NEURAL NETWORK AS AN OPHTHALMOLOGIC DISEASE CLASSIFIER

合集下载

国开作业人工智能专题-专题二-测验57参考(含答案)剖析

国开作业人工智能专题-专题二-测验57参考(含答案)剖析

可编辑修改精选全文完整版题目:语义网络的表示方法只能表示有关某一事物的知识,无法表示一系列动作、一个事件等的知识。

选项A:对选项B:错答案:错题目:人们需要把分类器学习的样本的特点进行量化,这些量化后的数据,如鸢尾花的高度、花瓣的长度、花瓣的宽度等就是鸢尾花的特征。

这些特征都是有效的,可以提供给分类器进行训练。

选项A:对选项B:错答案:错题目:谓词逻辑是应用于计算机的逻辑形式,其逻辑规则、符号系统与命题逻辑是一样的。

选项A:对选项B:错答案:错题目:深度学习是计算机利用其计算能力处理大量数据,获得看似人类同等智能的工具。

选项A:对选项B:错答案:对题目:贝叶斯定理是为了解决频率概率问题提出来的。

选项A:对选项B:错答案:错题目:状态空间图是对一个问题的表示,通过问题表示,人们可以探索和分析通往解的可能的可替代路径。

特定问题的解将对应状态空间图中的一条路径。

选项A:对选项B:错答案:对题目:分层规划中包含基本动作和高层动作。

选项A:对选项B:错答案:对题目:启发式规划的两种方法是减少更多的边或者状态抽象。

选项A:对选项B:错答案:错题目:P(A∣B)代表事件A发生的条件下事件B发生的概率。

选项A:对选项B:错答案:错题目:现实世界中的规划问题需要先调度,后规划。

选项A:对选项B:错答案:错题目:当神经网络接收到工作任务时,就是用()来接收这些任务所对应的数据集,如图像每个像素点的特征数值——色彩、亮度等。

()的每个神经元都是任务的特征,即特征数值。

选项A:隐含层选项B:应用层选项C:输入层选项D:输出层答案:输入层题目:机器学习过程中,近似于人类的归纳推理式学习方式,被誉为“人工智能最有价值的地方”的学习方式是()。

选项A:机器学习选项B:无监督学习选项C:监督学习答案:无监督学习题目:算法模型看起来像一棵倒立的树,数据沿着树根输入,再从叶子节点输出,中间的分支要根据不同特征的信息进行判断,决定该向左走还是向右走,这种算法称为()。

人工智能英文参考文献(最新120个)

人工智能英文参考文献(最新120个)

人工智能是一门新兴的具有挑战力的学科。

自人工智能诞生以来,发展迅速,产生了许多分支。

诸如强化学习、模拟环境、智能硬件、机器学习等。

但是,在当前人工智能技术迅猛发展,为人们的生活带来许多便利。

下面是搜索整理的人工智能英文参考文献的分享,供大家借鉴参考。

人工智能英文参考文献一:[1]Lars Egevad,Peter Str?m,Kimmo Kartasalo,Henrik Olsson,Hemamali Samaratunga,Brett Delahunt,Martin Eklund. The utility of artificial intelligence in the assessment of prostate pathology[J]. Histopathology,2020,76(6).[2]Rudy van Belkom. The Impact of Artificial Intelligence on the Activities ofa Futurist[J]. World Futures Review,2020,12(2).[3]Reza Hafezi. How Artificial Intelligence Can Improve Understanding in Challenging Chaotic Environments[J]. World Futures Review,2020,12(2).[4]Alejandro Díaz-Domínguez. How Futures Studies and Foresight Could Address Ethical Dilemmas of Machine Learning and Artificial Intelligence[J]. World Futures Review,2020,12(2).[5]Russell T. Warne,Jared Z. Burton. Beliefs About Human Intelligence in a Sample of Teachers and Nonteachers[J]. Journal for the Education of the Gifted,2020,43(2).[6]Russell Belk,Mariam Humayun,Ahir Gopaldas. Artificial Life[J]. Journal of Macromarketing,2020,40(2).[7]Walter Kehl,Mike Jackson,Alessandro Fergnani. Natural Language Processing and Futures Studies[J]. World Futures Review,2020,12(2).[8]Anne Boysen. Mine the Gap: Augmenting Foresight Methodologies with Data Analytics[J]. World Futures Review,2020,12(2).[9]Marco Bevolo,Filiberto Amati. The Potential Role of AI in Anticipating Futures from a Design Process Perspective: From the Reflexive Description of “Design” to a Discussion of Influences by the Inclusion of AI in the Futures Research Process[J]. World Futures Review,2020,12(2).[10]Lan Xu,Paul Tu,Qian Tang,Dan Seli?teanu. Contract Design for Cloud Logistics (CL) Based on Blockchain Technology (BT)[J]. Complexity,2020,2020.[11]L. Grant,X. Xue,Z. Vajihi,A. Azuelos,S. Rosenthal,D. Hopkins,R. Aroutiunian,B. Unger,A. Guttman,M. Afilalo. LO32: Artificial intelligence to predict disposition to improve flow in the emergency department[J]. CJEM,2020,22(S1).[12]A. Kirubarajan,A. Taher,S. Khan,S. Masood. P071: Artificial intelligence in emergency medicine: A scoping review[J]. CJEM,2020,22(S1).[13]L. Grant,P. Joo,B. Eng,A. Carrington,M. Nemnom,V. Thiruganasambandamoorthy. LO22: Risk-stratification of emergency department syncope by artificial intelligence using machine learning: human, statistics or machine[J]. CJEM,2020,22(S1).[14]Riva Giuseppe,Riva Eleonora. OS for Ind Robots: Manufacturing Robots Get Smarter Thanks to Artificial Intelligence.[J]. Cyberpsychology, behavior and social networking,2020,23(5).[15]Markus M. Obmann,Aurelio Cosentino,Joshy Cyriac,Verena Hofmann,Bram Stieltjes,Daniel T. Boll,Benjamin M. Yeh,Matthias R. Benz. Quantitative enhancement thresholds and machine learning algorithms for the evaluation of renal lesions using single-phase split-filter dual-energy CT[J]. Abdominal Radiology,2020,45(1).[16]Haytham H. Elmousalami,Mahmoud Elaskary. Drilling stuck pipe classification and mitigation in the Gulf of Suez oil fields using artificial intelligence[J]. Journal of Petroleum Exploration and Production Technology,2020,10(10).[17]Rüdiger Schulz-Wendtland,Karin Bock. Bildgebung in der Mammadiagnostik –Ein Ausblick <trans-title xml:lang="en">Imaging in breast diagnostics—an outlook [J]. Der Gyn?kologe,2020,53(6).</trans-title>[18]Nowakowski Piotr,Szwarc Krzysztof,Boryczka Urszula. Combining an artificial intelligence algorithm and a novel vehicle for sustainable e-waste collection[J]. Science of the Total Environment,2020,730.[19]Wang Huaizhi,Liu Yangyang,Zhou Bin,Li Canbing,Cao Guangzhong,Voropai Nikolai,Barakhtenko Evgeny. Taxonomy research of artificial intelligence for deterministic solar power forecasting[J]. Energy Conversion and Management,2020,214.[20]Kagemoto Hiroshi. Forecasting a water-surface wave train with artificial intelligence- A case study[J]. Ocean Engineering,2020,207.[21]Tomonori Aoki,Atsuo Yamada,Kazuharu Aoyama,Hiroaki Saito,Gota Fujisawa,Nariaki Odawara,Ryo Kondo,Akiyoshi Tsuboi,Rei Ishibashi,Ayako Nakada,Ryota Niikura,Mitsuhiro Fujishiro,Shiro Oka,Soichiro Ishihara,Tomoki Matsuda,Masato Nakahori,Shinji Tanaka,Kazuhiko Koike,Tomohiro Tada. Clinical usefulness of a deep learning‐based system as the first screening on small‐bowel capsule endoscopy reading[J]. Digestive Endoscopy,2020,32(4).[22]Masashi Fujii,Hajime Isomoto. Next generation of endoscopy: Harmony with artificial intelligence and robotic‐assisted devices[J]. Digestive Endoscopy,2020,32(4).[23]Roberto Verganti,Luca Vendraminelli,Marco Iansiti. Innovation and Design in the Age of Artificial Intelligence[J]. Journal of Product Innovation Management,2020,37(3).[24]Yuval Elbaz,David Furman,Maytal Caspary Toroker. Modeling Diffusion in Functional Materials: From Density Functional Theory to Artificial Intelligence[J]. Advanced Functional Materials,2020,30(18).[25]Dinesh Visva Gunasekeran,Tien Yin Wong. Artificial Intelligence in Ophthalmology in 2020: A Technology on the Cusp for Translation and Implementation[J]. Asia-Pacific Journal of Ophthalmology,2020,9(2).[26]Fu-Neng Jiang,Li-Jun Dai,Yong-Ding Wu,Sheng-Bang Yang,Yu-Xiang Liang,Xin Zhang,Cui-Yun Zou,Ren-Qiang He,Xiao-Ming Xu,Wei-De Zhong. The study of multiple diagnosis models of human prostate cancer based on Taylor database by artificial neural networks[J]. Journal of the Chinese Medical Association,2020,83(5).[27]Matheus Calil Faleiros,Marcello Henrique Nogueira-Barbosa,Vitor Faeda Dalto,JoséRaniery Ferreira Júnior,Ariane Priscilla Magalh?es Tenório,Rodrigo Luppino-Assad,Paulo Louzada-Junior,Rangaraj Mandayam Rangayyan,Paulo Mazzoncini de Azevedo-Marques. Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging[J]. Advances in Rheumatology,2020,60(1078).[28]Balamurugan Balakreshnan,Grant Richards,Gaurav Nanda,Huachao Mao,Ragu Athinarayanan,Joseph Zaccaria. PPE Compliance Detection using Artificial Intelligence in Learning Factories[J]. Procedia Manufacturing,2020,45.[29]M. Stévenin,V. Avisse,N. Ducarme,A. de Broca. Qui est responsable si un robot autonome vient à entra?ner un dommage ?[J]. Ethique et Santé,2020.[30]Fatemeh Barzegari Banadkooki,Mohammad Ehteram,Fatemeh Panahi,Saad Sh. Sammen,Faridah Binti Othman,Ahmed EL-Shafie. Estimation of Total Dissolved Solids (TDS) using New Hybrid Machine Learning Models[J]. Journal of Hydrology,2020.[31]Adam J. Schwartz,Henry D. Clarke,Mark J. Spangehl,Joshua S. Bingham,DavidA. Etzioni,Matthew R. Neville. Can a Convolutional Neural Network Classify Knee Osteoarthritis on Plain Radiographs as Accurately as Fellowship-Trained Knee Arthroplasty Surgeons?[J]. The Journal of Arthroplasty,2020.[32]Ivana Nizetic Kosovic,Toni Mastelic,Damir Ivankovic. Using Artificial Intelligence on environmental data from Internet of Things for estimating solar radiation: Comprehensive analysis[J]. Journal of Cleaner Production,2020.[33]Lauren Fried,Andrea Tan,Shirin Bajaj,Tracey N. Liebman,David Polsky,Jennifer A. Stein. Technological advances for the detection of melanoma: Part I. Advances in diagnostic techniques[J]. Journal of the American Academy of Dermatology,2020.[34]Mohammed Amoon,Torki Altameem,Ayman Altameem. Internet of things Sensor Assisted Security and Quality Analysis for Health Care Data Sets Using Artificial Intelligent Based Heuristic Health Management System[J]. Measurement,2020.[35]E. Lotan,C. Tschider,D.K. Sodickson,A. Caplan,M. Bruno,B. Zhang,Yvonne W. Lui. Medical Imaging and Privacy in the Era of Artificial Intelligence: Myth, Fallacy, and the Future[J]. Journal of the American College of Radiology,2020.[36]Fabien Lareyre,Cédric Adam,Marion Carrier,Juliette Raffort. Artificial Intelligence in Vascular Surgery: moving from Big Data to Smart Data[J]. Annals of Vascular Surgery,2020.[37]Ilesanmi Daniyan,Khumbulani Mpofu,Moses Oyesola,Boitumelo Ramatsetse,Adefemi Adeodu. Artificial intelligence for predictive maintenance in the railcar learning factories[J]. Procedia Manufacturing,2020,45.[38]Janet L. McCauley,Anthony E. Swartz. Reframing Telehealth[J]. Obstetrics and Gynecology Clinics of North America,2020.[39]Jean-Emmanuel Bibault,Lei Xing. Screening for chronic obstructive pulmonary disease with artificial intelligence[J]. The Lancet Digital Health,2020,2(5).[40]Andrea Laghi. Cautions about radiologic diagnosis of COVID-19 infection driven by artificial intelligence[J]. The Lancet Digital Health,2020,2(5).人工智能英文参考文献二:[41]K. Orhan,I. S. Bayrakdar,M. Ezhov,A. Kravtsov,T. ?zyürek. Evaluation of artificial intelligence for detecting periapical pathosis on cone‐beam computed tomography scans[J]. International Endodontic Journal,2020,53(5).[42]Avila A M,Mezi? I. Data-driven analysis and forecasting of highway traffic dynamics.[J]. Nature communications,2020,11(1).[43]Neri Emanuele,Miele Vittorio,Coppola Francesca,Grassi Roberto. Use of CT andartificial intelligence in suspected or COVID-19 positive patients: statement of the Italian Society of Medical and Interventional Radiology.[J]. La Radiologia medica,2020.[44]Tau Noam,Stundzia Audrius,Yasufuku Kazuhiro,Hussey Douglas,Metser Ur. Convolutional Neural Networks in Predicting Nodal and Distant Metastatic Potential of Newly Diagnosed Non-Small Cell Lung Cancer on FDG PET Images.[J]. AJR. American journal of roentgenology,2020.[45]Coppola Francesca,Faggioni Lorenzo,Regge Daniele,Giovagnoni Andrea,Golfieri Rita,Bibbolino Corrado,Miele Vittorio,Neri Emanuele,Grassi Roberto. Artificial intelligence: radiologists' expectations and opinions gleaned from a nationwide online survey.[J]. La Radiologia medica,2020.[46]?. ? ? ? ? [J]. ,2020,25(4).[47]Savage Rock H,van Assen Marly,Martin Simon S,Sahbaee Pooyan,Griffith Lewis P,Giovagnoli Dante,Sperl Jonathan I,Hopfgartner Christian,K?rgel Rainer,Schoepf U Joseph. Utilizing Artificial Intelligence to Determine Bone Mineral Density Via Chest Computed Tomography.[J]. Journal of thoracic imaging,2020,35 Suppl 1.[48]Brzezicki Maksymilian A,Bridger Nicholas E,Kobeti? Matthew D,Ostrowski Maciej,Grabowski Waldemar,Gill Simran S,Neumann Sandra. Artificial intelligence outperforms human students in conducting neurosurgical audits.[J]. Clinical neurology and neurosurgery,2020,192.[49]Lockhart Mark E,Smith Andrew D. Fatty Liver Disease: Artificial Intelligence Takes on the Challenge.[J]. Radiology,2020,295(2).[50]Wood Edward H,Korot Edward,Storey Philip P,Muscat Stephanie,Williams George A,Drenser Kimberly A. The retina revolution: signaling pathway therapies, genetic therapies, mitochondrial therapies, artificial intelligence.[J]. Current opinion in ophthalmology,2020,31(3).[51]Ho Dean,Quake Stephen R,McCabe Edward R B,Chng Wee Joo,Chow Edward K,Ding Xianting,Gelb Bruce D,Ginsburg Geoffrey S,Hassenstab Jason,Ho Chih-Ming,Mobley William C,Nolan Garry P,Rosen Steven T,Tan Patrick,Yen Yun,Zarrinpar Ali. Enabling Technologies for Personalized and Precision Medicine.[J]. Trends in biotechnology,2020,38(5).[52]Fischer Andreas M,Varga-Szemes Akos,van Assen Marly,Griffith L Parkwood,Sahbaee Pooyan,Sperl Jonathan I,Nance John W,Schoepf U Joseph. Comparison of Artificial Intelligence-Based Fully Automatic Chest CT Emphysema Quantification to Pulmonary Function Testing.[J]. AJR. American journal ofroentgenology,2020,214(5).[53]Moore William,Ko Jane,Gozansky Elliott. Artificial Intelligence Pertaining to Cardiothoracic Imaging and Patient Care: Beyond Image Interpretation.[J]. Journal of thoracic imaging,2020,35(3).[54]Hwang Eui Jin,Park Chang Min. Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges.[J]. Korean journal of radiology,2020,21(5).[55]Mateen Bilal A,David Anna L,Denaxas Spiros. Electronic Health Records to Predict Gestational Diabetes Risk.[J]. Trends in pharmacological sciences,2020,41(5).[56]Yao Xiang,Mao Ling,Lv Shunli,Ren Zhenghong,Li Wentao,Ren Ke. CT radiomics features as a diagnostic tool for classifying basal ganglia infarction onset time.[J]. Journal of the neurological sciences,2020,412.[57]van Assen Marly,Banerjee Imon,De Cecco Carlo N. Beyond the Artificial Intelligence Hype: What Lies Behind the Algorithms and What We Can Achieve.[J]. Journal of thoracic imaging,2020,35 Suppl 1.[58]Guzik Tomasz J,Fuster Valentin. Leaders in Cardiovascular Research: Valentin Fuster.[J]. Cardiovascular research,2020,116(6).[59]Fischer Andreas M,Eid Marwen,De Cecco Carlo N,Gulsun Mehmet A,van Assen Marly,Nance John W,Sahbaee Pooyan,De Santis Domenico,Bauer Maximilian J,Jacobs Brian E,Varga-Szemes Akos,Kabakus Ismail M,Sharma Puneet,Jackson Logan J,Schoepf U Joseph. Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography.[J]. Journal of thoracic imaging,2020,35 Suppl 1.[60]Ghosh Adarsh,Kandasamy Devasenathipathy. Interpretable Artificial Intelligence: Why and When.[J]. AJR. American journal of roentgenology,2020,214(5).[61]M.Rosario González-Rodríguez,M.Carmen Díaz-Fernández,Carmen Pacheco Gómez. Facial-expression recognition: An emergent approach to the measurement of tourist satisfaction through emotions[J]. Telematics and Informatics,2020,51.[62]Ru-Xi Ding,Iván Palomares,Xueqing Wang,Guo-Rui Yang,Bingsheng Liu,Yucheng Dong,Enrique Herrera-Viedma,Francisco Herrera. Large-Scale decision-making: Characterization, taxonomy, challenges and future directions from an Artificial Intelligence and applications perspective[J]. Information Fusion,2020,59.[63]Abdulrhman H. Al-Jebrni,Brendan Chwyl,Xiao Yu Wang,Alexander Wong,Bechara J. Saab. AI-enabled remote and objective quantification of stress at scale[J]. Biomedical Signal Processing and Control,2020,59.[64]Gillian Thomas,Elizabeth Eisenhauer,Robert G. Bristow,Cai Grau,Coen Hurkmans,Piet Ost,Matthias Guckenberger,Eric Deutsch,Denis Lacombe,Damien C. Weber. The European Organisation for Research and Treatment of Cancer, State of Science in radiation oncology and priorities for clinical trials meeting report[J]. European Journal of Cancer,2020,131.[65]Muhammad Asif. Are QM models aligned with Industry 4.0? A perspective on current practices[J]. Journal of Cleaner Production,2020,258.[66]Siva Teja Kakileti,Himanshu J. Madhu,Geetha Manjunath,Leonard Wee,Andre Dekker,Sudhakar Sampangi. Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics[J]. Artificial Intelligence In Medicine,2020,105.[67]. Evaluation of Payer Budget Impact Associated with the Use of Artificial Intelligence in Vitro Diagnostic, Kidneyintelx, to Modify DKD Progression:[J]. American Journal of Kidney Diseases,2020,75(5).[68]Rohit Nishant,Mike Kennedy,Jacqueline Corbett. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda[J]. International Journal of Information Management,2020,53.[69]Hoang Nguyen,Xuan-Nam Bui. Soft computing models for predicting blast-induced air over-pressure: A novel artificial intelligence approach[J]. Applied Soft Computing Journal,2020,92.[70]Benjamin S. Hopkins,Aditya Mazmudar,Conor Driscoll,Mark Svet,Jack Goergen,Max Kelsten,Nathan A. Shlobin,Kartik Kesavabhotla,Zachary A Smith,Nader S Dahdaleh. Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions[J]. Clinical Neurology and Neurosurgery,2020,192.[71]Mei Yang,Runze Zhou,Xiangjun Qiu,Xiangfei Feng,Jian Sun,Qunshan Wang,Qiufen Lu,Pengpai Zhang,Bo Liu,Wei Li,Mu Chen,Yan Zhao,Binfeng Mo,Xin Zhou,Xi Zhang,Yingxue Hua,Jin Guo,Fangfang Bi,Yajun Cao,Feng Ling,Shengming Shi,Yi-Gang Li. Artificial intelligence-assisted analysis on the association between exposure to ambient fine particulate matter and incidence of arrhythmias in outpatients of Shanghai community hospitals[J]. Environment International,2020,139.[72]Fatemehalsadat Madaeni,Rachid Lhissou,Karem Chokmani,Sebastien Raymond,Yves Gauthier. Ice jam formation, breakup and prediction methods based on hydroclimatic data using artificial intelligence: A review[J]. Cold Regions Science and Technology,2020,174.[73]Steve Chukwuebuka Arum,David Grace,Paul Daniel Mitchell. A review of wireless communication using high-altitude platforms for extended coverage and capacity[J]. Computer Communications,2020,157.[74]Yong-Hong Kuo,Nicholas B. Chan,Janny M.Y. Leung,Helen Meng,Anthony Man-Cho So,Kelvin K.F. Tsoi,Colin A. Graham. An Integrated Approach of Machine Learning and Systems Thinking for Waiting Time Prediction in an Emergency Department[J]. International Journal of Medical Informatics,2020,139.[75]Matteo Terzi,Gian Antonio Susto,Pratik Chaudhari. Directional adversarial training for cost sensitive deep learning classification applications[J]. Engineering Applications of Artificial Intelligence,2020,91.[76]Arman Kilic. Artificial Intelligence and Machine Learning in Cardiovascular Health Care[J]. The Annals of Thoracic Surgery,2020,109(5).[77]Hossein Azarmdel,Ahmad Jahanbakhshi,Seyed Saeid Mohtasebi,Alfredo Rosado Mu?oz. Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM)[J]. Postharvest Biology and Technology,2020,166.[78]Wafaa Wardah,Abdollah Dehzangi,Ghazaleh Taherzadeh,Mahmood A. Rashid,M.G.M. Khan,Tatsuhiko Tsunoda,Alok Sharma. Predicting protein-peptide binding sites with a deep convolutional neural network[J]. Journal of Theoretical Biology,2020,496.[79]Francisco F.X. Vasconcelos,Róger M. Sarmento,Pedro P. Rebou?as Filho,Victor Hugo C. de Albuquerque. Artificial intelligence techniques empowered edge-cloud architecture for brain CT image analysis[J]. Engineering Applications of Artificial Intelligence,2020,91.[80]Masaaki Konishi. Bioethanol production estimated from volatile compositions in hydrolysates of lignocellulosic biomass by deep learning[J]. Journal of Bioscience and Bioengineering,2020,129(6).人工智能英文参考文献三:[81]J. Kwon,K. Kim. Artificial Intelligence for Early Prediction of Pulmonary Hypertension Using Electrocardiography[J]. Journal of Heart and Lung Transplantation,2020,39(4).[82]C. Maathuis,W. Pieters,J. van den Berg. Decision support model for effects estimation and proportionality assessment for targeting in cyber operations[J]. Defence Technology,2020.[83]Samer Ellahham. Artificial Intelligence in Diabetes Care[J]. The American Journal of Medicine,2020.[84]Yi-Ting Hsieh,Lee-Ming Chuang,Yi-Der Jiang,Tien-Jyun Chang,Chung-May Yang,Chang-Hao Yang,Li-Wei Chan,Tzu-Yun Kao,Ta-Ching Chen,Hsuan-Chieh Lin,Chin-Han Tsai,Mingke Chen. Application of deep learning image assessment software VeriSee? for diabetic retinopathy screening[J]. Journal of the Formosan Medical Association,2020.[85]Emre ARTUN,Burak KULGA. Selection of candidate wells for re-fracturing in tight gas sand reservoirs using fuzzy inference[J]. Petroleum Exploration and Development Online,2020,47(2).[86]Alberto Arenal,Cristina Armu?a,Claudio Feijoo,Sergio Ramos,Zimu Xu,Ana Moreno. Innovation ecosystems theory revisited: The case of artificial intelligence in China[J]. Telecommunications Policy,2020.[87]T. Som,M. Dwivedi,C. Dubey,A. Sharma. Parametric Studies on Artificial Intelligence Techniques for Battery SOC Management and Optimization of Renewable Power[J]. Procedia Computer Science,2020,167.[88]Bushra Kidwai,Nadesh RK. Design and Development of Diagnostic Chabot for supporting Primary Health Care Systems[J]. Procedia Computer Science,2020,167.[89]Asl? Bozda?,Ye?im Dokuz,?znur Begüm G?k?ek. Spatial prediction of PM 10 concentration using machine learning algorithms in Ankara, Turkey[J]. Environmental Pollution,2020.[90]K.P. Smith,J.E. Kirby. Image analysis and artificial intelligence in infectious disease diagnostics[J]. Clinical Microbiology and Infection,2020.[91]Alklih Mohamad YOUSEF,Ghahfarokhi Payam KAVOUSI,Marwan ALNUAIMI,Yara ALATRACH. Predictive data analytics application for enhanced oil recovery in a mature field in the Middle East[J]. Petroleum Exploration and Development Online,2020,47(2).[92]Omer F. Ahmad,Danail Stoyanov,Laurence B. Lovat. Barriers and pitfalls for artificial intelligence in gastroenterology: Ethical and regulatory issues[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[93]Sanne A. Hoogenboom,Ulas Bagci,Michael B. Wallace. Artificial intelligence in gastroenterology. The current state of play and the potential. How will it affect our practice and when?[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[94]Douglas K. Rex. Can we do resect and discard with artificial intelligence-assisted colon polyp “optical biopsy?”[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[95]Neal Shahidi,Michael J. Bourke. Can artificial intelligence accurately diagnose endoscopically curable gastrointestinal cancers?[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[96]Michael Byrne. Artificial intelligence in gastroenterology[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[97]Piet C. de Groen. Using artificial intelligence to improve adequacy of inspection in gastrointestinal endoscopy[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[98]Robin Zachariah,Andrew Ninh,William Karnes. Artificial intelligence for colon polyp detection: Why should we embrace this?[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[99]Alexandra T. Greenhill,Bethany R. Edmunds. A primer of artificial intelligence in medicine[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[100]Tomohiro Tada,Toshiaki Hirasawa,Toshiyuki Yoshio. The role for artificial intelligence in evaluation of upper GI cancer[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[101]Yahui Jiang,Meng Yang,Shuhao Wang,Xiangchun Li,Yan Sun. Emerging role of deep learning‐based artificial intelligence in tumor pathology[J]. Cancer Communications,2020,40(4).[102]Kristopher D. Knott,Andreas Seraphim,Joao B. Augusto,Hui Xue,Liza Chacko,Nay Aung,Steffen E. Petersen,Jackie A. Cooper,Charlotte Manisty,Anish N. Bhuva,Tushar Kotecha,Christos V. Bourantas,Rhodri H. Davies,Louise A.E. Brown,Sven Plein,Marianna Fontana,Peter Kellman,James C. Moon. The Prognostic Significance of Quantitative Myocardial Perfusion: An Artificial Intelligence–Based Approach Using Perfusion Mapping[J]. Circulation,2020,141(16).[103]Muhammad Asad,Ahmed Moustafa,Takayuki Ito. FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning[J]. Applied Sciences,2020,10(8).[104]Wu Wenzhi,Zhang Yan,Wang Pu,Zhang Li,Wang Guixiang,Lei Guanghui,Xiao Qiang,Cao Xiaochen,Bian Yueran,Xie Simiao,Huang Fei,Luo Na,Zhang Jingyuan,Luo Mingyan. Psychological stress of medical staffs during outbreak of COVID-19 and adjustment strategy.[J]. Journal of medical virology,2020.[105]. Eyenuk Fulfills Contract for Artificial Intelligence Grading of Retinal Images[J]. Telecomworldwire,2020.[106]Kim Tae Woo,Duhachek Adam. Artificial Intelligence and Persuasion: A Construal-Level Account.[J]. Psychological science,2020,31(4).[107]McCall Becky. COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread.[J]. The Lancet. Digital health,2020,2(4).[108]Alca?iz Mariano,Chicchi Giglioli Irene A,Sirera Marian,Minissi Eleonora,Abad Luis. [Autism spectrum disorder biomarkers based on biosignals, virtual reality and artificial intelligence].[J]. Medicina,2020,80 Suppl 2.[109]Cong Lei,Feng Wanbing,Yao Zhigang,Zhou Xiaoming,Xiao Wei. Deep Learning Model as a New Trend in Computer-aided Diagnosis of Tumor Pathology for Lung Cancer.[J]. Journal of Cancer,2020,11(12).[110]Wang Fengdan,Gu Xiao,Chen Shi,Liu Yongliang,Shen Qing,Pan Hui,Shi Lei,Jin Zhengyu. Artificial intelligence system can achieve comparable results to experts for bone age assessment of Chinese children with abnormal growth and development.[J]. PeerJ,2020,8.[111]Hu Wenmo,Yang Huayu,Xu Haifeng,Mao Yilei. Radiomics based on artificial intelligence in liver diseases: where we are?[J]. Gastroenterology report,2020,8(2).[112]Batayneh Wafa,Abdulhay Enas,Alothman Mohammad. Prediction of the performance of artificial neural networks in mapping sEMG to finger joint angles via signal pre-investigation techniques.[J]. Heliyon,2020,6(4).[113]Aydin Emrah,Türkmen ?nan Utku,Namli G?zde,?ztürk ?i?dem,Esen Ay?e B,Eray Y Nur,Ero?lu Egemen,Akova Fatih. A novel and simple machine learning algorithm for preoperative diagnosis of acute appendicitis in children.[J]. Pediatric surgery international,2020.[114]Ellahham Samer. Artificial Intelligence in Diabetes Care.[J]. The Americanjournal of medicine,2020.[115]David J. Winkel,Thomas J. Weikert,Hanns-Christian Breit,Guillaume Chabin,Eli Gibson,Tobias J. Heye,Dorin Comaniciu,Daniel T. Boll. Validation of a fully automated liver segmentation algorithm using multi-scale deep reinforcement learning and comparison versus manual segmentation[J]. European Journal of Radiology,2020,126.[116]Binjie Fu,Guoshu Wang,Mingyue Wu,Wangjia Li,Yineng Zheng,Zhigang Chu,Fajin Lv. Influence of CT effective dose and convolution kernel on the detection of pulmonary nodules in different artificial intelligence software systems: A phantom study[J]. European Journal of Radiology,2020,126.[117]Georgios N. Kouziokas. A new W-SVM kernel combining PSO-neural network transformed vector and Bayesian optimized SVM in GDP forecasting[J]. Engineering Applications of Artificial Intelligence,2020,92.[118]Qingsong Ruan,Zilin Wang,Yaping Zhou,Dayong Lv. A new investor sentiment indicator ( ISI ) based on artificial intelligence: A powerful return predictor in China[J]. Economic Modelling,2020,88.[119]Mohamed Abdel-Basset,Weiping Ding,Laila Abdel-Fatah. The fusion of Internet of Intelligent Things (IoIT) in remote diagnosis of obstructive Sleep Apnea: A survey and a new model[J]. Information Fusion,2020,61.[120]Federico Caobelli. Artificial intelligence in medical imaging: Game over for radiologists?[J]. European Journal of Radiology,2020,126.以上就是关于人工智能参考文献的分享,希望对你有所帮助。

类志贺邻单胞菌的检测方法概述

类志贺邻单胞菌的检测方法概述

技术推/*2019年第4期n.rr jouknalOF ASKtCULTUItAL aCIBNCB*类志贺邻单胞菌的检测方法概述陈美群,扎西拉姆,潘瑛子(西藏自治区农牧科学院水产科学研究所,西藏拉萨850032)摘要:类志贺邻单胞菌是一种独特的革兰氏阴性、具极端鞭毛的人-兽共患病原菌,该菌可导致许多动物尤其鱼类等水生动物疾病频发,同时可引起腹泻、脑膜炎、败血症、蜂窝组织炎等人类疾病,具有较高的传染性和发病率。

由于该菌不能及时鉴定而导致的延误治疗,不仅给水产养殖业造成重大经济损失,同时也给消费者带来重大安全隐患。

为此快速、准确的鉴别出该病原菌,有针对性的开展药物防治尤为重要。

本文对该菌的传统检测技术,免疫学诊断技术,分子生物学检测技术进行了详细概述,以期为该菌的快速、准确诊断提供详尽资料。

关键词:类志贺邻单胞菌;传统检测;免疫学诊断;分子生物学检测中图分类号:S9643文献标识码:AReaearch Progress of Detection Method of Plesiomonas shigelloidesCHEN Mei-qun,Zhaxilamu,PAN Ying-zi*(Institute of Fisheries Science,Tibet Academy of Agricultural and Animal Husbandry Sciences,Tibet Lhasa850032,China)Abstract:Plesiomonas shigelloides is a unique gram-negative,ultra flagellum human-animal pathogen.P.shigelloides can cause many ani­mals,especially fish and other aquatic animal diseases,and it also can cause diarrhea,meningitis,sepsis,hibritis and other human disea­ses,with high infectious and morbidity rates.Due to the delay of fail to identify P.shigelloides in time,it not only caused major economic losses to aquaculture industry,but also brought major safety hazards to consumers.Rapid and accurate identification of P.shigelloides was particularly important to prevention and control of it.In order to provide detailed information for the rapid and accurate diagnosis of P.shig­elloides,the traditional detection techniques,immunology diagnosis techniques and molecular biology detection techniques were summarized in this paper.Key words:Plesiomonas shigelloides;Traditional detection;Immunological diagnosis;Molecular biological detection类志贺邻单胞菌(Plesiomonas shigelloides))是一种革兰氏阴性、氧化酶阳性的运动性杆菌,隶属肠杆菌科(Enterobacteriaceae)邻单胞菌属(Plesiomonas Habs and Schubert,1962)内唯一的一个种⑴。

认知神经科学常用技术及原理_北京师范大学中国大学mooc课后章节答案期末考试题库2023年

认知神经科学常用技术及原理_北京师范大学中国大学mooc课后章节答案期末考试题库2023年

认知神经科学常用技术及原理_北京师范大学中国大学mooc课后章节答案期末考试题库2023年1.是正常人脑电波的一个基本的特征,与注意、警觉以及很多认知过程相关。

相比于睁眼,闭眼显著增加。

答案:alpha波2.在单细胞转录组测序技术中,获得单细胞的方法之一——显微操作挑选法的特点是:答案:能够看见并准确控制单个细胞的吸取与释放,但通量低,对操作人员的技术要求高3.以下关于ERP的说法错误的是:答案:叠加平均之前的波看起来更加平滑4.第一个发现大脑信号有振荡特性的,是。

答案:Hans Berger5.以下关于TMS说法正确的是:答案:单脉冲TMS最主要的功能用于神经功能诊断6.弥散加权图像的磁敏感系数b值越大,信号衰减量,即弥散加权图像的灰度值。

答案:越多,越低7.关于脑磁图测量设备,下列说法错误的是:答案:SQUID与OPM相比更有生态效应8.EEG和都是直接反映神经的电信号,可以在时间上达到神经电活动的毫秒级别。

答案:MEG9.在弥散张量成像中,基于所估计出来的弥散张量模型,科学家们提出了一些弥散参数指标,其中AD值是:答案:反映轴向弥散程度的轴向弥散系数10.以下关于神经振荡,说法正确的是:答案:振荡与睡眠的不同阶段有很强的相关11.以下哪个不是对BOLD-fMRI进行预处理分析的目的:答案:检测脑功能活动的局部差异12.经颅磁刺激在大脑中产生的电流主要于大脑皮层表面,神经元细胞膜与感应电流方向时,磁场刺激作用更明显。

答案:平行,垂直13.脑电帽主要有:答案:另外3项全部正确14.应用单细胞转录组可以进行哪方面的工作:答案:另外3项全部正确15.在进行fNIRS数据分析时,个体水平分析的主要目的是:答案:从fNIRS数据中计算出个体对不同类型刺激的血液动力学响应指标。

人工智能基础 汤晓鸥著 试题

人工智能基础 汤晓鸥著 试题

人工智能基础汤晓鸥著试题英文版Artificial Intelligence Fundamentals - Exam Questions by Tang XiaoyouArtificial intelligence (AI) has emerged as a disruptive technology that promises to revolutionize various industries and aspects of human life. As we delve into the realm of AI, it becomes crucial to understand its underpinnings and applications. This article, based on the book "Artificial Intelligence Fundamentals" by Tang Xiaoyou, aims to provide a comprehensive overview of AI, followed by a series of exam questions to assess your understanding.1. Introduction to AIDefine artificial intelligence and explain its importance.Discuss the evolution of AI and its impact on society.Identify the key areas of AI research.2. Knowledge RepresentationDescribe the different types of knowledge representation techniques.Explain the concept of ontologies and their role in AI.Discuss the limitations of knowledge representation.3. Problem Solving and ReasoningDefine problem-solving techniques in AI and provide examples.Describe the difference between deductive and inductive reasoning.Explain the working principle of expert systems.4. Machine LearningDefine machine learning and classify its different types.Discuss the fundamental concepts of supervised and unsupervised learning.Explain the principles of reinforcement learning and its applications.5. Neural Networks and Deep LearningDescribe the basic structure and working principle of neural networks.Explain the concept of deep learning and its applications in AI.Discuss the advantages and disadvantages of deep learning.6. Natural Language Processing (NLP)Define NLP and its role in AI.Describe the fundamental techniques used in NLP, such as tokenization, part-of-speech tagging, and parsing.Explain the principles of machine translation and its impact on language barriers.7. Computer VisionDefine computer vision and its applications in AI.Describe the techniques used in image recognition and analysis.Discuss the working principle of object detection and its importance in various fields.8. Ethical and Social Aspects of AIDiscuss the ethical considerations in the development and deployment of AI systems.Analyze the potential social impacts of AI on employment, privacy, and security.Propose strategies to address the ethical challenges associated with AI.ConclusionArtificial intelligence, being a rapidly evolving field, offers immense opportunities and challenges. The exam questions provided in this article aim to test your understanding of the fundamental concepts and applications of AI. By answering these questions, you can assess your readiness to delve deeper into the world of AI and its potential to revolutionize our lives.人工智能基础 - 汤晓鸥著试题英文版人工智能基础——汤晓鸥著试题人工智能(AI)已成为一种颠覆性技术,有望革命性地改变各个行业和人类生活的方方面面。

遗传算法在模拟电路故障诊断中的应用---优秀毕业论文参考文献可复制黏贴

遗传算法在模拟电路故障诊断中的应用---优秀毕业论文参考文献可复制黏贴
为提高故障诊断的速度,本文提出了将灵敏度分析与遗传算法结合应用于模拟电路软故障 诊断。讨论了基于模拟电路的灵敏度分析估算元件参数偏移量求解故障元件的诊断方法。将测试 节点电压增量与元件参数变化量所构成诊断方程转化为以其为硬约束条件下求自变量最小值的 线性规划问题。然后引入罚函数将其转化为无约束条件下的极值求解问题,最后利用遗传算法寻 求最优解。本文讨论了控制参数对遗传算法性能的影响,提出了改进的自适应遗传算法,实验结 果表明该方法对容差模拟电路的软故障诊断具有较好的诊断效率。 关键词:模拟电路,SLPS,模拟电路故障诊断,遗传算法,灵敏度分析
In order to improve the speed of fault diagnosis, the application in soft fault diagnosis of analog circuits based on sensitivity analysis combined with the genetic algorithm is presented in this paper. We have discussed the sensitivity analysis of analog circuits. Estimate the offset of the component parameters to diagnose the fault of the analog circuits. We convert the diagnosis equation, which is constituted by the incremental test node voltage and the component parameters variation, into the linear programming problem about finding the smallest independent variable based on the hard constraints of the fault diagnosis equation. And the linear programming problem with constraints is converted to the extreme solution without constraints by the penalty function. The genetic algorithm is used to solve the optimal solution. Then, the influence of the control parameters of genetic algorithm is discussed with examples. A new Self-adaptive Genetic Algorithms was proposed and the experiments show that the method has a good efficiency on the soft fault diagnosis of tolerance analog circuits and has a higher speed.

计算机视觉测试题目及答案

计算机视觉测试题目及答案

计算机视觉测试题目及答案在计算机视觉领域,测试题目是评估一个人对于图像处理、模式识别和计算机视觉理论的理解和应用能力的重要方法。

下面将给出一些常见的计算机视觉测试题目及其答案,希望能够帮助您更好地了解和掌握相关知识。

1. 图像处理题目:请简要说明什么是图像处理,并列举三种常见的图像处理操作。

答案:图像处理是指对于数字图像进行一系列的操作,以改善图像质量、提取图像特征或实现其他目标的过程。

常见的图像处理操作包括:灰度化、平滑滤波、边缘检测、直方图均衡化、二值化、图像加减运算、图像变换等。

2. 模式识别题目:请简要说明什么是模式识别,并列举三种常用的模式识别方法。

答案:模式识别是指通过对输入模式进行学习和分类,从而实现对未知模式的自动识别的过程。

常用的模式识别方法包括:最近邻算法(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)、人工神经网络(Artificial Neural Network,ANN)、决策树(Decision Tree)、隐马尔可夫模型(Hidden Markov Model,HMM)等。

3. 计算机视觉理论题目:请简要说明什么是计算机视觉,并介绍计算机视觉的应用领域。

答案:计算机视觉是指通过计算机模拟人类视觉系统的信息处理机制,实现对数字图像或视频的自动分析、理解和处理的学科。

计算机视觉的应用领域非常广泛,包括目标检测与跟踪、人脸识别、视频监控、机器人导航、医学影像分析、自动驾驶等。

4. 图像特征提取题目:请简要说明什么是图像特征提取,并列举三种常用的图像特征。

答案:图像特征提取是指通过对图像进行一系列数学或统计操作,提取出图像中携带有重要信息的特征表示的过程。

常用的图像特征包括:颜色直方图、纹理特征(如灰度共生矩阵)、形状特征(如边缘直方图、轮廓描述子)以及局部特征(如SIFT、SURF等)。

5. 图像分类题目:请简要说明什么是图像分类,并介绍图像分类的主要步骤。

黑龙江省哈尔滨师范大学附属中学2024-2025学年高三上学期10月月考英语试题

黑龙江省哈尔滨师范大学附属中学2024-2025学年高三上学期10月月考英语试题

黑龙江省哈尔滨师范大学附属中学2024-2025学年高三上学期10月月考英语试题一、听力选择题1.How many of the dresses does the woman have?A.One.B.Two.C.Three.2.How does the man feel about the shoes?A.Satisfied.B.Embarrassed.C.Dissatisfied.3.Where are the speakers probably?A.In a store.B.In an office.C.In a classroom.4.What is the relationship between the speakers?A.Strangers.B.Friends.C.Husband and wife. 5.What is the weather like now?A.Cloudy.B.Sunny.C.Rainy.听下面一段较长对话,回答以下小题。

6.What do we know about the woman?A.She likes the outdoors.B.She tripped up on a rock.C.She never camped in the woods.7.What is hard in the dark according to the man?A.Setting up a tent.B.Avoiding rocks.C.Building a fire.听下面一段较长对话,回答以下小题。

8.What did the man do yesterday?A.He called his friends.B.He visited the gallery.C.He made a reservation. 9.What is the man’s problem?A.He found the gallery was full of people.B.He didn’t know where to pick up the tickets.C.His name is not on the list.10.What will the woman most likely do next?A.Give some tickets to the man.B.Close the gallery.C.Contact a lady.听下面一段较长对话,回答以下小题。

模拟ai英文面试题目及答案

模拟ai英文面试题目及答案

模拟ai英文面试题目及答案模拟AI英文面试题目及答案1. 题目: What is the difference between a neural network anda deep learning model?答案: A neural network is a set of algorithms modeled loosely after the human brain that are designed to recognize patterns. A deep learning model is a neural network with multiple layers, allowing it to learn more complex patterns and features from data.2. 题目: Explain the concept of 'overfitting' in machine learning.答案: Overfitting occurs when a machine learning model learns the training data too well, including its noise and outliers, resulting in poor generalization to new, unseen data.3. 题目: What is the role of a 'bias' in an AI model?答案: Bias in an AI model refers to the systematic errors introduced by the model during the learning process. It can be due to the choice of model, the training data, or the algorithm's assumptions, and it can lead to unfair or inaccurate predictions.4. 题目: Describe the importance of data preprocessing in AI.答案: Data preprocessing is crucial in AI as it involves cleaning, transforming, and reducing the data to a suitableformat for the model to learn effectively. Proper preprocessing can significantly improve the performance of AI models by ensuring that the input data is relevant, accurate, and free from noise.5. 题目: How does reinforcement learning differ from supervised learning?答案: Reinforcement learning is a type of machine learning where an agent learns to make decisions by performing actions in an environment to maximize a reward signal. It differs from supervised learning, where the model learns from labeled data to predict outcomes based on input features.6. 题目: What is the purpose of a 'convolutional neural network' (CNN)?答案: A convolutional neural network (CNN) is a type of deep learning model that is particularly effective for processing data with a grid-like topology, such as images. CNNs use convolutional layers to automatically and adaptively learn spatial hierarchies of features from input images.7. 题目: Explain the concept of 'feature extraction' in AI.答案: Feature extraction in AI is the process of identifying and extracting relevant pieces of information from the raw data. It is a crucial step in many machine learning algorithms, as it helps to reduce the dimensionality of the data and to focus on the most informative aspects that can be used to make predictions or classifications.8. 题目: What is the significance of 'gradient descent' in training AI models?答案: Gradient descent is an optimization algorithm used to minimize a function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient. In the context of AI, it is used to minimize the loss function of a model, thus refining the model's parameters to improve its accuracy.9. 题目: How does 'transfer learning' work in AI?答案: Transfer learning is a technique where a pre-trained model is used as the starting point for learning a new task. It leverages the knowledge gained from one problem to improve performance on a different but related problem, reducing the need for large amounts of labeled data and computational resources.10. 题目: What is the role of 'regularization' in preventing overfitting?答案: Regularization is a technique used to prevent overfitting by adding a penalty term to the loss function, which discourages overly complex models. It helps to control the model's capacity, forcing it to generalize better to new data by not fitting too closely to the training data.。

最新Unit 1 Text A Neuron Overload and the Juggling Physician

最新Unit 1 Text A Neuron Overload and the Juggling Physician

1Unit 1 Text A神经过载与千头万绪的医生23患者经常抱怨自己的医生不会聆听他们的诉说。

虽然可能会有那么几个医生确实充耳不闻,但是大多数医生通情达理,还是能够感同身受的人。

我就纳闷45为什么即使这些医生似乎成为批评的牺牲品。

我常常想这个问题的成因是不是6就是医生所受的神经过载。

有时我感觉像变戏法,大脑千头万绪,事无巨细,7不能挂一漏万。

如果病人冷不丁提个要求,即使所提要求十分中肯,也会让我8那内心脆弱的平衡乱作一团,就像井然有序同时演出三台节目的大马戏场突然9间崩塌了一样。

有一天,我算过一次常规就诊过程中我脑子里有多少想法在翻腾,试图据此1011弄清楚为了完满完成一项工作,一个医生的脑海机灵转动,需要处理多少个细12节。

奥索里奥夫人56岁,是我的病人。

她有点超重。

她的糖尿病和高血压一直控制良好,恰到好处。

她的胆固醇偏高,但并没有服用任何药物。

她锻炼不够1314多,最后一次DEXA骨密度检测显示她的骨质变得有点疏松。

尽管她一直没有爽15约,按时看病,并能按时做血液化验,但是她形容自己的生活还有压力。

总的16说来,她健康良好,在医疗实践中很可能被描述为一个普通患者,并非过于复17杂。

18以下是整个20分钟看病的过程中我脑海中闪过的念头。

她做了血液化验,这是好事。

血糖好点了。

胆固醇不是很好。

可能需1920要考虑开始服用他汀类药物。

她的肝酶正常吗?21她的体重有点增加。

我需要和她谈谈每天吃五种蔬果、每天步行30分钟的事。

2223糖尿病:她早上的血糖水平和晚上的比对结果如何?她最近是否和营养24师谈过?她是否看过眼科医生?足科医生呢?25她的血压还好,但不是很好。

我是不是应该再加一种降血压的药?药片26多了是否让她困惑?更好地控制血压的益处和她可能什么药都不吃带来的27风险孰重孰轻?骨密度DEXA扫描显示她的骨质有点疏松。

我是否应该让她服用二磷酸盐,2829因为这可以预防骨质疏松症?而我现在又要给她加一种药丸,而这种药需30要详细说明。

17 年 1 月 14 日托福考试真题解析

17 年 1 月 14 日托福考试真题解析

17 年 1 月 14 日托福考试真题解析托福阅读Passage one话题分类:艺术类题目: Naturalism and Nature in Art希暗亚里士多德时期开始崇尚自然主义 ,认为艺术就是生动再现客观事物,但也包括fiction as unicorns.第一个例了: Z(人名)和 J(人名)关于谁在艺术方面更有造诣此拼.Z 画了一串葡萄 .引得鸟儿来啄;但是 J 的画作是 curtain. Z 看到这个 curtain 后让他的对手remove the curtain to show his paint。

但是 curtain 其实是后者画的. 所以 Z 认输.第二个例子,关于画花,进一步说明自然主义。

那个时候开始,一些 flowers 比如tulip 有了代表的意义.但是慢慢有 expressionist 不再忠实于自然主义 .有人认为 photography 不仅仅是 camera 決定 , 更是人的选择.达芬奇也认为 observation 带来的仅仅是likeness. copy 就是 mirror, 前应该更多渉及 intelligent activity 和inner life, including energy and strength. Georgia 在画 canna lily 的时候也更注重表现其 essence, 而不是 image.词汇题1.faithfully=accurately2.admiration for=high opinion of3.perceived=seen4.fragile=delicatePassage two话题分类:农业类題目: Cotton Ginning and Interchangeable Parts:The legacy of Eli Whitney第一段: cotton 在 6000 年前首次被种 .后来传到世界各地第二段 : 棉花和籽的分离称作 ginning. Egyptian cotton: longest fiber American South 沿海: Longer-staple American South 中部: Shorter-stapIeshorter-staple 这个类型棉花和籽的分离费时费力,以前是由 slaves 来做.第三段: Eli Whitley 发明了 cotton ginning, 大大提高了效率. (他有两个发明,一是cotton gin,二是促进 mass production 的 interchangeable parts) 他于耶鲁毕业后 ,去 Georgia seek fortune on plantation. He was introduced to invent cotton gin. (这段还详解了 cotton gin 是如何工作的 ,略. )然后一天可以获得 50 pounds of dean cotton, 大大提高效率.第四段: 但是他的发明 is simple and easy to copy,所以他没有因此赚到很钱. 后来他 manufacture and install the gins,但是 the plant was resent by planters. 第五段:后来由于他的 social and political connection,得到 deliver 10000 musket 的机会.然后发明了 interchangeable parts, 也就是一个人负则一个零部件 ,这些零部件 is interchangeable and can be assembled,提高工作效率. 这成词汇題 :1.Garment=xxx of clothing2.thus=in this way3.install 二 put in place4.promoting=developingPassage three话题分类:自然科学类題目: Climate in Triassic and Jurassic第一段: Late Triassic and early Jurassic 的气候特征: warm, aridity,四季分明.第二段 : 3 broad climate regimes 是基于一些 rocks 去判断. 第三段:还有另外三个 climate indicators 掲示了当时的气候:a.red beds, rocks with iron oxide,意味着 warm climate;b.fossilized soils with caliche,这种土壤存在于 arid 的地方;c.high isotopes. variables that do not instantaneously decay 掲示了季节变化.第四段: Late Jurassic 气候开始发生变化.第五段: Middle and Late Jurassic 时期 , ocean basin 的 water 还有特定的鱼类揭示了那时海平面很高,而且内陆海很多. 北极是没有 ice and glaciers 的,意味着那时候温度很高.词汇题 :1.obtained=gathered2.are preserved=are buried3.a wealth of data=a1otof information4.encompass=include托福听力Conversation1话題分类: student and housing employee内容回忆:学生去找管理 Housing 的职员要换一件宿舍.学生现在住的single-room 因为能有课和工作. 但是遇到问题是旁边宿合太吵了影响了他的作息.想要换一问离他们远点的单人宿舍, 但是 employee 说发过邮件告知不能在暑假换 ,但是学生没收到.最终housing employee 还是给出了一些帮助, 说是换一个 double room 或者 out of campus.但是学生部提出了质疑和自己的顾虑.因为没有单问了,最后 cheap price 学生决定去 double room.Convemtion2话题分类: student and astronomy professor内容回忆: professor 一开始就在说学生的问題 ,没有理解一些课堂的知识点关于galaxy 的. Professor 强调是有 2 个 galaxy 类型 , 一个是minor 包括 a large one&a small one, small one 是一个部分;major one 是 same size 的几个. 之后学生问到关子 midterm d 考題是什么样的, professor 说会找一些particular subjects of ongoing research.学生表示自己可能需要 cancel time of laboratory.Lecture 1学科分类: Earth science标題 : the problems and solutions of flotsam science内容回忆:先提出 flotsam science 理论,professor 介绍了一些 ships 停留在海上,被冲定了.科学事通讨 tracing the movement of the ships 掌握了 oceancurrents 的一些规律. 先提到第一个问題.有一种 device 可以去採测, 理因为距离海画的深浅问題不行 .举例了 cargo ship in pacific ship.还提到了organism thrive in upper portion of the ocean.第二个问題是 battery.电池很难開长时间.后面讲到一些关于 glacier melt 时候用到的 device disappear 了. 最后有人提出a new way 用 yellow ducks 可以来 prevent cold and pressure.并且 more durable and inexpensive.Lecture 2学科分类: Music history标題: dissonance内容回忆: 讲到 2 个概念 Artusi &l Me…_ ,第二种形式的 imperfection 体现了dissonance. 解释了下 dissonance 的含义是 Not harmonious in the composition.并且提到里面有很多需要遵循的 rules 和内部的 interact.有学生提问 , professor 提到这种 dissonance is not pleasing and hurt ears. 后面提到关于第二种音乐形式的加点 practice: one practice is to follow the rules.two is for champing,final is the tie of rules.后面提到 views of history 通过一些方式去 substantialize the views.Lecture 3学科分类: Archaeology标題 : Temple and museum内容回忆:先提到Greek 的一种特殊的temple,介绍了一些历史destroyed in the fire and then rebuild. 还有一些特殊的意义.后面讲到了 museums.说是一种cultural institutions,可以用来 exhibit and tell people the history about people who made itLecture 4学科分类: Forestry标題: commercial forestry内容回忆: 引入概念 commercial forestry. 提到 post-harvest residues. 围绕soil,decomposition 来讲. 提到营养需求一 nitrogen.后面举例 fungi.它的decomposition 给 soil 帶来的养分好处等.后面提到一种 new way 提到一个新概念mulch 用这个来加速 decomposition 的。

人工智能考试题及答案

人工智能考试题及答案

人工智能考试题及答案一、单选题(每题2分,共20分)1. 人工智能的英文缩写是:A. AIB. IAC. IID. AII答案:A2. 下列哪个选项不是人工智能的典型应用?A. 自动驾驶B. 语音识别C. 人工服务D. 人工呼吸答案:D3. 人工智能之父是:A. 艾伦·图灵B. 马文·明斯基C. 约翰·麦卡锡D. 艾伦·纽厄尔答案:C4. 下列哪个算法不是机器学习算法?A. 决策树B. 支持向量机C. 深度学习D. 快速排序答案:D5. 神经网络中,神经元的连接权重通常通过什么方法进行优化?A. 遗传算法B. 反向传播C. 模拟退火D. 贪心算法答案:B6. 以下哪个不是深度学习中的常见层类型?A. 卷积层B. 池化层C. 激活层D. 循环层答案:D7. 以下哪个是强化学习的关键组成部分?A. 状态B. 奖励C. 动作D. 所有选项答案:D8. 人工智能的三大支柱不包括:A. 数据B. 算法C. 计算能力D. 硬件答案:D9. 下列哪个是自然语言处理的常见任务?A. 机器翻译B. 图像识别C. 语音合成D. 视频分析答案:A10. 以下哪个不是人工智能的伦理问题?A. 数据隐私B. 算法偏见C. 机器取代人类工作D. 机器自我复制答案:D二、多选题(每题3分,共15分)1. 人工智能可以应用于以下哪些领域?A. 医疗健康B. 金融服务C. 教育D. 娱乐答案:A, B, C, D2. 以下哪些技术可以用于增强人工智能的决策能力?A. 机器学习B. 深度学习C. 知识图谱D. 规则引擎答案:A, B, C3. 人工智能在发展过程中面临的挑战包括:A. 技术难题B. 伦理问题C. 法律限制D. 社会接受度答案:A, B, C, D4. 以下哪些是人工智能的常见算法类型?A. 监督学习B. 无监督学习C. 强化学习D. 遗传算法答案:A, B, C, D5. 人工智能在自然语言处理中可以完成的任务包括:A. 文本分类B. 情感分析C. 语音识别D. 机器翻译答案:A, B, C, D三、判断题(每题1分,共10分)1. 人工智能可以完全取代人类进行所有工作。

2023届北京市平谷区高三3月质量监控英语题带答案和解析

2023届北京市平谷区高三3月质量监控英语题带答案和解析

语法填空阅读下列短文,根据短文内容填空。

在未给提示词的空白处仅填写1个适当的单词,在给出提示词的空白处用括号内所给词的正确形式填空。

This year, the World Cup has been played across different 【1】(city), and Team China had training sessions even on traveling days when some participating teams chose to rest up after a tiring flight. When the team struggled, Captain Zhu Ting was always there, doing whatever was needed 【2】(carry) the team forward. That’s why she has become a national volleyball icon(偶像), just like “Iron Hammer” Lang. Never giving up, especially in a difficult situation, that’s 【3】the spirit of Chinese women’s volleyball means.【答案】【1】cities【2】to carry【3】what【解析】本文是一篇新闻报道,中国女子排球队在旅游日还在训练,在球队拼搏时,队长朱婷总是和队员们在一起,永不放弃是中国女排精神所在。

【1】考查名词。

句意:今年,世界杯在不同城市举行比赛。

根据the World Cup has been played across different得知世界杯在不同城市举行比赛。

形容词different修饰名词复数。

故填cities 。

【2】考查非谓语动词。

句意:队长朱婷做她能做的为了带球队前进,表示目的用动词不定式。

人工智能模拟考试题+参考答案

人工智能模拟考试题+参考答案

人工智能模拟考试题+参考答案一、单选题(共103题,每题1分,共103分)1.神经网络研究属于下列哪个学派?A、符号主义B、连接主义C、行为主义D、以上都不是正确答案:B2.下列不是知识表示法的是()A、计算机表示法B、状态空间表示法C、“与/或”图表示法D、产生式规则表示法正确答案:A3.或图通常称为()。

A、状态图B、博亦图C、框架网络D、语义图正确答案:A4.下列选项中,不属于生物特征识别技术的是()A、声纹识别B、文本识别C、步态识别D、虹膜识别正确答案:B5.()是利用计算机将一种自然语言(源语言)转换为另一种自然语言(目标语言)的过程。

A、文本分类B、问答系统C、文本识别D、机器翻译正确答案:D6.根据numpy数组中ndim属性的含义确定程序的输出()。

array=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]);print(array.ndim)A、$4B、(3,4)C、(4,3)D、2正确答案:D7.下面哪项操作能实现跟神经网络中Dropout的类似效果?A、BoostingB、BaggingC、StackingD、Mapping正确答案:B8.我们想在大数据集上训练决策树, 为了减少训练时间, 我们可以A、增大学习率(Learnin Rate)B、增加树的深度C、对决策树模型进行预剪枝D、减少树的数量正确答案:C9.深度学习中神经网络类型很多,以下神经网络信息是单向传播的是:A、LSTMB、GRUC、循环神经网络D、卷积神经网络正确答案:D10.在处理序列数据时,较容易出现梯度消失现象的模型是()A、CNNC、GRUD、LSTM正确答案:B11.人工智能发展历程大致分为三个阶段。

符号主义(Symbolism)是在人工智能发展历程的哪个阶段发展起来的?A、20世纪70年代-90年代B、20世纪50年代-80年代C、20世纪60年代-90年代正确答案:B12.在人脸检测算法中,不属于该算法难点的是()A、需要检测不同性别的人脸B、人脸角度变化大C、需要检测分辨率很小的人脸D、出现人脸遮挡正确答案:A13.深度学习神经网络的隐藏层数对网络的性能有一定的影响,以下关于其影响说法正确的是:A、隐藏层数适当增加,神经网络的分辨能力越弱B、隐藏层数适当减少,神经网络的分辨能力不变C、隐藏层数适当减少,神经网络的分辨能力越强D、隐藏层数适当增加,神经网络的分辨能力越强正确答案:D14.Inception模块采用()的设计形式,每个支路使用()大小的卷积核。

计算机视觉笔试题库及答案解析

计算机视觉笔试题库及答案解析

计算机视觉笔试题库及答案解析计算机视觉是指通过计算机系统对图像或视频进行处理,从中提取信息、识别对象和场景等。

近年来,计算机视觉技术得到了广泛的应用和发展。

为了帮助大家更好地学习和掌握计算机视觉方面的知识,本文将提供一份计算机视觉笔试题库,并对各个题目的答案进行解析。

1. 什么是图像分割?请简要描述其基本原理并举例说明。

图像分割是指将一幅图像分割成若干个子区域,每个子区域代表着图像中的一个物体或物体的一部分。

其基本原理是基于图像亮度、颜色、纹理等特征进行像素点的分类,以实现图像的分割。

举例说明,假如我们有一张装有水果的图片,我们可以利用图像分割技术将每个水果分割成一个个独立的区域。

2. 计算机视觉中常用的特征描述符有哪些?请分别简要描述其特点。

常用的特征描述符包括:SIFT(尺度不变特征变换)、SURF(加速稳健特征)、ORB(Oriented FAST and Rotated BRIEF)等。

SIFT特征描述符是一种基于尺度空间的局部特征,具有尺度不变性和旋转不变性,并且对光照变化和噪声具有较强的鲁棒性。

SURF特征描述符是一种基于图像局部结构的特征,通过对图像进行高斯差分运算得到稳健的尺度空间极值点,并计算其旋转不变的描述子。

ORB特征描述符是一种结合了FAST角点检测器和BRIEF二进制描述符的特征,具有较快的计算速度和较好的描述性能。

3. 什么是卷积神经网络(CNN)?请简要描述其在计算机视觉中的应用。

卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,其结构模拟了动物视觉皮层的处理机制。

CNN具有卷积层、池化层和全连接层等组成。

在计算机视觉中,CNN广泛应用于图像分类、目标检测和图像分割等任务。

其通过卷积层的特征提取和池化层的降维操作,能够学习到图像的抽象特征。

通过全连接层和Softmax函数,可以对图像进行分类或者定位。

4. 请简述物体检测与物体识别的区别,并举例说明。

人工智能与计算机视觉考试 选择题 59题

人工智能与计算机视觉考试 选择题 59题

1. 计算机视觉的主要目标是什么?A. 模拟人类视觉系统B. 处理和分析图像数据C. 提高计算机的计算速度D. 优化网络通信2. 以下哪项不是计算机视觉的应用?A. 自动驾驶B. 图像识别C. 语音识别D. 医学图像分析3. 深度学习在计算机视觉中的主要作用是什么?A. 提高图像的分辨率B. 自动化特征提取C. 优化图像的色彩D. 减少图像的噪声4. 卷积神经网络(CNN)在计算机视觉中的主要优势是什么?A. 处理大规模数据B. 自动学习图像特征C. 提高计算速度D. 优化图像的对比度5. 以下哪项技术不是计算机视觉中的常用技术?A. 边缘检测B. 特征匹配C. 数据压缩D. 目标跟踪6. 图像分割的主要目的是什么?A. 提高图像的分辨率B. 将图像分成不同的区域或对象C. 优化图像的色彩D. 减少图像的噪声7. 以下哪项不是图像识别的关键步骤?A. 预处理B. 特征提取C. 模型训练D. 数据压缩8. 目标检测与目标跟踪的主要区别是什么?A. 目标检测是静态的,目标跟踪是动态的B. 目标检测是动态的,目标跟踪是静态的C. 目标检测和目标跟踪都是静态的D. 目标检测和目标跟踪都是动态的9. 以下哪项技术不是用于提高图像识别准确性的?A. 数据增强B. 迁移学习C. 数据压缩D. 注意力机制10. 计算机视觉中的“特征”通常指的是什么?A. 图像的分辨率B. 图像的色彩C. 图像中的特定模式或结构D. 图像的噪声11. 以下哪项不是计算机视觉中的常用数据集?A. ImageNetB. COCOC. MNISTD. SQL12. 计算机视觉中的“卷积”操作主要用于什么?A. 提高图像的分辨率B. 提取图像的特征C. 优化图像的色彩D. 减少图像的噪声13. 以下哪项不是计算机视觉中的常用评估指标?A. 准确率B. 召回率C. 数据压缩率D. F1分数14. 计算机视觉中的“迁移学习”主要用于什么?A. 提高图像的分辨率B. 利用预训练模型进行新任务的学习C. 优化图像的色彩D. 减少图像的噪声15. 以下哪项不是计算机视觉中的常用预处理技术?A. 图像增强B. 图像归一化C. 数据压缩D. 图像去噪16. 计算机视觉中的“注意力机制”主要用于什么?A. 提高图像的分辨率B. 聚焦于图像中的重要部分C. 优化图像的色彩D. 减少图像的噪声17. 以下哪项不是计算机视觉中的常用特征提取方法?A. SIFTB. SURFC. HOGD. SQL18. 计算机视觉中的“目标跟踪”主要用于什么?A. 提高图像的分辨率B. 跟踪图像中的移动对象C. 优化图像的色彩D. 减少图像的噪声19. 以下哪项不是计算机视觉中的常用图像分割方法?A. 阈值分割B. 区域生长C. 边缘检测D. 数据压缩20. 计算机视觉中的“数据增强”主要用于什么?A. 提高图像的分辨率B. 增加训练数据的多样性C. 优化图像的色彩D. 减少图像的噪声21. 以下哪项不是计算机视觉中的常用目标检测方法?A. R-CNNB. YOLOC. SSDD. SQL22. 计算机视觉中的“特征匹配”主要用于什么?A. 提高图像的分辨率B. 识别图像中的相似特征C. 优化图像的色彩D. 减少图像的噪声23. 以下哪项不是计算机视觉中的常用图像处理技术?A. 图像滤波B. 图像变换C. 数据压缩24. 计算机视觉中的“图像融合”主要用于什么?A. 提高图像的分辨率B. 结合多个图像的信息C. 优化图像的色彩D. 减少图像的噪声25. 以下哪项不是计算机视觉中的常用图像增强技术?A. 直方图均衡化B. 对比度增强C. 数据压缩D. 锐化26. 计算机视觉中的“图像去噪”主要用于什么?A. 提高图像的分辨率B. 去除图像中的噪声C. 优化图像的色彩D. 减少图像的噪声27. 以下哪项不是计算机视觉中的常用图像变换技术?A. 旋转B. 缩放C. 数据压缩D. 平移28. 计算机视觉中的“图像归一化”主要用于什么?A. 提高图像的分辨率B. 统一图像的尺寸和亮度C. 优化图像的色彩D. 减少图像的噪声29. 以下哪项不是计算机视觉中的常用图像滤波技术?A. 高斯滤波B. 中值滤波C. 数据压缩D. 均值滤波30. 计算机视觉中的“图像锐化”主要用于什么?A. 提高图像的分辨率B. 增强图像的边缘C. 优化图像的色彩D. 减少图像的噪声31. 以下哪项不是计算机视觉中的常用图像变换方法?B. 透视变换C. 数据压缩D. 几何变换32. 计算机视觉中的“图像对比度增强”主要用于什么?A. 提高图像的分辨率B. 增强图像的对比度C. 优化图像的色彩D. 减少图像的噪声33. 以下哪项不是计算机视觉中的常用图像处理方法?A. 图像分割B. 图像融合C. 数据压缩D. 图像变换34. 计算机视觉中的“图像直方图均衡化”主要用于什么?A. 提高图像的分辨率B. 改善图像的亮度分布C. 优化图像的色彩D. 减少图像的噪声35. 以下哪项不是计算机视觉中的常用图像处理技术?A. 图像滤波B. 图像变换C. 数据压缩D. 图像融合36. 计算机视觉中的“图像融合”主要用于什么?A. 提高图像的分辨率B. 结合多个图像的信息C. 优化图像的色彩D. 减少图像的噪声37. 以下哪项不是计算机视觉中的常用图像增强技术?A. 直方图均衡化B. 对比度增强C. 数据压缩D. 锐化38. 计算机视觉中的“图像去噪”主要用于什么?A. 提高图像的分辨率B. 去除图像中的噪声C. 优化图像的色彩39. 以下哪项不是计算机视觉中的常用图像变换技术?A. 旋转B. 缩放C. 数据压缩D. 平移40. 计算机视觉中的“图像归一化”主要用于什么?A. 提高图像的分辨率B. 统一图像的尺寸和亮度C. 优化图像的色彩D. 减少图像的噪声41. 以下哪项不是计算机视觉中的常用图像滤波技术?A. 高斯滤波B. 中值滤波C. 数据压缩D. 均值滤波42. 计算机视觉中的“图像锐化”主要用于什么?A. 提高图像的分辨率B. 增强图像的边缘C. 优化图像的色彩D. 减少图像的噪声43. 以下哪项不是计算机视觉中的常用图像变换方法?A. 仿射变换B. 透视变换C. 数据压缩D. 几何变换44. 计算机视觉中的“图像对比度增强”主要用于什么?A. 提高图像的分辨率B. 增强图像的对比度C. 优化图像的色彩D. 减少图像的噪声45. 以下哪项不是计算机视觉中的常用图像处理方法?A. 图像分割B. 图像融合C. 数据压缩D. 图像变换46. 计算机视觉中的“图像直方图均衡化”主要用于什么?B. 改善图像的亮度分布C. 优化图像的色彩D. 减少图像的噪声47. 以下哪项不是计算机视觉中的常用图像处理技术?A. 图像滤波B. 图像变换C. 数据压缩D. 图像融合48. 计算机视觉中的“图像融合”主要用于什么?A. 提高图像的分辨率B. 结合多个图像的信息C. 优化图像的色彩D. 减少图像的噪声49. 以下哪项不是计算机视觉中的常用图像增强技术?A. 直方图均衡化B. 对比度增强C. 数据压缩D. 锐化50. 计算机视觉中的“图像去噪”主要用于什么?A. 提高图像的分辨率B. 去除图像中的噪声C. 优化图像的色彩D. 减少图像的噪声51. 以下哪项不是计算机视觉中的常用图像变换技术?A. 旋转B. 缩放C. 数据压缩D. 平移52. 计算机视觉中的“图像归一化”主要用于什么?A. 提高图像的分辨率B. 统一图像的尺寸和亮度C. 优化图像的色彩D. 减少图像的噪声53. 以下哪项不是计算机视觉中的常用图像滤波技术?A. 高斯滤波B. 中值滤波C. 数据压缩D. 均值滤波54. 计算机视觉中的“图像锐化”主要用于什么?A. 提高图像的分辨率B. 增强图像的边缘C. 优化图像的色彩D. 减少图像的噪声55. 以下哪项不是计算机视觉中的常用图像变换方法?A. 仿射变换B. 透视变换C. 数据压缩D. 几何变换56. 计算机视觉中的“图像对比度增强”主要用于什么?A. 提高图像的分辨率B. 增强图像的对比度C. 优化图像的色彩D. 减少图像的噪声57. 以下哪项不是计算机视觉中的常用图像处理方法?A. 图像分割B. 图像融合C. 数据压缩D. 图像变换58. 计算机视觉中的“图像直方图均衡化”主要用于什么?A. 提高图像的分辨率B. 改善图像的亮度分布C. 优化图像的色彩D. 减少图像的噪声59. 以下哪项不是计算机视觉中的常用图像处理技术?A. 图像滤波B. 图像变换C. 数据压缩D. 图像融合答案1. B2. C3. B4. B5. C6. B7. D9. C10. C11. D12. B13. C14. B15. C16. B17. D18. B19. D20. B21. D22. B23. C24. B25. C26. B27. C28. B29. C30. B31. C32. B33. C34. B35. C36. B37. C38. B39. C40. B41. C42. B43. C44. B45. C46. B47. C48. B49. C50. B51. C52. B53. C54. B55. C56. B57. C59. C。

monodepth原理

monodepth原理

monodepth原理Monodepth是一种深度估计模型,可用于从单个图像中推断出场景中的物体的距离信息。

它是由Clement Godard等人于2024年提出的。

Monodepth的原理基于一种称为无监督学习的方法,即不需要配对的深度图像和图像对进行训练。

Monodepth模型的目标是将输入图像映射到一个深度图像,其中每个像素对应于场景中相应点的深度估计。

它使用自编码器架构进行训练,该架构包含了一个编码器网络和一个解码器网络。

编码器网络是一个卷积神经网络,通过一系列卷积和池化操作将输入图像逐渐降维。

这样可以提取图像的特征表示。

与传统的编码器网络不同,Monodepth的编码器网络从输入图像的不同尺度提取特征,以获取更丰富的上下文信息。

解码器网络的作用是将编码器网络提取的特征重新映射到深度图像。

它包含了一系列反卷积和上采样操作,逐渐将特征图的尺寸增加到与原始图像相同的尺寸。

在特征图的每个位置,解码器网络输出一个深度估计值。

为了训练Monodepth模型,需要使用自我监督学习的方法。

自我监督学习是一种无需人工标注的训练方法,它使用输入数据的自身属性来进行监督。

在Monodepth中,使用的自我监督信号是纹理一致性。

纹理一致性是指场景中同一物体在多个视角下具有相似的外观。

例如,在一幅图像中,两个相对位置相近的点应该具有类似的外观。

通过利用这种纹理一致性,可以估计出相机相对于场景的移动,从而推断出深度信息。

具体来说,在训练时,Monodepth使用图像的逆深度作为目标,逆深度等于深度的倒数。

然后,通过将目标逆深度与预测深度进行比较,在损失函数中引入了逆深度差异。

模型的目标是最小化这个损失函数,从而使预测的深度图像与真实深度图像尽可能接近。

为了增强模型的性能,Monodepth还使用了一种称为跨尺度一致性损失的技术。

这种技术通过在不同尺度上比较特征图中的深度估计值来优化模型。

具体来说,它将不同尺度的特征图上的深度估计值进行比较,并计算它们之间的差异。

monodepth1原理

monodepth1原理

monodepth1原理Monodepth1原理Monodepth1是一种单目深度估计的算法,通过使用单个摄像头来预测场景中物体的深度信息。

该算法基于卷积神经网络(CNN)和自监督学习的思想,能够从单张图像中估计出场景的三维结构。

Monodepth1的原理是基于对图像的自我监督学习。

自监督学习是一种无需人工标注数据的机器学习方法,它通过利用图像自身的信息来进行训练。

在深度估计中,自监督学习可以通过使用立体视觉或运动恢复的技术来实现。

而Monodepth1则利用了单目图像的自监督学习。

Monodepth1首先通过一个编码器将输入图像编码为一个低维特征表示。

编码器通常由多个卷积层组成,用于提取图像的特征。

然后,这些特征被输入到解码器中进行解码。

解码器由多个卷积层和上采样层组成,用于将低维特征重构为高分辨率的深度图。

在训练过程中,Monodepth1使用自我监督学习的方法来学习深度估计模型。

它通过将输入图像进行数据增强,例如随机裁剪、旋转和翻转等操作,生成一对左右视角的图像。

这对图像被输入到深度估计模型中,生成左右视角的深度图。

然后,通过计算左右视角的深度图之间的差异,来定义一个深度损失函数。

模型通过最小化深度损失函数来优化自身的参数,从而提高深度估计的准确性。

Monodepth1的优势在于只需要使用单个摄像头就能实现深度估计。

与传统的立体视觉方法相比,它不需要使用两个摄像头进行图像匹配,从而简化了设备的配置和使用。

此外,Monodepth1还能够通过训练来适应不同的场景和环境,提高深度估计的泛化能力。

然而,Monodepth1也存在一些限制。

由于只使用了单个图像,因此在某些情况下,例如纹理较少或物体边界不清晰的区域,深度估计的准确性可能会受到影响。

此外,Monodepth1在处理遮挡和反射等复杂场景时也存在一定的困难。

总结起来,Monodepth1是一种基于自监督学习的单目深度估计算法。

它通过使用单个摄像头和自我监督学习的方法,能够实现对场景中物体深度信息的预测。

python脑电波算法

python脑电波算法

python脑电波算法
Python脑电波算法是一种应用于脑机接口技术的算法,主要用于将脑电波信号转换为计算机可读的数据。

该算法可以通过Python语言
实现,同时需要借助一些第三方库来进行数据处理和分析。

首先,需要使用Python中的EEG库进行脑电波数据的采集和处理。

该库可以获取来自脑电波头环的信号,并对其进行一系列的数字
信号处理,如带通滤波、降噪等。

接下来,可以通过Python中的numpy库和scipy库对数据进行
进一步分析和处理。

这些库支持各种数据处理和分析操作,包括频谱
分析、时频分析、信号重构等。

最后,可以使用Python中的机器学习库,如Scikit-learn,构
建分类器来识别不同的脑电波特征。

通过对标记好的数据集进行训练,该算法可以自动分类脑电波信号,并将其转化为可读的数据形式。

Python脑电波算法在脑机接口技术的各个领域都有广泛的应用,例如,可以用于神经康复、脑电波信号控制的人工肢体、脑电波信号
诊断等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
or small ∆s, must have a limit as f(s)→-∞, must have a limit as f(s)→+∞, these limits have to be different. In other words, this function has to produce value 1, when the input vector belongs to one class and 0 if the input vector belongs to another.
cupping (excavation) through which the central retinal artery and vein pass.
Figure 1. An example of fundus of the eye
Changes in the optic nerve disc can be associated with numerous vision threatening diseases such as glaucoma, optic neuropathy, swelling of the optic nerve disc, or related to some systemic disease. Assume that some set of parameters characterizes the optic nerve disc and excavation. Hence, it becomes possible to construct an n-dimensional vector X = ( x1 , x2 ,..., xn ) . Each n-dimensional vector corresponds to one fundus image and describes the disease. The goal is to assign the vector X to one of the known classes, where m=1…p and p is the number of patients.
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2007, Vol. 36, No. 4
NEURAL NETWORK AS AN OPHTHALMOLOGIC DISEASE CLASSIFIER
Povilas Treigys, Vydūnas Šaltenis
Figure 2. Activation function
In this research the log sigmoid function was used: 1 f (s ) = . (2) 1 + e −s The main disadvantage of the single-layer perceptron is that it can easily operate and show itself fine until the classes described by the vectors X are separable. But, as the dimensionality n of the vector X increases, in most cases it forms not linearly separable regions. 2.2. Multi-layer perceptron As usual, a multi-layer perceptron consists of several single-layer perceptrons, which are arranged in some hierarchy. This hierarchy must satisfy the following characteristics [7]: • The first layer is taking inputs with the number of perceptrons equal to the number of vectors X of the problem. • The output layer produces outputs with the number of neurons equal to the desired number of quantities computed from the inputs. • In-between those layers there are middle layers (it can be one or more layers) which have no connection to the external world. Hence, they are called hidden layers. • Each single perceptron in one layer is connected to every perceptron in the next layer. • There cannot be any connection among the perceptrons in the same layer. As stated before, with no hidden layers, the perceptron can only perform linearly separable tasks. This scheme results in the separation of points into regions that are not linearly separable. Let us consider the network shown in Figure 3. Here x, y are values representing a point on the plane. For the single-layer perceptron the output can be calculated as follows:
Institute of Mathematics and Informatics Akademijos Str. 4, LT-08663 Vilnius, Lithuania
Abstract. In this paper, we explore the neural network as a disease classifier. In our investigation, the sets of parameters describing glaucomatous and healthy eyes are taken. These sets represent the structure of the optical nerve disc which resides in a patient’s eye fundus image. As a separate case, the excavation can be seen in the image as well. These two sets describe the elliptical shape of both structures and compound the initial data for analysis. Thus, the distinction of classes represented by the data sets becomes possible. In this article, a multi-layer neural network is explored. Selection of the optimal number of hidden neurons is taken into consideration. We also explore here the principal component analysis for feature reduction. The classification results are discussed as well. Keywords: optic nerve disc, excavation parameters, multi-layer neural network, disease classification, glaucoma, number of hidden units, principal component analysis.
1. Introduction
Nowadays the information amount the medic has to deal with is huge. Thus, a careful analysis of such a data set is hardly possible. The problem arises while making the medical decision when the state of a patient has to be assigned to the initially known class. For clarity, the class can be defined as ailing or healthy. Almost each disease can be described by a set of quantitative parameters. Methods of data mining and analysis can be introduced for the decision support system development with a view of a preliminary medical diagnosis [1, 2, and 3]. However, the boundary between alternatives of diagnosis in most cases is not straightforward and the decision for the disease presence can be made very subjectively. In the medical context it is a topical problem. If an ailing patient is classified as healthy, the results could be unpredictable. Thus, it is of utmost importance to determine the boundary of transition from one class of a disease to another. Eye fundus examination is one of the most important diagnostic procedures in ophthalmology. A high quality colour photograph of the eye fundus (Figure 1) helps in the accommodation and follow-up of the development of the eye disease. Evaluation of the eye fundus images is complicated because of the variety of anatomical structure and possible fundus changes in eye diseases. The optic nerve disc appears in the normal eye fundus image as a yellowish disc with whitish central
相关文档
最新文档