高分子作业

合集下载

《第五章 第二节 高分子材料》作业设计方案-高中化学人教版19选修3

《第五章 第二节 高分子材料》作业设计方案-高中化学人教版19选修3

《高分子材料》作业设计方案(第一课时)一、作业目标本作业旨在帮助学生深入理解高分子材料的基本概念和性质,掌握高分子合成的基本方法,并能够应用所学知识解决实际问题。

二、作业内容1. 课堂笔记整理:请学生整理课堂笔记,重点关注高分子材料的分类、性能和应用。

2. 课后习题:完成《高分子材料》相关课后习题,进一步巩固课堂所学知识。

3. 实验操作与报告:预约实验室进行高分子合成实验,如聚乙烯、聚氯乙烯等聚合反应的观察与记录,了解高分子材料的合成过程。

4. 小组讨论:组织小组讨论,让学生分享对高分子材料的认识、了解到的实际应用案例,以及未来的发展方向。

三、作业要求1. 笔记整理:要求学生在课堂上认真听讲,及时记录关键知识点,确保笔记的准确性和完整性。

2. 课后习题:要求独立完成,如有疑问,可与同学讨论或请教老师。

3. 实验操作与报告:学生需提前预习实验内容,按时到达实验室并遵守实验规定。

实验报告需包括实验过程、现象的观察与分析、结论等,确保报告的完整性和准确性。

4. 小组讨论:要求每位学生积极参与讨论,提出自己的观点,尊重他人的意见。

小组讨论应以书面形式提交讨论成果。

四、作业评价1. 笔记评价:检查学生的笔记是否完整、准确,是否涵盖了高分子材料的各个方面。

2. 课后习题评价:批改课后习题,了解学生对课堂知识的掌握情况。

3. 实验报告评价:根据实验报告的完成情况,评估学生对高分子合成过程的了解程度。

4. 小组讨论反馈:根据小组讨论的参与程度和讨论成果,对学生的团队合作和知识应用能力进行评价。

五、作业反馈1. 针对学生的薄弱环节进行个别辅导和答疑,帮助学生更好地理解和掌握高分子材料相关知识。

2. 根据作业评价结果,总结学生在学习过程中存在的问题,并在下次课堂上进行讲解和补充。

3. 鼓励学生积极参与小组讨论和实验操作,给予积极的反馈和鼓励,增强学生的学习自信和兴趣。

4. 提醒学生注意实验安全,遵守实验室规定,确保实验的顺利进行。

高分子课程第二章作业(含答案解释)

高分子课程第二章作业(含答案解释)

高分子化学第二章课后作业(共100分)1、简述逐步聚合的实施方法。

(10分)答案:2、影响线形缩聚物聚合度的因素有哪些?两单体非等化学计量,如何控制聚合度?(10分)备注:影响线形缩聚物聚合度中的第四个因素(反应条件)未回答的也可以给予满分。

另外批改时注意两单体非等化学计量的公式(应该有部分写成两单体等化学计量公式)3、己二酸与下列化合物反应,哪些能形成聚合物并说明原因。

(10分)A.乙醇B.乙二醇C.甘油D.苯胺E.己二胺答案:己二酸(f=2)为2官能度单体,因此能与己二酸形成聚合物的化合物有:乙二醇(f=2)、甘油(f=3)、己二胺(f=2)。

其中与乙二醇(f=2)、己二胺(f=2)形成线形缩聚物,与甘油(f=3)形成体形缩聚物。

答案解释:4、聚酯化和聚酰胺化的平衡常数有何差别?对缩聚条件有何影响?(10分)答案:(1)聚酯化反应平衡常数小,K=4,低分子副产物水的存在限制了聚合物分子量的提高,对聚合反应的条件要求较高,反应须在高温和高真空条件下进行,体系中水的残留量应尽量低,这样才能得到高聚合度的聚合物。

(2)聚酰胺化反应平衡常数中等,K=300-400,水对分子量有所影响,对聚合反应的条件要求相对温和。

聚合早期,可在水介质中进行;聚合后期,须在一定的减压条件下脱水,提高反应程度。

5、分别按Carothers法和Flory统计法计算下列混合物的凝胶点:(10分)(1)邻苯二甲酸酐和甘油按照摩尔比为1.5:0.98进行缩聚(2)邻苯二甲酸酐、甘油、乙二醇按照摩尔比为1.5:0.99:0.002进行缩聚答案:(1)Carothers法:邻苯二甲酸酐(f=2)官能度为2,甘油(f=3)官能度为3,邻苯二甲酸酐和甘油按照摩尔比为1.5:0.98进行缩聚的情况下,属于两基团不相等平均官能度=(2*3*0.98)/(1.5+0.98)=2.371,凝胶点=2/2.371=0.844Flory统计法:由题可知甘油(f=3)官能度为3,则支化单元分率ρ=1,基团比r=(0.98*3)/ (1.5*2)=0.98,f=3则凝胶点=1/[0.98+0.98*1*(3-2)]1/2=0.714(2)Carothers法:邻苯二甲酸酐(f=2)官能度为2,甘油(f=3)官能度为3,乙二醇(f=2)官能度为2,邻苯二甲酸酐、甘油、乙二醇按照摩尔比为1.5:0.99:0.002进行缩聚的情况下,属于两基团不相等平均官能度=2*(0.99*3+0.002*2)/(1.5+0.99+0.002)=2.387,凝胶点=2/2.387=0.838Flory统计法:由题可知甘油(f=3)官能度为3,则支化单元分率ρ=0.99*3/(0.99*3+0.002*2) =0.999,基团比r=(0.99*3+0.002*2)/(1.5*2)=0.991,f=3则凝胶点=1/[0.991+0.991*0.999*(3-2)]1/2=0.71解题思路:(1)首先判断该体系是属于两基团数相等还是两基团数不等;(2)Carothers法:根据体系的类型选择合适的公式计算出平均官能度,进而计算出凝胶点;(3)Flory统计法:根据体系的类型,得到官能度f为多少(此处注意与平均官能度不是一个概念,官能度f为多官能度单体的官能度),选择合适的公式计算出支化单元分率、基团比,进而计算出凝胶点。

高分子化学作业2

高分子化学作业2

高分子化学1、对于等摩尔的二酸和二醇间的缩聚,请推导出反应程度P与聚合度Xn间的公式,以及P在0.1, 0.9, 0.99以及0.999,对应的Xn。

(20分)答:对于等摩尔的二酸和二醇2-2体系,t=0,未反应时,定义体系的羧基或羟基数目为N0,则二酸和二醇的单体数目为N0/2,t=t时即反应t时刻后,定义体系残留未参与反应的羧基或羟基数为N,则体系含有高聚物的数目为N,(此时假定一个高聚物分子含有一个羧基和羟基在链的两端)。

由反应程度:参与反应的基团数占起始总基团数的分数。

则P=(N0-N)/N0(如以羧基为例)=1-N/N0;由聚合度:大分子的结构单元数,而大分子的结构单元数中自己反应的总的单体数目与反应后形成的高聚物数目的比值,则X N=(N0/2+N0/2)/N=N0/N,则X N与P的关系为X N=1/(1-P)或P=1-1/X N 当P=0.1,X N=1.1;P=0.9,X N=10;P=0.99,X N=100;P=0.999,X N=1000.2、由1 mol丁二醇和1 mol己二酸合成Mn为5000的聚酯,试计算:a. 两基团数完全相等,忽略端基对Mn的影响,求终止缩聚的反应程度。

b.在缩聚过程中,如果有0.5%摩尔分数的丁二醇脱水成乙烯二损失,求达到同一反应程度时的Mn。

c.假设原始混合物中羧基的总浓度为2 mol,其中1%为醋酸,无其他因素影响两基团比,求获得同一数均聚合度所需的反应程度P。

(30分)答:a、由丁二醇和己二酸的缩聚后产物为聚己二酸丁二醇[-CO(CH2)4COO(CH2)4O-]n 重复单元分子量为200,结构单元分子量为100则:X N=5000/100=50,则P=1-1/X N=1-1/50=0.98。

b、体系中参与反应的丁二醇为1*(1-0.5%)=0.995 mol,则与己二酸1mol非等量则:r=N a/N b=N丁二酸/N己二酸=0.995*2/1*2=0.995;X n=(1+r)/(1+r-2rp)=(1+0.995)/(1+0.995-2*0.995*0.98)=44.53。

高分子物理作业解答

高分子物理作业解答

高分子物理作业-2-答案聚合物的力学状态及转变1. 解释名词:(1)聚合物的力学状态及转变由于高分子链之间的作用力大于主链的价键力,所以聚合物只具有固态和液态力学状态。

随着温度的升高,分子热运动能量逐渐增加,当达到某一温度时,即可发生两相间的转变。

(2)松弛过程与松弛时间松弛过程:在一定温度和外场(力场、电场、磁场等)作用下,聚合物由一种平衡态通过分子运动过渡到另一种与外界条件相适应的、新的平衡态,这个过程是一个速度过程。

松弛时间τ是用来描述松弛快慢的物理理。

在高聚物的松弛曲线上,∆x t ()变到等于∆x o 的1/e 倍时所需要的时间,即松弛时间。

(3)自由体积与等自由体积状态 分子中未被占据的体积为自由体积;在玻璃态下,由于链段运动被冻结晶,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及其分布也将基本上维持固定。

因此,对任何高聚物,玻璃温度就是自由体积达到某一临界值的温度,在这临界值以下,已经没有足够的窨进行分子链的构象调整了。

因而高聚物的玻璃态可视为等自由体积状态。

(4)玻璃态与皮革态当非晶态高聚物在较低的温度下受到外力时,由于链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,高聚物受力变形是很小的,形变与受力和大小成正比,当外力除去后形变能立刻回复。

这种力学性质称为普弹性,非晶态高聚物处于具有普弹性的状态,称为玻璃态;部分结晶聚合物,存在玻璃化转变与高弹态,但由于晶区链段不能运动,此时玻璃化转变不再具有很大弹性的高弹态,而表现为具有一定高弹性、韧而硬的皮革态,即皮革态。

2. 试定性地绘出下列聚合物的形变—温度曲线(画在一张图上)1) 低分子玻璃态物质 2) 线性非晶态聚合物(1M )3) 线性非晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 4) 晶态聚合物(1M )5) 晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 6) 交联聚合物(交联度较小) 7) 交联聚合物(交联度较大)3. 判断下列聚合物(写出分子式)的Tg 的高低,阐述其理由:1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷 2) 聚氯乙烯、聚氯丁二烯、聚偏二氯乙烯、顺式1,4聚丁二烯 3) 聚乙烯、聚异丁烯、聚苯乙烯、聚乙烯基咔锉 4) 聚乙烯、聚丙烯、聚氯乙烯、聚丙烯腈5) 聚甲基乙烯基醚、聚乙基乙烯基醚、聚正丙基乙烯基醚、聚正丁基乙烯基醚1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷CH 2CH 2n聚乙烯CO C OO CH 2CH 2On聚对苯二甲酸乙二酯n聚苯Si CH 33On聚二甲基硅氧烷聚二甲基硅氧烷<聚乙烯<聚对苯二甲酸乙二酯<聚苯理由:当主链中引入苯基、联苯基、萘基和均苯甲酸二酰胺基等芳杂环以一,链上可以内旋转的单键比例相对减少,分子链的刚性增大,因此有利于玻璃化温度的提高。

有机高分子第二章作业答案

有机高分子第二章作业答案

1、用2.5mol 邻苯二甲酸酐与1mol 乙二醇、1mol 丙三醇进行缩聚,用Carothers 方程与Flory 统计法计算凝胶点。

解:2.25.410115.23*12*12*5.2==++++=f ,9.02==fp c 2. 等摩尔的乙二醇与对苯二甲酸在280℃下封管内进行缩聚,平衡常数K=4,求最终n X 。

另在排除副产物水的条件下缩聚,欲得100=n X ,问体系中残留水分有多少? 解:3111=+=-=K pX n 3. 邻苯二甲酸酐与甘油或季戊四醇缩聚,两种基团数相等,试求:a. 平均官能度b. 按Carothers 法求凝胶点c. 按统计法求凝胶点解:a 、平均官能度:1)甘油:4.2233*22*3=++=f 2)季戊四醇:67.2121*42*2=++=f b 、 Carothers 法:1)甘油:833.04.222===f p c 2)季戊四醇:749.067.222===f p c c 、Flory 统计法:1)甘油:1,1,707.0)2([12/1===-+=ρρr f r r p c 2)季戊四醇:1,1,577.0)2([12/1===-+=ρρr f r r p c4. 等摩尔二元醇与二元酸缩聚,另加醋酸1.5%,p=0.995或0.999时聚酯的聚合度多少?解:假设二元醇与二元酸的摩尔数各为1mol,则醋酸的摩尔数为0.015mol。

N a=2mol,N b=2mol,015.0'N molb当p=0.995时,当p=0.999时,5. 用2mol羟基酸(HORCOOH)为原料进行缩聚反应,另外加乙酸0.02mol,如果反应进行到p=0.99时,所得产物的聚合度是多少?1.反应程度:参加反应的官能团与起始官能团总数之比。

转化率:参加反应的单体分子数与初始投料单体分子数之比。

线型缩聚:2官能度单体或2-2体系的单体进行缩聚反应,聚合过程中,分子链线形增长,最终获得线型聚合物的缩聚反应。

高分子材料作业

高分子材料作业

高分子材料作业(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高分子材料成型原理平时作业(2)(针对第四章、第五章教学内容)一、单项选择题1.对于切力变稀的纺丝流体, (c )。

A. η0 <ηa<η∞B.ηa<η且ηa<η∞C. η∞<ηa<ηD.ηa>η且ηa>η∞2.熔体纺丝过程的取向主要是( b )的作用。

A.喷丝孔道中的剪切流动取向B.纺丝线上的拉伸流动取向C.纺丝线上的拉伸形变取向D. B+C3. 溶剂的扩散系数 DS 和凝固剂的扩散系数 DN随凝固浴中溶剂含量的增加而( a )。

A. 增大B. 减小C有极小值 D. 有极大值4.拉伸过程中晶区取向因数fc与非晶区取向因素fa的大小通常为( c )。

A. fc>faB. fa>fcC.开始时fc>fa,然后 fa>fcD.开始时 fa>fc,然后fc>fa二、简答题1.简述聚合物流体切力变稀的原因。

2.简述在纺丝过程中减轻或避免漫流型细流的出现的措施。

2三、讨论题1.试述聚合物分子结构对聚合物流体剪切粘性的影响。

答:聚合物分子结构包括链结构、相对分子质量及相对分子质量分布。

(1)链结构的影响聚合物的链结构对流变性能有较大影响。

聚合物分子链柔性越大,缠结点越多,链的解缠和滑移越困难,聚合物流动时非牛顿性越强。

聚合物分子链刚性增加,分子间作用力愈大,粘度对剪切速率的敏感性减小,但粘度对温度的敏感性增加,提高这类聚合物的加工温度可有效改善其流动性。

聚合物分子中支链结构的存在对粘度也有很大的影响。

具有短支链的聚合物的粘度低于具有相同相对分子质量的直链聚合物的粘度;支链长度增加,粘度随之上升,支链长度增加到一定值,粘度急剧增高,且可能比直链聚合物大若干倍。

在相对分子质量相同的条件下,支链越多,越短,流动时的空间位阻越小,粘度越低,越容易流动。

北京理工大学高分子物理作业题及答案

北京理工大学高分子物理作业题及答案

1. 选择题(10分,每题1分)(1)比较一下聚合物的流动性,哪个最好 ( C )A.MI=0.1B. MI=1C. MI=10(2)某一结构对称的结晶聚合物,其T m =210℃,其结晶速度最快的温度在 ( A )A .115℃ B. -25℃ C. 210℃(3)下列那种方法可以降低熔点: 。

( B )A .主链上引入芳环; B. 降低结晶度; C. 提高分子量(4)大多数聚合物流体属于 。

( D )A .膨胀性流体(,1n Kr n σ=>&)B .膨胀性流体(,1n Kr n σ=<&) C .假塑性流体(,1n Kr n σ=>&) D .假塑性流体(,1n Kr n σ=<&) (5)用 模型可以用来描述线性聚合物的应力松弛现象。

( B )A 、粘壶与弹簧串连的kelvin 模型B 、粘壶与弹簧串连的maxwell 模型C 、粘壶与弹簧并连的kelvin 模型D 、粘壶与弹簧并连的maxwell 模型(6)多分散高聚物下列平均分子量中最小的是 ( A )A 、n MB 、 w MC 、z MD 、M η(7)高分子链柔性越大,其等效自由结合链的链段长度 ( B )A 、越长B 、越短C 、 不变D 、不能判断(8)以下哪种现象可用聚合物存在链段运动来解释 ( B )A 、聚合物泡在溶剂中溶胀B 、聚合物受力可发生弹性形变C 、聚合物熔体黏度很大(9)下述哪一条是正确的 ( C )A 、玻璃化温度随相对分子质量的增大而不断增大B 、玻璃化转变是热力学一级转变C 、玻璃化温度是自由体积达到某一临界值的温度(10)聚丙烯酸甲酯的T g 为3℃,聚丙烯酸的T g 为106℃,后者T g 高是因为 ( B )A 、侧基的长度短B 、存在氢键C 、范德华力大2. 填空题(15分,每空1分)(1)聚合物在溶液中通常呈无规线团(或卷曲)构象,在晶体中呈伸直链或折叠链构象。

高分子化学第五章作业

高分子化学第五章作业

高分子化学第五章作业P296第3题(1)、(2)、(3)、(4)(2)在离子聚合反应过程中,能否出现自动加速效应?为什么? 答:在离子聚合反应过程中不会出现自动加速现象。

自由基聚合反应过程中出现自动加速现象的原因是:随着聚合反应的进行,体系的粘度不断增大。

当体系粘度增大到一定程度时,双基终止受阻碍,因而k t 明显变小,链终止速度下降;但单体扩散速度几乎不受影响,K p 下降很小,链增长速度变化不大,因此相对提高了聚合反应速度,出现了自动加速现象。

在离子聚合反应过程中由于相同电贺互相排斥不存在双基终止,因此不会出现自动加速效应。

董炎明教材P152第29、32、34、36题29. 在四氢呋喃溶液中于25℃用3.2×10-3mol•L -1的萘钠,使浓度为1.5mol•L -1的苯乙烯聚合。

(1)试写出聚合反应的方程式(从制备萘钠开始); (2)计算聚合物的数均聚合度。

(7分) 解:(1)略 (2)23104.9102.35.12][][2⨯=⨯⨯==-C M X n 34. 合成SBS 热塑弹性体的主要方法有A .用双官能催化剂经二步法合成C CH 2C 6H 56H 5CH 2CLi C 6H 56H 5LiCH 2CH CH CH 2+2nC CH 2C 6H 5C 6H 5CH 2C C 6H 5C 6H 5CH 2CH CH CH 2CH 2CH CH CH 2Lin-1SBS 树 脂CH 2CH CH CH 2LiCH 2CH CH CH 2n-12mCH 2CH C 6H 5终止B .偶联法nCH 2CH+R -Li +C 6H 5R CH 2CHCH 2C 6H 5CHLi +C 6H 5n-1CHR CH 2CH CH 2CH CH CH 2CH 2C 6H 5CH CH CH 2Li +nm-12R CH2CH CH2CH CH CH2CH26H5CH CH CH2Li+树脂n m-1Br(CH2)6Br C.用单官能团催化剂经三步法或二步法合成nCH2CH+RLi6H5CH2CH-Li+6H5CHCH2RC6H5n-1mCH2CH CH CH2R CH2CH CH2C6H5CH CH CH2CH2CH CH CH2-Li+n m-1SBS树脂265终止。

《高分子合成工艺》作业参考答案

《高分子合成工艺》作业参考答案

《高分子合成工艺》作业参考答案第一章1、单体储存过程中应注意什么问题,储存设备应考虑哪些问题,为什么答:单体储存过程应该注意:(1)为了防止单体自聚,在单体中添加少量的阻聚剂,如在1, 3-丁二烯中加人防老剂对叔丁基邻苯二酚。

(2)为防止着火事故的发生,单体储罐要远离反应装置,储罐区严禁明火以减少着火的危险。

(3)防止爆炸事故的发生,首先要防止单体泄漏,因单体泄漏后与空气接触产生易爆炸的混合物或过氧化物;储存气态单体(乙烯)或经圧缩冷却后液化的单体(丙烯、氯乙烯、丁二烯等)的储罐应是耐压的储罐;高沸点的单体储罐应用氮气保护,防止空气进入。

2、引发剂储存是应注意什么问题答:多数引发剂受热后有分解和爆炸的危险,干燥纯粹的过氧化物最易分解。

因此,工业上过氧化物引发剂采用小包装,储存在阴暗、低温条件下,防火、防撞击。

3、聚合反应产物的特点是什么答:聚合物的分子量具有多分散性;聚合物的形态有坚韧的固体、粉状、粒状和高粘度的溶液;聚合物不能用一般产品精制的方法如蒸镭、重结晶和萃取等方法进行精制和提纯。

4、选择聚合方法的原则是什么答:聚合方法的选择原则是根据产品的用途所要求的产品形态和产品成本选择适当的聚合方法。

自山基聚合可以采用本体、溶液、乳液和悬浮聚合等方法;离子聚合只能采用本体和溶液聚合。

聚合操作可以是连续法或者间歇法;聚合反应器有不同的类别、排热方式和搅拌装置等。

5、如何选用聚合反应器答:根据聚合反应器的操作特性、聚合反应及聚合过程的特征、聚合反应器操作特性和经济效益等聚合反应的特性以及过程控制的重点,按下列原则选择聚合反应器:(1)重点在于LI标产物的主成时,在原料配方一定的情况下,当反应物浓度高对于LI标聚合物生成有利时,可选用管式聚合反应器或间歇操作的釜式聚合反应器,当反应物浓度低对LI标聚合物生成有利时,可选用连续操作的釜式聚合反应器或多级串联釜式聚合反应器(2)重点在于确保反应时间的场合可选用塔式或管式聚合反应器(3)重点在于除去聚合热的场合可以选用搅拌釜式聚合反应器(4)重点在于除去平衡过程中产生的低分子物的场合,可选用搅拌釜式聚合反应器,薄膜型聚合反应器或表面更新型聚合反应器(5)对于高粘度体系,应尽量选择相应的特殊型式的聚合反应器。

高分子物理作业习题

高分子物理作业习题

高分子物理习题:第一章高分子链的结构一、概念与名词高聚物的结构高分子链结构聚集态结构近程结构远程结构化学结构物理结构构型旋光异构全同立构间同立构无规立构有规立构等规度几何异构顺反异构键接异构序列序列分布数均序列长度支化度交联度IPN Semi-IPN 构象单键内旋转链段近程相互作用远程相互作用无规线团柔顺性平衡态柔顺性动态柔顺性末端距均方末端距根均方末端距均方回转半径最可几末端距自由结合链自由旋转链伸直链等效自由结合链高斯链无扰尺寸空间位阻参数特征比一级近程排斥力二级近程排斥力热塑性聚合物热固性聚合物热力学链段长度动力学链段长度二、基本理论与基本问题1.下列哪种聚合物是热塑性的()a.硬质橡胶b.酚醛树脂c.硫化橡胶d.HDPE2.高压聚乙烯因为在聚合时压力很大,所以产品的密度也高,低压聚乙烯因为聚合时压力低,所以产品密度也低。

()3.所谓自由旋转链,就是键角(θ),内旋转角(θ)均不受限制的高分子链。

()4.高分子在晶体中是规则排列的,只有全同立构或间同立构的高分子才能结晶,无规立构高分子(也有例外)不能结晶。

()5.HPPE聚合时压力很大,LPPE聚合时压力很小。

所以二者的密度a、HPPE>LPPEb、HPPE<LPPEc、HPPE=LPPE6.分子量相同的大分子链,链越柔顺则线团尺寸()a、越小b、越大c、基本不变7.下列高聚物,单个分子链柔顺性最大的是()a、聚已二酸乙二醇酯b、聚丙烯(全同)c、聚二甲基硅氧烷8.α-取代烯烃聚合物,当不对称碳原子在链中的排列方式为DLDL……,则这种聚合物的立构属于()a、全同b、无规c、间同9.高顺1,4-聚异戊二烯在室温下为()a、塑料b、橡胶c、纤维10.按高聚物结构层次的划分,高分子链的构型属于()a、一次结构b、二次结构c、三次结构11.下列三种高聚物中,耐热性最好的是( )a、聚酰亚胺b、尼龙-66c、芳香尼龙12.哪种聚合物在室温下透气性更好()a、等规聚丙烯b、无规聚丙烯13.下列哪种聚合物是热塑性()a、硬质橡胶b、HDPE14.下列哪种聚合物是支链聚合物()a、HDPEb、等规聚丙烯c、LDPE15.等规聚丙烯的大分子链,在晶体中呈螺旋构象。

高分子物理作业

高分子物理作业

高分子物理作业-1高分子链结构与高分子聚集态结构部分1:名词解释(1) 高分子链的近程结构和远程结构近程结构:高分子链所组成单元的化学结构和立体化学结构,即高分子的构造和构型。

构造:高分子中原子的种类和排列,构型:某一原子的取代基在空间的排列远程结构:单个分子链的大小和形态,链的柔顺性以及在各种环境中分子所采取的构象。

(2)高分子链的构型和构象构象:由围绕单键内旋转所形成的分子中原子在空间的不同排列形式。

构型:由化学键固定的分子中原子在空间的不同排列形式。

(3)高分子链的柔性和刚性柔性:高分子链每个单键内旋转而产生无数种构象,并具有强烈卷曲倾向的特性,刚性:与柔性相对,指的是高分子链不发生单键内旋转产生无数构象的特性。

(4)自由结合链、自由旋转链和等效自由结合链自由结合链:高分子链由N个长度相等的链节组成,并且每个链节的相互连接不受键角和内旋转势垒的限制,即自由旋转任意取向,同时链本身不占有体积。

自由旋转链:高分子链由N个相同单键组成,单键间夹角一定,单键内旋转不受阻碍,即是自由旋转的。

等效结合链:由于不存在自由结合链,也不存在自由旋转链,而只有无规线团状的链。

假如这种线团的长度足够长,而且具有一定的柔性,则仍旧可以把它当作自由结合链进行统计处理,称为。

(5)均方末端距和均方回转半径均方末端距:线性高分子链一端至另一端直线距离的平均值或其值平方的平均值。

均方回转半径:支化高分子链的质量中心到各个链段的距离的平均值或其值的平方的平均值。

2:试比较下列聚合物(写出名称和缩写)分子链柔性的大小,阐述其理由。

(1)CH2CH CH2CHCN CH2CHn n n CH3Cl以上三种高分子分别为聚丙烯(PP),聚乙烯腈(PAN),聚氯乙烯(PVC)柔性由弱到强依次是:聚乙烯腈、PVC、PP,因为含极性侧基的高分子,侧基极性越强则链的柔性越差。

(2)CH 2CHCH 2C CH 2C ClCl Cl CH CH 2n n n Cl以上三种高分子分别为聚氯乙烯(PVC ),聚1,1-二氯乙烯(PVDC ),聚2-氯1,4-丁二烯(PCP ),柔性由弱到强依次是:PVC 、聚2-氯1,4-丁二烯、聚1,1-二氯乙烯,因为对于聚1,1-二氯乙烯,同一个C 原子上的两个Cl 原子结构对称,极性相抵消,并且增大了分子链间的距离,从而使得C-C 键旋转能力增强,柔性较强;而聚2-氯1,4-丁二烯中含有内孤立双键,因为双键不能内旋转,且双键上的原子或基团数目较单键的少,使得那些原子或基团间的排斥力减弱,以至使双键连接的单键内旋转位垒减少,分子链柔顺性增加。

(完整版)高分子化学作业-1参考答案

(完整版)高分子化学作业-1参考答案

1、 写出下列单体的聚合反应式、以及单体、聚合物的名称。

a. CH 2=CHFb. CH 2=C(CH 3)2c. HO(CH 2)5COOHd. CH 2CH 2CH 2Oe. NH 2(CH 2)6NH 2 +HOOC(CH 2)4COOH――――――――――――――――――――――――――――――――――――――― 【解答】 a. CH 2=CHF聚合反应式:nCH 2=CHFFCH 2-CHn单体名称:氟乙烯 聚合物名称:聚氟乙烯 b. CH 2=C(CH 3)2聚合反应式:nCH 2=C(CH 3)2CH 2-C(CH 3)2n单体名称:异丁烯 聚合物名称:聚异丁烯 【注意】习惯称“异丁烯”,最好不要称“2-甲基丙烯”(“1,1-二甲基乙烯”更规范)。

c. HO(CH 2)5COOH聚合反应式:nHO(CH 2)5COOHO(CH 2)5CO n + (n-1)H 2O单体名称:6-羟基己酸聚合物名称:聚6-羟基己酸d. CH 2CH 2CH 2O聚合反应式:n CH 2CH 2CH 2O 2CH 2CH 2On 单体名称:1,3-环氧丙烷 / 氧杂环丁烷 /丁氧环聚合物名称:聚1,3-环氧丙烷 /聚氧杂环丁烷 /聚丁氧环 /IUPAC :聚氧化亚丙基(《高分子化学》潘才元著)/ 聚氧化丙撑(称“环丙醚”和“聚亚丙基醚”有一定道理,但较少见,最好不这样命名) 【注意】CH 2-CH -CH 3O ( 环氧丙烷 )e. NH 2(CH 2)6NH 2 +HOOC(CH 2)4COOH聚合反应式:nNH 2(CH 2)6NH 2 + nHOOC(CH 2)4COOHNH(CH 2)6NH-OC(CH 2)4CO n+ (2n-1 ) H 2O单体名称:己二胺( NH 2(CH 2)6NH 2 )己二酸( HOOC(CH 2)4COOH ) 聚合物名称:聚己二酰己二胺 /尼龙-662.写出下列聚合物的一般名称, 单体和聚合反应式,这些聚合反应属于加聚还是缩聚, 连锁聚合还是逐步聚合?―――――――――――――――――――――――――――――――――――――――【解答】(1) 聚合物名称:聚甲基丙烯酸甲酯单体:CH 2=CHCOOH CH 3聚合反应式:n CH 2=CHCOOHCH 3[CH 2-C ]nCH 3CH 3反应类型:加聚反应,连锁聚合(2)聚合物名称:聚醋酸乙烯酯单体:CH 2=CH-OCOCH 3聚合反应式:n CH 2=CH-OCOCH 2-CHnOCO CH 3反应类型:加聚反应,连锁聚合(3)聚合物名称:聚已二酰已二胺(尼龙-6,6)(1)CH 2-C3CH3n(2)CH 2-CHOCOCH 3n(3)NH(CH 2)6NHCO(CH 2)4CO n (4)NH(CH 2)5COn(5)CH 2-C=CH-CH 2CH 3n单体 & 聚合反应式:H 2N(CH 2)6NH 2 和HOOC(CH 2)4COOH n H 2N(CH 2)6NH 2 + n HOOC(CH 2)4HHN(CH 2)6NH-OC(CH 2)4CO OHn+ (2n + 1)H 2O反应类型:缩聚反应,逐步聚合(4)聚合物名称:聚己内酰胺 单体 & 聚合反应式:HN(CH 2)5CO HN(CH 2)5COnHN(CH 2)5CO n H 2N(CH 2)5COOHHN(CH 2)5COn+ (n - 1)H 2O或 H 2N(CH 2)5COOH★反应类型:缩聚反应逐步聚合(己内酰胺开环聚合,以水-酸作催化剂) or :连锁聚合(己内酰胺开环聚合,以碱作催化剂) or :逐步聚合(氨基己酸途径)【注意】本题较多同学未指定条件。

高分子物理作业习题

高分子物理作业习题

高分子物理习题:第一章高分子链的结构一、概念与名词高聚物的结构高分子链结构聚集态结构近程结构远程结构化学结构物理结构构型旋光异构全同立构间同立构无规立构有规立构等规度几何异构顺反异构键接异构序列序列分布数均序列长度支化度交联度IPN Semi-IPN 构象单键内旋转链段近程相互作用远程相互作用无规线团柔顺性平衡态柔顺性动态柔顺性末端距均方末端距根均方末端距均方回转半径最可几末端距自由结合链自由旋转链伸直链等效自由结合链高斯链无扰尺寸空间位阻参数特征比一级近程排斥力二级近程排斥力热塑性聚合物热固性聚合物热力学链段长度动力学链段长度二、基本理论与基本问题1.下列哪种聚合物是热塑性的()a.硬质橡胶b.酚醛树脂c.硫化橡胶d.HDPE2.高压聚乙烯因为在聚合时压力很大,所以产品的密度也高,低压聚乙烯因为聚合时压力低,所以产品密度也低。

()3.所谓自由旋转链,就是键角(θ),内旋转角(φ)均不受限制的高分子链。

()4.高分子在晶体中是规则排列的,只有全同立构或间同立构的高分子才能结晶,无规立构高分子(也有例外)不能结晶。

()5.HPPE聚合时压力很大,LPPE聚合时压力很小。

所以二者的密度a、HPPE>LPPEb、HPPE<LPPEc、HPPE=LPPE6.分子量相同的大分子链,链越柔顺则线团尺寸()a、越小b、越大c、基本不变7.下列高聚物,单个分子链柔顺性最大的是()a、聚已二酸乙二醇酯b、聚丙烯(全同)c、聚二甲基硅氧烷8.α-取代烯烃聚合物,当不对称碳原子在链中的排列方式为DLDL……,则这种聚合物的立构属于()a、全同b、无规c、间同9.高顺1,4-聚异戊二烯在室温下为()a、塑料b、橡胶c、纤维10.按高聚物结构层次的划分,高分子链的构型属于()a、一次结构b、二次结构c、三次结构11.下列三种高聚物中,耐热性最好的是( )a、聚酰亚胺b、尼龙-66c、芳香尼龙12.哪种聚合物在室温下透气性更好()a、等规聚丙烯b、无规聚丙烯13.下列哪种聚合物是热塑性()a、硬质橡胶b、HDPE14.下列哪种聚合物是支链聚合物()a、HDPEb、等规聚丙烯c、LDPE15.等规聚丙烯的大分子链,在晶体中呈螺旋构象。

高分子物理化学课程第五次作业含答案解析

高分子物理化学课程第五次作业含答案解析

高分子化学第5章作业(100分)1(简答题)请解释什么是本体聚合、溶液聚合、悬浮聚合、乳液聚合。

并简要说明以上四种方法的优缺点。

(10分)答案:本体聚合:不加其它介质,只有单体本身,在引发剂、热、光等作用下进行的聚合反应。

优点:(1)产品纯净,尤其适用于制透明板材、型材;(2)聚合设备相对简单,可连续生产。

缺点:(1)体系很粘;(2)聚合热不易扩散,反应难以控制,轻则造成局部过热(聚合物分子量分布变宽),重则聚合温度失调,引起爆聚;(3)产生凝胶效应,出现自动加速现象,更易使聚合反应失控。

溶液聚合:将单体和引发剂溶于适当的溶剂中,在溶液状态下进行的聚合反应。

优点:(1)聚合热易撤除,可避免局部过热;(2)体系粘度低,自动加速效应不明显;(3)反应物料易输送;(4)可直接制成聚合物溶液产品。

缺点:(1)单体被溶剂稀释,浓度低,聚合速率慢,设备利用率低;(2)单体浓度低和向溶剂链转移的双重结果,使聚合物分子量降低;(3)溶剂的分离回收成本高,且难以从聚合物中完全除去;(4)溶剂的使用易产生环境污染和安全问题。

悬浮聚合:将不溶于水的单体以小液滴状悬浮在水中聚合,这是自由基聚合特有的聚合方法。

优点:(1)体系粘度低,传热和温度容易控制,产品分子量及其分布比较稳定;(2)产品分子量比溶液聚合的高,杂质含量比乳液聚合的少;(3)后处理工序比乳液聚合和溶液聚合简单,生产成本也低,粒状树脂可直接成型。

缺点:(1)聚合产物中有较多量的分散剂,影响其性能;(2)难以实现连续化。

乳液聚合:在搅拌作用下,将单体在水中分散成乳状液,进而进行聚合反应。

优点:(1)水为分散介质(安全、环保、低黏),易撤热控温、易输送;(2)聚合速率快,产物分子量高;(3)可直接用于聚合物乳胶的场合。

缺点:(1)需要固体产品时,后处理(凝聚、洗涤、脱水、干燥)麻烦,成本较高;(2)难以除尽乳化剂残留物,有损电性能等。

2(简答题)悬浮聚合和乳液聚合配方体系中分别有哪些物质?它们的聚合场所分别是哪里?(10分)答案:悬浮聚合:配方—单体、水、油溶性引发剂、分散剂;聚合场所—分散的单体液滴。

高分子物理作业(带答案)

高分子物理作业(带答案)

第一章1.试讨论线形聚异戊二烯可能有哪些不同的构型,假定不考虑键接结构(画出结构示意图)。

解:聚异戊二烯可能有6种有规立构体,它们是:常见错误分析:本题常见的错误如下:(1)将1,2加成与3,4加成写反了。

按IUPAC 有机命名法中的最小原则,聚异戊二烯应写成而不是即CH 3在2位上,而不是在3位上。

(2)“顺1,4加成又分成全同和间同两种,反1,4加成也分成全同和间同两种。

”顺1,4或反1,4结构中没有不对称碳原子,没有旋光异构体。

甲基与双键成120°角,同在一个平2C CCH 2CH 2CH 3HC C C C CC RR R 33CH 3H HHH H H (R =CH CH 2)C C C C CC RR R H HHH H H H H H (R =C(CH 3)CH 2)C C C C C CR R 3CH 3CH 3H HHH H H (R =CH CH 2)C C C C CC R R R H H H H H H HHH (R =C(CH 3)CH 2)② 反1,4加成④ 3,4加成全同立构 ③ 1,2加成全同立构⑤ 1,2加成间同立构 ⑥ 3,4加成间同立构 C CH CH 3CH 2CH 2n 1234C CH CH 3CH 2CH 2n1234面上。

2.以聚丁二烯为例,说明一次结构(近程结构)对聚合物性能的影响?解:单体丁二烯进行配位聚合,由于1,2加成与1,4加成的能量差不多,所以可得到两类聚合物。

一类是聚1,2-丁二烯,通式是;另一类是聚1,4-丁二烯,通式是。

每一类都可能存在立体异构,如由于一次结构不同,导致聚集态结构不同,因此性能不同。

其中顺式聚1,4-丁二烯规整性差,不易结晶,常温下是无定形的弹性体,可作橡胶用。

其余三种,由于结构规整易结晶,使聚合物弹性变差或失去弹性,不易作橡胶用,其性能之差详见表1-1。

表1-1聚丁二烯的物理性质异构高分子熔点(℃)密度(g/cm3)溶解性(烃类溶剂)一般物性(常温)回弹性20℃90℃全同聚1,2-丁二烯120~125 0.96 难硬,韧,结晶性45~55 90~92间同聚1,2-丁二烯154~155 0.96 难硬,韧,结晶性顺式聚1,4-丁二烯4 1.01 易无定形硬弹性88~90 92~95反式聚1,4-丁二烯135~148 1.02 难硬,韧,结晶性75~80 90~933.假定聚乙烯的聚合度为2000,键角为109.5°,求伸直链的长度L max 与自由旋转链的根均方末端距之比值。

高分子作业

高分子作业

大家好我是南昌大学的、、、、、、、1、丙烯腈-苯乙烯的竞聚率r1=0.04,r2=0.40,若所采用的丙烯腈(M1)和苯乙烯(M2)的投料质量比为24:76,在生产中采用单体一次投料的聚合工艺,并在高转化率下才停止反应。

试求:(1)画出F-f 的关系图;(2)计算恒比点,并讨论所得共聚物的均匀性;(3)所需的共聚物组成中含苯乙烯单体单元的质量分数为70%,问起始单体配料比及投料方法又如何?2、醋酸烯丙基酯(e = -1.13, Q = 0.028)和甲基丙烯酸甲酯(e = 0.41, Q = 0.74)等物质的量共聚,是否合理?1、(1)由于r1<1,r2<1,且r1r2<1,,所以这个共聚体系存在恒比点,其F1-f1的关系图如下(2)恒比点 F1=f1=(1-r2)/(2-r2-r1)=0.385因为丙烯腈的摩尔质量为53,苯乙烯的摩尔质量为104,所以当两单体投料质量比为24:76时,他们的摩尔数之比为0.62,丙烯腈的摩尔分数为:(24/53)/(24/53+76/104)=0.383由此可见,投料的丙烯腈的量与恒比点近似相等,在聚合过程中共聚物组成随转化率的变化不大,所以一次性投料,得到的共聚物仍然相当均匀。

(3)所需的共聚物组成中含苯乙烯单体单元的质量分数为70%时,丙烯腈占共聚物的摩尔分数为:F1=(0.3/53)/(0.3/53+0.7/104)=0.46又因为F1=(r1f1²+f1f2)/(r1f1²+2f1f2+r2f2²)解之得:f1=0.62所以[M1]/[M2]=1.63,所以投料的摩尔比为1.63投料方法:将两种单体按投料比为1.63(摩尔比)投料,一次投料。

2、r1=(0.028/0.41)exp[-1.13(-1.13-0.74)]=0.57r2=(0.41/0.0280)exp[-0.74(0.74+1.13)]=3.67由r1、r2值可知,醋酸烯丙基酯易和甲基丙烯酸甲酯反应而共聚,而甲基丙烯酸甲酯则易与自身反应而均聚,所以等物质的量共聚,不正确。

高分子物理作业答案-2

高分子物理作业答案-2

高分子物理习题集-答案适用:高分子专业班级第二章 高分子溶液4.什么是Θ温度?如何测定Θ温度?若温度高于、等于和低于Θ温度时,试分别讨论高分子溶液的热力学性质及高分子在溶液中的形态。

答:(1)当112χ→时,高分子溶液可以视为理想溶液,Flory 导出()112-=-1-T θχκφ当T θ→时,112χ→,此时的温度称为Θ温度。

(0.4)(2)测定Θ温度的方法有:渗透压法和外推法。

(0.3)(3)当T >θ时,1E μ∆<0.说明高分子溶液比理想溶液更倾向于溶解,也就是说,高分子链在T >θ时的溶液中由于溶剂化作用而扩张。

T=θ时, 1E μ∆=0。

即高分子溶液符合理想溶液的规律,高分子链此时是溶解的,但是链不溶胀也不紧缩。

T <θ时,1E μ∆>0,。

链会紧缩,溶液发生沉淀。

(0.3)6.在室温下,有无溶剂可以使下列各高聚物溶解?为什么?A .聚乙烯B .聚丙烯C .聚丙烯腈D .聚酰胺(尼龙-6)E .聚苯乙烯F .PMMAG .聚对苯二甲酸乙二酯H .硫化橡胶I .固化的环氧树脂 答:A .聚乙烯,结晶聚合物,非极性,在室温下无溶剂可溶B .聚丙烯,同上C .聚丙烯腈,极性结晶高聚物,室温下可溶于极性溶剂D .聚酰胺(尼龙-6),结晶聚合物,极性,在室温下有溶剂可溶E .聚苯乙烯,非晶聚合物,非极性,在室温下有溶剂可溶F .PMMA ,极性非晶聚合物,分子堆砌松散,室温下可溶于极性溶剂G .聚对苯二甲酸乙二酯,同DH .硫化橡胶,分子间交联,无溶剂可溶,可溶胀I .固化的环氧树脂,同H7、35℃时,环己烷为聚苯乙烯(无规立构)的θ溶剂。

现将300mg 聚苯乙烯(ρ=1.05 g/cm 3,Mn=1.5×105)于35℃溶于150ml 环己烷中,试计算:(1)第二维利系数A2;(2)溶液的渗透压。

答:(1)θ溶液,所以A2=0(2)θ溶液中1RT C M∏=,所以 33353008.314(/)30810(/)15034.2/34.21.510/J K mol K g m C RT J m Pa M g mol⎛⎫⨯⨯⨯ ⎪⎝⎭∏====⨯ (1J=1N .m )8、 解释产生下列现象的原因:(1)聚四氟乙烯至今找不到合适的溶剂.(2)硝化纤维素难溶于乙醇或乙醚,却溶于乙醇和乙醚的混合溶剂中.(3)纤维素不能溶于水,却能溶于铜铵溶液中.(1)原因有二,一是其2/13)/cal (6.2cm =δ,很难找到δ这么小的溶剂;二是其熔点高达327℃,熔点以上体系具有高黏度,对于非极性结晶性高分子要求升温到接近熔点,没有适当溶剂既能δ相近又能有高沸点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子材料的发展刘广平(华南理工大学机械与汽车学院广东,广州)【摘要】本文简单介绍了近十几年来高分子材料研究几大重要方向的最新进展和高分子材料在人们生活中的应用与影响,说明高分子材料的研究在高分子科学发展中的重要地位及其重要意义。

【关键词】高分子发展应用影响Abstract: This article simply introduces the past dozens of years, polymer materials research several important direction of the latest progress and polymer materials in people life application and effects, explain polymer materials research in polymer science development the important position and its significance. Keyword: high polymer development application influence 高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。

其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。

合成高分子材料按使用性质划分,有塑料、橡胶、纤维、涂料等,按用途划分有结构型和功能型,同一用途不同层次则有通用型和高性能型之分,功能型细分则有光、电、磁功能和生物相容功能等。

一、高分子材料概述材料是人类用来制造有用物件的物质,材料的可用性由形成材料的物质分子的属性所决定。

组成高分子材料的分子是长链分子,由若干原子按一定规律重复地连接成具有成干上万甚至上百万质量、最大伸直长度可达毫米量级的长链分子,因此高分子材料又被称为聚合物材料。

1.天然和人造高分子材料高分子材料的发现和应用经过了从天然高分子材料的直接使用,到天然高分子材料的改造再利用,再到化学合成制簧高分子材料的过程。

2500多年前,南美印地安人将天然橡胶树汁涂覆在脚上,依赖空气中的氧连接天然橡胶树汁中的长链分子使其变硬,制成了早期的"靴子"。

1839年,美国Goodyear.发现用硫原子取代空气中的氧使天然橡胶树汁变硬的方法,发明了硫化技术,使天然橡胶成为一种高分子材料。

这种主耍通过化学反应对天然产物进行改性,使人类从原始利用进人到有目的改造天然产物而得到的高分子材料,称为人造高分子材料。

1855年,由英国人Parks用硝化纤维素和樟脑制得的赛骆堵塑料,也是有划时代意义的一种人造高分子材料。

2.合成高分子材料用化学合成的方法得到并被实际应用的第一个合成高分子材料,是1909年报道的美国Baekeland发明的酚醛树脂。

1920年,德国科学家Staudinger提出高分子的长链分子概念后,开始了用化学合成的方法大规模制蚤合成高分子材料的时代。

1935年,英国帝国化学公司(ICI)开发出高压聚乙烯,因其极低的介电常数而在第二次世界大战期间用作雷达电缆和潜水艇电缆的绝缘材料,此后得到广泛应用。

1940年,美国杜邦公司推出尼龙纺织品,因其经久耐用而在当时的美国和欧洲风靡一时,而尼龙66纤维制造的降落伞,更是大大提高了美国军队在第二次世界大战中的作战能力。

20世纪中叶的石油化工的发展虽然得到了许多可供合成高分子材料工业使用的原料,但其中的许多原料却不能被当时已有的高分子合成反应和技术所接受。

1953年,德国科学家Zieglar.和后来的意大利科学家Natta,发明了配位聚合催化剂【1】,大幅度地扩大了合戚高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了干家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。

20世纪70年代中期在塑料导电研究领域取得突破性的发现,具有光、电、磁活性的导电聚合物成为对物理学家和化学家都具有重要意义的研究领域。

导电聚合物在发光二极管、太阳能电池、移动电话和微型电视显示装置等领域不断找到新的用武之地。

二、高分子材料技术的创新研究1.高分子材料的化学合成多品种的合成高分子材料虽然体现了多用途的使用价值,但却增加了材料合成与制备的复杂性和材料回收再利用的难度。

因为不同品种的高分子材料是由不同的原料单体采用不同的合成技术制得的,要采用不同的技术进行分类后才能回收再利用。

如果能开发一种化学合成技术,实现分子结构和立体结构的调控,达到由一种或有限的几种原料单体,制得具备不同性质、满足多种需求的高分子材料,显然是很有挑战意义的。

这和钢铁材料产业提出的"一钢多能"-样,对通用高分子材料的更新换代有战略意义。

2.高分子材料的物理合成高分子材料的作用和功能的发挥,不仅取决于化学合成形成的分子链的化学结构,还取决于分子链间的非化学成键的相互作用的支撑和协调。

分子链间的非化学成锭的相互作用的形成,可以通过所谓的物理合成方法来实现。

利用外场的物理作用,在一确定的空间或环境中像搬运积木块一样地移动分子链,采用自组合、自合成或自组装等方法,靠分子链间的相互作用,构建具有特殊结构形态的分子链聚集体。

如果再在分子链聚集体中引发化学成键,则能得到具有高度准确的多级结构的高分子材料。

这种物理合成的方法对获得大面积高分子功能薄膜材料和器件很有意义。

3.高分子材料的仿生合成和生命活性化日光、二氧化碳和水经过植物的"合成",成为可以使用的高分子材料(如天然橡胶等)。

柔蚕将桑叶"合成"蚕丝,蜘蛛将体液"合成"蜘蛛网,可以得到别具特色的纤维材料。

自然界中生物体的这种活性反应器和活性催化剂的功能和作用,正是高分子材料的仿生合成可惜鉴之处。

传递着所有生命过程的生物大分子,与合成高分子一样都是长链分子,但由于难以在合成高分子的分子链上接上确定的序列结构,难以形成精确的链折叠和链间组装,合成高分子表现不出生命活性。

生命大分子结构的精确、活性的专一和功能的多元,对合成高分子材料的生物应用提出了挑战。

合成高分子材料与生物工程学和生命科学的结合,不仅能开发出更多的生物医用高分子材料,还能制备出与生物高分子一样精确的序列结构,组装成类似细胞那样能控制生命过程的生物活性合成高分子材料,也能得到连接细胞与计算机、沟通生命与信息的合成高分子材料。

4.高分子材料的智能化材料的智能化是未来各类材料发展的一个方向。

智能化是指材料的作用和功能可随外界条件的变化而有意识的调节、修饰和修复。

高分子材料中长链分子的丰富构象变化及较弱的分子链间相互作用,赋予高分子材料以自适应性。

高分子表现出的其结构、作用和功能随外界环境而变化的软物质特征,是高分子材料作为智能材料应用的基础。

己经知道无论是最大的力学载荷的传递,还是最快的功能信号的传递,都是沿着高分子的链轴方向,因此了解和掌握外场存在下分子链的取向和聚集,实现外场方向与分子链取向和聚集的同步变化(即当根据需要调节外场方向和强度时,分子链的取向方向和聚集层次也可以随之变化),则能在不同方向和不同层次上调节和发挥高分子材料的功能和性质,使其表现出智能性。

三、各功能高分子的发展与研究状况1.智能高分子智能高分子材料是指能够感知环境变化,通过自我判断和结论,实现指令和执行的新材料。

它在模仿生命系统中同时具有感知和驱动双重功能的材料,即不仅能够感知外界环境或内部状态所发生的变化,而且能够通过材料自身的或外界的某种反馈机制,实时地将材料的一种或多种性质改变,做出所期望的具有某种响应的材料,又称机敏材料【2】。

其中环境刺激因素很多,如温度、PH 值、离子、电场、磁场、溶剂、反应物、光或紫外光、应力和识别等,对这些刺激产生有效响应的智能聚合物自身性质会随之发生变化。

由于它具有反馈功能,与仿生和信息密切相关,其先进的设计思想被誉为材料科学史上的一大飞跃,已引起世界各国政府和多种学科科学家的高度重视。

高分子薄膜。

高分子膜的智能化是通过膜的组成、结构和形态的变化来实现的。

研究较多的是选择性渗透、选择性吸收和分离等。

将生物分子或复杂的生物系统与高分子膜杂化,既有利于延长生物材料的活性寿命,又能获得良好的选择性。

LB 膜是与生物膜的脂质双层结构非常相似的有序分子组合体系。

官能化高分子LB 膜可获得非线性光学特性、光学记忆、光电交换、选择性传质和传感等功能,日本东芝基础研究所已成功地研制了人工视网膜,模拟鼻嗅觉功能的味觉LB 膜正在研究之中。

形状记忆材料。

高分子聚合物形状记忆材料是日本学者在80年代初以形状记忆合金(SMA)为基础开发出来的新型弹性记忆材料,同样具有SMA可“感知”及“驱动”的特点。

当温度到达特征温度时,材料从玻璃态转化到橡胶态,出现大的变形。

温度升高,材料变形容易;温度降低,硬化为持续可塑的新形状。

形状记忆过程可简单表达为:初始形状的制品→2次形变→形变固定→形变回复。

已经开发的形状记忆树脂主要有聚降冰片烯、反式1 ,4 一聚异戊二烯、苯乙烯一丁二烯共聚物和聚氨酯等品种。

形状记树脂在工业上的应用很广,包括从精密复杂的机器到较为简单的连接件、紧固件,如各种管接头,热敏驱动元件,机器人手臂、肘、腕、指等以及利用其双向记忆功能进行能量转换的形状记忆热机。

智能织物【5】。

Vigo 等将聚乙二醇与各种纤维如棉、聚酯或聚酰胺/聚氨酯共混物结合,使其具有热适应性与可逆收缩性。

所谓热适应性,是赋予材料热记忆特征:温度升高时纤维冷却;温度降低时纤维发热。

此热记忆效应源于结合在纤维上的相邻多元醇螺旋间氢键相互作用。

温度升高时,氢键解离,系统趋于无序,此类线团松弛,过程吸热;当环境温度降低时,氢键使系统更为有序,线团压缩,过程放热。

此类织物的另一功能是可逆收缩:湿时收缩,干时回复至其原始尺寸。

其中湿态收缩率可达35%,水以外的溶剂亦能使其产生这种响应。

如压力绷带,它在血液( 其中主要是水) 中收缩,伤口上所产生的压力会止血,绷带干燥时压力消除。

2.导电高分子导电性高分子材料【4】一般分为结构型和复合型两大类。

结构型导电高分子聚合物是1977年才发现的,它是有机聚合掺杂后的聚乙炔,具有类似金属的电导率。

而纯粹的结构型导电高分子聚合物至今只有聚氮化硫类,其它许多导电聚合物几平均需采用氧化还原、离子化或电化学等手段进行掺杂之后才能有较高的导电性。

其代表性的产物有聚乙炔、聚对苯撑、聚吡咯、聚噻吩、聚吡啶、聚苯硫醚等。

还有一种叫作热分解导电高分子,这是把聚酰亚胺、聚丙烯腈等在高温下热处理,使之生成与石墨结构相近的物质,从而获得导电性。

相关文档
最新文档