热动pdf

合集下载

热力发电厂考试试卷(热动)

热力发电厂考试试卷(热动)

一.名词解释:1.煤耗率汽轮发电机组每生产1kw.h的电能所需要的煤耗量2.上端差表面是加热器的端差,有时也称为上端差,通常指加热器汽侧出口疏水温度(饱和温度)与水侧出口温度之差。

3.有效汽蚀余量指在泵的吸入口处,单位重量液体所具有的超过气化压力的富余能量,即液体所具有的避免泵发生汽蚀的能量。

4.燃料利用系数热电厂外供电、热两种产品的数量之和与其输入能量之比。

5.热化发电比热化发电量占机组发电量的比值二.简答题:1.高参数机组为啥选择中间再热所谓中间再热就是将高压缸排汽送到锅炉再热器加热,提高温度以后又引回到汽轮机中做功。

采用蒸汽中间再热是为了提高发电厂的热经济性和适应大机组发展的需要。

随着初压的增加,汽轮机排气湿度增加,为了使排气湿度不超过允许限度可采用中间再热。

采用中间再热,不仅减少了汽轮机排气湿度,改善了汽轮机末级叶片的工作环境,提高了汽轮机的相对内效率。

2.除氧器自身沸腾由除氧器的热力计算中若计算出的加热蒸汽量为零或负值,说明不需要回热抽气加热,仅凭其他进入除氧器的蒸汽和疏水就可以满足将水加热到除氧器工作压力下的饱和温度,这种现象称为自生沸腾。

除氧器自生沸腾时,回热抽气管上的止回阀关闭,破坏了汽水逆向流动,排气工质损失加大,热量损失也加大,除氧效果恶化。

3.为什么采用蒸汽冷却器随着汽轮机组向高参数大容量发展,特别是再热的采用,较大的提高了中低压缸部分回热抽气的过热度,尤其是再热后第一、二级抽汽口的蒸汽过热度,使得再热后各级回热加热器内汽水换热温差增大,用损失增加,即不可逆损失加大,从而削弱了回热效果。

为此,让过热度较大的回热抽气先经过一个冷却器或冷却段降低蒸汽温度后,再进入回热加热器,这样不但减少了回热加热器内汽水换热的不可逆损失,而且还不同程度的提高了加热器出口水温,减少了加热器端差,改善了回热系统的经济性。

4.汽轮机排气压力对热经济性的影响在汽轮机初参数一定的情况下,降低汽轮机排气压力将使循环放热过程的平均温度降低,根据卡诺循环原理知,理想循环热效率将随着排气压力的降低而增加。

哈工大(函授)热能与动力专业(热动)毕业论文

哈工大(函授)热能与动力专业(热动)毕业论文

摘要大容量锅炉变工况运行研究是一个重要的课题,热力计算是变工况研究的基础。

对于大容量锅炉机组,若采用我国以前的传统计算方法,会出现计算数据和实际运行数据有较大误差的情况。

本文以辐射换热理论为基础,建立了新的大容量锅炉传热模型,并采用了新的热力计算标准对本课题选取的机组进行计算,新的分区段传热模型,将燃烧区域按实际运行时燃烧器的投运方式细分,并将冷灰斗划分为一个独立区城,计算出燃烧器区城的温度分布和沿炉高度方向上的温度分布。

辐射式过热器和屏式过热器的计算新方法更符合实际运行规律。

新传热模型的建立为大容量锅炉变工况运行提供了理论依据。

关键词:锅炉;变工况运行;传热模型AbstractV ariant operation research of the high-capacity boiler is an important subject, and the heat calculation is the foundation of variant wok condition research. If we use old calculation ways to analyze the high-capacity boiler, there will be remarkable inaccuracy between calculation results and real operational data. This paper based the radiant theory establishes a new model of the high-capacity boiler heat transfer . And the new criterion of heat calculation is used to the selected unit. The new fragment model subdivides the combustor zone across the operation and takes the furnace hopper as a independent region.So the temperature along the furnace are obtained. Radiant and platen super heater’s new method are more agree with the practice law. The paper is based on boiler knowledge and heat transfer theory and depends on practical operation data. The analysis on calculation results can provide reference for operation of the high-capacity boiler.Key words boiler variant operation heat transfer model目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题背景 (1)1.2 目的和意义 (2)1.3 国内外研究现状 (2)1.3.1 国内研究现状 (2)1.3.2 国外研究现状 (2)1.4 工作内容及安排 (3)第2章锅炉运行特性分析 (4)2.1 煤的特性及其对锅炉工作的影响 (4)2.1.1 煤质对设备的影响 (4)2.1.2 煤质对锅炉燃烧的影响 (5)2.2 燃烧特性分析 (6)2.2.1 煤粉气流稳定着火的影晌因素 (6)2.2.2 燃烧完全影响因素的分析 (6)2.2.3 优化锅炉燃烧,提高运行经济性 (7)2.3 汽温特性分析 (8)2.3.1 过热器和再热器的汽温特性 (8)2.3.2 蒸汽温度调节方法 (9)2.4 本章小结 (10)第3章大容量锅炉传热模型的改进 (11)3.1 现有模型的特点 (11)3.1.1 前苏联锅炉机组热力计算标准的主要特点 (11)3.1.2 误差原因分析 (11)3.2 传热模型的改进 (12)3.2.1 杜-卜炉内换热计算方法(新方法) (12)3.2.2 炉内换热计算标准 (12)3.2.3 屏式过热器传热计算新方法 (13)3.2.4 大屏过热器传热计算新方法 (15)3.3 分区段模型计算 (17)3.3.1 分区段计算的目的 (17)3.3.2 米多尔分区段模型 (17)3.3.3 新分区段模型的建立 (17)3.3.4 燃烧器区域温度的计算 (19)3.5 本章小结 (20)第4章炉膛传热计算 (21)4.1 炉膛传热原理 (21)4.1.1 炉膛传热过程 (21)4.1.2 火焰辐射 (21)4.1.3 炉膛辐射传热公式 (22)4.2 炉膛受热面的辐射特性 (23)4.2.1 角系数 (23)4.2.2 热有效系数 (23)4.2.3 污染系数 (24)4.3 本章小结 (24)第5章 B&WB300MW锅炉热力特性分析 (26)5.1 分区段模型分析应用 (26)5.1.1 计算结果 (26)5.1.2 计算结果分析 (27)5.2 排烟温度及排烟热损失 (28)5.3 炉膛出口烟温特性 (28)5.3.1 概述 (28)5.3.2 影响炉膛出口烟温的因素 (29)5.4 本章小结 (29)致谢 (31)参考文献 (32)第1章绪论1.1 课题背景随着国民经济在国家宏观调控下持续快速发展,我国的电力工业发展迅猛,截至2004 年五月底,全国发电装机容量已经达到四亿零六十万千瓦。

第三章热动平衡判据

第三章热动平衡判据

第三章 热动平衡判据3.27 熵判据我们在1.1初步讨论了平衡状态的概念和趋向平衡的问题。

在阐述了热力学的基本规律以后,我们现在可以对这个问题进行较为深入的分折。

熵增加原理是热力学第二定律的数学表述。

熵增加原理指出,孤立系统的熵永不减少。

孤立系统中发生的任何不可逆过程,包括趋向平衡的过程,都是朝着使系统的熵增加的方向进行的。

因此,如果—个孤立系统达到了熵为极大的状态,系统就达到了平衡状态。

我们可以利用熵函数的这个性质来判定孤立系统的平衡状态。

这称为熵判据。

要找出熵的极大,可以设想系统发生各种可能的虚变动,而比较由此引起的系统的熵的改变。

在求各种可能的虚变动所引起的熵的改变时,系统在变动中的外加约束条件(孤立系条件)需要用函数的形式表示。

孤立系统是完全隔绝的,与其它物体既没有热量的交换,也没有功的交换。

如果只有体积变化的功,孤立系条件相当于体积不变和内能不变。

因此熵判据可以表达如下。

熵判据:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。

在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求极大。

根据数学上熟知的结果当熵函数的一级微分等于零时,熵函数有极值;当熵函数的一级微分等于零,二级微分小于零时,熵函数有极大值。

如果熵函数有几个可能的极大,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。

亚稳平衡是这样一种平衡,对于无穷小的变动是稳定的,对于有限大的变动是不稳定的。

如果对于某些变动,熵函数的数值不变,这相当于中性平衡。

第四章中要讲到的复相平衡就是中性平衡的例子。

熵判据是基本的平衡判据。

它虽然只适用于孤立系统,但只要把参与变化的全部物体都包括在系统之内,原则上可以对备种热动平衡问题作出回答。

不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是更为方便的,以下两节将讨论其它判据。

3.28 自由能和自由能判据在实际问题中我们往往遇到处在等温等容条件下的系统。

热动燃烧学第5章 燃烧过程

热动燃烧学第5章 燃烧过程
(12)
或:
EV wi Qi 1 RT2 hF
n wi k0i exp (
(13)
E ) RT
式中:
直径为d的球形容器内混合气的着火条件为: 如果系统与环境的换热以导热方式进行,则有: 代入式(14)得:
1 Ed wi Qi 1 2 6 RT h
(TC T ) RTC2 / E
TC的显式形式为:

E E T E TC 2R 2R R
2
(6)
上式的正号是没有意义的,实际上TC不可能有那么高,因此:
E 4 RT (7) (1 1 ) 2R E 在Ar数很大时,4RT/E << 1,因此,可以将上式中的根号项展开成 TC
熄火过程
从强烈放热反应向无反应状况的过渡
工业燃烧设备: 要求启动迅速—着火过程可靠,可靠地点燃燃料并形成稳定 的燃烧工况
汽车的加速性是衡量轿车的指标之一
鱼雷\火箭\飞机等工况的稳定
燃烧工况一旦建立,要求在工作条件发生变化时,火焰仍能 保持稳定而不熄火
汽车上坡 电站负荷变化
如果用摩尔浓度C来表示化学反应式中的质量浓度,则化
学反应式可以表示成:
因为: C p i i
n wi k0i Y n exp(
E E ) k0i ,C Cin exp( ) RT RT
(16)


RT p n E ) 所以: wi k0i ,C ( i ) exp( RT RT p VE E 相应的着火条件为: Qi ,C k0i ,C ( C i ) n exp ( ) 1 2 hFRT ,C A B
常数

热机(热动)专业涉外工程常用词语

热机(热动)专业涉外工程常用词语

A安全阀= safety valve安全系数safety factor安装installation安装图erection drawing氨ammonia凹面female face奥氏体钢austenitic steelB板式热交换器plate type heat exchanger半径radius伴热tracing伴热管tracing pipe伴热蒸汽tracing steam磅lb = pound饱和蒸汽saturated steam保护层lagging保温thermal insulation保温保护层thermal insulation lagging保温层insulation layer保温结构insulation structure保温块insulation block爆破片rupture disc(disk)备品备件spare part备用泵stand-by pump备用热源standby heat source本体proper泵pump比例rate,ratio闭式冷却水热交换器closed cooling water system heat exchanger闭式循环冷却水(系统)CCCW = closed cycle cooling water (system)闭式冷却水泵closed cooling water pump闭式水膨胀水箱closed cooling water expansion tank壁厚wall thickness边界线BL = boundary line编号item number扁钢flat bar 扁螺母flat nut变化variation变速箱gearbox变形温度deformation temperature标高EL. = elevation标准空气standard air表计gauge,meter波纹膨胀器expansion joint补充水泵make-up water pump补充水箱make-up water tank补给水make-up water补强板reinforcement pad不锈钢SS = stainless steel不锈钢管stainless steel pipe布置图arrangement drawingC材料material材料性能material specification仓储式制粉系统intermediate pulverized coal bunker system操纵器operator槽钢channel steel插板blank插入板inserted plate柴油diesel oil柴油发电机diesel generator长度length常关normally close常开normally open常数constant厂用压缩空气(系统)SA = service compressed air (system)超临界锅炉supercritical boiler超临界汽轮机supercritical turbine超临界蒸汽supercritical steam超压overpressurization承插焊socket weld(ing)齿轮gear齿轮泵gear pump齿轮箱gearbox齿轮油gearing oil冲动式汽轮机impulse turbine冲动式叶片impulse blade冲洗水washing water冲洗水箱flush tank抽汽(系统)ES = extraction steam (system)/bled steam抽真空(系统)V = vacuum extraction (system)出口discharge,outlet出口端差final temperature difference出力output出力性能曲线output performance diagram除尘器precipitator除盐水demineralized water除氧deaeration除氧器deaerator除氧器储水箱deaerator storage tank除氧器平台deaerator platform除氧器再循环水泵deaerator recirculating pump储气罐air storage tank储水罐storage tank储油箱oil storage tank吹灰器soot blower吹灰系统soot blower system粗糙度roughness粗粉分离器mill separator,classifierD大气atm. = atmosphere大小头reducer带拉杆膨胀节tied expansion joint单轨行车overhead trolley单元制系统unit system单轴汽轮机tandem turbine淡水fresh water氮气(系统)N2 = nitrogen (system)氮气瓶nitrogen gas bottle挡板damper导流段guide passage导汽管interconnect pipe导热系数thermal conductivity factor导向支架guide support等等Etc. = et cetera(拉丁语)等级class,rating 等径三通straight tee低灰煤low-ash coal低灰熔点煤low-ash-fusion coal低挥发份煤low-volatile coal低碳钢low-carbon steel,MS = mild steel低位发热量low heating value,net calorific value低压LP = low pressure低压缸low pressure casing,low pressure cylinder低压加热器low pressure heater低压旁路low pressure bypass低压汽轮机low pressure turbine底板base plate地脚螺栓anchor bolt,foundation bolt地下管道underground piping点火ignition,kindle点火燃烧器lighting-up burner,pilot burner 点火装置ignition equipment电伴热electrical tracing电磁阀solenoid valve电动操纵器electric motor operator电动阀electrically operated valve,motor operated valve电动给水泵motor driven feedwater pump电动泵前置泵motor driven feedwater booster pump电动葫芦motor hoist电动卷扬机motor driven wrench电动执行机构electric motor actuator电加热器electric heater电梯elevator电梯井elevator shaft,lifter well垫板(安装垫平用)shim垫片gasket垫圈washer垫铁shim垫子mat吊耳ear吊环slinger吊架hanger吊架接头hanger connection蝶阀butterfly valve顶轴油泵jacking oil pump顶轴装置jacking oil device定负荷运行output-constant operation定期排污扩容器intermittent blowdown flash tank定速泵constant-speed pump定子stator定子线圈冷却水集装装置stator winding cooling water device动叶可调风机variable moving blade fan动荷载dynamic load度deg. = degree镀锌铁皮galvanized iron sheet,zinc plated iron sheet锻钢forged steel对焊butt weld(ing)对焊端butt welded end对焊法兰weld neck flange对焊连接(接头)butt welded joint对接焊BW = butt weld吨t = tonEEH油站EH oil device额定出力rated output二次风secondary air二次风风机secondary air fan二级减温器secondary desuperheater二氧化碳瓶CO2 bottleF发电机electric generator,G = generator发电机冷却水装置generator cooling water device发电机密封油装置generator seal oil unit发电机气体控制系统generator air control system乏汽dead steam阀盖bonnet,valve cover阀杆valve stem阀门valve阀门全开(工况)VWO = valve wide open (condition)阀门站valve station 阀体valve body阀座valve seat,valve base法兰flange法兰盖blind flange反冲洗管reverse flush pipe反力reaction反法兰counter-flange方垫圈square washer方圆节rectangular-circular duct joint防爆门flame-proof damper防腐anticorrosive防火fireproof,flame-proof防漏antidrip防水waterproof防雨罩rain-proof casing放空vent放气阀vent valve废水waste water分离器separator分流器diverter分配挡板distribution damper分配器dispenser,distributor,divider风机air blower,air fan,exhauster风门air damper风箱wind box扶梯ladder,stair扶手handrail辅助油泵AOP = auxiliary oil pump辅助蒸汽(系统)AS = auxiliary steam (system)辅助蒸汽auxiliary steam辅机auxiliary equipment腐蚀corrosion腐蚀裕量corrosion allowance负的negative负压蒸汽subatomospheric steam附加位移appendant displacement附件accessory,appurtenance,attachment,fittingG干空气dry air干煤dry coal干燥基dry basis干燥无灰基as dry ash-free basis干蒸汽dry steam刚性的rigid刚性吊架rigid hanger刚性支架rigid support缸体casing,cylinder钢板steel plate钢管steel pipe钢结构steel structure钢平台steel platform钢梯steel ladder高灰煤ash coal,cindery coal,dirty coal,high-ash coal高挥发份煤high-volatile coal,volatile coal 高硫煤high-sulfur coal,sulfur coal高熔点煤high-fusion-ash coal高闪点油high-flash oil高水份煤high-moisture coal高碳钢high-carbon steel高位发热量gross calorific value高位发热量high heating value高压HP = high pressure高压缸high pressure casing,high pressure cylinder高压加热器high pressure heater高压旁路high pressure bypass高压汽轮机high pressure turbine隔膜阀diaphragm valve给煤机coal feeder给水FW = feed water给水加热回热联合循环feed-water heating heat recovery combined cycle给水再循环系统feed water recirculating system工厂(车间)焊接shop weld(ing)工况condition工业水industry water工业水回收水箱industry water collected tank工业水系统industry water system工业水箱industry water tank工艺及仪表流程图P&ID = process and instrument diagram 工字梁I-beam工作荷载working load工作基AF = as fired工作温度operating temperature工作压力working pressure工作油working oil公称压力nominal pressure公称直径nominal diameter功率P = power供油泵oil supply pump固定点fix point固定支架fixed support固有水份internal moisture关close关断挡板shutoff damper管道泵inline pump管道及仪表流程图P&ID = piping and instrument diagram管道支吊架pipe support管沟piping trench灌浆grout管卡clamp,pipe-trap惯性矩moment of inertia硅酸钙calcium silicate硅酸铝纤维aluminosilicate fiber硅酸铝纤维绳aluminium silicate fiber rope 锅炉steam generator,boiler锅炉本体boiler proper锅炉给水BFW = boiler feed water锅炉给水(系统)BF = Boiler feedwater (system)锅炉给水泵BFP = boiler feedwater pump锅炉给水泵汽轮机BFPT = boiler feedwater pump turbine锅炉给水启动/备用泵BFSP = boiler feedwater startup/standby pump锅炉给水前置泵BFBP = boiler feedwater booster pump锅炉疏水放气系统boiler drain and vent system锅炉循环水泵冷却及清洗系统boiler circulating pump cooling and cleaning system锅炉最大连续蒸发量(工况)BMCR = BoilerMaximum continuous rating (condition)过滤器filter过热器superheater过热蒸汽superheated steamH哈氏可磨系数Hardgrove grindability海拔alt. = altitude海水sea water含氮量nitrogen content含硫量sulfur content含氢量hydrogen content含炭量carbon content含氧量oxygen content焓heat content焊接weld(ing)毫米mm = millimeter毫升ml = milliliter合金钢alloy steel合金钢管alloy steel pipe合金结构钢structural alloy steel荷载load褐煤bovey coal,hydrogenous coal恒力吊架constant hanger呼吸阀breather valve花蓝螺栓turnbuckle花纹钢板checker plate滑动支架sliding support化学加药系统chemical dosing system化学取样系统chemical sampling system环境温度ambient temperature环氧树脂漆epoxy resin paint换热板heat exchanger plate换热管heat exchanger tube换热面积heating surface area换热器heat exchanger灰斗ash hopper灰份ash content灰熔融温度ash-fusion temperature灰铸铁grey cast iron挥发份含量volatile content回热式汽轮机regenerative turbine 回水系统water-return system混合加热器mixing heater混凝土concrete混凝土平台concrete platform火检冷却风机flame detector cooling air fanJ基本热负荷base heating load基础foundation机械真空泵mechanical vacuum pump加强板stiffener加热器heater加热器疏水及放气(系统)Heater drain and vent (system)加热蒸汽heating steam夹层加热进汽联箱turbine middle layer heating steam header减速器reductor减速箱reducing gear减速装置reduction gear减温器attemperator,desuperheater减压阀pressure reducing valve,relief valve 检修maintenance交换器exchanger胶球rubber ball/ sponge ball胶球分配器sponge ball distributor胶球泵sponge ball cleaning pump胶球装球室sponge ball collector角阀angle valve角钢angle steel角焊fillet weld(ing)接头connector,joint节点node节点号node number节流阀throttle valve节圆直径pitch circle diameter结构structure结构钢structure steel截止阀globe valve介质medium金属石墨metal graphite金属软管metal hose经济工况ECR = economic continuous rating 净化油泵oil purifying pump净化装置conditioner,purifier净空clearance净吸入头NPSH = positive suction head径向轴承radial bearing静电除尘器ESP = electrostatic precipitator 静叶static blade,stationary blade,stator blade静叶可调风机variable static blade fan静荷载static load矩形全高单波补偿器rectangular whole height single bellow joint卷扬机hauling gear,whim,wrench绝对的 a = absoluteK卡cal. = calorie开式循环冷却水OCCW = open cycle cooling water /ACW= auxiliary cooling water开式循环冷却水滤网open cycle cooling water strainer抗拉强度tensile strength抗燃油fire-resistant oil抗弯强度bending strength抗压强度compressive strength壳管式热交换器shell and tube heat exchanger可调静叶variable stator blade可调联接节adjustive connector可磨系数grindability克g = gram空气air空气压缩机air compressor空气预热器air heater,air preheater孔板orifice孔板法兰orifice flange控制阀control valve控制油系统control oil system快闭阀quick closing valve快开阀quick opening valve快速切负荷FCB = fast cut back快速执行机构quick-acting actuator快装锅炉packaged boiler 扩容器flash vessel扩容蒸汽flash steamL拉杆tie-rod拉杆地脚螺丝匣anchor bolt of tie-rod bed plate拉应力tension stress栏杆railing冷段CR = cold reheat冷拉cold spring,cold draw冷拉无缝钢管cold-drawing seamless pipe冷凝器condenser冷却cooling冷却风cooling air冷却风机cooling air fan冷却风系统cooling air system冷却器cooler冷却水cooling water冷却水箱cooling water tank冷油器oil cooler冷再热蒸汽cold reheat steam厘米cm = centimeter离心泵centrifugal pump离心风机centrifugal fan离心过滤机centrifugal filter离心滤油机centrifugal oil separator离心式压缩机centrifugal compressor离心式叶轮泵impeller pump理论空气theoretical air力矩moment立方cubic立管吊架vertical pipe hanger立式泵vertical pump励磁端excitation side连续排污扩容器continuous blowdown flash tank,continuous blowdown flash vessel联氨hydrazine联络管connecting pipe联箱header联轴器coupling梁beam劣质煤inferior coal流程图flow diagram流量flow,flow rate流速flow velocity六角螺母hexagonal nut六角头螺栓hexagonal head bolt六角扁螺母hexagonal flat nut楼梯stairway楼梯间staircase漏(入)风量inleakage漏斗funnel漏汽leakage steam炉水boiler water炉水循环泵boiler water circulating pump炉膛furnace滤网screen滤油机oil filter铝aluminum铝板aluminum sheet螺杆screw螺杆压缩机screw compressor螺母nut螺栓bolt螺丝screw螺纹thread螺纹端threaded end螺纹法兰threaded flange螺纹连接threaded joint螺柱stud bolt落煤管coal chute落煤管过渡段transition downspoutM埋件embedded part,embedded plate煤coal煤粉dust coal,powdered coal,PC = pulverized coal煤粉仓pulverized coal bunker煤粉锅炉pulverized coal fired boiler煤粉燃烧器pulverized coal burner煤渣refuse coal煤闸门coal gate密封seal密封风sealing air密封风机sealing air fan 密封风系统seal air system密封水sealing water密封水系统sealing water system密封油泵seal oil pump密封油系统sealing oil system密封蒸汽sealing steam面积 A = area面漆finishing paint秒s = second铭牌nameplate磨煤机mill,pulverizer磨损指数wearing index母管manifoldN耐磨弯管antiwear elbow内径ID = inside (或internal)diameter能力连续工况CCR = capacity continuous rating逆止阀NRV = Non-Return Valve凝结水condensate water凝结水(系统) C = condensate (system)凝结水泵CP = condensate pump/CEP= condensate extraction pump凝结水储水箱condensate storage tank凝汽式汽轮机condensing turbine凝汽器condenser牛顿N = Newton扭矩torque扭转应力torsional stress女儿墙parapet暖泵系统pump preheating system暖风器steam air heater,vapor air heater暖风器疏水及排气系统SAH drain and vent systemO偶然荷载occasional load耦合器coupler,couplingP帕Pa = Pascal排气消音器exhaust silencer排水discharge water排水泵discharge water pump排污阀blowdown valve排污扩容器blowndown tank排污水blowdown water排渣口cinder water盘车装置turning gear旁路bypass旁路阀by-pass valve喷嘴spray nozzle膨胀expansion膨胀节expansion joint膨胀螺栓expansion bolt偏心大小头eccentric reducer贫煤blind coal平垫片flat gasket平焊flat weld(ing)平衡挡板balanced damper平衡阀equilibrium valve平台platform平行双闸板闸阀double disc parallel seat valve坡度slope坡口groove剖面图section drawing普通碳素钢general carbon steelQ漆paint,painting启动分离器start-up separator启动锅炉auxiliary boiler,start-up boiler起吊设施hoist起吊装置hoisting facility起重机crane气动操纵器pneumatic operator气动阀pneumatic operated valve气动执行机构pneumatic actuator 气缸air cylinder气缸(或液压缸)操纵的阀门cylinder operated valve气体gas气体控制站gas control station汽(轴)封蒸汽加热器G.S.C. = gland steam condenser汽包steam drum汽锤steam hammer汽动锅炉给水泵T-BFP = turbine driven boiler feedwater pump汽动锅炉给水前置泵T-BFBP = turbine driven boiler feedwater booster pump汽机本体turbine proper汽机旁路turbine bypass汽机旁路系统turbine by-pass system汽机轴封蒸汽及疏水系统turbine gland steam and drain system汽轮机turbine汽轮机轴封加热器排汽系统turbine gland steam and vent system千卡kcal. = kilocalorie千克kg = kilogram千米km = kilometer千瓦kW = kilowatt千瓦小时kW.h = kilowatt-hour强度intensity,strength强迫冷却系统forced cooling system强制循环锅炉controlled circulation boiler,forced circulation boiler桥式起重机bridge crane氢H2 = hydrogen氢气冷却器hydrogen cooler氢气瓶hydrogen gas bottle氢气干燥器hydrogen drier轻油light oil清洗装置cleaning device,purger球阀BV = ball valve球磨机ball mill屈服极限yield limit屈服应力yield stress取样阀sampling valve取样冷却器sample coolerR燃料fuel燃料仓bunker燃料消费量fuel consumption燃烧器burner,combustor燃油fuel oil燃油锅炉oil-burning boiler,oil-fired boiler 燃油系统fuel oil system热负荷heating load热耗量heat consumption热耗率heat rate热交换率heat exchange effectiveness热力系统thermodynamic system热量heat热膨胀thermal expansion热膨胀系数thermal expansion coefficient热平衡图heat balance diagram热效率thermal efficiency热应力分析thermal stress analysis热再热蒸汽hot reheat steam热轧无缝钢管hot-rolling seamless pipe热胀应力thermal expansion stress人孔manhole容积V = volume容量capacity容器container,receiver,vessel柔性分析flexibility analysis蠕变极限creep limit入口inlet,suction入口温度inlet temperature,suction temperature入口消音器inlet silencer入口压力inlet pressure润滑lubrication润滑油lube oil,lubrication oil润滑油净化装置lube oil conditioner润滑油系统lube oil system润滑油冷却器lube oil cooler润滑油输送泵lube oil transfer pump润滑油贮油箱lube oil storage tankS 三通tee三通阀three-way valve闪点flash point熵S = entropy设备equipment设计煤种design coal设计温度design temperature设计压力design pressure摄氏(温度) C = centigrade伸缩式吹灰器retractable type soot blower升l = liter升杆式(明杆)rising stem升降式止回阀lift check valve生活用水domestic water生水raw water生水泵raw water pump生水加热器raw water heater省煤器economizer省煤器接口economizer junction事故油泵emergency oil pump事故放油emergency discharge oil收到基as received basis收球网rubber ball collection net手动阀hand-operated valve,manually operated valve手轮hand wheel疏放水drain water疏水泵drain pump疏水扩容器drain flash tank疏水冷却器drain cooler疏水箱drain tank输入功率power input甩负荷试验load rejection test双进双出磨煤机double-ended ball mill双拉杆吊架double rods hanger双头螺柱stud水封阀water sealed valve水过滤器water filter,water strainer水环式真空泵liquid ring vacuum pump水冷壁water wall水室真空泵water side vacuum pump水箱water tank水压试验hydraulic testing顺列布置in-line position送风机 F.D.F=forced draft fan锁气器air locker,flapperT弹簧spring弹簧垫圈spring washer弹簧吊架spring hanger弹簧恒力吊架spring constant hanger弹簧恒力托架resting type spring constant support弹簧支架spring support弹簧组件spring reservoir弹性极限elastic limit弹性模量modulus of elasticity碳钢 c.s. = carbon steel碳钢管carbon steel pipe特性characteristic,specialty调节挡板adjustable damper调节阀control valve调速汽门governing valve调速油泵speed regulation pump调温风temperating air调压孔板orifice plate调整adjustment跳闸trip停用的off-duty通道passage通风draft同心大小头concentric reducer凸面male faceUU形耳子clevisU形耳子U-boltU形弯管U bendV v形坡口v grooveWW火焰锅炉W-flame boiler瓦W = watt外径OD = outside diameter弯管bend弯曲力矩bending moment弯曲应力bending stress弯头elbow位移displacement温度T = temperature稳压水箱head tank污水坑(井)sump pit污油dirty oil无缝钢管seamless steel pipe无损检验non-destructive testing无损探伤NDT = non-destructive testing无烟煤anthracite coal,hard coal,smokeless coal无油空气压缩机oilfree air compressorX系数 c = coefficient,factor系统system细粉分离器fine pulverized coal separator下降管downcomer限位支架limit support详图detail drawing消防系统fire fighting system消声器silencer小车trolley小旁路individual bypass效率eff. = efficiency校核煤种check coal斜垫圈slant washer斜三通lateral泄压阀relief valve卸油泵oil unload pump行车crane型钢shaped steel性能曲线performance diagram许用应力allowable stress蓄能器accumulator悬臂jib悬臂架cantilever support旋启式止回阀swing check valve旋转挡板swinging damper循环流化床燃烧锅炉circulating fluidized bed combustion (CFBC)boiler循环水(系统)CW = circulating water system 循环水泵circulating water pump循环坑排污泵blowdown pump in circulating water pitYY型滤网Y-type strainerY型三通Y-type tee压力P = pressure压力控制阀PCV = pressure control valve压力损失pressure loss压头H = head亚临界锅炉subcritical boiler亚临界汽轮机subcritical turbine烟囱chimney,stack烟道flue gas duct烟风系统air and gas system烟煤bituminous coal烟气flue gas烟气挡板flue gas damper烟气脱硫装置flue gas desulfurization system 烟气再循环风机flue gas recirculating fan烟气再循环系统gas-circulating system岩棉rock wool扬程head氧气瓶oxygen gas bottle摇摆式吹灰器swing type soot blower叶轮impeller液压执行机构hydraulic actuator一次风primary air一次风机PAF = primary air fan仪用压缩空气(系统)IA = instrument compressed air (system)异径管reducer 异径管接头reducing coupling异径三通reducing tee翼缘(指型钢的缘)wing溢流overflow引风机IDF = induced draft fan应力stress应用基as fired basis英尺 f = foot英寸in. = inch油oil油净化系统oil conditioning system油净化装置oil conditioner,oil purifier 油漆painting油燃烧器oil burner油箱(罐)oil tank有缝钢管seamed steel pipe右螺纹right hand thread右旋风机right hand rotating fan预埋件embedded part,embedded plate 预热空气preheated air预热器preheater裕量allowance,margin原煤raw coal原煤仓raw coal bunker圆钢round steel,steel rodZ杂项misc = miscellaneous杂质admixture,impurity再热RH = reheat再热联合汽门comprehensive reheat vale 再热器reheater再热蒸汽reheat steam再热蒸汽系统reheat steam system再热主汽门reheat stop valve再循环烟气recalculating gas在关闭状态下锁定locked closed在开启状态下锁定locked open闸阀gate valve兆M = mega兆帕(压强单位)MPa = Megapascal 兆瓦MW = megawatt真空vacuum真空泵vacuum pump真空除氧vacuum deaeration真空破坏阀vacuum breaker valve蒸汽steam蒸汽伴热steam tracing蒸汽过滤器steam strainer支架support矩形织物补偿器fabric expansion joint执行机构actuating mechanism,actuator直吹式制粉系统direct-firing system直流锅炉once-through boiler止回阀check valve指示器indicator制粉系统pulverized coal system制冷装置refrigerator中联门intercept control valve中速磨middle speed mill中心线CL = center line中压medium pressure,IP = intermediate pressure中压缸intermediate pressure casing,intermediate pressure cylinder重量Wt = weight重油black oil,heavy oil/HFO= heavy fuel oil 轴shaft轴测图isometric drawing轴承bearing轴封风机gland air fan轴封加热器gland steam condenser轴封蒸汽gland steam轴流风机aerofoil fan,axial fan轴向位移型膨胀节axial movement type expansion joint轴向应力axial stress主汽门MSV = main stop valve主油泵main oil pump主油箱main oil tank主蒸汽MS = main steam主蒸汽,再热及旁路(系统)MS = main,reheat and by-pass steam (system)主蒸汽系统main steam system注油器oil ejector铸钢 c.s. = cast steel 铸件casting铸铁 C.I = cast iron铸铁管cast iron pipe铸造阀cast valve专用工具special tool转子rotor自密封self-sealing阻尼器snubber最大连续蒸发量(工况)MCR = Maximum continuous rating (condition)左螺纹left hand thread左旋风机left hand rotating fan坐标系coordinate system其它45°斜三通45°lateral90°弯管quarter bend。

动载荷+交变应力(2011)热动

动载荷+交变应力(2011)热动

学问题来处理,其中惯性力的方向与加速度方向相反,惯
性力的大小等于加速度与质量的乘积。 动静法。
动载荷/惯性载荷作用下的动应力和动变形
一、直线运动构件的动应力
例1 一等直杆,横截面面积为A ,长为L ,重度 ,[] , 以加速度a上升,试校核该杆的强度。
解:①受力分析,
FNd (q j qg ) x A x
如果没有工具,如何徒手把一根较粗铁丝折断?
说明构件在静载荷和随时间周期变化载荷的作用 下,失效方式不完全相同。
交变应力
第一节
交变应力与疲劳失效
交变应力/交变应力与疲劳失效
一、概念
构件内一点处随时间作周期性变化的应力称为交变应力。

t
T 材料在交变应力下的失效(破坏),习惯上称为疲劳破坏。 在交变应力下构件抵抗疲劳失效的能力,称为疲劳强度。
0
0

K
r
若循环应力为切应力,将上述公式中的正应力换为切应力即可。
r
0

K
r
对称循环下 ,r = -1 。上述各系数均可查表而得。
交变应力
第七节
提高构件疲劳强度的措施
交变应力/提高构件疲劳强度的措施
1、减缓应力集中;
2、提高表面加工质量;
3、增加表面强度;
交变应力
复习 §12 作业 P269/思 12-1至6、8 P269/习 12-1、2
交变应力/交变应力与疲劳失效
二、疲劳破坏的特点
1、失效时应力低于材料强度极限 b ,甚至低于屈服点 s ; 2、断裂发生要经过一定的循环次数; 3、失效时均呈脆断,无明显塑性变形; 4、“断口”分区明显。(疲劳源、光滑区和粗糙区)

热动说[精彩]

热动说[精彩]

热是学生从小就接触的东西,热可以从高温处“流”向低温处,好似水从高处流向低处,学生很可能从类似的生活经验中重犯热质说的错误,把热看作是一种可以流动的物质。

为了克服学生这种感性认识上的错误,形成正确的概念,教师向学生讲讲人类探索热本质的历程比直接向学生灌输正确的概念有效得多。

另外,通过这一段生动历史的介绍,还有助于学生正确对待科学发展中的错误思想和假说,有助于学生了解科学发展的艰难曲折性,但又不乏戏剧性;有助于打破学生对科学家的迷信感,树立他们献身科学的信心等。

为了达到上述目的,揭示这一段历史对于克服学生感性认识上的错误、形成正确的概念具有突出的教育作用。

一、对热质说的挑战十七、十八世纪,随着计温学和量热学的发展,使人类对现象的研究走上定量和精密实验的阶段。

对于热是什么的问题,当时存在两大观点:一是以培根(Francis Bacon)、胡克(Robert Hooke)、笛卡尔(RencDescartes)为代表的热动说。

认为热是物体内部微小粒子的机械运动;一是以布莱克(Joseph Black)、伽桑狄(Pierre Gassendi)等为代表的热质说,认为热是一种可流动的特殊物质(热流体)。

热质粒子之间相互排斥,但却受到普通物质粒子的吸引,而且不同的普通物质对热流体的吸引力不同,由于热质说非常容易解释当时发现的热现象:热的传寻、对流和辐射,气体的扩散,物态变比,比热和潜热,化学反应热等,甚至对摩擦生热现象也能给出尽管是牵强的解释。

也由于当时的热动说缺乏科学实验依据,经过了激烈的争论之后,到18世纪80年代,热质说统领了热学研究的各个领域,当时几乎整个欧洲都相信热质说。

就在热质说的拥护者们张开双臂迎接热质说鼎盛时期的到来的时候,历史却向他们露出了自己戏剧性的面孔。

18世纪末和19世纪初的科学研究,伴随着历史世纪的交替,使热质说遇到了麻烦,并且重又引发起一场热动说与热质说的争论,最终导致热动说与热质说在科学界的地位的交替。

热动中英文对照翻译

热动中英文对照翻译

外文文献:Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plantsAbstractCo-firing offers a near-term solution for reducing CO2 emissions from conventional fossil fuel power plants. Viable alternatives to long-term CO2 reduction technologies such as CO2 sequestration, oxy-firing and carbon loop combustion are being discussed, but all of them remain in the early to mid stages of development. Co-firing, on the other hand, is a well-proven technology and is in regular use though does not eliminate CO2 emissions entirely. An incremental gain in CO2 reduction can be achieved by immediate implementation of biomass co-firing in nearly all coal-fired power plants with minimum modifications and moderate investment, making co-firing a near-term solution for the greenhouse gas emission problem. If a majority of coal-fired boilers operating around the world adopt co-firing systems, the total reduction in CO2 emissions would be substantial. It is the most efficient means of power generation from biomass, and it thus offers CO2 avoidance cost lower than that for CO2 sequestration from existing power plants. The present analysis examines several co-firing options including a novel option external (indirect) firing using combustion or gasification in an existing coal or oil fired plant. Capital and operating costs of such external units are calculated to determine the return on investment. Two of these indirect co-firing options are analyzed along with the option of direct co-firing of biomass in pulverizing mills to compare their operational merits and cost advantages with the gasification option.1. IntroductionThe evidence of the effects of anthropogenic emission on global climate is overwhelming [1]. The threat of increasing global temperatures has subjected the use of fossil fuels to increasing scrutiny in terms of greenhouse gas (GHG) and pollutant emissions. The issue of global warming needs to be addressed on an urgent basis to avoid catastrophic consequences for humanity as a whole.Socolow and Pacala [2] introduced the wedge concept of reducing CO2 emissions through several initiatives involving existing technologies, instead of a single future technology or action that may take longer to develop and stronger willpower to implement. A wedge represents a carbon-cutting strategy that has the potential to grow from zero today to avoiding 1 billion tons of carbon emissions per year by 2055. It has been estimated [3] that at least 15 strategies are currently available that, with scaling up, could represent a wedge of emissions reduction.Although a number of emission reduction options are available to the industry, many of them still face financial penalties for immediate implementation. Some measures are very site/location specific while others are still in an early stage of development. Carbon dioxide sequestration or zero emission power plants represent the future of a CO2 emissions-free power sector, but they will take years to come to the mainstream market. The cost of CO2 capture and sequestration is in the range of 40e60 US$/ton of CO2, depending on the type of plant and where the CO2 is stored [4,5]. This is a significant economic burden on the industry, and could potentially escalate the cost of electricity produced by as much as 60%.Canada has vast amounts of biomass in its millions of hectares of managed forests, most of which remain untapped for energy purposes. Currently, large quantities of the residues from the wood products industry are sent to landfill or are incinerated [6]. In the agricultural sector, grain crops produce an estimated 32 million tons of straw residue per year. Allowing for a straw residue of 85% remaining in the fields to maintain soil fertility, 5 million tons would still be available for energy use. Due to an increase in land productivity, significant areas of land in Canada, which were earlier farmed, are no longer farmed. These lands could be planted withfast-growing energy crops, like switch-grass offering potentially large quantities of biomass for energy production [6].Living biomass plants absorb CO2 from the atmosphere. So, its combustion/gasification for energy production is considered carbon neutral. Thus if a certain amount of biomass is fired in an existing fossil (coal, coke or oil) fuel fired plant generating some energy, the plant could reduce firing the corresponding amountof fossil fuel in it. Thus, a power plant with integrated biomass co-firing has a lower net CO2 contribution over conventional coal-fired plants.Biomass co-firing is one technology that can be implemented immediately in nearly all coal-fired power plants in a relatively short period of time and without the need for huge investments. It has thus evolved to be a near-term alternative to reducing the environmental impact of electricity generation from coal. Biomass co-firing offers the least cost among the several technologies/ options available for greenhouse gas reduction [7]. Principally, co-firing operations are not implemented to save energy but to reduce cost, and greenhouse gas emissions (in some cases). In a typical co-firing plant, the boiler energy usage will be the same as it is operated at the same steam load conditions (for heating or power generation), with the same heat input as that in the existing coal-fired plant. The primary savings from co-firing result from reduced fuel costs when the cost of biomass fuel is lower than that of fossil fuel, and avoiding landfill tipping fees or other costs that would otherwise be required to dispose of unwanted biomass. Biomass fuel at prices 20% or more below the coal prices would usually provide the cost savings needed [8].2. Co-firing optionsBiomass co-firing has been successfully demonstrated in over 150 installations worldwide for a combination of fuels and boiler types [9]. The co-firing technologies employed in these units may be broadly classified under three types:i. Direct co-firing,ii. indirect co-firing, andiii. gasification co-firing.In all three options, the use of biomass displaces an equivalent amount of coal (on an energy basis), and hence results in the direct reduction of CO2 and NOx emissions to the atmosphere. The selection of the appropriate co-firing option depends on a number of fuel and site specific factors. The objective of this analysis is to determine and compare the economics of the different co-firing options. Brief descriptions of the three co-firing options are presented here.2.1. Direct co-firingDirect co-firing involves feeding biomass into coal going into the mills, that pulverize the biomass along with coal in the same mill. Sometime separate mills may be used or biomass is injected directly into the boiler furnace through the coal burners, or in a separate system. The level of integration into the existing plant depends principally on the biomass fuel characteristics.Four different options are available to incorporate biomass cofiring in pulverized coal power plants [10]. In the first option, the pre-processed biomass is mixed with coal upstream of the existing coal feeders. The fuel mixture is fed into the existing coal mills that pulverize coal and biomass together, and distribute it across the existing coal burners, based on the required co-firing rate. This is the simplest option, involving the lowest least capital costs, but has a highest risk of interference with the coal firing capability of the boiler unit. Alkali or other agglomeration/corrosion-causing agents in the biomass can build-up on heating surfaces of the boiler reducing output and operational time [11]. Furthermore, different combustion characteristics of coal and biomass may affect the stability and heat transfer characteristics of the flame [12]. Thus, this direct co-firing option is applicable to a limited range of biomass types and at very low biomass-to-coal co-firing ratios.The second option involves separate handling, metering, and pulverization of the biomass, but injection of the pulverized biomass into the existing pulverized fuel pipe-work upstream of the burners or at the burners. This option requires only modifications external to the boiler. One disadvantage would be the requirement of additional equipment around the boiler, which may already be congested. It may also be difficult to control and to maintain the burner operating characteristics over the normal boiler load curve.The third option involves the separate handling and pulverizationof the biomass fuel with combustion through a number of burners located in the lower furnace, dedicated to the burning of the biomass alone. This demands a highest capital cost, but involves the least risk to normal boiler operation as the burners are specifically designed for biomass burning and would not interfere with the coalburners.The final option involves the use of biomass as a reburn fuel for NOx emission control. This option involves separate biomass handling and pulverization, with installation of separate biomass fired burners at the exit of the furnace. As with the previous option, the capital cost is high, but risk to boiler operation is minimal.2.2. Indirect or external co-firingIndirect co-firing involves the installation of a completely separate biomass boiler to produce low-grade steam for utilization in the coal-fired power plant prior to being upgraded, resulting in higher conversion efficiencies. An example of this option is the Avedore Unit 2 project in Copenhagen, Denmark. In Canada, Greenfield Research Inc. hasdeveloped a similarCFB boiler design thatutilizes a number ofunits of the existingpower plant systemslike ID fan etc. toreduce the capital cost.In this system, asubcompact circulatingfluidized bed boiler isdesigned specifically tohave a piggy-back rideon an existing powerplant boiler. Since it isnot a stand-alone boilerit does not need manyof the equipment or component of a separate boiler. This unit releases flue gas at relatively high temperature and joins the existing flow stream of the parent coal-fired boiler after air heater. Thus, the flue gas from the co-firing unit does not come incontact with any heating elements of the existing boiler, thus avoiding the biomass related fouling or corrosion problem, which is the largest concern of biomass cofiring.This boiler is totally independent of the parent unit, and as such, any outage in the co-firing unit does not affect the generation of the parent plant. Thus this indirect combustion-based option offers high reliability. The piggy-back boiler produces low pressure steam feeding into the process steam header of the power plant. Fig. 1 shows the photograph of one such unit built by Greenfield Research Inc., for a 220MWe Pulverized coal-fired boiler in India. In this specific case, the piggy-back boiler fired waste fuel from the parent boiler as that was the need of the plant. Fig.12.3. Gasification co-firingCo-firing through gasification involves the gasification of solid biomass and combustion of the product fuel gas in the furnace of the coal-fired boiler. This approach offers a high degree of fuel flexibility. Since the gas can be injected directly into the furnace for burning, the plant can avoid expensive flue gas cleaning as one would need for syngas or fuel gas for diesel engines. As the enthalpy of the product gas is retained, this results in a very high energy conversion efficiency. If the biomass contains highly corrosive elements like chlorine, alkali etc., a certain amount of gas cleaning may be needed prior to its combustion in the furnace.Another important benefit of injection of gas in the furnace is that it serves as a gas-over firing designed to minimize NOx.Although less popular, indirect or external and gasification cofiring options have certain advantages, such as the possibility to use a wide range of fuels and easy removal of ash. Despite the significantly higher capital investment requirement, these advantages make these two options more attractive to utility companies in some cases.3. Current status of biomass co-firingThere are a number of co-firing installations worldwide, with approximately a hundred in Europe, 40 in the US and the remainder in Australia and Asia (Fig. 2) [9,13]. Most of these installations employ direct co-firing, mainly because it is the simplest and least cost option. Examples include the 635 MWe EPON Project ofGelderland Power Station in Holland which uses direct co-firing with waste wood and the 150 MWe Studstrup Power Plant, Unit 1, near Aarhus, Denmark co-firing straw.Gasification co-firing is also an attractive option. Three examples of the plants operating on this type of co-firing are: the 137 MWe Zeltweg Power Plant in Styria in Austria, the AMERGAS biomass gasification project at the Amer Power Plant in Geertruidenberg, Holland, and the Kymiarvi power station at Lathi in Finland.The majority of biomass co-firing installations is operated at biomass: coal co-firing ratios of less than 10%, on a heat input basis. The successful operation of these plants shows that co-firing at low ratios does not pose any threat or major problems to the boiler operation. For higher co-firing ratios, however, it might be necessary to use an indirect co-firing method.中文译文:生物质混烧方案的减排和燃煤发电厂的发电成本混烧提供了减少传统化石燃料发电厂二氧化碳排放量的短期解决方案。

传热学七(PDF)

传热学七(PDF)
穿透现象。根据能量守恒有
Q = Qα + Qρ + Qτ Qα + Qρ + Qτ = 1 Q QQ
α + ρ + τ = 1
α-吸收率,-ρ 反射率,-τ穿透率(透射率)
在一般情况下,对于固体和液体(强吸收性介质)而言τ很小 可以忽略不计, ρ+α=1
原因:因分子间排列非常紧密,当热辐射能投射到固体表 表面时,马上被相邻的分子所吸收
[例]:教材P244例7-1 解:……由此例可见,黑体或实际物体当T升高时λm减小, 可见光及可见光中短波增加。
3.斯蒂芬-玻尔兹曼(Stefan-Boltzmann)定律
∫ = Eb

= 0 Ebλ d λ
σbT 4
σ b = 5.67 ×10−8 斯蒂芬-波尔兹曼常数,W (m2 ⋅ K4 )
∆Eb
=λ2 λ1
Ebλ

定义:
F = b(λ1 −λ2 )
∆= Eb Eb
∫ λ2 λ1
Ebλ d λ
=

∫0 Ebλ d λ
∫ 1
σT 4
λ E d λ2
λ1

(∫ ∫ ) =1 σT 4
λ λ λ2
0
Ebλ d

λ1 0
Ebλ
d
= F − F b(0−λ2 )
b(0−λ1 )
Fb(0-λ)为能量份额,意即波长从0至λ的黑体辐射占同温度下黑 体辐射力的百分数。而且:
L(θ ) = dφ (θ ) dA cosθ d Ω
n θ dΩ
dAcosθ dA
3). Lambert定律 表述为:黑体的定向辐射强度与方向无关。 即:

热动中英文对照

热动中英文对照

工程热力学中英文对照词汇表AAbsolute entropy绝对熵Absolute pressure绝对压力Absolute temperature绝对温度Absolute zero of temperature绝对零度Adiabatic enthalpy drop绝热焓降Adiabatic exponent绝热指数Adiabatic flame temperature绝热燃烧温度Adiabatic process绝热过程Adiabatic system绝热系Anergy 火无,无用能Atmosphere大气Available energy有用能A vogadro’s hypothesis阿伏伽德罗假说BBinary vapour cycle两气循环B oltzman’s constant玻尔兹曼常数CCarnot cycle卡诺循环Carnot, N.L.S. 卡诺C arnot’s theorem卡诺定理Celsius temperature scale摄氏温标Characteristic function特性函数Chemical equilibrium化学平衡Chemical equilibrium constant化学平衡常数Chemical potential化学势Chemical thermodynamics化学热力学Clapeyron equation克拉贝龙方程Classical thermodynamics经典热力学Clausius-Clapeyron equation克劳修斯-克拉贝龙方程Clausius, R. 克劳修斯1Closed system闭口系Coefficient of performance of refrigerator制冷系数Coefficient of thermal expansion热膨胀系数Coefficient of utilization of thermal energy热能利用系数Combined cycle联合循环Compressibility factor压缩因子Compression ratio of cycle循环压缩比Compression work压缩功Condition of phase equilibrium相平衡条件Condition of stability稳定性条件Conservation of energy能量守恒Conservation of mass质量守恒Control mass控制质量Control surface控制面Control volume控制容积Continuty equation连续性方程Covergent-divergent nozzle缩放喷管Covergent nozzle渐缩喷管Criteria for equilibrium平衡判据Critical point临界点Critical state临界状态Critical flow临界流动Critical pressure ratio临界压力比Cycle循环DDegradation of energy能量贬值Density密度Diesel cycle笛塞尔循环Divergent nozzle渐扩喷管Diffuser扩压管Dissipation of energy能量耗散D olton’s law of partial pressare道尔顿分压定律Dry saturated steam干饱和蒸汽Dual cycle混合加热循环2EEffect of dissipation耗散效应Energy能量Engineering atmosphere工程大气压力Engineering thermodynamics工程热力学Enthalpy焓Enthalpy drop焓降Entropy熵Entropy balance equation熵方程Equation of energy for steady flow稳定流动能量方程Equation of state状态方程Equation of state in reduced form对比态方程Equilibrium平衡Equilibrium state平衡状态Ericsson cycle埃尔逊循环Exergy火用Expansion work膨胀功Extensive quantity尺度量FFahrenheit temperature scale华氏温标First law of thermodynamics热力学第一定律Flow work流动功Flux of entropy熵流Free energy自由能Free enthalpy自由焓Free expansion自由膨胀Friction摩擦Force力GGas气体Gas constant气体常数Gauge pressure表压力3Generalized compressibility chart通用压缩因子图Generalized work广义功Generation of entropy熵产G ibbs’ function吉布斯函数G ibbs’ J.W.吉布斯G ibbs’ phase rule吉布斯相律Gravitational potential重力位能HHeat热Heat of combustion燃烧热Heat (enthalpy) of formation生成热(生成焓)Heat of reaction反应热Heat pump热泵Heat source热源Helmhotz function亥姆霍兹函数H ess’ law赫斯定律Humidity湿度IIdeal gas equation of state理想气体状态方程Inequality of Clausius克劳修斯不等式Intensive quantity强度量Internal combustion engine内燃机Internal energy热力学能(内能)Inversion curve转变曲线Inversion temperature转变温度Irreversible cycle不可逆循环Irreversible process不可逆过程Isentropic compressibility绝热压缩系数Isentropic process定熵过程Isobaric process定压过程Isolated system孤立系Isometric process定容过程Isothermal compressibility定温压缩系数4Isothermal process定温过程JJoule, J.P. 焦耳Joule-Thomon effect焦—汤效应KKelvin, L. (Thomson, W.) 开尔文Kinetic energy动能K irchhoff’s law基尔霍夫定律LLatent heat潜热Law of corresponding states对应态定律Law of partial volume分容积定律L e Chatelier’s principle吕—查德里原理Local velocity of sound当地声速Lost available energy有用能损失MMach number马赫数Mass flow rate质量流量Maximum work from chemical reaction反应最大功Maxwell, J.C. 麦克斯韦Maxwell relations麦克斯韦关系M ayer’s formula迈耶公式Mechanical equilibrium力学平衡Metastable equilibrium亚稳定平衡Mixture of gases混合气体Moist air湿空气Moisture content含湿量Molar specific heat摩尔比热NNernst heat theorem奈斯特热定理5Nonequilibrium-thermodynamics非平衡热力学Nozzle喷管OOne dimensional flow一维流动Open system开口系Otto cycle奥托循环PParameter of state状态参数Perfect gas理想气体Perpetual motion engine永动机Perpetual motion engine of the second kind第二类永动机Phase相Polytropic process 多变过程Potential energy位能Power cycle动力循环Pressure压力Principle of increase of entropy熵增原理Process过程Psychrometer chart湿空气焓—湿图Push work推挤功Pure substance纯物质QQuantity of refrigeration制冷量Quality of vapor-liquid mixture, Dryness干度Quasi-equilibrium process准平衡过程Quasi-static process准静态过程RRankine cycle朗肯循环Ratio of pressure of cycle循环增压比Real gas实际气体Reduced parameter对比参数6Refrigerant制冷剂Refrigeration cycle制冷循环Refrigerator制冷机Regenerative cycle回热循环Reheated cycle再热循环Relative humidity相对湿度Revesed Carnot cycle逆卡诺循环Reversed cycle逆循环Reversible cycle可逆循环Reversible process可逆过程SSaturated air饱和空气Saturation pressure饱和压力Saturation state饱和状态Saturation tempperature饱和温度Saturated vapor饱和蒸汽Saturated water饱和水Second law of thermodynamics热力学第二定律Simple compressible system简单可压缩系Sink冷源Specific heat比热容Specific heat at constant pressure定压比热容Specific heat at constant volume定容比热容Specific humidity绝对湿度Specific volume比体积Stable equilibrium稳定平衡Stagnation enthalpy滞止焓Standard atmosphere标准大气压力Standard enthalpy of formation标准生成焓Standard state标准状况State状态State postulate状态公理Statistical thermodynamics统计热力学7Steady flow稳定流动Steam水蒸汽Subsonic亚声速Superheated steam过热蒸汽Supersonic超声速TTemperature温度Temperature of dew-point露点温度Temperature scale温度标尺Technical work技术功Theoretical flame temperature理论燃烧温度Thermal coefficient热系数Thermal efficiency热效率Thermal equilibrium热平衡Thermodynamic Probability热力学概率Thermodynamics热力学Thermodynamic system热力学系统Thermodynamic temperature scale热力学温标Third law of thermodynamics热力学第三定律Throttling节流Triple point 三相点UUnavailable energy无用能Universal gas constant通用气体常数VVacuum真空度V an der Waals’ equation范德瓦尔斯方程Velocity of sound声速Virial equation of state维里状态方程WWet-Bulb temperature湿球温度Wet saturated steam湿饱和蒸汽8Work功Working substance 工质ZZeroth law of thermodynamics热力学第零定律制冷专业英语基本术语制冷refrigeration蒸发制冷evaporative refrigeration沙漠袋desert bag制冷机refrigerating machine制冷机械refrigerating machinery制冷工程refrigeration engineering制冷工程承包商refrigeration contractor制冷工作者refrigerationist制冷工程师refrigeration engineer制冷技术员refrigeration technician制冷技师refrigeration technician制冷技工refrigeration mechanic冷藏工人icer制冷安装技工refrigeration installation mechanic制冷维修技工refrigeration serviceman冷藏链cold chain制冷与空调维修店refrigeration and air conditioning repair shop冷藏refrigerated preservation流体力学词汇(部分) 英汉对照Aabsolute pressure 绝对压力acceleration 加速度acceleration of gravity 重力加速度acceleration of transport 迁移加速度acoustic wave 声波adhesive forces 粘滞力, 附着力adiabatic flow 绝热流动airfoil 翼型angle of attack 冲角9angular velocity 角速度apparent shear stresses 表面剪切应力apparent stresses 表面应力Archimedes law 阿基米德定律atmospheric pressure 大气压axial-flow 轴向流动Axisymmetric around cylinder no circulation ideal flow 轴对称绕圆柱体无环流理想流动Bback pressure 背压baroclinic fluid 斜压流体barometer 气压计barotropic fluid 正压流体Bernoullis equation 伯努利方程blade 叶片body-force 质量力boundary condition 边界条件boundary layer 边界层,附面层boundary layer separation 边界层分离boundary layer thickness 附面层厚度bulk modulus 体积模量bulk stress 体积应力bundle of streamline 流束buoyant force 浮力butter layer 过渡层CCauchy-Reimam condition 柯西—黎曼条件center of pressure 压强中心coefficient 系数coefficient of compressibility 压缩系数coefficient of eddy viscosity 涡流粘性系数coefficient of viscosity 粘度粘性系数cohesive forces 粘附力combined boundary layer 组合边界层completely rough zone of turbulent pipe flow 紊流粗糙管平方阻力区10component velocity 合速度compressibility 压缩性compressible fluid 可压缩流体conservation equation of energy 能量守恒方程conservation equation of mass 质量守恒方程conservation of mechanical energy 机械能守恒conservation of moment of momentum 动量矩守恒conservation of momentum 动量守恒continuity 连续性continuum 连续介质continuum hypothesis 连续介质假设control surface 控制面control volume 控制体(积)convective acceleration 迁移加速度convergent-divergent nozzle 缩放喷嘴converging nozzle 收缩喷嘴correction coefficient 修正系数critical pressure 临界压强critical Reynolds number 临界雷诺数critical speed of sound 临界声速critical state 临界状态cross section 横截面curvature radius 曲率半径curved shock 曲面波cylindrical coordinate system 柱坐标系Ddeformation velocity 变形速度density 密度detachment 脱体differential pressure 差压,压差,压力降dimensionless number 无量纲数displacement thickness 位移厚度distribution 分布disturbance wave 扰动波doublet 偶极子11drag coefficient 阻力系数dynamic pressure 动压强dynamic similarity 动力相似性dynamic viscosity 动力粘度Eeddy zone 涡流区eddying flow 涡(紊旋)流efficiency 效率elastic wave 弹性波elevation head 位置水头energy of turbulence 湍能enthalpy 焓entropy 熵equation of continuity 连续性方程equation of energy 能量方程equation of moment –of momentum 动量矩方程equation of motion 运动方程equation of state 状态方程equilibrium 平衡Eulerian equation 欧拉方程Euler method 欧拉方法Euler's formula 欧拉公式Ffield 场flow coefficient 流量系数flow meter 流量表,流量计flow net 流网flow pattern 流型fluctuating pressure 脉动压力fluctuating stress 脉动应力fluid 流体fluid dynamics 流体动力学fluid field 流场fluid machinery 流体机械fluid mechanics 流体力学12fluid particle 流体质点fluid statics 流体静力学free surface 自由表面friction coefficient 摩擦系数friction drag 摩擦阻力frictionless fluid 无粘性流体Ggas constant 气体常数gas dynamics 气体动力学gauge pressure 表压力geometric pressure 几何压力geometric similarity 几何相似gradual contraction 渐缩gradual enlargement 渐扩Hharmonic function 调和函数headloss 压头损失heat transfer 传热Helmholtz equation 亥姆霍兹方程heterogeneous fluid 非均质流体homogeneous fluid 均质流体horizontal force 水平力horizontal line 水平线hydraulic diameter 水力直径hydraulically smooth zero of turbulent pipe flow 紊流光滑管区hydrostatics 流体静力学hydrostatics force 流体静压力hydrostatics stress 流体静应力hypersonic flow 高超音速流动(m>5)Iincompressible fluid 不可压缩流体inertial coordinate system 惯性坐标系initial condition 初始条件input 输入intensity of turbulence 紊流(强)度13interface 分界面internal energy 内能internal friction 内摩擦inviscid fluid 无粘性流体irrotational flow 无旋流动irrotational motion 无旋运动isentropic process 定熵过程isotropic flow 均质流动isotropic fluid 均质流体KKarman qotex street 卡门涡街kinematic energy 动能kinematic moleculer theory 分子运动论kinematic similarity 运动相似性kinematic viscosity 运动粘度Kutta-Joukowski theorem 库塔—儒可夫斯基定理LLagrange method 拉格朗日方法Lagrangian viewpoint 拉格朗日观点laminar boundary layer 层流边界层laminar flow 层流laminar sublayer 层流底层Laplace operator 拉普拉斯算子Laplace's equation 拉普拉斯方程Laval nozzle 拉伐尔喷管lift 升力linear acceleration 线性加速度linear velocity 线速度liquid 液体liquid fluid 流体local acceleration 当地加速度MMach angle 马赫角Mach cone 马赫锥Mach number 马赫数14mass 质量mass flowrate 质量流量material derivative 随体导数mean-time-average velocity 时均速度mechanical energy 机械能mercury 水银minor loss 局部阻力mixing-length theory 混合长理论moment of momentum 动量矩momentum integral relation 动量积分关系式momentum thickness 动量厚度moody diagram 莫迪图move velocity 平移速度multi-phase flow 多相流流动NNavier-stokes equation 纳维—斯托克斯(N-S )方程near wall region 近壁区Neuton's viscosity law 牛顿粘性定律Newtonian fluid 牛顿流体no sources and sinks 无源无汇node 节点non-steady flow 非定常流动non-uniform 非均匀流动nonviscous fluid 非粘性流体normal direction 法向normal line 法线normal shock wave 正激波normal stress 法向应力Ooblique shock 斜激波one-dimensional compressible flow 一维可压缩流动one-dimensional flow 一维流动one order tensor 一阶张量open channel flow 明渠流动open system 开口系统15order of magnitude 量级orifice 孔口orifice plate 孔板output 输出Pparallel flow 层流流动parameter 参数particle path 质点轨迹path line 迹线perfect gas 理想气体pipe flow 管流Pitot-static tube 皮托—静压管Pitot tube 皮托管plane flow 平面流动plane jet 平面射流point of inflextion 拐点point of transition 过渡点potentional energy 势能Potential flow 势流power 功率Prandtl mixing length 普朗特混合长度Prandtl number 普朗特数pressure differential 压差pressure drag 压差阻力pressure field 压强场pressure force 压力pressure gage 压强计pressure gradient 压强梯度pressure head 压强水头pressure wave 压力波Qquantum mechanics 量子力学quasi-static process 准静态过程quasi-steady theory 准定常理论R16radial velocity 经向速度ratio of specific heats 比热比real fluid 粘性流体real gas 真实气体,实际气体rectangular coordinate system 直角坐标系reduced Navier-Stokes equation 简化纳维—斯托克斯方程Reynolds number 雷诺数resonance 共振Reynolds stress 雷诺应力rotation velocity 旋转速度rotational flow 有旋流动rough-pipe zone of flow 流动的光滑管区roughness 粗糙度Ssame mass flow 均质流secondary flow 二次流流动separation point 分离点sharp-crested weir 尖顶堰shear stress 剪切力shear deformation 剪切变形shock wave 激波similarity 相似性sink 汇siphon 虹吸管skin(or wall) friction 表面(或壁)摩擦(力)small perturbance 小扰动sonic barrier 声障sonic flow 声速流动sound wave 声波source 源specific force of gravity 比重specific heat 比热speed of sound 声速spherical coordinate system 球坐标系Stokes' viscosity law 斯托克斯粘性定律17stress tenser 应力张量stress 应力stagnation point 驻点stagnation pressure 驻点压强stagnation temperature 驻点温度standard atmosphere 标准大气压static pressure 静压强steady flow 定常流动strain rate tensor 变形速度张量streamline 流线stream function 流函数streamline form 流线形streamtube 流管Strouhal number 斯特劳哈尔数subcritical flow 亚临界流动subsonic flow 亚声速流动supercritical flow 超临界流动supersonic flow 超声速流动surface force 表面力surface tension 表面张力Ttemperature gradient 温度梯度tensor 张量theory of similarity 相似性理论thermal conductivity 热传导率thermal field 温度场thin-plate orifice flowmeter 薄孔板流量计total drag 总阻力total flow 总流量total pressure 总压强traction force 拉力transformation 转换transonic flow 跨音速流动transport theorem 输运定理triangular weir 三角堰18turbo-machinery 涡轮机械turbulent boundary layer 湍流(紊流)边界层turbulent energy 湍流(紊流)能量turbulent flow 紊流turbulent jet 湍流(紊流)射流two-dimensional flow 二维流动UU - tube U 型管uniform flow 均匀流动unit vector 单位矢量unsteady flow 非定常流动Vvelocity 速度velocity circulation 速度环量velocity gradient 速度梯度velocity head 速度水头velocity of sound 音速velocity potential 速度势Venturi flowmeter 文丘里流量计vertical force 垂直力viscous sublayer 层流底层viscosity 粘度viscosity factor 粘度系数viscosity resistance 粘性阻力viscous fluid 粘性流体volume of flow 流量volume flow 容积流量von Karman integral momentum equation 卡门动量积分方程vortex 涡旋vortex flow 涡流vortex line 涡线vortex street 涡街vortex strength 涡强度vortex tube 涡管vorticity 涡量19Wwake vortex 尾涡流wave drag 波阻wave length 波长wave speed 波速well-ordered mean-time-average flow 有序时均流wind tunnel 风洞woke 尾涡区work 功压缩机制冷系统及机组制冷系统refrigeration system制冷机refrigerating machine机械压缩制冷系统mechanical compression refrigeration system蒸气压缩制冷系统vapour compression refrigeration system压缩式系统compression system压缩机compressor制冷压缩机refrigerating compressor, refrigerant compressor吸气端suction end排气端discharge end低压侧low pressure side高压侧high pressure side蒸发压力evaporating pressure吸气压力suction pressure, back pressure排气压力discharge pressure蒸发温度evaporating temperature冷凝压力condensing pressure冷凝温度condensing temperature吸气温度suction temperature回气温度back temperature排气温度discharge temperature压缩比compression ratio双效压缩dual compression单级压缩single-stage compression双级压缩compound compression20多级压缩multistage compression压缩级compression stage低压级low pressure stage高压级high pressure stage中间压力intermediate pressure中间冷却intercooling多级膨胀multistage expansion湿压缩wet compression干压缩dry compression制冷系统refrigerating system机械制冷系统mechanical refrigerating system氟利昂制冷系统freon refrigerating system氨制冷系统ammonia refrigerating system压缩式制冷系统compression refrigerating system单级压缩制冷系统single-stage compression refrigeration system双级压缩制冷系统two-stage compression refrigeration system多级制冷系统multistage refrigerating system复叠式制冷系统cascade refrigerating system混合制冷剂复叠系统mixed refrigerant cascade集中制冷系统central refrigerating plant直接制冷系统direct refrigeration system直接膨胀供液制冷系统refrigeration system with supply liquid direct expansion 重力供液制冷系统refrigeration system with supply liquid refrigerant for the evaporator by gravity液泵供液制冷系统refrigeration system with supply liquid refrigerant for evaporator by liquid pump间接制冷系统indirect refrigeration system融霜系统defrosting system热气融霜系统defrosting system by superheated vapour电热融霜系统eletrothermal defrosting system制冷系统故障breakdown of the refrigerating system冰堵freeze-up冰塞ice plug脏堵filth blockage油堵greasy blockage21液击(冲缸、敲缸)slugging湿行程wet stroke镀铜现象appearance of copper-plating烧毁burn-out倒霜frost back制冷机组refrigerating unit压缩机组compressor unit开启式压缩机组open type compressor unit开启式压缩机open type compressor半封闭式压缩机组semihermetic compressor unit半封闭式压缩机semihermetic compressor全封闭式压缩机组hermetically sealed compressor unit全封闭式压缩机hermetically sealed compressor压缩冷凝机组condensing unit全封闭式压缩冷凝机组hermetically sealed condensing unit半封闭式压缩冷凝机组semihermetically sealed condensing unit开启式压缩冷凝机组open type compressor condensing unit工业用压缩冷凝机组industrial condensing unit商业用压缩冷凝机组commercial condensing unit整马力压缩冷凝机组integral horsepower condensing unit分马力压缩冷凝机组fractional horsepower condensing unit跨式制冷机组straddle refrigerating unit热泵热泵heat pump供热热泵heating heat pump制冷与供热热泵cooling and heating heat pump热泵循环heat pump cycle性能系数coefficient of performance (COP)供热量heat output压缩式热泵compression heat pump蒸汽压缩式热泵vapour compression heat pump空气压缩式热泵air heat pump蒸汽喷射式热泵steam jet heat pump22吸收式热泵absorption heat pump低温型吸收式热泵low temperature absorption heat pump高温型吸收式热泵high temperature absorption heat pump水-气式热泵water/air heat pump土壤热源热泵ground source heat pump土壤盘管热泵ground coil heat pump水源热泵water source heat pump水盘管热泵water coil heat pump空气源热泵air source heat pump空气盘管热泵air coil heat pump热泵空气盘管heat pump air coil, air coil热泵水盘管heat pump water coil, water coil热泵土壤盘管heat pump ground coil, ground coil气-气式热泵air/air heat pump气-水式热泵air/water heat pump水-水式热泵water/water heat pump地-气式热泵soil/air heat pump地-水式热泵soil/water heat pump一次热泵primary heat pump二次热泵secondary heat pump第三级热泵tertiary pump太阳能热泵solar heat pump家用热泵domestic heat pump工业热泵industrial heat pump高温热泵high temperature heat pump温度放大器templifier热泵式热水器heat pump water heater热泵式空调器heat pump air conditioner热泵式干燥机heat pump drying plant蒸馏和浓缩用热泵heat pump for distilling and thickenning processes制冷系统自动调节流量调节flow regulation制冷剂控制器refrigerant control23膨胀阀expansion valve节流阀throttle valve热力膨胀阀thermostatic expansion valve热电膨胀阀thermal electric expansion valve内平衡热力膨胀阀internal equalizer thermostatic expansion valve外平衡热力膨胀阀external equalizer thermostatic expansion valve外平衡管external equalizer pipe内平衡管internal equalizer pipe蒸发器阻力损失pressure drop of evaporator同工质充注same material charge交叉充注cross charge吸附充注absorptive charge气体充注gas charge膨胀阀过热度superheat degree of expansion valve过热温度调节superheat temperature regulation膨胀阀容量expansion valve capacity手动膨胀阀hand expansion valve自动膨胀阀automatic expansion valve浮球调节阀float regulation valve浮球阀float valve低压浮球阀low pressure float valve高压浮球阀high pressure float valve制冷辅助设备压力容器pressure vessel贮液筒/器surge drum高压贮液筒high pressure receiver低压贮液筒low pressure receiver低压平衡筒accumulator,surge drum均压管/平衡管equalizer均压罐equalizer tank平衡罐balance tank液体分离器suction trap气液分离器flash chamber净化系统purge recovery system24油分离器oil separator集液器liquid trap集油器oil receiver,oil trap不凝性气体分离器non condensable gas purger放空气器gas purger干燥器dehydrator,drier过滤器filter,screen,strainer干燥过滤器drier-filter脱水dehydration干燥drying干燥剂desiccant硅胶silica gel活性铝activated carbon分子筛molecular sieve润滑lubrication滑油冷却器oil cooler中间冷却器intercooler,interstage cooler闪发式中间冷却器flash intercooler膨胀容器expansion tank经济器economizer喷射器ejector搅拌器agitator抽气回收装置purge recovery unit排空pump-down循环泵circulation pump液位指示器liquid level indicator窥镜sight glass液体流动指示器liquid flow indicator吸入压力表suction gauge排出压力表discharge gauge管道与附件配管tubing空调制冷配管ACR tubing管道piping,tubing25制冷管路refrigeration pipe line系统酸状况acid condition system退火annealing加压元件pressure imposing element检修门access door气封vapor lock主管main歧管manifold集管header盐水管brine line盐水集管brine header旁通管by-pass套管tube-within-a-tube伸缩弯expansion loop存油弯oil loop液环liquid loop吸入管suction line,return line消声器muffler分液贮存器accumulator排出管discharge line,hot gas line液体管liquid line冷凝液管condensate line管道附件fittings软接头connecting hose加液接头charging connection快装接头quick-release coupling,quick-coupler法兰flange接管coupling收缩管constricted tube异径内承插管reducing coupling异径外承插管double male reduction异径套管reducing bushing螺纹接管nipple阀valve截止阀stop valve26止回阀check valve角阀angle valve球阀ball type valve,ball valve闸阀gate valve操作阀service valve防通阀bypass valve二通阀two-way valve三通阀three-way valve塞子plug端盖cap垫gasket垫料gasket填料packing喇叭口接头flared joint扩口工具flaring tool胀口工具swaging tool弯曲弹簧bending spring弹簧弯管器bending spring扭矩扳手torque wrench制冷装置制冷装置refrigerating installation,refrigerating plant工业制冷装置industrial refrigerating plant商业制冷装置commercial refrigerating plant中心站房central station成套机组self-contained system规范安装code installation制冷回路refrigerating circuit热平衡heat balance货物负荷product load操作负荷service load设计负荷design load负荷系数load factor制冷装置试验与操作27试运转commissioning吹污flush气密性试验gas-tight test,air-right test密闭容器closed container漏气air infiltration放气air vent检漏leak hunting,leak detection检漏仪leak detector卤素灯halide torch电子检漏仪electronic leak detector真空试验vacuum test试验压力test pressure工作压力operating pressure,working pressure最高工作压力highest operating pressure气密试验压力gas-tight test pressure设计压力design pressure平衡压力balance pressure充气aerate,gas charging制冷剂充注refrigerant charging首次充注initial charge保护充注holding charge,service charge制冷剂不足lack of refrigerant,under-charge,gas shortage缺液starveling充灌台charging board充灌量charge充注过多overcharge供液过多overfeeding制冷剂抽空pump down of refrigerant降温试验pull down test制冷[功能]试验refrigeration test卸载起动no-load starting,unloaded start卸载机构unloader闪发flash vaporization,instantaneous vaporization闪发气体flash gas不凝性气体non condensable gas28气体排除gas purging,degassing,gasoff阀针跳动hammering,needle hammer阀振荡hunting of a valve阀片跳动valve flutter,valve bounce短期循环short-cycling异常温升overheating泄漏leak气蚀cavitation制冷剂瓶refrigerant cylinder,gas bottle检修用瓶service cylinder,gas bottle紧急泄放阀emergency-relief valve检修阀service valve安全阀pressure relief valve抽空阀pump out valve加油阀oil charge valve放油阀oil drain valve放空阀purge valve充灌阀charging valve喷液阀liquid injection valve制冷能力及计算术语制冷量refrigerating capacity总制冷量gross refrigerating capacity净制冷量net refrigerating capacity单位制冷量refrigerating capacity per weighing单位容积制冷量refrigerating capacity per unit of swept volume制冷系统制冷量system refrigerating capacity单位轴功率制冷量refrigerating effect per shaft power压缩冷凝机组制冷量compressor condensing unit refrigerating capacity制冷压缩机制冷量refrigerant compressor capacity蒸发器净制冷量net cooler refrigerating capacity空调有效显热制冷量useful sensible heat capacity of air conditioner空调有效潜热(减湿)制冷量useful latent heat (dehumidifyying) capacity of air conditioner空调器有效总制冷量useful total capacity of air conditioner29制冷剂循环量circulating mass of refrigerant制冷剂循环容积circulating volume of refrigerant单位压缩功compress work per mass示功图indicator diagram指示功indicated work摩擦功frictional work功率power摩擦功率frictional power指示功率indicated power理论功率idea power轴功率brake power效率efficiency指示效率indicated efficiency机械效率mechanical efficiency总效率overall efficiency制冷系数coefficient of performance (COP)制冷压缩机的制冷系数refrigerating compressor coefficient of performance热力完善度thermodynamical perfectness能效比energy efficiency ratio (EER)热泵供热系数heat-pump coefficient of performance热泵用压缩机的供热系数heat-pump compressor coefficient of performance容积效率volumetric efficiency容积输气量volumetric displacement实际输气量actual displacement理论输气量theoretical displacement冷凝热量condenser heat过冷热量heat of subcooling过热热量superheat运转工况下的制冷量rating under working conditions标准制冷量standard rating名义工况normal conditions试验工况test conditions运行工况operating conditions标准性能standard rating标准工况standard condition30空调工况air conditioning condition内部条件internal conditions外部条件external conditions蓄热accumulation of heat蓄冷accumulation of cold制冰能力ice-making capacity除霜结霜frost formation积霜frost deposit回霜frost back除霜defrosting化霜defrosting融霜defrosting冲霜defrosting人工除霜manual defrosting除霜周期defrosting cycle除霜循环defrosting cycle中止除霜循环off-cycle defrosting周期除霜系统cycle defrost system自动除霜automatic defrosting半自动除霜semi-automatic defrosting高速半自动除霜fast semi-automatic defrosting定时除霜time defrosting外能除霜external defrosting水除霜water defrosting水除霜系统water defrosting system热水除霜hot water defrosting热液除霜系统hot liquid defrosting system内能除霜internal defrosting热气除霜hot gas defrosting热气除霜系统hot gas defrosting system热液除霜hot liquid defrosting逆循环除霜reverse cycle defrosting31逆循环除霜系统reverse cycle defrosting system除霜用热气管hot gas line for defrosting热箱除霜thermotank defrost电加热器除霜electric heater defrosting电加热器除霜系统electric heater defrosting system暖空气除霜warm air defrosting除霜水盘drip tray,defrost pan蒸发器及冷却设备蒸发器evaporator直接冷却式蒸发器direct evaporator直接式蒸发器direct evaporator间接冷却式蒸发器indirect cooled evaporator间接式蒸发器indirect evaporator干式蒸发器dry expansion evaporator满液式蒸发器flooded evaporator再循环式蒸发器recirculation-type evaporator强制循环式蒸发器pump-feed evaporator壳盘管式蒸发器shell-and-coil evaporator壳管式蒸发器shell-and-tube evaporator喷淋式蒸发器spray-type evaporator立管式蒸发器vertical-type evaporator平行管蒸发器raceway coil螺旋管式蒸发器spiral tube evaporator“V”型管蒸发器herringbone type evaporator沉浸式盘管蒸发器submerged evaporator板式蒸发器plate-type evaporator螺旋板式蒸发器spiral sheet evaporator平板式蒸发器plate-type evaporator,tube-in-sheet evaporator管板式蒸发器tube-on-sheet evaporator凹凸板式蒸发器embossed-plate evaporator吹胀式蒸发器roll-bond evaporator压焊板式蒸发器roll-bond evaporator制冰块器的蒸发器ice cube maker evaporator结冰式蒸发器ice-bank evaporator32。

概念规律:热动说与热质说之争

概念规律:热动说与热质说之争
到 18 世纪 80 年代,几乎整个欧洲都相信热质说是正确的。法国化 学家拉瓦锡(1743~1794)于 1777 年写出了《燃烧理论》,全面地阅述 了燃烧的氧化学说,推翻了燃素说。但是,他依然把热看成是一种特殊 的物质元素,并于 1787 年同他人一起把这种特殊的物质元素命名为“热 素”(热质)。 1789 年,拉瓦锡在他出版的《化学原理教程》一书中, 把“热素”和“光”一起列入无机界 23 种化学元素中。他认为,热质是 “没有重量不可称量”的流体。可见,热质说已经达到了它的鼎盛时期。
与此同时,关于热的运动说的思想萌芽也已产生。我国古代的“阴 阳学说”,从自然现象中抽象出阴和阳两个对立的基本范畴,用以解释 万物。在“阴阳学说”中,把热和动同归属于阳的范畴,把冷和静同归 属于阴的范畴,这实际上是把热和运动联系起来了。元气论的发展,形 成了一种认为包括冷热在内的一切自然现象都是元气的运动就提出,元气缓慢地吹动,造成炎热之气; 元气的迅速吹动,则造成寒冷之气;冷热交替而发生作用。柳宗元已明 确地把冷热变化,看作是元气的不同运动状态。古希腊哲学家也有类似 的见解,米利都学派从泰勒斯(约公元前 624~约前 547)开始,把水看 作万物的基原物质,并认为热本身是从湿气里产生靠湿气而维持的;阿 那克西曼德(约公元前 610~约前 545)认为自然现象的统一的和永恒的 基原是“无定”,从“无定”中产生出各种自然现象;阿那克西美尼(约 公元前 588~约前 524)则主张自然界的基原是气,气的浓缩和稀释形成 了各种实体:在浓缩时依次形成风、云、水、土和石头,它很稀时就形 成了火;总之,他们是把热(火)看作是由基原物质的运动变化产生出 来的。
起了推动作用,他对在热的本性上的两种不同看法之间的争论是有所了 解的,但他对热的运动说存有疑虑。他认为,如果说是由于在物体内部 粒子相互碰撞使它们的运动加剧而发生热,那么为什么同样锤击一块软 铁与弹性钢球,软铁会变得很热而钢球却一下热不起来?另外,他还想 到,如果热是由物体内部粒子的运动造成的,由于密度大的物质中粒子 之间的相互吸引力大,让它们振动起来也就比较难,因而它的比热应该 比较大。但是,实际上有些密度大的物质的比热却比密度小的物质的比 热要小。例如,水银的密度比水大,但是实际上水银的比热小于水的比 热。这样,布莱克就成了热质说的主要倡导者。

热统-(PDF)

热统-(PDF)
27
§ 3.8 临界现象和临界指数
二、液气流体系统
t T Tc Tc
1、l g (t) , t 0
1、临l界 指g数:(t )
,
t
0.34
0
2、T (t) T (t ) '
t 0, t 0。
' 1.2
28
§ 3.8 临界现象和临界指数
3、p pc c , t 0 K 5.0 4.6
p
( p ' 2 , T ) ( p ', T )
r
( p ' p 2 )v RT ln p '
r
p
14
§3.6 液滴的形成
实际问题中,p ' p 2 / r , 上式可近似为:
( p ' p 2 )v RT ln p '
r
p
ln p ' 2 v
p RTr
以水滴为例:在温度T = 291K时,水的表面张力系数和
r 自由能判据:定温定容时平衡态的自由能最小。
F=0 ;V 和n 可独立变动,有: 力学平衡条件 p p 2
r
相变平衡条件
说明:当两相分界面是平面时(即r →∞),两相的力学 平衡条件为两相的压强相等。
12
§3.6 液滴的形成
2. 曲面上的蒸汽压与平面上的饱和蒸汽压的关
系:
设分界面为平面时,饱和蒸汽压强为p;分界面
整个系统的自由能为三相的自由能之和: F F F F ( p p )V A ( ) n
假定液滴是球形,则有:
V 4 r3, A 4 r2
3
V 4 r2 r A 8 r r
11
§3.6 液滴的形成

发电厂热动基础知识

发电厂热动基础知识

Je3D3085(P171)某锅炉炉膛火焰温度由1500℃下降至 1200℃时,假设火焰发射率α =0.9,试计算其辐射能力 2K4)。 变化。(全辐射体的辐射系数 C = 5.67W/ ( m 0 计算题 解:火焰为1500℃时辐射能量E1
E1=α C0(T/100)4
=0.9×5.67×[(1500+273)/100]4 =504.267(kW/m2) 火焰为1200℃时辐射能量E2 E2=α C0(T/100)4 =0.9×5.67×[(1200+273)/100]4 =240.235(kW/m2) 辐射能量变化E1-E2
热工基础知识
LDDLPX
蒋丽菊
2004/5
水蒸气的状态参数
六个状态参数:
温度、压力、比容、内能、焓、熵
基本状态参数
工质的基本状态参数
状态参数
摄氏温度 热力学温度 v=V/m
密度ρ=1/v 绝对压力P
温度T 比容V
T ≈ t + 273 m3/kg
压力P
表压力 pg 真空pv
大气压力 Pamb
atm
at
bar
mbar
1Pa =1N/m2 备注 1at =1kgf/cm2 1atm=760mmHg 1at =735.6mmHg
1at=0.1MPa 1mmH2O=9.81Pa 1mmHg=133.3Pa 1bar=0.1MPa
计算题 Je3D2076 某地大气压力为755mmHg,试将其换算成kPa、 bar、at。(P167)

热 流 体
表面式 蓄热式 混合式
热 流 体
冷流体
冷流体
三 分 仓 回 转 式一 空次 风 气 预 热 器
烟气

热动认识实习.docx

热动认识实习.docx

热动认识实习能源与动力工程学院班级:热动101 学号:207100131姓名:王禹南京工程学院火力发电厂生产过程燃煤由输煤皮带机输送到原煤斗中,再进入磨煤机磨制成煤粉,煤粉在热空气的输送下,经喷然器喷入锅炉燃烧室燃烧。

送风机将空气送入空气预热器中加热成热空气,热空气起到助燃、干燥并输送煤粉的作用。

煤粉在锅炉燃烧室内燃烧,将一部分热量传给燃烧室四周的水冷壁,燃烧产生的高温烟气流经过过热器、再热器、省煤器和空气预热器等受热面,将热量传递给蒸汽、水和空气,低温燃气经过除尘器出去飞灰,在引风机的作用下,从烟囱排向大气。

锅炉下不的灰渣和除尘器下部排出的细灰经过灰渣沟由灰渣泵派送到灰场。

水在水冷壁中吸热变成汽水混合物,经汽包汽水分离后,饱和蒸汽进入过热器,在过热器中继续吸热变成过热蒸汽,然后送入汽轮机高压缸中做功,高压缸出口的蒸汽回到锅炉再热器中吸收热量,再进入汽轮机的中、低压缸继续做功。

蒸汽在汽轮机中膨胀做功,推动汽轮机转子旋转并带动发电机产生电能。

汽轮机的排汽进入凝汽器并凝结为水,凝结水由凝结水泵经低压加热器加热后送入除氧器,除氧后的水经给水水泵送往高压加热器进一步加热后进入锅炉。

如此周而复始,不断产生电能。

锅炉设备一、锅炉本体设备1、锅内设备1、汽包概念:汽包是循环锅炉中用以汽水分离和蒸汽净化,组成水循环回路并储存一定水量的长筒形压力容器作用:是加热、蒸发和过热过程的连接枢纽和分界;增加了锅炉的蓄热量,有利于运行调节;进行蒸汽的净化处理,保证蒸汽的品质。

结构:由筒身和封头组成,两端封头中部有人孔门,内部装置有旋风分离器、清洁孔板、波形板、均气孔板、加药管和排污管。

位置:悬吊在炉膛前墙顶部的炉外大梁上,进口连接省煤器来水管和水冷壁汽水混合物引出管,出口连接下降管和顶部过热器管。

2、下降管概念:下降管是水冷壁的供水管,它是蒸发设备的组成部件。

作用:把汽包的水连续不断的送往水冷壁,以维持正常的水循环。

结构:分为小直径分散下降管和大直径集中下降管。

热动专业研究生考试大纲

热动专业研究生考试大纲

热动专业考试大纲(试行)有关说明:一、关于考核目标的说明本大纲对各章的主要内容规定了考核知识点和考核要求,使考试内容具体化和考试要求标准化。

目的是为应试者能进一步明确考试内容和要求,更有目的地系统学习教材;为考试命题者能够更加明确命题范围,更准确地安排试题的知识能力层次和难易程度。

二、关于命题考试的若干要求1、对于命题考试,应根据本大纲所规定的内容和考核目标来确定考试范围和考核要求,不要任意扩大或缩小考试范围,提高和降低考核要求。

考试命题覆盖到各章,并适当突出重点章节,体现本大纲的重点内容。

2、试题要合理安排难度结构。

试题难易度可分为较易、中等、较难三个等级。

每份试卷中,不同难易试题的分数比例一般为:较易占30%,中等占50%,较难占20%。

必须注意在各部分中都有不同难度的问题。

3、本课程考试命题可能采用的题型有:判断题、单项、多项选择题、简答题和论述题。

判断题、单项选择题和的答案都是唯一的,命题要准确,回答也要准确;判断题主要涉及对概念和原理的领会,回答要能够抓住要点;论述题涉及知识、概念、原理的综合运用,考察分析问题解决问题的能力,因此答题不仅要求准确、抓住要点,而且要能够围绕观点展开必要的论述。

大纲编写说明:为了帮助参加济南市热动专业职称考试的人员系统地做好考试前的复习准备工作,由热动专业具有多年实际工作经验的部分专家编写了本考试大纲,以指导参考人员有针对性、有重点地复习有关专业知识,做到有的放矢。

本考试大纲分基础理论与相关知识部分(包括传热学、工程热力学、工程流体力学、热工测量及仪表)和专业实务部分(包括电站锅炉、汽轮机原理、泵与风机、热力发电厂、相关标准规范)。

主要参考书目是目前相关大学热动专业正在使用的部分教科书和国家、地方或行业现行的有关部分标准、规范、规程等。

由于编写时间仓促,难免存在问题或有遗漏。

如发现问题或有更好的意见和建议,请及时与我们联系我们将进一步对该大纲内容进行修订和完善。

专题讲座热动部分.ppt

专题讲座热动部分.ppt

煤粉炉脱硫技术的经济性分析和技 术经济比较
2020年2月21日星期五10时0分50秒
11
炉内喷钙脱硫的反应机理
以石灰石为脱硫剂,当温度高于750℃, 石灰石会被快速焙烧成氧化钙。
分解反应:
CaCO3→CaO+CO2 氧化钙CaO在800~1200℃的温度范围内 与SO2相遇反应生成CaSO4。
脱硫反应:
将电除尘器的集灰,活化反应器中未反应的 CaO和Ca(OH)2再循环送回活化反应器,以 提高钙利用率。
脱硫效率可在原来的基础上再提高10%。
⑵灰浆再循环
将活化反应器底部的集灰再循环,将电除尘 器的集灰制成灰浆送回活化反应器,用喷雾 灰浆增湿代替喷水增湿。
脱硫效率比干灰再循环可再提高10%。
2020年2月21日星期五10时0分50秒
离器及与之相联的电除尘器,从百叶窗分离器
及电除尘器下收集的干灰,一部分送回循环床
反应器的再循环灰入口,另一部分相当于消石 灰粉给料量的排灰则送至飞灰储存场。
2020年2月21日星期五10时0分50秒
30
循环流化床干法烟气脱硫的工艺流程
Ca(OH)2 SO2
循环床反应 器 T
清洁烟气 烟囱 静电除尘器
Ca(OH)2 来自锅炉的 烟气
ΔP
再循环 干灰
H2O 水箱
干灰
2020年2月21日星期五10时0分50秒
31
循环流化床干法烟气脱硫的主要优点
⑴和湿法烟气脱硫相比,其系统简单、 造价较低。 ⑵由于充分利用了循环流化床反应器的 优点,在采用Ca(OH)2干粉作脱硫剂时, 可以达到很高的钙利用率和脱硫效率。 ⑶运行可靠,由于采用干式运行,所产 生的最终固态产物易于处理。

热动技术员培训课件

热动技术员培训课件

4.负责所承担项目的质量管理。
• 负责施工全过程质量控制,负责填写验收 签证,负责收集、整理质量记录。 • 负责所承担项目的二级质量验收。 • 参加不合格品及质量事故的调查分析,参 与制定纠正和预防措施,并组织落实。 • 负责开展QC活动,推广应用“四新”,配 合开展各种质量活动。
5.做好专业和工序间的协调和沟通工作。
• 负责协调解决本专业与外专业的施工工序 的接口问题。 • 协调施工中与业主、甲方、监理和项目部 有关技术问题。
6.负责上级交办的其它任务。
需着重注意的几点
1.材料计划的准确性
确保施工图材料计划的准确性,应特别重视以下几个方面的 工作: (1)合同范围审定清楚。编制材料计划前,应仔细审查与 业主方签订的合同,确定我方施工范围,如有疑问应向合 同科确认,不能存有一丝模糊的地方。 合肥电厂#5机组循环水管施工时,就有这样一个小案例。 根据初设图纸,合同规定,我方循环水管的施工范围为汽 机房至循泵房东墙外1m;循泵房东墙外1m及以内部分为 二公司施工。 正式施工时,设计院图纸更改,循环水管由循泵房北墙出 来然后向东至汽机房。(见下图)
• 负责起草工程联系单,对设计问题及时提 出改进意见。 • 负责作好施工过程中的施工技术记录,督 办、检查施工阶段标识。 • 负责设备缺陷的确认和编写设备缺陷的报 告。 • 负责及时封闭施工阶段发生的有关设计修 改的工程联系单、设计变更单。 • 负责所承担项目资料、信息的收集整理及 MIS录入和维护。
热动专业公司的制度,技术员兼职二级质检,因为是兼职, 技术员的这个职责普遍履行的不够。因为是弱项,所以要 格外重视。 质量与进度是矛盾又统一的,我们的口号是“又快又好”, 进度是摆在质量前面的,但当结果都出来以后,孰优孰劣, 是靠质量来判断的。 评判一个汽轮机本体技术员很优秀,我们会说,机组振动 都在0.05mm以内,不会说,只要45天就扣盖了;评判一 个管道技术员很优秀,我们会说,管道工艺美观,没有跑 冒滴漏,不会说,中低压管道只用2个月就完成了。 与生产相比,质量和技术靠得更近。质量是技术员的阵地, 必须要坚持住。

大学热动专业英语1-2章翻译

大学热动专业英语1-2章翻译

Specialized English for Thermal Energy & Power EngineeringCOURSE OUTLINETextbook: 热能与动力工程专业英语(Specialized English for Thermal Energy & Power Engineering)(3th) 阎维平,中国电力出版社(第三版)COURSE OUTLINECourse Goals:1.To understand the basic characteristics of Specialized English.2.To recognize some technical words in thermal energy and power engineering.3.To know how to write the abstract for a paper or a thesis (P155).Grading:Exercises in the class 20%Final exam 80%ContentsChapter 1 Introduction to Thermal Sciences1.1 Fundamental of engineering thermodynamics1.2 Fundamental of fluid mechanics1.3 Fundamental of heat transferChapter 2 Boiler2.1 Introduction2.2 Development of utility boiler2.3 Fuel and combustion2.4 Pulverizing system2.5 System arrangement and key components2.6 On-load cleaning of boilers2.7 Energy balanceChapter 1 Introduction to Thermal Sciences1.1 Fundamental of engineering thermodynamics•Thermodynamics is a science in which the storage, transformation, and transfer of energy are studied. Energy is stored as internal energy( associated with temperature), kinetic energy( due to motion), potential energy (due to elevation) and chemical energy( due tochemical composition); it is transformed from one of these forms to another; and it is transferred across a boundary as either heat or work.第一章热科学介绍1.1 工程热力学基础热力学是一门研究能量储存、转换及传递的科学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析计算题: 1.已知纯钛 / 平衡温度为 882C, 相变焓为 14.65 kJ/mol。 估算 钛过冷到 800C 时, -Ti 转变为 -Ti 的相变驱动力(不计上述过冷温度范围对相变的焓变及熵变的影 响) 。 (10 分)
根据自由能的表达式 在平衡温度T0
GT HT TST
8.简要回答什么是耗散结构以及产生耗散结构的必要条件;举出 2 个自组织现象的实 例。 (6 分)产生耗散结构(远离平衡态时的自组织现象)的四个必要条件是什么?
远离平衡的情况下会出现一种非平衡的宏观有序现象,称为自组织现象。这种现象的出现 和维持都必须依赖于外界能量或(和)物质的输入。这种特殊的非平衡宏观有序的体系状态称 为耗散结构——dissipative structure。 产生耗散结构的必要条件:开放系统、远离平衡态、非线性作用、涨落作用。 贝纳德流体的对流花纹、激光器中的自激荡、B-Z 化学震荡现象,此外生物中和经济中也存在自 组织现象。
dG VdP SdT
在等温条件下
G
P2
P 1
VdP
Gd d Vd ( P2 P 1)
Gg g Vg ( P2 P 1)
P Gg d / Vm
Gg d V P
P Gg d / V 1983J / (12 / 2.3) (12 / 3.5) cm 3 1983 /(5.22 3.43) 1107.8 J / cm 3 = 1107.8 N m /(1m / 100) 3= 1107.8 106 Pa 1107.8MPa
室温下实现石墨-金刚石转变所需临界压力为 1107.8MPa。
4. 碳钢淬火马氏体在进行低温回火时,并不析出该温度下的稳定碳化物 Fe3C(), 而是首先析出一种碳含量更高的亚稳碳化物 Fe2.5C(),但是当回火较长时 间时却观察不到 碳化物。根据下图给出的各相自由能曲线分析其原因。 (8 分)
H g d 395 394 1 kJ / mol S g d 2.4 5.7 3.3 J / mol K
G H g d 298S g d 1983 J / mol
在 25C 和 0.1MPa 下石墨转变为金刚石的相变驱动力为 1983 J/mol
P
2 r
由于附加压力的作用,第二相摩尔 自由能曲线上移。由于公切线位置的改 变, 相在 相中的溶解度增加。在析 出的初期,这小粒子一般与基体保持共格关系,其原因在于析出相和母相保持共格可以 降低界面能。 3.在 25C 和 0.1MPa 下,金刚石和石墨的标准熵分别为 2.4 J/molK 和 5.7 J/molK, 标 准焓分别为 395 kJ/mol 和 394 kJ/mol, 密度分别为 3.5 g/cm3 和 2.3 g/cm3, 碳的摩尔 质量为 12g。 试计算石墨在此条件下转变为金刚石的相变驱动力; 试根据自由能与体 积和温度的关系(dG = VdP - SdT)计算室温下实现石墨-金刚石转变所需临界压力 (不计压力对石墨以及压力对金刚石造成的体积改变) 。 (15 分) 在 25C 和 0.1MPa 下, 石墨-金刚石转变自由能变化
2.金属和合金在平衡态下存在一定数量的空位,因此有人说一定数量的空位是金属和 合金中的热力学稳定缺陷,此说法是否正确?根据空位数量对自由能及其组成要素 (焓和熵)的影响方式,从热力学角度进行简要解释。 (8 分)
当晶体中引入一定数量的空位时,比没有空位时更低一些。这时,空位是热力学稳定缺陷。空 位增加时晶体的焓和熵均增大,由于 G = H - TS, 因此在某个空位浓度将出现自由能的最小值,此时 的空位浓度为平衡浓度。
解答: 在两组元混合时Gidea 总为负值,且
X A 1
lim d (G ideal ) / dX A lim d (G ideal ) / dX B
X B 1
而根据亨利定律: lim d (G ) / dX C , C 为常数。
E X 1
由此可以判定:当 X 趋近 1 时,总有G<0。
参数。
5.试利用给出的 a,b 两种溶体 Gm-X 图中化学势的图解示意图, 指出两种溶体的扩散特 征有什么不同;那一种固溶体中会发生上坡扩散。 (7 分)
(a)
(b)
固溶体中原子定向迁移的驱动力是化学势梯度,而不是浓度梯度。左图中的化学势的梯度和浓 度梯度方向一致,因此元素沿着浓度方向迁移,不发生上坡扩散;右图中的化学势梯度和浓度梯度 的方向不一致,因此表现出和浓度梯度的方向相反的元素迁移,即上坡扩散。
从图中可以看出,给定成分的过饱和固溶体中析出 碳化物的相变驱动力比析出 相的驱动力要小些。 但是决定那种碳化物优先析出的不是相变驱动力, 而是形核驱动力。
碳化物的形核驱动力比相的驱动力要大,因此优先析出。但是在长时间保温过程中, 由于+两相的自由能高于+两相的自由能, 亚稳碳化物相最终要转变为碳化物相,
HT0=TST0
GT H T T (HT0 / T0 )
H T HT0
对于固态相变,如果相变温度不远离T0
GT H T T (HT0 / T0 )
0
GT
T H T0 T0
GT
82 K 14.65kJ / mol 1.04 kJ / mol 1155K
C (r ) C () (1
2VB ) RTr
由此可见, 相颗粒的半径越小,与 相平衡的 相中的 B 原子的溶解度就越大。如果 相 颗粒与 相处于平衡状态, 则在两个 颗粒之间的 相区出现 B 原子的浓度梯度。 在此浓度梯度驱 动力的作用下,小粒子周围的 B 原子将向大颗粒扩散,这样小颗粒与 相平衡将遭到破坏,使其溶 解,大粒子粗化。
D D0 exp(
Q ) KT
设两个半径不等的相邻 相颗粒析出于相中。 根据 Gibbs-Thomson 方程可知, 固溶体溶解度 与 相的半径 r 有关。
ln
C (r ) 2VB C () RTr
如果析出颗粒为 r 时的溶质 B 在相中的溶解度和析出物为无限大时的溶解度相差不是很大, 那 么,
5.合金通过冷却可发生奥氏体-马氏体相变, 在奥氏体和马氏体自由能相等的温度 (T0) 下相变能否发生?是否可以在高于马氏体相变开始温度 (Ms)通过其他手段诱发马氏体 相变?从能量的角度(化学自由能、非化学自由能、驱动力)对上面二个问题进行简要分 析。 (8 分) 答案:在 T0 温度下马氏体相变不能发生,因为不具有净相变驱动力以克服相变时 的界面能和应变能。 可以在高于马氏体相变开始温度通过应力或者应变诱发马氏体相变, 因为马氏体相变属于切变,应力或者应变可以提高马氏体相变温度,促使马氏体相变发 生。
10.
根据过饱和固溶体中析出第二相时的相平衡关系或者 Gibbs-Thomson 方程,简
要说明第二相粒子粗化过程;从温度对长大速率和对扩散两个方面的影响,简要说 明温度对粒子t
D C () 2VB 1 1 (1 )( ) r RT ra r
7.将固溶体相和晶界相视为两相平衡状态,如果已知上述两相的自由能-成分曲线, 指出:采用什么方法或法则来确定两相的平衡成分?一般来说,两相的平衡溶质成 分具有怎样的关系?(5 分)
采用平行线法则。一般来说,晶界相的自由能曲线高于晶内相的自由能曲线,因此由平行 线法则确定的晶界相的平衡浓度高于晶内相的平衡浓度。
6.向 Cu 中加入微量的 Bi、As 合金时所产生的效果完全不同。加入微量的 Bi 会使 Cu
显著变脆,而电阻没有显著变化,加入微量的 As 并不会使 Cu 变脆,但是能显著提 高电阻。试根据下面的相图,从溶解度角度对上述现象加以解释。 (8 分)
从相图可以看出,Bi 在 Cu 中的溶解度可以忽略,加入微量的 Bi 会出现纯组元 Bi,并分布在晶 界,使 Cu 变脆;As 在 Cu 中有一定的溶解度,添加微量的 As 不会有第二相 Cu3Au 析出,因此不 会使得 Cu 脆化,但是能提高电阻。
2.从过饱和固溶体()中析出的第二相通常都是很小的粒子() ,一般这些小粒子在 表面张力的作用下会受到附加压应力的作用,写出附加压应力与表面张力和球形粒 子尺寸的关系。以二元溶体为例,用图示的方法简要分析附加压应力对溶体相与析
出相界面(/)平衡关系的影响。在析出的初期,这小粒子一般与基体保持共格关 系,简要分析其原因。 (15 分) 过饱和固溶体 中析出第二相 。 如果析出的第二相 为球体, 相球体 弯曲表面上的表面张力将引起界面两侧 存在不同压力,其压力差为
11. 对于一个二元合金体系 A-B(右图),其混合 自有能可表示为:G = Gideal + GE,其中: Gideal =RT(XAlnXA+XBlnXB) 如果 GE>0, 则会出现如右图的情况:在某一 温度下,G 的曲线出现两个峰值。 试用热力学原理说明,不论在何温度下,当 X 趋近 1 时,总有 G < 0
9.在相变形核阶段,体积自由能、界面能以及应变能中哪些是相变的驱动力?哪些是 相变的阻力?试解释: 在形核阶段, 形核的总自由能为正值, 为什么核心能形成呢? 以马氏体为例,在核心长大阶段的自由能以及界面能和应变能如何变化?(8 分)
在相变形核阶段,体积自由能是相变的驱动力,界面能和应变能是相变的阻力。在形核阶段, 虽然形核的总自由能为正值,但是由于能量起伏,可使得核胚达到临界尺寸以形核。在马氏体核心 长大阶段,界面能的贡献逐渐减小,而应变能逐渐增加,相变驱动力增加。
3.试举出三种二元溶体模型;简要指出各溶体模型的原子相互作用能 IAB 的特征。 (6 分)
理想溶体模型,规则溶体模型和亚规则溶体模型。对于理想溶体模型, IAB=0;对于规则溶体 模型,IAB 为不等于 0 的常数;对于亚工作溶体模型,IAB 为溶体浓度的函数。
相关文档
最新文档