position of each outlier and the corresponding neighboor-hood controled by ext.val.outlier.pos.rawa vector indicating the position of each outlier.outlier.probs a vector containing all probabilities for each observation being outlying data.Repetitions provides a list for each repetition containing the estimated model,the outliercluster,the probabilities for each observation belonging to the estimated clus-ters,the outlier position,the influence of each feature/feature combination onthe identified outyling data,and the corresponding probabilities after shift to thefeature mean of each considered outlier,as well as the applied subset of the ex-tended feature matrix for estimation(including artificially introduced outliers).features a matrix containg the feature matrix.Each column is a feature.binationsa list containg the features/feature comibinations,which caused assignment tooutlier cluster.feature.inf.taba matrix containing all possible feature combinations.PC an object of class"princomp"containing the principal component analysis ofthe feature matrix.ReferencesNarajewski M,Kley-Holsteg J,Ziel F(2021).“tsrobprep—an R package for robust preprocessingof time series data.”SoftwareX,16,100809.doi:10.1016/j.softx.2021.100809.See Alsomodel_missing_data,impute_modelled_data,auto_data_cleaningExamples##Not run:set.seed(1)id<-14000:17000#Replace missing valuesmodelmd<-model_missing_data(data=GBload[id,-1],tau=0.5,S=c(48,336),indices.to.fix=seq_len(nrow(GBload[id,])),consider.as.missing=0,min.val=0)#Impute missing valuesdata.imputed<-impute_modelled_data(modelmd)#Detect outlierssystem.time(o.ident<-detect_outliers(data=data.imputed,S=c(48,336)))#Plot of identified outliers in time seriesoutlier.vector<-rep(F,length(data.imputed))outlier.vector[o.ident$outlier.pos]<-Tplot(data.imputed,type="o",col=1+1*outlier.vector,pch=1+18*outlier.vector)#table of identified raw outliers and corresponding probs being outlying datadf<-data.frame(o.ident$outlier.pos.raw,unlist(o.ident$outlier.probs)[o.ident$outlier.pos.raw]) colnames(df)<-c("Outlier position","Probability of being outlying data")GBload7 df#Plot of feature matrixplot.ts(o.ident$features,type="o",col=1+outlier.vector,pch=1+1*outlier.vector)#table of outliers and corresponding features/feature combinations,#which caused assignment to outlier cluster#Detect outliers with feat.int=Tset.seed(1)system.time(o.ident<-detect_outliers(data=data.imputed,S=c(48,336),feat.inf=T))feature.imp<-unlist(lapply(o.ident$binations,function(x)paste(o.ident$feature.inf.tab[x],collapse="|")))df<-data.frame(o.ident$outlier.pos.raw,o.ident$outlier.probs[o.ident$outlier.pos.raw], feature.imp[as.numeric(names(feature.imp))%in%o.ident$outlier.pos.raw]) colnames(df)<-c("Outlier position","Probability being outlying data","Responsible features") View(df)##End(Not run)GBload The electricity actual total load in Great Britain in year2018DescriptionA dataset containing the electricity actual total load(MW)in Great Britain in year2018presentedin half-hour interval.Each data point regards30minutes of electricity load starting at given time.The data consists of both missing values and outliers.UsageGBloadFormatA data frame with17520rows and2variables:Date date indicating the delivery beginning of the electricityLoad actual electricity load in MW...Sourcehttps://transparency.entsoe.eu/8impute_modelled_data impute_modelled_data Impute modelled missing time series dataDescriptionReturns a matrix or a list of matrices with imputed missing values or outliers.As argument the function requires an object of class"tsrobprep"and the quantiles to be imputed.Usageimpute_modelled_data(object,tau=NULL)Argumentsobject an object of class"tsrobprep"that is an output of function model_missing_data.tau the quantile(s)of the missing values to be imputed.tau should be a subset of the quantile values present in the"tsrobprep"object.By default all quantiles presentin the object are used.ValueA matrix or a list of matrices with imputed missing values or outliers.ReferencesNarajewski M,Kley-Holsteg J,Ziel F(2021).“tsrobprep—an R package for robust preprocessing of time series data.”SoftwareX,16,100809.doi:10.1016/j.softx.2021.100809.See Alsomodel_missing_data,detect_outliers,auto_data_cleaningExamples##Not run:model.miss<-model_missing_data(data=GBload[,-1],S=c(48,7*48),st.indices.to.fix=dim(GBload)[1],consider.as.missing=0,min.val=0)model.miss$estimated.modelsmodel.miss$replaced.indicesnew.GBload<-impute_modelled_data(model.miss)##End(Not run)model_missing_data Model missing time series dataDescriptionReturns an object of class"tsrobprep"which contains the original data and the modelled missing values to be imputed.The function model_missing_data models missing values in a time series data using a robust time series decomposition with the weighted lasso or the quantile regression.The model uses autoregression on the time series as explanatory variables as well as the provided external variables.The function is designed for numerical data only.Usagemodel_missing_data(data,S,tau=NULL,st.indices.to.fix=S[1],indices.to.fix=NULL,replace.recursively=TRUE,p=NULL,mirror=FALSE,lags=NULL,extreg=NULL,n.best.extreg=NULL,use.data.as.ext=FALSE,lag.externals=FALSE,consider.as.missing=NULL,whole.period.missing.only=FALSE,debias=FALSE,min.val=-Inf,max.val=Inf,Cor_thres=0.5,digits=3,ICpen="BIC",decompose.pars=list(),...)Argumentsdata an input vector,matrix or data frame of dimension nobs x nvars containing miss-ing values;each column is a variable.S a number or vector describing the seasonalities(S_1,...,S_K)in the data,e.g.c(24,168)if the data consists of24observations per day and there is a weeklyseasonality in the data.tau the quantile(s)of the missing values to be estimated in the quantile regression.Tau accepts all values in(0,1).If NULL,then the weighted lasso regression isperformed.st.indices.to.fixa number of observations in the tail of the data to befixed,by default set tofirstelement of S.indices.to.fix indices of the data to befixed.If NULL,then it is calculated based on the st.indices.to.fix parameter.Otherwise,the st.indices.to.fix pa-rameter is ignored.replace.recursivelyif TRUE then the algorithm uses replaced values to model the remaining miss-ings.p a number or vector of length(S)=K indicating the order of a K-seasonal autore-gressive process to be estimated.If NULL,chosen data-based.mirror if TRUE then autoregressive lags up to order p are not only added to the season-alities but also subtracted.lags a numeric vector with the lags to use in the autoregression.Negative values are accepted and then also the"future"observations are used for modelling.If notNULL,p and mirror are ignored.extreg a vector,matrix or data frame of data containing external regressors;each col-umn is a variable.n.best.extreg a numeric value specifying the maximal number of considered best correlated external regressors(selected in decreasing order).If NULL,then all variables inextreg are used for modelling.use.data.as.extlogical specifying whether to use the remaining variables in the data as externalregressors or not.lag.externals logical specifying whether to lag the external regressors or not.If TRUE,then the algorithm uses the lags specified in parameter lags.consider.as.missinga vector of numerical values which are considered as missing in the data.whole.period.missing.onlyif FALSE,then all observations which correspond to the values of consider.as.missingare treated as missings.If TRUE,then only consecutive observations of speci-fied length are considered(length is defined byfirst element of S).debias if TRUE,the recursive replacement is additionally debiased.min.val a single value or a vector of length nvars providing the minimum possible value of each variable in the data.If a single value,then it applies to all variables.Bydefault set to-Inf.max.val a single value or a vector of length nvars providing the maximum possible value of each variable in the data.If a single value,then it applies to all variables.Bydefault set to Inf.Cor_thres a single value providing the correlation threshold from which external regressors are considered in the quantile regression.model_missing_data11 digits integer indicating the number of decimal places allowed in the data,by default set to3.ICpen is the information criterion penalty for lambda choice in the glmnet algorithm.It can be a string:"BIC","HQC"or"AIC",or afixed number.decompose.pars named list containing additional arguments for the robust_decompose function....additional arguments for the glmnet or rq.fit.fnb algorithms.DetailsThe function uses robust time series decomposition with weighted lasso or quantile regression in order to model missing values and prepare it for imputation.In this purpose the robust_decompose function together with the glmnet are used in case of mean regression,i.e.tau=NULL.In case of quantile regression,i.e.tau!=NULL the robust_decompose function is used together with the rq.fit.fnb function.The modelled values can be imputed using impute_modelled_data function. ValueAn object of class"tsrobprep"which contains the original data,the indices of the data that were modelled,the given quantile values,a list of sparse matrices with the modelled data to be imputed and a list of the numbers of models estimated for every variable.ReferencesNarajewski M,Kley-Holsteg J,Ziel F(2021).“tsrobprep—an R package for robust preprocessing of time series data.”SoftwareX,16,100809.doi:10.1016/j.softx.2021.100809.See Alsorobust_decompose,impute_modelled_data,detect_outliers,auto_data_cleaningExamples##Not run:model.miss<-model_missing_data(data=GBload[,-1],S=c(48,7*48),st.indices.to.fix=dim(GBload)[1],consider.as.missing=0,min.val=0)model.miss$estimated.modelsmodel.miss$replaced.indicesnew.GBload<-impute_modelled_data(model.miss)##End(Not run)robust_decompose Robust time series seasonal decompositionDescriptionDecompose a time series into trend,level and potentially multiple seasonal components including all interactions.The function allows for missings.Usagerobust_decompose(x,S,wsize=max(2*max(S),25),use.trend=TRUE,K=4,ICpen="BIC",extreg=NULL,use.autoregressive=NULL)Argumentsx a time series.S a number or vector describing the seasonalities(S_1,...,S_K)in the data,e.g.c(24,168)if the data consists of24observations per day and there is a weeklyseasonality in the data.wsize isfilter/rolling med sizeuse.trend if TRUE,uses standard decomposition.If FALSE,uses no trend component.K a sigma(standard deviation)bound.The observations that exceed sigma*K be-come reduced weight in the regression.ICpen is the information criterion penalty,e.g.string"BIC","HQC"or"AIC",or a fixed number.extreg a vector,matrix or data frame of data containing external regressors;each col-umn is a variable.use.autoregressiveif TRUE,removes the autoregression from the series.If NULL,it is derived databased.ValueA list which contains a vector offitted values,a vector of weights given to the original time series,and a matrix of components of the decomposition.ReferencesNarajewski M,Kley-Holsteg J,Ziel F(2021).“tsrobprep—an R package for robust preprocessing of time series data.”SoftwareX,16,100809.doi:10.1016/j.softx.2021.100809.Examples##Not run:GBload.decomposed<-robust_decompose(GBload[,-1],S=c(48,7*48))head(GBload.decomposed$components)##End(Not run)Index∗datasetsGBload,7auto_data_cleaning,2,6,8,11detect_outliers,2,3,3,8,11GBload,7glmnet,11impute_modelled_data,2,3,6,8,11Mclust,3,5mclustModelNames,5model_missing_data,2,3,6,8,9robust_decompose,11,12rq.fit.fnb,1114。

时间序列的小波分析及等值线图、小波方差制作之欧阳学文创编之欧阳索引创编

时间序列的小波分析及等值线图、小波方差制作之欧阳学文创编之欧阳索引创编

时间序列的小波分析欧阳家百(2021.03.07)时间序列(Time Series)是地学研究中经常遇到的问题。

在时间序列研究中,时域和频域是常用的两种基本形式。

其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。

然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。

对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。

显然,时域分析和频域分析对此均无能为力。

20世纪80年代初,由Morlet提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis)为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。

目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。

在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。

一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。

因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ(1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )ab t (a )t (2/1b ,a -=-ψψ其中,0a R,b a,≠∈(2)式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Variable Scaling for Time Series PredictionFrancesco Corona and Amaury Lendasse∗Helsinki University of Technology-Laboratory of Computer and Information ScienceP.O.Box5400,02015HUT-FinlandAbstract.In this paper,variable selection and variable scaling areused in order to select the best regressor for the problem of time seriesprediction.Direct prediction methodology is used instead of the classicrecursive methodology.Least Squares Support Vector Machines(LS-SVM)are used in order to avoid local minimal in the training phase of the model.The global methodology is applied to the time series competition dataset.1IntroductionTime series forecasting is a challenge in manyfields.Infinance,experts fore-cast stock exchange courses or stock market indices;data processing specialists forecast theflow of information on their networks;producers of electricity fore-cast the load of the following day.The common point to their problems is the following:how can one analyse and use the past to predict the future?Many techniques exist for the approximation of the underlying process of a time series:linear methods such as ARX,ARMA,etc.[1],and nonlinear ones such as artificial neural networks[2].In general,these methods try to build a model of the process.The model is then used on the last values of the series to predict the future values.The common difficulty to all the methods is the determination of sufficient and necessary information for an accurate prediction.A new challenge in thefield of time series prediction is the Long-Term Predic-tion:several steps ahead have to be predicted.Long-Term Prediction has to face growing uncertainties arising from various sources,for instance,accumulation of errors and the lack of information[2].In this paper,a global methodology to perform direct prediction is presented. It includes variable selection and variable scaling.The variable selection criterion is based on a Nonparametric Noise Estimation(NNE)performed by Delta Test.In this paper,Least Squares Support Vector Machines(LS-SVM)are used as nonlinear models in order to avoid local minima problems[3].Section2presents the prediction strategy for the Long-Term Prediction of Time Series.In Section3Delta Test is introduced.Section4introduces the variable selection and scaling selection.The prediction model LS-SVM is briefly summarized in Section5and experimental results are shown in Section6using the competition dataset.∗Part the work of F.Corona and A.Lendasse is supported by the project of New Infor-mation Processing Principles,44886,of the Academy of Finland.The work of A.Lendasse is supported in part by the IST Programme of the European Community,under the PASCAL Network of Excellence,IST-2002-506778.This publication only reflects the authors’views.2Time Series PredictionThe time series prediction problem is the prediction of future values based on the previous values and the current value of the time series(see Equation1). The previous values and the current value of the time series are used as inputs for the prediction model.One-step ahead prediction is needed in general and is referred to as Short-Term Prediction.But when multi-step ahead predictions are needed,it is called a Long-Term Prediction problem.Unlike the Short-Term time series prediction,the Long-Term Prediction is typically faced with growing uncertainties arising from various sources.For instance,the accumulation of errors and the lack of information make the pre-diction more difficult.In Long-Term Prediction,performing multiple step ahead prediction,there are several alternatives to build models.In the following sec-tions,two variants of prediction strategies are introduced and compared:the Direct and the Recursive Prediction Strategies.2.1Recursive Prediction StrategyTo predict several steps ahead values of a time series,Recursive Strategy seems to be the most intuitive and simple method.It uses the predicted values as known data to predict the next ones.In more detail,the model can be constructed by first making one-step ahead prediction:ˆy t+1=f1(y t,y t−1,...,y t−M+1),(1) where M denotes the number inputs.The regressor of the model is defined as the vector of inputs:y t,y t−1,...,y t−M+1.It is possible to use also exogenousvariables as inputs in the regressor,but they are not considered here in order to simplify the notation.Nevertheless,the presented global methodology can also be used with exogenous variables.To predict the next value,the same model is used:ˆy t+2=f1(ˆy t+1,y t,y t−1,...,y t−M+2).(2) In Equation2,the predicted value ofˆy t+1is used instead of the true value, which is unknown.Then,for the H-steps ahead prediction,ˆy t+2toˆy t+H are predicted iteratively.So,when the regressor length M is larger than H,there are M−H real data in the regressor to predict the H th step.But when H exceeds M,all the inputs are the predicted values.The use of the predicted values as inputs deteriorates the accuracy of the prediction.2.2Direct Prediction StrategyAnother strategy for the Long-Term Prediction is the Direct Strategy.For the H-steps ahead prediction,the model isˆy t+h=f h(y t,y t−1,...,y t−M+1)with1≤h≤H.(3)This strategy estimates H direct models between the regressor(which does not contain any predicted values)and the H outputs.The errors in the predicted values are not accumulated in the next prediction.When all the values,from ˆy t+1toˆy t+H,need to be predicted,H different models must be built.The direct strategy increases the complexity of the prediction,but more accurate results are achieved.3Nonparametric Noise Estimator using the Delta Test Delta Test(DT)is a technique for estimating the variance of the noise,or the mean square error(MSE),that can be achieved without overfitting[4].The evaluation of the NNE is done using the DT estimation introduced by Stefansson in[5].Given N input-output pairs:(x i,y i)∈R M×R,the relationship between x i and y i can be expressed as:y i=f(x i)+r i,(4) where f is the unknown function and r is the noise.The Delta Test estimates the variance of the noise r.The DT is useful for evaluating the nonlinear correlation between two random variables,namely,input and output pairs.The DT has been introduced for model selection but also for variable selection:the set of inputs that minimizes the DT is the one that is selected.Indeed,according to the GT,the selected set of variables is the one that represents the relationship between variables and output in the most deterministic way.DT is based on hypotheses coming from the continuity of the regression function.If two points x and x are close in the input space,the continuity of regression function implies the outputs f(x)and f(x )will be close enough in the output space.Alternatively,if the corresponding output values are not close in the output space,this is due to the influence of the noise.Let us denote thefirst nearest neighbor of the point x i in the set{x1,...,x N} by x NN.Then the delta test,δis defined as:δ=12NNi=1y NN(i)−y i2,(5)where y NN(i)is the output of x NN(i).For the proof of the convergence of the Delta Test,see[4].4Variable and Scaling SelectionVariable scaling is a usual preprocessing step in both function approximation and time series analysis.In scaling,weights are used to reflect the relevance of the input variables to the output to be estimated.That is,scaling seeksfor redundant inputs and assigns them low weights to reduce the corresponding influence on the learning process.In such a context,it is clear that variable selection is a particular case of scaling:by weighting irrelevant variables by zero we are,indeed,enforcing selection.For the sake of brevity,only the main concepts referring to the regression problem are presented here.Nevertheless, the extension to time series analysis is trivial.4.1Scaling the Input Space with Mahalanobis MatricesThe Mahalanobis distance d M(x i,x j)of two d-dimensional observations x i,x j is a proximity(or’similarity’)measure defined on the dependencies between the embedding dimensions.Formally,d M(x i,x j)extends the traditional Euclid-ean distance d(x i,x j)=[(x i−x j)T(x i−x j)]1/2transforming the observations subspace by means of a(d×d)full-rank matrix M:d(x i,x j)=[(x i−x j)T M(x i−x j)]1/2,(6) From the previous equation,it is evident that:i)if M=I then the original Euclidean metric is retained,and ii)if M is a(d×d)diagonal matrix then the original space is simply rescaled according to the diagonal elements.Matrix M is also symmetric and semi-definite positive,by definition.Moreover,the Mahalanobis matrix M can be factorized as:M=S T S,(7) with a matrix S that can linearly map the observations into the subspace spanned by the eigenvectors of the transformation.The learned metric in the projection subspace is still the Euclidean distance,that is:d(x i,x j)=[(x i−x j)T M(x i−x j)]1/2=[(Sx i−Sx j)T(Sx i−Sx j)]1/2,(8) where,by restricting S to be a non-square(s∗d,with s<d)matrix,the transformation performs both a reduction of the dimensionality and the scaling of the original input subspace.The resulting subspace has an induced global metric of lower rank suitable for reducing the’curse of dimensionality’.In this paper,we use a diagonal matrix M that is optimized in order to minimize the delta test estimation in the scaled space define by S.Details about the optimization method are given the the experiments section.5Nonlinear ModelsIn this paper,Least Squares Support Vector Machines(LS-SVM)are used as nonlinear models[3],which are defined in their primal weight space by[6,7]ˆy=ωTϕ(x)+b,(9)whereϕ(x)is a function,which maps the input space into a higher-dimensional feature space,x is the vector of inputs.ωand b are the parameters of the model. The optimization problem can be formulated asminω,b,e J(ω,e)=12ωTω+γ12 Ni=1e2i,(10)subject to y i=ωTϕ(x i)+b+e i,i=1,...,N,(11) and the solution ish(x)=Ni=1αi K(x,x i)+b.(12)In the above equations,i refers to the index of a sample and K(x,x i)is the kernel function defined as the dot product between theϕ(x)T andϕ(x). Training methods for the estimation of theωand b parameters can be found in [6].6Experimental ResultsIn this paper,the ESTSP2007competition dataset is used as an example.It includes a total of875values.The dataset is shown in Figure1.Fig.1:Competition dataset.In order to test the methodology,the dataset is divided into two sets,a small learning set and the global learning set.The small learning set consists of465first values and the global learning set consists in the875values.The regressor size is set to10after many trial and error experiments.The small learning set is used in order to evaluate the performances of the methodology.The variable scaling is selected in order to minimize the Delta Test estima-tion.Because the DT is not continuous with respect to the scaling factors,aforward-backward optimization is used.The variable scaling coefficients are se-lected between a set of discrete values:[00.10.2...0.91].This discretization provides satisfactory results and reduces computational time.The variable scaling is performed for each of the50prediction models from equation3used in direct prediction methodology.The estimation of the NNE (using Delta Test)are shown in Figure2.Fig.2:Estimation of the NNE(using Delta Test)with respect to the horizon of prediction.The result of the50step-ahead prediction is represented infigure3.Fig.3:Comparison between the time series(solid line)and the prediction (dashed line)Then,the same methodology is used with the global learning set in order to predict the competition values.The estimation of the NNE(using Delta Test) are shown in Figure4.The result of the50step-ahead prediction is represented infigure5.Fig.4:Estimation of the NNE(using Delta Test)with respect to the horizon of prediction.Fig.5:Prediction of50next values of the competition dataset.The real values are presented by the solid line and the dashed one presents the prediction.7ConclusionIn this paper,we have presented a methodology for the longterm prediction of time series.This methodology uses direct prediction methodology.This increases the computational time but improves the quality of the results.In order to perform the variable scaling,Delta Test estimation is used.The scaling that minimized the NNE is selected.To reduce the computational time, a discrete scaling is used and a forward-backward optimization is selected.Further research will be done to improve the minimization of the NNE estima-tion.Other experiments will be performed in thefields of time series prediction and function approximation.References[1]L.Ljung.System identification theory for User.Prentice-Hall,Englewood CliPs,NJ,1987.[2] A.S.Weigend and N.A.Gershenfeld.Times Series Prediction:Forecasting the Future andUnderstanding the Past.Addison-Wesley Publishing Company,1994.[3]Johan A K Suykens,Tony Van Gestel,Jos De Brabanter,Bart De Moor,and Joos Vande-walle.Least Squares Support Vector Machines.World Scientific Publishing Co.,Pte,Ltd.(Singapore),November2002.[4] A.J.Jones.New tools in non-linear modeling and putational ManagementScience,1:109–149,2004.[5]Adalbj¨o rn Stefansson,N.Koncar,and Antonia J.Jones.A note on the gamma test.NeuralComputing&Applications,(5(3)):131–133,1997.[6]Available from http://www.esat.kuleuven.ac.be/sista/lssvmlab/.[7]Johan A.K.Suykens,Jos De Brabanter,L.Lukas,and Joos Vandewalle.Weighted leastsquares support vector machines:robustness and sparse approximation.Neurocomputing, 48:85–105,2002.。

相关文档
最新文档