大学物理仿真实验实验报2
大学物理实验报告-单摆测重力加速度 (2)
大学物理仿真实验实验报告拉伸法钢丝测杨氏模量实验名称:拉伸法测金属丝的杨氏模量一、实验目的1、学会测量杨氏模量的一种方法;2、掌握光杠杆放大法测量微小长度的原理;3、学会用逐差法处理数据;二、实验原理任何物体(或材料)在外力作用下都会发生形变。
当形变不超过某一限度时,撤走外力则形变随之消失,为一可逆过程,这种形变称为弹性形变,这一极限称为弹性极限。
超过弹性极限,就会产生永久形变(亦称塑性形变),即撤去外力后形变仍然存在,为不可逆过程。
当外力进一步增大到某一点时,会突然发生很大的形变,该点称为屈服点,在达到屈服点后不久,材料可能发生断裂,在断裂点被拉断。
人们在研究材料的弹性性质时,希望有这样一些物理量,它们与试样的尺寸、形状和外加的力无关。
于是提出了应力F/S(即力与力所作用的面积之比)和应变ΔL/L(即长度或尺寸的变化与原来的长度或尺寸之比)之比的概念。
在胡克定律成立的范围内,应力和应变之比是一个常数,即/)/(=//((1)∆)FL=SLLLE∆FSE被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。
某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。
杨氏模量的大小标志了材料的刚性。
通过式(1),在样品截面积S 上的作用应力为F ,测量引起的相对伸长量ΔL/L ,即可计算出材料的杨氏模量E 。
因一般伸长量ΔL 很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL 。
光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触,见图1。
当杠杆支脚随被测物上升或下降微小距离ΔL 时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角,如图2所示。
当θ很小时, l L /tan ∆=≈θθ(2)式中l 为支脚尖到刀口的垂直距离(也叫光杠杆的臂长)。
根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角,由图可Db=≈θθ22tan (3)式中D 为镜面到标尺的距离,b 为从望远镜中观察到的标尺移动的距离。
卡门涡街的Comsol仿真实验报告
课程名称:大学物理实验(二)实验名称:卡门涡街的Comsol仿真图3.1卡门涡街仿真图四、实验内容及步骤:4.1建模本实验的的建模与仿真可分为八步:1.模型向导2.参数定义3.几何建模4.材料设置5.层流设置6.划分网格7.研究求解8.结果分析操作步骤:1.模型向导1)打开COMSOL软件,在新建窗口中单击模型向导;2)在模型向导窗口中,单击二维;3)在选择物理场树中双击流体流动单相流层流;4)单击添加,然后单击下方的研究;5)在选择研究中选择一般研究瞬态;6)单击底部的完成;2.参数定义1)在左侧模型开发器窗口的全局定义节点下,单击参数1;2)在参数的设置窗口中,定位到参数栏;3)在表中输入以下设置:图4.1 设置示范图4)在左侧主屏幕工具栏中单击f(x)函数,选择全局阶跃;5)在阶跃的设置窗口中,定位到参数栏;6)在位置文本框中输入0.1;3.几何建模1)在上方的几何工具栏中单击矩形;图4.2 建模完成后图材料设置在模型开发器窗口的组件(comp1)节点下,右键单击材料并选择空材料;在材料的设置窗口中,定位到材料属性明细栏;图4.3 设置示范图图层流设置在模型开发器窗口的组件1(comp1)节点下,右键单击层流(spf)并选择入口;在入口的设置窗口中,边界选择栏里选择边界1(单击右侧图形窗口里矩形的左边界即可)在入口的设置窗口中,定位到速度栏,在U0文本框中输入图4.4 划分网格后的图形在模型开发器窗口的研究节点下,单击步骤1: 瞬态;图6.3升力系数随时间的变化由图5.1可知,升力系数的大小在前0.5s几乎为0,0.5s到3.5s升力系数大幅不断变大然后减小,同时升力系数的峰值和谷值的绝对值都在变大,而且峰值和谷值的绝对值近似相等,3.5s到5.0s力系数的峰值和谷值的绝对值缓慢增大,直到5.0s时都取到最大约0.89,此后5.0s到7.0s升力系数在峰值和谷值的绝对值的最大值之间波动。
作出曳力系数随时间变化图图6.4 曳力系数随时间的变化由图5.2可知,曳力系数在0.5s前就从0急剧变大至约3.1,随后在0.5s到3.5s缓慢且小幅减小再增大至约3.17,在3.5s到7.0s时,曳力系数仅在3.17之间微小波动。
大学物理仿真实验报告
大学物理仿真实验报告大学物理仿真实验报告引言在大学物理实验中,物理仿真实验起着重要的作用。
通过仿真实验,学生可以在虚拟环境中进行各种物理实验,观察和分析实验现象,从而加深对物理原理的理解和掌握。
本文将以大学物理仿真实验为主题,探讨其在物理教学中的重要性和应用价值。
一、物理仿真实验的意义物理仿真实验是一种虚拟实验教学手段,通过计算机技术和数学模型,将真实的物理实验过程模拟到计算机软件中,使学生可以在虚拟环境中进行实验操作和观察实验现象。
与传统实验相比,物理仿真实验具有以下几个方面的意义。
1. 提供安全环境物理实验中常常涉及到高温、高压、高电压等危险因素,如果学生没有足够的实验经验和安全意识,很容易发生事故。
而物理仿真实验可以提供一个安全的环境,让学生在虚拟场景中进行实验操作,避免了实验过程中的安全隐患。
2. 提供多样实验条件物理仿真实验可以根据不同的实验要求和学生的学习进度,提供多样的实验条件。
学生可以通过调整参数、改变实验环境等方式,观察和分析不同条件下的实验现象,深入理解物理原理。
3. 提供实验重复性在传统实验中,学生可能因为操作不当或其他原因导致实验结果不准确或失败。
而物理仿真实验可以提供实验的重复性,学生可以反复进行实验,找出问题所在,并改正错误,从而提高实验的准确性和可靠性。
二、物理仿真实验的应用价值物理仿真实验在物理教学中具有广泛的应用价值,不仅可以提高学生的实验操作能力,还可以培养学生的科学思维和创新能力。
1. 提高实验操作能力物理仿真实验可以让学生熟悉实验仪器的使用方法和实验步骤,培养他们的实验操作能力。
通过虚拟实验,学生可以反复练习实验操作,掌握实验技巧,提高实验的准确性和效率。
2. 培养科学思维物理仿真实验可以培养学生的科学思维,让他们学会观察、分析和解释实验现象。
在虚拟实验中,学生需要通过观察实验现象、整理数据、分析规律等步骤,从而培养他们的科学思维和逻辑思维能力。
3. 提升创新能力物理仿真实验可以激发学生的创新能力。
大学物理仿真实验报告
大学物理仿真实验报告单摆测量重力加速度一、实验目的本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。
二、实验原理单摆的结构如实验仪器中所示,其一级近似周期公式为:由此公式可知,测量周期与摆长就可以计算得到重力加速度g三、实验内容一用误差均分原理设计一单摆装置,测量重力加速度g.设计要求:(1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.(2) 写出详细的推导过程,试验步骤.(3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%.可提供的器材及参数:游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用).假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.二. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求.三. 自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小. 四. 自拟试验步骤用单摆实验验证机械能守恒定律.四、实验仪器实验仪器单摆仪,摆幅测量标尺,钢球,游标卡尺五、实验操作1. 用米尺测量摆线长度;测量摆线长度;测量摆线长度;2. 用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;3. 把摆线偏移中心不超过把摆线偏移中心不超过把摆线偏移中心不超过5度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过50 个周期后停止计时,个周期后停止计时,个周期后停止计时,记录所用时间;记录所用时间;六、实验结果七、数据处理D(平均)=(1.722+1.702+1.732+1.662+1.682+1.692)/6=1.698cm摆线长度+摆球直径=92.00cm摆长L=(摆线长度+摆球直径)-摆球半径=92.00-D/2=91.15cm=0.9115mT1=57.55/30=1.918sT2=76.77/40=1.919sT3=96.00/50=1.920sT=(T1+T2+T3)/3=1.919s由得:g=(4**)*L/(T*T)=9.77m/s*s=9.80-9.77=0.03m/s*sE=/g*100%=0.31%<1% 满足实验要求八、误差分析、心得体会及实验建议误差分析:1、周期的测量存在较大误差,摆线来回摆,刚开始计时以及最后一次摆结束的时刻,由于人眼的反应速度会造成或大或小的偏差;2、摆长的测量存在误差,由于不是亲手拿测量仪器测量,故而有些读数不准确,由此引起一部分误差。
物理仿真实验报告
物理仿真实验报告物理仿真实验报告引言:物理仿真实验是一种通过计算机软件模拟真实物理实验的方法,它可以帮助我们深入理解物理现象和原理。
本篇报告将介绍我进行的一次物理仿真实验,重点讨论实验的目的、方法、结果和结论。
实验目的:本次实验的目的是研究物体在受到不同力的作用下的运动规律,并探究力对物体运动的影响。
通过仿真实验,我们可以观察和分析物体在不同力的作用下的运动轨迹、速度和加速度的变化。
实验方法:我们使用了一款物理仿真软件,在虚拟环境中进行实验。
首先,我们选择了一个简单的物理模型,如自由落体或平抛运动。
然后,我们设置不同的初始条件和力的大小,观察物体的运动情况。
通过改变初始速度、质量或施加的力的方向,我们可以研究不同情况下的运动规律。
实验结果:在实验中,我们观察到了许多有趣的现象和规律。
例如,在自由落体实验中,我们发现物体在没有外力作用下以恒定的加速度向下运动,这个加速度被称为重力加速度。
我们还发现,物体的质量对自由落体的运动没有影响,所有物体都以相同的加速度自由下落。
在平抛运动实验中,我们发现物体在水平方向上做匀速直线运动,而在竖直方向上受到重力的影响而做自由落体运动。
通过改变施加的力的大小和方向,我们还研究了物体在斜面上滑动的情况。
我们发现,施加的力越大,物体的加速度越大,滑动的速度也越快。
而改变施加力的方向会改变物体在斜面上的运动轨迹,例如,当施加的力与斜面垂直时,物体只会沿着斜面下滑,而不会在水平方向上运动。
结论:通过这次物理仿真实验,我们深入了解了物体在受到不同力的作用下的运动规律。
我们发现,物体的质量对自由落体和平抛运动没有影响,而施加的力的大小和方向会直接影响物体的加速度和运动轨迹。
这些发现对我们理解和应用物理学原理具有重要意义。
在实际的物理实验中,我们往往受到实验条件的限制,无法进行大范围的变量改变和数据记录。
而物理仿真实验则为我们提供了一个灵活、可控的环境,使我们能够更深入地研究物理现象。
最新大学物理实验仿真实验实验报告
最新大学物理实验仿真实验实验报告
实验目的:
1. 通过仿真实验加深对物理现象的理解。
2. 学习使用计算机辅助物理实验的方法。
3. 掌握数据分析和处理的基本技能。
实验原理:
本实验通过计算机仿真技术模拟物理现象,使学生能够在没有实际实验设备的情况下,也能进行物理实验的学习。
通过模拟实验,可以观察和分析各种物理规律,如牛顿运动定律、电磁学原理等。
实验设备和软件:
1. 计算机及显示器。
2. 物理仿真软件(如PhET Interactive Simulations)。
实验步骤:
1. 打开物理仿真软件,并选择合适的实验模块。
2. 根据实验要求设置初始参数和条件。
3. 运行仿真实验,观察物理现象的变化。
4. 记录实验数据,并进行必要的计算。
5. 分析实验结果,验证物理定律和公式。
6. 撰写实验报告,总结实验过程和结论。
实验数据与分析:
(此处应插入实验数据表格和分析结果,包括但不限于实验观测值、计算值、图表等)
实验结论:
通过本次仿真实验,我们成功地模拟并分析了(具体物理现象)。
实验结果与理论预测相符,验证了(相关物理定律或公式)的正确性。
同时,我们也认识到了仿真实验在物理教学和研究中的重要性和实用性。
建议与反思:
(此处应提出实验过程中遇到的问题、解决方案以及对未来实验的建议或反思)
注意:以上内容仅为模板,具体的实验数据、分析和结论应根据实际完成的仿真实验内容进行填写。
大学物理仿真实验报告
实验名称:光电效应实验实验日期:2023年4月10日学号:2120302003实验人员:张三、李四一、实验目的1. 通过仿真实验,理解光电效应的基本原理。
2. 掌握光电效应方程的推导过程。
3. 分析入射光频率与光电子最大初动能之间的关系。
4. 熟悉光电效应在光电探测技术中的应用。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应方程,光电子的最大初动能 \(E_k\) 与入射光的频率 \(v\) 和金属的逸出功 \(W_0\) 之间存在以下关系:\[E_k = hv - W_0\]其中,\(h\) 为普朗克常数。
三、实验步骤1. 打开仿真软件,设置入射光的频率和强度。
2. 调整金属表面的逸出功,观察光电子的发射情况。
3. 记录不同频率入射光下的光电子最大初动能。
4. 分析入射光频率与光电子最大初动能之间的关系。
四、实验结果与分析1. 当入射光的频率较低时,光电子的发射率较低,且光电子的最大初动能较小。
2. 随着入射光频率的增加,光电子的发射率逐渐增加,光电子的最大初动能也随之增加。
3. 当入射光的频率达到一定值时,光电子的发射率达到最大,此时光电子的最大初动能也达到最大值。
4. 当入射光的频率继续增加时,光电子的发射率逐渐降低,光电子的最大初动能也逐渐降低。
根据实验结果,可以得出以下结论:1. 光电效应方程 \(E_k = hv - W_0\) 是正确的。
2. 入射光的频率与光电子的最大初动能之间存在正相关关系。
3. 光电效应在光电探测技术中具有广泛的应用。
五、实验总结本次实验通过仿真实验,使我们深入理解了光电效应的基本原理,掌握了光电效应方程的推导过程,并分析了入射光频率与光电子最大初动能之间的关系。
通过实验,我们认识到光电效应在光电探测技术中的重要性,为今后的学习和研究打下了坚实的基础。
六、实验拓展1. 研究不同金属的逸出功对光电效应的影响。
2. 探究光强度对光电效应的影响。
大学物理仿真实验报告
大学物理仿真实验报告目录1. 实验目的和意义1.1 实验目的1.2 实验意义2. 理论背景介绍2.1 牛顿力学2.2 动量守恒定律2.3 能量守恒定律3. 实验器材和原理3.1 实验器材3.2 实验原理4. 实验步骤4.1 实验准备4.2 实验具体步骤5. 实验数据记录及分析5.1 数据记录5.2 数据分析6. 实验结论与讨论6.1 实验结论6.2 结论讨论7. 实验中的问题及解决方法7.1 问题描述7.2 解决方法实验目的和意义实验目的本实验旨在通过物理仿真模拟,探究运动物体的力学规律,深入理解牛顿力学原理以及动量守恒和能量守恒定律。
实验意义通过本实验,可以加深对物理定律的理解,提高实验操作能力,培养科学思维和分析问题的能力。
理论背景介绍牛顿力学牛顿力学是经典物理力学的一个重要分支,主要描述了物体受力下的运动规律,包括牛顿三定律等内容。
动量守恒定律动量守恒定律表明,在一个封闭系统内,系统的总动量保持不变,即系统内所有物体的动量之和在任意时刻都是恒定的。
能量守恒定律能量守恒定律是物理学中的一个基本原理,即在一个封闭系统内,系统的总能量保持不变,能量可以转化形式但总量不变。
实验器材和原理实验器材本实验所需器材包括计算机、物理仿真软件等。
实验原理实验基于牛顿力学原理,通过模拟不同条件下物体的运动,验证动量守恒和能量守恒定律。
实验步骤实验准备1. 打开计算机,启动物理仿真软件。
2. 设置实验初始参数,包括物体质量、速度等。
实验具体步骤1. 进行单个物体的运动模拟,记录相关数据。
2. 进行碰撞实验,观察动量和能量的转移情况。
3. 分析实验结果,得出结论。
实验数据记录及分析数据记录在实验过程中记录了单个物体的运动轨迹、速度等数据,以及碰撞实验中的动量和能量转移情况。
数据分析通过对实验数据的分析,可以验证动量守恒和能量守恒定律是否得到满足,进一步探讨物体运动规律。
实验结论与讨论实验结论实验结果表明,在所设定条件下,动量守恒和能量守恒定律是成立的,验证了物理定律在模拟实验中的适用性。
大学物理仿真实验报告--固体线膨胀系数的测量
固体线膨胀系数的测量一、实验目的测定金属棒的线胀系数,并学习一种测量微小长度的方法。
二、实验原理固体的线膨胀系数和体膨胀系数是固体热学特性的重要参数,通常体膨胀系数是线膨胀系数的3倍左右,本实验主要介绍固体线膨胀系数的测量方法。
线膨胀是指材料在受热膨胀时,在一维方向上的伸长。
在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t 1加热至末温t 2,物体伸长了△L ,则线膨胀系数满足:()12t t L L -=∆α 即 上式中△L 是个极小的量,我们采用光杠杆测量。
光杠杆法测量△L :如下图(见教材杨氏模量原理)1.当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b 1、b 2,这时有即 则固体线膨胀系数为:三、实验仪器尺读望远镜,米尺,固体线膨胀系数测定仪,铜棒,光杠杆,温度计。
四、实验内容及步骤1、在实验界面单击右键选择“开始实验”l L D bb ∆=-212()Dlb b L 212-=∆()12t t L L-∆=α()()k DLl t t DL b b l 221212=--=α2、调节平面镜至竖直状态3、打开望远镜视野,并调节方位、聚焦、目镜使得标尺刻线清晰,且中央叉丝读数为0.0mm4、单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止5、单击卷尺,分别测量l、D6、以t 为横轴,b 为纵轴作b -t 关系曲线,求直线斜率k b-t关系曲线b = 0.3724t + 0.38615101520253035400102030405060708090100t(℃)b (m m )b-t关系曲线7、代入公式计算线膨胀系数值有图得K =0.3724=1.206x10-5 /C 五、实验数据记录与处理 温度(摄氏度) 1020 30 40 50 60 70 80 90 长度(mm ) 0 3.7 7.3 11.1 15.0 18.8 22.2 26.1 30.0()()k DLl t t DL b b l 221212=--=α六、思考题1.对于一种材料来说,线胀系数是否一定是一个常数?为什么?不是。
大学物理仿真实验实验报告 超声波测声速
大学物理仿真【2 】实验实验报告实验日期:实验者:班级:学号:超声波测声速一实验道理由波动理论可知,波速与波长.频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速.本实验经由过程低频旌旗灯号产生器掌握换能器,旌旗灯号产生器的输出频率就是声波频率.声波的波长用驻波法(共振干预法)和行波法(相位比较法)测量.下图是超声波测声速实验装配图.驻波法测波长由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分离是:叠加后合成波为:的各点振幅最大,称为波腹,对应的地位:( n =0,1,2,3……)的各点振幅最小,称为波节,对应的地位:( n =0,1,2,3……)二实验仪器1)声速的测量实验仪器包括超声声速测定仪.函数旌旗灯号产生器和示波器2)超声声速测定仪重要部件是两个压电陶瓷换能器和一个游标卡尺.3)函数旌旗灯号产生器供给必定频率的旌旗灯号,使之等于体系的谐振频率.4)示波器示波器的x, y轴输入各接一个换能器,转变两个换能器之间的距离会影响示波器上的图形.并由此可测得当前频率下声波的波长,联合频率,可以求得空气中的声速.三实验内容1.调剂仪器使体系处于最佳工作状况.2.用驻波法(共振干预法)测波长和声速.3.用相位比较法测波长和声速.*留意事项1.确保换能器S1和S2端面的平行.2.旌旗灯号产生器输出旌旗灯号频率与压电换能器谐振频率f0保持一致.三数据记载与处理1.基本数据记载谐振频率=33.5kHz2.驻波法测量声速表1 驻波法测量声速数据λ的平均值:==∑=6161i i λλ 1.0585(cm )λ的不肯定度:)1()(612--=∑=i i S i i λλλ=0.002(cm )因为,λi = (1i+6-1i ) /3,Δ仪=0.02mm 所以,=仪∆=332λu 0.000544(cm )=+=22λλλσu S 0.021(mm ) 盘算声速:50.354==λυf (m/s )盘算不肯定度:(m/s)3)()((kHz)2.03%122=+==⨯=f f f f λσσσσλυ实验成果表示:υ=(354±3)m/s ,=0.8%3. 相位比较法测量声速表2 相位比较法测量声速数据(相位变换2π)λ的平均值:==∑=7171i i λλ 1.1041(cm )λ的不肯定度:)1()(712--=∑=i i S i iλλλ=0.002(cm )因为,λi = (1i+7-1i ) /7,Δ仪=0.02mm 所以,=仪∆=372λu 0.000233(cm )=+=22λλλσu S 0.020(mm ) 盘算声速:31.353==λυf (m/s )盘算不肯定度:(m/s)3)()((kHz)2.03%122=+==⨯=f f f f λσσσσλυ实验成果表示:υ=(353±3)m/s ,B=0.8%四 实验结论1 应用驻波法测得声速为υ=(354±3)m/s2 应用相位法测得声速为υ=(353±3)m/s五 实验思虑题1.固定距离,转变频率,以求声速.是否可行?答: 能.因为v = f λ,已知频率f,并且波长λ也能经由过程示波器图像读 出所以可以用驻波法测量出声速.4)各类气体中的声速是否雷同?为什么?答:不同.声波在不同介质中有不同的波长.频率和速度.。
大学物理仿真实验报告
大
学
物
理
仿
真
实
验
报
告
实验名称:气垫上的直线运动
一.实验目的:
利用气垫技术精确的测定物体的平均速度、瞬时速度、加速度以及当地的重力加速度,通过物体沿斜面自由下滑运动来研究匀变速运动的规律和验证牛顿第二定律。
二.实验原理:
三.实验仪器:
气垫导轨装置(主要由气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等组成)
四.实验步骤:
五.实验结果:1.实验过程效果图:
2.匀变速运动中速度与加速度的测量
3.验证牛顿第二定律
六.思考题:
1-用平均速度V代替瞬时速度V对本实验中的影响如何?答:会使测得结果偏小影响实验精度。
大学物理实验仿真实验实验报告
⼤学物理实验仿真实验实验报告仿真实验(单摆测重⼒加速度和单透镜焦距的测定)引⾔随着计算机应⽤的普及,在各个应⽤领域都采⽤计算机设计和仿真,在⼤学物理实验课教学中,除了实际操作外还可以进⾏计算机仿真实验,对有些内容采⽤仿真实验也可以起到很好的效果。
⼀、实验⽬的:1、了解仿真实验特点2、学会⽤仿真实验完成单摆测重⼒加速度3、学会⽤仿真实验完成单透镜焦距的测定⼆、实验仪器:计算机、仿真软件三、实验原理1、单摆的⼯作原理单摆在摆动过程中,当摆⾓⼩于5度时,其运动为简谐运动,周期2224LT g Tπ=?=,通过测定摆长L 与T 可测定加速度g 。
详细请见:课本240-243页 2、单透镜焦距测定的原理凸透镜的成像规律为:像的⼤⼩和位置是依照物体离透镜的距离⽽决定的当u f >>时,极远处的物体经过透镜在后焦点附近成缩⼩的倒⽴实像。
当u f >时,物体越靠近前焦点,像逐渐远离后焦点且逐渐变⼤。
当u f =时,物体位于前焦点,像存在于⽆穷远处。
当u f <时,物体位于前焦点以内,像为正⽴放⼤的虚像,与物体位于同侧,由于虚像点是光线反⽅向延长的交点,因此不能⽤像屏接收,只能通过透镜观察。
(1)、⾃准直法测凸透镜的焦距光路图如下图1所⽰。
当物体A 处在凸透镜的焦距平⾯时,物A 上各点发出的光束,经透镜后成为不同⽅向的平⾏光束。
若⽤⼀与主光轴垂直的平⾯镜M 将平⾏光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平⾯上,此关系就称为⾃准直原理。
所成像是⼀个与原物等⼤的倒⽴实像A ′。
所以⾃准直法的特点是,物、像在同⼀焦平⾯上。
⾃准直法除了⽤于测量透镜焦距外,还是光学仪器调节中常⽤的重要⽅法。
凸透镜焦距: 12f x x =- (1)x 1为物屏在光具座上位置读数,x 2为凸透镜在光具座上位置读数。
(2)、贝塞尔法(共轭法,⼆次成像法)测凸透镜的焦利⽤凸透镜物像共轭对称成像的性质测量凸透镜焦距的⽅法,叫共轭法。
大学物理仿真实验报告
大学物理仿真实验报告篇一:大学物理仿真实验报告大学物理仿真实验报告实验日期:2011年5月31日实验人员:机自实验名称:热敏电阻的温度特性一、实验目的:1、了解热敏电阻的电阻—温度特性及测温原理;2、学习惠斯通电桥的原理及使用方法;3、学习坐标变换、曲线改直的技巧。
二、实验原理:热敏电阻---实验原理半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:A、B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为惠斯通电桥的工作原理:如图所示:四个电阻R0,R1,R2,Rx 组成一个四边形,即电桥的四个臂,其中Rx就是待测电阻。
在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G。
当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。
平衡时必有Rx = (R1/R2)·R0,(R1/R2)和R0都已知,Rx 即可求出。
电桥灵敏度的定义为:式中ΔRx指的是在电桥平衡后Rx的微小改变量,Δn越大,说明电桥灵敏度越高。
实验仪器三、实验仪器及使用方法:直流单臂电桥、检流计、待测热敏电阻和温度计、调压器、稳压电源。
四、实验内容:1、从室温开始,每隔5°C测量一次Rt,直到85°C。
撤去电炉,使水慢慢冷却,测量降温过程中,各对应温度点的Rt。
2、作ln Rt ~ (R1 / T)曲线,确定式(R1)中常数A和B五、数据记录及处理:1、数据处理结果如下:2、作ln Rt ~ (R1 / T)曲线如下:六、实验结论,误差分析及建议:1、实验结论:了解了惠斯通电桥的原理及使用方法;基本掌握坐标变换、曲线改直的技巧。
作ln Rt ~ (R1 / T)曲线,成线性关系。
2、误差分析:由于在记录过程中温度计视数在变化,故出现误差; 电源不稳定,造成系统误差;数据处理时产生偶然误差。
3、建议:1)在使用检流计时,要注意保护检流计,不要让大电流通过检流计,实验中间要用跃接2)实验过程中要注意电池按钮和接通检流计按钮的使用,检流计按钮先使用粗,然后再使用细,不要两个按钮同时使用。
大学物理仿真实验报告
大学物理仿真实验报告项目名称:固体热膨胀系数的测量院系名称:电气工程学院专业班级:姓名:学号:一、实验目的1.掌握测量固体线热膨胀系数的基本原理。
2.掌握大学物理仿真实验软件的基本操作方法。
3.测量铜棒的线热膨胀系数。
4.学会用图解图示法处理实验数据。
二、实验原理1.膨胀系数 : 表征物体热胀冷缩特性的物理量,常用:(1)线膨胀系数描述材料在受热状态下,在一维方向上膨胀特性的物理量。
定义为:(2)体膨胀系数体膨胀是材料在受热时体积的增加,一般情况下,固体的体胀系数为其线胀系数的3倍。
2.光杠杆放大原理(测量△L)L b n DL tα⋅∆=∆DLbL* =2αK三、实验仪器1.实物仪器:镜尺组、平面镜、待测铜棒等。
2.仿真软件的操作方法演示。
四、实验内容及步骤(实验过程截图)1、调整试验仪器。
调整镜面垂直,然后调整望远镜是视野达到要求。
2、开始试验,将功率调到最大,每经过十摄氏度读取一次数据。
3、对其他试验数据进行测量。
按要求测量D、d、L。
记录数据。
4、对试验数据进行分析计算。
五、数据记录与处理温度伸长量10 020 0.3530 0.7140 1.1150 1.5160 1.8870 2.2280 2.6190 3.01b=(7.20-1.00)cmD=(196.90-8.40)cmL=50.70cm由图表知道斜率K=0.0377由公式得:膨胀系数为1.223。
大学物理实验仿真实验实验报告
大学物理实验仿真实验实验报告I. 引言大学物理课程中的实验教学是培养学生科学思维和实践能力的重要环节。
然而,由于实验设备和资源的限制,学生往往难以亲自进行所有的物理实验。
为了解决这一问题,许多高校开始采用物理实验仿真实验,即利用计算机模拟技术进行物理实验的虚拟仿真。
本实验报告将详细介绍一次大学物理实验仿真实验的进行过程和结果。
II. 实验目的本次实验的目的是通过物理仿真软件,模拟测量并分析简谐振动的周期时间与质量、弹性系数的关系。
通过实验,掌握简谐振动的基本原理和实验方法,并通过仿真实验,加深对实验数据的分析和处理能力。
III. 实验原理简谐振动是指物体在一个恢复力作用下沿同一直线往复运动的物理现象。
其周期T与质量m以及弹性系数k之间的关系可以通过以下公式表示:T = 2π√(m/k)根据该公式,我们可以推导出质量对周期的影响,以及弹性系数对周期的影响。
通过仿真实验,我们可以得到不同质量和弹性系数下的周期时间数据,进而分析它们之间的关系。
IV. 实验装置与方法本次实验采用XXX物理仿真实验软件进行,该软件能够通过计算机模拟出各种物理实验的过程和结果。
具体的实验步骤如下:1. 打开XXX物理仿真实验软件,进入简谐振动实验模块。
2. 设置初始条件,包括质量、弹性系数等参数。
3. 点击开始按钮,开始模拟实验过程。
4. 观察模拟实验的过程,记录下每次振动的周期时间。
5. 根据记录的周期时间数据,计算出不同质量和弹性系数下的平均周期时间。
6. 绘制周期时间与质量、弹性系数之间的关系曲线。
V. 实验结果与分析根据模拟实验过程中记录的数据,我们计算出了不同质量和弹性系数下的平均周期时间,并绘制了周期时间与质量、弹性系数之间的关系曲线。
通过曲线的趋势,我们可以得出以下结论:1. 质量对周期时间的影响:质量越大,周期时间越长。
这是因为质量越大,惯性力也就越大,所需的恢复力也越大,导致周期时间增加。
2. 弹性系数对周期时间的影响:弹性系数越大,周期时间越短。
大学物理仿真实验报告
实验名称:碰撞过程中守恒定律的研究实验日期:实验人:1. 实验目的:利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。
定量研究动量损失和能量损失在工程技术中有重要意义。
同时通过实验还可提高误差分析的能力。
2. 实验仪器和使用:实验仪器:主要有气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等。
1.气垫导轨是以空气作为润滑剂,近似无摩擦的力学实验装置。
导轨由优质三角铝合金管制成,长约 2m ,斜面宽度约7cm ,管腔约18.25cm ,一端密封,一端通入压缩空气。
铝管向上的两个外表面钻有许多喷气小孔,压缩空气进入管腔后,从小孔喷出。
导轨的一端装有滑轮,导轨的二端装有缓冲弹簧,整个导轨安装在工字梁上,梁下有三个支脚,调节支脚螺丝使气垫保持水平。
2.光电计时系统由光电门和数字毫秒计或电脑计时器构成。
光电门安装在气轨上,时间由数字毫秒计或电脑计时器测量。
3.气源是向气垫导轨管腔内输送压缩空气的设备。
要求气源有气流量大、供气稳定、噪音小、能连续工作的特点,一般实验室采用小型气源,气垫导轨的进气口用橡皮管和气源相连,进入导轨内的压缩空气,由导轨表面上的小孔喷出,从而托浮起滑块,托起的高度一般在0.1mm 以上。
3.实验原理:如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即ii v m ∑=恒量 (1) 实验中用两个质量分别为m 1、m 2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有2211202101v m v m v m v m +=+ (2)对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。
当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。
大学物理仿真实验报告——碰撞与动量守恒
⼤学物理仿真实验报告——碰撞与动量守恒⼤学物理仿真实验实验报告碰撞与动量守恒班级:信息1401 姓名:龚顺学号: 2【实验⽬得】:1 了解⽓垫导轨得原理,会使⽤⽓垫导轨与数字毫秒计进⾏试验.2 进⼀步加深对动量守恒定律得理解,理解动能守恒与动量守恒得守恒条件。
【实验原理】当⼀个系统所受与外⼒为零时,系统得总动量守恒,即有若参加对⼼碰撞得两个物体得质量分别为m1与m2 ,碰撞前后得速度分别为V10、V20与V1 、V2.1,完全弹性碰撞在完全弹性碰撞中,动量与能量均守恒,故有:取V20=0,联⽴以上两式有:动量损失率:动能损失率:2,完全⾮弹性碰撞碰撞后两物体粘在⼀起,具有相同得速度,即有:仍然取V20=0,则有:动能损失率:动量损失率:3,⼀般⾮弹性碰撞中⼀般⾮弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数:两物体碰撞后得分离速度⽐两物体碰撞前得接近速度即恢复系数。
当V20=0时有:e得⼤⼩取决于碰撞物体得材料,其值在0~1之间。
它得⼤⼩决定了动能损失得⼤⼩。
当e=1时,为完全弹性碰撞;e=0时,为完全⾮弹性碰撞;0〈e<1时,为⼀般⾮弹性碰撞。
动量损失:动能损失:【实验仪器】本实验主要仪器有⽓轨、⽓源、滑块、挡光⽚、光电门、游标卡尺、⽶尺与光电计时装置等【实验内容】⼀、⽓垫导轨调平及数字毫秒计得使⽤1、⽓垫导轨调平打开⽓源,放上滑块,观察滑块与轨⾯两侧得间隙纵向⽔平调节双⽀脚螺丝,横向⽔平调节单⽀脚,直到滑块在任何位置均保持不动,或做极缓慢得来回滑动为⽌。
动态法调平,滑块上装挡光⽚,使滑块以缓慢速度先后通过两个相距60cm得光电门,如果滑块通过两光电门得时间差⼩于1ms,便可认为轨道已经调平.本实验采⽤动态调节。
2、数字毫秒计得使⽤使⽤U型挡光⽚,计算⽅式选择B档。
⼆滑块上分别装上弹簧圈碰撞器.将⼩滑块m2置于两个相距40cm得光电门之间,使其静⽌,使⼤滑块m1以速度V10去碰撞m2,从计时器上读出碰撞前后通过S距离所⽤得时间t10,t1,t2、记录数据.⼆、重复5次测量,计算动量与动能损失。
大学物理仿真实验实验报告_分光计
大学物理仿真实验实验报告_分光计.大学物理仿真实验实验报告分光计土木21班2120702008崔天龙..验项目名称:分光计一、实验目的1(使学生深入了解分光计的构造和设计原理,学会调整分光计的正确方法;2(了解用最小偏向角法测棱镜材料折射率的基本原理;3(完成测量折射率实验,并正确分析实验误差。
二、实验原理1(分光计的结构分光计主要由三部分:望远镜,平行光管和主体(底座、度盘和载物台)组成。
附件有小灯泡、小灯泡的低压电源以及看度盘的放大镜。
望远镜的目镜叫做阿贝目镜,如图1所示。
2(分光计的调整原理和方法调整分光计,最后要达到下列要求:(1)平行光管发出平行光;(2)望远镜对平行光聚焦(即接收平行光);(3)望远镜、平行光管的光轴垂直仪器公共轴。
分光计调整的关键是调好望远镜,其他的调整可以以望远镜为标准。
在调整望远镜时,可以先将小灯泡的光引入分划板,当分划板的位置刚好在望远镜的焦平面上时,从载物台上放置的平面镜上反射回来的光正好落在分划板上形成一个清晰的十字象。
利用这个原理可以将望远镜调好(出射平行光以及使望远镜的主轴与仪器主轴垂直),当望远镜调好后就可以利用望远镜调节平行光管,此时就可以进行光线的角度的测量了。
3(用最小偏向角法测三棱镜材料的折射率..如下图,一束单色光以角入射到AB面上,经棱镜两次折射后,从AC面射出来,出射角为。
入射光和出射光之间的夹角称为偏向角。
当棱镜顶角A一定时,偏向角的大小随入射角的变化而变化。
而当=时,为最小(证明略)。
这时的偏向角称为最小偏向角,记为。
由上图可以看出,这时设棱镜材料折射率为n,则故..由此可知,要求得棱镜材料的折射率n,必须测出其顶角A和最小偏向角。
三、实验仪器图 1 : 分光计仪器分光计是一种基本的光学测量仪器,能准确快捷地测量各种角度,该仪器配上棱镜、光栅等可用于光谱测量。
配上偏振片、波片等,可作为椭偏仪使用。
图 2 : 分光计分光计中心为载物台,外围为刻度盘和游标盘,双游标的作用是为了消除刻度盘和游标盘中心不重合造成的偏心误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理仿真实验实验报告
实验名称:空气比热容比测定
学院:机械工程学院
专业班号:车辆11
姓名:刘娟娟
学号:2110105001
一.实验目的
1.用绝热膨胀法测定空气的比热容比。
2.观测热力学过程中状态变化及基本物理规律。
3.学习气体压力传感器和电流型集成温度传感器的原理及使用方法
二.实验原理
对理想气体的定压比热容C p和定容比热容C v之关系由下式表示:
C p—C v=R (1)
(1)式中,R为气体普适常数。
气体的比热容比r值为:
r= C p/C v (2)
气体的比热容比现称为气体的绝热系数,它是一个重要的物理量,r值经常出现在热力学方程中。
测量r值的仪器如图〈一〉所示。
实验时先关闭活塞C2,将原处于环境大气压强P0、室温θ0的空气从活塞C1,处把空气送入贮气瓶B内,这时瓶内空气压强增大。
温度升高。
关闭活塞C1,待稳定后瓶内空气达到状态I(P0,θ0,V1),V1为贮气瓶容积。
然后突然打开阀门C2,使瓶内空气与大气相通,到达状态II(P1,θ0,V1)后,迅速关闭活塞C2,由于放气过程很短,可认为是一个绝热膨胀过程,瓶内气体压强减小,温度降低,绝热膨胀过程应满足方程:
(3)
在关闭活塞C2之后,贮气瓶内气体温度将升高,当升到温度θ0时,原状态为I(P1,θ0,V1)体系改变为状态III(P2,θ0,V2),应满足:
(4)
由(3)式和(4)式可得到:
(5)
利用(5)式可以通过测量P0、P1和P2值,求得空气的比热容比r值。
空气比热容测定---实验内容
1.按图〈一〉接好仪器的电路,AD590的正负极请勿接错。
用Forton式气压计测定大气压强P0,用水银温度计测环境室温θ0。
开启电源,将电子仪器部分预热20分钟,然后用调零电位器调节零点,把三位半数字电压表表示值调到0。
2.把活塞C2关闭,活塞C1打开,用打气球把空气稳定地徐徐进入贮气瓶B内。
用压力传感器和AD590温度传感器测量空气的压强和温度,记录瓶内压强均匀稳定时,压强P1和温度θ0值(室温为θ0)。
3.突然打开活塞C2,当贮气瓶的空气压强降低至环境大气压强P0时(这时放气声消失),迅速关闭活塞C2。
4.当贮气瓶内空气的温度上升至室温θ0时,记下贮气瓶内气体的压强P2。
5.用公式(5)进行计算,求得空气比热容比值。
图〈一〉实验装置中1为进气活塞塞C1,2为放气活塞C2,3为电流型集成温度传感器AD590,它是新型半导体温度传感器,温度测量灵敏度高,线性好,测温范围为-50℃至150℃。
AD590接6V直流电源后组成一个稳流源,见图〈二〉,它的测温灵敏度为1μA/℃,若串接5KΩ电阻后,可产生5mv/℃的信号电压,接0~2V量程四位半数字电压表,可检测到最小0.02℃温度变化。
4为气体压力传感器探头,由同轴电缆线输出信号,与仪器内的放大器及三位半数字电压表相接。
当待测气体压强为环境大气压P0时,数字电压表显示为0;当待测气体压强为P0+10.00KPa时,数字电压表显示为200mv;仪器测量气体压强灵敏度为
20mv/KPa,测量精度为5Pa。
三.实验器材
四.实验过程截图
五.实验数据及其处理
六.试验结果及误差总结
试验结果:
误差总结:活塞2释放的时间没有控制好。