SPSS在犯罪学研究中的应用——以刑事发案率的多元线性回归为例
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。
接下来,我将为您详细介绍使用 SPSS 进行多元线性回归分析的具体操作步骤。
首先,准备好您的数据。
数据应该以特定的格式整理,通常包括自变量和因变量的列。
确保数据的准确性和完整性,因为这将直接影响分析结果的可靠性。
打开 SPSS 软件,在菜单栏中选择“文件”,然后点击“打开”,找到您存放数据的文件并导入。
在导入数据后,点击“分析”菜单,选择“回归”,再点击“线性”。
这将打开多元线性回归的对话框。
在“线性回归”对话框中,将您的因变量拖放到“因变量”框中,将自变量拖放到“自变量”框中。
接下来,点击“统计”按钮。
在“统计”对话框中,您可以选择一些常用的统计量。
例如,勾选“估计”可以得到回归系数的估计值;勾选“置信区间”可以得到回归系数的置信区间;勾选“模型拟合度”可以评估模型的拟合效果等。
根据您的具体需求选择合适的统计量,然后点击“继续”。
再点击“图”按钮。
在这里,您可以选择生成一些有助于直观理解回归结果的图形。
比如,勾选“正态概率图”可以检查残差的正态性;勾选“残差图”可以观察残差的分布情况等。
选择完毕后点击“继续”。
然后点击“保存”按钮。
您可以选择保存预测值、残差等变量,以便后续进一步分析。
完成上述设置后,点击“确定”按钮,SPSS 将开始进行多元线性回归分析,并输出结果。
结果通常包括多个部分。
首先是模型摘要,它提供了一些关于模型拟合度的指标,如 R 方、调整 R 方等。
R 方表示自变量能够解释因变量变异的比例,越接近 1 说明模型拟合效果越好。
其次是方差分析表,用于检验整个回归模型是否显著。
如果对应的p 值小于给定的显著性水平(通常为 005),则说明模型是显著的。
最重要的是系数表,它给出了每个自变量的回归系数、标准误差、t 值和 p 值。
回归系数表示自变量对因变量的影响程度,p 值用于判断该系数是否显著不为 0。
spss多元回归分析案例
spss多元回归分析案例SPSS多元回归分析案例。
在统计学中,多元回归分析是一种用于探究多个自变量与因变量之间关系的方法。
通过多元回归分析,我们可以了解不同自变量对因变量的影响程度,以及它们之间的相互作用情况。
在本篇文档中,我将通过一个实际案例来介绍如何使用SPSS软件进行多元回归分析。
案例背景:假设我们是一家电子产品公司的市场营销团队,在推出新产品之前,我们希望了解不同因素对产品销量的影响。
我们收集了一些数据,包括产品的售价、广告投入、竞争对手的售价、季节等因素,以及产品的销量作为因变量。
数据准备:首先,我们需要将数据录入SPSS软件中。
在SPSS中,我们可以通过导入Excel文件的方式将数据导入到软件中,并进行必要的数据清洗和处理。
确保数据的准确性和完整性对于后续的多元回归分析非常重要。
模型建立:接下来,我们需要建立多元回归模型。
在SPSS中,我们可以通过依次选择“分析”-“回归”-“线性回归”来进行多元回归分析。
在“因变量”栏中输入销量,然后将所有自变量依次输入到“自变量”栏中。
在建立模型之前,我们还需要考虑是否需要进行变量转换或交互项的添加,以更好地拟合数据。
模型诊断:建立模型后,我们需要对模型进行诊断,以确保模型的准确性和有效性。
在SPSS中,我们可以通过查看残差的正态性、异方差性以及自相关性来进行模型诊断。
如果模型存在严重的偏差或违反了多元回归分析的假设,我们需要进行相应的修正或改进。
模型解释:最后,我们需要解释多元回归模型的结果。
在SPSS的输出结果中,我们可以看到各个自变量的系数、显著性水平、调整R方等统计指标。
通过这些指标,我们可以了解不同自变量对销量的影响程度,以及它们之间的相互作用情况。
同时,我们还可以进行各种假设检验,来验证模型的有效性和可靠性。
结论:通过以上多元回归分析,我们可以得出不同自变量对产品销量的影响程度,以及它们之间的相互作用情况。
这些结果对于我们制定产品的定价策略、广告投放策略以及市场营销策略都具有重要的指导意义。
基于SPSS多元线性回归分析的案例
农民收入影响因素的多元回归分析自改革开放以来,虽然中国经济平均增长速度为9.5 % ,但二元经济结构给经济发展带来的问题仍然很突出。
农村人口占了中国总人口的70 %多,农业产业结构不合理,经济不发达,以及农民收入增长缓慢等问题势必成为我国经济持续稳定增长的障碍。
正确有效地解决好“三农”问题是中国经济走出困境,实现长期稳定增长的关键。
其中,农民收入增长是核心,也是解决“三农”问题的关键。
本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,寻找其根源,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。
一、回归模型的建立(1)数据的收集根据实际的调查分析,我们在影响农民收入因素中引入3个解释变量。
即:X2-财政用于农业的支出的比重,X3-乡村从业人员占农村人口的比重,X4 -农作物播种面积1991223.2510.2650.92149585.8 1992233.1910.0551.53149007.1 1993265.679.4951.86147740.7 1994335.169.252.12148240.6 1995411.298.4352.41149879.3 1996460.688.8253.23152380.6 1997477.968.354.93153969.2 1998474.0210.6955.84155705.7 1999466.88.2357.16156372.8 2000466.167.7559.33156299.9 2001469.87.7160.62155707.9 2002468.957.1762.02154635.5 2003476.247.1263.721524152004499.399.6765.64153552.6 2005521.27.2267.59155487.7(1)回归模型的构建Y i=1+2X2+3X3+4X4+u i二、回归模型的分析(1)多重共线性检验系数a(2)模型异方差的检验异方差产生的原因有:数据质量原因、模型设定原因。
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤多元线性回归是一种常用的统计分析方法,用于探究多个自变量对因变量的影响程度。
SPSS(Statistical Package for the Social Sciences)是一款常用的统计软件,可以进行多元线性回归分析,并提供了简便易用的操作界面。
本文将介绍SPSS中进行多元线性回归分析的实例操作步骤,帮助您快速掌握该分析方法的使用。
步骤一:准备数据在进行多元线性回归分析之前,首先需要准备好相关的数据。
数据应包含一个或多个自变量和一个因变量,以便进行回归分析。
数据可以来自实验、调查或其他来源,但应确保数据的质量和可靠性。
步骤二:导入数据在SPSS软件中,打开或创建一个新的数据集,然后将准备好的数据导入到数据集中。
可以通过导入Excel、CSV等格式的文件或手动输入数据的方式进行数据导入。
确保数据被正确地导入到SPSS中,并正确地显示在数据集的各个变量列中。
步骤三:进行多元线性回归分析在SPSS软件中,通过依次点击"分析"-"回归"-"线性",打开线性回归分析对话框。
在对话框中,将因变量和自变量移入相应的输入框中。
可以使用鼠标拖拽或双击变量名称来快速进行变量的移动。
步骤四:设置分析选项在线性回归分析对话框中,可以设置一些分析选项,以满足具体的分析需求。
例如,可以选择是否计算标准化回归权重、残差和预测值,并选择是否进行方差分析和共线性统计检验等。
根据需要,适当调整这些选项。
步骤五:获取多元线性回归分析结果点击对话框中的"确定"按钮后,SPSS将自动进行多元线性回归分析,并生成相应的分析结果。
结果包括回归系数、显著性检验、残差统计和模型拟合度等信息,这些信息可以帮助我们理解自变量对因变量的贡献情况和模型的拟合程度。
步骤六:解读多元线性回归分析结果在获取多元线性回归分析结果之后,需要对结果进行解读,以得出准确的结论。
运用SPSS做多元回归分析
结果二:方差分析表
• 表中显著度(Sig)<0.001,表明整个方程是显著的,也 就是说自变量与因变量之间具有显著的线性关系。 • 但这并不意味着每个自变量与因变量都具有显著的线性关 系,具体的结论还需要看后面对每个自变量的回归系数的 检验结果。
结果三:回归系数表
• 表中B栏的非标准化回归系数表明:
FOR EXAMPLE
一个变量的变化直接与另一组变量的变化有关:
人的体重与身高、胸围 血压值与年龄、性别、劳动强度、饮食习惯、吸烟 状况、家族史 糖尿病人的血糖与胰岛素、糖化血红蛋白、血清总 胆固醇、甘油三脂
多元回归分析数据格式
编号 1 2 ┇ i ┇ n
X1
X 11
X2
X 12
┅ ┅ ┅ ┇ ┅ ┇ ┅
多元回归模型必须满足的假定条件
1. 2.
因变量是连续随机变量; 自变量是固定数值型变量,且相互独立;
3.
4. 5. 6.
每一个自变量与因变量呈线性关系;
每一个自变量与随机误差相互独立; 观察个体的随机误差之间相互独立; 残差是随机变量,均值为零。
不良贷款(亿元)各项贷款余额(亿元)本年累计应收贷款(亿元)贷款项目个数(个) 本年固定资产投资额(亿元) 0.9 67.3 6.8 5 51.9 1.1 111.3 19.8 16 90.9 4.8 173 7.7 17 73.7 3.2 80.8 7.2 10 14.5 7.8 199.7 16.5 19 63.2 12.5 185.4 27.1 18 43.8 1 96.1 1.7 10 55.9 2.6 72.8 9.1 14 64.3 0.3 64.2 2.1 11 42.7 4 132.2 11.2 23 76.7 0.8 58.6 6 14 22.8 3.5 174.6 12.7 26 117.1 10.2 263.5 15.6 34 146.7 0.2 14.8 0.6 2 42.1 0.4 73.5 5.9 11 25.3 1 24.7 5 4 13.4 6.8 139.4 7.2 28 64.3 11.6 368.2 16.8 32 163.9 1.6 95.7 3.8 10 44.5 1.2 109.6 10.3 14 67.9 7.2 196.2 15.8 16 39.7
【精品】SPSS统计实验报告多元线性回归分析
【精品】SPSS统计实验报告多元线性回归分析
本文旨在通过多元线性回归分析,深入研究X、Y、Z三个变量之间的关系,以探究这三个变量对结果的影响。
本实验中样本数量为100人,本文采用SPSS22.0计算软件进行多元线性回归分析,统计计算结果如下:
(一)检验变量X、Y、Z三个变量是否有关:
Sig.=.633。
结果显示,该值大于0.05,表明X、Y、Z三者之间没有显著统计关系;
(二)确定拟合模型:
以X、Y、Z三个变量回归拟合,得出模型为:y=1.746+0.660X+0.783Y+0.430Z。
(三)检验回归模型的有效性:
1. 回归系数的统计量检验
模型的R方为.668,该值表明,X、Y、Z三个自变量可以解释本回归模型的67.0%的变化量;
2.F检验
结果显示,f分数为20.670,Sig.=.000,结果显示,f分数小于阈值0.05,因此可以接受回归模型;
检验结果显示,当其他X、Y、Z三个自变量的条件不变的情况下,X、Y、Z三个自变量对Y的影响是有显著性的。
综上所述,本文使用SPSS22.0计算软件进行多元线性回归分析,探究X、Y、Z三个变量之间的关系。
结果显示,X、Y、Z三者之间没有显著统计关系;拟合模型为:
y=1.746+0.660X+0.783Y+0.430Z;最后,证实X、Y、Z三个自变量对Y的影响是有显著性的。
SPSS中多元回归分析实例解析
SPSS中多元回归分析实例解析多元回归分析是一种统计方法,用于研究一个因变量与多个自变量之间的关系。
在SPSS中,可以使用该方法来构建、估计和解释多元回归模型。
下面将以一个实例来解析SPSS中的多元回归分析。
假设我们想要研究一个教育投资项目的效果,该项目包括多个自变量,例如教育资金、教育设施、学生人数等,并且我们希望预测该项目对学生学习成绩的影响。
首先,我们需要准备好数据并导入SPSS中。
数据应包含每个教育投资项目的多个观测值,以及与之相关的自变量和因变量。
例如,可以将每个项目作为一个观测值,并将教育资金、教育设施、学生人数等作为自变量,学生学习成绩作为因变量。
在SPSS中,可以通过选择“Analyze”菜单中的“Regression”选项来打开回归分析对话框。
然后,选择“Linear”选项来进行多元回归分析。
接下来,可以将自变量和因变量添加到对话框中。
在自变量列表中,选择教育资金、教育设施、学生人数等自变量,并将它们移动到“Independent(s)”框中。
在因变量框中,选择学生学习成绩。
然后,点击“OK”按钮开始进行分析。
SPSS将输出多元回归的结果。
关键的统计指标包括回归系数、显著性水平和拟合度。
回归系数表示每个自变量对因变量的影响程度,可以根据系数的大小和正负来判断影响的方向。
显著性水平表示自变量对因变量的影响是否显著,一般以p值小于0.05为标准。
拟合度指示了回归模型对数据的拟合程度,常用的指标有R方和调整后的R方。
在多元回归分析中,可以通过检查回归系数的符号和显著性水平来判断自变量对因变量的影响。
如果回归系数为正且显著,表示该自变量对因变量有正向影响;如果回归系数为负且显著,表示该自变量对因变量有负向影响。
此外,还可以使用其他方法来进一步解释和验证回归模型,例如残差分析、模型诊断等。
需要注意的是,在进行多元回归分析时,需要满足一些前提条件,例如自变量之间应该独立、与因变量之间应该是线性关系等。
spss多元回归分析案例
spss多元回归分析案例SPSS多元回归分析是一种常用的统计方法,可以通过分析多个自变量对一个或多个因变量的影响程度,帮助研究者理解变量之间的关系以及预测变量之间的变化情况。
以下是一个关于人们消费意愿的多元回归分析的案例。
假设我们想研究人们的消费意愿受到收入水平、年龄和受教育水平的影响程度。
我们收集了100个参与者的数据,包括他们的收入、年龄、受教育水平以及消费意愿。
下面将介绍如何使用SPSS进行多元回归分析。
首先,在SPSS软件中打开数据文件,并选择"回归"菜单下的"线性回归"选项。
然后将因变量(消费意愿)拉入"因变量"框中,将自变量(收入、年龄、受教育水平)拉入"自变量"框中。
其次,点击"统计"按钮,在弹出的对话框中勾选"无多重共线性检验"、"离群值"和"样本相关矩阵"选项,并点击"确定"按钮。
接下来,点击"模型"按钮,在弹出的对话框中选择"全量"和"因素样本相关系数"选项,并点击"确定"按钮。
然后,点击"保存"按钮,在弹出的对话框中输入保存路径和文件名,并勾选"标准化残差"、"标准化预测值"和"离群值的DFITS"选项,并点击"确定"按钮。
最后,点击"OK"按钮开始进行多元回归分析。
在分析结果中,我们可以查看每个自变量的回归系数、标准误、t值以及显著性水平。
还可以查看整体模型的解释力、统计显著性和调整R 平方。
根据分析结果,我们可以得出结论:收入水平、年龄和受教育水平对消费意愿有显著影响。
收入水平对消费意愿的影响最大,其次是受教育水平,年龄对消费意愿的影响较小。
多元线性回归的SPSS实现
多元线性回归的SPSS实现首先,我们需要收集相关的数据,包括自变量和因变量的观测值。
在SPSS软件中,打开数据文件,并确保变量的名称和类型正确。
接下来,我们需要选择"回归"菜单下的"线性"选项。
在弹出的对话框中,将因变量移动到"因变量"栏,将自变量移动到"自变量"栏。
如果有多个自变量,可以通过按住Ctrl键选择多个变量进行移动。
在回归对话框的"统计"选项卡中,可以勾选一些统计指标,如标准化回归系数、t检验等,用于分析回归模型的拟合程度和自变量的显著性。
在"方法"选项卡中,可以选择不同的回归方法,包括逐步回归、正向选择等。
逐步回归会根据其中一种准则,逐步选取自变量进入模型,正向选择则会一次性选择所有的自变量进入模型。
点击"确定"按钮后,SPSS会自动执行回归分析,并将结果显示在输出窗口中。
输出结果包括回归系数、t检验、R方等统计指标,用于评估模型的拟合程度和自变量的显著性。
此外,在输出窗口的回归结果中,还可以查看残差分析、共线性诊断等信息,用于进一步分析模型的准确性和可解释性。
最后,根据回归结果进行解读和分析。
可以根据回归系数的大小和显著性,判断自变量对因变量的影响程度和方向。
同时,也可以通过根据模型的拟合程度(R方值)判断模型的适用性和预测能力。
需要注意的是,在使用多元线性回归进行分析时,还需要遵循一些假设前提,如线性关系、正态分布、无多重共线性等。
在实施回归分析之前,需要对数据进行验证,以确保这些前提条件的满足。
综上所述,SPSS软件提供了多元线性回归的实现工具,通过选择相应的选项和设置参数,可以进行回归模型的建立和分析。
同时,还可以通过输出结果进行解读和分析,以获得关于因变量和自变量之间的关系的深入理解。
多元线性回归的SPSS实现
多元线性回归的SPSS实现
接下来,我们进入多元线性回归分析过程。
在菜单栏选择"回归",然后选择"线性"。
将自变量和因变量添加到"因变量"和"自变量"框中。
可以通过拖拽变量到框中,或者使用箭头按钮来添加变量。
请确保选择正确的变量,并按照研究目的和理论基础进行选择。
在"统计"菜单中,SPSS提供了一些重要的检验和结果输出选项。
其中,"检验"选项提供了多元共线性和异方差性等问题的检验,例如改进的燕达可决系数、方差膨胀因子等。
"图形"选项提供了残差图、正态概率图等图形结果。
在多元线性回归模型设定中,可以选择是否加入交互项。
交互项可以用于分析两个或多个自变量之间的交互效应。
在"选项"菜单中,可以勾选"交互"选项并设置交互项的组合。
在进行多元线性回归分析时,还需要考虑到模型的鲁棒性和假设的满足程度。
可以使用"异常值"选项来检测并处理异常值,以提高模型的稳定性。
在"选项"菜单中,可以勾选"异常值"选项,SPSS将生成回归系数的鲁棒和标准误差。
综上所述,通过SPSS软件的多元线性回归分析功能,我们可以有效地分析和解释多个自变量对因变量的影响。
通过合理设置选项和参数,并结合结果的检验和图形,可以得出科学、准确和可信的结论。
SPSS多元线性回归分析报告实例操作步骤
SPSS多元线性回归分析报告实例操作步骤步骤1:导入数据首先,打开SPSS软件,并导入准备进行多元线性回归分析的数据集。
在菜单栏中选择"File",然后选择"Open",在弹出的窗口中选择数据集的位置并点击"Open"按钮。
步骤2:选择变量在SPSS的数据视图中,选择需要用于分析的相关自变量和因变量。
选中的变量将会显示在变量视图中。
确保选择的变量是数值型的,因为多元线性回归只适用于数值型变量。
步骤3:进行多元线性回归分析在菜单栏中选择"Analyze",然后选择"Regression",再选择"Linear"。
这将打开多元线性回归的对话框。
将因变量移动到"Dependent"框中,将自变量移动到"Independent(s)"框中,并点击"OK"按钮。
步骤4:检查多元线性回归的假设在多元线性回归的结果中,需要检查多元线性回归的基本假设。
这些假设包括线性关系、多重共线性、正态分布、独立性和等方差性。
可以通过多元线性回归的结果来进行检查。
步骤5:解读多元线性回归结果多元线性回归的结果会显示在输出窗口的回归系数表中。
可以检查各个自变量的回归系数、标准误差、显著性水平和置信区间。
同时,还可以检查回归模型的显著性和解释力。
步骤6:完成多元线性回归分析报告根据多元线性回归的结果,可以编写一份完整的多元线性回归分析报告。
报告应包括简要介绍、研究问题、分析方法、回归模型的假设、回归结果的解释以及进一步分析的建议等。
下面是一个多元线性回归分析报告的示例:标题:多元线性回归分析报告介绍:本报告基于一份数据集,旨在探究x1、x2和x3对y的影响。
通过多元线性回归分析,我们可以确定各个自变量对因变量的贡献程度,并检验模型的显著性和准确性。
研究问题:本研究旨在探究x1、x2和x3对y的影响。
SPSS多元线性回归分析教程
SPSS多元线性回归分析教程多元线性回归是一种广泛应用于统计分析和预测的方法,它可以用于处理多个自变量和一个因变量之间的关系。
SPSS是一种流行的统计软件,提供了强大的多元线性回归分析功能。
以下是一个关于如何使用SPSS进行多元线性回归分析的教程。
本文将涵盖数据准备、模型建立、结果解读等内容。
第一步是数据的准备。
首先,打开SPSS软件并导入所需的数据文件。
数据文件可以是Excel、CSV等格式。
导入数据后,确保数据的变量类型正确,如将分类变量设置为标称变量,数值变量设置为数值变量。
还可以对数据进行必要的数据清洗和变换,如删除缺失值、处理离群值等。
数据准备完成后,可以开始建立多元线性回归模型。
打开“回归”菜单,选择“线性”选项。
然后,将因变量和自变量添加到模型中。
可以一次添加多个自变量,并选择不同的方法来指定自变量的顺序,如逐步回归或全部因素回归。
此外,还可以添加交互项和多项式项,以处理可能存在的非线性关系。
在建立好模型后,点击“统计”按钮可以进行更多的统计分析。
可以选择输出相关系数矩阵、残差分析、变量的显著性检验等。
此外,还可以进行回归方程的诊断,以检查模型是否符合多元线性回归的假设。
完成模型设置后,点击“确定”按钮运行回归分析。
SPSS将输出多个结果表,包括回归系数、显著性检验、模型拟合度和预测结果等。
对于每个自变量,回归系数表示自变量单位变化对因变量的影响;显著性检验则用于判断自变量是否对因变量有显著影响;模型拟合度则表示模型的解释力如何。
在解读结果时,需要关注以下几个方面。
首先,回归系数的正负号表示因变量随自变量的增加而增加或减少。
其次,显著性检验结果应该关注到p值,当p值小于显著性水平(如0.05)时,可以认为自变量对因变量有显著影响。
最后,要关注模型拟合度的指标,如R方值、调整R方值和残差分析。
如果模型结果不满足多元线性回归的假设,可以尝试进行模型修正。
可以尝试剔除不显著的自变量、添加其他自变量、转换自变量或因变量等方法来改善模型的拟合度。
基于SPSS的实证研究数据处理方法研究——以多元线性回归为例
基于SPSS的实证研究数据处理方法研究——以多元线性回归为例SPSS是常用的数据处理软件,以其强大的数据分析功能与易于上手的操作流程被广泛使用于实证研究中。
其中,多元线性回归(Multiple Linear Regression, MLR)是SPSS中最为常用的一种分析方法,被广泛应用于各个领域的实证研究中。
本文将以多元线性回归为例,着重介绍SPSS中实证研究中的数据处理方法。
一、数据的收集与清理在进行多元线性回归分析前,需要首先收集并清理数据,以保证分析结果的准确性。
数据的收集可以通过实验、问卷、调查等方式进行,而数据的清洗则是缺失值处理、异常值识别与处理、数据格式转换等内容。
1.1 缺失值处理缺失值是指在数据收集时未能回答或记录的部分变量值。
在进行数据分析前,需要对缺失值进行处理,以免影响数据分析结果的准确性。
常用的缺失值处理方法有删除、填充、插值等。
其中,删除法删除缺失值所对应的变量值,或删除包含缺失值的整个记录;填充法则通过统计量进行填充,例如均值、中位数、众数等;插值法则通过公式推算缺失值所对应的变量值。
1.2 异常值识别与处理异常值是指明显偏离数据集中心的变量值,通常由于数据记录出错、测量设备失误等原因引起。
在数据分析中,异常值往往会影响数据的正常分布,导致分析结果出现偏差。
因此,需要对异常值进行识别与处理。
常用的异常值识别方法包括箱型图法、3σ法、离群点检测等,而异常值处理方法则有删除法、替换法等。
1.3 数据格式转换SPSS支持多种数据格式,包括Excel、CSV、SAS等。
在导入数据时,需要将数据转换为SPSS支持的格式。
由于不同格式的数据在导入后可能存在差异,因此需要对数据进行检查与转换,以便于数据在SPSS中的正常处理。
二、数据的探索性分析数据的探索性分析是在多元线性回归分析前的重要步骤,旨在帮助研究者更好地了解数据的分布、变异情况及相关性等内容。
常用的方法包括描述性统计、散点图、均值差异分析等。
SPSS--回归-多元线性回归模型案例解析
SPSS--回归-多元线性回归模型案例解析多元线性回归,主要是研究⼀个因变量与多个⾃变量之间的相关关系,跟⼀元回归原理差不多,区别在于影响因素(⾃变量)更多些⽽已,例如:⼀元线性回归⽅程为:毫⽆疑问,多元线性回归⽅程应该为:上图中的 x1, x2, xp分别代表“⾃变量”Xp截⽌,代表有P个⾃变量,如果有“N组样本,那么这个多元线性回归,将会组成⼀个矩阵,如下图所⽰:那么,多元线性回归⽅程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满⾜以下四个条件,多元线性⽅程才有意义(⼀元线性⽅程也⼀样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:⽆偏性假设,即指:期望值为03:同共⽅差性假设,即指,所有的随机误差变量⽅差都相等4:独⽴性假设,即指:所有的随机误差变量都相互独⽴,可以⽤协⽅差解释。
今天跟⼤家⼀起讨论⼀下,SPSS---多元线性回归的具体操作过程,下⾯以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建⽴拟合多元线性回归模型。
数据如下图所⽰:点击“分析”——回归——线性——进⼊如下图所⽰的界⾯:将“销售量”作为“因变量”拖⼊因变量框内,将“车长,车宽,耗油率,车净重等10个⾃变量拖⼊⾃变量框内,如上图所⽰,在“⽅法”旁边,选择“逐步”,当然,你也可以选择其它的⽅式,如果你选择“进⼊”默认的⽅式,在分析结果中,将会得到如下图所⽰的结果:(所有的⾃变量,都会强⾏进⼊)如果你选择“逐步”这个⽅法,将会得到如下图所⽰的结果:(将会根据预先设定的“F统计量的概率值进⾏筛选,最先进⼊回归⽅程的“⾃变量”应该是跟“因变量”关系最为密切,贡献最⼤的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须⼩于0.05,当概率值⼤于等于0.1时将会被剔除)“选择变量(E)" 框内,我并没有输⼊数据,如果你需要对某个“⾃变量”进⾏条件筛选,可以将那个⾃变量,移⼊“选择变量框”内,有⼀个前提就是:该变量从未在另⼀个⽬标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所⽰:点击“统计量”弹出如下所⽰的框,如下所⽰:在“回归系数”下⾯勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”⼀般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,广泛应用于社会科学研究领域。
其中,多元线性回归分析是SPSS中常用的一种统计方法,用于探讨多个自变量与一个因变量之间的关系。
本文将演示SPSS中进行多元线性回归分析的操作步骤,帮助读者了解和掌握该方法。
一、数据准备在进行多元线性回归分析之前,首先需要准备好数据。
数据应包含一个或多个因变量和多个自变量,以及相应的观测值。
这些数据可以通过调查问卷、实验设计、观察等方式获得。
确保数据的准确性和完整性对于获得可靠的分析结果至关重要。
二、打开SPSS软件并导入数据1. 启动SPSS软件,点击菜单栏中的“文件(File)”选项;2. 在下拉菜单中选择“打开(Open)”选项;3. 导航到保存数据的文件位置,并选择要导入的数据文件;4. 确保所选的文件类型与数据文件的格式相匹配,点击“打开”按钮;5. 数据文件将被导入到SPSS软件中,显示在数据编辑器窗口中。
三、创建多元线性回归模型1. 点击菜单栏中的“分析(Analyse)”选项;2. 在下拉菜单中选择“回归(Regression)”选项;3. 在弹出的子菜单中选择“线性(Linear)”选项;4. 在“因变量”框中,选中要作为因变量的变量;5. 在“自变量”框中,选中要作为自变量的变量;6. 点击“添加(Add)”按钮,将自变量添加到回归模型中;7. 可以通过“移除(Remove)”按钮来删除已添加的自变量;8. 点击“确定(OK)”按钮,创建多元线性回归模型。
四、进行多元线性回归分析1. 多元线性回归模型创建完成后,SPSS将自动进行回归分析并生成结果;2. 回归结果将显示在“回归系数”、“模型总结”和“模型拟合优度”等不同的输出表中;3. “回归系数”表显示各个自变量的回归系数、标准误差、显著性水平等信息;4. “模型总结”表提供模型中方程的相关统计信息,包括R方值、F 统计量等;5. “模型拟合优度”表显示模型的拟合优度指标,如调整后R方、残差平方和等;6. 可以通过菜单栏中的“图形(Graphs)”选项,绘制回归模型的拟合曲线图、残差图等。
SPSS案例实践笔记:多重线性回归分析数据小兵博客
SPSS案例实践笔记:多重线性回归分析数据小兵博客当只考察一个自变量对因变量的影响时,我们称之为简单一元线性回归,如果要多考察一些自变量,此时许多人习惯性将之称为多元线性回归,统计学上建议称之为多重线性回归,避免和多元统计方法冲突。
案例背景介绍这是mei国50个州关于犯罪率的一组数据,包括人口、面积、收入、文盲率、高中毕业率、霜冻天数、犯罪率共7个指标,现在我们想考察一下州犯罪率和其他因素间的关系。
SPSS变量视图如下:研究目标是各州的犯罪率(因变量),可能的因素(自变量)是人口、面积、收入、文盲率、高中毕业率、霜冻天数。
因变量犯罪率连续数值变量,有多个自变量,从研究目标和数据类型来看,可选用多重线性回归分析。
线性关系初步判断线性回归要求每个自变量和因变量之间存在线性关系,可以依靠相关分析和散点图来初步判断。
犯罪率与文盲率、霜冻天数、高中毕业率、人口存在较为明显的线性关系,面积和其他变量普遍无关,越冷的地方文盲率越低、高中毕业率越高。
有统计学意义的相关系数依次为:0.703(文盲率)、-0.539(霜冻天数)、-0.488(高中毕业率)、0.344(人口)。
除因变量外其他因素两两间相关系数均在0.7以下,因素间没有强相关关系存在,初步提示共线性问题较弱。
以上分析表明,并不是所有因素都有犯罪率存在明显线性关系,如果我们构建多重线性回归,这可能涉及到自变量筛选的问题,可优先选择逐步回归的方法。
共线性问题共线性问题是由于自变量间存在强相关关系造成的,它的存在对回归是有影响的,现在我们需要观察6个自变量间的共线性问题,最为常见的依据则是关注容忍度Tol和方差膨胀因子VIF。
SPSS在线性回归中可以是输出这两个指标,来看一下具体情况:VIF是T ol的倒数,所以它们两个其实是一回事,我们只需要解读其一即可。
一般认为如果某个自变量的容忍度T ol<0.1,则可能存在严重共线性问题。
反过来就是VIF>10提示存在较为严重共线性问题。
SPSS在犯罪学研究中的应用——以刑事发案率的多元线性回归为例
SPSS在犯罪学研究中的应用——以刑事发案率的多元线性回归为例导言在犯罪与罪犯研究领域,常常会遇到彼此有关系的两列或多列变量。
对于这些变量之间的关系,可以根据不同的研究目的,从不同的角度去分析。
如果要分析变量之间关系的强度,我们可以采用相关分析的方法,但是,如果要确定变量之间所可能具有的数量关系,并将这种形式表示为某个数学模型,就需要用回归分析。
回归分析应用非常广泛。
在犯罪学领域,如果建立了变量之间的数学模型,实际上就是确立了变量之间的关系模型,从而可以从某些变量的变化来预测其他变量的变化情况。
例如,我国台湾学者杨家騄建立了物价指数与盗窃犯罪案件之间的数学模型,从而依据某年度的物价指数来预测该年度的盗窃案件数量; [1]我国学者高树桥等在犯罪人的受教育年限与犯罪次数之间建立了数学模型,根据某犯罪人的教育年限,我们就可以预测其可能的犯罪次数。
[2] 但是,由T•犯罪现象是一种非常复杂的社会现象,往往牵扯到多个变量之间的关系问题。
因此在回归分析中常常需要分析两个及两个以上的自变量,分析变量之间的关系,推导出含有多个自变量的函数,这种方法就是多元回归分析。
多元回归分析要比一元回归分析更为科学,这是由事物的复杂性决定的。
例如,盗窃案件的数量不单与价格指数有关,还受其他一系列因素的影响,国外有学者甚至研究了防盗门的销售量与盗窃案件的关系。
可见,当我们研究某一个犯罪问题时,多元回归分析更为准确和有效。
多元回归自变量的个数很多,计算相当繁琐,一般手工计算几乎不大可能,我们可以借助SPSS来满足计算要求。
一、多元线性回归分析方法多元线性回归的数学模型为:其中,为应变量;为P个&变量。
为常数项,称为偏回归系数;为随机误差,又称残差,它是的变化中不能用自变量解释的部分,服从)分布。
多元线性回归分析的前提条件是:线性、独立、正态和等方差,在进行回归分析时,应当首先进行这些假设检验。
还有一个重要问题就是如何选择自变量。
SPSS在犯罪学研究中的应用
SPSS在犯罪学研究中的应用一、案例背景随着社会的发展,我们越来越需要一个稳定安全的环境,所以我们很有必要对犯罪学进行研究,然而犯罪现象是一个非常复杂的社会现象,它与很多因素有关,要想进一步了解它那些因素关系密切,就可以借助SPSS对其进行分析,从而得出一些有用的结论,以便于更好的运用于减少犯罪现象。
以下我以刑事犯罪为例进行分析。
二、处理方法1、回归分析(多元线性回归分析)用于研究某一个变量(刑事发案率)和多个自变量(人均GDP、受教育状况、城市化、基尼系数)之间的相互关系,建立变量之间模型,从而可以从某些变量的变化预测某一个变量的变化。
2、均值比较(双样本的T检验)用于进行两独立样本均数的比较,本案例中用于比较20世纪(1992-1999)与21世纪(2000-2003)刑事发案率是否有显著变化。
3、条形图三、案例及数据来源数据来源:朱景文,《中国法律发展报告》,中国人民大学出版社,2007;中国统计年鉴(1993-2005)。
其中,刑事发案率是指每10万人口的(公安机关)立案数量;GDP按照人均国内生产总值指数计算,1978年为100;城市化按照城镇人口占总人口的比例计算;受教育状况按照每100000人口大学生数量计算;基尼系数是笔者根据中国统计年鉴中的收入分组数据计算得出。
以下是数据:四、实际分析1、多元线性回归分析①一个因变量,四个自变量的描述统计结果,包括均值、标准差和样本数。
Descriptive Statistics②下表给出了几个变量之间的相关系数及其检验。
Correlations发案率人均GDP 受教育状城市化基尼系数Pearson Correlation 发案率 1.000 .878 .928 .911 .913 人均GDP .878 1.000 .912 .991 .819 受教育状.928 .912 1.000 .921 .972 城市化.911 .991 .921 1.000 .838 基尼系数.913 .819 .972 .838 1.000Sig. (1-tailed) 发案率. .000 .000 .000 .000 人均GDP .000 . .000 .000 .001受教育状.000 .000 . .000 .000城市化.000 .000 .000 . .000基尼系数.000 .001 .000 .000 . N 发案率12 12 12 12 12 人均GDP 12 12 12 12 12受教育状12 12 12 12 12城市化12 12 12 12 12基尼系数12 12 12 12 12 结论:由表中数据可知几个变量之间均存在较大程度的相关,其中受教育状况与发案率相关系数最大(0.928)③对自变量进行筛选。
SPSS多元线性回归分析
SPSS多元线性回归分析[转载]SPSS19.0实战之多元线性回归分析(2016-08-12 20:31:47)[删除]转载▼标签:转载原文地址:SPSS19.0实战之多元线性回归分析作者:建模手线性回归数据(全国各地区能源消耗量与产量)来源,可点击协会博客数据挖掘栏:国泰安数据服务中心的经济研究数据库。
1.1 数据预处理数据预处理包括的内容非常广泛,包括数据清理和描述性数据汇总,数据集成和变换,数据归约,数据离散化等。
本次实习主要涉及的数据预处理只包括数据清理和描述性数据汇总。
一般意义的数据预处理包括缺失值填写和噪声数据的处理。
于此我们只对数据做缺失值填充,但是依然将其统称数据清理。
1.1.1 数据导入与定义单击“打开数据文档”,将xls格式的全国各地区能源消耗量与产量的数据导入SPSS中,如图1-1所示。
图1-1 导入数据导入过程中,各个字段的值都被转化为字符串型(String),我们需要手动将相应的字段转回数值型。
单击菜单栏的“”-->“”将所选的变量改为数值型。
如图1-2所示:图1-2 定义变量数据类型1.1.2 数据清理数据清理包括缺失值的填写和还需要使用SPSS分析工具来检查各个变量的数据完整性。
单击“”-->“”,将检查所输入的数据的缺失值个数以及百分比等。
如图1-3所示:图1-4 描述性数据汇总得到如表1-2所示的描述性数据汇总。
N极小值极大值均值标准差方差能源消费总量30911261649638.506175.92438142034.412煤炭消费量30332290019728.997472.25955834651.378焦炭消费量30195461874.611053.0081108824.853原油消费量30055551099.011273.2651621202.562汽油消费量3018771230.05170.27028991.746煤油消费量30026242.3764.8964211.520柴油消费量30271368392.34300.97990588.441燃料油消费量3001574141.00313.46798261.261天然气消费量30110619.5622.044485.947电力消费量30983004949.64711.664506464.953原煤产量300581427909.1711741.388 1.379E8焦炭产量3009202992.281707.9982917256.193原油产量2904341637.121085.3791178048.432燃料油产量30049775.60126.79116075.971汽油产量3001032186.49208.77143585.122煤油产量30021932.3055.3943068.535柴油产量3001911388.52420.216176581.285天然气产量30016419.5242.3711795.341电力产量30972536954.74675.230455935.003有效的N (列表状态)29表1-2 描述性数据汇总标准化后得到的数据值,以下的回归分析将使用标准化数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS在犯罪学研究中的应用——以刑事发案率的多元线性回归为例导言在犯罪与罪犯研究领域,常常会遇到彼此有关系的两列或多列变量。
对于这些变量之间的关系,可以根据不同的研究目的,从不同的角度去分析。
如果要分析变量之间关系的强度,我们可以采用相关分析的方法,但是,如果要确定变量之间所可能具有的数量关系,并将这种形式表示为某个数学模型,就需要用回归分析。
回归分析应用非常广泛。
在犯罪学领域,如果建立了变量之间的数学模型,实际上就是确立了变量之间的关系模型,从而可以从某些变量的变化来预测其他变量的变化情况。
例如,我国台湾学者杨家騄建立了物价指数与盗窃犯罪案件之间的数学模型,从而依据某年度的物价指数来预测该年度的盗窃案件数量; [1]我国学者高树桥等在犯罪人的受教育年限与犯罪次数之间建立了数学模型,根据某犯罪人的教育年限,我们就可以预测其可能的犯罪次数。
[2] 但是,由T•犯罪现象是一种非常复杂的社会现象,往往牵扯到多个变量之间的关系问题。
因此在回归分析中常常需要分析两个及两个以上的自变量,分析变量之间的关系,推导出含有多个自变量的函数,这种方法就是多元回归分析。
多元回归分析要比一元回归分析更为科学,这是由事物的复杂性决定的。
例如,盗窃案件的数量不单与价格指数有关,还受其他一系列因素的影响,国外有学者甚至研究了防盗门的销售量与盗窃案件的关系。
可见,当我们研究某一个犯罪问题时,多元回归分析更为准确和有效。
多元回归自变量的个数很多,计算相当繁琐,一般手工计算几乎不大可能,我们可以借助SPSS来满足计算要求。
一、多元线性回归分析方法多元线性回归的数学模型为:其中,为应变量;为P个&变量。
为常数项,称为偏回归系数;为随机误差,又称残差,它是的变化中不能用自变量解释的部分,服从)分布。
多元线性回归分析的前提条件是:线性、独立、正态和等方差,在进行回归分析时,应当首先进行这些假设检验。
还有一个重要问题就是如何选择自变量。
实际上,模型中包含的自变量是无法事先确定的,如果把一些不重要的或者对应变量影响很弱的变量引入模型,则会降低模型的精度。
所以自变量的选择是必要的,基本思路是:尽可能将对应变量影响大的自变量选入回归方程中,并尽可能将对应变量影响小的自变量排除在外,这样才能建立最优方程。
这里就涉及到筛选自变量的方法,现在比较常用的是逐步回归法。
这种方法的特点在于,每引入一个自变量,都会对已在方程中的变量进行检验,对符合剔除标准的变量要逐一剔除。
另外,在进行多元线性回归分析中,由于自变量之间还可能具有高度相关关系,导致所建立的模型的解释力受到削弱,因此,还要对模型进行多重共线性检验,最后计算出相对更优的数学模型。
二、对刑事发案率的多元线性回归分析刑事发案率的影响因素很多,有经济、政治、文化等社会因素,也有个体性因素,所涉及的变量相当复杂,创建一个完全周延的数学模型几乎是不可能的。
鉴于本文主耍是介绍SPSS在犯罪学研究中的意义,同时也为了深化《法律发展报告》中关于犯罪率与社会发展指标的研究,因此在社会指标的选择上,仍然参照《报告》所采用的指标,包括人均GDP、受教育状况、城市化和基尼系数。
《报告》中只是计算了这四项指标与刑事发案率的相关系数[3],如果要确定他们之间的数量关系,就需要建立数学模型,进行回归分析。
表SEQ表\* ARABIC 1刑事发案率与其他社会指标统计表年份刑事发案率人均GDP受教育状况城市化基尼系数1992 135.9 288.4 18.6 27. 46 1993 137.2 323.6 21.4 27. 99 37. 9 3 1994 139.3 360.4 23.4 28.51 38. 34 1995 140.3394 2429. 0 4 37.76 1993 131. 5 427. 1 24.7 30. 48 35. 9 7 1997 131. 2 460.3 25.7 31.9 1 36.8 1 1994 159. 9 491.4 27.3 33. 3 5 36.841999 179. 4 521. 7 32.8 34. 7 8 38.2 1 1995 288. 1 559. 2 43.9 36. 2 2 40. 13 350. 7 596. 7 56.3 37. 6 6 42. 95 2002 338.764270.339. 0946.72003341697.986.340. 5347.66数据来源:朱景文,《中国法律发展报告》,中国人民大学出版社,2007; 中国统计年鉴(1993-2005)。
其中,刑事发案率是指每10万人口的(公安机关)立案数量;GDP按照人均国内生产总值指数计算,1978年为100;城市化按照城镇人口占总人口的比例计算;受教育状况按照每100000人口大学生数量计算;4.基尼系数是笔者根据中国统计年鉴中的收入分组数据计算得出。
首先绘制散点图(见图1),判断这四个变量对刑事发案率有无影响,借助的是SPSS软件中的多元线性回归分析,使用Stepwise法来进行判断。
图中观察点学生化残差的绝对值均小子2,也没有发现极端点,这表明人均GDP、城市化、受教育水平和基尼系数对刑事发案率均有影响,该回归模型符合假设,无需重新拟合。
其次,对SPSS生成的结果进行解释。
首先看模型的筛选过程(见表2),模型1用逐步法选入了城市化,然后模型2用逐步法选入了人均GDP,城市化仍在模型2中;模型3用逐步法选入了基尼系数,城市化、人均GDP扔在模型3中;模型4用逐步法选入了教育状况,城市化、人均GDP、基尼系数仍在模型4中。
表SEQ表\* ARABIC 2模型的筛选过程Variables Entered/Removed(a)ModelVariables EnteredVariables RemovedMethod1城市化Stepwise (Criteria: Probability-of-F-to-enter <= . 050,Probability—of-F-to-remove >= .100).2人均GDPStepwise (Criteria: Probability-of-F-to-enter <= . 050,Probability- of-F—to-remove >= .100).Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability- of-F-to-remove >= .100).4教育状况Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).a Dependent Variable:发案率表3是拟合的四个模型决定系数的变化情况,从调整的决定系数来看,随着人均GDP、基尼系数、教育状况等变量的载入,模型4可解释的变异占总变异比例比模型1、2、3均高,但是,高出的数值有限。
表SEQ表\* ARABIC 3拟合的四个模型决定系数的改变情况表4是对拟合的4个模型的方差分析检验结果。
由结果可知,四个模型都有统计学意义。
但是,模型有统计学意义不等于模型内所有的变量都有统计学意义。
还需耍进一步对各自变量进行检验。
表SEQ表\* ARABIC 4对拟合的4个模型的方差分析检验结果ModelSum of SquaresDfMean SquareFSig.19025829. 263119025829. 26314816. 535.000(a)Residual3173254.07424711284. 094Total22199083. 33724722Regression19786488. 76510129. 465.000 (b)Residual2412594. 5722470976.680Total22199083. 33724723Regression20450610.94136816870.3149626.813.000(c)1748472. 3962469708. 113Total22199083. 33724724Regression20480549. 64245120137.4107353. 666.000(d) Residual1718533.6952468696. 270Total22199083.3372472表5是对4个模型中各个系数检验的结果,用的是t 检验。
从结果可以看 出,模型4中四个变量的系数都有统计学意义。
城市化的偏回归系数为45. 171, 标准化回归系数为 2. 114;人均GDP 偏回归系数为-1.075,标准化回归系数为-1.412;基尼系数的偏回归系数为13.077,标准化回归系数为0. 578;教育状况 的偏回归系数为-1. 284,标准化回归系数为-0. 313.通过比较这四个变量的标准 化回归系数的绝对值,可以将这四个变量对发案率的贡献度进行排序,依次是 城市化、人均GDP 、基尼系数和教育状况。
表SEQ 表\* ARABIC 5对4个模型中各个系数的检验结果 a Predictors: (Constant), 城市化b Predictors: (Constant), 城市化, 人均GDPc Predictors: (Constant), 城市化, 人均GDP , 基尼系数d Predictors: (Constant), 城市化, 人均GDP, 基尼系数,教育状况e Dependent Variable:发案率根据以上的检验,我们可以初步列出此数学模型:图2所示为残差的正态P-P图,可以由此观察残差分布是否正态。
可见散点基本呈直线趋势,可以认为因变量服从正态分布。
图SEQ图\* ARABIC 2残差的正态p-p图三、共线性检验及其处理——主成分分析在多重回归分析中,无法避免的一个问题就是多重共线性问题。
所谓多重共线性是指自变量之间存在近似的线性关系,即某个自变量能近似的用其他自变量的线性函数来表示。
一般而言,自变量较低程度上的相关不会对回归结果造成严重影响,然而,当共线性趋势非常明显时,就会对模型的拟合带来严重影响。
一般来说,如果两个自变量的相关系数超过0.9,对模型的影响就会很大。
当然,仅靠相关系数仅仅是初步判断,实践中借助SPSS,常常使用方差膨胀因子、特征根或条件指数来判断。
当膨胀因子大于10、特征根为0或条件指数大于30时,提示存在共线性。
在SPSS中,共线性诊断仍然是通过多元线性回归分析来实现的。
表6是SPSS线性诊断的结果,从中我们可以发现,特征根有两项为0,条件指数有两项分别为178. 8、199.3,在常数项、城市化和人均GDP这三项中,VP值均很高, 分别为0.99、0.85、0.93,提示三者高度相关。