武汉市九年级元月调考数学5

合集下载

最新-度武汉市九年级元月调考数学试卷及评分标准

最新-度武汉市九年级元月调考数学试卷及评分标准

2016~2017学年度武汉市部分学校九年级调研测试数学试卷武汉市教育科学研究院命制2017.1.12第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)1.在数1,2,3和4中,是方程x2+x-12=0的根的为( )A.1.B.2.C.3.D.4.2.桌上倒扣着背面图案相同的15张扑克牌,其中9张黑桃、6张红桃.则( ) A.从中随机抽取1张,抽到黑桃的可能性更大.B.从中随机抽取1张,抽到黑桃和红桃的可能性一样大.C.从中随机抽取5张,必有2张红桃.D.从中随机抽取7张,可能都是红桃.3.抛物线y=2(x+3)2+5的顶点坐标是( )A.(3,5).B.(-3,5).C.(3,-5).D.(-3,-5).4.在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径为( ) A.10.B.6.C.5.D.4.5.在平面直角坐标系中,有A(2,-1),B(-1,-2),C(2,1),D(-2,1)四点,其中,关于原点对称的两点为( )A.点A和点B.B.点B和点C.C.点C和点D.D.点D和点A.6.方程x2-8x+17=0的根的情况是( )A.两实数根的和为-8.B.两实数根的积为17.C.有两个相等的实数根.D.没有实数根.7.抛物线y=-(x-2)2向右平移2个单位得到的抛物线的解析式为( ) A.y=-x2.B.y=-(x-4)2.C.y=-(x-2)2+2.D.y=-(x-2)2-2.8.由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( ) 更多精品文档更多精品文档A .4π.B .9π.C .16π.D .25π.9.在50包型号为L 的衬衫的包裹中混进了型号为M 的衬衫,每包20件衬衫.每包中混入的M 号衬衫数如下表:根据以上数据,选择正确选项.( ) A .M 号衬衫一共有47件.B .从中随机取一包,包中L 号衬衫数不低于9是随机事件.C .从中随机取一包,包中M 号衬衫数不超过4的概率为0.26.D .将50包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M 号的概率为0.252. 10.在抛物线y =ax 2-2ax -3a 上有A (-0.5,y 1),B (2,y 2)和C (3,y 3)三点,若抛物线与y 轴的交点在正半轴上,则y 1,y 2和y 3的大小关系为( )A .y 3<y 1<y 2.B .y 3<y 2<y 1.C .y 2<y 1<y 3.D .y 1<y 2<y 3.第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为6点”出现的频率越来越稳定于0.4.那么,掷一次该骰子,“朝上一面为6点”的概率为 . 12.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点.若∠B =110°,则∠ADE 的度数为 .13.两年前生产1t 药品的成本是6 000元,现在生产1t 药品的成本是4 860元.则药品成本的年平均下降率是 .第12题图 第15题图更多精品文档14.圆心角为75°的扇形的弧长是2.5π,则扇形的半径为 .15.如图,正三角形的边长为12cm ,剪去三个角后成为一个正六边形,则这个正六边形的内部任意一点到各边的距离和为 cm .16.在平面直角坐标系中,点C 沿着某条路径运动,以点C 为旋转中心,将点A (0,4)逆时针旋转90°到点B (m ,1),若-5≤m ≤5,则点C 运动的路径长为 . 三、解答题(共8小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本题8分)解方程x 2-5x +3=0.18.(本题8分)如图,OA ,OB ,OC 都是⊙O 的半径,∠AOB =2∠BOC . (1)求证:∠ACB =2∠BAC ;(2)若AC 平分∠OAB ,求∠AOC 的度数.19.(本题8分)如图,要设计一副宽20cm ,长30cm 的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2∶3.如果要彩条所占面积是图案面积的19%.问横、竖彩条的宽度各为多少cm ?C第19题图20.(本题8分)阅读材料,回答问题.材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少有两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转;三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案;(3)请直接写出题2的结果.更多精品文档21.(本题8分)如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.C第21题图22.(本题10分)某公司产销一种商品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x的二次函数,调查数据如下表:商品的销售价格(单位:元)为P=35-110x.(每个周期的产销利润=P·x-C.)(1)直接写出产销成本C与商品件数x的函数关系式(不要求写自变量的取值范围);(2)该公司每个周期产销多少件商品时,利润达到220元?(3)求该公司每个周期的产销利润的最大值.更多精品文档更多精品文档23.(本题10分)如图,在平面直角坐标系中,点A 和点B 的坐标分别为A (4,0),B (0,2),将△ABO 绕点P (2,2)顺时针旋转得到△OCD ,点A ,B 和O 的对应点分别为点O ,C 和D .(1)画出△OCD ,并写出点C 和点D 的坐标;(2)连接AC ,在直线AC 的右侧取点M ,使∠AMC =45°.①若点M 在x 轴上,则点M 的坐标为 ; ②若△ACM 为直角三角形,求点M 的坐标; (3)若点N 满足∠ANC >45°,请确定点N 的位置(不要求说明理由).第23题图 备用图24.(本题12分)已知抛物线y =12 x 2+mx -2m -2(m ≥0)与x 轴交于A ,B 两点,点A 在点B 的左边,与y 轴交于点C .(1)当m =1时,求点A 和点B 的坐标; (2)抛物线上有一点D (-1,n ),若△ACD 的面积为5,求m 的值;(3)P 为抛物线上A ,B 之间一点(不包括A ,B ),PM ⊥x 轴于点M ,求AM ·BM PM 的值.更多精品文档2016~2017学年度武汉市部分学校九年级调研测试数学参考答案及评分标准武汉市教育科学研究院命制2017.1.13二、填空题:11.0.4;12.110°;13.10%;14.6;15.12 3 ;16.5 2 .三、解答题17.解:a =1,b =﹣5,c =3,…………………………………………………………3分 ∴b 2-4ac =13.…………………………………………………………………5分 ∴x =5±132.∴x 1=5-132 ,x 2=5+132 .………………………………………………8分18.(1)证明:在⊙O 中,∵∠AOB =2∠ACB ,∠BOC =2∠BAC , ∵∠AOB =2∠BOC .∴∠ACB =2∠BAC .………………………………………………4分(2)解:设∠BAC =x °.∵AC 平分∠OAB ,∴∠OAB =2∠BAC =2x °; ∵∠AOB =2∠ACB ,∠ACB =2∠BAC , ∴∠AOB =2∠ACB =4∠BAC =4x °; 在△OAB 中,∠AOB +∠OAB +∠OBA =180°,更多精品文档所以,4x +2x +2x =180; x =22.5所以∠AOC =6x =135°.………………………………………………8分19.解:设横彩条的宽为2x cm ,竖彩条的宽为3x cm .依题意,得………………1分(20-2x )(30-3x )=81%×20×30.…………………………………4分 解之,得x 1=1,x 2=19,……………………………………………6分 当x =19时,2x =38>20,不符题意,舍去. 所以x =1.答:横彩条的宽为2 cm ,竖彩条的宽为3 cm .…………………………………8分20.解:(1)至少摸出两个绿球;………………………………………………2分(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率” ,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;………………………………………………5分 (3)13.……………………………………………8分21.(1)过点D 作DF ⊥BC 于点F . ∵∠BAD =90°,BD 平分∠ABC , ∴AD =DF .∵AD 是⊙D 的半径,DF ⊥BC ,∴BC 是⊙D 的切线;………………………………………………4分(2)∵∠BAC =90°.∴AB 与⊙D 相切, ∵BC 是⊙D 的切线, ∴AB =FB .∵AB =5,BC =13, ∴CF =8,AC =12. 在Rt △DFC 中,设DF =DE =r ,则r 2+64=(12-r )2, r =103 .更多精品文档∴CE =163 .……………………………………………8分22.解:(1)C =110 x 2+3x +80;………………………………………………3分(2)依题意,得(35-110x )·x -(110x 2+3x +80)=220;解之,得x 1=10,x 2=150,因为每个周期产销商品件数控制在100以内,所以x =10.答:该公司每个周期产销10件商品时,利润达到220元;………………………………6分(3)设每个周期的产销利润为y 元.则y =(35-110x )·x -(110 x 2+3x +80)=﹣15 x 2+32x -80=﹣15(x -80)2+1200,因为﹣15<0,所以,当x =80时,函数有最大值1200.答:当每个周期产销80件商品时,产销利润最大,最大值为1200 元.………………10分 23.(1)C (2,4),D (0,4);更多精品文档(其中画图1分,坐标各1分) (3)分(2)①(6,0);②当∠CAM 为直角时,分别过点C ,M 作x 轴的垂线,垂足分别为E ,F . 可证△CEA ≌△AFM , 则,MF =AE ,AF =CE . 从而,M (8,2);当∠ACM 为直角时,同理可得M (6,6); 综上所述,点M 的坐标为(8,2)或(6,6).………………………………6分(3)点N 在以点(5,3)或点(1,1)为圆心,以10 为半径的圆内.(其中两个圆心的坐标各1分,半径1分,圆内1分)……………………………10分 24.(1)∵m =1, ∴ y =12x 2+x -4.当y =0时,12x 2+x -4=0,解之,得x 1=﹣4,x 2=2. ∴A (﹣4,0),B (2,0);……………………………3分 (2)过点D 作DE ⊥AB 于点E ,交AC 于点F . 当y =0时,12x 2+mx -2m -2=0,∴(x -2)(x +2m +2)=0,x 1=2,x 2=﹣2m -2.∴点A 的坐标为:(﹣2m -2,0),C (0,﹣2m -2).……………………………4分 ∴OA =OC =2m +2,更多精品文档 ∴∠OAC =45°.∵D (﹣1,n ),∴OE =1,∴AE =EF =2m +1.又∵n =﹣3m -32, ∴DE =3m +32, ∴DF =3m +32-(2m +1)=m +12.……………………………6分 又∵S △ACD =12DF ·AO . ∴12(m +12)(2m +2)=5. 2m 2+3m -9=0,(2m -3)(m +3)=0,分(3)点A 的坐标为:(﹣2m -2,0),点B 的坐标为:(2,0).设点P 的坐标为(p ,q ).则AM =p +2m +2,BM =2-p .AM ·BM =(p +2m +2)( 2-p )=﹣p 2-2mp +4m +4.……………………………10分 PM =﹣q .因为,点P 在抛物线上,所以,q =12p 2+mp -2m -2. 所以,AM ·BM =2 PM .更多精品文档 即,AM ·BM PM=2.……………………………12分。

湖北省武汉市部分学校2020—2021学年上学期元月调考九年级数学试卷 解析版

湖北省武汉市部分学校2020—2021学年上学期元月调考九年级数学试卷  解析版

2021年湖北省武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程2x2﹣1=3x化成一般形式后,二次项系数和一次项系数分别是()A.2,﹣1B.2,0C.2,3D.2,﹣32.下列垃圾分类标识中,是中心对称图形的是()A.B.C.D.3.下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是()A.B.C.D.4.已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定5.一元二次方程x2﹣4x﹣1=0配方后可化为()A.(x+2)2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=5 6.在平面直角坐标系中,抛物线y=(x+2)(x﹣4)经变换后得到抛物线y=(x﹣2)(x+4),则下列变换正确的是()A.向左平移6个单位B.向右平移6个单位C.向左平移2个单位D.向右平移2个单位7.如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33°,∠B=30°,则∠ACE的大小是()A.63°B.58°C.54°D.52°8.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A.B.C.D.9.如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上一点,连接AC,BC.若∠P =60°,∠MAC=75°,AC=,则⊙O的半径是()A.B.C.D.10.已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A.2020B.2021C.2022D.2023二、填空题(共6小题,每小题3分,共18分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是.13.国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是.14.已知O,I分别是△ABC的外心和内心,∠BOC=140°,则∠BIC的大小是.15.如图,放置在直线l上的扇形OAB,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA=1,∠AOB=90°,则点O所经过的路径长是.16.下列关于二次函数y=x2﹣2mx+1(m为常数)的结论:①该函数的图象与函数y=﹣x2+2mx的图象的对称轴相同;②该函数的图象与x轴有交点时,m>1;③该函数的图象的顶点在函数y=﹣x2+1的图象上;④点A(x1,y1)与点B(x2,y2)在该函数的图象上.若x1<x2,x1+x2<2m,则y1<y2.其中正确的结论是(填写序号).三、解答题(共8小题,共72分)17.若关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,求b的值及方程的另一个根.18.如图,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上.求证:DC平分∠ADE.19.小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品.(1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.20.如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P经过A,B 两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,⊙P经过格点C,画圆心P,并画弦BD,使BD平分∠ABC;(2)在图(2)中,⊙P经过格点E,F是⊙P与网格线的交点,画圆心P,并画弦FG,使FG=F A.21.如图,正方形ABCD内接于⊙O,E是的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.22.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).23.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求的值.拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.24.如图,经过定点A的直线y=k(x﹣2)+1(k<0)交抛物线y=﹣x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.(1)直接写出点A的坐标;(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.2021年湖北省武汉市部分学校九年级元月调考数学试卷参考答案与试题解析一.选择题(共10小题)1.将一元二次方程2x2﹣1=3x化成一般形式后,二次项系数和一次项系数分别是()A.2,﹣1B.2,0C.2,3D.2,﹣3【分析】先化成一般形式,即可得出答案.【解答】解:将一元二次方程2x2﹣1=3x化成一般形式是2x2﹣3x﹣1=0,二次项的系数和一次项系数分别是2和﹣3,故选:D.2.下列垃圾分类标识中,是中心对称图形的是()A.B.C.D.【分析】利用中心对称图形的定义进行解答即可.【解答】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:B.3.下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是()A.B.C.D.【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:第一个袋子摸到红球的可能性=;第二个袋子摸到红球的可能性==;第三个袋子摸到红球的可能性==;第四个袋子摸到红球的可能性==.故选:A.4.已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定【分析】根据①点P在圆外⇔d>r.②点P在圆上⇔d=r.③点P在圆内⇔d<r,即可判断.【解答】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.5.一元二次方程x2﹣4x﹣1=0配方后可化为()A.(x+2)2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=5【分析】移项,配方,即可得出选项.【解答】解:x2﹣4x﹣1=0,x2﹣4x=1,x2﹣4x+4=1+4,(x﹣2)2=5,故选:D.6.在平面直角坐标系中,抛物线y=(x+2)(x﹣4)经变换后得到抛物线y=(x﹣2)(x+4),则下列变换正确的是()A.向左平移6个单位B.向右平移6个单位C.向左平移2个单位D.向右平移2个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=(x+2)(x﹣4)=(x﹣1)2﹣9,顶点坐标是(1,9).y=(x﹣2)(x+4)=(x+1)2﹣9,顶点坐标是(﹣1,9).所以将抛物线y=(x+2)(x﹣4)向左平移2个单位长度得到抛物线y=(x﹣2)(x+4),故选:C.7.如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33°,∠B=30°,则∠ACE的大小是()A.63°B.58°C.54°D.52°【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【解答】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°﹣∠ACD﹣∠BCE=180°﹣63°﹣63°=54°.故选:C.8.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有27种等可能的结果,两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的有15种结果,∴出现的数字正好是等腰三角形三边长的概率是=.故选:B.9.如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上一点,连接AC,BC.若∠P =60°,∠MAC=75°,AC=,则⊙O的半径是()A.B.C.D.【分析】连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,根据切线的性质得到∠OAM=90°,则∠OAC=15°,再计算出∠AOH=30°,则可表示出AH =r,OH=r,利用勾股定理得到(r)2+(r+r)2=(+1)2,然后解方程即可.【解答】解:连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,∵PM与⊙O相切于A点,∴OA⊥PM,∴∠OAM=90°,∵∠MAC=75°,∴∠OAC=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠AOH=30°,在Rt△AOH中,AH=OA=r,OH=AH=r,在Rt△ACH中,(r)2+(r+r)2=(+1)2,解得r=,即⊙O的半径为.故选:A.10.已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A.2020B.2021C.2022D.2023【分析】根据题意得出x=x1+x2=﹣,代入函数的解析式即可求得二次函数的值.【解答】解:∵二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),∴x1、x2是方程2020x2+2021x+2022=2023的两个根,∴x1+x2=﹣,∴当x=x1+x2时,二次函数y=2020x2+2021x+2022=2020(﹣)2+2021•(﹣)+2022=2022.故选:C.二.填空题(共6小题)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2).【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).12.如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是.【分析】用阴影部分的面积除以平行四边形的总面积即可求得答案.【解答】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形ABCD,∴点A落在阴影区域内的概率为,故答案为:.13.国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是50%.【分析】设2018年初至2020年初该地区贫困人口的年平均下降率为x,根据该地区2018年初及2020年初贫困人口的数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设2018年初至2020年初该地区贫困人口的年平均下降率为x,依题意得:4(1﹣x)2=1,解得:x1=0.5=50%,x2=1.5(不合题意,舍去).故答案为:50%.14.已知O,I分别是△ABC的外心和内心,∠BOC=140°,则∠BIC的大小是125°或145°.【分析】利用圆周角定理得到∠BAC=70°或∠BAC=110°,由于I是△ABC的内心,则∠BIC=90°+∠BAC,然后把∠BAC的度数代入计算即可.【解答】解:∵O是△ABC的外心,∴∠BAC=∠BOC=×140°=70°(如图1)或∠BAC=180°﹣70°=110°,(如图2)∵I是△ABC的内心,∴∠BIC=90°+∠BAC,当∠BAC=70°时,∠BIC=90°+×70°=125°;当∠BAC=110°时,∠BIC=90°+×110°=145°;即∠BIC的度数为125°或145°.故答案为125°或145°.15.如图,放置在直线l上的扇形OAB,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA=1,∠AOB=90°,则点O所经过的路径长是π.【分析】点O所经过的路径是三个圆周长.【解答】解:点O所经过的路径长=3×=π.故答案为:π.16.下列关于二次函数y=x2﹣2mx+1(m为常数)的结论:①该函数的图象与函数y=﹣x2+2mx的图象的对称轴相同;②该函数的图象与x轴有交点时,m>1;③该函数的图象的顶点在函数y=﹣x2+1的图象上;④点A(x1,y1)与点B(x2,y2)在该函数的图象上.若x1<x2,x1+x2<2m,则y1<y2.其中正确的结论是①③(填写序号).【分析】利用二次函数的性质一一判断即可.【解答】解:①∵二次函数y=x2﹣2mx+1的对称轴为直线x=﹣=m,二次函数y =﹣x2+2mx的对称轴为直线x=﹣=m,故结论①正确;②∵函数的图象与x轴有交点,则△=(﹣2m)2﹣4×1×1=4m2﹣4≥0,∴m≥1,故结论②错误;③∵y=x2﹣2mx+1=(x﹣m)2+1﹣m2,∴顶点为(m,﹣m2+1),∴该函数的图象的顶点在函数y=﹣x2+1的图象上,故结论③正确;④∵x1+x2<2m,∴<m,∵二次函数y=x2﹣2mx+1的对称轴为直线x=m∴点A离对称轴的距离大于点B离对称轴的距离∵x1<x2,且a=1>0∴y1>y2故结论④错误;故答案为①③.三.解答题17.若关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,求b的值及方程的另一个根.【分析】把x=1代入方程计算求出b的值,进而求出另一根即可.【解答】解:∵关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,∴1﹣b+2=0,解得:b=3,把b=3代入方程得:x2﹣3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.18.如图,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上.求证:DC平分∠ADE.【分析】利用全等三角形的性质以及等腰三角形的性质即可解决问题.【解答】证明:由旋转可知,△ABC≌△DEC,∴∠A=∠CDE,AC=DC,∴∠A=∠ADC,∴∠ADC=∠CDE,即DC平分∠ADE.19.小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品.(1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.【分析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,再从中确定所获奖品总值不低于10元的结果数,利用概率公式计算可得.【解答】解:(1)∵在价值为2,5,5,10(单位:元)的四件奖品,价值为5元的奖品有2张,∴抽中5元奖品的概率为=;(2)画树状图如下:由树状图可知共有12种等可能结果,其中所获奖品总值不低于10元的有8种,∴所获奖品总值不低于10元的概率为=.20.如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P经过A,B 两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,⊙P经过格点C,画圆心P,并画弦BD,使BD平分∠ABC;(2)在图(2)中,⊙P经过格点E,F是⊙P与网格线的交点,画圆心P,并画弦FG,使FG=F A.【分析】(1)取格点T,连接AT交BC于点P,连接AC,取AC的中点W,作射线PW 交⊙P于点D,线段BD即为所求作.(2)取格点J,连接AB,AJ延长AJ交⊙P于Q,连接BQ可得圆心P,取格点R,D,连接FR,DR,作DR交⊙P于G,连接FG,可证F A=FR=FG,线段FG即为所求作.【解答】解:(1)如图,点P,线段BD即为所求作.(2)如图,点P,线段FG即为所求作.21.如图,正方形ABCD内接于⊙O,E是的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.【分析】(1)欲证明AE=DE,只要证明=.(2)连接BD,过点D作DF⊥DE交EC的延长线于F.证明△ADE≌△CDF(AAS),推出AE=CF,推出S△ADE=S△CDF,推出S四边形AECD=S△DEF,再利用等腰三角形的性质构建方程求出DE,即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵E是的中点,∴=,∴=,∴AE=DE.(2)解:连接BD,过点D作DF⊥DE交EC的延长线于F.∵四边形ABCD是正方形,∴∠DBC=∠DEC=45°,DA=DC,∵∠EDF=90°,∴∠F=90°﹣45°=45°,∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS),∴AE=CF,∴S△ADE=S△CDF,∴S四边形AECD=S△DEF,∵EF=DE=EC+DE,EC=1,∴1+DE=DE,∴DE=+1,∴S△DEF=DE2=+.22.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).【分析】(1)由顶点坐标为(30,900),可设y=a(x﹣30)2+900,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w关于x的二次函数,将其写成顶点式,按照二次函数的性质可得答案;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由于检测体温到第4分钟时,在校门口临时增设一个人工体温检测点,则体温检测棚的检测时间为(m+4)分钟,则学生到校的累计人数与人工检测m分钟后两种检测方式的检测人数之和相等时,校门口不再出现排队等待的情况,据此可列出关于m的方程,求解并根据问题的实际意义作出取舍即可.【解答】解:(1)∵顶点坐标为(30,900),∴设y=a(x﹣30)2+900,将(0,0)代入,得:900a+900=0,解得a=﹣1,∴y=﹣(x﹣30)2+900;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x=﹣(x﹣30)2+900﹣40x=﹣x2+60x﹣900+900﹣40x=﹣x2+20x=﹣(x﹣10)2+100,∴当x=10时,w的最大值为100,答:排队等待人数最多时是100人;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由题意得:﹣(4+m)2+60(4+m)﹣40×4﹣(40+12)m=0,整理得:﹣m2+64=0,解得:m1=8,m2=﹣8(舍).答:人工检测8分钟时间后,校门口不再出现排队等待的情况.23.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求的值.拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.【分析】问题背景由等边三角形的性质得出∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,证得△ACD ≌△AEB(SAS),由旋转的概念可得出答案;尝试应用证明△ADE≌△ACB(SAS),由全等三角形的性质得出∠ADE=∠ACB=90°,DE=CB,得出∠BDF=30°,由直角三角形的性质得出BF=DF,则可得出答案;拓展创新过点A作AE⊥AB,且使AE=AD,连接PE,BE,由直角三角形的性质求出BE,PE的长,则可得出答案.【解答】问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=DF,设BF=x,则CF=DF=2x,DE=3x,∴;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠P AC=90°,P A=AC,∵∠EAD=90°,∴∠P AE=∠CAD,∴△CAD≌△P AE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE===,∴BP≤BE+PE=+1,∴BP的最大值为+1.24.如图,经过定点A的直线y=k(x﹣2)+1(k<0)交抛物线y=﹣x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.(1)直接写出点A的坐标;(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.【分析】(1)由A为直线y=k(x﹣2)+1上的定点,可得k的系数为0,从而求得x值,则点A的坐标可得;(2)先求得顶点D的坐标,可得AD⊥x轴.分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2由△ACD的面积是△ABD面积的两倍得出2x1+x2=6.将抛物线解析式与直线y=k(x﹣2)+1解析式联立,得出关于x的一元二次方程,方法一可以直接解方程,再结合2x1+x2=6求得答案;方法二可以用韦达定理及2x1+x2=6求得答案;(3)设⊙E与直线y=t交于点G,H,点C的坐标为(a,﹣a2+4a),用含a的式子表示出点E的坐标,再由勾股定理得出关于a的方程;分别过点E,A作x轴,y轴的平行线交于点F,过点E作PE⊥GH,垂足为P,连接EH,用含a的式子表示GH2,根据GH为定值,可得答案.【解答】解:(1)∵A为直线y=k(x﹣2)+1上的定点,∴A的坐标与k无关,∴x﹣2=0,∴x=2,此时y=1,∴点A的坐标为(2,1);(2)∵y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点D的坐标为(2,4),∵点A的坐标为(2,1),∴AD⊥x轴.如图(1),分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2,∵△ACD的面积是△ABD面积的两倍,∴CN=2BM,∴x2﹣2=2(2﹣x1),∴2x1+x2=6.联立,得x2+(k﹣4)x﹣2k+1=0,①解得x1=,x2=,∴2×+=6,化简得:=﹣3k,解得k=﹣.另解:接上解,由①得x1+x2=4﹣k,又由2x1+x2=6,得x1=2+k.∴(2+k)2+(k﹣4)(2+k)﹣2k+1=0,解得k=±.∵k<0,∴k=﹣;(3)如图(2),设⊙E与直线y=t交于点G,H,点C的坐标为(a,﹣a2+4a).∵E是AC的中点,∴将线段AE沿AC方向平移与EC重合,∴x E﹣x A=x C﹣x E,y E﹣y A=y C﹣y E,∴x E=(x A+x C),y E=(y A+y C).∴E(1+,).分别过点E,A作x轴,y轴的平行线交于点F,在Rt△AEF中,由勾股定理得:EA2=+=+,过点E作PE⊥GH,垂足为P,连接EH,∴GH=2PH,EP2=,又∵AE=EH,∴GH2=4PH2=4(EH2﹣EP2)=4(EA2﹣EP2)=4[+﹣]=4[﹣a+1+﹣(﹣a2+4a+1)+1﹣+t(﹣a2+4a+1)﹣t2]=4[(﹣t)a2+(4t﹣5)a+1+t﹣t2].∵GH的长为定值,∴﹣t=0,且4t﹣5=0,∴t=.。

湖北省武汉市2021-2022学年部分学校九年级元月调考数学试卷及答案解析

湖北省武汉市2021-2022学年部分学校九年级元月调考数学试卷及答案解析

2022年湖北省武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列图形中,不是中心对称图形的是()A.B.C.D.2.(3分)有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是()A.(1)(2)都是随机事件B.(1)(2)都是必然事件C.(1)是必然事件,(2)是随机事件D.(1)是随机事件,(2)是必然事件3.(3分)已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是()A.0B.1C.2D.无法确定4.(3分)解一元二次方程x2﹣6x﹣4=0,配方后正确的是()A.(x+3)2=13B.(x﹣3)2=5C.(x﹣3)2=4D.(x﹣3)2=13 5.(3分)在平面直角坐标系中,将抛物线y=x2向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是()A.y=(x﹣1)2﹣1B.y=(x﹣1)2+1C.y=(x+1)2﹣1D.y=(x+1)2+1 6.(3分)已知一元二次方程x2﹣4x﹣1=0的两根分别为m,n,则m+n﹣mn的值是()A.5B.3C.﹣3D.﹣47.(3分)抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是()A.B.C.D.8.(3分)已知二次函数y=ax2﹣2ax+1(a为常数,且a>0)的图象上有三点A(﹣2,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y2<y3<y1 9.(3分)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是()(参考数据:≈1.414,≈1.732,≈2.236)A.0.76m B.1.24m C.1.36m D.1.42m10.(3分)如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD =3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G,H三点刚好在金属框上,则该金属框的半径是()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.(3分)在平面直角坐标系中,点(3,﹣2)关于原点的对称点的坐标是:.12.(3分)如图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是.13.(3分)如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是.14.(3分)“降次”是解一元二次方程的基本思想,用这种思想解高次方程x3﹣x=0,它的解是.15.(3分)如图,已知圆锥的母线AB长为40cm,底面半径OB长为10cm,若将绳子一端固定在点B,绕圆锥侧面一周,另一端与点B重合,则这根绳子的最短长度是.16.(3分)下列关于二次函数y=x2﹣2mx+2m﹣3(m为常数)的结论:①该函数的图象与x轴总有两个公共点;②若x>1时,y随x的增大而增大,则m=1;③无论m为何值,该函数的图象必经过一个定点;④该函数图象的顶点一定不在直线y=﹣2的上方.其中正确的是(填写序号).三、解答题(共8小题,共72分)17.(8分)若关于x的一元二次方程x2+bx﹣2=0有一个根是x=2,求b的值及方程的另一个根.18.(8分)如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.19.(8分)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.甲从口袋中随机摸取一个小球,记下标号m,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n,组成一个数对(m,n).(1)用列表法或画树状图法,写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢.你认为这个游戏规则公平吗?请说明理由.20.(8分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状,并证明你的结论.(2)证明:PA+PB=PC.21.(8分)如图是由小正方形组成的9×7网格,每个小正方形的顶点叫做格点,A,B,C 三个格点都在圆上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)画出该圆的圆心O,并画出劣弧的中点D;(2)画出格点E,使EA为⊙O的一条切线,并画出过点E的另一条切线EF,切点为F.22.(10分)跳绳是大家喜爱的一项体育运动,当绳子甩到最高处时,其形状视为一条抛物线.如图是小涵与小军将绳子甩到最高处时的示意图,已知两人拿绳子的手离地面的高度都为1m,并且相距4m,现以两人的站立点所在的直线为x轴,建立如图所示的平面直角坐标系,其中小涵拿绳子的手的坐标是(0,1).身高1.50m的小丽站在绳子的正下方,且距小涵拿绳子的手1m时,绳子刚好经过她的头顶.(1)求绳子所对应的抛物线的解析式(不要求写自变量的取值范围);(2)身高1.70m的小兵,能否站在绳子的正下方,让绳子通过他的头顶?(3)身高1.64m的小伟,站在绳子的正下方,他距小涵拿绳子的手sm,为确保绳子通过他的头顶,请直接写出s的取值范围.23.(10分)问题背景如图1,在△ABC与△ADE中,若AB=AC,AD=AE,∠BAC=∠DAE,则存在一对全等三角形,请直接写出这对全等三角形.尝试运用如图2,在等边△ABC中,BC=12,点D在BC上,以AD为边在其右侧作等边△ADE,F是DE的中点,连接BF,若BD=4,求BF的长.拓展创新如图3,在等腰Rt△ABC中,∠BAC=90°,BC=12,点D在BC上,以AD为斜边在其右侧作等腰Rt△ADE,连接BE.设BD=x,BE2=y,直接写出y关于x的函数关系式(不要求写自变量的取值范围).24.(12分)如图,抛物线y=﹣x2+x+2与x轴负半轴交于点A,与y轴交于点B.(1)求A,B两点的坐标;(2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;(3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.①求点F的坐标;②直接写出点P的坐标.2022年湖北省武汉市部分学校九年级元月调考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【解答】解:选项C不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项A、B、D均能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:C.【点评】本题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【分析】根据随机事件,必然事件,不可能事件的特点判断即可.【解答】解:事件(1):购买1张福利彩票,中奖,这是随机事件;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,这是必然事件;故选:D.【点评】本题考查了随机事件,熟练掌握随机事件,必然事件,不可能事件的特点是解题的关键.3.【分析】利用直线与圆的位置关系的判断方法得到直线l和⊙O相离,然后根据相离的定义对各选项进行判断.【解答】解:∵⊙O的半径等于5,圆心O到直线l的距离为6,即圆心O到直线l的距离大于圆的半径,∴直线l和⊙O相离,∴直线l与⊙O没有公共点.故选:A.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则当直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.4.【分析】先把常数项移到等号的另一边,再配方得结论.【解答】解:方程移项,得x2﹣6x=4,方程两边都加9,得x2﹣6x+9=13,∴(x﹣3)2=13.故选:D.【点评】本题考查了一元二次方程的解法,掌握配方法的一般步骤是解决本题的关键.5.【分析】根据图象的平移规律,可得答案.【解答】解:将将抛物线y=x2向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是y=(x﹣1)2+1.故选:B.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.6.【分析】先根据根与系数的关系得到m+n=4,mn=﹣1,然后利用整体代入的方法求m+n ﹣mn的值.【解答】解:根据题意得m+n=4,mn=﹣1,所以m+n﹣mn=4﹣(﹣1)=5.故选:A.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.7.【分析】画出树状图,再根据概率公式计算即可得.【解答】解:画树状图如下:由树状图可知共有8种等可能结果,其中恰有两次正面向上的有3种,所以恰有两次正面向上的概率为,故选:C.【点评】本题主要考查画树状图或列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.8.【分析】分别计算出自变量为﹣2、1、3对应的函数值,根据a>0即可得到y1、y2、y3的大小关系.【解答】解:当x=﹣2时,y1=4a+4a+1=8a+1,当x=1时,y2=a﹣2a+1=﹣a+1,当x=3时,y3=9a﹣6a+1=3a+1,∵a>0,∴8a>3a>﹣a,∴8a+1>3a+1>﹣a+1,∴y1>y3>y2,故选:D.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.9.【分析】设雕像的下部高为x m,由黄金分割的定义得=,求解即可.【解答】解:设雕像的下部高为x m,则上部长为(2﹣x)m,∵雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,雷锋雕像为2m,∴=,∴x=﹣1≈1.24,即该雕像的下部设计高度约是1.24m,故选:B.【点评】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.10.【分析】连接AG,作线段AG的中垂线和线段HG的中垂线交于点O,连接OG,则点A、G、H三点刚好在以点O为圆心,OG为半径的圆上,然后由等腰直角三角形的性质求得OM的长,再结合勾股定理求得半径的长.【解答】解:连接AG,作线段AG的中垂线和线段HG的中垂线交于点O,交HG于点K,交EF于点M,连接OG,则点A、G、H三点刚好在以点O为圆心,OG为半径的圆上,∵∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,∴AC=2,EC=3,EG=5,∴AG=10,∴点E为线段AG的中点,∵∠GEF=45°,OE⊥AG,∴∠OEF=45°,∴△OEM是等腰直角三角形,∵EF=5,CD=3,∴OK=5+=,KG=,∴OG===.故选:A.【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质、圆的内接三角形,解题的关键是利用勾股定理求得三个正方形的对角线的长度.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据两个点关于原点对称时,它们的坐标符号相反可直接得到答案.【解答】解:点(3,﹣2)关于原点的对称点的坐标是(﹣3,2),故答案为:(﹣3,2).【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.12.【分析】根据几何概率的求法:这点在阴影部分的概率是就是阴影部分的面积与总面积的比值.【解答】解:由题意可知:由9个小正方形组成的图案,阴影部分有5个小正方形,所以,从图中随机取一点,这点在阴影部分的概率是.故答案为:.【点评】此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.13.【分析】连接OA、OB,根据切线的性质得到OA⊥PA,OB⊥PB,进而求出∠AOB,分点C在优弧AB上、点C′在劣弧AB上两种情况,根据圆周角定理计算即可.【解答】解:连接OA、OB,∵PM,PN分别与⊙O相切于A,B两点,,∴OA⊥PA,OB⊥PB,∴∠AOB=360°﹣90°﹣90°﹣58°=122°,当点C在优弧AB上时,∠ACB=∠AOB=×122°=61°,当点C′在劣弧AB上时,∠AC′B=180°﹣61°=119°,故答案为:61°或119°.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.14.【分析】利用因式分解法求解即可.【解答】解:x3﹣x=0,∴x(x2﹣1)=0.∴x(x+1)(x﹣1)=0.∴x=0或x+1=0或x﹣1=0.∴x1=0,x2=﹣1,x3=1.故答案为:0或﹣1或1.【点评】本题考查了解高次方程,掌握整式的因式分解是解决本题的关键.15.【分析】首先求出BD的长,再利用勾股定理求出AD以及AC的长即可.【解答】解:将圆锥沿经过点B的母线展开,连接BC′,设圆锥侧面展开图的圆心角为n°,圆锥底面圆周长为2×10π=20π,∴=20π,解得:n=90,∵BA=AC′=40,∠BAC′=90°,∴BC′==40,即这根绳子的最短长度是40,故答案为:40cm.【点评】此题考查了圆锥的计算;得到圆锥的底面圆的周长和扇形弧长相等是解决本题的突破点.16.【分析】根据Δ>0可以判断①;求出函数对称轴为x=m,抛物线开口向上,当x>m 时y随x的增大而增大,可以判断②;把抛物线解析式化为y=x2﹣2m(x﹣1)﹣3,可以判断③;求出抛物线的顶点纵坐标﹣m2+2m﹣3+2≤0,可以判断④.【解答】解:∵Δ=(﹣2m)2﹣4(2m﹣3)=4m2﹣8m+12=4(m﹣1)2+8>0,∴该函数的图象与x轴总有两个公共点,故①正确;∵二次函数图象的对称轴为x=m,∴当x>m时,y随x的增大而增大,∴m≤1,故②错误;∵y=x2﹣2mx+2m﹣3=x2﹣2m(x﹣1)﹣3,当x=1时,y=1﹣3=﹣2,∴无论m为何值,该函数的图象必经过定点(1,﹣2),故③正确;当x=m时,y=m2﹣2m2+2m﹣3=﹣m2+2m﹣3,∴二次函数图象的顶点为(m,﹣m2+2m﹣3),∵﹣m2+2m﹣3+2=﹣m2+2m﹣1=﹣(m﹣1)2≤0,∴﹣m2+2m﹣3≤﹣2,故④正确.故答案为:①③④.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.三、解答题(共8小题,共72分)17.【分析】设方程的另一个根为t,,根据根与系数的关系得2+t=﹣b,2t=﹣2,然后解方程组即可.【解答】解:设方程的另一个根为t,根据根与系数的关系得2+t=﹣b,2t=﹣2,解得t=﹣1,b=﹣1,即b的值为﹣1,方程的另一个根为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.18.【分析】由旋转的性质可得AD=AB,∠B=∠ADE=70°,由等腰三角形的性质可求∴∠ABD=∠ADB=70°,即可求解.【解答】解:∵将△ABC绕点A逆时针旋转得到△ADE,∴AD=AB,∠B=∠ADE=70°,∴∠ABD=∠ADB=70°,∴∠CDE=40°.【点评】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.19.【分析】(1)画树状图列出所有等可能结果;(2)从所有的等可能结果中找到标号之和为奇数和偶数的结果数,计算出甲、乙获胜的概率,比较大小即可得出答案.【解答】解:(1)画树状图如下:由树状图知共有9种等可能结果,分别为(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)不公平,由树状图知,两个标号之和为奇数的有5种结果,标号之和为偶数的有4种结果,∴甲赢的概率为,乙赢的概率为,∵≠,∴此游戏规则不公平.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】(1)根据圆周角定理得到∠ABC=∠CPB=60°,∠BAC=∠CPB=60°,根据等边三角形的判定定理证明;(2)在PC上截取PH=PA,得到△APH为等边三角形,证明△APB≌△AHC,根据全等三角形的性质,结合图形证明即可.【解答】(1)解:△ABC是等边三角形,理由如下:由圆周角定理得,∠ABC=∠CPB=60°,∠BAC=∠CPB=60°,∴△ABC是等边三角形;(2)证明:在PC上截取PH=PA,∵∠APC=60°,∴△APH为等边三角形,∴AP=AH,∠AHP=60°,在△APB和△AHC中,,∴△APB≌△AHC(AAS)∴PB=HC,∴PC=PH+HC=PA+PB.【点评】本题考查的是圆周角定理,全等三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.【分析】(1)连接AC,AC的中点O即为所,取格点M,N,连接MN交格线于等J,连接OJ,延长OJ交⊙O于点D,点D即为所求;(2)取格点E,作直线AE即可,取格点P,Q交格线于点K,连接AK交⊙O于点F,作直线EF,直线EF即为所求.【解答】解:(1)如图,点O,点D即为所求;(2)如图,直线AE,EF即为所求.【点评】本题考查作图﹣应用与设计作图.圆周角定理,切线的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.22.【分析】(1)因为抛物线过原点,可设抛物线的解析式为:y=ax2+bx+c(a≠0),把(0,1),(4,1),(1,1.5)代入,得到三元一次方程组,解方程组即可;(2)由自变量的值求出函数值,再比较便可;(3)由y=1.64时求出其自变量的值,便可确定s的取值范围.【解答】解:(1)设抛物线的解析式为:y=ax2+bx+c(a≠0),∴抛物线经过点(0,1),(4,1),(1,1.5),∴,解得,∴绳子对应的抛物线的解析式为:y=−x2+x+1;(2)不能,理由:∵y=−x2+x+1=﹣(x﹣2)2+,∵a=﹣<0,∴y有最大值=m,∵1.70m>m,∴身高1.70m的小兵,站在绳子的正下方,绳子不能通过他的头顶;(3)当y=1.64时,−x2+x+1=1.64,解得x1=2.4,x2=1.6,∴1.6<s<2.4.故s的取值范围为1.6<s<2.4.【点评】本题是二次函数的应用,主要考查了待定系数法求二次函数的解析式,应用二次函数的解析式由自变量求函数值,由函数值确定自变量等知识判定实际问题,关键是确定抛物线上点的坐标,和应用二次函数解析式解决实际问题.23.【分析】问题背景:由“SAS”可证△BAD≌△CAE;尝试运用:由“SAS”可证△ABD≌△ACE,可得BD=CE=4,∠ABD=∠ACE=60°,由三角形中位线定理可求FH=2,FH∥EC,由勾股定理可求解;拓展创新:通过证明△ABD∽△AHE,可得∠AHE=∠ABD=45°,,可得HE=x,由等腰直角三角形的性质可求EN,HN的长,由勾股定理可求解.【解答】解:问题背景:△BAD≌△CAE,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);尝试运用:如图2,连接CE,取DC中点H,连接FH,过点F作FN⊥CD于N,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE=4,∠ABD=∠ACE=60°,∴∠BCE=120°,∵BC=12,BD=4,∴CD=8,∵点H是CD中点,∴DH=CH=4,又∵点F是DE的中点,∴FH=CE=2,FH∥EC,∴∠DHF=∠BCE=120°,∴∠FHC=60°,∵FN⊥CD,∴∠HFN=30°,∴HN=FH=1,FN=HN=,∴BN=9,∴BF===2;拓展创新:如图3,过点A作AH⊥BC于点H,连接HE,过点E作EN⊥BC于点N,在等腰Rt△ABC中,∠BAC=90°,BC=12,AH⊥BC,∴BH=CH=AH=6,∠BAH=∠ABH=45°,∴AB=AH,∵△ADE是等腰直角三角形,∴AE=DE,∠DAE=45°,AD=AE,∴∠DAE=∠BAH,∴∠BAD=∠HAE,又∵=,∴△ABD∽△AHE,∴∠AHE=∠ABD=45°,,∴∠EHN=45°,HE=x,∵EN⊥BC,∴∠HEN=∠EHN=45°,∴EN=HN,∴EH=EN,∴EN=x=HN,∵BE2=EN2+BN2,∴y=x2+(6+x)2=x2+6x+36.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,等边三角形的性质,等腰直角三角形的性质,三角形中位线定理等知识,添加恰当辅助线构造全等三角形或相似三角形是解题的关键.24.【分析】(1)令y=0,可求A点坐标,令x=0,可求B点坐标;(2)由题意可知C点在AB的垂直平分线与抛物线的交点处,证明∠ABO=∠HGA,再由三角函数sin∠ABO==,可求G点坐标,进而求出直线HC的解析式y=﹣x+,联立即可求C点坐标;(3)①设E(t,﹣t2+t+2),则F(t﹣2,﹣t2+t+2),D(t﹣2,﹣t2+t+3),再由D点在抛物线上,可求t=3,则F(1,2);②过点P作PN⊥x轴交于点N,交EF于点M,证明△FMP≌△PNO(AAS),则PM+PN =2,设P(m,2﹣m),OP2=2m2﹣4m+4,再由OF2=2OP2,可得5=2(2m2﹣4m+4),即可求P(,).【解答】解:(1)令y=0,0=﹣x2+x+2,∴x=﹣1或x=4,∴A(﹣1,0),令x=0,则y=2,∴B(0,2);(2)∵AC=BC,∴C点在AB的垂直平分线上,∵A(﹣1,0),B(0,2),∴AB的中点H(﹣,1),∵∠AHG=90°,∴∠HAG+∠HGA=90°,∠BAG+∠ABO=90°,∴∠ABO=∠HGA,∵AB=,∴AH=,∵sin∠ABO==,∴sin∠AGH==,∴AG=,∴OG=,∴G(,0),设直线HC的解析式为y=kx+b,∴,∴,∴y=﹣x+,联立,解得x=2±,∵C点在y轴右侧,∴x=2+,∴C(2+,﹣﹣);(3)①如图2,设E(t,﹣t2+t+2),∵OA=1,OB=2,∴F(t﹣2,﹣t2+t+2),D(t﹣2,﹣t2+t+3),∵D点在抛物线上,∴﹣t2+t+3=﹣(t﹣2)2+(t﹣2)+2,∴t=3,∴F(1,2);②过点P作PN⊥x轴交于点N,交EF于点M,∵∠OPF=90°,∴∠FPM+∠OPN=90°,∵∠FPM+∠MFP=90°,FP=OP,∴△FMP≌△PNO(AAS),∴FM=PN,PM=ON,∵F(1,2),∴PM+PN=2,设P(m,2﹣m),∴OP2=m2+(2﹣m)2=2m2﹣4m+4,∵PO=FP,∴OF2=2OP2,∴5=2(2m2﹣4m+4),∴m=或m=﹣(舍),∴P(,).【点评】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,旋转的性质,线段垂直平分线的性质,数形结合解题是关键.。

湖北省武汉市江夏区第一中学2023-2024学年九年级(上)期末数学试卷(元月调考)(含答案)

湖北省武汉市江夏区第一中学2023-2024学年九年级(上)期末数学试卷(元月调考)(含答案)

2023-2024学年湖北省武汉市江夏一中九年级(上)期末数学试卷(元月调考)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)抛掷一枚质地均匀的硬币,落地后正面朝上,这个事件是( )A.必然事件B.不可能事件C.随机事件D.确定性事件2.(3分)下列图形是中心对称图形的是( )A.B.C.D.3.(3分)⊙O的半径是5cm,圆心O到直线a的距离为8cm,直线a与⊙O的公共点个数是( )A.0B.1C.2D.1或24.(3分)解一元二次方程x2﹣6x﹣4=0,配方后得到(x﹣3)2=p,则p的值是( )A.13B.9C.5D.45.(3分)下列一元二次方程有两个互为倒数的实数根的是( )A.2x2﹣3x+1=0B.x2﹣x+1=0C.x2+x﹣1=0D.x2﹣3x+1=06.(3分)已知点A(x1,y1),B(x2,y2),C(x3,y3)在抛物线y=x2+2x﹣3上.当x1<﹣3,﹣1<x2<0,0<x3<1时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3 7.(3分)下表给出了二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值:x…1 1.1 1.2 1.3 1.4…y…﹣1﹣0.67﹣0.290.140.62…那么关于x的方程ax2+bx+c=0的一个根的近似值可能是( )A.1.07B.1.17C.1.27D.1.378.(3分)甲口袋中装有2张卡片,它们分别写有汉字“数”、“学”;乙、丙口袋中各装有3张卡片,它们分别写有汉字“数”、“学”、“美”.从这三个口袋中各随机取出1张卡片,取出的3张卡片恰好有“数”、“学”、“美”三个字的概率是( )A.B.C.D.9.(3分)如图,在△ABC中,∠BAC=64°,将△ABC绕顶点A顺时针旋转,得到△ADE.若点D恰好落在边BC上,且AE∥BC,则旋转角的大小是( )A.51°B.52°C.53°D.54°10.(3分)如图,从一张圆形纸片上剪出一个小圆形和一个扇形分别作为圆锥的底面和侧面,其中小圆的直径是大圆的半径.下列剪法恰好能配成一个圆锥的是( )A.B.C.D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(3分)写出一个两根是互为相反数的一元二次方程 .12.(3分)如图,阴影部分是分别以正方形ABCD的顶点和中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.在正方形ABCD上做随机投针试验,针头落在阴影部分区域内的概率是 .13.(3分)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是18cm,∠P=50°,则的长是 cm.14.(3分)《九章算术》第三章“衰分”介绍了比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.例如:已知A,B,C三人分配奖金的衰分比为10%,若A分得奖金1000元,则B,C所分得奖金分别为900元和810元.某科研所三位技术人员甲、乙、丙攻关成功,共获得奖金175万元,甲、乙、丙按照一定的“衰分比”分配奖金,若甲分得奖金100万元,则“衰分比”是 .15.(3分)已知抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),其中0<m<1.下列结论:①bc>0;②2b+3c<0;③不等式的解集为0<x<2;④若关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,则b2﹣4ac≥4a.其中正确的是 .(填写序号)16.(3分)如图是某游乐场一个直径为50m的圆形摩天轮,最高点距离地面55m,其旋转一周需要12分钟.圆周上座舱P距离地面50m处,逆时针旋转5分钟后,距离地面的高度是 m(结果根据“四舍五入”法精确到0.1).(参考数据:≈1.732)三、解答题(共8小题,共72分)17.(8分)关于x的一元二次方程x2+bx﹣12=0有一个根是x=2,求b的值及方程的另一个根.18.(8分)如图,在△ABC中,D是BC的中点.(1)画出△ABD关于点D对称的图形;(2)若AB=6,AD=4,AC=10,求证:∠BAD=90°.19.(8分)一个不透明的布袋中装有红、白两种颜色的袜子各一双,它们除颜色外其余都相同.(1)从布袋中随机摸出一只袜子,直接写出颜色是白色的概率;(2)用列表或画树状图法,求从布袋中随机一次摸出两只袜子恰好是同色的概率.20.(8分)如图,A,B,C,D是⊙O上四点,AC=AB.(1)如图(1),∠BAC=60°,BD是直径,BD交AC于点E.若BD=d,先用含字母d的式子直接表示CD和DE的长,再比较CD+DE与BE之间的大小;(2)如图(2),过点A作AE⊥BD,垂足为E.若CD=3,DE=1,求BE的长.21.(8分)用无刻度的直尺完成下列画图.(1)如图(1),△ACD的三个顶点在⊙O上,AC=AD,∠CAD=36°,F是AC的中点.先分别画出CD,AD的中点G,H,再画⊙O的内接正五边形ABCDE;(2)如图(2),正五边形ABCDE五个顶点在⊙O上,过点A画⊙O的切线AP.22.(10分)某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.23.(10分)在四边形ABCD中,AD∥BC,E是AB上一动点(不与点B重合),连接CE,DE.(1)如图(1),AB=BC,∠ABC=∠DCE=60°,求证:AD=BE.(2)如图(2),CD=ED,∠ABC=∠DCE=45°.①通过特例可以猜想一般结论.请你画出一个符合条件的特殊图形,猜想AD与BE的数量关系;②在一般情形下,证明你的猜想.24.(12分)如图(1),抛物线L1:y=x2﹣6x+c与x轴交于A,B两点,且AB=4.将抛物线L1向左平移a(a>0)个单位得到抛物线L2,C是抛物线L2与y轴的交点.(1)求c的值;(2)过点C作射线CD∥x轴,交抛物线L1于点D,E两点,点D在点E的左侧.若DE =2CD,直接写出a的值;(3)如图(2),若C是抛物线L2的顶点,直线y=mx与抛物线L2交于F,G两点,直线y=nx分别交直线CF,CG于点M,N.若OM=ON,试探究m与n的数量关系.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)抛掷一枚质地均匀的硬币,落地后正面朝上,这个事件是( )A.必然事件B.不可能事件C.随机事件D.确定性事件【解答】解:硬币落地后可能正面朝上,也可能反面朝上,这个事件是随机事件,故选:C.2.(3分)下列图形是中心对称图形的是( )A.B.C.D.【解答】解:选项A、B、C均不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;选项D能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;故选:D.3.(3分)⊙O的半径是5cm,圆心O到直线a的距离为8cm,直线a与⊙O的公共点个数是( )A.0B.1C.2D.1或2【解答】解:∵⊙O的半径为5cm,点O到直线a的距离为8cm,5<8,∴⊙O与直线a的位置关系是相离,直线a与⊙O的公共点个数是0个,故选:A.4.(3分)解一元二次方程x2﹣6x﹣4=0,配方后得到(x﹣3)2=p,则p的值是( )A.13B.9C.5D.4【解答】解:∵x2﹣6x﹣4=0,∴x2﹣6x=4,则x2﹣6x+9=4+9,即(x﹣3)2=13,∴p=13,故选:A.5.(3分)下列一元二次方程有两个互为倒数的实数根的是( )A.2x2﹣3x+1=0B.x2﹣x+1=0C.x2+x﹣1=0D.x2﹣3x+1=0【解答】解:A、∵在2x2﹣3x+1=0中,Δ=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根,∵=,∴该方程的两个实数根不是互为倒数;故选项A不合题意;B、在方程x2﹣x+1=0中,Δ=(﹣1)2﹣4×1×1=﹣3<0,故选项B不合题意;∴该方程有两个相等的实数根;C、∵在方程x2+x﹣1=0中,Δ=12﹣4×1×(﹣1)=5>0,∴该方程有两个不相等的实数根,∵=﹣1,∴该方程的两个实数根不是互为倒数;故选项C不合题意;D、∵在方程x2﹣3x+1=0中,Δ=(﹣3)2﹣4×1×1=5>0,∴该方程有两个不相等的实数根,∵=1,∴该方程的两个实数根是互为倒数;故选项D符合题意;故选:D.6.(3分)已知点A(x1,y1),B(x2,y2),C(x3,y3)在抛物线y=x2+2x﹣3上.当x1<﹣3,﹣1<x2<0,0<x3<1时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3【解答】解:∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴抛物线开口向上,对称轴x=﹣1,顶点坐标为(﹣1,﹣4),当y=0时,(x+1)2﹣4=0,解得x=1或x=﹣3,∴抛物线与x轴的两个交点坐标为:(1,0),(﹣3,0),∴x1<﹣3,﹣1<x2<0,0<x3<1,∴y2<y3<y1,故选:B.7.(3分)下表给出了二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值:x…1 1.1 1.2 1.3 1.4…y…﹣1﹣0.67﹣0.290.140.62…那么关于x的方程ax2+bx+c=0的一个根的近似值可能是( )A.1.07B.1.17C.1.27D.1.37【解答】解:∵x=1.2时,y=ax2+bx+c=﹣0.29;x=1.3时,y=ax2+bx+c=0.14;∴抛物线y=ax2+bx+c与x轴的一个交点在(1.2,0)和点(1.3,0)之间,且更靠近点(1.3,0),∴方程ax2+bx+c=0有一个根约为1.27.故选:C.8.(3分)甲口袋中装有2张卡片,它们分别写有汉字“数”、“学”;乙、丙口袋中各装有3张卡片,它们分别写有汉字“数”、“学”、“美”.从这三个口袋中各随机取出1张卡片,取出的3张卡片恰好有“数”、“学”、“美”三个字的概率是( )A.B.C.D.【解答】解:画树状图如下:共有18种等可能的结果,其中取出的3张卡片恰好有“数”、“学”、“美”三个字的结果有:(数,学,美),(数,美,学),(学,数,美),(学,美,数),共4种,∴取出的3张卡片恰好有“数”、“学”、“美”三个字的概率为=.故选:C.9.(3分)如图,在△ABC中,∠BAC=64°,将△ABC绕顶点A顺时针旋转,得到△ADE.若点D恰好落在边BC上,且AE∥BC,则旋转角的大小是( )A.51°B.52°C.53°D.54°【解答】解:∵将△ABC绕顶点A顺时针旋转,得到△ADE.∴AB=AD,∠BAC=∠DAE=64°,旋转角为∠BAD,∴∠ADB=∠ABD,∵AE∥BC,∴∠BDA=∠DAE=64°,∴∠BAD=180°﹣64°﹣64°=52°.故选:B.10.(3分)如图,从一张圆形纸片上剪出一个小圆形和一个扇形分别作为圆锥的底面和侧面,其中小圆的直径是大圆的半径.下列剪法恰好能配成一个圆锥的是( )A.B.C.D.【解答】解:设大圆的半径为R,则小圆的半径都为R,根据圆锥的底面圆的周长等于扇形弧长,只要图形中两者相等即可配成一个圆锥体,∴圆锥的底面圆的周长等于2πR=πR,扇形弧长为:=πR,∴n=180°,∴扇形圆心角等于180°,故只有D选项符合题意.故选:D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(3分)写出一个两根是互为相反数的一元二次方程 x2﹣1=0 .【解答】解:∵两根互为相反数的一元二次方程的一次系数为0,∴满足条件的一元二次方程为x2﹣1=0.故答案为x2﹣1=0.12.(3分)如图,阴影部分是分别以正方形ABCD的顶点和中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.在正方形ABCD上做随机投针试验,针头落在阴影部分区域内的概率是 .【解答】解:如图,令正方形的边长为2a,则阴影部分的面积为2××π•a2+2(a2﹣×π•a2)=πa2+2a2﹣πa2=2a2,所以针头落在阴影部分区域内的概率是=.故答案为:.13.(3分)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是18cm,∠P=50°,则的长是 23π cm.【解答】解:如图,设圆心为O,连接AO、BO,∵PA,PB分别与所在圆相切于点A,B,∴∠OAP=∠OBP=90°,∵∠P=50°,∴∠AOB=130°,∴优弧对应的圆心角为360°﹣130°=230°,∴优弧的长是:,故答案为:23π.14.(3分)《九章算术》第三章“衰分”介绍了比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.例如:已知A,B,C三人分配奖金的衰分比为10%,若A分得奖金1000元,则B,C所分得奖金分别为900元和810元.某科研所三位技术人员甲、乙、丙攻关成功,共获得奖金175万元,甲、乙、丙按照一定的“衰分比”分配奖金,若甲分得奖金100万元,则“衰分比”是 50% .【解答】解:设“衰分比”是a.乙分配的奖金:100(1﹣a);丙分配的奖金:100(1﹣a)(1﹣a)∴100+100(1﹣a)+100(1﹣a)(1﹣a)=175,a=0.5或a=2.5(不符合题意,舍去),故答案为:50%.15.(3分)已知抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),其中0<m<1.下列结论:①bc>0;②2b+3c<0;③不等式的解集为0<x<2;④若关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,则b2﹣4ac≥4a.其中正确的是 ②③④ .(填写序号)【解答】解:如图,∵a>0,抛物线与x轴交于点(m,0),(2,0),∴抛物线的对称轴在y的右侧,∴a、b异号,∴b<0,∴抛物线与y轴的交点在y轴的正半轴,∵c>0,∴bc<0,所以①错误;把(2,0)代入y=ax2+bx+c得4a+2b+c=0,∴a=,∵x=1时,y<0,∴a+b+c<0,∴+b+c<0,即2b+3c<0,所以②正确;∵抛物线与y轴的交点坐标为(0,c),直线y=﹣x+c经过点(0,c),(2,0),∴抛物线y=ax2+bx+c与直线y=﹣x+c相交于点(0,c),(2,0),∵0<x<2时,ax2+bx+c<﹣x+c,∴不等式ax2+bx+c<﹣x+c的解集为0<x<2,所以③正确;∵抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),∴抛物线解析式可设为y=a(x﹣m)(x﹣2),当直线y=﹣1与抛物线y=a(x﹣m)(x﹣2)有交点时,关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,∴抛物线的顶点在直线y=﹣1的下方或在直线y=﹣1上,即≤﹣1,而a>0,∴b2﹣4ac≥4a,所以④正确.故答案为:②③④.16.(3分)如图是某游乐场一个直径为50m的圆形摩天轮,最高点距离地面55m,其旋转一周需要12分钟.圆周上座舱P距离地面50m处,逆时针旋转5分钟后,距离地面的高度是 21.2 m(结果根据“四舍五入”法精确到0.1).(参考数据:≈1.732)【解答】解:如图,设⊙O为摩天轮,MN为地面,AB为它的直径,且AB⊥MN于点C,由题意得:AB=50m,AC=55m,则BC=5m,OC=30m.圆周上座舱P距离地面50m处,逆时针旋转5分钟后旋转到点P′处.∵摩天轮旋转1周需要12分钟,∴每分钟旋转360°÷12=30°,∴5分钟转过150°,∴∠POP′=150°.连接OP,过点P作PE⊥MN于点E,则PE=50m,延长P′O交PE于点F,则∠POF =30°,过点O作OG⊥PE于点G,过点P作PD⊥AB于点D,过点P′作P′K⊥AB 于点K,P′H⊥MN于点H,∵OG⊥PE,AB⊥MN,PE⊥MN,∴四边形OCEG为矩形,∴EG=OC=30m,∴PG=PE﹣GE=50﹣0=20m.同理:四边形ODPG为矩形,∴OD=PG=20m,∴PD=OG==15m.过点F作FQ⊥OP于点Q,则FQ=OF,设FQ=k,则OF=2k,OQ=k,PQ=25﹣k,∵∠PQF=∠PGO=90°,∠FPQ=∠OPG,∴△PQF∽△PGO,∴,,∴,∴k=.∴OF=2k=.∴,∴PF=,∴FG=PG﹣PF=20﹣=,∵P′K⊥AB,OG⊥PE,AB∥PE,∴∠OP′K=∠FOG,∵∠P′KO=∠OGF=90°,∴△P′OK∽△OFG,∴,∴,∴OK=≈9.82m,∴CK=OC﹣OK=21.18≈21.2m.∵P′K⊥AB,P′H⊥MN,AB⊥MN于点C,∴四边形P′HCK为矩形,∴P′H=CK=21.2m,∴座舱P距离地面的高度是21.2m,故答案为:21.2.三、解答题(共8小题,共72分)17.(8分)关于x的一元二次方程x2+bx﹣12=0有一个根是x=2,求b的值及方程的另一个根.【解答】解:设方程的另一个根为t,根据根与系数的关系得2+t=﹣b,2t=﹣12,解得t=﹣6,b=4,即b的值为4,方程的另一个根为﹣6.18.(8分)如图,在△ABC中,D是BC的中点.(1)画出△ABD关于点D对称的图形;(2)若AB=6,AD=4,AC=10,求证:∠BAD=90°.【解答】(1)解:如图,△A'CD即为所求.(2)证明:∵△ABD与△A'CD关于点D对称,∴△ABD≌△A'CD,∴A'C=AB=6,A'D=AD=4,∠CA'D=∠BAD,∴AA'=8,∵AC=10,∴AC2=AA'2+A'C2,∴∠CA'D=90°,∴∠BAD=90°.19.(8分)一个不透明的布袋中装有红、白两种颜色的袜子各一双,它们除颜色外其余都相同.(1)从布袋中随机摸出一只袜子,直接写出颜色是白色的概率;(2)用列表或画树状图法,求从布袋中随机一次摸出两只袜子恰好是同色的概率.【解答】解:(1)由题意得,从布袋中随机摸出一只袜子,颜色是白色的概率是=.(2)列表如下:红红白白红(红,红)(红,白)(红,白)红(红,红)(红,白)(红,白)白(白,红)(白,红)(白,白)白(白,红)(白,红)(白,白)共有12种等可能的结果,其中从布袋中随机一次摸出两只袜子恰好是同色的结果有:(红,红),(红,红),(白,白),(白,白),共4种,∴从布袋中随机一次摸出两只袜子恰好是同色的概率为=.20.(8分)如图,A,B,C,D是⊙O上四点,AC=AB.(1)如图(1),∠BAC=60°,BD是直径,BD交AC于点E.若BD=d,先用含字母d的式子直接表示CD和DE的长,再比较CD+DE与BE之间的大小;(2)如图(2),过点A作AE⊥BD,垂足为E.若CD=3,DE=1,求BE的长.【解答】解:(1)∵∠BAC=60°,BD是直径,∴∠D=∠BAC=60°,∠BCD=90°,在Rt△BCD中,∠D=60°,BD=d,∴cos∠D=,sin∠D=,∴CD=BD•cos∠D=d•cos60°=,BC=BD•sin∠D=d•sin60°=,∵∠BAC=60°,AC=AB,∴△ABC为等边三角形,∴∠ACB=60°,∴∠CEB=180°﹣(∠ACB﹣∠CBD)=180°﹣(60°+30°)=90°,在Rt△BCE中,∠CBD=30°,BC=,∴cos∠CBD=,∴BE=BC•cos∠CBD=•cos30°=,∴DE=BD﹣BE=d﹣=,∴CD+DE=+=,∴CD+DE=BE;(2)过点A作AF⊥CD交CD的延长线于F,连接AD,如图所示:∴∠ABD=∠ACD,即∠ABE=∠ACF,∵AE⊥BD,AF⊥CD,∴∠AEB=∠F=90°,在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF,BD=CF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴DE=DF,∵CD=3,DE=1,∴CF=CD+DF=CD+DE=3+1=4,∴BE=CF=4.21.(8分)用无刻度的直尺完成下列画图.(1)如图(1),△ACD的三个顶点在⊙O上,AC=AD,∠CAD=36°,F是AC的中点.先分别画出CD,AD的中点G,H,再画⊙O的内接正五边形ABCDE;(2)如图(2),正五边形ABCDE五个顶点在⊙O上,过点A画⊙O的切线AP.【解答】解:(1)连接AO并延长交CD于G,连接DF交AG于K,连接CK并延长交AD于H,连接OF并延长交⊙O于B,连接并延长OH交⊙O于E,如图:点G即为CD中点,点H即为AD中点,五边形ABCDE即为⊙O的内接正五边形;理由:由圆和等腰三角形的对称性可知G为CD中点;∵F是AC中点,∴K为△ABC重心,∴H为AD中点;∵AC=AD,∠CAD=36°,∴∠ACD=∠ADC=72°,=,=72°,∵F为AC中点,H为AD中点;∴====72°,∴====,∴CD=AB=BC=AE=DE,∴五边形ABCDE即为⊙O的内接正五边形;(2)延长BA,DE交于M,连接OM交AE于N,连接BN,CE并延长交于P,过A,P 作直线AP,如图:直线AP即为所求;理由:由圆和正五边形的对称性可知,N为AE的中点,∵正五边形每个内角为108°,∴∠ABC=∠BCD=108°=∠CDE,∴∠ECD=(180°﹣108°)÷2=36°,∴∠BCE=72°,∴∠ABC+∠BCE=180°,∴AB∥CE,∴∠BAN=∠NEP=108°,∠ABN=∠EPN,∴△ABN≌△EPN(AAS),∴AB=PE,∴AE=AB=PE,∴∠EAP=∠EPA=(180°﹣108°)÷2=36°,∵∠OAB=∠OAE=108°÷2=54°,∴∠OAE+∠EAP=90°,∴OA⊥AP,∵OA是⊙O半径,∴直线AP是⊙O的切线.22.(10分)某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.【解答】解:(1)由题意,设抛物线的解析式为y=ax2+bx+c,∴.∴.∴抛物线的解析式为y=﹣x2+2x+3.(2)工程车不能正常通过.理由如下:∵工程车高5m,∴令y=5,即5=﹣x2+2x+3.∴x=3±.∴纵坐标为5时,两点的距离为3+﹣(3﹣)=2≈3.46<4.故高5m,顶部宽4m的工程车不能正常通过.(3)由题意,如图,设A(m,﹣m2+2m+3).当OB=3时,令y=3=﹣m2+2m+3,∴m=0或m=6.∴B(0,﹣m2+2m+3).∵B在墙面上,∴m≥6.由AB+AC=m﹣m2+2m+3=﹣m2+3m+3=﹣(m﹣)2+,又当m>时,(AB+AC)的值随m的增大而减小,∴当m=6时,(AB+AC)取最大值,最大值为9.∴钢架BAC的最大长度为9m.23.(10分)在四边形ABCD中,AD∥BC,E是AB上一动点(不与点B重合),连接CE,DE.(1)如图(1),AB=BC,∠ABC=∠DCE=60°,求证:AD=BE.(2)如图(2),CD=ED,∠ABC=∠DCE=45°.①通过特例可以猜想一般结论.请你画出一个符合条件的特殊图形,猜想AD与BE的数量关系;②在一般情形下,证明你的猜想.【解答】(1)证明:连接AC,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠DCE=60°,∴∠BCE=∠ACD,∵AD∥BC,∴∠CAD=∠ACB=60°,∴∠CAD=∠ABC,∴△BCE≌△ACD(ASA),∴AD=BE;(2)①解:猜想:BE=AD,证明:连接AC,当AB⊥AC时,如图,∵∠ABC=45°,∴△ABC是等腰直角三角形,∴BC=AC,∴∠ACB=45°,∵∠DCE=45°,∴∠BCE=∠ACD,∵AD∥BC,∴∠CAD=∠ACB=45°,∴∠CAD=∠ABC,∴△BCE∽△ACD,∴,∴BE=AD;②证明:过点D作DF⊥AD,交BA的延长线于F,∵AD∥BC,∠ABC=∠DCE=45°.∴∠FAD=∠ABC=45°,∠CEB+∠BCE=45°.∴∠F=∠FAD=45°,∴∠ABC=∠F=45°,AD=FD,∵CD=ED,∠DCE=45°.∴∠CED=45°.∴∠CDE=90°,∠CEB+FED=135°,∴CE=ED,∠BCE=∠FED,∴△BCE∽△FED,∴,∴BE=FD,∵AD=FD,∴BE=AD.24.(12分)如图(1),抛物线L1:y=x2﹣6x+c与x轴交于A,B两点,且AB=4.将抛物线L1向左平移a(a>0)个单位得到抛物线L2,C是抛物线L2与y轴的交点.(1)求c的值;(2)过点C作射线CD∥x轴,交抛物线L1于点D,E两点,点D在点E的左侧.若DE =2CD,直接写出a的值;(3)如图(2),若C是抛物线L2的顶点,直线y=mx与抛物线L2交于F,G两点,直线y=nx分别交直线CF,CG于点M,N.若OM=ON,试探究m与n的数量关系.【解答】解:(1)当y=0时,x2﹣6x+c=0,∴x A+x B=6,x A•x B=c,∴AB==4,解得c=5;(2)∵c=5,∴抛物线L1的解析式为y=x2﹣6x+5,∵将抛物线L1向左平移a(a>0)个单位得到抛物线L2,∴抛物线L2的解析式为y=(x﹣3+a)2﹣4,∴C(0,a2﹣6a+5),∵CD∥x轴,∴D(3﹣,a2﹣6a+5),E(3+,a2﹣6a+5),∴DE=2,CD=3﹣,∵DE=2CD,∴2=6﹣2,解得a=或a=;(3)∵C是抛物线L2的顶点,∴3﹣a=0,解得a=3,∴抛物线L2的解析式为y=x2﹣4,设F(x F,﹣4),G(x G,﹣4),当x2﹣4=mx时,x2﹣mx﹣4=0,∴x F+x G=m,直线CF的解析式为y=x F x﹣4,直线CG的解析式为y=x G x﹣4,当x F x﹣4=nx时,M(,),当x G x﹣4=nx时,N(,),∵OM=ON,∴x F+x G=2n,∴m=2n.。

2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)

2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)

2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为 ⊙O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61 B .83 C .85 D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a,则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇 匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸 到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm ,宽为20 cm ,他 想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41. 为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A,B,C,D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A,B,E,F)这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C,D,G,H)这四种美食中选择一种,用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,点A的坐标为(1,7),点B的坐标为(5,5),点C的坐标为(7,5),点D的坐标为(5,1)(1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标第20题图21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°, 2,连接BE,P为BE的中点,连接PD、ADAB=CE=6(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△P AD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A,B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A,B,C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OM·ON是一个定值。

2021-2022学年武汉市武昌区初三数学第一学期元月调考数学试卷及解析

2021-2022学年武汉市武昌区初三数学第一学期元月调考数学试卷及解析

2021-2022学年武汉市武昌区初三数学第一学期元调数学试卷一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程(9)3x x -=-化为一元二次方程的一般形式,其中二次项系数为1,一次项系数和常数项分别是( )A .9,3B .9,3-C .9-,3-D .9-,32.下列图形中,为中心对称图形的是( )A .B .C .D .3.将抛物线2y x =向右平移a 个单位,再向上平移b 个单位得到解析式242y x x =-+,则a 、b 的值是( )A .2-,2-B .2-,2C .2,2-D .2,24.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .3个球都是黑球B .3个球都是白球C .3个球中有黑球D .3个球中有白球5.由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为( )A .4πB .9πC .5πD .13π6.如图,Rt ABC ∆中,90C ∠=︒,3BC =,4AC =,将ABC ∆绕点B 逆时针旋转得△A BC '',若点C '在AB 上,则AA '的长为( )A 13B .4C .5D .57.某地有一座圆弧形拱桥,它的跨度(弧所对的弦的长)24m ,拱高(弧的中点到弦的距离)4米,则求拱桥的半径为( )A .16mB .20mC .24mD .28m8.甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有2个相同的小球,它们分别写有字母C ,D ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从三个口袋中各随机取出1个小球.(本题中,A ,I 是元音字母;B ,C ,D ,H 是辅音字母),3个小球上恰好有1个元音字母的概率是( )A .16B .13C .12D .349.已知实数a ,b 分别满足2640a a -+=,2640b b -+=,且a b ≠,则22a b +的值为( )A .36B .50C .28D .2510.如图,ABC ∆中,90C ∠=︒,5BC =,D 为BC 边上一点,1CD =,AC BC >,E 为边AC 上一动点,当BED ∠最大时CE 的长为( )A .2B .3C 5D .231二、填空题(本大题共6个小题,每小题3分,共18分)11.已知2x =是一元二次方程2x p =的一个根,则另一根是 .12.某校九年级组织了篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排了45场比赛,设共有x 个队参赛,依题意列方程,化成一般式为 .13.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .14.如图,四边形ABCD 内接于O ,若138BOD ∠=︒,则它的一个外角DCE ∠等于 .15.如图,Rt ABC ∆,90C ∠=︒,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当4AC =,6BC =时,则阴影部分的面积为 .16.抛物线2y ax bx c =++经过点(1,0)-,与y 轴的交点在(0,2)-与(0,3)-之间(不包括这两点),对称轴为直线2x =.下列结论:①0a b c ++<;②若点1(0.5,)M y 、2(2.5,)N y 在图象上,则12y y <;③若m 为任意实数,则2(4)(2)0a m b m -+-;④245()16a b c -<++<-.其中正确结论的序号为 .三、解答题(共8题,共72分)17.解方程:2410x x -+=.18.如图,在O 中,2AB AC π==,60BAC ∠=︒,求OA 的长度.19.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个,蓝球1个,若从中任意摸出一个球,它是蓝球的概率为0.25.(1)直接写出袋中黄球的个数;(2)从袋子中一次摸2个球,请用画树状图或列表格的方法,求“取出至少一个红球”的概率.20.请用无刻度直尺按要求画图,不写画法,保留画图痕迹.(用虚线表示画图过程,实线表示画图结果)(1)如图1,在正方形网格中,有一圆经过了两个小正方形的顶点A ,B ,请画出这个圆的圆心;(2)如图2,BC 为O 的弦,画一条与BC 长度相等的弦;(3)如图3,ABC ∆为O 的内接三角形,D 是AB 中点,E 是AC 中点,请画出BAC ∠的角平分线.21.如图,在Rt ABC∠=︒,在AC上取一点D,以AD为直径作O,与AB相交于点E,作∆中,90C线段BE的垂直平分线MN交BC于点N,连接EN.(1)求证:EN是O的切线;(2)若3BC=,O的半径为1.求线段EN与线段AE的长.AC=,422.某宾馆有50个房间供游客住宿,当每个房间的房价为每天200元时,房间会全部住满,当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用,根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式;(2)当房价为多少时,宾馆每天的利润为10560元;(3)求出宾馆每天获得的最大利润.23.如图1,已知Rt ABC Rt DCE=.BC AB∠=∠=︒,2B D∆≅∆,90(1)若2AB =,求点B 到AC 的距离;(2)当Rt DCE ∆绕点C 顺时针旋转,连AE ,取AE 中点H ,连BH ,DH ,如图2,求证:BH DH ⊥;(3)在(2)的条件下,若2AB =,P 是DE 中点,连接PH ,当Rt DCE ∆绕点C 顺时针旋转的过程中,直接写出PH 的取值范围.24.如图1,已知二次函数2y x bx c =++的图象与x 轴交于点(1,0)A -和点(3,0)B ,与y 轴的负半轴交于点C .(1)求这个函数的解析式;(2)点P 是抛物线上位于第四象限内的一点,当PBC ∆的面积最大时,点P 的坐标,并求出最大面积;(3)如图2,点T 是抛物线上一点,且点T 与点C 关于抛物线的对称轴对称,过点T 的直线TS 与抛物线有唯一的公共点,直线//MN TS 交抛物线于M ,N 两点,连AM 交y 轴正半轴于G ,连AN 交y 轴负半轴于H ,求OH OG -.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程(9)3x x -=-化为一元二次方程的一般形式,其中二次项系数为1,一次项系数和常数项分别是( )A .9,3B .9,3-C .9-,3-D .9-,3解:(9)3x x -=-,2930x x -+=, 所以一次项系数、常数项分别为9-、3,故选:D .2.下列图形中,为中心对称图形的是( )A .B .C .D .解:A .不是中心对称图形,故本选项不符合题意;B .是中心对称图形,故本选项符合题意;C .不是中心对称图形,故本选项不符合题意;D .不是中心对称图形,故本选项不符合题意.故选:B .3.将抛物线2y x =向右平移a 个单位,再向上平移b 个单位得到解析式242y x x =-+,则a 、b 的值是( )A .2-,2-B .2-,2C .2,2-D .2,2解:将抛物线2y x =向右平移a 个单位,再向上平移b 个单位得到解析式:2()y x a b =-+,即222y x ax a b =-++.222422y x x x ax a b ∴=-+=-++,24a ∴=,22a b +=.2a ∴=,2b =-.故选:C .4.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .3个球都是黑球B .3个球都是白球C .3个球中有黑球D .3个球中有白球解:A 、3个球都是黑球是随机事件; B 、3个球都是白球是不可能事件;C 、3个球中有黑球是必然事件;D 、3个球中有白球是随机事件;故选:B .5.由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为( )A .4πB .9πC .5πD .13π解:由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为以3为半径的圆与以2为半径的圆组成的圆环的面积,即22325πππ⨯-⨯=,故选:C .6.如图,Rt ABC ∆中,90C ∠=︒,3BC =,4AC =,将ABC ∆绕点B 逆时针旋转得△A BC '',若点C '在AB 上,则AA '的长为( )A 13B .4C .5D .5解:如图,连接AA ',将ABC ∆绕点B 逆时针旋转得△A BC '',90A C B C ''∴∠=∠=︒,4A C AC ''==,AB A B '=,根据勾股定理得: 225AB BC AC =+=,5A B AB '∴==,2AC AB BC ''∴=-=,在Rt △AA C ''中,由勾股定理得:2225AA AC A C ''''=+=,故选:C .7.某地有一座圆弧形拱桥,它的跨度(弧所对的弦的长)24m ,拱高(弧的中点到弦的距离)4米,则求拱桥的半径为( )A .16mB .20mC .24mD .28m 解:设圆弧形拱桥的圆心为O ,跨度为AB ,拱高为CD ,连接OA 、OD ,如图: 设拱桥的半径为R 米,由题意得:OD AB ⊥,4CD =米,24AB =米,则1122AD BD AB ===(米),(4)OD R =-米, 在Rt AOD ∆中,由勾股定理得:22212(4)R R =+-,解得:20R =,即桥拱的半径R 为20m ,故选:B .8.甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有2个相同的小球,它们分别写有字母C ,D ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从三个口袋中各随机取出1个小球.(本题中,A ,I 是元音字母;B ,C ,D ,H 是辅音字母),3个小球上恰好有1个元音字母的概率是( )A .16B .13C .12D .34 解:根据题意画图如下:共有8种等可能的结果,其中3个小球上恰好有1个元音字母的有4种, 则3个小球上恰好有1个元音字母的概率是4182=. 故选:C .9.已知实数a ,b 分别满足2640a a -+=,2640b b -+=,且a b ≠,则22a b +的值为( )A .36B .50C .28D .25 解:2640a a -+=,2640b b -+=,且a b ≠,a ∴,b 可看作方程2640x x -+=的两根,6a b ∴+=,4ab =,∴原式22()262428a b ab =+-=-⨯=,故选:C .10.如图,ABC ∆中,90C ∠=︒,5BC =,D 为BC 边上一点,1CD =,AC BC >,E 为边AC 上一动点,当BED ∠最大时CE 的长为( )A .2B .3C .5D .231- 解:如图,过点D 作DF BE ⊥于点F ,90DFE ∴∠=︒,514BD BC CD =-=-=, 设CE x =,2221DE CE CD x ∴++,22222525BE BC CE x x =+=++,1122BDE S BD CE BE DF ∆=⨯⋅=⨯⋅, BD CE BE DF ∴⋅=⋅, 225BD CE DF BE x ⋅∴=+在Rt EDF ∆中,0x >,222424sin 2512625DF x DEF DE x x x x ∴∠===+⋅+++,0x >,222sin 25526()36DEF x x x x ∴∠=++-+,25()0x x-, ∴当25()0x x -=时,25()36x x-+有最小值,从而sin DEF ∠有最大值,即DEF ∠有最大值,解得,5x =±,其中5x =-不符合题意舍去,5x ∴=.∴当BED ∠最大时CE 的长为5.故选:C .二、填空题(本大题共6个小题,每小题3分,共18分)11.已知2x =是一元二次方程2x p =的一个根,则另一根是 2x =- .解:设一元二次方程2x p =的另一根是m ,依题意得:20m +=,解得:2m =-.∴方程的另一根是2x =-.故答案为:2x =-.12.某校九年级组织了篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排了45场比赛,设共有x 个队参赛,依题意列方程,化成一般式为 2900x x --= .解:设邀请x 个球队参加比赛,依题意得123145x +++⋯+-=,即(1)452x x -=, 化为一般形式为:2900x x --=,故答案为:2900x x --=.13.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 12. 解:用A 和a 分别表示第一个有盖茶杯的杯盖和茶杯;用B 和b 分别表示第二个有盖茶杯的杯盖和茶杯. 经过搭配所能产生的结果如下:Aa 、Ab 、Ba 、Bb .所以颜色搭配正确的概率是12. 故答案为:12.14.如图,四边形ABCD 内接于O ,若138BOD ∠=︒,则它的一个外角DCE ∠等于 69︒ .解:138BOD ∠=︒,1692A BOD ∴∠=∠=︒, 180111BCD A ∴∠=︒-∠=︒,18069DCE BCD ∴∠=︒-∠=︒. 故答案为:69︒.15.如图,Rt ABC ∆,90C ∠=︒,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当4AC =,6BC =时,则阴影部分的面积为 12 .解:在Rt ACB ∆中,90ACB ∠=︒,4AC =,6BC =,由勾股定理得:222246213AB AC BC +=+=,所以阴影部分的面积22211112346(13)122222S πππ=⨯⨯+⨯⨯+⨯⨯-⨯⨯=, 故答案为:12.16.抛物线2y ax bx c =++经过点(1,0)-,与y 轴的交点在(0,2)-与(0,3)-之间(不包括这两点),对称轴为直线2x =.下列结论:①0a b c ++<;②若点1(0.5,)M y 、2(2.5,)N y 在图象上,则12y y <;③若m 为任意实数,则2(4)(2)0a m b m -+-;④245()16a b c -<++<-.其中正确结论的序号为 ①③④ . 解:二次函数2(0)y ax bx c a =++≠的图象与x 轴相交于点(1,0)A -,对称轴为直线2x =,∴二次函数2(0)y ax bx c a =++≠的图象与x 轴相交于点(1,0)A -,(5,0),二次函数与y 轴的交点(0,2)B -与(0,3)-之间(不包括这两点),大致图象如图:当1x =时,0y a b c =++<,故结论①正确;二次函数的对称轴为直线2x =,且0a >,20.5 1.5-=,2.520.5-=,12y y ∴>,故结论②不正确;2x =时,函数有最小值,242(am bm c a b c m ∴++++为任意实数),2(4)(2)0a m b m ∴-+-,故结论③正确;22b a-=, 4b a ∴=-,一元二次方程20ax bx c ++=的两根为1-和5,15c a∴-⨯=, 5c a ∴=-,32c -<<-,∴2355a <<, ∴当1x =时,8y abc a =++=-,2416855-<-<-, 245()16a b c ∴-<++<-,故结论④正确;故答案为①③④.三、解答题(共8题,共72分)17.解方程:2410x x -+=.解:移项得:241x x -=-,配方得:24414x x -+=-+,即2(2)3x -=, 开方得:23x -=±,∴原方程的解是:123x =+,223x =-.18.如图,在O 中,2AB AC π==,60BAC ∠=︒,求OA 的长度.解:60BAC ∠=︒,120BOC ∴∠=︒,2AB AC π==,3601202BOC AOB AOC ︒-∠∴∠=∠==︒, ∴1202180OA ππ⋅=, 3OA ∴=.故OA 的长度为3.19.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个,蓝球1个,若从中任意摸出一个球,它是蓝球的概率为0.25.(1)直接写出袋中黄球的个数;(2)从袋子中一次摸2个球,请用画树状图或列表格的方法,求“取出至少一个红球”的概率. 解:(1)设袋中的黄球个数为x 个,∴10.2512x=++, 解得:1x =,经检验,1x =是原方程的解,∴袋中黄球的个数1个;(2)画树状图得:一共有12种等可能的情况数,其中“取出至少一个红球”的有10种,则“取出至少一个红球”概率是105 126=.20.请用无刻度直尺按要求画图,不写画法,保留画图痕迹.(用虚线表示画图过程,实线表示画图结果)(1)如图1,在正方形网格中,有一圆经过了两个小正方形的顶点A,B,请画出这个圆的圆心;(2)如图2,BC为O的弦,画一条与BC长度相等的弦;(3)如图3,ABC∆为O的内接三角形,D是AB中点,E是AC中点,请画出BAC∠的角平分线.解:(1)如图1中,点O即为所求作.(2)如图,线段AD即为所求作.(3)如图,射线AF即为所求作.21.如图,在Rt ABC∠=︒,在AC上取一点D,以AD为直径作O,与AB相交于点E,作∆中,90C线段BE的垂直平分线MN交BC于点N,连接EN.(1)求证:EN是O的切线;(2)若3BC=,O的半径为1.求线段EN与线段AE的长.AC=,4解:(1)证明:如图,连接OE,NM是BE的垂直平分线,=,BN ENB NEB∴∠=∠,=OA OE∴∠=∠,A OEAC∠=︒,90∴∠+∠=︒,90A B90OEN ∴∠=︒,即OE EN ⊥, OE 是半径,EN ∴是O 的切线;(2)如图,连接ON ,设EN 长为x ,则BN EN x ==3AC =,4BC =,O 的半径为1,4CN x ∴=-,312OC AC OA =-=-=,2222OE EN OC CN ∴+=+,222212(4)x x ∴+=+-, 解得198x =,198EN ∴=.连接ED ,DB ,设AE y =,3AC =,4BC =,5AB ∴=, O 的半径为1.2AD ∴=,则222222DE AD AE y =-=-,321CD AC AD =-=-=,22217DB CD BC ∴=+=, AD 为直径,90AED DEB ∴∠=∠=︒,222DE EB DB ∴+=,即2222(5)17y y -+-=, 解得65y =, 198EN ∴=,65AE =. 22.某宾馆有50个房间供游客住宿,当每个房间的房价为每天200元时,房间会全部住满,当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用,根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的正整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式;(2)当房价为多少时,宾馆每天的利润为10560元;(3)求出宾馆每天获得的最大利润.解:(1)由题意可得,5010x y =-, 即y 与x 的函数关系式为5010x y =-; (2)由题意可得,(20020)(50)1056010x x +--=, 解得160x =,2260x =,每个房间每天的房价不得高于340元,200340x ∴+,140x ∴,0140(x x ∴为10的整数倍), 60x ∴=,200260x ∴+=,答:当房价为260元时,宾馆每天的利润为10560元;(3)设利润为w 元, 由题意可得:2(20020)(50)0.1(160)1156010x w x x =+--=--+, ∴当160x <时,w 随x 的增大而增大,每个房间每天的房价不得高于340元,200340x ∴+,140x ∴,0140(x x ∴为10的整数倍)∴当140x =时,w 取得最大值,此时11520w =, 答:宾馆每天获得的最大利润是11520元.23.如图1,已知Rt ABC Rt DCE ∆≅∆,90B D ∠=∠=︒,2BC AB =.(1)若2AB =,求点B 到AC 的距离;(2)当Rt DCE ∆绕点C 顺时针旋转,连AE ,取AE 中点H ,连BH ,DH ,如图2,求证:BH DH ⊥;(3)在(2)的条件下,若2AB =,P 是DE 中点,连接PH ,当Rt DCE ∆绕点C 顺时针旋转的过程中,直接写出PH 的取值范围.解:(1)2BC AB =,2AB =,4BC ∴=,90B ∠=︒,2225AD AB BC ∴=+=设点B 到AC 的距离为h , 则1122ABC S AB BC AC h ∆=⋅=⋅, 4525AB BC h AC ⋅∴==, ∴点B 到AC 45; (2)证明:如图,连接CH ,点H是AE的中点,∴=,AH EH=,CA CECH AE∴⊥,∴∠=∠=︒,AHC EHC90ABC CDE∠=∠=︒,90∴,B,C,H四点在以AC为直径的圆上,AC,D,E,H四点在以CE为直径的圆上,∴∠=∠,CHD CED∠=∠,AHB ACB∠=∠,ACB CED∴∠=∠,AHB CHD∠+∠=︒,AHB BHC90∴∠+∠=︒,BHC CHD90∴∠=︒,90BHD即BH DH⊥;(3)解:如图,连接AD,点H是AE的中点,∴=,AH EH点P 是DE 的中点,EP DP ∴=,HP ∴是EAD ∆的中位线, 12HP AD ∴=, AC CD AD AC CD +-,∴当且仅当A ,C ,D ,三点共线时,AD 取得最大值为252+,AD 取最小值为252-, ∴5151PH -+.24.如图1,已知二次函数2y x bx c =++的图象与x 轴交于点(1,0)A -和点(3,0)B ,与y 轴的负半轴交于点C .(1)求这个函数的解析式;(2)点P 是抛物线上位于第四象限内的一点,当PBC ∆的面积最大时,点P 的坐标,并求出最大面积;(3)如图2,点T 是抛物线上一点,且点T 与点C 关于抛物线的对称轴对称,过点T 的直线TS 与抛物线有唯一的公共点,直线//MN TS 交抛物线于M ,N 两点,连AM 交y 轴正半轴于G ,连AN 交y 轴负半轴于H ,求OH OG -.解:(1)将(1,0)A -和(3,0)B 代入2y x bx c =++得:01093b c b c =-+⎧⎨=++⎩,解得23b c =-⎧⎨=-⎩, ∴函数的解析式为223y x x =--;(2)过P 作//PQ y 轴交BC 于Q ,如图:在223y x x =--中,令0x =得3y =-,(0,3)C ∴-,(3,0)B ,∴直线BC 为3y x =-,设2(,23)P t t t --,则(,3)Q t t -,22(3)(23)3PQ t t t t t ∴=----=-+,PBC CPQ BPQ S S S ∆∆∆∴=+1()2B C PQ x x =⋅- 21(3)32t t =-+⨯ 23327()228t =--+, 302-<, 32t ∴=时,PBC S ∆最大为278, 此时3(2P ,15)4-; (3)抛物线223y x x =--对称轴为直线1x =,(0,3)C -与点T 关于抛物线的对称轴对称,(2,3)T ∴-,设直线TS 为y mx n =+,将(2,3)T -代入得:32m n -=+,23n m ∴=--,∴直线TS 为23y mx m =--,直线TS 与抛物线有唯一的公共点,∴22323y x x y mx m ⎧=--⎨=--⎩只有一个解,即2(2)20x m x m -++=有两个相等实数根, ∴△0=,即24480m m m ++-=,解得2m =,∴直线TS 为27y x =-,直线//MN TS ,∴设直线MN 为2y x h =+,解2223y x h y x x =+⎧⎨=--⎩得24x y h ⎧=⎪⎨=+-⎪⎩24x y h ⎧=+⎪⎨=++⎪⎩(2M ∴4h ++,(2N 4h +-,设直线AM 为y gx d =+, ∴04(2,g d h g d =-+⎧⎪⎨++=++⎪⎩解得d =OG ∴=,同理OH =,OH OG ∴-==-=242h h -=- 2=.。

武汉市元月调考初中九年级的数学试卷试题及含答案汇总

武汉市元月调考初中九年级的数学试卷试题及含答案汇总

2009-2010 学年度武汉市部分学校九年级调研测试数学试题武 市教育科学研究院命制2010.1.26.一、 (每小 3 分,共 36 分)1、要使式子 2a3 在 数范 内存心 ,字母 a 的取 必 足()A.a ≥0. B. a≥ - 3 .C. a≠ - 3.D. a≤- 3.2222. 以下 算①35 = 15 ;②3 3 ; ③ 3 2 =2;④ 16 =4. 此中 的是 ( )100 10 27 3A . ① B. ② C. ③ D. ④3. 在一元二次方程 x 2-4x-1=0 中,二次 系数和一次 系数分 是()A.1 , 4.B.1,-4.C. 1, -1.D. x2,4x.4. 某校九个班 行迎新春大合唱比 ,用抽 的方式确立出 序。

筒中有9 根形状、大小完整同样的 ,上面分 有出 的序号1, 2, 3,⋯, 9. 以下事件中是必定事件的是()A. 某班抽到的序号小于 6.B. 某班抽到的序号 0.C. 某班抽到的序号7.D. 某班抽到的序号大于0.5. 在一个口袋中有 3 个完整同样的小球,把它 分 号 1,2,3,随机地摸取一个小球而后放回,再随机地摸出一个小球。

两次取的小球的 号同样的概率 ()A.1 . B.1 C. 1. D.136296. 方程 x 2-5x-6=0 的两根之和 ( ) A. -6. B. 5 C. -5. D. 1.7. 以下 案是部分汽 的 志,此中是中心 称 形的是() A.B.C.D.8. 如 ,在⊙ O 中,弦 BE 与 CD 订交于点 F , CB,ED 的延 订交于点 A , 若∠ A=30°,∠ CFE=70° , ∠ CDE=( ) A. 20°B. 40° .C. 50° .D. 60°9.2009 年,甲型 H1N1病毒延伸全世界,抗病毒的 物需求量大增。

某制 厂 两个月加大投入,提升生 量,此中九月份生 35 万箱, 十一月份生 51 万箱。

2020年湖北省武汉市部分学校九年级元月调考数学试卷

2020年湖北省武汉市部分学校九年级元月调考数学试卷

2020年湖北省武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)将一元二次方程5x2﹣1=4x化成一般形式后,二次项的系数和一次项系数分别是()A.5,﹣1B.5,4C.5,﹣4D.5,12.(3分)下列四张扑克牌的牌面,不是中心对称图形的是()A.B.C.D.3.(3分)抛物线y=2x2与y=﹣2x2相同的性质是()A.开口向下B.对称轴是y轴C.有最低点D.对称轴是x轴4.(3分)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是白球B.至少有1个球是黑球C.至少有2个球是黑球D.至少有2个球是白球5.(3分)已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定6.(3分)要将抛物线y=x2平移后得到抛物线y=x2+2x+3,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位7.(3分)如图,将△ABC绕顶点C逆时针旋转角度α得到△A′B′C,且点B刚好落在A′B′上.若∠A=28°,∠BCA′=43°,则α等于()A.36°B.37°C.38°D.39°8.(3分)小明上学要经过三个十字路口,每个路口遇到红灯、绿灯的可能性都相等.他上学经过三个路口时,不全是红灯的概率是()A.B.C.D.9.(3分)如果m、n是一元二次方程x2+x=4的两个实数根,那么多项式2n2﹣mn﹣2m的值是()A.16B.14C.10D.610.(3分)如图,△ABC的两个顶点A、B在半径是的⊙O上,∠A=60°,∠B=30°.若固定点A,点B在⊙O上运动,则OC的最小值是()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.(3分)在直角坐标系中,点(1,2)关于原点对称的点的坐标是.12.(3分)一个盒中有10枚黑棋子和若干枚白棋子,这些棋子除颜色外无其他差别.从盒中随机取出一枚棋子,记下颜色,再放回盒中.不断重复上述过程,一共取了300次,其中有100次取到黑棋子,由此估计盒中约有枚白棋子.13.(3分)如图,四边形ABCD是⊙O的内接四边形,∠BOD=100°,则∠BCD=°.14.(3分)为响应全民阅读活动,某校面向社会开放图书馆.自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次.若进馆人次的月增长率相同,为求进馆人次的月增长率.设进馆人次的月增长率为x,依题意可列方程为.15.(3分)已知二次函数y=ax2+bx+c(c<0)的图象开口向上,对称轴为直线x=1,下列结论中一定正确的是(填序号即可).①b<0;②4a+2b+c<0;③a+c>b;④a+b≤t(at+b)(t是一个常数).16.(3分)我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R,其内接正十二边形的周长为C.若R=,则C=,≈(结果精确到0.01,参考数据:≈2.449,≈1.414).三、解答题(共8小题,共72分)17.(8分)若关于x的一元二次方程x2+2x+m=0有两个相等的实数根,求m的值及此时方程的根.18.(8分)如图,A、B、C三点在半径为1的⊙O上,四边形ABCO是菱形,求的长.19.(8分)在5件同型号的产品中,有1件不合格和4件合格品.(1)从这5件产品中随机抽取1件,直接写出抽到合格品的概率;(2)从这5件产品中随机抽取2件,求抽到的都是合格品的概率.20.(8分)请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果)(1)如图1,P是平行四边形ABCD边上一点,过点P画一条直线把这个四边形分成面积相等的两部分;(2)如图2,五边形ABCDE是正五边形,画一条直线把这个五边形分成面积相等的两部分;(3)如图3,△ABC的外接圆的圆心是点O,D是的中点,画一条直线把△ABC分成面积相等的两部分.21.(8分)如图,P A、PB分别与⊙O相切于A、B两点,AC是⊙O的直径,AC=AP,连接OP交AB于点D,连接PC交⊙O于点E,连接DE.(1)求证:△ABC≌△PDA;(2)求的值.22.(10分)某公司经过市场调查,整理出某种商品在某个月的第x天的售价与销量的相关信息如下表:第x天售价(元/件)日销售量(件)1≤x≤30x+40100﹣2x已知该商品的进价为20元/件,设销售该商品的日销售利润为y元.(1)求y与x的函数关系式;(2)问销售该商品第几天时,日销售利润为2250元?(3)问在当月有多少天的日销售利润不低于2400元,请直接写出结果.23.(10分)问题背景:如图(1),在四边形ABCD中.若BC=CD,∠BAD=∠BCD=90°,则AC平分∠BAD.小明为了证明这个结论,将△ABC绕点C顺时针旋转90°,请帮助小明完成他的作图.迁移应用:如图(2),在五边形ABCDE中,∠A=∠C=90°,AB=BC,AE+CD=DE,求证:BD平分∠CDE.联系拓展:如图(3),在Rt△ABC中,AC=BC,若点D满足AD=AB,BD=AB,点P是AD的中点,直接写出的值.24.(12分)如图,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(m,2m+4)(m>﹣2),且与x轴相切于点B,y与x之间存在一种确定的函数关系,其图象是一条常见的曲线,记作曲线F.(1)如图1,①y=时,直接写出⊙P的半径;②当m=﹣1,x=﹣2时,直接写出⊙P的半径.(2)求曲线F最低点的坐标(用含有m的式子表示);(3)如图2,若曲线F最低点总在直线y=x+3的下方,点C(﹣2,y1),D(1,y2)都在曲线F上,试比较y1与y2的大小.2020年湖北省武汉市部分学校九年级元月调考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)将一元二次方程5x2﹣1=4x化成一般形式后,二次项的系数和一次项系数分别是()A.5,﹣1B.5,4C.5,﹣4D.5,1【解答】解:5x2﹣1=4x,5x2﹣4x﹣1=0,二次项的系数和一次项系数分别是5、﹣4,故选:C.2.(3分)下列四张扑克牌的牌面,不是中心对称图形的是()A.B.C.D.【解答】解:根据中心对称图形的概念,知A、B、C都是中心对称图形;D、旋转180°后,中间的花色发生了变化,不是中心对称图形.故选:D.3.(3分)抛物线y=2x2与y=﹣2x2相同的性质是()A.开口向下B.对称轴是y轴C.有最低点D.对称轴是x轴【解答】解:抛物线y=2x2的开口向上,对称轴为y轴,有最低点;抛物线y=﹣2x2开口向下,对称轴为y轴,有最高点;故抛物线y=2x2与y=﹣2x2相同的性质是对称轴都是y轴,故选:B.4.(3分)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是白球B.至少有1个球是黑球C.至少有2个球是黑球D.至少有2个球是白球【解答】解:由题意,得一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有一个黑球,是必然事件,故选:B.5.(3分)已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定【解答】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.6.(3分)要将抛物线y=x2平移后得到抛物线y=x2+2x+3,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位【解答】解:y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(﹣1,2),抛物线y=x2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x2向左平移1个单位长度,再向上平移2个单位长度.故选:A.7.(3分)如图,将△ABC绕顶点C逆时针旋转角度α得到△A′B′C,且点B刚好落在A′B′上.若∠A=28°,∠BCA′=43°,则α等于()A.36°B.37°C.38°D.39°【解答】解:∵△ABC绕顶点C逆时针选择角度α得到△A′B′C,且点B刚好落在A′B′上.∠A=28°,∠BCA′=43°,∴∠A=∠A′=28°,CB=CB′,∴∠CBB′=∠A′+∠BCA′=71°,∵CB=CB′,∴∠CBB′=∠CB′B,∴∠CB′B=71°,∴∠BCB′=38°,即α等于38°,故选:C.8.(3分)小明上学要经过三个十字路口,每个路口遇到红灯、绿灯的可能性都相等.他上学经过三个路口时,不全是红灯的概率是()A.B.C.D.【解答】解:画树状图:从图中可知共有8种可能,其中他上学经过三个路口时,不全是红灯的有7种,所以不全是红灯的概率是;故选:D.9.(3分)如果m、n是一元二次方程x2+x=4的两个实数根,那么多项式2n2﹣mn﹣2m的值是()A.16B.14C.10D.6【解答】解:∵n是一元二次方程x2+x=4的根,∴n2+n=4,即n2=﹣n+4,∵m、n是一元二次方程x2+x=4的两个实数根,∴m+n=﹣1,mn=﹣4,∴2n2﹣mn﹣2m=2(﹣n+4)﹣mn﹣2m=﹣2(m+n)﹣mn+8=2+4+8=14.故选:B.10.(3分)如图,△ABC的两个顶点A、B在半径是的⊙O上,∠A=60°,∠B=30°.若固定点A,点B在⊙O上运动,则OC的最小值是()A.B.C.D.【解答】解:如图,设BM交⊙O于T,连接OT,OA,过点O作OH⊥AT于H,连接CH.∵∠B=30°,∴∠TOA=60°,∵OT=OA,∴△OTA是等边三角形,∴OT=OA=AT=,∵OH⊥AT,∴TH=AH=,OH===,∵AC⊥BM,∴∠ACT=90°,∴CH=,∵OC≥OH﹣CH=﹣=,∴OC的最小值是.故选:A.二、填空题(共6小题,每小题3分,共18分)11.(3分)在直角坐标系中,点(1,2)关于原点对称的点的坐标是(﹣1,﹣2).【解答】解:点(1,2)关于原点对称的点的坐标是(﹣1,﹣2),故答案为:(﹣1,﹣2).12.(3分)一个盒中有10枚黑棋子和若干枚白棋子,这些棋子除颜色外无其他差别.从盒中随机取出一枚棋子,记下颜色,再放回盒中.不断重复上述过程,一共取了300次,其中有100次取到黑棋子,由此估计盒中约有20枚白棋子.【解答】解:∵共取了300次,其中有100次取到黑棋子,∴摸到黑色棋子的概率约为=,∴摸到白色棋子的概率约为1﹣=,∵共有10可黑色棋子,∴设有x个白色棋子,则,解得:x=20,故答案为:20.13.(3分)如图,四边形ABCD是⊙O的内接四边形,∠BOD=100°,则∠BCD=130°.【解答】解:∵∠BOD=100°,∴∠A=50°.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣50°=130°.故答案为:130.14.(3分)为响应全民阅读活动,某校面向社会开放图书馆.自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次.若进馆人次的月增长率相同,为求进馆人次的月增长率.设进馆人次的月增长率为x,依题意可列方程为200+200(1+x)+200(1+x)2=872.【解答】解:设进馆人次的月平均增长率为x,则由题意得:200+200(1+x)+200(1+x)2=872,故答案为:200+200(1+x)+200(1+x)2=872.15.(3分)已知二次函数y=ax2+bx+c(c<0)的图象开口向上,对称轴为直线x=1,下列结论中一定正确的是①②④(填序号即可).①b<0;②4a+2b+c<0;③a+c>b;④a+b≤t(at+b)(t是一个常数).【解答】解:①如图所示,抛物线开口方向向上,则a>0.∵对称轴在y轴右侧,∴a、b异号,∴b<0,故①正确;②∵x=﹣=1,∴2a=﹣b.∴4a+2b+c=﹣2b+2b+c=c<0.∴4a+2b+c<0.故②正确;③∵无法判断抛物线与x轴的交点坐标,∴无法判断当x=﹣1时,y的符号,∴a+c﹣b>0,即a+c>b不一定成立.故③错误;④根据图示知,当x=1时,y有最小值;当t≠1时,有at2+bt+c>a+b+c,所以a+b≤t(at+b)(t是一个常数).故④正确.综上所述,正确的结论是:①②④.故答案是:①②④.16.(3分)我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R,其内接正十二边形的周长为C.若R=,则C=24,≈ 3.11(结果精确到0.01,参考数据:≈2.449,≈1.414).【解答】解:如图,△AOB中,∠AOB=30°,OA=OB=+,作AH⊥OB于H.则AH=OA=,OH=AH=,∴BH=OB﹣OH=,∴AB===2,∴正十二边形的周长C=12×2=24,∴=≈3.11,故答案为:24,3.11.三、解答题(共8小题,共72分)17.(8分)若关于x的一元二次方程x2+2x+m=0有两个相等的实数根,求m的值及此时方程的根.【解答】解:根据题意得△=22﹣4m=0,解得m=1.此时方程为x2+2x+1=0,解得x1=x2=﹣1.18.(8分)如图,A、B、C三点在半径为1的⊙O上,四边形ABCO是菱形,求的长.【解答】解:连接OB.∵四边形OABC是菱形,∴OA=AB=OB=OC=BC,∴△AOB,△BOC都是等边三角形,∴∠AOB=∠BOC=60°,∴∠AOC=120°,∴的长==19.(8分)在5件同型号的产品中,有1件不合格和4件合格品.(1)从这5件产品中随机抽取1件,直接写出抽到合格品的概率;(2)从这5件产品中随机抽取2件,求抽到的都是合格品的概率.【解答】解:(1)P=;(2)设5件产品分别为a,b,c,d,E,大写代表不合格,再从这5件甲产品中随机抽取2件,可能情况为:ab,ac,ad,bc,cd,bd,aE,bE,cE,dE,10种情况,这2件产品全是合格品有ab,ac,ad,bc,cd,bd,6种情况,所以P═=.20.(8分)请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果)(1)如图1,P是平行四边形ABCD边上一点,过点P画一条直线把这个四边形分成面积相等的两部分;(2)如图2,五边形ABCDE是正五边形,画一条直线把这个五边形分成面积相等的两部分;(3)如图3,△ABC的外接圆的圆心是点O,D是的中点,画一条直线把△ABC分成面积相等的两部分.【解答】解:(1)如图1,连接AC,BD,交于点O,作直线PO,则直线PO即为所求;(2)如图2,连接BD,CE,交于点P,作直线AP,则直线AP即为所求;(3)如图3,连接OD,交AC于点Q,作直线BQ,则直线BQ即为所求.21.(8分)如图,P A、PB分别与⊙O相切于A、B两点,AC是⊙O的直径,AC=AP,连接OP交AB于点D,连接PC交⊙O于点E,连接DE.(1)求证:△ABC≌△PDA;(2)求的值.【解答】(1)证明:连接OB.∵P A、PB分别与⊙O相切于A、B两点,∴P A=PB,OA=OB,P A⊥AC,∴OP垂直平分线段AB,∠OAP=90°,∴∠ADP=90°,∵AC是直径,∴∠ABC=∠ADP=90°,∵∠CAB+∠DAP=90°,∠CAB+∠ACB=90°,∴∠ACB=∠P AD,∵AC=AP,∴△ABC≌△PDA(AAS).(2)解:连接OE,延长BE交OP于J.∵AC=AP,∠CAP=90°,∴∠ACP=45°,∵OC=OE,∴∠OCE=∠OEC=45°,∴∠COE=∠CAP=90°,∴OE∥P A,∵OA=OC,∴CE=PE,∵OP⊥AB,BC⊥AB,∴OP∥BC,∴∠JPE=∠ECB,∵∠JEP=∠BEC,CE=PE,∴△CEB≌△PEJ(ASA),∴BE=EJ,∵∠ABE=∠ACE=45°,∴∠DBJ=∠DJB=45°,∴DB=DJ,∵∠BDJ=90°,∴DE=BE=EJ,DE⊥BE,∴=.22.(10分)某公司经过市场调查,整理出某种商品在某个月的第x天的售价与销量的相关信息如下表:第x天售价(元/件)日销售量(件)1≤x≤30x+40100﹣2x已知该商品的进价为20元/件,设销售该商品的日销售利润为y元.(1)求y与x的函数关系式;(2)问销售该商品第几天时,日销售利润为2250元?(3)问在当月有多少天的日销售利润不低于2400元,请直接写出结果.【解答】解:(1)根据题意,得y=(x+40﹣20)(100﹣2x)=﹣2x2+60x+2000(1≤x≤30).(2)当y=2250时,2250=﹣2x2+60x+2000,x2﹣30x+125=0,解得x1=5,x2=25,答:销售该商品第5天或第25天时,日销售利润为2250元.(3)∵y=﹣2x2+60x+2000=﹣2(x﹣15)2+2450,当y=2400时,2400=﹣2(x﹣15)2+2450,2(x﹣15)2=50解得x1=10,x2=20.根据二次函数的图象可知:当10≤x≤20时,日销售利润不低于2400元.答:当月有11天的日销售利润不低于2400元.23.(10分)问题背景:如图(1),在四边形ABCD中.若BC=CD,∠BAD=∠BCD=90°,则AC平分∠BAD.小明为了证明这个结论,将△ABC绕点C顺时针旋转90°,请帮助小明完成他的作图.迁移应用:如图(2),在五边形ABCDE中,∠A=∠C=90°,AB=BC,AE+CD=DE,求证:BD平分∠CDE.联系拓展:如图(3),在Rt△ABC中,AC=BC,若点D满足AD=AB,BD=AB,点P是AD的中点,直接写出的值.【解答】解:问题背景:如图(1)所示,作法:延长AD,在AD的延长线上取一点F使DF=AB,连接CF,即:△CDF是△ABC绕点C顺时针旋转90°所得;理由:在四边形ABCD中,∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠CDF=180°,∴∠ABC=∠CDF,∵BC=CD,∴△ABC≌△FDC(SAS),∴∠BAC=∠DFC,AC=CF,∴∠CAF=∠CFD,∴∠BAC=∠DAC,即:AC平分∠BAD;迁移应用:如图(2),连接BE,延长DC,在DC的延长线上取一点F,使CG=AE,连接BG,∵∠A=∠BCD=90°,∴∠BCG=90°=∠A,∵BC=AB,∴△BCG≌△BAE(SAS),∴BG=BE,∵AE+CD=DE,∴CG+CD=DE,即:DG=DE,∵BD=BD,∴△BDG≌△BDE(SSS),∴∠BDG=∠BDE,∴BD平分∠CDE;联系拓展:当点D在AB上方时,如图(3),连接CP,在PB的延长线上取一点Q,使BQ=AP,连接CQ,设AB=13a,∵AD=AB,BD=AB,∴BD=13a,AD=10a,∵点P是AD的中点,∵BD=AB,∴BP⊥AD,∴∠APD=90°,∵∠ACB=90°,∴∠APB+∠ACB=180°,∴∠CBP+∠CAP=180°,∵∠CBP+∠CBQ=180°,∴∠CAP=∠CBQ,∵AC=BC,∴△ACP≌△BCQ(SAS),∴CP=CQ,∠ACP=∠BCG,∴∠PCQ=∠PCB+∠BCQ=∠PCB+∠ACP=∠ACB=90°,在Rt△ABP中,根据勾股定理得,BP==12a,∴PQ=BP+BQ=12a+5a=17a,在Rt△PCQ中,PC=PQ=a,∴==,当点D在AB下方时,如图(4),∵AB=BD,点P是AD的中点,∴BP⊥AD,∴AP=AD,∠BP A=90°=∠ACB,∴∠CBP=∠CAP,过点C作CH⊥CP交BP于H,∴∠PCH=90°=∠ACB,∴∠BCH=∠ACP,∴△CBH≌△CAP(ASA),∴BH=AP,∴AP=AD=m,∴BH=m,在Rt△APB时,BP==m,∴PH=BP﹣BH=m,∴CP==×m=,∴==,即:的值为或.24.(12分)如图,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(m,2m+4)(m>﹣2),且与x轴相切于点B,y与x之间存在一种确定的函数关系,其图象是一条常见的曲线,记作曲线F.(1)如图1,①y=时,直接写出⊙P的半径;②当m=﹣1,x=﹣2时,直接写出⊙P的半径.(2)求曲线F最低点的坐标(用含有m的式子表示);(3)如图2,若曲线F最低点总在直线y=x+3的下方,点C(﹣2,y1),D(1,y2)都在曲线F上,试比较y1与y2的大小.【解答】解:(1)①如图1,连接PB,则PB=,∴⊙P的半径为;②如图1,连接P A,则P A=PB,∵m=﹣1,∴A(﹣1,2),又∵P(x,y),∴(﹣1﹣x)2+(2﹣y)2=y2,整理,得y=x2+x+,当x=﹣2时,y=,∴⊙P的半径为;(2)∵P(x,y),A(m,2m+4),且PB=P A,∴y2=(m﹣x)2+(2m+4﹣y)2,整理,得y=(x﹣m)2+m+2,∴曲线F为抛物线,∵m>﹣2,∴>0,∴抛物线y=(x﹣m)2+m+2的开口向上,∴曲线F最低点的坐标即顶点坐标为(m,m+2);(3)由(2)知,曲线F最低点的坐标为(m,m+2),对称轴为直线x=m,且曲线F最低点总在直线y=x+3的下方,∴m+2<m+3,解得,m<2,又∵m>﹣2,∴﹣2<m<2,∵点C(﹣2,y1),D(1,y2)都在曲线F上,则当对轴称为m==﹣时,点C与点D关于抛物线的对称轴对称,则y1=y2;当对称轴﹣2<m<﹣时,由二次函数的图象及性质可知,点C离对称轴更近,则y1<y2;当对称轴﹣<m<2时,由二次函数的图象及性质可知,点D离对称轴更近,则y1>y2.。

2022-2023学年度武汉市部分学校九年级二月调研考试数学试卷

2022-2023学年度武汉市部分学校九年级二月调研考试数学试卷

2022-2023学年度武汉市部分学校二月九年级调研考试数学试卷2023.2.21亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷由第Ⅰ卷(选择题)和第1卷(非选择题)两部分组成.全卷共6页,三大题,满分120 分,考试用时 120 分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答第1卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答在“试....卷”上无效......4.答第1卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效...........5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!第Ⅰ卷(选择题共 30 分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.“守株待兔”这个事件是A.随机事件B.确定性事件C.必然事件D.不可能事件2.下列图形是中心对称图形的是3.解一元二次方程x2-2x-4=0,配方后正确的是A.(x-1)2=3B.(x-1)2=4C.(x-1)2=5D.(x-2)2=84.已知一元二次方程x2+4x-1=0 的两根分别为m,n,则 mn-m-n 的值是A.5B.3C.-3D.-55.如图,已知⊙O的半径为5,直线AB经过⊙O上一点P,下列条件不能判定直线AB与⊙O相切的是A.OP=5B.∠APO=∠BPOC.点O到直线 AB 的距离是 5D.OP⟂AB6.某品牌手机原来每部售价为1999元,经过连续两次降价后,该手机每部售价为1 360元,设平均每次降价的百分率为x,根据题意,所列方程正确的是A.1999x2=1360B.1999(1-x2)=1360C.1999(1-x)2=1360D.1999(1-2x)=13607.如图,在平面直角坐标系中,矩形ABCO的两边与坐标轴重合,OA=2,OC=1,将矩形ABCO绕点O逆时针旋转,每次旋转90°,则第2023次旋转结束时,点B 的坐标是A.(-2,-1)B.(-1,2)C.(-2,1)D.(1,-2)8.在二次函数y=-x2+2x中,若函数值大于0,则结合函数图象判断x的取值范围是A.x<0 或x>2B.x>0 或x<-2C.-2 <x<0D.0<x<29. 如图,在圆内接四边形ABCD 中,AB=AD ,∠BAD=90°.若四边形ABCD 的而积是S ,AC 的长是x ,则S与x 之间函数关系式是A.S=x 2 B.S=12x 2 C.S=√2 x 2 D.23x 210.根据频率估计概率原理,可以用随机模拟的方法对圆周率进行估计.用计算机随机产生m 个有序数对(x ,y )(0≤x ≤1,0≤y ≤1),它们对应的点全部在平面直角坐标系中某一个正方形的边界及其内部、若统计出这些点中到原点的距离小于或等于1的点有n 个,则可估计 π 的值是A.m nB.n mC.2n mD.4nm 第Ⅱ卷(非选择题 共 90 分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.在平而直角坐标系中,点P (-3,4)关于原点对称的点的坐标是12.若一个长方形的长比宽多2,且面积为80,则宽是13.如图,⊙O 是△ABC 的内切圆,∠C=40°,则∠AOB 的大小是14.甲、乙、丙三位同学把自己的数学课本放在一起,每人从中随机抽取一本(不放回),三位同学抽到的课本都是自己课本的概率是 .15.已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(-1,0),下列结论:①b>0;②关于 x 的一元二次方程 ax2+bx+c=0有两个不相等的实数根;③当x<-1 时,y 随 x 的增大而减小;④m 为任意实数,若c=3a,则代数式am2+bm+c 的最小值是-a.其中正确的是(填写序号).16.如图,D是△ABC内一点,∠BDC=90°,BD=CD,AB=20,AC=21,AD=13,AD=13√2则 BC的长是2三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8 分)关于x的一元二次方程x2+bx+8=0 有一个根是x=2,求b 的值及方程的另一个根.18.(本小题满分8分)如图,在△ABC中,AC=BC,将△ABC绕点 A逆时针旋转60°,得到△ADE,连接 BD,BE.(1)判断△ABD的形状;(2)求证:BE平分∠ABD.19.(木小题满分 8 分)一个不透明的布袋中装有1个红球,1个黑球和若干个白球,它们除颜色外其余都相同.从中任意摸出1个球,是白球的概率为12(1)直接写出布袋中白球的个数;(2)从布袋中先摸出一个球后放回,再摸出一个球,请用列表或画树状图法求两次摸到的球都是白球的概率.20.(本小题满分8 分)如图,AB,CD是⊙O的两条弦,∠AOB + ∠COD=180°(1)在图(1)中,∠AOB=120°,CD=6,直接写出图中阴影部分的面积;(2)在图(2)中,E 是AB 的中点,判断OE 与CD 的数量关系,并证明你的结论.21.(本小题满分8分)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点 D,使;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N 两点,再画弦 MN 的中点 G.22.(本小题满分10 分)燃放烟花是一种常见的喜庆活动.如图,小杰燃放一种手持烟花,这种烟花每隔2 s 发射一枚花弹,每枚花弹的飞行路径视为同一条抛物线,飞行相同时间后发生爆炸.小杰发射出的第一枚花弹的飞行高度h(单位:m)随飞行时间t(单位:s)变化的规律如下表:(1)求第一枚花弹的飞行高度h与飞行时间1的函数解析式(不要求写出自变量的取值范围);(2)当第一枚花弹到达最高点时,求第二枚花弹到达的高度;(3)为了安全,要求花弹爆炸时的高度不低于30m.小杰发现在第一枚花弹煤炸的同时,第二枚花弹与它处于同一高度,请分析花弹的爆炸高度是否符合安全要求.23.(本小题满分 10 分)操作与思考如图(1),在△ABC 中,AB=AC,∠BAC=α,D 是异于A,B的一点,且∠ADB=90°,将线段AD绕点A逆时针旋转α,画出对应线段AE,连接DE交BC于点F,猜想BF 与CF的数量关系,并证明你的猜想;迁移与运用如图(2),在△ABC和△CDE中,AC=BC,CD=CE,∠ACB=∠DCE=90°,AC=√10,CD=√2,ED 的延长线交 AB 于点 F,且∠BDC=90°,直接写出 EF 的长.24.(本题满分12分)如图,抛物线y=x2-2x-6与x轴分别相交于A,B两点(点A在点B的左侧),C是AB的中点,平行四边形CDEF的顶点 D,E 均在抛物线上.(1)直接写出点C的坐标;(2)如图(1),若点D的横坐标是-2,点E在第三象限,平行四边形CDEF的面积是 13,求点 F 的坐标;(3)如图(2),若点F在抛物线上,连接 DF,求证:直线 DF 过一定点.。

2021-2022学年武汉市初三数学第一学期元月调考数学试卷及解析

2021-2022学年武汉市初三数学第一学期元月调考数学试卷及解析

2021-2022学年武汉市初三数学第一学期期末数学试卷一、选择题(共10小题,每小题3分,共30分) 1.下列图形中,不是中心对称图形的是( )A .B .C .D .2.有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是( ) A .(1)(2)都是随机事件 B .(1)(2)都是必然事件 C .(1)是必然事件,(2)是随机事件 D .(1)是随机事件,(2)是必然事件3.已知O 的半径等于5,圆心O 到直线l 的距离为6,那么直线l 与O 的公共点的个数是( ) A .0B .1C .2D .无法确定4.解一元二次方程2640x x --=,配方后正确的是( ) A .2(3)13x +=B .2(3)5x -=C .2(3)4x -=D .2(3)13x -=5.在平面直角坐标系中,将抛物线2y x =向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是( ) A .2(1)1y x =--B .2(1)1y x =-+C .2(1)1y x =+-D .2(1)1y x =++6.已知一元二次方程2410x x --=的两根分别为m ,n ,则m n mn +-的值是( ) A .5B .3C .3-D .4-7.抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是( ) A .18B .14 C .38D .588.已知二次函数221(y ax ax a =-+为常数,且0)a >的图象上有三点1(2,)A y -,2(1,)B y ,3(3,)C y ,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .132y y y <<C .213y y y <<D .231y y y <<9.在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m 的雷锋雕像,那么该雕像的下部设计高度约是( )(参考数据:2 1.414≈,3 1.732≈,5 2.236)≈A .0.76mB .1.24mC .1.36mD .1.42m10.如图是一个含有3个正方形的相框,其中90BCD DEF ∠=∠=︒,2AB =,3CD =,5EF =,将它镶嵌在一个圆形的金属框上,使A ,G ,H 三点刚好在金属框上,则该金属框的半径是( )A .5102B .752C .52D .1122二、填空题(共6小题,每小题3分,共18分)11.在平面直角坐标系中,点(3,2)-关于原点的对称点的坐标是: .12.如图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是 .13.如图,PM ,PN 分别与O 相切于A ,B 两点,C 为O 上异于A ,B 的一点,连接AC ,BC .若58P ∠=︒,则ACB ∠的大小是 .14.“降次”是解一元二次方程的基本思想,用这种思想解高次方程30x x -=,它的解是 . 15.如图,已知圆锥的母线AB 长为40cm ,底面半径OB 长为10cm ,若将绳子一端固定在点B ,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是 .16.下列关于二次函数2223(y x mx m m =-+-为常数)的结论: ①该函数的图象与x 轴总有两个公共点; ②若1x >时,y 随x 的增大而增大,则1m =; ③无论m 为何值,该函数的图象必经过一个定点; ④该函数图象的顶点一定不在直线2y =-的上方. 其中正确的是 (填写序号). 三、解答题(共8小题,共72分)17.若关于x 的一元二次方程220x bx +-=有一个根是2x =,求b 的值及方程的另一个根.18.如图,将ABC ∆绕点A 逆时针旋转得到ADE ∆,点D 在BC 上,已知70B ∠=︒,求CDE ∠的大小.19.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.甲从口袋中随机摸取一个小球,记下标号m ,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n ,组成一个数对(,)m n . (1)用列表法或画树状图法,写出(,)m n 所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢.你认为这个游戏规则公平吗?请说明理由. 20.如图,A ,P ,B ,C 是O 上的四个点,60APC CPB ∠=∠=︒. (1)判断ABC ∆的形状,并证明你的结论. (2)证明:PA PB PC +=.21.如图是由小正方形组成的97⨯网格,每个小正方形的顶点叫做格点,A ,B ,C 三个格点都在圆上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示. (1)画出该圆的圆心O ,并画出劣弧AB 的中点D ;(2)画出格点E ,使EA 为O 的一条切线,并画出过点E 的另一条切线EF ,切点为F .22.跳绳是大家喜爱的一项体育运动,当绳子甩到最高处时,其形状视为一条抛物线.如图是小涵与小军将绳子甩到最高处时的示意图,已知两人拿绳子的手离地面的高度都为1m ,并且相距4m ,现以两人的站立点所在的直线为x 轴,建立如图所示的平面直角坐标系,其中小涵拿绳子的手的坐标是(0,1).身高1.50m 的小丽站在绳子的正下方,且距小涵拿绳子的手1m 时,绳子刚好经过她的头顶. (1)求绳子所对应的抛物线的解析式(不要求写自变量的取值范围); (2)身高1.70m 的小兵,能否站在绳子的正下方,让绳子通过他的头顶?(3)身高1.64m 的小伟,站在绳子的正下方,他距小涵拿绳子的手s m ,为确保绳子通过他的头顶,请直接写出s 的取值范围.23.问题背景如图1,在ABC ∆与ADE ∆中,若AB AC =,AD AE =,BAC DAE ∠=∠,则存在一对全等三角形,请直接写出这对全等三角形. 尝试运用如图2,在等边ABC ∆中,12BC =,点D 在BC 上,以AD 为边在其右侧作等边ADE ∆,F 是DE 的中点,连接BF ,若4BD =,求BF 的长. 拓展创新如图3,在等腰Rt ABC ∆中,90BAC ∠=︒,12BC =,点D 在BC 上,以AD 为斜边在其右侧作等腰Rt ADE ∆,连接BE .设BD x =,2BE y =,直接写出y 关于x 的函数关系式(不要求写自变量的取值范围).24.如图,抛物线213222y x x =-++与x 轴负半轴交于点A ,与y 轴交于点B .(1)求A ,B 两点的坐标;(2)如图1,点C 在y 轴右侧的抛物线上,且AC BC =,求点C 的坐标;(3)如图2,将ABO ∆绕平面内点P 顺时针旋转90︒后,得到DEF ∆(点A ,B ,O 的对应点分别是点D ,E ,)F ,D ,E 两点刚好在抛物线上.①求点F 的坐标; ②直接写出点P 的坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列图形中,不是中心对称图形的是()A.B.C.D.解:选项C不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形,选项A、B、D均能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形,故选:C.2.有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是()A.(1)(2)都是随机事件B.(1)(2)都是必然事件C.(1)是必然事件,(2)是随机事件D.(1)是随机事件,(2)是必然事件解:事件(1):购买1张福利彩票,中奖,这是随机事件;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,这是必然事件;故选:D.3.已知O的半径等于5,圆心O到直线l的距离为6,那么直线l与O的公共点的个数是() A.0B.1C.2D.无法确定解:O的半径等于5,圆心O到直线l的距离为6,即圆心O到直线l的距离大于圆的半径,∴直线l和O相离,∴直线l与O没有公共点.故选:A.4.解一元二次方程2640--=,配方后正确的是()x xA .2(3)13x +=B .2(3)5x -=C .2(3)4x -=D .2(3)13x -=解:方程移项,得264x x -=, 方程两边都加9,得26913x x -+=,2(3)13x ∴-=. 故选:D .5.在平面直角坐标系中,将抛物线2y x =向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是( ) A .2(1)1y x =--B .2(1)1y x =-+C .2(1)1y x =+-D .2(1)1y x =++解:将将抛物线2y x =向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是2(1)1y x =-+. 故选:B .6.已知一元二次方程2410x x --=的两根分别为m ,n ,则m n mn +-的值是( ) A .5B .3C .3-D .4-解:根据题意得4m n +=,1mn =-, 所以4(1)5m n mn +-=--=. 故选:A .7.抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是( ) A .18B .14 C .38D .58解:画树状图如下:由树状图可知共有8种等可能结果,其中恰有两次正面向上的有3种, 所以恰有两次正面向上的概率为38,8.已知二次函数221(y ax ax a =-+为常数,且0)a >的图象上有三点1(2,)A y -,2(1,)B y ,3(3,)C y ,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .132y y y <<C .213y y y <<D .231y y y <<解:当2x =-时,144181y a a a =++=+, 当1x =时,2211y a a a =-+=-+, 当3x =时,396131y a a a =-+=+, 0a >, 83a a a ∴>>-, 81311a a a ∴+>+>-+, 132y y y ∴>>,故选:D .9.在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m 的雷锋雕像,那么该雕像的下部设计高度约是( )(参考数据:2 1.414≈,3 1.732≈,5 2.236)≈A .0.76mB .1.24mC .1.36mD .1.42m解:设雕像的下部高为xm ,则上部长为(2)x m -,雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,雷锋雕像为2m ,∴512x -, 51 1.24x ∴=≈,即该雕像的下部设计高度约是1.24m ,10.如图是一个含有3个正方形的相框,其中90BCD DEF ∠=∠=︒,2AB =,3CD =,5EF =,将它镶嵌在一个圆形的金属框上,使A ,G ,H 三点刚好在金属框上,则该金属框的半径是( )A .5102B .752C .52D .1122解:连接AG ,作线段AG 的中垂线和线段HG 的中垂线交于点O ,交HG 于点K ,交EF 于点M ,连接OG ,则点A 、G 、H 三点刚好在以点O 为圆心,OG 为半径的圆上, 90BCD DEF ∠=∠=︒,2AB =,3CD =,5EF =, 22AC ∴=,32EC =,52EG =, 102AG ∴=,∴点E 为线段AG 的中点,45GEF ∠=︒,OE AG ⊥, 45OEF ∴∠=︒,OEM ∴∆是等腰直角三角形, 5EF =,3CD =,515522OK ∴=+=,52KG =, 2222515510()()222OG KG OK ∴=+=+=. 故选:A .二、填空题(共6小题,每小题3分,共18分)11.在平面直角坐标系中,点(3,2)-关于原点的对称点的坐标是: (3,2)- . 解:点(3,2)-关于原点的对称点的坐标是(3,2)-,故答案为:(3,2)-.12.如图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是59.解:由题意可知:由9个小正方形组成的图案,阴影部分有5个小正方形,所以,从图中随机取一点,这点在阴影部分的概率是59.故答案为:59.13.如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC.若58P∠=︒,则ACB∠的大小是61︒或119︒.解:连接OA、OB,PM,PN分别与O相切于A,B两点,OA PA∴⊥,OB PB⊥,360909058122AOB∴∠=︒-︒-︒-︒=︒,当点C在优弧AB上时,111226122ACB AOB∠=∠=⨯︒=︒,当点C'在劣弧AB上时,18061119AC B∠'=︒-︒=︒,故答案为:61︒或119︒.14.“降次”是解一元二次方程的基本思想,用这种思想解高次方程30x x-=,它的解是0或1-或1.解:30x x-=,2(1)0x x∴-=.(1)(1)0x x x ∴+-=.0x ∴=或10x +=或10x -=.10x ∴=,21x =-,31x =.故答案为:0或1-或1.15.如图,已知圆锥的母线AB 长为40cm ,底面半径OB 长为10cm ,若将绳子一端固定在点B ,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是 402cm .解:将圆锥沿经过点B 的母线展开,连接BC ',设圆锥侧面展开图的圆心角为n ︒,圆锥底面圆周长为21020ππ⨯=,∴4020180n ππ⨯=, 解得:90n =,40BA AC ='=,90BAC ∠'=︒,2240402BC ∴'=+=即这根绳子的最短长度是402故答案为:402cm .16.下列关于二次函数2223(y x mx m m =-+-为常数)的结论:①该函数的图象与x 轴总有两个公共点;②若1x >时,y 随x 的增大而增大,则1m =;③无论m 为何值,该函数的图象必经过一个定点;④该函数图象的顶点一定不在直线2y =-的上方.其中正确的是 ①③④ (填写序号).解:△222(2)4(23)48124(1)80m m m m m =---=-+=-+>,∴该函数的图象与x 轴总有两个公共点,故①正确;二次函数图象的对称轴为x m =,∴当x m >时,y 随x 的增大而增大,1m ∴,故②错误;222232(1)3y x mx m x m x =-+-=---,当1x =时,132y =-=-,∴无论m 为何值,该函数的图象必经过定点(1,2)-,故③正确;当x m =时,22222323y m m m m m =-+-=-+-,∴二次函数图象的顶点为2(,23)m m m -+-,22223221(1)0m m m m m -+-+=-+-=--,2232m m ∴-+--,故④正确.故答案为:①③④.三、解答题(共8小题,共72分)17.若关于x 的一元二次方程220x bx +-=有一个根是2x =,求b 的值及方程的另一个根.解:设方程的另一个根为t ,根据根与系数的关系得2t b +=-,22t =-,解得1t =-,1b =-,即b 的值为1-,方程的另一个根为1-.18.如图,将ABC ∆绕点A 逆时针旋转得到ADE ∆,点D 在BC 上,已知70B ∠=︒,求CDE ∠的大小.解:将ABC ∆绕点A 逆时针旋转得到ADE ∆,AD AB∴=,70B ADE∠=∠=︒,70ABD ADB∴∠=∠=︒,40CDE∴∠=︒.19.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.甲从口袋中随机摸取一个小球,记下标号m,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n,组成一个数对(,)m n.(1)用列表法或画树状图法,写出(,)m n所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢.你认为这个游戏规则公平吗?请说明理由.解:(1)画树状图如下:由树状图知共有9种等可能结果,分别为(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)不公平,由树状图知,两个标号之和为奇数的有5种结果,标号之和为偶数的有4种结果,∴甲赢的概率为49,乙赢的概率为59,5499≠,∴此游戏规则不公平.20.如图,A,P,B,C是O上的四个点,60APC CPB∠=∠=︒.(1)判断ABC∆的形状,并证明你的结论.(2)证明:PA PB PC+=.(1)解:ABC∆是等边三角形,理由如下:由圆周角定理得,60ABC APC∠=∠=︒,60BAC CPB∠=∠=︒,ABC∴∆是等边三角形;(2)证明:在PC 上截取PH PA =,60APC ∠=︒,APH ∴∆为等边三角形,AP AH ∴=,60AHP ∠=︒,在APB ∆和AHC ∆中,120ABP ACH APB AHC AP AH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()APB AHC AAS ∴∆≅∆PB HC ∴=,PC PH HC PA PB ∴=+=+.21.如图是由小正方形组成的97⨯网格,每个小正方形的顶点叫做格点,A ,B ,C 三个格点都在圆上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)画出该圆的圆心O ,并画出劣弧AB 的中点D ;(2)画出格点E ,使EA 为O 的一条切线,并画出过点E 的另一条切线EF ,切点为F .解:(1)如图,点O ,点D 即为所求;(2)如图,直线AE ,EF 即为所求.22.跳绳是大家喜爱的一项体育运动,当绳子甩到最高处时,其形状视为一条抛物线.如图是小涵与小军将绳子甩到最高处时的示意图,已知两人拿绳子的手离地面的高度都为1m ,并且相距4m ,现以两人的站立点所在的直线为x 轴,建立如图所示的平面直角坐标系,其中小涵拿绳子的手的坐标是(0,1).身高1.50m 的小丽站在绳子的正下方,且距小涵拿绳子的手1m 时,绳子刚好经过她的头顶.(1)求绳子所对应的抛物线的解析式(不要求写自变量的取值范围);(2)身高1.70m 的小兵,能否站在绳子的正下方,让绳子通过他的头顶?(3)身高1.64m 的小伟,站在绳子的正下方,他距小涵拿绳子的手s m ,为确保绳子通过他的头顶,请直接写出s 的取值范围.解:(1)设抛物线的解析式为:2(0)y ax bx c a =++≠,∴抛物线经过点(0,1),(4,1),(1,1.5),∴16411.51a b c a b c c ++=⎧⎪++=⎨⎪=⎩, 解得16231a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴绳子对应的抛物线的解析式为:212163y x x =-++; (2)不能,理由:2212151(2)6363y x x x =-++=--+, 106a =-<, y ∴有最大值53m =, 5 1.703m m >, ∴身高1.70m 的小兵,站在绳子的正下方,绳子不能通过他的头顶;(3)当 1.64y =时,2121 1.6463x x -++=, 解得1 2.4x =,2 1.6x =,1.62.4s ∴<<.故s 的取值范围为1.6 2.4s <<.23.问题背景如图1,在ABC ∆与ADE ∆中,若AB AC =,AD AE =,BAC DAE ∠=∠,则存在一对全等三角形,请直接写出这对全等三角形.尝试运用如图2,在等边ABC ∆中,12BC =,点D 在BC 上,以AD 为边在其右侧作等边ADE ∆,F 是DE 的中点,连接BF ,若4BD =,求BF 的长.拓展创新如图3,在等腰Rt ABC ∆中,90BAC ∠=︒,12BC =,点D 在BC 上,以AD 为斜边在其右侧作等腰Rt ADE ∆,连接BE .设BD x =,2BE y =,直接写出y 关于x 的函数关系式(不要求写自变量的取值范围).解:问题背景:BAD CAE ∆≅∆,理由如下:BAC DAE ∠=∠,BAD CAE ∴∠=∠,在BAD ∆和CAE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴∆≅∆;尝试运用:如图2,连接CE ,取DC 中点H ,连接FH ,过点F 作FN CD ⊥于N ,ABC ∆和ADE ∆是等边三角形,AB AC ∴=,AD AE =,60BAC DAE ABC ∠=∠=︒=∠, BAD CAE ∴∠=∠,()ABD ACE SAS ∴∆≅∆,4BD CE ∴==,60ABD ACE ∠=∠=︒,120BCE ∴∠=︒,12BC =,4BD =,8CD ∴=,点H 是CD 中点,4DH CH ∴==, 又点F 是DE 的中点,122FH CE ∴==,//FH EC , 120DHF BCE ∴∠=∠=︒,60FHC ∴∠=︒,FN CD ⊥,30HFN ∴∠=︒,112HN FH ∴==,33FN HN = 9BN ∴=,22813221BF BN FN ∴=++=拓展创新:如图3,过点A 作AH BC ⊥于点H ,连接HE ,过点E 作EN BC ⊥于点N ,在等腰Rt ABC ∆中,90BAC ∠=︒,12BC =,AH BC ⊥, 6BH CH AH ∴===,45BAH ABH ∠=∠=︒,2AB ∴=,ADE ∆是等腰直角三角形,AE DE ∴=,45DAE ∠=︒,2AD AE =,DAE BAH ∴∠=∠,BAD HAE ∴∠=∠, 又2AB ADAH AE=, ABD AHE ∴∆∆∽,45AHE ABD ∴∠=∠=︒,2BD AB HE AH =, 45EHN ∴∠=︒,2HE x =, EN BC ⊥,45HEN EHN ∴∠=∠=︒,EN HN ∴=,2EH EN ∴, 12EN x HN ∴==, 222BE EN BN =+,222111(6)636422y x x x x ∴=++=++. 24.如图,抛物线213222y x x =-++与x 轴负半轴交于点A ,与y 轴交于点B . (1)求A ,B 两点的坐标;(2)如图1,点C 在y 轴右侧的抛物线上,且AC BC =,求点C 的坐标;(3)如图2,将ABO ∆绕平面内点P 顺时针旋转90︒后,得到DEF ∆(点A ,B ,O 的对应点分别是点D ,E ,)F ,D ,E 两点刚好在抛物线上.①求点F 的坐标;②直接写出点P 的坐标.解:(1)令0y =,2130222x x =-++, 1x ∴=-或4x =,(1,0)A ∴-,令0x =,则2y =,(0,2)B ∴;(2)AC BC =,C ∴点在AB 的垂直平分线上,(1,0)A -,(0,2)B ,AB ∴的中点1(2H -,1), 90AHG ∠=︒,90HAG HGA ∴∠+∠=︒,90BAG ABO ∠+∠=︒, ABO HGA ∴∠=∠, 5AB =5AH ∴= sin 5AO ABO AB ∠==, sin 5AH AGH AG∴∠==, 52AG ∴=, 32OG ∴=, 3(2G ∴,0),设直线HC 的解析式为y kx b =+, ∴302112k b k b ⎧+=⎪⎪⎨⎪-+=⎪⎩,∴1234k b ⎧=-⎪⎪⎨⎪=⎪⎩, 1324y x ∴=-+, 联立2132221324y x x y x ⎧=-++⎪⎪⎨⎪=-+⎪⎩,解得2x =± C 点在y 轴右侧,2x ∴=+,(2C ∴14-; (3)①如图2,设213(,2)22E t t t -++, 1OA =,2OB =,213(2,2)22F t t t ∴--++,213(2,3)22D t t t --++, D 点在抛物线上,2213133(2)(2)22222t t t t ∴-++=--+-+, 3t ∴=,(1,2)F ∴;②过点P 作PN x ⊥轴交于点N ,交EF 于点M , 90OPF ∠=︒,90FPM OPN ∴∠+∠=︒,90FPM MFP ∠+∠=︒,FP OP =,()FMP PNO AAS ∴∆≅∆,FM PN ∴=,PM ON =,(1,2)F ,2PM PN ∴+=,设(,2)P m m -,2222(2)244OP m m m m ∴=+-=-+, PO FP =,第21页(共21页)222OF OP ∴=, 252(244)m m ∴=-+, 32m ∴=或12m =, 3(2P ∴,1)2或1(2P ,3)2, ①结论可知(1,2)F ,PO FP =, 1(2P ∴,3)2舍去, 3(2P ∴,1)2.。

2020武汉元调数学试卷及答案(Word精校版)

2020武汉元调数学试卷及答案(Word精校版)

第1页 / 共12页2019-2020学年度武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程2514x x 化成一般形式后,二次项系数和一次项系数分别是( ) A .5,-1 B .5,4 C .5,-4 D .5,12.下列四张扑克牌的牌面,不是中心对称图形的是( )A .B .C .D .3.抛物线22y x 与22yx 相同的性质是( ) A .开口向下 B .对称轴是y 轴 C .有最低点 D .对称轴是x 轴4.一个不透明的袋子中只有4个黑球,2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是黑球B .至少有1个球是白球C .至少有2个球是黑球D .至少有2个球是白球5.已知O 的半径等于3cm ,圆心O 到点P 的距离为5cm ,那么点P 与O 的位置关系是( ) A .点P 在O 内 B . 点P 在O 外 C .点P 在O 上 D .无法确定6.要将抛物线2y x 平移后得到抛物线223y x x ,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位7.如图,将△ABC 绕顶点C 逆时针旋转角度得到A B C ,且点B 刚好落在A B 上,若∠A =28°,BCA =43°,则等于( )A .36°B .37°C .38°D .39°8.小明上学要经过三个十字路口,每个路口遇到红灯、绿灯的可能性都相等,小明上学经过三个路口时,不全是红灯的概率是( )A .38 B . 12 C . 58 D . 789.如果m 、n 是一元二次方程24x x +=的两个实数根,那么多项式222n mn m --的值是( )A .16B .14C .10D .610.如图,△ABC 的两个顶点A ,B的O 上,∠A =60°,∠B =30°.若固定点A ,点B 在O 上运动,则OC 的最小值是( )A第2页 / 共12页A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点P (1,2)关于原点对称的点坐标是________. 12. 一个盒子中有10枚黑棋子和若干枚白棋子,这些棋子除颜色外无其他差别,从盒中随机取出一枚棋子,记下颜色,再放回盒子中,不断重复上述过程,一共取了300次,其中有100次取到黑棋子,由此估计盒中约有________枚白棋子.13.如图,四边形ABCD 是⊙O 的内接四边形,∠BOD =100°,∠BCD 的大小是 .14.为响应全民阅读活动,某校面向社会开放图书馆,自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次,若进馆人次的月增长率相同,为求进馆人次的月增长率,设进馆人次的月增长率为x ,依题意可列方程为 .15.已知二次函数()20y ax bx c c =++<的图像开口向上,对称轴为直线1x =,下列结论中,一定正确的 是 (填序号即可).①0b <; ②420a b c ++<; ③a c b +>; ④()a b t at b +≤+(t 是一个常数).16.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率,某圆半径为R ,其内接正十二边形的周长为C . 若R ,则C = ,2CR≈ ,(结果精确到0.01 2.449≈ 1.414≈).三、解答题(共8题,共72分)17.(本题8分)若关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,求m 的值及此时方程的根.B第3页 / 共12页18. (本题8分)如图,A .B .C 三点在半径为1的O 上,四边形ABCD 是菱形,求的长.19. (本题8分)在5种同型号的产品中,有1件不合格品和4件合格品. (1)从这5件产品中随机选取1件,直接写出抽到合格品的概率; (2)从这5件产品中随机选取2件,求抽到都是合格品的概率.20.(本题8分)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果). (1)如图(1),P 是平行四边形ABCD 边AD 上一点,过点P 画一条直线把这个四边形分成面积相等的两部分; (2)如图(2),五边形ABCDE 是正五边形,画一条直线把这个五边形分成面积相等的两部分; (3)如图(3),△ABC 的外接圆的圆心是点O ,D 是的中点,画一条直线把△ABC 分成面积相等的两部分.(1)(2)(3)AED CBAD21.(如图8分)如图,P A,PB 分别与O相切于A,B两点,AC 是O的直径,AC=AP,连接OP交AB于点D,连接PC 交O于点E,连接DE.(1)求证:△ABC≌△PDA;(2)求BDDE的值.22.(本题10分)某公司经过市场调查,整理出来某种商品在某个月的第x天的销售价与销售量的相关信息如(1)求y与x的函数关系式;(2)问销售该商品第几天时,日销售利润为2250元?(3)问在当月有多少天的日销售利润不低于2400元,请直接写出结果.第4页 / 共12页23.(本题10分)问题背景:如图(1),在四边形ABCD中,若BC=CD,∠BAD=∠BCD=90°,则AC平分∠BAD,小明为了证明这个结论,将△ABC绕点C顺时针旋转90°,请帮助小明完成他的作图.迁移应用:如图(2),在五边形ABCDE中,∠A=∠C=90°,AB=BC,AE+CD=DE,求证:BD平分∠CDE.联系拓展:如图(3),在Rt△ABC中,AC=BC,若点D满足1013AD AB,BD=AB,点P是AD的中点,直接写出PCAB的值.(1) (2) (3)BB第5页 / 共12页24.(本题12分)如图,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(m,2m+4)(m>-2),且与x轴相切于点B.y与x之间存在一种确定的函数关系,其图象是一条常见的曲线,记做曲线F.(1)如图(1),①当y=32时,直接写出P的半径;②当m=-1,x=-2时,直接写出P的半径.(2)求曲线F最低点的坐标(用含有m的式子表示);(3)如图(2),若曲线F最低点总在直线y=12x+3的下方,点C(-2,y1),D(1,y2)都在曲线F上,试比较y1与y2的大小.3第6页 / 共12页第7页 / 共12页2019-2020学年度武汉市部分学校九年级元月调考数学试卷参考答案9.答案:B 解析:∵m ,n 为方程x ²+x =4的解∴m +n =-1;mn =-4,且代n 到原式,得n ²=4-n∴原式=2(4-n )-mn -2m =8-2n -2m -mn =8-2(m +n )-mn =8+2+4 =1410.答案:A 解析:延长BC 交圆O 与D ,连O D .取AD 的中点E ,连OE ,连CE ∵ ∠B =30°,∴∠DOA =60°,∴△DAO 为等边三角形 ∵3OA ,∴3AD∵∠DCA =90°,∴点C 在以点E为半径的圆上运动∵OC OE CE ,∴3322OC ,故答案选A二、填空题(本大题共6个小题,每小题3分,共18分) 11. ()1,2-- 12.20 13.130°14.()()220020012001872x x ++++=15.①②④16.答案:24; 3.1116.解析:过C 作CD ⊥AB 于D , 正十二边形中心角∠CAD =30°B第8页 / 共12页∴12CD AC ==AD ==,BD AB AD =- 在Rt △CDB中,2CB =,∴24C =, 3.112CR≈三、解答题(共8题,共72分) 17. m =1,方程的根为x 1=x 2=-118. 23π19.(1)45;(2)3520. (1)(2)(作法不唯一)(3)21. 证明:(1)∵P A 为O 切线,∴∠P AO =90° ∵AC 为O 直径,∴∠ABC =90°∴∠BAC +∠ACB =∠BAC +∠P AD ,∴ ∠ACB =∠P ADBE第9页 / 共12页∵P A ,PB 为O 切线,∴P A =PB∵OA =OB ,P A =PB ,∴OP ⊥AB ,∴∠ADP =90° 在△ABC 和△PDA 中 ∠=∠=⎧⎪⎨⎪⎩=∠∠ACB PAD AC PA ABC PDA ∴△ABC ≌△PDA (AAS )解:(2)连接AE ,连接BE 交DP 于点F ∵∠ADO =∠ABC =90°,∴OP ∥BC ,∴∠BCE =∠FPE ,∵AC 为直径,∴∠AEC =90°, ∵∠P AO =90°,AC =AP ,∴∠ACE =45°,CE =PE 在△CEB 和△PEF 中 ∠=∠=∠⎧⎪⎨⎩=∠⎪BCE FPE CE PECEB PEF ∴△CEB ≌△PEF (ASA ) ∴BE =FE∵∠ABE =∠ACE =45°,∠BDP =∠ADP =90°,∴BD =DF 在Rt △BDF 中,222+=BD DF BF ,∴222=BD BF ,∴BF∵BE =EF ,∴BDDE22. 解:(1)y =[(x +40)-20](100-2x ) ,∴y =-2x 2+60x +2000 (2)由(1)知y =-2x 2+60x +2000当日销售利润为2250元时,有-2x 2+60x +2000=2250 解得:x 1=5; x 2=25故该销售商品第5天或第25天时,日销售利润为2250元. (3)11天当销售利润为2400时,有-2x 2+60x +2000=2400 解得:x 1=10; x 2=20 由二次函数图像性质可知:共有11天(第10天到第20天),销售利润不低于2400元.23. (1) 解:第10页 / 共12页(2) 证明:延长DC 至点F ,使CF =AE ,连接BE ,BF在△ABE 和△CBF 中 ==BCF =AB BC A AE CF ⎧⎪⎨⎪⎩∠∠ ∴△ABE ≌△CBF (SAS ),∴BE =BF 又∵DE =AE +CD 且AE =CF ,∴DE =DF 在△BDE 和△BDF 中 BE BF DE DF BD BD =⎧⎪=⎨⎪=⎩∴△BDE ≌△BDF (SSS )∴∠BDE =∠BDF ,∴BD 平分∠CDE (3)①当D 在AB 左侧时连接CP ,过点C 作CE ⊥CP ,交DA 的延长线于E 点∵AB =BD ,且P 是AD 的中点,∴BP ⊥AD ,即∠CBP =∠CAE∵AD =1013AB ,∴AP =12AD =513AB ,BP1213AB∵=ACE PCB ∠∠,在△BCP 和△ACE 中第11页 / 共12页CBP CAE BC ACBCP ACE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△BCP ≌△ACE (ASA )∴AE =PB =1213AB ,PE =AP +AE =1713AB ∵PC =CE ,PC ⊥CE ,∴△PCE 为等腰直角三角形PCPE,即PC AB ②当D 在AB 右侧时连接CP ,过点C 作CQ ⊥CP 交BP 于点Q由①可知:∠APB =∠ACB =90°,AP =513AB ,PB =1213AB ∵PC ⊥CQ ,∴∠PCQ =∠ACB =90°,∴∠ACP =∠BCQ ∵∠APB =∠ACB ,∴∠CAP =∠CBQ在△ACP 和△BCQ 中CAP CBQ AC BCACP BCQ =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ACP ≌△BCQ (ASA )∴BQ =AP =513AB PQ =BP -BQ =713AB ,PC =PQ ∵PC ⊥CQ ,∴△PCQ 为等腰直角三角形∴PCPQAB ,即PC = 综上所述:PC AB =24.解:(1)①32②54(2)依题意得:PB =P Ay = B D第12页 / 共12页 ()()22224y y m x m ---=-,∴()()21242y x m m m =-+++, 即顶点(m ,m +2)(3)方法一:顶点(m ,m +2)在直线y =x +2运动 又∵最低点一直在132y x =+下方,x +2<132x +,即m <2,∴-2<m <2 ∵C (-2,y 1),D (1,y 2),∴()()212242m y m m +=+++,()()221242m y m m =+++- ()()()()()2212213214242m m m y y m m +--+-==++,令y 1=y 2,解得12m =- ①当-2<m <12-时,()()32142m m ++<0 ,即y 1-y 2<0,故y 1<y 2; ②当12m =-时,()()32142m m ++=0,y 1=y 2; ③当-12<m <2时,()()32142m m ++>0,y 1>y 2. 综上①当-2<m <12-时,y 1<y 2;②当12m =-时,y 1=y 2;③当-12<m <2时,y 1>y 2. 方法二:(3)函数值的大小可以比较点到对称轴的距离当m =12-时,y 1=y 2 ;当-2<m <12-时,y 1<y 2 ;当-12<m <2时,y 1>y 2.。

2021-2022学年武汉市初三数学元月调考数学模拟练习试卷及解析

2021-2022学年武汉市初三数学元月调考数学模拟练习试卷及解析

2021年武汉市初三数学元月调考数学模拟练习试卷一、选择题(共10小题,每小题3分,共30分)1.将方程2326x x -=化为一般形式,若二次项系数为3,则一次项系数和常数项分别为( ) A .2-,6B .2-,6-C .2,6D .2,6-2.下面四个图形,是中心对称图形的是( )A .B .C .D .3.关于方程2240x x +-=的根的情况,下列结论错误的是( ) A .有两个不相等的实数根 B .两实数根的和为2C .两实数根的差为25±D .两实数根的积为4-4.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是( ) A .连续抛掷2次必有1次正面朝上 B .连续抛掷10次不可能都正面朝上 C .大量反复抛掷每100次出现正面朝上50次 D .通过抛掷硬币确定谁先发球的比赛规则是公平的5.如图,AB 为O 的直径,CD 为O 的弦,AB CD ⊥于E ,下列说法错误的是( )A .CE DE =B .AC AD =C .OE BE =D .2COB BAD ∠=∠6.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是( ) A .相离B .相切C .相交D .相交或相切7.如图,Rt ABC ∆中,90C ∠=︒,3BC =,4AC =,将ABC ∆绕点B 逆时针旋转得△A BC '',若点C '在AB 上,则AA '的长为( )A .13B .4C .25D .58.若m ,n 为方程2310x x --=的两根,则多项式23m n +的值为( ) A .8-B .9-C .9D .109.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若2AB =,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-10.若方程220x x t --=在14x -<范围内有实数根,则t 的取值范围为( ) A .38t <B .13t -C .18t -<D .18t -二、填空题(共6小题,每小题3分,共18分) 11.若2是方程20x c -=的一个根,则c 的值为 .12.把抛物线22y x =先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是 . 13.如图,四边形ABCD 内接于O ,110A ∠=︒,则BOD ∠= ︒.14.有不同的两把锁和三把钥匙,其中两把钥匙能分别打开这两把锁,第三把钥匙不能打开这两把锁.任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是 .15.二次函数2(y ax bx c a =++、b 、c 为常数,0)a ≠中的x 与y 的部分对应值如表:x1-0 3 yn3-3-当0n >时,下列结论中一定正确的是 .(填序号即可)①0bc >;②当2x >时,y 的值随x 值的增大而增大;③4n a >;④当1n =时,关于x 的一元二次方程2(1)0ax b x c +++=的解是11x =-,23x =.16.如图,AB 为O 的直径,C 为O 上一动点,将AC 绕点A 逆时针旋转120︒得AD ,若2AB =,则BD 的最大值为 .三、解答题17.已知关于x 的方程2(2)210x m x m +++-=,当m 为何值时,方程的两根相互为相反数?并求出此时方程的解.18.如图,在O 中,弦AB 与弦CD 相交于点E ,且AB CD =.求证:CE BE =.19.把一副普通扑克牌中的4张:黑2,红3,梅4,方5,洗匀后正面朝下放在桌面上. (1)从中随机抽取一张牌是红心的概率是 ;(2)从中随机抽取一张,再从剩下的牌中随机抽取另一张.请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽取的两张牌牌面数字之和大于7的概率.20.如图,在下列的网格中,横、纵坐标均为整数的点叫做格点,例如(3,0)A ,(0,4)B ,(4,2)C 都是格点. (1)直接写出ABC ∆的形状;(2)要求在上图中仅用无刻度的直尺作图:将ABC ∆绕点B 逆时针旋转得到△11A BC ,旋转角2ABC =∠,请你完成作图;(3)在网格中找一个格点G ,使得1C G AB ⊥,并直接写出G 点坐标.21.如图,O 是ABC ∆的外心,I 是ABC ∆的内心,连AI 并延长交BC 和O 于D 、E 两点. (1)求证:EB EI =;(2)若4AB =,3AC =,2BE =,求AI 的长.22.某公司销售一种商品,成本为每件20元,经过市场调查发现,该商品的日销售量y (件)与销售单价x (元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x (元) 40 60 80 日销售量y (件) 806040(1)求y 与x 的关系式;(2)若物价部门规定每件商品的利润率不得超过100%,求公司销售该商品获得的最大日利润; (3)若物价部门规定该商品销售单价不能超过a 元,并且由于某种原因,该商品每件成本变成了之前的2倍,在日销售量y (件)与销售单价x (元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a 的值.23.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,D 为BC 边上的点,将DA 绕D 逆时针旋转120︒得到DE . (1)如图1,若30DAC ∠=︒. ①求证:AB BE =;②直接写出22BE CD +与2AD 的数量关系为 ;(2)如图2,D 为BC 边上任意一点,线段BE 、CD 、AD 是否满足(1)中②的关系,请给出结论并证明.24.抛物线2y ax ax b =-+交x 轴于A ,B 两点(A 在B 的左边),交y 轴于C ,直线4y x =-+经过B ,C 两点.(1)求抛物线的解析式;(2)如图1,P 为直线BC 上方的抛物线上一点,//PD y 轴交BC 于D 点,过点D 作DE AC ⊥于E 点.设1021m PD DE =+,求m 的最大值及此时P 点坐标; (3)如图2,点N 在y 轴负半轴上,点A 绕点N 顺时针旋转,恰好落在第四象限的抛物线上点M 处,且180ANM ACM ∠+∠=︒,求N 点坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.解:由2326x x -=,得23260x x --=,所以一次项系数是2-、常数项是6-, 故选:B .2.解:A 、不是中心对称图形,故本选项不合题意;B 、不是中心对称图形,故本选项不合题意;C 、不是中心对称图形,故本选项不合题意;D 、是中心对称图形,故本选项符合题意.故选:D .3.解:方程2240x x +-=, 这里1a =,2b =,4c =-, △416200=+=>,∴方程有两个不相等的实数根,且122x x +=-,124x x =-,12x x ∴-==±故结论错误的是B , 故选:C .4.解:抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的. 故选:D .5.解:连接OD ,如图, AB CD ⊥,CE DE ∴=,AC AD =,BC BD =, BC BD =,BOC BOD ∴∠=∠, 2BOD BAD ∠=∠, 2BOC BAD ∴∠=∠.故选:C .6.解:圆的直径为13 cm ,∴圆的半径为6.5 cm ,圆心与直线上某一点的距离是6.5cm ,∴圆的半径圆心到直线的距离,∴直线于圆相切或相交,故选:D .7.解:根据旋转可知:90AC B C ∠''=∠=︒,4AC AC ''==,AB A B =',根据勾股定理,得2222345AB BC AC ++=, 5A B AB ∴'==, 2AC AB BC ∴'=-'=,在Rt △AA C ''中,根据勾股定理,得22222425AA AC A C ''''=++ 故选:C .8.解:m ,n 为方程2310x x --=的两根, 2310m m ∴--=,3m n +=, 231m m ∴-=.22333313()13310m n m m m n m n ∴+=-++=++=+⨯=. 故选:D .9.解:过A 作AD BC ⊥于D ,ABC ∆是等边三角形,2AB AC BC ∴===,60BAC ABC ACB ∠=∠=∠=︒, AD BC ⊥,1BD CD ∴==,33AD BD ==ABC ∴∆的面积为1123322BC AD ⨯⨯=⨯260223603BACS ππ⨯==扇形,∴莱洛三角形的面积23232233S ππ=⨯-=-故选:D .10.解:设212y x x =-,212y x x =-的对称轴为直线1x =,∴一元二次方程220x x t --=的实数根可以看作212y x x =-与函数2y t =的交点,方程在14x -<的范围内有实数根, 当1x =-时,13y =; 当4x =时,18y =;函数212y x x =-在1x =时有最小值1-;∴当18t -时,212y x x =-与函数2y t =有交点,即方程220x x t --=在18t -<范围内有实数根;故选:D .二、填空题(共6小题,每小题3分,共18分)11.解:根据题意,将2x =代入方程20x c -=,得:40c -=, 解得4c =, 故答案为:4.12.解:由“上加下减”的原则可知,二次函数22y x =的图象向下平移1个单位得到221y x =-, 由“左加右减”的原则可知,将二次函数221y x =-的图象向左平移2个单位可得到函数22(2)1y x =+-,故答案是:22(2)1y x =+-.13.解:四边形ABCD 内接于O ,110A ∠=︒, 180********C A ∴∠=︒-∠=︒-︒=︒, 2140BOD C ∴∠=∠=︒.故答案为:140.14.解:画树状图为:(两把钥匙能分别打开这两把锁表示为A 、a 和B 、b ,第三把钥匙表示为)c共有6种等可能的结果数,其中任意取出一把钥匙去开任意的一把锁,一次打开锁的结果数为2, 所以任意取出一把钥匙去开任意的一把锁,一次打开锁的概率2163==. 故答案为13.15.解:①函数的对称轴为直线13(03)22x =+=,即322b a =-,则3b a =-,0n >,故在对称轴的左侧,y 随x 的增大而减小,故抛物线开口向上,则0a >,对称轴在y 轴的右侧,故0b <,而3c =-,故0bc >正确,符合题意;②2x =在函数对称轴的右侧,故y 的值随x 值的增大而增大,故②正确,符合题意; ③当1x =-时,434n y a b c a a ==-+=-<,故③错误,不符合题意; ④当1n =时,即:1x =-时,1y =,2(1)0ax b x c +++=可以变形为2ax bx c x ++=-,即探讨一次函数y x =-与二次函数为2y ax bx c =++图象情况,当1x =-,1y =,即(1,1)-是上述两个图象的交点,则抛物线和另一个交点在第四象限,且横纵坐标互为相反数,而本题表中告诉了(3,3)-在二次函数图象上,所以另一个交点为(3,3)-, 故两个函数交点的横坐标为1-、3,即关于x 的一元二次方程2(1)0ax b x c +++=的解是11x =-,23x =,正确,符合题意, 故答案为:①②④.16.解:解法一:如图,将ABD ∆绕点A 顺时针旋转120︒,则D 与C 重合,B '是定点,BD 的最大值即B C '的最大值,即B '、O 、C 三点共线时,BD 最大,过B '作B E AB '⊥于点E ,由题意得:2AB AB '==,120BAB '∠=︒, 60EAB '∴∠=︒,Rt AEB '∆中,30AB E '∠=︒,112AE AB '∴==,22213EB '=-=, 由勾股定理得:22222(3)7OB OE B E ''=+=+=, 71B C OB OC ''∴=+=+.解法二:如图1,连接OC ,将AOC ∆绕点A 逆时针旋转120︒得到AGD ∆,发现点D 的运动轨迹是:以G 为圆心,以AG 为半径的圆,所以当B 、G 、D 三点共线时,BD 的值最大,如图2,过点G 作GH AB ⊥,交BA 的延长线于H ,由旋转得:1AO AG ==,120OAG ∠=︒, 60HAG ∴∠=︒, 30AGH ∴∠=︒,12AH ∴=,3GH由勾股定理得:222231()(2)722BG GH BH =+=++= BD ∴71.故答案为:71+. 三、解答题17.解:关于x 的方程2(2)210x m x m +++-=两根相互为相反数,(2)0m ∴-+=,解得2m =-,则方程为250x -=,解得15x =,25x =-.18.证明:AB CD =,∴AB CD =,∴AB CB CD CB -=-,即AC BD =,C B ∴∠=∠,CE BE ∴=.19.解:(1)从黑2,红3,梅4,方5这4张扑克牌中任摸一张,是红心的可能性为14, 故答案为:14; (2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中和大于7的有4种,所以抽取的两张牌牌面数字之和大于7的概率为41123=. 20.解:如图所示:(1)ABC ∆的形状为:直角三角形;(2)将ABC ∆绕点B 逆时针旋转得到△11A BC ,旋转角2ABC =∠;(3)在网格中找一个格点G ,使得1C G AB ⊥,G 点坐标为(0,3).21.(1)证明:I 是ABC ∆的内心,AE ∴平分CAB ∠,BI 平分ABC ∠,BAE CAE ∴∠=∠,ABI CBI ∠=∠,BIE BAE ABI ∠=∠+∠,IBE IBD EBD ∠=∠+∠,CBE CAE ∠=∠,BIE EBI ∴∠=∠,EB EI ∴=;(2)解:连接EC .BAE CAE ∠=∠,∴BE EC =,2BE EC ∴==,ADB CDE ∠=∠,BAD DCE ∠=∠,ADB CDE ∴∆∆∽, ∴422BD AD AB DE DC EC ====,设DE m =,CD n =,则2BD m =,2AD n =, 同法可证:ADC BDE ∆∆∽, ∴AD AC BD BE =, ∴2322n m =, :3:2n m ∴=,设3n k =,2m k =,CED AEC ∠=∠,ECD BAE CAE ∠=∠=∠,ECD EAC ∴∆∆∽,2EC ED EA ∴=⋅,4(2)m m n ∴=⋅+,42(26)k k k ∴=+ 12k ∴=或12-(舍弃), 1DE ∴=,3AD =,4AE ∴=,2EI BE ==,2AI AE EI ∴=-=.解法二:过点E 作EM AB ⊥,EN AC ⊥交AC 的延长线于N .利用全等三角形的性质证明AM AN =,BM CN =,EM EN =,求出BM ,EM ,AE ,可得结论.22.解:(1)设函数的表达式为y kx b =+,将(40,80)、(60,60)代入上式得:40806060k b k b +=⎧⎨+=⎩,解得1120k b =-⎧⎨=⎩, 故y 与x 的关系式为120y x =-+;(2)公司销售该商品获得的最大日利润为w 元, 则2(20)(20)(120)(70)2500w x y x x x =-=--+=--+,200x -,1200x -+,2020100%x -⨯,2040x ∴,10-<,故抛物线开口向下,故当70x <时,w 随x 的增大而增大,∴当40x =(元)时,w 的最大值为1600(元),故公司销售该商品获得的最大日利润为1600元;(3)当1500w =最大时,2(80)16001500x --+=,解得170x =,290x =,2200x -⨯,40x ∴,又x a ,40x a ∴.∴有两种情况,①80a <时,即40x a ,在对称轴左侧,w 随x 的增大而增大,∴当70x a ==时,1500w =最大,②80a 时,即40x a ,在40x a 范围内16001500w =≠最大,∴这种情况不成立,70a ∴=.23.(1)①证明:如图1中,AB AC =,120BAC ∠=︒30ABC ACB ∴∠=∠=︒,30DAC ∠=︒30DAC ACB ∴∠=∠=︒,60ADB CAD ACB ∠=∠+∠=︒,90BAD ∴∠=︒,由旋转得:DE DA CD ==,60BDE ADB ∠=∠=︒,()BDE BDA SAS ∴∆≅∆,AB BE ∴=.②解:BDE BDA ∆≅∆,90BED BAD ∴∠=∠=︒,BE AB =,22222BE CD BE DE BD ∴+=+= 1cos cos602AD ADB BD =∠=︒=, 2BD AD ∴=,2224BE CD AD ∴+=. 故答案为:2224BE CD AD +=. (2)能满足(1)中的结论.理由:当点E 在BC 的下方时,将ACD ∆绕点A 顺时针旋转120︒得到ABD ∆',使AC 与AB 重合,连接ED ',DD ',AE ,设AB 交DD '于点J .30DBJ ADJ ∠=∠=︒,BJD D JA ∠=∠',BJD ∴∆∽△D JA ',∴BJ DJ D J AJ =', ∴BJ D J DJ AJ'=, BJD DJA ∠'=∠,BJD DJA ∴∆'∆∽,30JBD JDA ∴∠'=∠=︒,同法可证,30EBD EAD ∠=∠=︒,30ED D EAD ∠'=∠=︒,30ABC D BJ EBD ∠=∠'=∠=︒,90D BE ∴∠'=︒,120ADE ∠=︒,30ADD ∠'=︒,90D DE ∴∠'=︒,30ED D ∠'=︒,22D E DE AD ∴'==,在Rt △D BE '中,222D E D B BE '='+,CD BD =',2224CD BE AD ∴+=.当B ,E 重合时,0BE =,90DAC ∠=︒,30C ∠=︒,2CD AD ∴=,24CD AD ∴=,结论成立.当点E 在BC 的上方时,如图3中,同法可证,90EBD ∠'=︒,22ED AD AD '='=.222BD BE ED ∴'+=',2224CD BE AD ∴+=.24.解:(1)当0x =时,4y =;当0y =时,40x -+=,4x =;(4,0)B ∴,(0,4)C ,点B ,C 在抛物线上,∴16404a a b b -+=⎧⎨=⎩,解得:134a b ⎧=-⎪⎨⎪=⎩, 211433y x x ∴=-++; (2)如图1,连接AD ,延长PD 交x 轴于H ,//PD y 轴,PH x ∴⊥轴,设(,4)D t t -+,211(,4)33P t t t -++, 2211144(4)3333PD t t t t t =-++--+=-+, ABC ADC ADB S S S ∆∆∆=+,且(3,0)A -,(4,0)B ,(0,4)C , ∴111747(4)222AC DE t ⨯⨯=⋅+⨯⨯-+, 22345AC =+,75DE t ∴=, 1021m PD DE =+, 22214107112(3)33321533m t t t t t t ∴=-++⋅=-+=--+, ∴当3t =时,m 有最大值是3,此时(3,2)P ;(3)过N 作NF MC ⊥交MC 于点F ,过N 点作NG AC ⊥,交CA 的延长线于点G ,则90G CFN ∠=∠=︒, 180ACM GNF ∴∠+∠=︒,由旋转得:AN MN =, 180ANM ACM ∠+∠=︒, ANM GNF ∴∠=∠, ANG MNF ∴∠=∠, 90G MFN ∠=∠=︒, ()NGA NFM AAS ∴∆≅∆, NG NF ∴=,NC ∴平分ACM ∠, CO AB ⊥,3OK OA ∴==, (3,0)K ∴,CK ∴的解析式为:443y x =-+, 241144333x x x ∴-+=-++, 解得:10x =,25x =,8(5,)3M ∴-, 设(0,)N y ,AN MN =,22228(3)5()3y y ∴-+=++,解得:133y =-, 13(0,)3N ∴-.。

2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)

2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)

2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题;每小题3分;共30分)1.将下列一元二次方程化成一般形式后;其中二次项系数是3;一次项系数是-6;常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中;是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度;再向上平移2个单位长度;就得到抛物线( )A .y =(x -1)2+2 B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子;骰子的六个面上分别刻有1到6的点数;则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ;圆心O 到直线l 的距离为9 cm ;则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图;“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材;埋在壁中;不知大小;以锯锯之;深一寸;锯道长一尺;问径几何”用几何语言可表述为:CD 为 ⊙O 的直径;弦AB 垂直CD 于点E ;CE =1寸;AB =10寸;则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后;雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化;那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图;将半径为1;圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度;使点O 的对应点D 落在弧AB 上;点B 的对应点为C ;连接BC ;则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载;形如x 2+ax =b 2的方程的图解法是:如图;画Rt △ABC ;∠ACB =90°;BC =2a ;AC =b ;再在斜边AB 上截取BD =2a;则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1;与x 轴的一个交点为(2;0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根;则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题;每小题3分;共18分)11.已知3是一元二次方程x 2=p 的一个根;则另一根是___________12.在平面直角坐标系中;点P 的坐标是(-1;-2);则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球;在不允许将球倒出来数的前提下;小刚为估计其中的白球数;采用了如下的方法:从口袋中随机摸出一球;记下颜色;然后把它放回口袋中;摇 匀后再随机摸出一球;记下颜色……;不断重复上述过程;小刚共摸了100次;其中20次摸 到黑球;根据上述数据;小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行;小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图;该照片(中间的矩形)长29 cm ;宽为20 cm ;他 想为此照片配一个四条边宽度相等的镜框(阴影部分);且镜框所占面积为照片面积的41. 为求镜框的宽度;他设镜框的宽度为x cm ;依题意列方程;化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥;当拱顶离水面2 m 时;水面宽4 m .水面下降2.5 m ;水面宽度增加___________m16.如图;正方形ABCD 的边长为4;点E 是CD 边上一点;连接AE ;过点B 作BG ⊥AE 于点G ;连接CG 并延长交AD 于点F ;则AF 的最大值是___________三、解答题(共8题;共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图;A 、B 、C 、D 是⊙O 上四点;且AD =CB ;求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富;品种繁多;某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A;B;C;D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H);共八种美食.小李和小王同时去品尝美食;小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A;B;E;F)这四种美食中选择一种;小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C;D;G;H)这四种美食中选择一种;用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图;在边长为1的正方形网格中;点A的坐标为(1;7);点B的坐标为(5;5);点C的坐标为(7;5);点D的坐标为(5;1)(1) 将线段AB绕点B逆时针旋转;得到对应线段BE.当BE与CD第一次平行时;画出点A运动的路径;并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系;即其中一条线段绕着某点旋转一个角度可以得到另一条线段;直接写出这个旋转中心的坐标第20题图21.(本题8分)如图;在四边形ABCD中;AD∥BC;AD⊥CD;AC=AB;⊙O为△ABC的外接圆(1) 如图1;求证:AD是⊙O的切线(2) 如图2;CD交⊙O于点E;过点A作AG⊥BE;垂足为F;交BC于点G①求证:AG=BG②若AD=2;CD=3;求FG的长22.(本题10分)某商家销售一种成本为20元的商品;销售一段时间后发现;每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系;并且当x=25时;y=550;当x=30时;y=500.物价部门规定;该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时;商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图;等边△ABC与等腰三角形△EDC有公共顶点C;其中∠EDC=120°;AB=CE=62;连接BE;P为BE的中点;连接PD、AD(1) 小亮为了研究线段AD与PD的数量关系;将图1中的△EDC绕点C旋转一个适当的角度;使CE与CA重合;如图2;请直接写出AD与PD的数量关系(2) 如图1;(1)中的结论是否仍然成立?若成立;请给出证明;若不成立;请说明理由(3) 如图3;若∠ACD=45°;求△PAD的面积24.(本题12分)如图;在平面直角坐标系中;抛物线y=x2+(1-m)x-m交x轴于A;B两点(点A在点B的左边);交y轴负半轴于点C(1) 如图1;m=3①直接写出A;B;C三点的坐标②若抛物线上有一点D;∠ACD=45°;求点D的坐标(2) 如图2;过点E(m;2)作一直线交抛物线于P;Q两点;连接AP;AQ;分别交y轴于M;N两点;求证:OM·ON是一个定值。

2019—2020学年度武汉市九年级元月调考数学试卷(含标准)

2019—2020学年度武汉市九年级元月调考数学试卷(含标准)

2021—2021 学年度武汉市九年级元月调考数学试卷( 含标准答案 )考试时间: 2021年1 月 17 日 14:00~16:00一、选择题〔共10小题;每题 3 分;共30 分〕1.将以下一元二次方程化成一般形式后;其中二次项系数是3;一次项系数是- 6;常数项是 1的方程是〔〕A . 3x2+ 1= 6xB . 3x2- 1= 6x C. 3x2+ 6x= 1 D . 3x2- 6x= 1 2.以以下图形中;是中心对称图形的是〔〕A .B .C.D.3.假设将抛物线y=x2先向右平移1个单位长度;再向上平移 2 个单位长度;就获得抛物线〔〕A . y= (x- 1) 2+ 2B . y= (x- 1)2- 2C. y= (x+ 1) 2+ 2D. y= (x+ 1)2- 2 4.扔掷两枚质地均匀的骰子;骰子的六个面上分别刻有 1 到 6 的点数;那么以下事件为随机事件的是〔〕A .两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于125.⊙O的半径等于8 cm;圆心 O 到直线 l 的距离为9 cm;那么直线 l 与⊙ O 的公共点的个数为〔〕A . 0B. 1C. 2D.无法确定6.如图;“圆材埋壁〞和我国古代出名数学著作?九章算术?中的问题:“今有圆材;埋在壁中;不知大小;以锯锯之;深一寸;锯道长一尺;问径几何〞用几何语言可表述为:CD 为⊙ O 的直径;弦 AB 垂直 CD 于点 E; CE= 1 寸; AB= 10 寸;那么直径CD 的长为〔〕A.12.5 寸B.13 寸C.25 寸D.26 寸第 6题图第 8题图第 9题图7.假设鸟卵孵化后;雏鸟为雌鸟与雄鸟的概率相同.若是 3 枚鸟卵全部成功孵化;那么 3 只雏鸟中恰有 2 只雄鸟的概率是〔〕A .1B .3C.5D.2 68838.如图;将半径为1;圆心角为120 °的扇形 OAB 绕点 A 逆时针旋转一个角度;使点O 的对应点 D 落在弧 AB 上;点 B 的对应点为 C;连接 BC;那么图中 CD 、BC 和弧 BD 围成的封闭图形面积是〔〕A .3B .33D.3C.9.古希腊数学家欧几里得的?几何原来? ;形如x2+ ax=b2的方程的解法是:如;画Rt△ABC;∠ACB=90°;BC=a;AC=b;再在斜AB 上截取 BD =a;方程的一个22正根是〔〕A.AC 的B.BC 的C. AD 的D. CD 的10.抛物y= ax2+ bx+ c〔 a< 0〕的称 x=- 1;与 x 的一个交点 (2 ;0) .假设关于 x 的一元二次方程ax2+ bx+ c= p〔 p> 0〕有整数根; p 的有〔〕A.2 个B.3 个C.4 个D.5 个二、填空〔本大共 6 个小;每小 3 分;共 18 分〕11.3是一元二次方程x2= p 的一个根;另一根是___________12.在平面直角坐系中;点P 的坐是 (- 1;- 2);点 P 关于原点称的点的坐是_____ 13.一个口袋中有 3 个黑球和假设干个白球;在不允将球倒出来数的前提下;小估其中的白球数;采用了以下的方法:从口袋中随机摸出一球;下色;尔后把它放回口袋中;匀后再随机摸出一球;下色⋯⋯;不断重复上述程;小共摸了100 次;其中 20 次摸到黑球;依照上述数据;小可估口袋中的白球大有___________ 个14.第七届世界人运会将于2021 年 10 月 18 日至 27 日在中国武行;小明好运得了一运会桔祥物“兵兵〞的照片.如;照片〔中的矩形〕29 cm; 20 cm;他想此照片配一个四条度相等的框〔阴影局部〕;且框所占面照片面的 1 .4求框的度;他框的度x cm;依意列方程;化成一般式_____________第 14第 15第 1615.如是抛物形拱;当拱离水面2 m ;水面 4 m.水面下降 2.5 m;水面度增加___________m16.如;正方形ABCD的4;点E是CD上一点;接AE;点B作BG⊥AE于点G;接 CG 并延交 AD 于点 F ; AF 的最大是 ___________三、解答〔共 8 ;共72 分〕17.〔本8分〕解方程:x2- 3x- 1= 018.〔本8 分〕如; A、 B、 C、 D 是⊙ O 上四点;且AD= CB;求: AB= CD第 1819.〔本8 分〕武的早点种丰富;品种众多;某早餐馆供甲食品有:“ 干面〞、“面窝〞、“生煎包〞、“锅贴饺〞〔分别记为 A ;B ;C;D 〕;乙类食品有:“米粑粑〞、“烧梅〞、“欢乐坨〞、“发糕〞〔分别记为E、 F、G、 H 〕;共八种美食.小李和小王同时去品尝美食;小李准备在“热干面〞、“面窝〞、“米粑粑〞、“烧梅〞〔即A; B; E; F 〕这四种美食中选择一种;小王准备在“生煎包〞、“锅贴饺〞、“欢乐坨〞、“发糕〞〔即C;D;G;H〕这四种美食中选择一种;用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.〔此题8 分〕如图;在边长为 1 的正方形网格中;点 A 的坐标为 (1 ; 7);点 B 的坐标为(5 ; 5);点 C 的坐标为 (7 ; 5) ;点 D 的坐标为 (5; 1)(1) 将线段 AB 绕点 B 逆时针旋转;获得对应线段BE.当 BE 与 CD 第一次平行时;画出点 A 运动的路径;并直接写出点 A 运动的路径长(2)小贝同学发现:线段 AB 与线段 CD 存在一种特别关系;即其中一条线段绕着某点旋转一个角度能够获得另一条线段;直接写出这个旋转中心的坐标第 20题图21.〔此题8 分〕如图;在四边形 ABCD 中; AD ∥ BC; AD ⊥ CD ; AC = AB;⊙ O 为△ ABC 的外接圆(1)如图 1;求证: AD 是⊙ O 的切线(2)如图 2; CD 交⊙ O 于点 E;过点 A 作 AG⊥ BE;垂足为 F;交 BC 于点 G①求证: AG= BG②假设 AD=2;CD=3;求 FG 的长22.〔此题10分〕某商家销售一种本钱为20 元的商品;销售一段时间后发现;每天的销量y〔件〕与当天的销售单价x〔元 /件〕满足一次函数关系;并且当x= 25 时; y= 550;当 x= 30 时;y= 500 .物价部门规定;该商品的销售单价不能够高出48 元 /件(1) 求出 y 与 x 的函数关系式(2) 问销售单价定为多少元时;商家销售该商品每天获得的利润是8000 元?(3)直接写出商家销售该商品每天获得的最大利润23.〔此题10 分〕如图;等边△ ABC与等腰三角形△ EDC有公共极点C;其中∠ EDC = 120 °;AB= CE= 2 6 ;连接BE; P 为 BE 的中点;连接PD 、 AD(1) 小亮为了研究线段AD 与 PD 的数量关系;将图 1 中的△ EDC 绕点 C 旋转一个合适的角度;使CE 与 CA 重合;如图2;请直接写出AD 与 PD 的数量关系(2)如图 1; (1) 中的结论可否依旧成立?假设成立;请给出证明;假设不成立;请说明原由(3)如图 3;假设∠ ACD = 45 °;求△ PAD 的面积24.〔此题12分〕如图;在平面直角坐标系中;抛物线y= x2+ (1- m)x- m 交 x 轴于 A ;B 两点〔点 A 在点 B 的左边〕;交y 轴负半轴于点 C(1) 如图 1; m= 3①直接写出 A; B; C 三点的坐标② 假设抛物线上有一点D;∠ ACD = 45°;求点 D 的坐标(2) 如图 2;过点 E(m; 2) 作素来线交抛物线于P; Q 两点;连接AP; AQ ;分别交y 轴于M ; N 两点;求证:OM · ON 是一个定值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉市九年级元月调考数学
(9分)箱子里有3个红球和2个黄球,从箱子中一次拿两个球出来.
(1)请你用列举法(树形图或列表)求一次拿出的两个球中时一红一黄的概率;
(3)在(2)的条件下求x的值.(=0.7222222…)
22.(9分)如图,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C 为DE延长线上一点,且CE=CB.
(1)求证:BC为⊙O的切线;
(2)若,AD=2,求线段BC的长.
23.(10分)(2012•河北)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销
(1)求一张薄板的出厂价与边长之间满足的函数关系式;
(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价),
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?
参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)
24.(10分)(2013•枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.。

相关文档
最新文档