精选2013中考题304
2013年初中毕业生中考数学试卷及答案
2013年初中毕业生中考数学试卷本试卷共5页,分二部分,共25小题,满分150分。
考试用时120分钟。
注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B铅笔把对应这两号码的标号涂黑。
2、选择题答案用2B铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。
3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12C 0D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y xC'图6ACB O A'B'A O 图7yx( 6, 0 )P已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.AD图9BCPB A图10北东N M如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。
2013全国各地数理中考真题集锦
二〇一三年全国各省市初中学业水平考试物理试题注意事项:1、 本套试题集全国各地2013年物理中考试题而成,以山东省为主;2、 试题共6页,满分为100分,考试时间为90分钟,用圆珠笔或钢笔直接答在试卷上!3、 本题考试范围为教科版八年级下册、九年级上册内容。
一、选择题(本题共15个小题,每小题2分,共30分,只有一个正确答案)【2013·威海】1、如图1所示,一重为G 的物体,用一水平压力F =kt (k 为大于0 的 常数,t 为作用时间)压在足够长的平整竖直粗糙墙面上,则物体 的运动情况是A .始终静止B .速度先增加后不变C .速度先增大,后减小,最终静止D .速度始终增大2、图2表示一个人站在匀速上升的电梯上,下列分析正确的是( ) A .电梯上升过程中,人的动能转化为重力势能 B .电梯上升过程中,人的机械能不断增大C .电梯上升过程中,电梯对人的支持力做功为零D .人对电梯的压力与电梯对人的支持力是一对平衡力3、图3所示的四幅图中能说明发电机工作原理的是( )4、如图4所示电路,电源电压为12V ,闭合开关S ,移动滑动变阻器的滑片P ,小灯泡始终不亮, 电流表示数为零,电压表示数为12V ,则电路发生的故障可能是( ) A .开关接触不良 B .电流表断路 C .滑动变阻器断路 D .灯泡断路5、如图5所示电路中,电源电压不变,R 1为定值电阻,R 为滑动变阻器,闭合开关S ,当滑动变阻器的滑片P 向左移动时,下列判断正确的是( )A .电压表示数变小,电流表示数变大B .电压表示数变小,电流表示数变小C .电压表示数变大,电流表示数变小D .电压表和电流表的示数的比值不变6、如图6所示,为保证司乘人员的安全,轿车上设有安全带未系提示系统.当乘客坐在座椅上时,座椅下的开关S 1闭合.若未系安全带,则开关S 2断开,仪表盘上的指示灯亮起;若系上安全带,则开关S 2闭合,指示灯熄灭.下列设计比较合理的电路图是( )【2013·泰安】7、关于温度、比热容、热量、内能,以下说法正确的是( )A .一块0℃的冰没有内能,它的分子不会运动B .一个物体吸收了热量,它的温度一定会升高C .一个物体温度升高了,它的一定内能增加D .用水作为汽车发动机散热器的冷却剂,其主要原因是水的比热容较小8、如图7所示,水平传送带上的物体正在向右运动,物体速度逐渐变大,分析物体受到的力 有( )A.重力、传送带的支持力B.重力、对传送带的压力C.重力、传送带的支持力、向右的摩擦力D.重力 、传送带的支持力、对传送带的压力 【2013·菏泽】9、太阳能路灯设计优美,为城市增添了亮丽的风景。
2013年中考答案扬州数学
题号 1 2 3 4 5 6 7 8 题号选项 A D D A B C B C 选项33333(1) 20 ,80 开始10 20 30 40 解法二:用列表法分析如下:解法二:用列表法分析如下:10 20 30 40 10 20 30 40 50 20 30 40 50 60 30 40 50 60 70 40 50 60 70 80 ………………………………………………………………………………………6分 ∴P(不低于50元)=1610=85.………………………………………………….………………………………………………… 8分22.(1) 7.1 , 6 (每空2分)………………………………………………4分 (2) 甲 ……………………………………………………………………6分 (3)乙组的平均分高于甲组;乙组的平均分高于甲组;乙组成绩的方差低于甲组,乙组成绩的稳定性好于甲组.乙组成绩的方差低于甲组,乙组成绩的稳定性好于甲组. (答案不唯一只要合理即可)……………………………………………………8分23. (1)证明:∵∠证明:∵∠BCA =∠DCE =90º,∴∠BCD =∠ACE ∵CB =CA ,CD =CE ,∴△BCD ≌△ACE ,∴∠CAE =∠CBD ……3分 ∵AC =BC ,∠ACB =90º,∴∠ABC =∠BAC=45º,∴∠CAE=45º ∴∠BAE =90º,∴º,∴ AB ⊥AE ……………………………………………………………………………… 5分(2)证明:∵BC 22=AD ·AB ,BC =AC ,∴,∴ AC 22=AD ·AB ,∴AD AC =ACAB ∴∠CAD =∠BAC ,∴△CAD ≌△BAC ,∴∠ADC =∠ACB=90º ………………………………………………8分∴∠DCE =∠DAE =90º,∴四边形ADCE 是矩形是矩形 ………………9分 ∵CD =CE ,∴四边形ADCE 是正方形是正方形 …………………………10分24.解法一:设九(1)班有x 人,则九((2)班人数为((x -8)人,由题意,得人,由题意,得x 1200(1+20%)=81200-x ………………………………………………4分 解得x =48 ………………………………………………………………7分 经检验,x=48是原程的解.是原程的解. …………………………………………………………………………………… 8分 所以x -8=40.481200=25(元),401200=30(元)元) ………………9分 答:九((1)班人均捐款为25元,九(2)班人均捐款为30元.……10分 解法二:设九(1)班人均捐款y 元,则九(2)班人均捐款(1十20%)y 元,元,第一次第一次第二次第二次 10 由题意,y 1200-8=y %)201(1200+ ……………………………………4分 解得y =25 ……………………………………………………………………………………………………………………………… 7分经检验,y=25是原程的解.是原程的解. ……………………………………………8分 当y =25时,(1+20%)y =30(元)(元) ……………………………………9分 答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.元. ………… 10分25. (1)证明:连接BD ,由AD ⊥AB 可知BD 必过点O ∴BF 相切于⊙O ,∴∠ABD 十∠ABF =90º∵AD ⊥AB ,∴∠ABD +∠ADB =90º,∴∠ABF =∠ADB …………3分 ∵∠ABC =∠ABF ,∴∠ABC =∠ADB 又∠ACB =∠ADB ,∴∠ABC ==∠ACB ,∴AB =AC ………………5分 (2)在Rt △ABD 中,∠BAD =90ºcos ∠ADB =BD AD ,∴BD =ADB AD Ðcos =ABF AD Ðcos =544=5 ……6分 ∴AB =3 ……………………………………………………………………7分在Rt △ABE 中,∠BAE=90ºCos ∠ABE =BE AB ,∴BE =ABE AB Ðcos =543=415 ∴AE =223)415(-=49 …………………………………………………9分 ∴DE =AD -AE =4-49=47………………………………………………………………………………………… 10分 26.解:(1)点A 坐标((0,一8),点B 坐标(4,0)………………………………2分设直线AB 函数解析式为y =kx +b ,将A 、B 点坐标代人得k =2,b =一8 所以直线AB 的解析式为y =2x -8…………………………………………5分 (2)由题意知M 点坐标为(m ,2m -8) ,N 点坐标为(m ,m 2-2m -8),且0<m <3 所以MN =(2m -8)一(m 2-2m -8) =-m 2+4m ……………………6分……………………6分同理可得PQ =-(m +1)2十4(m +1) =-m 2十2m +3 ………………7分①当PQ >MN 时,-m 2十2m +3>-m 2+4m ,解得m <23 ∴0<m <23时,PQ >MN ………………………………………………8分 ②当PQ =MN 时,-m 2十2m +3=-m 2+4m ,解得m =23 ∴m =23时,PQ =MN ;…………………………………………………9分∴PC AB =CEBP ,∵∴x m -2=y x ,∴=21x +2m x =21x +2m x =21x +2m x =21(x -2m )+8m=2m时,=8m 上,∴8m ≤22,∴22………=32,∴或32表中也有三个劳格数是错误的,与题设矛盾表中也有三个劳格数是错误的,与题设矛盾∴d(5)=a+c …………………………………………………………………10分)的值是错误的,应纠正为:∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:D(1.5)=d(3)+d(5)-1=3a-b+c-1 …………………………11分D(12)=d(3)+2d(2)=2-b-2c ………………………………12分分.注:如果仅指出错误的劳格数,未说明理由,则每指出1个给1分.。
2013年江西中考物理真题卷含答案解析
江西省2013年中等学校招生考试物理试题(含答案全解全析)一、填空题(共16分,每空1分)1.我国家庭电路的电压为V,电磁波在真空中的传播速度约为m/s。
2.温泉的开发是人们利用地热的一种形式。
冬天,温泉水面的上方笼罩着一层白雾,这是水蒸气遇冷形成的小水滴;雪花飘落到池水中立刻不见踪影,这是雪花成水融入温泉水中。
(填物态变化名称)3.又到了收获芒果的季节,果园里四处飘荡着芒果的香味,这是芒果的芳香分子在做永不停息地运动;挂满芒果的枝条被压弯了,这说明力可以使物体发生。
4.著名的牛顿第一定律是在实验的基础上,通过分析、推理得出的。
该定律具体表述为:一切物体在没有受到外力的作用时,总保持状态或状态。
图15.如图1所示,用吸管向两个空易拉罐中间吹气,导致中间的空气流速加快减小,使得两易拉罐相互(填“靠近”或“远离”)。
6.导体的电阻是导体本身的一种性质,它的大小跟导体的材料、、、温度有关。
7.如图2所示,是世界上早期的蒸汽汽车模型。
燃料燃烧使水温升高,水的能增加,再转化为汽车的能,使汽车前进。
图28.如图3所示,是“探究滑动摩擦力大小”的实验。
对比甲、乙两图,可知滑动摩擦力的大小跟的大小有关;对比甲、丙两图,可知滑动摩擦力的大小还跟接触面的有关。
图3二、选择题(共20分。
第9~12小题,每小题只有一个正确答案,每小题3分;第13、14小题为不定项选择,每小题有一个或几个正确答案,每小题4分,全部选择正确得4分。
不定项选择正确但不全得1分,不选、多选或错选得0分)9.“估测”是物理学中常用的一种方法。
下面是小胜同学对自己相关物理量的估测,其中明显不合理的是()A.正常体温约为39℃B.体重约为450NC.步行速度约为5km/hD.脉搏约为70次/min10.如图4所示,是香香同学在相等时间间隔里运动的情景,可能做匀速运动的是()图411.端午节举行龙舟赛时,运动员喊着号子、合着鼓点有节奏地同时划桨。
下列有关声现象说法不正确...的是()A.鼓声是通过空气传到岸上观众耳朵中的B.鼓声是由鼓槌振动产生的C.运动员打鼓用的力越大,鼓声响度越大D.岸上观众是通过音色分辨出鼓声、号子声的12.如图5所示,下列说法正确的是()图5A.小鸟受到的重力与小鸟对树枝的压力是一对平衡力B.小鸟对树枝的压力与树枝对小鸟的支持力是一对平衡力C.小鸟受到的重力与树枝对小鸟的支持力是一对平衡力D.小鸟受到的重力与树枝受到的重力是一对平衡力13.如图6所示,是某电器内部的电路结构图,R1、R2为阻值相同的电热丝。
2013年中考数学真题试题(解析版)
2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。
2013大连市中考卷及答案
大连市2013年初中毕业升学考试物理与化学注意事项:1.请在答题卡上作答,在试卷上作答无效。
2.物理试卷共五大题,1~32小题,满分90分。
化学试卷共四大题,33~58小题,满分70分。
物理与化学合计共58小题,合计满分160分。
考试时间150分钟。
第一卷物理一、选择题(本题共14小题,每小题2分,共28分)注意:第1~11题中,每题只有一个选项正确。
1.乐队演奏时,听众能分辨出二胡声和小提琴声,主要是因为这两种声音的A.响度不同B.音色不同C.音调不同D.频率不同2.下列运动的物体,其运动状态不变的是A.转变的汽车B.加速起飞的飞机C.匀速直线下落的雨滴D.减速进站的火车3.下列各现象,能用光的直线传播解释的是A.水中的“白云”B.经放大镜放大的“字”C.沙漠中的“海市蜃楼”D.树的影子中圆形的“光斑”4.下列做法中,使电阻丝的电阻变大的是A.把电阻丝拉长B.把电阻丝对折C.把电阻丝剪掉一段D.把电阻丝绕成螺丝管5.电动机的工作原理是A.电磁感应现象B.电流的热效应C.通电导体周围存在磁场D.通电导体的磁场中受力6.下列各种摩擦中,应该设法减少的是A.机器运转时,各部件之间的摩擦B.翻书时,手指与纸之间的摩擦C.走路时,鞋底与地面之间的摩擦D.拧瓶盖时,手与瓶盖之间的摩擦7.五月的大连,人们在槐树下闻到了槐花的香味儿。
这个现象说明了21世纪教育网A.气体分子很小B.气体分子是运动的C.气体分子的运动是有规则的D.气体分子之间有引力8.由电功率的公式P=I2R可知,导体中的电流一定时,导体的电功率P与导体电阻R的关系图象是9.如图1所示,竖直墙面上有一个吸盘式挂衣钩。
则与挂衣钩的重力相互平衡的力是A.大气对挂衣钩的压力B.挂衣钩对墙面的压力C.墙面对挂衣钩的静摩擦力D.挂衣钩对墙面的静摩擦力10.在保温杯中装适量0℃的水,从冰箱的冷冻室里取出一小块冻了很长时间的冰,放到保温杯中,设保温杯是绝热的。
2013年数学中考试题和答案
2013年数学中考试题和答案◆ 注意事项:1、本卷满分150分,考试时间120分钟;2、所有题目必须在答题卷上作答,否则不予计分。
一、选择题(本大题共6小题,每小题5分,共30分。
每小题均给出了A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的,不填、多填或错填均得0分)1、若不等式组⎩⎨⎧<+>232a x x 有解,则实数a 的取值范围为( )A .21≤aB .21<aC .21≥aD .21>a2、化简2)28cos 28(sin ︒-︒等于( )A .︒-︒28cos 28sinB .0C .︒-︒28sin 28cosD .以上都不对3、若,012=--x x 则522234+-+-x x x x =( )A .0B .5C .52+D .5252-+或4、如图为一个几何体的三视图,左视图和主视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为( )A B .123 C .24 D .24+ 5、已知=++=+=+=+zx yz xy xyzx z zx z y yz y x xy ,则61,51,31( ) A .41 B .21 C .71 D .916、已知关于x 的方程0)21(542=+⋅++-xa x x ,若a 为正实数,则下列判断正确的是( )A .有三个不等实数根B .有两个不等实数根C .有一个实数根D .无实数根4题图二、填空题(本大题共8小题,每小题6分,共48分) 7、a a 13--与a a 13--是相反数,计算aa 1+= . 8、若[]x 表示不超过x 的最大整数,0444311311311⎪⎪⎭⎫⎝⎛-+++-=A , 则[]A = .9、如图,N M 、分别为ABC ∆两边BC AC 、的中点,AN 与BM 交于点O ,则的面积的面积ABC BON ∆∆ = .10、如图,已知圆O 的面积为3π,AB 为直径,弧AC 的度数为︒80,弧BD 的度数为︒20,点P 为直径AB 上任一点,则PD PC +的最小值为 . 11、观察下列各式:),4131(1331133133),3121(1221122122),211(1111111111222222222--=+-=+-+--=+-=+-+--=+-=+-+ ……计算:201120111201120113311225212222+-+++++++ = .12、从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a ,是3的倍数的个数为b ,则样本96、、、b a 的中位数是 .13、若3-x 为正整数,且是13522+-x x 的约数,则x 的所有可能值总和为 .14、由直线12-+=k kx y 和直线12)1(+++=k x k y (k 是正整数)与x 轴及y 轴所围成的图形面积为S ,则S 的最小值是 .三、解答题(本大题共5小题,共计72分)15、(14分)已知抛物线)0(2>++-=c c bx x y 过点)0,1(-C ,且与直线x y 27-=只有一个交点.⑴ 求抛物线的解析式;⑵ 若直线3+-=x y 与抛物线相交于两点B A 、,则在抛物线的对称轴上是否存在点Q ,使ABQ ∆是等腰三角形? 若存在,求出Q 点坐标;若不存在,说明理由.BACN MO PO AC DB第10题图第9题图B A DE C PFO 1 O 2MH GN第18题图 16、(14分)如图,过正方形ABCD 的顶点C 在形外引一条直线分别交AD AB 、延长线于点N M 、,DM 与BN 交于点H ,DM 与BC 交于点E ,BN 与DC 交于点F .⑴ 猜想:CE 与DF 的大小关系? 并证明你的猜想. ⑵ 猜想:H 是AEF ∆的什么心? 并证明你的猜想.17、(14分)设关于x 的方程0222)1(42=-+--+-y x y x x 恰有两个实数根,求y 的负整数值.18、(15分)如图,已知菱形ABCD 边长为36,︒=∠120ABC ,点P 在线段BC 延长线上,半径为1r 的圆1O 与DP CP DC 、、分别相切于点N F H 、、,半径为2r 的圆2O 与PD 延长线、CB 延长线和BD 分别相切于点G E M 、、.(1)求菱形的面积; (2)求证:MN EF =; (3)求21r r +的值.19、(15分)某企业某年年初建厂生产某种产品,其年产量为y 件,每件产品的利润为2200元,建厂年数为x ,y 与x 的函数关系式为504022++-=x x y .由于设备老化,从2011年起,年产量开始下滑.若该企业2012年投入100万元用于更换所有设备,则预计当年可生产产品122件,且以后每年都比上一年增产14件. ⑴ 若更换设备后,至少几年可收回投入成本? ⑵ 试写出更换设备后,年产量Q 件与企业建厂年数x 的函数关系式;并求出,到哪一年年产量可超过假定设备没有更换的年产量?AB MC E DF H N第16题图2012年蚌埠二中高一自主招生考试科学素养 数学答题卷一、 选择题 (本大题共6小题,每小题5分,共30分)二、填空题(本大题共8小题,每小题6分,共48分)7、8、 9、 10、 11、12、 13、 14、三、解答题(本大题共5小题,共计72分)15、(14分) 解:解:17、(14分)解:ABMCED FHN第16题图BA DEC PFO 1 O 2M H GN第18题图解: 19、(15分)解:2012年蚌埠二中自主招生考试数学参考答案一、 选择题 (本大题共6小题,每小题5分,共30分)1、B2、C3、C4、D5、C6、C二、填空题(本大题共8小题,每小题6分,共48分)7、5 8、-2 9、61 10、3 11、201220112(或其它形式)12、5.5 13、46 14、47三、解答题(本大题共5小题,27'15'1541'14'14'=++'++) 15、(14分)解:(1)322++-=x x y (6分)(2)Q )1,1()14,1()173,1(或或±±(14分)16、(14分)(1)DF CE =.(2分)证:∵正方形ABCD ∴AD ∥BC,DC ∥AB ∴NA BC MN MC ND CE ==,(4分)NANDAB DF =(6分) ∴NA ND BC CE =∴BCCEAB DF =又BC AB =∴DF CE =(7分) (2)垂心. (9分)易证ADF ∆≌CE D ∆(11分)∴FDE DAF ∠=∠又∴︒=∠+∠90ADE DAF ∴DE AF ⊥(13分)同理AE FB ⊥. H 为AEF ∆的垂心. (14分) (其他解法酌情给分)17、(14分)解:原式可变为0222)1(22=----+-y x y x()[]0)1(222=++---y x x ∴)1(222+-=-=-y x x 或∴0)1()1(2<+-+-=y y 或∴13->-=y y 或∴y 的负整数值为3-. (或也可去绝对值。
2013年河北中考试题及答案
2013年河北中考试题及答案以下是2013年河北中考的部分试题及答案供参考:一、语言知识运用。
(共计30分)1. 阅读下面的短文,从短文后各题所给的A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并把答题卡上对应题目的答案标号涂黑。
(共10小题,每小题1分)Have you ever played Tetris? It was a very popular video game in the 1980s, but there was a problem—it was only for game consoles (游戏机). Recently, a group in the US found a 1 to play Tetris on a building! The building is nine stories tall and is 90 feet wide. Not only can the game be played at night, it can also be 2 on! They said that playing Tetris on it is like3 it!The group 4 the game to the building with a computer. A computer expert said it was “not impossible” to do this, 5 he didn’t think the game is “completely playable”. To get a clear picture of the game, the group had to work for a year. Now thousands of people from all over the world can see it. And anyone can try to play it for free on the Internet 6 they know about it.Some people criticize (批评) the group for “playing games” with a big building. But the group says it is just for 7 . They want to make people feel8 . They want people to 9 and look at the city in a different way. A lot of people 10 think they did a good job. Would you like to see a big buildingplay Tetris?1. A. method B. way C. place D. building2. A. used B. looked C. played D. seen3. A. seeing B. playing C.fighting D. sounding4. A. led B. found C. took D. watched5. A. because B. so C. although D. but6. A. unless B. once C. until D. when7. A. fun B. changing C. game D. nothing8. A. free B. tired C. strange D. nervous9. A. look around B. look after C. look over D. look for10.A. even B. usually C. still D. never答案:1. D2. A3. B4. A5. C6. D7. A8. C9. A 10. C二、完形填空。
2013年河北省中考数学试卷含答案-答案在前
河北省2013年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】∵气温由1C ︒-上升2C ︒,∴1C 2C=1C ︒︒︒-+故选B .【提示】根据上升2C ︒即是比原来的温度高了2C ︒,就是把原来的温度加上2C ︒即可.【考点】有理数的加法2.【答案】B【解析】将4230000用科学记数法表示为:64.2310⨯故选:B【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数3.【答案】C【解析】A .是中心对称图形,不是轴对称图形,故此选项错误;B .是轴对称图形,不是中心对称图形,故此选项错误;C .是轴对称图形,也是中心对称图形,故此选项正确;D .是轴对称图形,不是中心对称图形,故此选项错误.故选C .【提示】根据中心对称图形和轴对称图形定义求解即可.【考点】中心对称图形,轴对称图形4.【答案】D【解析】A .右边不是整式积的形式,不是因式分解,故本选项错误;B .右边不是整式积的形式,不是因式分解,故本选项错误;C .右边不是整式积的形式,不是因式分解,故本选项错误;D .符合因式分解的定义,故本选项正确;故选D .故选B.12.【答案】A 【解析】由甲同学的作业可知,CD AB =,AD BC =,∴四边形ABCD 是平行四边形,又∵90ABC ︒∠=,∴ABCD Y 是矩形.所以甲的作业正确;由乙同学的作业可知,CM AM =,MD MB =,∴四边形ABCD 是平行四边形,又∵90ABC ︒∠=,∴ABCD Y 是矩形.所以乙的作业正确;故选A .【提示】先由两组对边分别相等的四边形是平行四边形得出四边形ABCD 是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确,先由对角线互相平分的四边形是平行四边形得出四边形ABCD 是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.【考点】作图,复杂作图,矩形的判定13.【答案】B【解析】如图,180901901BAC ︒︒︒∠=--∠=-∠,1806031203ABC ︒︒︒∠=--∠=-∠,1806021202ACB ∠=--∠=-∠o o o ,在ABC △中,180BAC ABC ACB ∠+∠+∠=o ,∴90112031202180︒︒︒︒-∠+-∠+-∠=,∴121503︒∠+∠=-∠,∵350︒∠=,∴1215050100︒︒︒∠+∠=-=故选B .【提示】设围成的小三角形为ABC △,分别用1∠、2∠、3∠表示出ABC △的三个内角,再利用三角形的内角和等于180︒列式整理即可得解.【考点】三角形内角和定理14.【答案】D【解析】故选C.故选A.【提示】根据两直线平行,同位角相等求出BMF ∠,BNF ∠,再根据翻折的性质求出BMN ∠和BNM ∠,然后利用三角形的内角和定理列式计算即可得解.【考点】平行线的性质,三角形内角和定理,翻折变换(折叠问题)20.【答案】2【解析】∵一段抛物线:(3)(03)y x x x =--≤≤,∴图像与x 轴交点坐标为:(0,0),(3,0),∵将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;…如此进行下去,直至得13C∴13C 的与x 轴的交点横坐标为(36,0),(39,0),且图像在x 轴上方,∴13C 的解析式为:13(36)(39)y x x =---,当37x =时,(3736)(3739)2y =--⨯-=.故答案为:2.【提示】根据图像的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m 的值.【考点】二次函数图像与几何变换三、解答题21.【答案】(1)11(2)1x >-【解析】解:(1)∵()1a b a a b ⊕=-+,∴(2)32(23)110111⊕=---+=+=-(2)∵313x ⊕<,∴3(3)113x -+<,93113x -+<,33x -<,1x >-.在数轴上表示如下:【提示】按照定义新运算()1a b a a b ⊕=-+,,得出3x ⊕,再令其小于13,得到一元一次不等式,解不等式求出x 的取值范围,即可在数轴上表示.【考点】解一元一次不等式,有理数的混合运算,在数轴上表示不等式的解集22.【答案】(1)D 错误,理由为:2010%23⨯=≠(2)众数为5,中位数为5(3)①第二步;②44586672 5.320x ⨯+⨯+⨯+⨯==,估计260名学生共植树5.32601378⨯=(颗)23.【答案】(1)(2)t 的取值范围是:47t <<. 31t =y 2t =x【提示】利用一次函数图像上点的坐标特征,求出一次函数的解析式,分别求出直线l 经过点M 、点N 时的t 值,即可得到t 的取值范围,找出点M 关于直线l 在坐标轴上的对称点E 、F ,如解答图所示.求出点E 、F 的坐标,然后分别求出ME 、MF 中点坐标,最后分别求出时间t 的值.【考点】一次函数综合题24.【答案】(1)证明见解析(2)点T 到OA 的距离为245(3)当BOQ ∠的度数为10︒或170︒时,AOQ △的面积最大数为10︒或170︒时,AOQ △的面积最大.【提示】首先根据已知得出AOP BOP '∠=∠,进而得出AOP BOP '△≌△,利用切线的性质得出90ATO ︒∠=,再利用勾股定理求出AT 的长,进而得出TH 的长.【考点】圆的综合题25.【答案】(1)212100Q k x k nx =++(2)2n =(3)90x =(4)能;1%m = (4)由题意得,2142040(1%)62(1%)40(1%)10010[]m m m =--+⨯+⨯-+,即22(%)%0m m -=,解得:1%%02m m ==或(舍去)【提示】根据题目所给的信息,设212W k x k nx =+,然后根据100Q W =+,列出用Q 的解析式,将70x =,450Q =,代入求n 的值即可,把3n =代入,确定函数关系式,然后求Q 最大值时x 的值即可,根据题意列出关系式,求出当450Q =时m 的值即可. 【考点】二次函数的应用26.【答案】(1)CQ BE ∥,3BQ == (2)134424V =⨯⨯⨯=液3()dm【提示】根据水面与水平面平行可以得到CQ 与BE 平行,利用勾股定理即可求得BQ 的长,液体正好是一个以BCQ △是底面的直棱柱,据此即可求得液体的体积,根据液体体积不变,据此即可列方程求解, 延伸:当60α︒=时,如图6所示,设FN EB ∥,GB EB '∥,过点G 作GH BB ⊥'于点H ,此时容器内液体形成两层液面,液体的形状分别是以Rt NFM △和直角梯形MBB G '为底面的直棱柱,求得棱柱的体积,即可求得溢出的水的体积,据此即可做出判断. 【考点】四边形综合题,解直角三角形的应用数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前河北省2013年初中毕业生升学文化课考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.气温由1-℃上升2℃后是 ( ) A .1-℃ B .1℃ C .2℃ D .3℃2.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 ( )A .70.42310⨯ B .64.2310⨯ C .542.310⨯ D .442310⨯3.下列图形中,既是轴对称图形又是中心对称图形的是 ( )ABCD4.下列等式从左到右的变形,属于因式分解的是 ( )A .()a x y ax ay -=-B .2221()1x x x x ++++=C .2()()1343x x x x ++++=D .3())11(x x x x x +-=-5.若1x =,则|4|x -=( )A .3B .3-C .5D .5- 6.下列运算中,正确的是( )A3=± B2C .0(20)-=D .2122-=7.甲队修路120m 与乙队修路100m 所用天数相同,已知甲队比乙队每天多修10m ,设甲队每天修路m x 依题意,下面所列方程正确的是 ( )A .12010010x x =- B .12010010x x =+ C .12010010x x=-D .12010010x x=+ 8.如图1,一艘海轮位于灯塔P 的南偏东70方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40的N 处,则N 处与灯塔P 的距离为 ( )A .40海里B .60海里C .70海里D .80海里9.如图2,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( )A .2B .3C .6D .3x +10.反比例函数my x=的图象如图3所示,以下结论: ①常数1m <-;②在每个象限内,y 随x 的增大而增大;③若,()1A h -,()2,B k 在图象上,则h k <; ④若,()P x y 在图象上,则,()P x y '--也在图象上其中正确的是 ( )A .①②B .②③C .③④D .①④11.如图4,菱形ABCD 中,点M ,N 在AC 上,ME AD ⊥,NF AB ⊥.若2NF NM ==,3ME =,则AN = ( )A .3B .4C .5D .6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)12.如已知:线段AB ,BC ,90ABC ∠=︒.求作:矩形ABCD . 以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是( )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对13.一个正方形和两个等边三角形的位置如图6所示,若350∠=︒,则12∠+∠= ( ) A .90︒ B .100︒ C .130︒ D .180︒14.如图7,AB 是O 的直径,弦CD AB ⊥,30C ∠=︒,23CD =.则S =阴影 ( ) A .πB .2π CD .2π315.如图8—1,M 是铁丝AD 的中点,将该铁丝首尾相接折成ABC △,且 30B ∠=︒,100C ∠=︒,如图8—2.则下列说法正确的是 ( ) A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远16.如图9,梯形ABCD 中,AB DC ∥,DE AB ⊥,CF AB ⊥,且 5AE EF FB ===,12DE =动点P 从点A 出发,沿折线AD DC CB --以每秒1个单位长的速度运动到点B 停止.设运动时间为t 秒,EPF y S =△,则y 与t 的函数图象大致是( )ABCD第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上) 17.如图10,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A 与桌面接触的概率是 .18.若1x y +=,且0x ≠,则2()2xy y x yx x x+++÷的值为 . 19.如图11,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将BMN △沿MN 翻折,得FMN △,若MF AD ∥,FN DC ∥,则B ∠=.20.如图12,一段抛物线:()(303)y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180得3C ,交x 轴于点3A ;……如此进行下去,直至得13C .若()37,P m 在第13段抛物线13C 上,则m = .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)定义新运算:对于任意实数a ,b ,都有)1(a b a a b ⊕+=-,等式右边是通常的加 法、减法及乘法运算,比如:252(25)+1⊕=⨯-2(3)1=⨯-+61=-+ 5=-.(1)求(23)⊕-的值(2)若3x ⊕的值小于13,求x 的取值范围,并在图13所示的数轴上表示出来.数学试卷 第5页(共8页) 数学试卷 第6页(共8页)22.(本小题满分10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20 名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图(如图14—1)和条形图(如图14—2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由; (2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本小题满分10分)如图15,()0,1A ,()3,2M ,()4,4N .动点P 从点A 出发,沿y 轴以每秒1个单位 长的速度向上移动,且过点P 的直线l y x b +:=-也随之移动,设移动时间为t 秒.(1)当3t =时,求l 的解析式;(2)若点M ,N 位于l 的异侧,确定t 的取值范围;(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴...上.24.(本小题满分11分)如图16,OAB △中,10OA OB ==, 80AOB ∠=︒,以点O 为圆心,6为半径的优弧MN 分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(BOP ∠是锐角),将OP 绕点O 逆时针旋转80︒得OP '. 求证:AP BP '=;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN 上,当AOQ △的面积最大时,直接写出BOQ ∠的度数.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共8页) 数学试卷 第8页(共8页)25.(本小题满分12分)某公司在固定线路上运输,拟用运营指数Q 量化考核司机的工作业绩.Q W =+100,而W 的大小与运输次数n 及平均速度(km/h)x 有关(不考虑其他因素),W 由两部分的和组成:一部分与x 的平方成正比,另一部分与x 的n 倍成正比.试行中得到了表中的数据.(1)用含x 和n 的式子表示Q ; (2)当70x =,450Q =时,求n 的值; (3)若3n =,要使Q 最大,确定x 的值; (4)设2n =,40x =,能否在n 增加)%(0m m >,同时x 减少%m 的情况下,而Q 的值仍为420,若能,求出m 的值;若不能,请说明理由.参考公式:抛物线2()0y ax bx c a ++≠=的顶点坐标是24(,)24b ac b a a--26.(本小题满分14分)一透明的敞口正方体容器ABCD A B C D ''''-装有 一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α(CBE α∠=,如图17—1所示).探究 如图17-1,液面刚好过棱CD ,并与棱BB ' 交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图17-2所示.解决问题:(1)CQ 与BE 的位置关系是 ,BQ 的长是 dm ;(2)求液体的体积:(参考算法:直棱柱体积BCQ V S AB =⨯液底面积高) (3)求α的度数.(注:3sin49cos414︒︒==,3tan374︒=)拓展 在图17—1的基础上,以棱AB 为轴将容器向左或向右旋转,但不能使液体 溢出,图17—3或图17—4是其正面示意图.若液面与棱C C '或CB 交于点P ,设PC x =,BQ y =.分别就图17—3和图17—4求y 与x 的函数关系式,并写出相应的α的范围.[温馨提示:下页还有题!]延伸 在图17—4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形 隔板(厚度忽略不计),得到图17—5,隔板高1dm NM =,BM CM =,NM BC ⊥.继续向右缓慢旋转,当60α=︒时,通过计算,判断溢出容器的液体能否达到34dm .。
2013年河北省中考数学试题含答案
2013年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷U两部分;卷I为选择题,卷U为非选择题.本试卷满分为120分,考试时间为120分钟.卷I (选择题,共42分)注意事项:1•答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2 •每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑•答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分•在每小题给出的四个选项中,只有一项是符合题目要求的)1 .气温由-1 C上升2C后是A . - 1CB . 1C C. 2CD . 3C答案:B解析:上升2C,在原温度的基础上加2C,即:—1+ 2= 1,选B。
2.截至2013年3月底,某市人口总数已达到4 230 000人•将4 230 000用科学记数法表示为7 6 5 4A . 0.423 K0 B. 4.23 氷0 C. 42.3 X0 D. 423 XI0答案:B解析:科学记数法的表示形式为aX10n的形式,其中1弓a|v 10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值V 1时,n是负数.4 230 000= 4.23 X063 .下列图形中,既是轴对称图形又是中心对称图形的是答案:C解析:A是只中心对称图形,B、D只是轴对称图形,只有C既是轴对称图形又是中心对称图形。
4 .下列等式从左到右的变形,属于因式分解的是2A . a(x—y) = ax—ayB . x +2x+1 = x(x+2)+12 3C. (x+1)(x+3) = x +4x+3 D . x —x= x(x+1)(x —1)答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A、B、C都不符合,选D。
江西省2013年中考数学试题(解析版)
转过程中,当 BE=DF 时,则∠BAE 的值是
.
问题苑:旋转。分类思想。
B
A
B
A
E
F
C
D
C
D
①
(第十四题)
②
思考归纳:解:本题应有两种情况。情况一如图 ①,此时易证 AEB AFD("SSS")
则∠BAE 的值是 15°;
情况二如图②,此时也易证 AEB AFD("SSS") ,故∠BAF=∠DAE=105°,∠BAE 的值
A.南偏西60°
B.南偏西30°
C.北偏东60°
D.北偏东30°
D
E F
问题苑:数学实践活动为素材的课题学习。 思考归纳:解:本题仍是与生活实践相关类型的题目。太阳光恍若平行光,类似于平行投
影,则可以反向延长身影,便可以确定太阳相对于人位于南偏西 60° 。 N
(第五题) S 故应选 A. ⒍某人驾车从 A 地上高速公路前往 B 地,中途服务区休息了一段时间。出发时油箱存油 40 升,到达 B 后剩余 4 升,则从出发到达 B 地油箱所剩的油 y(升)与时间 t(h)之间的函 数大致图像是( )
本题△= b2 4ac 22 4 1 (4) =0
解的 m 的值为-1.
⒒已知 (m n)2 8 , (m n)2 2 ,则 m2 n2
.
问题苑:整式的运算.化归思想. 思考归纳:解:首先认真审题,细心观察,不应忙于解答.可知两式均是完全平方,且其一是和,
其一是差.这样,做题时可以将 (m n)2 8 与 (m n)2 2 相加得到 m2 n2 5.,巧妙运用
21.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”。为了解某校九年
2013年中考参考答案
贵港市年初中毕业升学考试物理参考答案及评分标准一、单项选择题(每题3分,共30分)1、A2、B3、D4、C5、C6、D7、B8、D9、B 10、B 二、填空题(每空1分,共20分)11、1mm 2.50 12、2.5 0 13、变大 引力14、汽化 液化 15、直线传播 折射 16、静止 电磁波 17、S 左 18、0.8 80% 19、6 24 20、800 5三、作图与实验探究(共27分,第21题每个图2分,第22至24题,每空1分) 21、22、天平 弹簧测力计 物体所受的重力与物体的质量成正比 23、(1)速度 不同 (2)控制变量 木块移动的距离 24、10.8 2.7×103 不是 晶体25、(1)断开 B (2)小灯泡断路 (3)电压表并联在滑动变阻器两端 (4)0~3V 0~0.6A (5)滑动变阻器的阻值 电压表的读数 (6)0.24 10.4 0.6 四、解答题(共23分)26、解: 3102.4⨯=∆=t cm Q 吸热J/(kg ·℃)×120kg ×(60℃-10℃)=2.52×107J ………4分 27、解:(1)油箱内汽油的高度为h=18cm ,汽油的体积为V=Sh=0.3m 2×0.18m=0.054m 3 得汽油的质量为kg m m kg V m 34.38054.0/1071.0333=⨯⨯==ρ…………1分 (2)汽油对油箱底面积的压强Pa m kgN kg S mg S F P 12783.0/104.382=⨯===……1分 查表可知Ω=10x R装满油后电流表的示数为0.6A ,所以此时电路中的总电阻 Ω===206.012AVI U R 总总…………………………………………………………1分 因为Ω=Ω-Ω=-=10102000x x R R R ,R R 总此时串联和。
(3)当油用完时,此位置对应的电流'I ,x R 连入电路电阻为90ΩA VR R U I x12.0901012'0'=Ω+Ω=+=………………………………………………1分(4)当电流表I E =0.3A 时,汽车行驶了300km ,此时 Ω===403.012'''AVI U R 总总……………………………………………………1分 Ω=Ω-Ω==301040-'0''R R R x 总。
江西省2013年中考数学试题及答案解析版
江西省年中等学校招生考试数学试卷解析说明:.本卷共有七个大题,个小题,全卷满分分,考试时间分钟。
.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
一、选择题(本大题共个小题,每小题分,共分)每小题只有一个正确选项..-的倒数是()...-.±.【答案】.【考点解剖】本题考查了实数的运算性质,要知道什么是倒数.【解题思路】根据倒数的定义,求一个数的倒数,就是用除以这个数,所以-的倒数为,选.【解答过程】∵,∴选.【方法规律】根据定义直接计算.【关键词】实数倒数.下列计算正确的是()...(-)-.÷.(-)【答案】.【考点解剖】本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.【解题思路】根据法则直接计算.【解答过程】.与不是同类项,不能相加(合并),与相乘才得;.是完全平方公式的应用,结果应含有三项,这里结果只有两项,一看便知是错的,正确为;.两个单项式相除,系数与系数相除,相同的字母相除(同底数幂相除,底数不变,指数相减),正确的结果为;.考查幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变,指数相乘),正确,选.【方法规律】熟记法则,依法操作.【关键词】单项式多项式幂的运算.下列数据是年月日点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是()..和.和.和.和【答案】.【考点解剖】本题考查的是统计初步中的基本概念——中位数、众数,要知道什么是中位数、众数.【解题思路】根据中位数、众数的定义直接计算.【解答过程】根据中位数的定义——将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数;众数是指一组数据中出现次数最多的那个数,所以、、、、、的中位数是和的平均数,众数为,选.【方法规律】熟知基本概念,直接计算.【关键词】统计初步中位数众数.如图,直线-与双曲线交于,两点,则当线段的长度取最小值时,的值为().....【答案】.【考点解剖】本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】反比例函数图象既是轴对称图形又是中心对称图形,只有当、、三点共线时,才会有线段的长度最小,(当直线的表达式中的比例系数不为时,也有同样的结论).【解答过程】把原点(,)代入中,得.选..【方法规律】要求的值,必须知道、的值(即一点的坐标)由图形的对称性可直观判断出直线过原点(,)时,线段才最小,把原点的坐标代入解析式中即可求出的值.【关键词】反比例函数一次函数双曲线线段最小.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是().【答案】.【考点解剖】本题考查的投影与视图中的画已知物体的三视图,要正确掌握画三视图的有关法则.【解题思路】可用排除法,、两选项有迷惑性,是主视图,不是什么视图,少了上面的一部分,正确答案为.【解答过程】略.【方法规律】先要搞准观看的方向,三视图是正投影与平行投影的产物,反映物体的轮廓线,看得到的画成实线,遮挡部分画成虚线.【关键词】三视图坐凳.若二次涵数(≠)的图象与轴有两个交点,坐标分别为(,),(,),且<,图象上有一点 (,)在轴下方,则下列判断正确的是()..> .-≥.<< .(-)( -)<【答案】.【考点解剖】本题考查的是二次函数的性质,要求对二次函数的性质有比较深刻地理解,并能熟练地画函数草图作出分析.【解题思路】抛物线与轴有不同的两个交点,则,与矛盾,可排除选项;剩下、、不能直接作出正误判断,我们分><两种情况画出两个草图来分析(见下图).由图可知的符号不能确定(可正可负,即抛物线的开口可向上,也右向下),所以的大小就无法确定;在图中,>且有,则的值为负;在图中,<且有,则的值也为负.所以正确选项为.【解答过程】略.【方法规律】先排除错误的,剩下的再画图分析(数形结合)【关键词】二次函数结论正误判断二、填空题(本大题共小题,每小题分,共分).分解因式-.【答案】()(-).【考点解剖】本题的考点是因式分解,因式分解一般就考提取公因式法和公式法(完全平方公式和平方差公式),而十字相乘法、分组分解等方法通常是不会考的.【解题思路】直接套用公式即.【解答过程】.【方法规律】先观察式子的特点,正确选用恰当的分解方法.【关键词】平方差公式因式分解.如图△中,∠°点在边上,∥,若∠°,则∠的度数为.【答案】°.【考点解剖】本题考查了平行线的性质、邻补角、直角三角形两锐角互余等知识,题目较为简单,但有些考生很简单的计算都会出错,如犯之类的错误.【解题思路】由,可求得,最后求.【解答过程】∵∠°, ∴∠°.又∵∥,∴∠∠°,在△中,∠°,∴∠∠°,∴∠°.【方法规律】一般求角的大小要搞清楚所求角与已知角之间的等量关系,本题涉及三角形内角和定理、两直线平行,内错角相等,等量代换等知识和方法.【关键词】邻补角内错角互余互补.某单位组织人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的倍多人,求到两地的人数各是多少?设到井冈山的人数为人,到瑞金的人数为人,请列出满足题意的方程组是.【答案】.【考点解剖】本题考查的是列二元一次方程组解应用题(不要求求出方程组的解),准确找出数量之间的相等关系并能用代数式表示.【解题思路】这里有两个等量关系:井冈山人数瑞金人数,井冈山人数瑞金人数×.所以所列方程组为.【解答过程】略.【方法规律】抓住关键词,找出等量关系【关键词】列二元一次方程组.如图,矩形中,点、分别是、的中点,连接和,分别取、的中点、,连接,,,若,,则图中阴影部分的面积为.【答案】.【考点解剖】本题考查了阴影部分面积的求法,涉及矩形的中心对称性、面积割补法、矩形的面积计算公式等知识,解题思路方法多样,计算也并不复杂,若分别计算再相加,则耗时耗力,仔细观察不难发现阴影部分的面积其实就是原矩形面积的一半(即),这种“整体思想”事半功倍,所以平时要加强数学思想、方法的学习与积累.【解题思路】△与△全等,面积也相等,口与口的面积也相等,所以阴影部分的面积其实就是原矩形面积的一半.【解答过程】,即阴影部分的面积为.【方法规律】仔细观察图形特点,搞清部分与整体的关系,把不规则的图形转化为规则的来计算.【关键词】矩形的面积二次根式的运算整体思想.观察下列图形中点的个数,若按其规律再画下去,可以得到第个图形中所有的个数为(用含的代数式表示).【答案】().【考点解剖】本题考查学生的观察概括能力,发现规律,列代数式.【解题思路】找出点数的变化规律,先用具体的数字等式表示,再用含字母的式子表示.【解答过程】略.【方法规律】由图形的变化转化为数学式子的变化,加数为连续奇数,结果为加数个数的平方.【关键词】找规律连续奇数的和.若一个一元二次方程的两个根分别是△的两条直角边长,且△,请写出一个..符合题意的一元二次方程.【答案】-.【考点解剖】本题是道结论开放的题(答案不唯一),已知直角三角形的面积为(直角边长未定),要写一个两根为直角边长的一元二次方程,我们尽量写边长为整数的情况(即保证方程的根为整数),如直角边长分别为、的直角三角形的面积就是,以、为根的一元二次方程为;也可以以、为直角边长,得方程为.(求作一元二次方程,属“一元二次方程根与系数的关系”知识范畴,这种题型在以前相对考得较少,有点偏了.)【解题思路】先确定两条符合条件的边长,再以它为根求作一元二次方程.【解答过程】略.【方法规律】求作方程可以用根与系数的关系,也可由因式分解法解一元二次方程.【关键词】直角三角形根求作方程.如图,□与□的周长相等,且∠°,∠°,则∠的度数为.【答案】°.【考点解剖】本题考查了平行四边形的性质,等腰三角形的判定与性质.【解题思路】已知两个平行四边形的周长相等,且有公共边,则有,即△为等腰三角形,顶角∠∠°°°,∴∠°.【解答过程】∵□与□的周长相等,且有公共边,∴, ∠∠°°°.∴∠.【方法规律】先要明确∠的身份(为等腰三角形的底角),要求底角必须知道另一角的度数,分别将∠°转化为∠°,∠°转化为∠°,从而求得∠∠°.【关键词】平行四边形等腰三角形周长求角度.平面内有四个点、、、,其中∠°,∠°,,则满足题意的长度为整数的值可以是.【答案】,,.【考点解剖】本题主要考查学生阅读理解能力、作图能力、联想力与思维的严谨性、周密性,所涉及知识点有等腰三角形、圆的有关知识,分类讨论思想,不等式组的整数解,在运动变化中抓住不变量的探究能力.【解题思路】由∠°,画出一个顶角为°、腰长为的等腰三角形,由与互补,是的一半,点是动点想到构造圆来解决此题.【解答过程】【方法规律】构造恰当的图形是解决此类问题的关键.【关键词】圆整数值三、(本大题共小题,每小题分,共分).解不等式组并将解集在数轴上表示出来.【答案】解:由≥得≥-,由-得<,∴不等式组的解集为-≤<.解集在数轴上表示如下:【考点解剖】本题考查不等式组的解法,以及解集在数轴上的表示方法.【解题思路】分别把两个不等式解出来,再取它们解集的公共部分得到不等式组的解集,最后画出数轴表示出公共部分(不等式组的解集),注意空心点与实心点的区别.【解答过程】【方法规律】要保证运算的准确度与速度,注意细节(不要搞错符号).【关键词】不等式组数轴.如图是半圆的直径,图中,点在半圆外;图中,点在半圆内,请仅用无刻度...的直尺按要求画图.()在图中,画出△的三条高的交点;()在图中,画出△中边上的高.【答案】()如图,点就是所求作的点;()如图,为边上的高.【考点解剖】本题属创新作图题,是江西近年热点题型之一.考查考生对圆的性质的理解、读图能力,题()是要作点,题()是要作高,都是要解决直角问题,用到的知识就是“直径所对的圆周角为直角”.【解题思路】图点在圆外,要画三角形的高,就是要过点作的垂线,过点作的垂线,但题目限制了作图的工具(无刻度的直尺,只能作直线或连接线段),说明必须用所给图形本身的性质来画图(这就是创新作图的魅力所在),作高就是要构造度角,显然由圆的直径就应联想到“直径所对的圆周角为度”.设与圆的交点为, 连接,就得到边上的高;同理设与圆的交点为, 连接,就得到边上的高,则与的交点就是△的三条高的交点;题()是题()的拓展、升华,三角形的三条高相交于一点,受题()的启发,我们能够作出△的三条高的交点,再作射线与交于点,则就是所求作的边上的高.【解答过程】略.【方法规律】认真分析揣摩所给图形的信息,结合题目要求思考.【关键词】创新作图圆三角形的高四、(本大题共小题,每小题分,共分).先化简,再求值:,在,,,三个数中选一个合适的,代入求值.【答案】解:原式·.当时,原式.【考点解剖】本题考查的是分式的化简求值,涉及因式分解,约分等运算知识,要求考生具有比较娴熟的运算技能,化简后要从三个数中选一个数代入求值,又考查了考生的细心答题的态度,这个陷阱隐蔽但不刁钻,看到分式,必然要注意分式成立的条件.【解题思路】先将分式的分子分母因式分解,再将除法运算转化为乘法运算,约分后得到,可通分得,也可将化为求解.【解答过程】略.【方法规律】根据式子的特点选用恰当的解题顺序和解题方法.【关键词】分式化简求值.甲、乙、丙人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将件礼物放在一起,每人从中随机抽取一件.()下列事件是必然事件的是()..乙抽到一件礼物.乙恰好抽到自己带来的礼物.乙没有抽到自己带来的礼物.只有乙抽到自己带来的礼物()甲、乙、丙人抽到的都不是自己带来的礼物(记为事件),请列出事件的所有可能的结果,并求事件的概率.【答案】().()依题意画树状图如下:从上图可知,所有等可能结果共有种,其中第、种结果符合,∴().【考点解剖】本题为概率题,考查了对“随机事件”、“必然事件”两个概念的理解,画树形图或表格列举所有等可能结果的方法.【解题思路】()是选择题,根据必然事件的定义可知选;()三个人抽取三件礼物,恰好每人一件,所有可能结果如上图所示为种,其中只有第、种结果符合,∴();也可以用直接列举法:甲从三个礼物中抽到的礼物恰好不是自己的只有两种,要么是乙的要么是丙的,若甲抽到乙的,乙必须抽到丙的才符合题意;若甲抽到的是丙的,乙必须抽到甲的才符合题意,∴().【解答过程】略.【方法规律】要正确理解题意,画树形图列举所有可能结果,本质就是一种分类,首先要明确分类的对象,再要确定分类的标准和顺序,实现不重不漏.【关键词】必然事件概率抽取礼物五、(本大题共小题,每小题分,共分).如图,在平面直角坐标系中,反比例函数(>)的图象和矩形的第一象限,平行于轴,且,,点的坐标为(,) .()直接写出、、三点的坐标;()若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.【答案】()(,),(,),(,).()如图,矩形向下平移后得到矩形,设平移距离为,则′(,-),′(,-)∵点′,点′在的图象上,∴(-)(-),解得,∴点′(,),∴反比例函数的解析式为.【考点解剖】本题以矩形为背景考查用待定系数法求反比例函数的解析式.【解题思路】先根据矩形的对边平行且相等的性质得到、、三点的坐标,再从矩形的平移过程发现只有、两点能同时在双曲线上(这是种合情推理,不必证明),把、两点坐标代入中,得到关于、的方程组从而求得的值.【解答过程】略.【方法规律】把线段的长转化为点的坐标,在求的值的时候,由于的值等于点的横坐标与纵坐标之积,所以直接可得方程(-)(-),求出后再由坐标求,实际上也可把、两点坐标代入中,得到关于、的方程组从而直接求得的值.【关键词】矩形反比例函数待定系数法.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:.全部喝完;.喝剩约;.喝剩约一半;.开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:()参加这次会议的有多少人?在图()中所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).()若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升..?()据不完全统计,该单位每年约有此类会议次,每次会议人数约在至人之间,请用()中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(瓶)约有多少瓶.?(可使用科学计算器)【答案】()根据所给扇形统计图可知,喝剩约的人数是总人数的,∴÷,参加这次会议的总人数为人,∵×°°,∴所在扇形圆心角的度数为°,补全条形统计图如下;()根据条形统计图可得平均每人浪费矿泉水量约为:(×××××)÷÷≈毫升;()该单位每年参加此类会议的总人数约为人人,则浪费矿泉水约为×÷瓶.【考点解剖】本题考查的是统计初步知识,条形统计图与扇形统计图信息互补,文字量大,要求考生具有比较强的阅读理解能力.本题所设置的问题比较新颖,并不是象传统考试直接叫你求平均数、中位数、众数或方差,而是换一种说法,但考查的本质仍然为求加权平均数、以样本特性估计总体特性.显然这对考生的能力要求是非常高的.【解题思路】()由扇形统计图可看出类占了整个圆的一半即(遗憾的是扇形中没有用具体的数字(百分比)表示出来,这是一种很不严谨的命题失误),从条形统计图又知类共人,这样已知部分数的百分比就可以求出总人数,而类有人,已知部分数和总数可以求出类所占总数百分比,再由百分比确定所占圆的圆心角的度数;已知总人数和、、类的人数可求出类的人数为人,将条形统计图中补完整;()用总的浪费量除以总人数就得到平均每人的浪费量;()每年开次会,每次会议将有至人参加,这样折中取平均数算一年将有人参加会议,用乘以()中的结果(平均每人的浪费量),得到一年总的浪费量,再转换成瓶数即可.【解答过程】略.【方法规律】能从实际问题中抽出数学问题,从题中抽出关键词即要弄清已知什么,要求什么(不要被其它无关信息干扰).【关键词】矿泉水统计初步六、(本大题共小题,每小题分,共分).如图,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线,如图所示,量得连杆长为,雨刮杆长为,∠°.若启动一次刮雨器,雨刮杆正好扫到水平线的位置,如图所示.()求雨刮杆旋转的最大角度及、两点之间的距离;(结果精确到)()求雨刮杆扫过的最大面积.(结果保留π的整数倍)(参考数据:°,°,°,≈,可使用科学计算器)【答案】解:()雨刮杆旋转的最大角度为°.连接,过点作的垂线交的延长线于,∵∠°,∴∠°在△中,∵∠°,,∴∠,∴,∴.∴,在△中,∵,,∴≈;()∵雨刮杆旋转°得到,即△与△关于点中心对称,∴△≌△,∴△△,∴雨刮杆扫过的最大面积π(-)π.【考点解剖】本题考查的是解直角三角形的应用,以及扇形面积的求法,难点是考生缺乏生活经验,弄不懂题意(提供的实物图也不够清晰,人为造成一定的理解困难).【解题思路】将实际问题转化为数学问题,()旋转的最大角度为°;在△中,已知两边及其夹角,可求出另外两角和一边,只不过它不是直角三角形,需要转化为直角三角形来求解,由∠°想到作边上的高,得到一个含°角的△和一个非特殊角的△.在△中,已知∠°,斜边,可求出、的长,进而求得△中的长,再由勾股定理求出斜边的长;()雨刮杆扫过的最大面积就是一个半圆环的面积(以、为半径的半圆面积之差).【解答过程】略.【方法规律】将斜三角形转化为直角三角形求解.在直角三角形中,已知两边或一边一角都可求出其余的量.【关键词】刮雨器三角函数解直角三角形中心对称扇形的面积.如图,在平面直角坐标系中,以点为圆心,半径为的圆与轴交于点,点(,)是⊙外一点,连接,直线与⊙相切于点,交轴于点.()证明是⊙的切线;()求点的坐标;()求直线的解析式.【答案】()证明:依题意可知,(,)∵(,),(,),∴∥轴.∴∠°,且点在⊙上,∴是⊙的切线;()解法一:连接,,作⊥轴于点,⊥轴于点,∵切⊙于点,∴∠°,即∠∠,又∵,∠∠.∴△≌△.∴.(或证△≌△,再得到也可)设,则有,--,在△中,∵,∴(-),解得,……………………分∴-,∵··,即××××,∴.∴,由点在第四象限可知(,);解法二:连接,,作⊥轴于点,⊥轴于点,∵切⊙于点,∴∠°即∠∠.又∵,∠∠,∴△≌△.∴(或证△≌△,再得到也可)设,则有,--,在△中,∵+,∴(-),解得,………………………………分∴-,∵∥轴,∴∠∠,又∵∠∠°,∴△∽△,∴,即.∴,.由点在第四象限可知(,);()设直线的解析式为,由(,),(,),可得;解得∴直线的解析式为-.【考点解剖】本题考查了切线的判定、全等、相似、勾股定理、等面积法求边长、点的坐标、待定系数法求函数解析式等.【解题思路】()点在圆上,要证是圆的切线,只要证⊥(∠°)即可,由、两点纵坐标相等可得∥轴,所以有∠∠°得∠°;()要求点的坐标,根据坐标的意义,就是要求出点到轴、轴的距离,自然想到构造△,由又是⊙的切线,得△≌△,从而得△为等腰三角形,在△中,,,列出关于的方程可求出、的长,△的三边的长知道了,就可求出高,再求即可求得点的坐标;()已知点、点的坐标用待定系数法可求出直线的解析式.【解答过程】略.【方法规律】从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角形则用勾股定理,若是相似则用比例式求,要掌握一些求线段长的常用思路和方法.【关键词】切线点的坐标待定系数法求解析式七、(本大题共小题,第题分,第题分,共分).某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△中,,分别以和为斜边,向△的外侧作等腰直角三角形,如图所示,其中⊥于点,⊥于点,是的中点,连接和,则下列结论正确的是(填序号即可)①;②;③整个图形是轴对称图形;④∠∠.●数学思考:在任意△中,分别以和为斜边,向△的外侧..作等腰直角三角形,如图所示,是的中点,连接和,则和具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△中,仍分别以和为斜边,向△的内侧作等腰直角三角形,如图所示,是的中点,连接和,试判断△的形状.答:.【答案】解:●操作发现:①②③④●数学思考:答:,⊥,1、;如图,分别取,的中点,,连接,,,,∵是的中点,∴∥,.又∵是等腰△斜边上的中线,∴⊥且,∴.同理可证.∵∥,∴∠+∠°.同理可得∠∠°,∴∠∠.又∵⊥,∴∠°.同理可得∠°,∴∠∠∠∠,即∠∠,又,,∴△≌△(),∴.、⊥;证法一:∵∥,∴∠∠°,又∵△≌△,∴∠∠.∴∠∠∠∠°,其中∠∠∠°,∴∠°.即⊥;证法二:如图,与交于点,∵∥,∴∠∠,又∵∠∠∠,即∠∠°,∵∠∠∠,∴∠°即⊥;●类比探究答:等腰直角三解形【考点解剖】本题考查了轴对称、三角形中位线、平行四边形、直角三角形斜边上的中线等于斜边的一半、全等、角的转化等知识,能力要求很高.【解题思路】()由图形的对称性易知①、②、③都正确,④∠∠°也正确;()直觉告诉我们和是垂直且相等的关系,一般由全等证线段相等,受图△≌△的启发,应想到取中点构造全等来证,证⊥就是要证∠°,由△≌△得∠∠, △中四个角相加为°,∠可看成三个角的和,通过变形计算可得∠°.()只要结论,不要过程,在()的基础易知为等腰直角三解形.【解答过程】略.【方法规律】由特殊到一般,形变但本质不变(仍然全等)【关键词】课题学习全等开放探究.已知抛物线抛物线()(为正整数,且<<<…<)与轴的交点为()和(,),当时,第条抛物线()与轴的交点为(,)和(,),其他依此类推.()求的值及抛物线的解析式;()抛物线的顶点坐标为(,);依此类推第条抛物线的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系是;()探究下列结论:①若用表示第条抛物线被轴截得得线段长,直接写出的值,并求出;②是否存在经过点(,)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.【答案】解:()∵―(―)与轴交于点(,),∴―,∴或.由已知可知>,∴.即―(―)方法一:令代入得:―(―),∴,,∴与轴交于(,),(,)∴,方法二:∵―(―)与轴交于点(,),∴―(―),或,(舍去).∴.又∵抛物线―(―)与轴交于点(,),∴―(―),∴或,∵>,∴(舍去).∴取,抛物线―(―).()(,);(,).详解如下:∵抛物线―(―)令代入得:―(―),∴,.∴与轴交于点(,),(,).又∵抛物线―(―)与轴交于(,),∴―(―)∴或,∵>,∴(舍去),即,∴抛物线的顶点坐标为(,).由抛物线的顶点坐标为(,),的顶点坐标为(,),的顶点坐标为(,),依次类推抛物线的顶点坐标为(,).∵所有抛物线的顶点的横坐标等于纵坐标,∴顶点坐标满足的函数关系式是:;③∵(,),(,),∴.又∵―(―),令,∴―(―),。
2013年上海市中考数学试卷及答案
2013年上海市中考数学试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】.(4分)(2013•上海)下列式子中,属于最简二次根式的是()B .C.D.25.(4分)(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A5:8 B3:8 C3:5 D2:56.(4分)(2013•上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)(2013•上海)分解因式:a2﹣1=_________.8.(4分)(2013•上海)不等式组的解集是_________.9.(4分)(2013•上海)计算:=_________.11.(4分)(2013•上海)已知函数,那么=_________.12.(4分)(2013•上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为_________.13.(4分)(2013•上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_________.14.(4分)(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为_________.15.(4分)(2013•上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是_________.(只需写一个,不添加辅助线)16.(4分)(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是_________升.17.(4分)(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_________.18.(4分)(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为_________.三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)(2013•上海)计算:.20.(10分)(2013•上海)解方程组:.21.(10分)(2013•上海)已知平面直角坐标系xOy(如图),直线经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.(1)求b的值;(2)如果反比例函数(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.22.(10分)(2013•上海)某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)23.(12分)(2013•上海)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC 于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.24.(12分)(2013•上海)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x 轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.25.(14分)(2013•上海)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.2013年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】.(4分)(2013•上海)下列式子中,属于最简二次根式的是()B .C.D.式分解后再观察.解:A、=3,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=,不是最简二次根式,故此选项错误;故选:B.本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:2根据中位数和平均数的定义求解即可.解:这组数据的中位数为:(1+3)÷2=2,平均数为:=2.故选B.本题考查了中位数及平均数的定义,属于基础题,掌握基本定义是关键.5.(4分)(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A5:8 B3:8 C3:5 D2:56.(4分)(2013•上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形解:A、∵∠BDC=∠BCD,∴BD=BC,根据已知AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误;B、根据∠ABC=∠DAB和AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误;C、∵∠ADB=∠DAC,AD∥BC,∴∠ADB=∠DAC=∠DBC=∠ACB,∴OA=OD,OB=OC,∴AC=BD,∵AD∥BC,∴四边形ABCD是等腰梯形,故本选项正确;D、根据∠AOB=∠BOC,只能推出AC⊥BD,再根据AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误.故选C.本题考查了对等腰梯形的判定定理的应用,主要考查学生的推理能力和辨析能力,注意:等腰梯形的判定二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)(2013•上海)分解因式:a2﹣1=(a+1)(a﹣1).8.(4分)(2013•上海)不等式组的解集是x>1.分别求出各不等式的解集,再求出其公共解集即可.解:,由①得,x>1;由②得,x>﹣3,故此不等式组的解集为:x>1.故答案为:x>1.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原9.(4分)(2013•上海)计算:=3b.解:原式==3b,故答案为3b.本题考查了分式的乘除法,分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方10.(4分)(2013•上海)计算:2(﹣)+3=.先去括号,然后进行向量的加减即可.解:2(﹣)+3=2﹣2+3=2+.故答案为:2+.本题考查了平面向量的知识,属于基础题,掌握向量的加减运算是关键.11.(4分)(2013•上海)已知函数,那么=1.把自变量的值代入函数关系式进行计算即可得解.解:f()==1.故答案为:1.本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.12.(4分)(2013•上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.让英文单词theorem中字母e的个数除以字母的总个数即为所求的概率.解:∵英文单词theorem中,一共有7个字母,其中字母e有2个,∴任取一张,那么取到字母e的概率为.故答案为.本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.13.(4分)(2013•上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为40%.各个项目的人数的和就是总人数,然后利用报名参加甲组和丙组的人数之和除以总人数即可求解.解:总人数是:50+80+30+40=200(人),则报名参加甲组和丙组的人数之和占所有报名人数的百分比为×100%=40%.故答案是:40%.本题考查了条形统计图,正确读图,理解图形中说明的意义是关键.14.(4分)(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.定理及可求出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵AB=4,∴BD=AB=×4=2,在Rt△OBD中,∵OB=3cm,BD=2cm,∴OD===.故答案为:.本题考查的是垂径定理及勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.15.(4分)(2013•上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AC=DF.(只需写一个,不添加辅助线)∴△ABC≌△DEF(SAS),故答案为:AC=DF.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不16.(4分)(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升.出剩余的油量.解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣x+3.5.当x=240时,y=﹣×240+3.5=2升.故答案为:2本题考查了运用待定系数法求一次函数的运用,根据自变量求函数值的运用,解答时理解函数图象的含义17.(4分)(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.18.(4分)(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为.首先根据已知得出△ABC的高以及B′E的长,利用勾股定理求出BD即可.解:过点A作AQ⊥BC于点Q,∵AB=AC,BC=8,tanC=,∴=,QC=BQ=4,∴AQ=6,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过B′点作B′E⊥BC于点E,∴B′E=AQ=3,∴=,∴EC=2,设BD=x,则B′D=x,∴DE=8﹣x﹣2=6﹣x,∴x2=(6﹣x)2+32,解得:x=,直线l与边BC交于点D,那么BD的长为:.故答案为:.此题主要考查了翻折变换的性质以及勾股定理和锐角三角函数关系,根据已知表示出DE的长是解题关三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)(2013•上海)计算:.可.解:原式=2+﹣1﹣1+2=3.本题考查了实数的运算,涉及了二次根式的化简、绝对值、零指数幂、负整数指数幂等知识,属于基础20.(10分)(2013•上海)解方程组:.高次方程.先由②得x+y=0或x﹣2y=0,再把原方程组可变形为:或,然后解这两个方程组即可.解:,由②得:(x+y)(x﹣2y)=0,x+y=0或x﹣2y=0,原方程组可变形为:或,解得:,.此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是21.(10分)(2013•上海)已知平面直角坐标系xOy(如图),直线经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.(1)求b的值;(2)如果反比例函数(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.可确定出反比例解析式.解:(1)过A作AC⊥y轴,连接OA,∵A(2,t),∴AC=2,对于直线y=x+b,令x=0,得到y=b,即OB=b,∵S△AOB=OB•AC=OB=1,∴b=1;(2)由b=1,得到直线解析式为y=x+1,将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),把A(2,2)代入反比例解析式得:k=4,则反比例解析式为y=.此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性22.(10分)(2013•上海)某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)∴栏杆EF段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米).故栏杆EF段距离地面的高度为2.2米.本题考查了解直角三角形在实际中的应用,难度适中.关键是通过作辅助线,构造直角三角形,把实际问23.(12分)(2013•上海)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC 于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.菱形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线.(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=BC,进而得到EF=CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得∠ADG=∠G,再证明∠B=∠DCB,∠A=∠DCA,然后再推出∠1=∠DCB=∠B,再由∠A+∠ADG=∠1可得∠A+∠G=∠B.证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC﹣CB=CB,∴DE=EF;(2)∵四边形DBCF为平行四边形,∴DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,24.(12分)(2013•上海)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x 轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.可.解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴AE=1,EO=,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,∵MO==,∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2AB∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).此题主要考查了锐角三角函数的应用以及待定系数法求二次函数解析式和相似三角形的性质等知识,利用25.(14分)(2013•上海)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.(3)如答图2所示,关键是证明△CEQ∽△ABP,据此列方程求出x的值.解:(1)在Rt△ABP中,由勾股定理得:BP2=AP2+AB2=x2+25.∵MQ是线段BP的垂直平分线,∴BQ=PQ,BM=BP,∠BMQ=90°,∴∠MBQ+∠BQM=90°,∵∠ABP+∠MBQ=90°,∴∠ABP=∠BQM,又∵∠A=∠BMQ=90°,∴△ABP∽△MQB,∴,即,化简得:y=BP2=(x2+25).当点Q与C重合时,BQ=PQ=13,在Rt△PQD中,由勾股定理定理得:PQ2=QD2+PD2,即132=52+(13﹣x)2,解得x=1;又AP≤AD=13,∴x的取值范围为:1≤x≤13.∴y=(x2+25)(1≤x≤13).(2)当⊙P与⊙Q相外切时,如答图1所示:设切点为M,则PQ=PM+QM=AP+QC=AP+(BC﹣BQ)=x+(13﹣y)=13+x﹣y;∵PQ=BQ,∴13+x﹣y=y,即2y﹣x﹣13=0将y=(x2+25)代入上式得:(x2+25)﹣x﹣13=0,解此分式方程得:x=,经检验,x=是原方程的解且符合题意.∴x=.(3)按照题意画出图形,如答图2所示,连接QE.∵EF=EC,EF⊥PQ,EC⊥QC,∴∠1=∠2(角平分线性质).∵PQ=BQ,∴∠3=∠4,而∠1+∠2=∠3+∠4(三角形外角性质),∴∠1=∠3.又∵矩形ABCD,∴AD∥BC,∴∠3=∠5,∴∠1=∠5,又∵∠C=∠A=90°,∴△CEQ∽△ABP,∴,即,化简得:4x+5y=65,将y=(x2+25)代入上式得:4x+(x2+25)=65,解此分式方程得:x=,经检验,x=是原方程的解且符合题意,∴x=.本题是中考压轴题,难度较大.试题的难点在于:其一,所考查的知识点众多,包括相似三角形的判定与参与本试卷答题和审题的老师有:caicl;sd2011;gbl210;HJJ;sks;HLing;wdxwwzy;CJX;hdq123;未来;ZJX;星期八;lantin;zjx111;zhjh(排名不分先后)菁优网2013年12月10日。
2013中考数学试题及答案(word完整版)(1)
二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。
2013年河北省中考数学试题(解析版)
2013年河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃ 答案:B解析:上升2℃,在原温度的基础上加2℃,即:-1+2=1,选B 。
2. 截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A .0.423×107B .4.23×106C .42.3×105D .423×104答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.4 230 000=4.23×1063.下列图形中,既是轴对称图形又是中心对称图形的是答案:C解析:A 是只中心对称图形,B 、D 只是轴对称图形,只有C 既是轴对称图形又是中心对称图形。
4.下列等式从左到右的变形,属于因式分解的是A .a (x -y )=ax -ayB .x 2+2x +1=x (x +2)+1C .(x +1)(x +3)=x 2+4x +3D .x 3-x =x (x +1)(x -1) 答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A 、B 、C 都不符合,选D 。
2013年中考数学真题
2013年中考数学真题(方程、不等式和函数)一元二次方程1.(2013宁夏) 一元二次方程x x x -=-2)2(的根是( ) A. 1- B. 0 C.1和2 D. 1-和22.(2013•乌鲁木齐)若关于x 的方程式x 2﹣x+a=0有实根,则a 的值可以是( ) A . 2 B . 1 C . 0.5 D . 0.25 3.(2013•新疆)如果关于x 的一元二次方程x 2﹣4x+k=0有实数根,那么k 的取值范围是 .4.(2013•鞍山)已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 有两个实数根 5、(2013•滨州)一元二次方程2x 2﹣3x+1=0的解为 6.(2013甘肃白银)一元二次方程x 2+x ﹣2=0根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 无法确定 7.(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或18、(2013杭州)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21331x x x x 时,求出方程0422=--x x 的根 9.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x ﹣2)(x ﹣4)=0的根,则这个三角形的周长是( ) A . 11 B . 11或13 C . 13 D . 以上选项都不正确 10.(2013•天水)从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是48m 2,则原来这块木板的面积是( ) A . 100m 2 B . 64m 2 C . 121m 2 D . 144m 2 11、(2013昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( )A.100×80-100X -80X=7644B.(100-X)(80-X)+X 2=7644C.(100-X)(80-X)=7644D.100X +80X=35612.(2013•乐山)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC是等腰三角形时,求k 的值. 13、(2013青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程 . 14.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为 . 15.(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( ) A . 48(1﹣x )2=36 B . 48(1+x )2=36 C . 36(1﹣x )2=48 D . 36(1+x )2=48 16.(2013哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+x B .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款? 20.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率; (2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.21.(2013绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、重金属在不同耐性植物品种的迁移行为及其机制是不同的
()
4、矿物的粒级不同
其化学成分有较大的差异
一般地说
3、溶液各组分化学势、标准态 A B
4、理想混合物(理想溶液)特性及计算 A B C
5、非理想混合物活度及活度系数 A B C
6、稀溶液依数性(含理想混合物)及计算 A B C
7、逸度与逸度系数计算 A B
8、相数、物种数、独立组分数、自由度 A B
9、相律、独立组分与自由度计算 A B C D
10、单组分相图,克拉佩龙方程与克-克方程及计算 A B C
11、相点、物系点、杠杆规则计算 A B C
12、双液系P-X图与T-X图 A B C D
13、恒沸混合物与精馏产物分析 A B
14、液相完全不溶或部分互溶的双液系相图、水蒸气蒸馏计算 A B C
15、步冷曲线绘制与分析 A B C
16、低共熔混合物二组分凝聚体系相图分析、应用 A B C D
17、稳定化合物、不稳定化合物、固熔体体系相图分析、应用 A B C
18、分配定律与萃取计算 A B
五、化学平衡
考试内容(考点)考试目标
1、化学反应吉布斯函数变ΔrGm A B
2、化学反应等温方程式及计算 A B C D
3、化学平衡条件、标准平衡常数, A B C
4、标准生成吉布斯函数及计算 A B C
5、理想气体各类平衡常数关系及计算 A B C D
6、实际气体反应的化学平衡 A B
7、复相反应平衡常数、分解压及计算 A B C D
9、温度对化学平衡影响与计算 A B C D
10、压力、惰性气体对化学平衡的影响 A B C
六、电化学
考试内容(考点)考试目标
1、电导、电导率、摩尔电导率、电导池常数 A B
2、柯尔劳施(Kohlrausch)方程与离子独立移动定律 A B C
3、电导测量的应用与计算 A B C
4、离子迁移数、离子电导率 A B
5、电解质活度、离子平均活度、离子平均活度系数 A B C
6、离子强度I、德拜-尤格尔极限公式, A B C
7、原电池、电解池、电极命名 A
8、可逆电池、不可逆电池、化学电池、标准电池 A B
9、可逆电极分类与常用电极 A B
10、书写电极反应、电池反应,依反应设计电池 A B C
11、电池电动势与可逆电池热力学及计算 A B C D
12、标准电极电势 A B
13、电极电势能斯特方程与电池能斯特方程及计算 A B C
14、浓差电池、盐桥、液体接界电势及计算 A B C
15、电池电动势测定及其应用(pH值、平均活度系数、
标准电极电势、平衡常数等) A B C D
16、电解现象、分解电压、法拉弟电解定律及计算 A B C
17、极化现象、不同电极极化曲线、超电势 A B
18、电化学极化、浓差极化、塔菲尔公式及其计算 A B
19、电解时的电极反应 A B C D
七、化学动力学
考试内容(考点)考试目标
1、反应速率与反应速率表示及测定 A B
2、反应速率方程、动力学方程、速率常数、质量作用定律 A B
3、反应级数及反应级数确定及计算 A B C
4、简单级数反应动力学特征与动力学计算 A B C D
5、基元反应、简单反应、复杂反应、反应分子数 A B
6、简单复杂反应(对峙、平行、连串、链反应)动力学特征与
动力学计算 A B C
7、平衡近似法、稳态近似法、选取控制步骤法、速率方程推导 A B C D
8、温度对反应速率影响,活化能,Arrheius方程及计算 A B C D
9、反应速率理论简介 A B
10、液相反应和多相反应的特点 A B
11、光化学反应的特点与基本定律 A B
12、光化学动力学与量子产率计算 A B
13、催化基本术语与催化作用基本特征,选择性计算 A B
14、多相催化反应机理 A B
八、表面现象
考试内容(考点)考试目标
1、表面吉氏函数、表面功、表面张力及其影响因素 A B
2、润湿角与杨氏方程 A B C
3、弯曲液面附加压力Laplace 公式 A B
4、蒸气压与表面曲率,溶解度与颗粒大小关系 A B
5、物理吸附与化学吸附 A
6、弗罗因德利希及朗格谬尔吸附等温式及计算 A B C
7、溶液表面吸附、吉布斯表面吸附方程式及计算 A B C
8、表面活性物质性质与分类,结构与应用 A B
九、胶体化学
考试内容(考点)考试目标
1、分散体系的分类及其特征 A
2、溶胶制备、净化,胶团结构式表示 A B
3、溶胶的动力性质(布朗运动、沉降平衡) A B
4、溶胶的光学性质(丁达尔现象、光的散射) A B
5、胶团的双电层结构,电泳、电渗、ξ电势 A B C
6、憎液溶胶的聚沉 A B
7、乳状液 A B
五、试题结构(内容、题型、分数分配)
序号题型考试内容分数分配备注1选择1-9章10-15分2判断1-9章10-15分3填空1-9章20-30分4计算2-8章40-60分总分数100分
六、考试要求
本课程为闭卷考试,考生除计算器外不得携带任何纸张、教材、笔记本、作业本、参考资料、电子读物、电子器具和工具书等进入考场。
七、指定参考书
《物理化学》肖衍繁,李文斌主编,1997年第一版,天津大学出版社
《有机化学》考试大纲
一、考试对象
化学工程与工艺、环境工程、高分子材料与工程、给水排水工程、油气储运工程等专业本科插班生
二、考试目的
《有机化学》课程的考试旨在帮助学生加深对有机化化合物结构和性质的理解,提高灵活运用与综合分析的能力,扩大知识面;激发学生的学习兴趣,以提高有机化学的教学质量,为学生学习后继课程奠定基础。
同时使学生得到一般科学方法的进一步训练,培养学生严谨细致的的思维方法和实事求是的科学态度,提高观察、分析和解决问题的能力。
考试目标分为:A、了解;B、掌握;C、综合应用三个由低到高的层次。
三、考试方法和考试时间
1、考试方法:闭卷,笔试。