Effect of external magnetic field on electron spin dephasing induced by hyperfine interacti
不同磁场作用下的塞曼效应
不同磁场作用下的塞曼效应解析摘要:本文重点讲述在不同磁场作用下的塞曼效应,先从不同的角度,用不同的方法解释拉塞曼效应理论。
先从经典物理学角度出发,利用牛顿定理解释了塞曼效应理论及其现象,然后又从大学所学的知识半量子理论推导出了塞曼效应理论及现象,都证明了塞曼效应——带电粒子在外磁场作用下光谱分裂的情况。
在不同的外磁场作用下,带电粒子光谱分裂会有哪些不同现象及规律呢?本片论文重点为大家解释了不同外磁场作用下,光谱线分裂的情况,最后得出结论:在强的磁场作用下,发生了正常的塞曼效应及一条光谱线在磁场作用下分裂成了三条;在弱的磁场作用下发生了反常的塞曼效应,原来一条光谱线在磁场作用下分裂成了多条。
关键词:塞曼效应;自旋角动量;原子磁矩;正常塞曼效应;反常塞曼效应;光谱线;微扰理论;光谱分裂;II目录1.引言 ............................................................................................................................................... 1 2.塞曼效应. (1)2.1塞曼效应的概念 ................................................................................................................. 1 2.2塞曼效应的经典解释 ......................................................................................................... 1 2.3塞曼效应的半经典半量子解释 ......................................................................................... 3 2.4 两种解释的比较 ................................................................................................................ 4 3. 不同磁场下的塞曼分析 .. (5)3.1磁场的强弱 (5)3.2在均匀外磁场B 中单电子原子体系的总H (5)3.3强弱磁场作用下的塞曼效应 (5)3.3.1在强磁场作用下 ...................................................................................................... 5 3.3.2 在弱磁场作用下 ..................................................................................................... 7 3.4 结论 ................................................................................................................................. 10 4 结束语 ........................................................................................................................................ 10 参考文献:. (10)1.引言彼德·塞曼(1865-1943)是一位著名的实验物理学家。
霍尔效应Hall Effect
(
)
(7’)
(
)
(8’)
(10)
where n and p are the electron and hole concentrations. Solving the r equations (6 – 10) under the condition j y = 0 ( j = ( j , 0, 0) ), we obtain:
RH (B ) = 1 µ p − µn ⋅ . eni µ p + µ n (19)
For heavily doped (extrinsic) semiconductors we have:
σ(B ) ≅ enµ n , RH (B ) ≅ − σ(B ) ≅ epµ p , R H (B ) ≅
(22)
(23)
where i is the current flowing in Ox direction and:
σ= ab cb = , crx ary
(24)
rx , ry being the sample resistance in Ox, Oy directions, respectively.
U H = V A − VB .
(2)
The Hall bias is determined by the deviation of the charge carriers, which form a current through the sample, under the action of the Lorenz force: r r r FL = ±e v ∧ B , (3) r where v is the average (drift) velocity of the charge carriers moving r through the sample under the action of the field E and e is the elementary
磁学 径向克尔 英文 kerr effect
IntroductionThe Kerr effect, also known as the magneto-optic Kerr effect (MOKE), is a phenomenon that manifests the interaction between light and magnetic fields in a material. It is named after its discoverer, John Kerr, who observed this effect in 1877. The radial Kerr effect, specifically, refers to the variation in polarization state of light upon reflection from a magnetized surface, where the change occurs radially with respect to the magnetization direction. This unique aspect of the Kerr effect has significant implications in various scientific disciplines, including condensed matter physics, materials science, and optoelectronics. This paper presents a comprehensive, multifaceted analysis of the radial Kerr effect, delving into its underlying principles, experimental techniques, applications, and ongoing research directions.I. Theoretical Foundations of the Radial Kerr EffectA. Basic PrinciplesThe radial Kerr effect arises due to the anisotropic nature of the refractive index of a ferromagnetic or ferrimagnetic material when subjected to an external magnetic field. When linearly polarized light impinges on such a magnetized surface, the reflected beam experiences a change in its polarization state, which is characterized by a rotation of the plane of polarization and/or a change in ellipticity. This alteration is radially dependent on the orientation of the magnetization vector relative to the incident light's plane of incidence. The radial Kerr effect is fundamentally governed by the Faraday-Kerr law, which describes the relationship between the change in polarization angle (ΔθK) and the applied magnetic field (H):ΔθK = nHKVwhere n is the sample's refractive index, H is the magnetic field strength, K is the Kerr constant, and V is the Verdet constant, which depends on the wavelength of the incident light and the magnetic properties of the material.B. Microscopic MechanismsAt the microscopic level, the radial Kerr effect can be attributed to twoprimary mechanisms: the spin-orbit interaction and the exchange interaction. The spin-orbit interaction arises from the coupling between the electron's spin and its orbital motion in the presence of an electric field gradient, leading to a magnetic-field-dependent modification of the electron density distribution and, consequently, the refractive index. The exchange interaction, on the other hand, influences the Kerr effect through its role in determining the magnetic structure and the alignment of magnetic moments within the material.C. Material DependenceThe magnitude and sign of the radial Kerr effect are highly dependent on the magnetic and optical properties of the material under investigation. Ferromagnetic and ferrimagnetic materials generally exhibit larger Kerr rotations due to their strong net magnetization. Additionally, the effect is sensitive to factors such as crystal structure, chemical composition, and doping levels, making it a valuable tool for studying the magnetic and electronic structure of complex materials.II. Experimental Techniques for Measuring the Radial Kerr EffectA. MOKE SetupA typical MOKE setup consists of a light source, polarizers, a magnetized sample, and a detector. In the case of radial Kerr measurements, the sample is usually magnetized along a radial direction, and the incident light is either p-polarized (electric field parallel to the plane of incidence) or s-polarized (electric field perpendicular to the plane of incidence). By monitoring the change in the polarization state of the reflected light as a function of the applied magnetic field, the radial Kerr effect can be quantified.B. Advanced MOKE TechniquesSeveral advanced MOKE techniques have been developed to enhance the sensitivity and specificity of radial Kerr effect measurements. These include polar MOKE, longitudinal MOKE, and polarizing neutron reflectometry, each tailored to probe different aspects of the magnetic structure and dynamics. Moreover, time-resolved MOKE setups enable the study of ultrafast magneticphenomena, such as spin dynamics and all-optical switching, by employing pulsed laser sources and high-speed detection systems.III. Applications of the Radial Kerr EffectA. Magnetic Domain Imaging and CharacterizationThe radial Kerr effect plays a crucial role in visualizing and analyzing magnetic domains in ferromagnetic and ferrimagnetic materials. By raster-scanning a focused laser beam over the sample surface while monitoring the Kerr signal, high-resolution maps of domain patterns, domain wall structures, and magnetic domain evolution can be obtained. This information is vital for understanding the fundamental mechanisms governing magnetic behavior and optimizing the performance of magnetic devices.B. Magnetometry and SensingDue to its sensitivity to both the magnitude and direction of the magnetic field, the radial Kerr effect finds applications in magnetometry and sensing technologies. MOKE-based sensors offer high spatial resolution, non-destructive testing capabilities, and compatibility with various sample geometries, making them suitable for applications ranging from magnetic storage media characterization to biomedical imaging.C. Spintronics and MagnonicsThe radial Kerr effect is instrumental in investigating spintronic and magnonic phenomena, where the manipulation and control of spin degrees of freedom in solids are exploited for novel device concepts. For instance, it can be used to study spin-wave propagation, spin-transfer torque effects, and all-optical magnetic switching, which are key elements in the development of spintronic memory, logic devices, and magnonic circuits.IV. Current Research Directions and Future PerspectivesA. Advanced Materials and NanostructuresOngoing research in the field focuses on exploring the radial Kerr effect in novel magnetic materials, such as multiferroics, topological magnets, and magnetic thin films and nanostructures. These studies aim to uncover newmagnetooptical phenomena, understand the interplay between magnetic, electric, and structural order parameters, and develop materials with tailored Kerr responses for next-generation optoelectronic and spintronic applications.B. Ultrafast Magnetism and Spin DynamicsThe advent of femtosecond laser technology has enabled researchers to investigate the radial Kerr effect on ultrafast timescales, revealing fascinating insights into the fundamental processes governing magnetic relaxation, spin precession, and all-optical manipulation of magnetic order. Future work in this area promises to deepen our understanding of ultrafast magnetism and pave the way for the development of ultrafast magnetic switches and memories.C. Quantum Information ProcessingRecent studies have demonstrated the potential of the radial Kerr effect in quantum information processing applications. For example, the manipulation of single spins in solid-state systems using the radial Kerr effect could lead to the realization of scalable, robust quantum bits (qubits) and quantum communication protocols. Further exploration in this direction may open up new avenues for quantum computing and cryptography.ConclusionThe radial Kerr effect, a manifestation of the intricate interplay between light and magnetism, offers a powerful and versatile platform for probing the magnetic properties and dynamics of materials. Its profound impact on various scientific disciplines, coupled with ongoing advancements in experimental techniques and materials engineering, underscores the continued importance of this phenomenon in shaping our understanding of magnetism and driving technological innovations in optoelectronics, spintronics, and quantum information processing. As research in these fields progresses, the radial Kerr effect will undoubtedly continue to serve as a cornerstone for unraveling the mysteries of magnetic materials and harnessing their potential for transformative technologies.。
Hall Effect Sensor
Hall Effect Sensors
A linear sensor usually incorporates an amplifier for the easier interface with the peripheral circuits. In comparison with a basic sensor, they operate over a broader voltage range and are more stable in a noisy environment. These sensors are not quite linear with respect to magnetic field density and, therefore, the precision measurements require a calibration. In addition to the amplifier, the threshold-type sensor contains a Schmitt trigger detector with a built-in hysteresis. The output signal as a function of magnetic field density is shown in figure 5B.
Hall Effect Sensors
During recent years, Hall effect sensors became increasingly popular. There are two types of Hall sensors: linear and threshold.
Fig. 4 Circuit diagrams of linear (A) and threshold (B) Hall effect sensor
瓦形磁铁的退磁因子
瓦形磁铁的退磁因子英文回答:The demagnetization factor of a V-shaped magnet refers to the extent to which the magnet loses its magnetic properties over time. This factor is influenced by various factors, including the material composition of the magnet, its shape, and the external conditions it is exposed to.One of the main factors that affects the demagnetization factor of a V-shaped magnet is the material it is made of. Different materials have different magnetic properties and can retain their magnetism to varying degrees. For example, a magnet made of neodymium, which is a type of rare-earth magnet, has a high demagnetization factor and can lose its magnetism relatively quickly. On the other hand, a magnet made of ceramic or Alnico, which are commonly used in V-shaped magnets, has a lower demagnetization factor and can retain its magnetism for a longer period of time.Another factor that affects the demagnetization factor of a V-shaped magnet is its shape. The V-shaped design of the magnet can help to concentrate the magnetic field, making it stronger and more resistant to demagnetization. This is because the shape allows for a greater magneticflux density, which is the measure of the strength of the magnetic field. In contrast, a magnet with a different shape, such as a bar magnet or a disc magnet, may have a lower demagnetization factor due to the distribution of the magnetic field.External conditions, such as temperature and exposure to external magnetic fields, can also affect the demagnetization factor of a V-shaped magnet. High temperatures can cause the magnet to lose its magnetism more quickly, while exposure to strong external magnetic fields can interfere with the alignment of the magnetic domains within the magnet, leading to demagnetization.In conclusion, the demagnetization factor of a V-shaped magnet is influenced by factors such as the materialcomposition, shape, and external conditions. Understanding these factors can help in selecting the right magnet for a specific application and ensuring its long-term performance.中文回答:瓦形磁铁的退磁因子指的是磁铁随着时间的推移失去磁性的程度。
磁场的生物效应(biologicaleffectofmagneticfield)物理小百科
磁场的生物效应(biologicaleffectofmagneticfield)物理小
百科
广泛的阅读有助于学生形成良好的道德品质和健全的
人格,向往真、善、美,摈弃假、恶、丑;有助于沟通个人与外部世界的联系,使学生认识丰富多彩的世界,获取信息和知识,拓展视野。
快一起来阅读磁场的生物效应(biologicaleffectofmagneticfield)物理小百科吧~
磁场的生物效应(biologicaleffectofmagneticfield)
磁场的生物效应(biologicaleffectofmagneticfield)
研究磁场生物效应的领域也称为磁生物学。
其中包括地磁场和人工磁场对生物的作用。
地磁场强度较弱,小于80A/m(1Oe)生物定向是地磁场作用的事例之一。
澳大利亚指南白蚁会定向筑巢,鲨鱼通过自身产生的电场对地磁场定向,Blakemore(1981年)发现螺旋菌能准确地游向北磁极方向,鸟类根据磁场和重力场定向。
K.V.Frisch对蜜蜂的舞蹈语言和地磁场作用机理的精心研究,在1973年获得了诺贝尔奖。
大量研究报道表明,一定条件的强磁场会影响生物大分子的构象和功能,会使染色体变异,影响DNA复制和蛋白质表达,刺激或抑制细胞生长,旋转磁场可打碎体内结石。
磁效应对组织、器官、神经系统乃至整体都有影响。
磁场的生物效应研究对生物工程和现代医学具有重要的意义。
由查字典物理网独家提供磁场的生物效应(biologicaleffectofmagneticfield)物理小百科,希望给大家提供帮助。
磁场对化学反应的影响
Magnetic field effects on chemical reactions near the disturbance of stationary states conditfluence of magnetic fields on chemical processes has long been the subject of interest to researchers. For this time numerous investigations show that commonly the effect of a magnetic field on chemical reactions is insignificant with impact less than 10 percent. However, there are some papers that point to the observation of external magnetic field effect on chemical and biochemical systems actually having a significant impact on the reactions. The reason of the effect should be based on searching physically clear processes which mechanisms are well investigated. The paper theoretically deals with two models explaining how an applied weak magnetic field might influence the steady state of a non-equilibrium chemical system. It is speculated that an applied weak magnetic field might induce a slight change of some rate constants of radical reactions involved in the chemical system. This, in turn, leads to a bifurcation of steady states and implies an abrupt change in temperature and concentration. Keywords: radicals, recombination, magnetic effects, stationary states, critical phenomena, photochemical system, chain reactions with degenerate branching.
Lecture 6
– Direction force at right angles to both motion and field – Max force when field and charge motion orthogonal – Vector x product
Magnetic circuit
NI
ℜcore
ℜgap
• Reluctance of gap
ℜ gap =
l
µ0 µr A
0.001 = 4π × 10−7 × 1 × 4 × 10−4 6 = 1.99 × 10 AT / Wb
dΦ emf = N dt
A Little More About Electromagnetism
• How do we find out the value for B or Φ
– Experimentally – B depends on number of turns in coil – B depends on current – B depends on material
Magnetic Circuits continued
• Exact analogy to Electrical Circuits
Electrical EMF (V) Current (I) V=IR Magnetic MMF (NI) Flux (Φ) NI=Φℜ
I V R
Φ
Resistance (R) Reluctance (ℜ)
Calculating flux density
• What is flux density in the core if a coil with 50 turns carying a current of 20 amps was wrapped round core limb
不同磁场作用下塞曼效应
不同磁场作用下的塞曼效应解析摘要:本文重点讲述在不同磁场作用下的塞曼效应,先从不同的角度,用不同的方法解释拉塞曼效应理论。
先从经典物理学角度出发,利用牛顿定理解释了塞曼效应理论及其现象,然后又从大学所学的知识半量子理论推导出了塞曼效应理论及现象,都证明了塞曼效应一一带电粒子在外磁场作用下光谱分裂的情况。
在不同的外磁场作用下,带电粒子光谱分裂会有哪些不同现象及规律呢?本片论文重点为大家解释了不同外磁场作用下,光谱线分裂的情况,最后得出结论:在强的磁场作用下,发生了正常的塞曼效应及一条光谱线在磁场作用下分裂成了三条;在弱的磁场作用下发生了反常的塞曼效应,原来一条光谱线在磁场作用下分裂成了多条。
关键词:塞曼效应;自旋角动量;原子磁矩;正常塞曼效应;反常塞曼效应;光谱线;微扰理论;光谱分裂;目录1•引言 (1)2•塞曼效应 (1)2.1塞曼效应的概念 (1)2.2塞曼效应的经典解释 (1)2.3塞曼效应的半经典半量子解释 (3)2.4两种解释的比较 (4)3.不同磁场下的塞曼分析 (5)3.1磁场的强弱 (5)3.2在均匀外磁场B中单电子原子体系的总H (5)3.3强弱磁场作用下的塞曼效应 (5)3.3.1在强磁场作用下 (5)3.3.2在弱磁场作用下 (7)3.4结论 (10)4结束语 (10)参考文献: (10)1■引言彼德•塞曼(1865-1943)是一位著名的实验物理学家。
1865年5月25日在荷兰泽兰境内的宗尼玛利出身。
1885年进入莱顿大学,在洛仑兹(H・A Lorentze )教授和昂尼斯(H・K OnneS教授的指导下学习物理学。
毕业于1890 年,由于成绩突出被母校赐为物理系助教,成为洛仑兹教授的助手。
法拉第效应和克尔效应揭示了磁场对传播着的光的影响。
由此出发研究磁场对光源的影响。
塞曼在1895年开始研究钠焰光谱在磁场中的现象,但实验并没有发现任何现象。
大约一年之后,他想,实验天才法拉弟认为这个实验有价值,那么这个实验就值得用更好的仪器在做一次,他用衍射光栅发现了法拉第没有觉察到得微弱效应——塞曼效应塞曼用最好的分光仪器即罗兰光栅和亲自制作的电磁铁再次做实验。
Temperature dependent magnetization dynamics of magnetic nanoparticles
a rX iv:082.1740v1[c ond-mat.ot her]12Feb28Temperature dependent magnetization dynamics of magnetic nanoparticles A.Sukhov 1,2and J.Berakdar 21Max-Planck-Institut f¨u r Mikrostrukturphysik,Weinberg 2,D-06120Halle/Saale,Germany 2Institut f¨u r Physik,Martin-Luther-Universit¨a t Halle-Wittenberg,Heinrich-Damerow-Str.4,06120Halle,Germany Abstract.Recent experimental and theoretical studies show that the switching behavior of magnetic nanoparticles can be well controlled by external time-dependent magnetic fields.In this work,we inspect theoretically the influence of the temperature and the magnetic anisotropy on the spin-dynamics and the switching properties of single domain magnetic nanoparticles (Stoner-particles).Our theoretical tools are the Landau-Lifshitz-Gilbert equation extended as to deal with finite temperatures within a Langevine framework.Physical quantities of interest are the minimum field amplitudes required for switching and the corresponding reversal times of the nanoparticle’s magnetic moment.In particular,we contrast the cases of static and time-dependent external fields and analyze the influence of damping for a uniaxial and a cubic anisotropy.PACS numbers:75.40.Mg,75.50.Bb,75.40.Gb,75.60.Jk,75.75.+a1.IntroductionIn recent years,there has been a surge of research activities focused on the spin dynamics and the switching behavior of magnetic nanoparticles[1].These studies are driven by potential applications in mass-storage media and fast magneto-electronic devices. In principle,various techniques are currently available for controlling or reversing the magnetization of a nanoparticle.To name but a few,the magnetization can be reversed by a short laser pulse[2],a spin-polarized electric current[3,4]or an alternating magneticfield[5,6,7,8,9,10,11,12,13].Recently[6],it has been shown for a uniaxial anisotropy that the utilization of a weak time-dependent magneticfield achievesa magnetization reversal faster than in the case of a static magneticfield.For this case[6],however,the influence of the temperature and the different types of anisotropy on the various dependencies of the reversal process have not been addressed.These issues,which are the topic of this present work,are of great importance since,e.g. thermal activation affects decisively the stability of the magnetization,in particular when approaching the superparamagnetic limit,which restricts the density of data storage[14].Here we study the possibility of fast switching atfinite temperature with weak externalfields.We consider magnetic nanoparticles with an appropriate size as to display a long-range magnetic order and to be in a single domain remanent state(Stoner-particles).Uniaxial and cubic anisotropies are considered and shown to decisively influence the switching dynamics.Numerical results are presented and analyzed for iron-platinum nanoparticles.In principle,the inclusion offinite temperatures in spin-dynamics studies is well-established(cf.[19,20,23,15,16,1]and references therein) and will be followed here by treatingfinite temperatures on the level of Langevine dynamics.For the analysis of switching behaviour the Stoner and Wohlfarth model (SW)[17]is often employed.SW investigated the energetically metastable and stable position of the magnetization of a single domain particle with uniaxial anisotropy in the presence of an external magneticfield.They showed that the minimum static magneticfield(generally referred to as the Stoner-Wohlfarth(SW)field or limit)needed to coherently reverse the magnetization is dependent on the direction of the applied field with respect to the easy axis.This dependence is described by the so-called Stoner-Wohlfarth astroid.The SWfindings rely,however,on a static model at zero temperature.Application of a time-dependent magneticfield reduces the required minimum switchingfield amplitude below the SW limit[6].It was,however,not yet clear howfinite temperatures will affect thesefindings.To clarify this point,we utilize an extension of the Landau-Lifshitz-Gilbert equation[18]includingfinite temperatures on the level of Langevine dynamics[19,20,23].Our analysis shows the reversal time to be strongly dependent on the damping,the temperature and the type of anisotropy. These dependencies are also exhibited to a lesser extent by the critical reversalfields. The paper is organized as follows:next section2presents details of the numerical scheme and the notations whereas section3shows numerical results and analysis for Fe50Pt50 and Fe70Pt30nanoparticles.We then conclude with a brief summary.2.Theoretical modelIn what follows we focus on systems with large spins such that their magnetic dynamics can be described by the classical motion of a unit vector S directed along the particle’s magnetizationµ,i.e.S=µ/µS andµS is the particle’s magnetic moment at saturation. The energetics of the system is given byH=H A+H F.(1) where H A(H F)stands for the anisotropy(Zeeman energy)contribution.Furthermore, the anisotropy contribution is expressed as H A=−Df(S)with D being the anisotropy constant.Explicit form of f(S)is provided below.The magnetization dynamics,i.e.the equation of motion for S,is governed by the Landau-Lifshitz-Gilbert(LLG)equation [18]∂S(1+α2)S× B e(t)+α(S×B e(t)) .(2) Here we introduced the effectivefield B e(t)=−1/(µS)∂H/∂S which contains the external magneticfield and the maximum anisotropyfield for the uniaxial anisotropy B A=2D/µS.γis the gyromagnetic ratio andαis the Gilbert damping parameter.The temperaturefluctuations will be described on the level of the Langevine dynamics[19]. This means,a time-dependent thermal noiseζ(t)adds to the effectivefield B e(t)[19].ζ(t)is a Gaussian distributed white noise with zero mean and vanishing time correlator ζi(t′)ζj(t) =2αk B TB A,τ=ωa t,ωa=γB A.(4) The LLG equation reads then∂S(1+α2)S× b(τ)+α(S×b(τ)) ,(5) where the effectivefield is now given explicitly byb(τ)=−1∂S+Θ(τ)(6)withΘi(τ′)Θj(τ) =ǫδi,jδ(τ−τ′);ǫ=2αk B TD.(8) q is a measure for the thermal energy in terms of the anisotropy energy.And d=D/(µS B A)expresses the anisotropy constant in units of a maximum anisotropyenergy for the uniaxial anisotropy and is always1/2.The stochastic LLG equation(5) in reduced units(4)is solved numerically using the Heun method which converges in quadratic mean to the solution of the LLG equation when interpreted in the sense of Stratonovich[20].For each type of anisotropy we choose the time step∆τto be one thousandth part of the corresponding period of oscillations.The values of the time interval in not reduced units for uniaxial and cubic anisotropies are∆t ua=4.61·10−15s and∆t ca=64.90·10−15s,respectively,providing us thus with correlation times on the femtosecond time scale.The reason for the choice of such small time intervals is given in [19],where it is argued that the spectrum of thermal-agitation forces may be considered as white up to a frequency of order k B T/h with h being the Planck constant.This value corresponds to10−13s for room temperature.The total scale of time is limited by a thousand of such periods.Hence,we deal with around one million iteration steps for a switching process.Details of realization of this numerical scheme could be found in references[21,22,20].We note by passing,that attempts have been made to obtain, under certain limitations,analytical results forfinite-temperature spin dynamics using the Fokker-Planck equation(cf.[15,16]and references therein).For the general case discussed here one has however to resort to fully numerical approaches.3.Results and interpretationsWe consider a magnetic nanoparticle in a single domain remanent state(Stoner-particle) with an effective anisotropy whose origin can be magnetocrystalline,magnetoelastic and surface anisotropy.We assume the nanoparticle to have a spherical form,neglecting thus the shape anisotropy contributions.In the absence of externalfields,thermal fluctuations may still drive the system out of equilibrium.Hence,the stability of the system as the temperature increases becomes an important issue.The time t at which the magnetization of the system overcomes the energy barrier due to the thermal activation,also called the escape time,is given by the Arrhenius lawt=t0e DπµS k B TαγThe relation between K u and D u is D u=K u V u,where V u is the volume of Fe50Pt50nanoparticles.In the calculations for Fe50Pt50nanoparticles the following q valueswere chosen:q1=0.001,q2=0.005or q3=0.01which correspond to the realtemperatures56K,280K or560K,respectively(these temperatures are below theblocking temperature).The corresponding escape times are t q1≈2·10217s,t q2≈1075s and t q3≈7·1031s,respectively.In some cases we also show the results for an additional temperature q01=0.0001with the corresponding real temperature to be equal to5K.The corresponding escape time for this is t q01≈104300s.These times should be compared with the measurement period which is about t m≈5ns,endorsing thus the stability ofthe system during the measurements.For Fe70Pt30the parameters are as follows:The diameter of the nanoparticles2.3nm, the strength of the anisotropy K c=8·105J/m3,the magnetic moment per particle µp=2000·µB,the Curie-temperature is T c=420K[24],and D c=K c V c(V c is the volume.)For Fe70Pt30nanoparticles the values of q we choose in the simulations are q4=0.01,q5=0.03or q6=0.06which means that the temperature is respectively 0.3K,0.9K or1.9K.The escape times are t q4≈1034s,t q5≈2·105s and t q6≈2·10−2s, respectively.Here we also choose an intermediate value q04=0.001and the realtemperature0.03K with the corresponding escape time to be equal to t q04≈10430s. The measurement period is the same,namely about5ns.All values of the escape timeswere given forα=0.1.Central to this study are two issues:The critical magneticfield and the corresponding reversal time.The critical magneticfield we define as the minimumfield amplitude needed to completely reverse the magnetization.The reversal time is the corresponding time for this process.In contrast,in other studies[6]the reversal time is defined as the time needed for the magnetization to switch from the initial position to the position S z=0,our reversal time is the time at which the magnetization reaches the very proximity of the antiparallel state(Fig.1).The difference in the definition is in so far important as the magnetization position S z=0atfinite temperatures is not stabile so it may switch back to the initial state due to thermalfluctuations and hence the target state is never reached.3.1.Nanoparticles having uniaxial anisotropy:Fe50Pt50A Fe50Pt50magnetic nanoparticle has a uniaxial anisotropy whose direction defines the z direction.The magnetization direction S is specified by the azimuthal angleφand the polar angleθwith respect to z.In the presence of an externalfield b applied at an arbitrarily chosen direction,the energy of the system in dimensionless units derives from˜H=−d cos2θ−S·b.(11) The initial state of the magnetization is chosen to be close to S z=+1and we aim at the target state S z=−1.Figure1.(Color online)Magnetization reversal of a nanoparticle when a staticfieldis applied at zero Kelvin(q0=0,black)and at reduced temperature q3=0.01≡560K(blue).The strengths of thefields in the dimensionless units(4)and(8)are b=1.01and b=0.74,respectively.The damping parameter isα=0.1.The start position ofthe magnetization is given by the initial angleθ0=π/360between the easy axis andthe magnetization vector.3.1.1.Staticfield For an external static magneticfield applied antiparallel to the z direction(b=−b e z)eq.(11)becomes˜H=−d cos2θ+b cosθ.(12) To determine the criticalfield magnitude needed for the magnetization reversal we proceed as follows(cf.Fig.1):Atfirst,the externalfield is increased in small steps. When the magnetization reversal is achieved the corresponding values of the critical field versus the damping parameterαare plotted as shown in the inset of Fig.3.The reversal times corresponding to the critical staticfield amplitudes of Fig.3are plotted versus damping in Fig.4.In the Stoner-Wohlfarth(static)model the mechanism of magnetization reversal is not due to damping.It is rather caused by a change of the energy profile in the presence of thefield.The curves displayed on the energy surface in Fig.2mark the magnetization motion in the E(θ,φ)landscape.The magnetization initiates fromφ0=0andθ0and ends up atθ=π.As clearly can be seen from thefigure,reversal is only possible if the initial state is energetically higher than the target state.This”low damping”reversal is,however,quite slow,which will be quantified more below.For the reversal at T=0, the SW-model predicts a minimum staticfield strength,namely b cr=B/B A=1(the dashed line in Fig.3).This minimumfield measured with respect to the anisotropyfield strength does not depend on the damping parameterα,provided the measuring time is infinite.For T>0 the simulations were averaged over500cycles with the result shown in Fig.3.The one-cycle data are shown in the inset.Fig.3evidences that with increasing temperature thermalfluctuations assist a weak magneticfield as to reverse the magnetization. Furthermore,the required criticalfield is increased slightly at very large and strongly at very small damping with the minimum criticalfield being atα≈1.0.The reason forthe magnetization starts atθ0=0(the vector product in equation(2)vanishes).The reversal time in the SW-limit is then given byt rev=g(θ0,b)1+α22γD 1b−cosθ πθ0.(14)From this relation we infer that switching is possible only if the appliedfield is larger than the anisotropyfield and the reversal time decreases with increasing b.This conclusion is independent of the Stoner-Wohlfarth model and follows directly from the solution of the LLG equation.An illustration is shown by the dashed curve in Fig.4,which was a test to compare the appropriate numerical results with the analytical one.As our aim is the study of the reversal-time dependence on the magnetic moment and on the anisotropy constant,we deem the logarithmic dependence in Eq.(14)to be weak and writeg(b,µS,D)≈µSB2µ2S−4D2.(15)This relation indicates that an increase in the magnetic moment results in a decreaseof the reversal time.The magnetic moment enters in the Zeeman energy and thereforethe increase in magnetic moment is very similar to an increase in the magneticfield.An increase of the reversal time with the increasing anisotropy originates from the factthat the anisotropy constant determines the height of the potential barrier.Hence,thehigher the barrier,the longer it takes for the magnetization to overcome it.For the other temperatures the corresponding reversal times(also averaged over500cycles)are shown in Fig. 4.In contrast to the case T=0,where an appreciabledependence on damping is observed,the reversal times forfinite temperatures showa weaker dependence on damping.Ifα→0only the precessional motion of themagnetization is possible and therefore t rev→∞.At high damping the system relaxes on a time scale that is much shorter than the precession time,giving thus rise to anincrease in switching times.Additionally,one can clearly observe the increase of thereversal times with increasing temperatures,even though these time remain on thenanoseconds time scale.3.1.2.Alternatingfield As was shown in Ref.[6,7,15]theoretically and in Ref.[5] experimentally,a rotating alternatingfield with no staticfield being applied can also be used for the magnetization reversal.A circular polarized microwavefield is applied perpendicularly to the anisotropy axis.Thus,the Hamiltonian might be written in form of equation(11)and the appliedfield isb(t)=b0cosωt e x+b0sinωt e y,(16) where b0is the alternatingfield amplitude andωis its frequency.For a switching of the magnetization the appropriate frequency of the applied alternatingfield should beFigure4.(Color online)Reversal times corresponding to the critical staticfields inFig.3vs.damping averaged over500cycles.Inset shows the as-calculated numericalresults for q3=0.01≡560K(one cycle).Figure 5.(Color online)Magnetization reversal in a nanoparticle using a timedependentfield forα=0.1and at a zero temperature.Thefield strength and frequencyin the units(4)are respectively b0=0.18andω=ωa/1.93.Inset shows for this casethe magnetization reversal for the temperature q3=0.01≡560K with b0=0.17andthe same frequency.chosen.In Ref.[15]analytically and in[6]numerically a detailed analysis of the optimal frequency is given which is close to the precessional frequency of the system.The role of temperature and different types of anisotropy have not yet been addressed,to our knowledge.Fig.5shows our calculations for the reversal process at two different temperatures. In contrast to the static case,the reversal proceeds through many oscillations on a time scale of approximately ten picoseconds.Increasing the temperature results in an increase of the reversal time.Fig.6shows the trajectory of the magnetization in the E(θ,φ)space related to the case of the alternatingfield pared with the situation depicted in Fig. 2,the trajectory reveals a quite delicate motion of the magnetization.It is furthermore, noteworthy that the alternatingfield amplitudes needed for the reversal(cf.Fig.7)are substantially lower than their static counterpart,meaning that the energy profile of the.(17)αThe proportionality coefficient contains the frequency of the alternatingfield and the critical angleθ.The solution(17)follows from the LLG equation solved for the case when the phase of the externalfield follows temporally that of the magnetization,which we checked numerically to be valid.The reversal times associated with the critical switchingfields are shown in(Fig.8).Qualitatively,we observe the same behavior as for the case of a staticfield.The values of the reversal times for T=0are,however,significantly smaller than for the static case.For the same reason as in the staticfield case,an increased temperature results in an increase of the switching times.Figure7.(Color online)Critical alternatingfield amplitudes vs.damping fordifferent temperatures averaged over500times.Inset shows not averaged data for.q3=0.01≡560Kto the criticalfield amplitudes of Fig.7for different temperatures.Inset shows thecase of zero Kelvin.3.2.Nanoparticles with cubic anisotropy:Fe70Pt30Now we focus on another type of the anisotropy,namely a cubic anisotropy which is supposed to be present for Fe70Pt30nanoparticles[24].The energetics of the system is then described by the functional form˜H=−d(S2x S2y+S2y S2z+S2x S2z)−S·b,(18) or in spherical coordinates˜H=−d(cos2φsin2φsin4θ+cos2θsin2θ)−S·b.(19) In contrast to the previous section,there are more local minima or in other words more stable states of the magnetization in the energy profile for the Fe70Pt30nanoparticles. It can be shown that the minimum barrier that has to be overcome is d/12which is twelve times smaller than that in the case of a uniaxial anisotropy.The maximal one is only d/3.The magnetization of these nanoparticles isfirst relaxed to the initial state close toFigure9.(Color online)Trajectories of the magnetization in theθ(φ)space(q0=0).In the units(4)we choose b=0.82andα=0.1.√φ0=π/4andθ0=arccos(1/3).In order to be close to the starting state for the uniaxial anisotropy case we chooseφ0=0.2499·π,θ0=0.3042·π.3.2.1.Static drivingfield A staticfield is applied antiparallel to the initial state of the magnetization,i.e.√b=−b/B A.3In principle,the criticalfield turns out to be constant for allαbut for an infinitely large measuring time.Since we set this time to be about5nanoseconds,the criticalfields increase for small and high damping.On the other hand,at lower temperatures smaller criticalfields are sufficient for the(thermal activation-assisted)reversal process.The behaviour of the corresponding switching times presented in Fig.12only supplements the fact of too low measuring time,which is chosen as5ns for a better comparison of these results with ones for uniaxial anisotropy.Indeed,constant jumps in the reversal times for T=0K as a function of damping can be observed.The reasonFigure10.(Color online)Magnetization reversal of a nanoparticle when a staticfieldb=0.82is applied and forα=0.1at zero temperature(black).The magnetizationreversal forα=0.1,b=0.22and q6=0.06≡1.9K is shown with blue color.Figure11.(Color online)Critical staticfield amplitudes vs.the damping parametersfor different temperatures averaged over500times.Inset shows not averaged data forq6=0.06≡1.9K.Fig.11vs.damping averaged over500times.why the reversal times forfinite temperatures are lower is as follows:The initial state for T=0K is chosen to be very close to equilibrium.This does not happen forfinite3).The magnetization trajectories depicted in Fig.13reveal two interesting features: Firstly,particularly for small damping,the energy profile changes very slightly(due to the smallness of b0)while energy is pumped into the system during many cycles. Secondly,the system switches mostly in the vicinity of local minima to acquire eventually the target state.Fig.14hints on the complex character of the magnetization dynamics in this case.As in the staticfield case with a cubic anisotropy the criticalfield amplitudes shown in Fig.15are smaller than those for a uniaxial anisotropy.Obviously, the reason is that the potential barrier associated with this anisotropy is smaller in this case,giving rise to smaller amplitudes.As before an increase in temperature leads to a decrease in the criticalfields.The reversal times shown in Fig.16exhibit the same feature as in the cases for uniaxial anisotropy:With increasing temperatures the corresponding reversal times increase.A physically convincing explanation of the(numerically stable)oscillations for the reversal times is still outstanding.Figure14.(Color online)Magnetization reversal in a nanoparticle using a time dependentfield forα=0.1and q0(black)and for q6=0.06≡1.9K(blue).Other parameters are as in Fig.13.Figure15.(Color online)Critical alternatingfield amplitudes vs.damping for different temperatures averaged over500cycles.Inset shows the single cycle data at q6=0.06≡1.9K.Figure16.(Color online)The damping dependence of the reversal times corresponding to the critical fields of the Fig.15for different temperatures averaged over500runs.Inset shows the T=0case. 4.SummaryIn this work we studied the criticalfield amplitudes required for the magnetization switching of Stoner nanoparticles and derived the corresponding reversal times forstatic and alternatingfields for two different types of anisotropies.The general trends for all examples discussed here can be summarized as follows:Firstly,increasing the temperature results in a decrease of all criticalfields regardless of the anisotropy type. Anisotropy effects decline with increasing temperatures making it easier to switch the magnetization.Secondly,elevating the temperature increases the corresponding reversal times.Thirdly,the same trends are observed for different temperatures:The criticalfield amplitudes for a staticfield depend only slightly onα,whereas the critical alternating field amplitudes exhibit a pronounced dependence on damping.In the case of a uniaxial anisotropy wefind the critical alternatingfield amplitudes to be smaller than those for a staticfield,especially in the low damping regime and forfinite pared with a staticfield,alternatingfields lead to smaller switching times(T=0K).However, this is not the case for the cubic anisotropy.The markedly different trajectories for the two kinds of anisotropies endorse the qualitatively different magnetization dynamics. In particular,one may see that for a cubic anisotropy and for an alternatingfield the magnetization reversal takes place through the local minima leading to smaller amplitudes of the appliedfield.Generally,a cubic anisotropy is smaller than the uniaxial one giving rise to smaller slope of criticalfields,i.e.smaller alternatingfield amplitudes. It is useful to contrast our results with those of Ref.[15].Our reversal times for AC-fields increase with increasing temperatures.This is not in contradiction with the findings of[15]insofar as we calculate the switchingfields atfirst,and then deduce the corresponding reversal times.If the switchingfields are kept constant while increasing the temperature[15]the corresponding reversal times decrease.We note here that experimentally known values of the damping parameter are,to our knowledge,not larger than0.2.The reason why we go beyond this value is twofold.Firstly,the values of damping are only well known for thin ferromagneticfilms and it is not clear how to extend them to magnetic nanoparticles.For instance,in FMR experiments damping values are obtained from the widths of the corresponding curves of absorption.The curves for nanoparticles can be broader due to randomly oriented easy anisotropy axes and,hence,the values of damping could be larger than they actually are.Secondly,due to a very strong dependence of the critical AC-fields(Fig.7,e.g.)they can even be larger than staticfield amplitudes.This makes the time-dependentfield disadvantageous for switching in an extreme high damping regime.Finally,as can be seen from all simulations,the corresponding reversal times are much more sensitive a quantity than their criticalfields.This follows from the expression(13), where a slight change in the magneticfield b leads to a sizable difference in the reversal time.This circumstance is the basis for our choice to average all the reversal times and fields over many times.This is also desirable in view of an experimental realization,for example,in FMR experiments or using a SQUID technique quantities like criticalfields and their reversal times are averaged over thousands of times.The results presented in this paper are of relevance to the heat-assisted magnetic recording,ing a laser source.Our calculations do not specify the source of thermal excitations but they capture the spin dynamics and switching behaviour of the system upon thermalexcitations.AcknowledgmentsThis work is supported by the International Max-Planck Research School for Science and Technology of Nanostructures.References[1]Spindynamics in confined magnetic structures III B.Hillebrands,A.Thiaville(Eds.)(Springer,Berlin,2006);Spin Dynamics in Confined Magnetic Structures II B.Hillebrands,K.Ounadjela (Eds.)(Springer,Berlin,2003);Spin dynamics in confined magnetic structures B.Hillebrands, K.Ounadjela(Eds.)(Springer,Berlin,2001);Magnetic Nanostructures B.Aktas,L.Tagirov,F.Mikailov(Eds.),(Springer Series in Materials Science,Vol.94)(Springer,2007)and references therein.[2]M.Vomir,L.H.F.Andrade,L.Guidoni,E.Beaurepaire,and J.-Y.Bigot,Phys.Rev.Lett.94,237601(2005).[3]J.Slonczewski,J.Magn.Magn.Mater.,159,L1,(1996).[4]L.Berger,Phys.Rev.B54,9353(1996).[5]C.Thirion,W.Wernsdorfer,and D.Mailly,Nat.Mater.2,524(2003).[6]Z.Z.Sun and X.R.Wang,Phys.Rev.B74,132401(2006).[7]Z.Z.Sun and X.R.Wang,Phys.Rev.Lett.97,077205(2006).[8]L.F.Zhang,C.Xu,Physics Letters A349,82-86(2006).[9]C.Xu,P.M.Hui,Y.Q.Ma,et al.,Solid State Communications134,625-629(2005).[10]T.Moriyama,R.Cao,J.Q.Xiao,et al.,Applied Physics Letters90,152503(2007).[11]H.K.Lee,Z.M.Yuan,Journal of Applied Physics101,033903(2007).[12]H.T.Nembach,P.M.Pimentel,S.J.Hermsdoerfer,et al.,Physics Letters90,062503(2007).[13]K.Rivkin,J.B.Ketterson,Applied Physics Letters89,252507(2006).[14]R.W.Chantrell and K.O’Grady The Magnetic Properties offine Particles in R.Gerber,C.D.Wright and G.Asti(Eds.),Applied Magnetism(Kluwer,Academic Pub.,Dordrecht,1994).[15]S.I.Denisov,T.V.Lyutyy,P.H¨a nggi,and K.N.Trohidou,Phys.Rev.B74,104406(2006).[16]S.I.Denisov,T.V.Lyutyy,and P.H¨a nggi,Phys.Rev.Lett.97,227202(2006).[17]E.C.Stoner and E.P.Wohlfarth,Philos.Trans.R.Soc.London,Ser A240,599(1948).[18]ndau and E.Lifshitz,Phys.Z.Sowjetunion8,153(1935).[19]W.F.Brown,Phys.Rev.130,1677(1963).[20]J.L.Garcia-Palacios and zaro,Phys.Rev.B58,14937(1998).[21]Algorithmen in der Quantentheorie und Statistischen Physik J.Schnakenberg(Zimmermann-Neufang,1995).[22]U.Nowak,p.Phys.9,105(2001).[23]adel,Phys.Rev.B73,212405(2006).[24]C.Antoniak,J.Lindner,and M.Farle,Europhys.Lett.70,250(2005).[25]I.Klik and L.Gunther,J.Stat.Phys.60,473(1990).[26]C.Antoniak,J.Lindner,M.Spasova,D.Sudfeld,M.Acet,and M.Farle,Phys.Rev.Lett.97,117201(2006).[27]S.Ostanin,S.S.A.Razee,J.B.Staunton,B.Ginatempo and E.Bruno,J.Appl.Phys.93,453(2003).。
磁力链接首单词
磁力链接首单词单词:magnet1. 定义与释义1.1词性:名词1.2中文释义:磁体,磁铁,有强大吸引力的人或物1.3英文释义:A piece of iron or other material which has itsponent atoms so ordered that the material exhibits properties of magnetism, such as attracting other iron - containing objects or aligning itself in an external magnetic field; also used figuratively fora person or thing that has a powerful attraction.1.4相关词汇:magnetic(形容词,有磁性的、有吸引力的)、magnetism(名词,磁性、磁力、吸引力)、magnetize(动词,使磁化、吸引)、magnets(复数形式)2. 起源与背景2.1词源:“magnet”源自希腊语“magnēs lithos”,字面意思是“来自马格尼西亚(Magnesia)的石头”,马格尼西亚是古希腊的一个地方,那里发现了天然磁石。
2.2趣闻:中国古代就发现了磁石的特性,并利用磁石制造了司南,这是世界上最早的指南仪器,为航海等提供了重要的方向指引。
3. 常用搭配与短语3.1短语:(1)magnet school:有吸引力的学校(常指因特殊课程或教学方法而吸引学生的学校)例句:Many parents want to send their children to that magnet school.翻译:很多家长想把孩子送到那所很有吸引力的学校。
(2)magnet for:吸引……的事物例句:This big city is a magnet for young people seeking opportunities.翻译:这个大城市对寻求机会的年轻人来说很有吸引力。
高速电机绕组交流铜耗的计算与测量
高速电机绕组交流铜耗的计算与测量
夏雪,黄允凯,彭飞,祝子冲,张津栋 (东南大学电气工程学院,南京210096)
摘 要:高速电机具有体积小、功率密度高、运行效率高等优点,但在高频电流和磁场的作用下绕组的交流铜耗
会显著增加,特别是大功率高速电机,由于导线较粗,交流铜耗效应更明显,对电机性能产生较大影响。影响交
・2・
撒电机
52卷
算⑶。一般采用直流铜耗乘以交流损耗系数来估计 交流铜耗。国内外许多学者利用有限元数值模拟对 绕组在高频下的交流铜耗进行分析,研究了槽口尺 寸、导体位置、并绕根数等参数对电流分布及铜耗 的影响1切,在此基础上提出了一些减小高频交流铜 耗的措施⑹。由于绕组交流铜耗直接测量难度较大, 很难通过性能测试将其从电机的众多损耗中分离出 来,所以数值模拟计算结果的准确性,缺乏与实测 结果的对比。
0引言
高速电机具有体积小、功率密度高、运行效率 高等优点,随着电工材料、功率器件、控制理论等 相关学科技术的发展,高速电机的应用范围越来越 广。电机高速运行时电磁场基波频率较高,导线由 于集肤效应和临近效应,电阻会增加,再加上外部
磁场在导线内引起的涡流,这些导致绕组铜耗大幅 增加,对电机性能产生较大影响。目前,减小导线 直径可以有效降低交流铜耗,例如采用Litz线⑴或 多根并联的细绞合线⑵,但应用时也存在成本较高、 并联绞合线有股间循环电流等问题。
Abstract: High-speed motor has the advantages of small size, high power density and high operating effi ciency. But under the action of high frequency current and magnetic field, the AC copper loss of windings will increase significantly. Especially for high-power high-speed motor, the AC copper loss effect is more ob vious due to the thicker conductor, which has a greater impact on motor performance. There are three main factors affecting AC copper loss: skin effect, proximity effect and external magnetic field. Firstly, the influ ence of external magnetic field on AC copper consumption was determined by finite element simulation, which was far greater than skin effect and proxim让y effect. Then, an experimental device is set up to meas ure AC copper loss in multi-strand wires under external magnetic field, and the measured values were com pared with the finite element simulation results. The results are in good agreements, which provides a refer ence for accurate calculation and optimization of winding loss of high-speed motor. Key words: AC copper loss; high-speed motor; skin effect; proximity effect
CATHODE-RAY TUBE
专利名称:CATHODE-RAY TUBE 发明人:ARAKAWA MASAO申请号:JP1508784申请日:19840201公开号:JPS60160791A公开日:19850822专利内容由知识产权出版社提供摘要:PURPOSE:To eliminate the effect of an external magnetic field without using a thick shield iron plate by flowing a current generating a magnetic field cancelling the external magnetic field to a coil arranged around a cathode-ray tube after the external magnetic field is detected. CONSTITUTION:Two sets of electromagnetic coils 2, 3 are provided around the cathode-ray tube 1 and they are arranged respectively so as to generate horizontal and vertical magnetic field. Then magnetic field detectors 4, 5 detect an external magnetic field in X and y direction around the cathode-ray tube 1, and the current applied to the X direction coil 2 and the Y direction coil 3 is controlled by the detected output amplified by amplifiers 6, 7. An X direction gain adjusting circuit 8 and a Y direction gain adjusting circuit 9 are provided and the component not corrected completely by the magnetic field detectors, the amplifiers and an output circuit respectively due to ununiformity of the external magnetic field is corrected by manual adjustment.申请人:YAMATAKE HONEYWELL KK更多信息请下载全文后查看。
氧化反应中的电子自旋态转换机理
氧化反应中的电子自旋态转换机理氧化反应是一种常见的化学反应过程,其中涉及到电子的转移和转换。
在这个过程中,电子的自旋态也会发生转换。
了解氧化反应中的电子自旋态转换机理对于深入理解这一过程和相关的物理化学现象至关重要。
在氧化反应中,通常涉及到电子的转移和转换。
当一个化合物(如金属离子)与氧发生氧化反应时,电子从金属离子转移到氧分子上,形成金属离子的氧化态。
这个过程中,电子的自旋态也会发生改变。
电子的自旋态是描述电子自旋方向的量子态。
在氧化反应中,电子的自旋态可以通过多种机理进行转换。
以下是常见的几种机理:1. 自旋交互作用机制(Spin Interaction Mechanism):在一些氧化反应中,电子的自旋态转换可以通过自旋交互作用机制实现。
这种机制主要涉及到电子间的相互作用,例如自旋-轨道耦合(spin-orbit coupling),电子间的自旋翻转等。
在这种机制中,电子的自旋态转换是由于电子间相互作用引起的。
2. 外界磁场作用机制(External Magnetic Field Mechanism):外界磁场可以对电子的自旋态产生影响。
在氧化反应中,如果存在外界磁场,那么电子的自旋态转换可以通过外界磁场的作用来实现。
外界磁场会改变电子的自旋方向,从而导致自旋态的转换。
3. 自旋激发机制(Spin Excitation Mechanism):在某些情况下,氧化反应中的电子自旋态转换可以通过自旋激发机制实现。
在这种机制中,电子经历一系列自旋激发过程,从而导致自旋态的转换。
这种机制通常涉及到材料的能带结构以及电子的激发行为。
需要指出的是,以上提到的机制只是氧化反应中电子自旋态转换的几种可能机制,实际情况可能还有其他机制存在。
不同的氧化反应可能会涉及到不同的机制,具体机制取决于化学体系的性质和反应条件等因素。
总结起来,氧化反应中的电子自旋态转换机理是一个复杂而多样的现象。
理解和研究这些机理对于揭示氧化反应过程中的物理化学本质具有重要意义。
钢丝绳外围空间记忆磁场与钢丝绳损伤之间的量化感知机理
钢丝绳外围空间记忆磁场与钢丝绳损伤之间的量化感知机理The quantification mechanism of the magnetic field memory and steel wire rope damage in the outer space of the steel wire rope.Steel wire ropes are widely used in various industries due to their high tensile strength and durability. However, over time or under certain harsh conditions, these steel wire ropes may experience damage that affects their performance and safety. In recent years, there has been increasing interest in studying the relationship between the magnetic field memory in the outer space of steel wire ropes and their damage. This phenomenon refers to the ability of a steel wire rope to retain a remnant magnetic field after being exposed to a magnetic field. Understanding the quantification mechanism behind this phenomenon is crucial for developing effective methods for assessing steel wire rope damage.钢丝绳因其高抗拉强度和耐用性而在各个行业被广泛应用。
Fe3O4_
第42卷第4期2023年8月沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报JournalofShenyangLigongUniversityVol 42No 4Aug 2023收稿日期:2022-11-01基金项目:沈阳市科技局项目(RC180292)ꎻ辽宁省教育厅高校创新人才项目(LR2016073)ꎻ沈阳理工大学科研创新团队建设计划资助项目作者简介:孔令博(1998 )ꎬ男ꎬ硕士研究生ꎮ通信作者:姜承志(1974 )ꎬ女ꎬ副教授ꎬ博士ꎬ研究方向为环境污染治理技术ꎮ材料与化工文章编号:1003-1251(2023)04-0048-08Fe3O4/SnS2的制备及其催化性能研究孔令博ꎬ姜承志(沈阳理工大学环境与化学工程学院ꎬ沈阳110159)摘㊀要:为提高Fe3O4的类芬顿效果ꎬ基于光助类芬顿催化氧化技术ꎬ在共沉淀法制备Fe3O4的基础上采用醇热法制备能高效降解亚甲基蓝的Fe3O4/SnS2催化剂ꎮ建立了以Fe3O4/SnS2为催化剂的光助类芬顿催化氧化体系ꎬ分析不同制备及降解条下Fe3O4/SnS2的类芬顿活性ꎬ并通过X射线衍射(XRD)㊁扫描电子显微镜(SEM)等对Fe3O4/SnS2材料进行表征ꎮ结果表明:当Fe3O4和SnS2物质的量比为1ʒ1时ꎬFe3O4/SnS2的催化效果最好ꎻ亚甲基蓝溶液pH为3.0㊁Fe3O4/SnS2投加量为20mg㊁H2O2添加量为25mmol/L时ꎬ对20mg/L亚甲基蓝溶液的降解率达到99.87%ꎻ反应符合准一级动力学方程ꎬ动力学常数为5.122ˑ10-2min-1ꎻ材料能通过外部磁场回收ꎬ可重复利用ꎬ化学稳定性强ꎮ关㊀键㊀词:类芬顿ꎻFe3O4ꎻSnS2ꎻ亚甲基蓝中图分类号:TQ264.17文献标志码:ADOI:10.3969/j.issn.1003-1251.2023.04.008PreparationandCatalyticPerformanceStudyofFe3O4/SnS2KONGLingboꎬJIANGChengzhi(ShenyangLigongUniversityꎬShenyang110159ꎬChina)Abstract:ToimprovetheFenton ̄likeeffectofFe3O4ꎬbasedonphoto ̄assistedFenton ̄likecatalyticoxidationꎬFe3O4/SnS2catalystscapableofefficientlydegradingmethylenebluearepreparedbyanalcohol ̄thermalmethodbasedonthepreparationofFe3O4byco ̄precipitati ̄on.Aphoto ̄assistedFenton ̄likecatalyticoxidationsystemusingFe3O4/SnS2ascatalystisproposedꎬanalysisofFenten ̄likeactivityofFe3O4/SnS2underdifferentpreparationanddegradationconditionsandtheFe3O4/SnS2materialischaracterizedandtestedbyXRDꎬSEMꎬetc.TheresultsshowthatthebestcatalyticeffectofFe3O4/SnS2isachievedwhentherotiooftheamountofsubstanceofFe3O4andSnS2is1ʒ1ꎻatapHvalueof3.0formethyl ̄eneblueꎬFe3O4/SnS2dosingof20mgandH2O2additionof25mmol/Lꎬthedegradationrateof20mg/Lmethylenebluesolutionreaches99.87%.Thereactionconformstothequasiprimarykineticequationꎬthekineticconstantforthereactionsystemis5.122ˑ10-2min-1.Thematerialcanberecoveredbyexternalmagneticfieldforre ̄utilizationwithchemicalstability.Keywords:Fenton ̄likeꎻFe3O4ꎻSnS2ꎻmethyleneblue㊀㊀Fe3O4具有可规模化制备㊁易分离㊁催化活性高和稳定性好等优势[1-2]ꎬ可用作制备新型复合催化剂材料以提升催化剂的催化活性ꎬ同时避免磁性Fe3O4纳米颗粒的团聚[3-4]ꎮFe3O4复合材料的催化反应为非均相ꎬ反应体系表现出良好的准一级动力学关系[5-6]ꎬ但目前仍在磁性损失㊁易被氧化和活性不稳定等方面存在缺陷[7-8]ꎮSnS2是具有窄带隙(2.18~2.44eV)的N型半导体ꎬ晶体结构为三方晶系ꎬ属于CdI2型晶体ꎬ层状结构ꎬ层间主要以范德华力连接[9-10]ꎮSnS2具有稳定性好㊁无毒㊁廉价等优点[11]ꎬ对紫外光及可见光均具有较强的吸收能力ꎬ且SnS2在酸性和中性水溶液中可以稳定存在ꎬ在空气中有很好的抗氧化性和稳定性ꎬ但其电子和空穴容易复合ꎬ催化活性较低[12-13]ꎮ本文将Fe3O4和SnS2两种材料进行复合ꎬ发挥各自优点ꎬ采用光助类芬顿的协同作用提高催化性能ꎮ采用共沉淀法制备Fe3O4ꎬ并在此基础上以Fe3O4为磁性载体复合SnS2ꎬ制得磁性类芬顿催化剂Fe3O4/SnS2ꎮ对比分析不同制备条件下Fe3O4/SnS2材料的类芬顿活性ꎬ研究氧化剂H2O2的添加量㊁催化剂投加量㊁溶液pH等实验条件对类芬顿效果的影响及Fe3O4/SnS2材料降解亚甲基蓝的性能ꎬ并进行动力学分析ꎮ通过磁性回收㊁重复性实验检验材料的稳定性ꎮ1㊀实验部分1.1㊀实验试剂及仪器1.1.1㊀实验试剂FeCl2 4H2Oꎬ天津市北晨方正试剂厂ꎻFeCl3 6H2O㊁SnCl4 5H2O㊁NaOH㊁C16H18N3ClS㊁C4H10O㊁C3H8Oꎬ天津市大茂化学试剂厂ꎻH2O2ꎬ沈阳市东兴试剂厂ꎻH2SO4ꎬ国药集团化学试剂有限公司ꎻCH2CSNH2(TAA)ꎬ天津福晨化学试剂有限公司ꎮ以上试剂均为分析纯ꎮ1.1.2㊀实验主要仪器设备数显恒温水浴锅ꎬHH ̄2型ꎬ常州国华电器有限公司ꎻ电热鼓风恒温干燥箱ꎬ101 ̄0BS型ꎬ上海力辰邦西仪器科技有限公司ꎻ紫外灯ꎬ20Wꎬ广东雪莱特光电科技股份有限公司ꎻ磁力加热搅拌器ꎬ78 ̄1型ꎬ郑州博科仪器设备有限公司ꎮX射线衍射仪(XRD)ꎬD/MAX ̄260型ꎬ日本Rigakuꎻ扫描电子显微镜(SEM)ꎬGemini300型ꎬ德国Zeissꎻ紫外/可见/近红外漫反射光谱仪(UV ̄visDRS)ꎬU4150型ꎬ日本Hitachiꎻ稳态/瞬态荧光光谱仪(PL)ꎬFLS1000型ꎬ英国Edinburghꎻ磁滞回线测试仪(VSM)ꎬ7404型ꎬ美国LakeShoreꎮ1.2㊀材料的制备1.2.1㊀Fe3O4的制备按照物质的量比为1ʒ2定量称取FeCl2 4H2O与FeCl3 6H2Oꎬ将FeCl3 6H2O加入盛有50mL蒸馏水的烧杯中ꎬ搅拌至完全溶解后加入FeCl2 4H2Oꎬ溶解后置于水浴锅中保持80ħ恒温ꎻ将150mL浓度为1.5mol/L的NaOH溶液逐滴滴入混合液中并持续搅拌ꎬ形成黑色液固混合物ꎻ对混合物进行抽滤ꎬ使用蒸馏水洗涤沉淀至中性ꎬ得到Fe3O4样品ꎮ1.2.2㊀Fe3O4/SnS2与SnS2的制备采用醇热法制备Fe3O4/SnS2ꎮ称取0.8765gSnCl4 5H2O和0.4696gTAA溶于35mLC3H8O中ꎬ并倒入100mL反应釜的聚四氟乙烯内衬中ꎬ用玻璃棒搅拌至均匀溶解ꎻ将一定量的Fe3O4加入到混合溶液中ꎬ然后将内衬密封于反应釜中ꎬ置于180ħ的烘箱中反应12hꎻ反应完全后关闭加热装置ꎬ自然冷却至室温ꎬ取出材料并用无水乙醇和去离子水反复清洗材料ꎬ至洗出液为中性ꎻ经干燥㊁研磨ꎬ收集得到Fe3O4/SnS2材料ꎮSnS2的制备采用与Fe3O4/SnS2相同的方法ꎬ其中不添加Fe3O4ꎮ1.3㊀材料的性能分析与表征1.3.1㊀材料的类芬顿性能为研究Fe3O4/SnS2材料的制备条件对催化94第4期㊀㊀㊀㊀㊀孔令博等:Fe3O4/SnS2的制备及其催化性能研究剂性能的影响ꎬ以亚甲基蓝为目标污染物ꎬ采用单因素法对比分析不同制备条件下催化剂的光助类芬顿活性及对亚甲基蓝的去除效果ꎮ取200mL浓度为20mg/L的亚甲基蓝溶液ꎬ分别加入10mg不同条件制备的Fe3O4/SnS2催化剂ꎬ用搅拌器搅拌30minꎬ使亚甲基蓝溶液和催化剂之间达到吸附/脱附平衡ꎬ测定此时亚甲基蓝溶液的吸光度值ꎬ换算后作为类芬顿反应的初始浓度ꎮ打开紫外灯ꎬ加入10mmol/L的H2O2ꎬ反应120minꎮ每30min取一定量的反应液ꎬ用0.22μm的微孔滤膜过滤ꎬ测定滤液的吸光度ꎮ根据溶液吸光度值ꎬ结合标准曲线的拟合方程计算出对应的亚甲基蓝浓度ꎬ求得亚甲基蓝的降解率ꎬ以评价Fe3O4/SnS2材料的类芬顿效果ꎮ降解率η计算式为η=1-Ct/C0(1)式中:C0为亚甲基蓝溶液初始浓度ꎬmg/LꎻCt为t反应时间亚甲基蓝溶液浓度ꎬmg/Lꎮ利用Langmuir ̄Hinshelwood(L ̄H)准一级动力学模型对亚甲基蓝的类芬顿去除过程进行分析ꎬL ̄H模型公式为lnC0Ctæèçöø÷=k t(2)式中:k为速率常数ꎬmin-1ꎻt为去除反应时间ꎬminꎮ1.3.2㊀材料的表征对材料的物相进行XRD分析ꎬ电压40kVꎬ电流150mAꎬ步长0.02ꎬ扫描速度5ʎ/minꎬ扫描范围5~90ʎꎻ通过SEM分析材料的形貌特征ꎻ通过UV ̄visDRS对样品进行固体紫外-可见漫反射光谱分析ꎬ测试样品在200~800nm波长范围内的光学吸收性能ꎻ通过PL对样品的荧光强度进行分析ꎻ通过VSM在ʃ10000Oe的磁场中对催化剂样品的磁性强弱进行分析ꎬ得到样品的磁滞回线ꎬ分析其回收利用的可行性ꎮ2㊀结果与讨论2.1㊀Fe3O4与SnS2复合配比对Fe3O4/SnS2性能的影响2.1.1㊀材料的表征2.1.1.1㊀XRD分析对不同复合配比(Fe3O4与SnS2物质的量比分别为1ʒ0.5㊁1ʒ1㊁1ʒ2㊁1ʒ4)制备的Fe3O4/SnS2样品进行XRD分析ꎬ结果如图1所示ꎮ图1㊀不同复合配比Fe3O4/SnS2的XRD图谱㊀㊀由图1可知ꎬ不同复合配比Fe3O4/SnS2材料的XRD谱线在30.121ʎ㊁35.479ʎ㊁43.119ʎꎬ53.495ʎ㊁57.026ʎ㊁62.622ʎ和74.086ʎ处的衍射峰分别对应于Fe3O4的(220)㊁(311)㊁(400)㊁(422)㊁(511)㊁(440)和(533)晶面ꎻ在15.029ʎ㊁28.199ʎ㊁32.124ʎ㊁49.960ʎ和52.451ʎ处的衍射峰与SnS2的衍射峰吻合ꎬ分别对应于SnS2的(001)㊁(100)㊁(101)㊁(110)和(111)晶面ꎮ不同复合配比的Fe3O4/SnS2材料的XRD图谱均与Fe3O4㊁SnS2的衍射峰高度匹配ꎬ不存在其他杂质峰ꎬ证明制备的材料为Fe3O4和SnS2的复合物Fe3O4/SnS2ꎻ衍射峰峰形尖锐[14-15]ꎬ说明不同复合配比制备的Fe3O4/SnS2材料均具有较高的结晶度ꎻ不同配比Fe3O4/SnS2的XRD谱线中对应的SnS2衍射峰ꎬ均随着SnS2的含量增加而增强ꎬ而Fe3O4的衍射峰随着SnS2的含量增加而减弱ꎮ2.1.1.2㊀SEM分析㊀㊀图2为纯相Fe3O4㊁SnS2及不同复合配比制备05沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷图2㊀纯相Fe3O4、SnS2及不同复合配比Fe3O4/SnS2的SEM图Fe3O4/SnS2的SEM图ꎮ由图2(a)可见ꎬFe3O4为颗粒状ꎬ直径为10~20nm左右ꎮ由图2(b)可见ꎬSnS2为不规则片状堆积成的花球状结构ꎬ单片片状SnS2的大小为200~400nm㊁厚度约为10nm㊁花球直径约5μmꎮ由图2(c)可见ꎬ片状SnS2被Fe3O4颗粒包裹住ꎬ两者界面紧密相连ꎬ证明Fe3O4/SnS2复合材料制备成功ꎮ图2(d)㊁图2(e)形貌基本上与图2(c)相同ꎬ只是随着Fe3O4物质的量减小ꎬFe3O4/SnS2复合材料表面的Fe3O4颗粒减小ꎬ当Fe3O4和SnS2物质的量比为1ʒ4时ꎬ复合材料表面的Fe3O4颗粒明显减少ꎮ2.1.1.3㊀UV ̄visDRS分析不同复合配比Fe3O4/SnS2的UV ̄visDRS图谱如图3所示ꎮ图3㊀不同复合配比Fe3O4/SnS2的UV ̄visDRS图谱㊀㊀由图3可知:所有配比的Fe3O4/SnS2材料对300~400nm的紫外光均有较好的吸收ꎻ在400~700nm的可见光范围内ꎬ不同复合配比的Fe3O4/SnS2材料均有较强的吸收能力ꎮ材料的禁带宽度大小在一定程度上说明材料的光催化活性ꎬ依据半导体光催化剂的禁带宽度计算公式以及直接带隙半导体光学吸收理论ꎬ由图3的UV ̄visDRS图谱数据计算不同复合配比的Fe3O4/SnS2材料的禁带宽度ꎮ采用(αhv)2对(hv)作图[16]ꎬ其中α为吸光系数ꎬh为普朗克常数ꎬv为光频率ꎮ将图中线性部分外延与横轴相交ꎬ交点的横坐标即为样品的禁带宽度ꎬ如图4所示ꎮ图4㊀不同复合配比Fe3O4/SnS2的禁带宽度㊀㊀㊀由图4可得ꎬ配比为1ʒ0.5㊁1ʒ1㊁1ʒ2㊁1ʒ4的Fe3O4/SnS2材料的禁带宽度分别为1.64eV㊁1.67eV㊁1.69eV㊁1.73eVꎮ不同配比的复合材料禁带宽度均低于纯相SnS2的禁带宽度(2.2eV)ꎬ随着SnS2的物质的量增大ꎬFe3O4/SnS2禁带宽度增大ꎮ2.1.1.4㊀PL图谱分析图5为不同复合配比的Fe3O4/SnS2材料的PL光谱图ꎬ在355nm激发波长下测其发射光谱(380~700nm)ꎮ图5㊀不同复合配比Fe3O4/SnS2的PL光谱㊀㊀由图5可见ꎬ四个样品均在约435nm处显示出发射峰ꎬ各样品配比按荧光强度由强到弱依次15第4期㊀㊀㊀㊀㊀孔令博等:Fe3O4/SnS2的制备及其催化性能研究为1ʒ0.5㊁1ʒ4㊁1ʒ2㊁1ʒ1ꎮFe3O4/SnS2荧光强度随着SnS2物质的量增大先增强后减弱ꎬ配比为1ʒ1的样品在435nm处的荧光强度最低ꎬ表明光生电子空穴对的复合程度最低ꎬ即分离程度最高ꎬ光助芬顿催化性能最好[17]ꎮ2.1.2㊀催化性能及动力学分析图6为不同复合配比Fe3O4/SnS2材料的类芬顿效果(降解曲线)及准一级动力学方程拟合结果ꎮ图6㊀不同复合配比Fe3O4/SnS2对类芬顿效果的影响㊀㊀由图6可知ꎬFe3O4/SnS2材料的复合配比按类芬顿效果由强到弱依次为1ʒ1㊁1ʒ2㊁1ʒ0.5㊁1ʒ4ꎬ配比为1ʒ1样品对亚甲基蓝的去除率达83.75%ꎮ所有样品均符合准一级反应动力学方程ꎬ其中复合配比为1ʒ1样品的动力学常数最大ꎬ为1.483ˑ10-2min-1ꎮ根据图4可知ꎬFe3O4/SnS2材料的禁带宽度随着SnS2物质的量增大而增强ꎬ但不同复合配比Fe3O4/SnS2材料禁带宽度的差别较小ꎻ此外ꎬ芬顿反应是二价铁与H2O2的反应ꎬ当复合材料中Fe3O4的含量较高时ꎬ芬顿效果会更好ꎻ结合PL光谱(图5)可知ꎬ配比为1ʒ1样品的光生电子空穴对的复合程度最低ꎮ综上所述ꎬ在紫外光与芬顿的协同作用下ꎬ配比为1ʒ1样品的光助类芬顿性能最好ꎮ2.2㊀实验条件对类芬顿效果的影响2.2.1㊀催化剂投加量对类芬顿效果的影响H2O2添加量为10mmol/LꎬFe3O4/SnS2投加量分别为5mg㊁10mg㊁20mg㊁30mg㊁50mg时对类芬顿效果的影响ꎬ如图7所示ꎮ图7㊀催化剂投加量对类芬顿效果的影响㊀㊀由图7可知ꎬ反应体系的降解率随Fe3O4/SnS2的投加量增大先增强后减弱ꎮFe3O4/SnS2的投加量由5mg增加到20mg时ꎬ亚甲基蓝的降解率由62.81%提高到87.85%ꎬ继续增大投加量ꎬ降解效果反而下降ꎬ投加量为50mg时ꎬ亚甲基蓝降解率降低到75.13%ꎻ投加量为20mg时ꎬ反应速率常数(k=1.653ˑ10-2min-1)明显高于投加量为5mg(k=0.824ˑ10-3min-1)及50mg(k=1.139ˑ10-2min-1)ꎮ可见ꎬ催化剂的投加25沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷量过多ꎬ类芬顿反应体系的降解率反而降低ꎮ当Fe3O4/SnS2投加量不高时ꎬ随着催化剂投加量增加ꎬ类芬顿反应产生的自由基数量增多㊁反应速率加快ꎬ亚甲基蓝的降解率提高ꎻ但过量的Fe3O4/SnS2导致反应溶液浑浊ꎬ紫外线照射效率有所降低ꎬFe3O4/SnS2与H2O2的反应效率降低ꎬ进而导致产生羟基自由基的数量减少ꎬ因而类芬顿的效果降低ꎮ确定适宜的Fe3O4/SnS2投加量为20mgꎮ2.2.2㊀H2O2添加量对类芬顿效果的影响固定Fe3O4/SnS2投加量为20mgꎬ不同H2O2添加量对亚甲基蓝的类芬顿降解效果的影响如图8图8㊀H22添加量对类芬顿效果的影响㊀㊀由图8可知ꎬ亚甲基蓝降解率随着H2O2添加量的增加先增大后有所减小ꎮ当H2O2添加量为25mmol/L时ꎬ亚甲基蓝降解率达到96.46%ꎬ反应速率常数为2.765ˑ10-2min-1ꎮ一方面ꎬ当H2O2的浓度较低时ꎬ羟基自由基的数量少ꎬ导致反应效率随之降低ꎻ另一方面ꎬ当H2O2的浓度过高时ꎬ过量的H2O2会与体系中的羟基自由基结合ꎬ发生自淬灭反应ꎬ造成羟基自由基的无效消耗ꎬ使实际参与到降解过程中的自由基数量减少ꎬ进而降低了反应效率ꎮ确定适宜的H2O2添加量为25mmol/Lꎮ2.2.3㊀pH对类芬顿效果的影响固定Fe3O4/SnS2投加量为20mg㊁H2O2添加量为25mmol/Lꎬ研究不同pH(3㊁5㊁9㊁未调节pH)对亚甲基蓝降解效果的影响ꎬ结果如图9所示ꎮ图9㊀pH对类芬顿效果的影响㊀㊀由图9可见ꎬ随pH的逐渐升高ꎬ亚甲基蓝的降解率由99.87%下降至85.39%ꎮ当pH为3时ꎬ反应速率常数(k=5.122ˑ10-2min-1)是碱性条件(pH为9时k=1.563ˑ10-2min-1)的3倍以上ꎬ亚甲基蓝溶液为碱性时ꎬ类芬顿反应的降解能力较弱ꎮ在未调节pH的条件下ꎬ亚甲基蓝的降解率为96.46%ꎬ反应速率常数(k=2.765ˑ10-2min-1)略低于酸性条件下的数值ꎮ因此ꎬ可以实现在中性环境中有机污染物的高效去除ꎬ拓宽类芬顿反应的pH适用范围ꎮ35第4期㊀㊀㊀㊀㊀孔令博等:Fe3O4/SnS2的制备及其催化性能研究2.3㊀磁性测试及重复利用实验2.3.1㊀磁性测试图10为Fe3O4及Fe3O4/SnS2材料的磁滞回线ꎮ图10㊀Fe3O4与Fe3O4/SnS2材料的磁滞回线㊀㊀由图10可知ꎬFe3O4/SnS2材料在磁场强度为ʃ10000Oe的饱和磁化强度值为37.53emu/gꎬ弱于纯Fe3O4的饱和磁化强度(67.81emu/g)ꎮ饱和磁化强度的降低归因于存在非磁性材料的复合ꎬ尽管Fe3O4/SnS2材料的磁性相比于纯组分Fe3O4有所降低ꎬ但仍能通过磁性进行分离ꎮ2.3.2㊀重复利用实验重复再利用是催化剂评价的重要指标之一ꎮ在未调节亚甲基蓝溶液pH㊁催化剂投加量为20mg㊁H2O2添加量为25mmol/L的条件下ꎬ通过五个连续实验评估催化剂的稳定性ꎬ对Fe3O4/SnS2材料的可重复利用性进行探究ꎬ实验结果见图11所示ꎮ由图11可知ꎬ五次重复实验后反应动力学常数(1.467ˑ10-2min-1)相较初次使用时的动力学常数(2.765ˑ10-2min-1)下降至一半左右ꎬ但Fe3O4/SnS2对亚甲基蓝的降解率仍可达84.19%ꎬ表明材料具有良好的重复使用性ꎮ图12为Fe3O4/SnS2材料在重复使用过程中使用微孔滤膜过滤及通过外部磁场分离效果的对比ꎮ通过外部磁场分离时ꎬ五次重复使用后的去除率分别为94.20%㊁91.74%㊁89.77%㊁86.33%㊁81.16%ꎮ相比微孔滤膜过滤分离的效果虽有所降低(分别降低了2.26%㊁3.61%㊁2.30%㊁3.52%㊁3.03%)ꎬ但已能满足磁分离的效果ꎮ图11㊀Fe3O4/SnS2材料重复使用的类芬顿效果图12㊀Fe3O4/SnS2材料重复使用分离效果对比3㊀结论以异丙醇为溶液ꎬ采用醇热法在共沉淀Fe3O4的基础上复合SnS2ꎬ成功制备了Fe3O4/SnS2复合材料ꎬ并对其类芬顿活性进行了研究ꎬ得到如下结论ꎮ1)将芬顿反应与光催化效应结合ꎬ确定了Fe3O4和SnS2的复合配比(物质的量比)为1ʒ145沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷时ꎬFe3O4/SnS2材料的催化效果最好ꎮ2)确定了较佳类芬顿效果的实验条件:Fe3O4/SnS2投加量为20mg㊁H2O2添加量为25mmol/L㊁溶液pH为3时ꎬ该条件下对亚甲基蓝降解率为99.87%ꎮ在中性条件下ꎬ对亚甲基蓝的降解率也可达96.46%ꎬ拓宽了类芬顿反应的应用pH范围ꎮ3)Fe3O4/SnS2在外加磁场的条件下可从反应溶液中高效分离ꎬ具有良好的回收利用性ꎮ参考文献:[1]贺伟.改性磁性铁基纳米材料降解水体中有机污染物的研究[D].上海:华东师范大学ꎬ2020. [2]BAOTꎬDAMTIEMMꎬWUKꎬetal.Rectorite ̄sup ̄portednano ̄Fe3O4compositematerialsascatalystforP ̄chlorophenoldegradation:preparationꎬcharacteriza ̄tionꎬandmechanism[J].AppliedClayScienceꎬ2019ꎬ176:66-77.[3]吴龙华ꎬ孙佳怡ꎬ雷金梅ꎬ等.掺铁二氧化钛类芬顿对染料废水的处理研究[J].科技风ꎬ2020(35):176-178. [4]邓景衡ꎬ文湘华ꎬ李佳喜.碳纳米管负载纳米四氧化三铁多相类芬顿降解亚甲基蓝[J].环境科学学报ꎬ2014ꎬ34(6):1436-1442.[5]HANIFSꎬSHAHZADA.Removalofchromium(VI)anddyeAlizarinRedS(ARS)usingpolymer ̄coatedironoxide(Fe3O4)magneticnanoparticlesbyco ̄pre ̄cipitationmethod[J].JournalofNanoparticleRe ̄searchꎬ2014ꎬ16(6):1-15.[6]NAZARIPꎬASKARINꎬRAHMANSS.Oxidation ̄precipitationofmagneticFe3O4/ACnanocompositeasaheterogeneouscatalystforelectro ̄Fentontreatment[J].ChemicalEngineeringCommunicationsꎬ2020ꎬ207(5):665-675.[7]ZHANGXꎬRENBꎬLIXꎬetal.High ̄efficiencyre ̄movaloftetracyclinebycarbon ̄bridge ̄dopedg ̄C3N4/Fe3O4magneticheterogeneouscatalystthroughphoto ̄Fentonprocess[J].JournalofHazardousMaterialsꎬ2021ꎬ418:126333.[8]VINOSELVMꎬANANDSꎬJANIFERMAꎬetal.PreparationandperformanceofFe3O4/TiO2nanocom ̄positewithenhancedphoto ̄Fentonactivityforphoto ̄catalysisbyfacilehydrothermalmethod[J].AppliedPhysicsAꎬ2019ꎬ125(5):1-13.[9]LIUNꎬFEIFHꎬDAIWXꎬetal.Visible ̄light ̄assistedpersulfateactivationbySnS2/MIL ̄88B(Fe)Z ̄schemeheterojunctionforenhanceddegradationofibuprofen[J].JournalofColloidandInterfaceScienceꎬ2022ꎬ625:965-977.[10]丁世环ꎬ徐聪聪ꎬ鹿媛铮.SnS2/BiOBr复合光催化剂的制备及其光催化性能研究[J].化工新型材料ꎬ2018ꎬ46(9):205-208.[11]赵志巍.二硫化锡基纳米材料的制备及其光催化性能的研究[D].天津:天津理工大学ꎬ2021. [12]苏艳.硫化锡的改性及其光催化还原六价铬的性能研究[D].扬州:扬州大学ꎬ2019.[13]HUANGNZꎬLIUJꎬGANLHꎬetal.Preparationofsize ̄tunableSnS2nanocrystalsinsituadjustedbynan ̄oporousgraphiticcarbonnitrideintheprocessofhy ̄drothermalsynthesiswithenhancedphotocatalyticper ̄formance[J].MaterialsLettersꎬ2017ꎬ195:224-227. [14]YULꎬCHENJDꎬLIANGZꎬetal.DegradationofphenolusingFe3O4 ̄GOnanocompositeasaheteroge ̄neousphoto ̄fentoncatalyst[J].SeparationandPurifi ̄cationTechnologyꎬ2016ꎬ171:80-87.[15]徐天缘.半导体/异相芬顿复合催化材料的构建及其光催化性能的研究[D].广州:中国科学院大学(中国科学院广州地球化学研究所)ꎬ2017.[16]DERIKVANDIHꎬNEZAMZADEH ̄EJHIEHA.Desig ̄ningofexperimentsforevaluatingtheinteractionsofinfluencingfactorsonthephotocatalyticactivityofNiSandSnS2:focusoncouplingꎬsupportingandnanoparti ̄cles[J].JournalofColloidandInterfaceScienceꎬ2017ꎬ490:628-641.[17]GAOXMꎬHUANGGBꎬGAOHHꎬetal.Facilefabri ̄cationofBi2S3/SnS2heterojunctionphotocatalystswithefficientphotocatalyticactivityundervisiblelight[J].JournalofAlloysandCompoundsꎬ2016ꎬ674:98-108.(责任编辑:徐淑姣)55第4期㊀㊀㊀㊀㊀孔令博等:Fe3O4/SnS2的制备及其催化性能研究。
肩袖损伤
1) the patient’s elbow in 90 degrees 2) in the plane of the scapula
2 external rotation lag sign
1) elbow passively flexed to 90 degrees 2) maximal external rotation
3 肩胛下肌
肩内旋、后伸功能
1 lift off test
asking the patient to internally rotate the arm to lift the hand posteriorly off of the back
2 internal rotation lag sign
肩袖损伤
肩袖损伤的流行病学
Uhthoff等[1]在一系列的尸体解剖中发现了20%的患病率, 其中捐献者的平均年龄为59.4岁。 雷曼等[2]在一大批尸体解剖中发现了17%的患病率,在 60岁以上的捐赠者中,这一比例为30%。 肩袖全层撕裂的发生率。 范围从5%到40%不等。此外,流行病学 研究表明,随着年龄的增长,肩袖损伤的频率越来越高 [3]。
磁处理过程中磁致伸缩与残余应力关系的研究_蔡志鹏(PDF)
第46卷第22期2010年11月机械工程学报JOURNAL OF MECHANICAL ENGINEERINGVol.46 No.22Nov. 2010DOI:10.3901/JME.2010.22.036磁处理过程中磁致伸缩与残余应力关系的研究*蔡志鹏1林健2(1. 清华大学机械工程系北京 100084;2. 北京工业大学材料科学与工程学院北京 100022)摘要:提出通过测量磁处理过程中的磁致应变来反映磁场对残余应力作用规律的研究思路。
通过TIG焊表面重熔和不同热处理规范加工初始应力水平不同的45钢试块,测量这些试块在相同低频间歇磁场作用下的磁致伸缩曲线,比较磁场作用前后残余应力的变化。
试验结果表明,不同初始应力水平的试块在磁处理过程中表现出不同的磁致伸缩行为,而磁处理过程中磁致伸缩的相对变化与残余应力的相对变化具有良好的对应关系,通过磁致伸缩曲线可以判断出残余应力变化的大小及是否已趋于稳定。
在试验现象的基础上,从能量微分方程建立的磁致伸缩应变量与应力水平间的对应关系,结果显示脉冲磁场作用下磁致伸缩幅值与主应力的乘积为常量,与试验值很吻合。
关键词:磁致伸缩残余应力磁处理中图分类号:TG156Study on the Relation of Magnatostriction and Residual StressRelief in the Process of Magnetic TreatmentCAI Zhipeng1LIN Jian2(1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084;2. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022)Abstract:Residual stress caused by magnetic field treatment is studied through magnetostriction investigation. The external magnetic field is carried out for both stress relief and magnetostriction at the same time. Samples of steel 45 are produced by tungsten inert gas welding and different heat treatment temperature and time are used to modify stress levels. The magnetostriction in the magnetic treatment process is recorded and residual stresses before and after the action of magnetic are compared. Experiment results shows that magnetostriction behaviors with different stress levels are different obviously. However, a good coherence exists between the relative change of magnetostriction and that of residual stress. Thus residual stress relief during the magnetic treatment can be evaluated by magnetostriction investigation conveniently. To explain the relationship between magnetostriction and stress level, energy differential equations are constructed and energy boundary conditions are modeled. The results deducted from the established equations show that the product of magnetostriction variation caused by pulsed magnetic field and residual stress in macro scope is constant, which agrees well with experiment results.Key words:Magnetostriction Residual stress Magnetic treatment0 前言材料在加工和成形过程中由于形变或性能的不均匀会导致残余应力的产生。
快速磁响应光子晶体的研究进展
快速磁响应光子晶体的研究进展张超灿;文斌;董一笑;吴立力【期刊名称】《化工进展》【年(卷),期】2015(000)007【摘要】Responsive photonic crystals are dielectric materials which are periodic arrangement of different mediums,among which magnetically responsive photonic crystals (MRPCs) are developing fast in recent years because of their rapid response to the change of external magnetic field and transform into optical signal. This paper presented the research progress in MRPCs. Firstly,the principle of photonic band gap produced by MRPCs under the effect of external magnetic field is described on the basis of Bragg’s law. Secondly,different synthetic pathways for fast MRPCs are concluded. On the basis of rapid responsive MRPCs,this paper conducted a comprehensive analysis in various aspects,such as the stabilizingeffect,controlling and influencing the shape size and band gap distribution. Finally,it also discussed potential applications of MRPCs insensors,security,color printing and other areas.%响应性光子晶体是由不同介质周期性排列组成的带隙介质材料,其中磁响应光子晶体因为能将外界磁场强弱变化快速表达为光学信号而在近几年发展迅速。
磁场效应 协同效应 乘数效应
磁场效应协同效应乘数效应Magnetic field effect, collaborative effect, and multiplier effect are three concepts that are often encountered in various fields, including physics, economics, and social sciences. They represent different mechanisms and principles that can lead to significant outcomes and impacts.磁场效应、协同效应和乘数效应是物理学、经济学和社会科学等多个领域中经常遇到的概念。
它们代表了不同的机制和原理,能够产生重大结果和影响。
Magnetic field effect refers to the influence of a magnetic field on objects or particles within its range. In physics, magnetic fields can attract or repel magnetic materials, causing them to move or align in specific directions. Similarly, in social and economic contexts, magnetic field effect can be likened to the influence of certain powerful forces or entities that shape the behavior and outcomes of individuals or groups.磁场效应是指磁场对其范围内物体或粒子的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract
We investigate the influence of an external magnetic field on spin phase relaxation of single electrons in semiconductor quantum dots induced by the hyperfine interaction. The basic decay mechanism is attributed to the dispersion of local effective nuclear fields over the ensemble of quantum dots. The characteristics of electron spin dephasing is analyzed by taking an average over the nuclear spin distribution. We find that the dephasing rate can be estimated as a spin precession frequency caused primarily by the mean value of the local nuclear magnetic field. Furthermore, it is shown that the hyperfine interaction does not fully depolarize electron spin. The loss of initial spin polarization during the dephasing process depends strongly on the external magnetic field, leading to the possibility of effective suppression of this mechanism.
On the other hand, the HFI can be considered as a source of a local magnetic field −H→HF acting on the electron spin that does not disappear at low (or even zero) temperature.3 This particularity makes the HFI a potentially dominant mehchanism at sufficiently low temperatures. In typical QDs, a sum of the contributions from a great number of nuclei spins forms this field. Thus, the strength and the direction of the −H→HF are the random variables, which vary from one QD to the next. Obviously, this dispersion can be damaging to quantum computation since electron spin precession occurs with a random phase and frequency. Nevertheless, it appears from a qualitative speculation that the role of −H→HF dispersion diminishes progressively with an increasing strength of the homogeneous external magnetic field −→B applied to the array of QDs.
processes are unimportant for the problem we consider, the Ψ-function of the Hamiltonian
given in Eq. (2) can be factorized with respect to electron and nuclear spins. This means that −→F × S = −→F × S , and Eqs. (3) and (4) present the closed system of equations
thermodynamics of bound magnetic polaron were successfully described by a model where differences in constants of spin-spin interaction were ignored.5,6 By analogy with this model,
In this paper, we provide a quantitative analysis of electron spin evolution under the presence of an external magnetic field −→B as well as the local hyperfine field −H→HF . Note, that a theory of electron spin relaxation caused by HFI in a QD was recently presented in Ref. 4. The main interest of Khaetskii et al.4 lies on the electron spin decoherence process inside a single QD when the external magnetic field is zero. It also contains a brief discussion of spin dephasing time. On the other hand, the present study concentrates on the important process of electron spin dephasing induced by HFI in an ensemble of QDs and explicitly considers the effect of external magnetic fields.
2
The Hamiltonian of electron spin S in a QD containing N nuclear spins Ij (j = 1, ..., N) takes the form (h¯ = 1)
H = ωeSz + ωn
N
Ijz +
N
Aj−→S ·
→
I j,
(1)
j=1
d dt
S
= −→B e ×
SHale Waihona Puke +A−→F × S
;
(3)
d dt
F
= −→B n ×
−→F
+A
S×−→F
.
(4)
where −→B e = {0, 0, ωe} and −→B n = {0, 0, ωn} are in units of energy. Assuming that the flip-flop
arXiv:cond-mat/0212233v1 [cond-mat.mes-hall] 10 Dec 2002
Effect of external magnetic field on electron spin dephasing induced by hyperfine interaction in quantum dots
Y. G. Semenov
Institute of Semiconductor Physics, National Academy of Sciences of Ukraine Prospekt Nauki, 45 Kiev 03028 Ukraine
K. W. Kim
Department of Electrical Computer Engineering North Carolina State University, Raleigh, NC 27695-7911
Typeset using REVTEX 1
The spin state of an electron confined in a semiconductor quantum dot (QD) is considered one of the most promising candidates for realizing the basic building block (i.e., qubit) of a quantum information system. Since the fundamental concept of this new paradigm relies on quantum mechanical entanglement of qubits, it is quite crucial to control spin relaxation processes that destroy the coherence of spin quantum state. So far, most of the attention has been devoted to the relaxation processes that result in irreversible loss of wave function phase due to spin-phonon interaction caused by spin-orbital coupling in solids or hyperfine interaction (HFI) in crystals with non-zero nuclei spin moments (see Refs. 1 and 2 as well as the references therein). The common feature of these spin-lattice mechanisms is that their relaxation rates are very small in QDs at low temperatures.