【真卷】2017年甘肃省兰州市西固区桃园中学中考数学模拟试卷及解析PDF

合集下载

(完整版)2017年甘肃省兰州市中考数学试卷真题

(完整版)2017年甘肃省兰州市中考数学试卷真题

2017年甘肃省兰州市中考数学试卷一、选择题(共15小题,每小题4分,满分60分.在每小题给出的四个选项中,只有一项是符合要求的。

)1.(4分)已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=2.(4分)如图所示,该几何体的左视图是()A. B.C.D.3.(4分)如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于()A.B.C.D.4.(4分)如图,在⊙O中,AB=BC,点D在⊙O上,∠CDB=25°,则∠AOB=()A.45°B.50°C.55°D.60°5.(4分)下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x1 1.1 1.2 1.3 1.4y﹣1﹣0.490.040.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.36.(4分)如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么是实数m的取值为()A.m>B.m C.m=D.m=7.(4分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.308.(4分)如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=()A.5 B.4 C.3.5 D.39.(4分)抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A.y=3(x﹣3)2﹣3 B.y=3x2C.y=3(x+3)2﹣3 D.y=3x2﹣610.(4分)王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为3000cm2的无盖长方形工具箱,根据题意列方程为()A.(80﹣x)(70﹣x)=3000 B.80×70﹣4x2=3000C.(80﹣2x)(70﹣2x)=3000 D.80×70﹣4x2﹣(70+80)x=300011.(4分)如图,反比例函数y=(k<0)与一次函数y=x+4的图象交于A、B两点的横坐标分别为﹣3,﹣1.则关于x的不等式<x+4(x<0)的解集为()A.x<﹣3 B.﹣3<x<﹣1 C.﹣1<x<0 D.x<﹣3或﹣1<x<012.(4分)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A.π+1 B.π+2 C.π﹣1 D.π﹣213.(4分)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(DE=BC=0.5米,A、B、C三点共线),把一面镜子水平放置在平台上的点G处,测得CG=15米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得EG=3米,小明身高1.6米,则凉亭的高度AB约为()A.8.5米B.9米 C.9.5米D.10米14.(4分)如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG 绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A.B.C.D.15.(4分)如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD 的面积是()A.B.5 C.6 D.二、填空题(共5小题,每小题4分,满分20分)16.(4分)若反比例函数的图象经过点(﹣1,2),则k的值是.17.(4分)如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=.18.(4分)如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为.19.(4分)在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.20.(4分)如图,在平面直角坐标系xOy中,▱ABCO的顶点A,B的坐标分别是A(3,0),B(0,2).动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P随点P运动,当⊙P与▱ABCO的边相切时,P点的坐标为.三、解答题(共8小题,满分70分.解答时,写出必要的文字说明、证明过程或演算步骤。

甘肃省兰州市中考数学试卷含答案解析版

甘肃省兰州市中考数学试卷含答案解析版

甘肃省兰州市中考数学试卷含答案解析版LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】2017年甘肃省兰州市中考数学试卷一、选择题(共15小题,每小题4分,满分60分.在每小题给出的四个选项中,只有一项是符合要求的。

)1.(4分)已知2x=3y(y≠0),则下面结论成立的是()A.xy=32B.x3=2yC.xy=23D.x2=y32.(4分)如图所示,该几何体的左视图是()A.B.C.D.3.(4分)如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于()A.513B.1213C.512D.13124.(4分)如图,在⊙O中,AB=BC,点D在⊙O上,∠CDB=25°,则∠AOB=()A.45° B.50° C.55° D.60°5.(4分)下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值: x 1y﹣1﹣那么方程x2+3x﹣5=0的一个近似根是()A.1 B.C.D.6.(4分)如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么是实数m的取值为()A.m>98B.m>89C.m=98D.m=897.(4分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.308.(4分)如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=()A.5 B.4 C.D.39.(4分)抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A.y=3(x﹣3)2﹣3 B.y=3x2C.y=3(x+3)2﹣3 D.y=3x2﹣610.(4分)王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为3000cm2的无盖长方形工具箱,根据题意列方程为()A.(80﹣x)(70﹣x)=3000B.80×70﹣4x2=3000C .(80﹣2x )(70﹣2x )=3000D .80×70﹣4x 2﹣(70+80)x=300011.(4分)如图,反比例函数y=kx(k <0)与一次函数y=x +4的图象交于A 、B 两点的横坐标分别为﹣3,﹣1.则关于x 的不等式kx<x +4(x <0)的解集为( )A .x <﹣3B .﹣3<x <﹣1C .﹣1<x <0D .x <﹣3或﹣1<x <012.(4分)如图,正方形ABCD 内接于半径为2的⊙O ,则图中阴影部分的面积为( )A .π+1B .π+2C .π﹣1D .π﹣213.(4分)如图,小明为了测量一凉亭的高度AB (顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE (DE=BC=米,A 、B 、C 三点共线),把一面镜子水平放置在平台上的点G 处,测得CG=15米,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得EG=3米,小明身高米,则凉亭的高度AB 约为( ) A .米 B .9米C .米D .10米14.(4分)如图,在正方形ABCD 和正方形DEFG 中, 点G 在CD 上,DE=2,将正方形DEFG 绕点D 顺时针 旋转60°,得到正方形DE′F′G′,此时点G′在AC 上,连接CE′,则CE′+CG′=( )A .√2+√6B .√3+1C .√3+√2D .√3+√615.(4分)如图1,在矩形ABCD 中,动点E 从A 出发,沿AB→BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC=y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )A .235B .5C .6D .254二、填空题(共5小题,每小题4分,满分20分)16.(4分)若反比例函数y =kx 的图象经过点(﹣1,2),则k 的值是 .17.(4分)如图,四边形ABCD 与四边形EFGH位似,位似中心点是O ,OE OA =35,则FGBC= .18.(4分)如图,若抛物线y=ax 2+bx +c 上 的P (4,0),Q 两点关于它的对称轴x=1对称, 则Q 点的坐标为 .19.(4分)在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,要使四边形ABCD 是正方形,还需添加一组条件.下面给出了四组条件:①AB ⊥AD ,且AB=AD ;②AB=BD ,且AB ⊥BD ;③OB=OC ,且OB ⊥OC ;④AB=AD ,且AC=BD .其中正确的序号是 .20.(4分)如图,在平面直角坐标系xOy 中,ABCO 的顶点A ,B 的坐标分别是A(3,0),B (0,2).动点P 在直线y=32x 上运动,以点P 为圆心,PB 长为半径的⊙P 随点P 运动,当⊙P 与?ABCO 的边相切时,P 点的坐标为 .三、解答题(共8小题,满分70分.解答时,写出必要的文字说明、证明过程或演算步骤。

【中考模拟2017】甘肃兰州市 2017年九年级数学 中考模拟测试卷 二(含答案)

【中考模拟2017】甘肃兰州市 2017年九年级数学 中考模拟测试卷 二(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()2.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定3.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.ab>0,c>0B.ab>0,c<0C.ab<0,c>0D.ab<0,c<04.菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A.4:1 B.5:1 C.6:1 D.7:15.如图,在△ABC 中,∠C=90°,D 是 AC 上一点,DE⊥AB 于点 E,若 AC=8,BC=6,DE=3,则 AD 的长为()A.3 B.4 C.5 D.66.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.87.反比例函数y=-的图象上有P(x1,-2),P2(x2,-3)两点,则x1与x2的大小关系是()1A.x1>x2B.x1=x2C.x1<x2D.不确定8.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.游戏公平D.无法确定对谁有利9.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A. B. C. D.10.某种衬衫的价格经过连续两次的降价后,由每件150元降到96元,则平均每次降价的百分率是()A.10%B.15%C.20%D.30%11.如图,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()12.如果一个正多边形绕着它的中心旋转60°后,能与原正多边形重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形13.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,为了赚得8000元的利润,商品售价应为()A.60元B.80元C.60元或80元D.30元14.在Rt△ABC中,∠C=90°,BC=3,AB=4,则sinA的值为()A.0.6B.0.8C.0.75D.15.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.二、填空题:16.关于x的方程(m-1)x m2-2-5x-1=0是一元二次方程,那么m= .17.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D 的折痕DE,则∠DEC的大小为.18.如图,在△ABC中,DE∥BC,且S:S△CDE=1:3,则S△ADE:S△DBC等于△ADE19.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为 cm.20.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t= 时,△CPQ 与△CBA相似.三、解答题:21.计算:tan30°cos60°+tan45°cos30°.22.解方程:(x+8)(x+1)=-1223.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.24.每年11月的最后一个星期四是感恩节,小龙调查了初三年级部分同学在感恩节当天将以何种方式表达感谢帮助过自己的人.他将调查结果分为如下四类:A类﹣﹣当面致谢;B类﹣﹣打电话;C类﹣﹣发短信息或微信;D 类﹣﹣写书信.他将调查结果绘制成如图不完整的扇形统计图和条形统计图:请你根据图中提供的信息完成下列各题:(1)补全条形统计图;(2)在A类的同学中,有3人来自同一班级,其中有1人学过主持.现准备从他们3人中随机抽出两位同学主持感恩节主题班会课,请你用树状图或表格求出抽出的两人都没有学过主持的概率.25.如图,电信部门计划修建一条连接B、C两地电缆,测量人员在山脚A处测得B、C两处的仰角分别是37°和45°,在B处测得C处的仰角为67°.已知C地比A地髙330米(图中各点均在同一平面内),求电缆BC长至少多少米?(精确到米,参考数据:sin37°≈,tan37°≈,sin67°≈,tan67°≈)26.如图,四边形BFCD为平行四边形,点E是AF的中点.(1)求证:CF=AD;(2)若∠ACB=90°,试判断四边形BFCD的形状,并说明理由.27.病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求当0≤x≤2时,y与x的函数关系式;(2)求当x>2时,y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?28.如图,已知半圆O,AB为直径,P为射线AB上一点,过点P作⊙O的切线,切点为C点,D为弧AC上一点,连接BD、BC.(1)求证:∠D=∠PCB;(2)若四边形CDBP为平行四边形,求∠BPC度数;(3)若AB=8,PB=2,求PC的长度.29.如图,已知抛物线y=ax2+bx+c(a≠)的顶点坐标为(4,-2/3),且与y轴交于点C(0,2),于x轴于A、B两点(点A在点B的左边).(1)求抛物线的解析式及A、B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值;若不存在,请说明理由;(3)在以AB为直径的⊙M中,CE与⊙M相切于点E,CE交x轴于D,求直线CE的解析式.参考答案1.C2.B3.A4.B5.C6.D7.A8.C9.B10.C11.A12.C13.C14.C15.D16.解得m=﹣2.17.答案为:75.18.答案为:1:1219.解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根据旋转的性质知,A′C=AC,∴A′C=AB=5cm,∴点A′是斜边AB的中点,∴AA′=AB=5cm,∴AA′=A′C=AC,∴∠A′CA=60°,∴CA′旋转所构成的扇形的弧长为:=(cm).故答案是:.20.答案为4.8或.21.解:tan30°cos60°+tan45°cos30°===.22.化简得,x2+9x+20=0,(x+4)(x+5)=0,解得,x1=﹣4,x2=﹣5.23.解:(1)如图所示:△A1B1C1,即为所求,C1点坐标为:(3,2);(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(﹣6,4);(3)如果点D(a,b)在线段AB上,经过(2)的变化后D的对应点D2的坐标为:(2a,2b).24.解:(1)由题意可知总人数=5÷10%=50(人),所以D类所占的百分比为12÷50×100%=24%,C所占的百分比==30%,所以C所占的人数=50×30%=15(人);B所占的百分比=1﹣10%﹣24%﹣30%=36%,B所占的人数=50×36%=18(人),由此补全统计图可得:B1,列表如下:P(两人都没有学过主持)==.25.解:如图,过点C作经过点A的水平直线的垂线,垂足为点D,CD交过点B的水平直线于点E,过点B作BF⊥AD于点F,则CD=330米,∵∠CAD=45°∴∠ACD=45°∴AD=CD=330米,设AF=4x,则BF=AF•tan37°≈4x•0.75=3x(米)FD=(330﹣4x)米,由四边形BEDF是矩形可得:BE=FD=(330﹣4x)米,ED=BF=3x米,∴CE=CD﹣ED=(330﹣3x)米,在Rt△BCE中,CE=BE•tan67°,∴330﹣3x=(330﹣4x)×2.4,解得x=70,∴CE=330﹣3×70=120(米),∴BC==≈130(米)答:电缆BC长至少130米.26.(1)证明∵AE是DC边上的中线,∴AE=FE,∵CF∥AB,∴∠ADE=∠CFE,∠DAE=∠CFE.在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴CF=DA.(2)解:四边形BFCD是菱形;理由如下:∵CD是△ABC的中线,∴D是AB的中点,∴AD=BD,∵△ADE≌△FCE,∴AD=CF,∴BD=CF,∵AB∥CF,∴BD∥CF,∴四边形BFCD是平行四边形,∵∠ACB=90°,∴△ACB是直角三角形,∴CD=0.5AB,∵BD=0.5AB,∴BD=CD,∴四边形BFCD是菱形.277.解:(1)根据图象,正比例函数图象经过点(2,4),设函数解析式为y=kx,则2k=4,解得k=2,所以函数关系为y=2x(0≤x≤2);(2)根据图象,反比例函数图象经过点(2,4),设函数解析式为y=kx-1,则0.5k=4,解得k=8,所以,函数关系为y=8x-1(x>2);(3)当y=2时,2x=2,解得x=1,8x-1=2,解得x=4,4﹣1=3小时,∴服药一次,治疗疾病的有效时间是3小时.28.解:(1)证明略;(2)30°;(3)连接OC,PC=.29.。

(完整版)2017兰州中考一诊数学试题及答案

(完整版)2017兰州中考一诊数学试题及答案

兰州市2017年中考逡断考试数学注意率项;I.全卷共150分.牙试射倒120分钟.2.学生必象物考场,座位号.姓名、准考i£号笥个人信息境(滁)耳在答JHX上.3.号生务必将告玄口按施(流)写在誓0卡的相应位H匕一、&HK:本大U共15小显.<0小H4分.扶60分.在彼小JK给出的四个通旧中,只帮一陵是符合翅目要求的.1.曲效>・2的图依位于XA.第一■三a/B.笫二,四象取c.第、一象* d第三,口象*2.n己知A3=gn, 4/3Gm.妁“BC与~’6'(7的面世比为A. I X 2B. 2 : IC. I । 4D. 4 t I"如图,已知一个五五横柱的*1黑图和左程图.妁其主视国为O口田口回皿««w AtWRI A B C D品在一个不透明的口港里装看只有■色不同的・•白两种姮色的珠柒5。

只.某学“小忸做揆I#实验,桁球技父后从中随机惯出一个印记卜演色,国把它放网袋中.小畸重复以上步费,F表为实险2仅7中专tt- nr B । M 6 «)请结算口微中白球的个数妁为A. 20B. 25C. 30D. 357.下列命恩帽徵命息的见A.两机对边分别平行的四边形是平行四边形B.两条对角歧相等的印行四边彩是奖影C.两条对角线互相重直的平行四地形是英形D.两条对给a*应只知等的四边形是正方形8.若关于x的一元二次方双六一岳r+4・。

的解是x-2. M 2017A. 201$B. 2017C. 2019D. 20209.若二次的效y=一/+R+5的图象关于H线x=4时熟,灼丁的融值葩A.最小饮21B.域小值"C.最大侦”D.最大值2416.如图.过点U-2. 5)的网线/8分别之坐标他于/。

2)・B芭前,则“n/CMBII.如图,戏校6c的两地点的坐标分别为B(3.7>. CC6. 3),以点0)为位fcl中心.格展段8c嗡小为原案的L后得到修段£)£•刻端点。

2017年甘肃省兰州市西固区桃园中学中考数学模拟试卷

2017年甘肃省兰州市西固区桃园中学中考数学模拟试卷

2017年甘肃省兰州市西固区桃园中学中考数学模拟试卷一、选择题:1.如图是由相同小正方体组成的立体图形,它的左视图为()A.B.C.D.2.下列一元二次方程中有两个不相等的实数根的方程是()A.(x﹣1)2=0 B.x2+2x﹣19=0 C.x2+4=0 D.x2+x+l=03.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.125.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:3 B.2:5 C.3:5 D.3:26.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.2 B.C.1 D.7.若函数y=x2m+1为反比例函数,则m的值是()A.1 B.0 C.0.5 D.﹣18.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.9.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C 在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变10.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=19611.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或12.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.213.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣0.5x2D.y=0.5x214.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.15.将函数y=x2+x的图象向右平移a(a>0)个单位,得到函数y=x2﹣3x+2的图象,则a的值为()A.1 B.2 C.3 D.4二、填空题:16.方程x2﹣3x+1=0的一次项系数是.17.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是度.18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是.19.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“<”“=”“>”)20.如图,正方形ABCD与正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),则位似中心的坐标是.三、计算题:21.计算:|1﹣|+3tan30°﹣(﹣5)0﹣(﹣)﹣1.22.(x+3)(x﹣1)=12(用配方法)四、解答题:23.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请在图中标明旋转中心P的位置并写出其坐标.24.甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请说明理由.25.如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)26.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.27.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?28.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.29.如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y 轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC 于点D,连接CP.(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积最大时,求点P的坐标.2017年甘肃省兰州市西固区桃园中学中考数学模拟试卷参考答案与试题解析一、选择题:1.如图是由相同小正方体组成的立体图形,它的左视图为()A.B.C.D.【解答】解:从左面看可得到左边第一竖列为3个正方形,第二竖列为2个正方形,故选A.2.下列一元二次方程中有两个不相等的实数根的方程是()A.(x﹣1)2=0 B.x2+2x﹣19=0 C.x2+4=0 D.x2+x+l=0【解答】解:A、△=0,方程有两个相等的实数根;B、△=4+76=80>0,方程有两个不相等的实数根;C、△=﹣16<0,方程没有实数根;D、△=1﹣4=﹣3<0,方程没有实数根.故选:B.3.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B5.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:3 B.2:5 C.3:5 D.3:2【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF :S△ABF=4:25,∴=,∵AB=CD,∴DE:EC=2:3.故选A.6.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.2 B.C.1 D.【解答】解:∵OD⊥弦BC,∴∠BOD=90°,∵∠BOD=∠A=60°,∴OD=OB=1,故选C.7.若函数y=x2m+1为反比例函数,则m的值是()A.1 B.0 C.0.5 D.﹣1【解答】解:根据题意得2m+1=﹣1,解得m=﹣1.故选D.8.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.【解答】解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选:C.9.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C 在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变【解答】解:∵等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,设点C的坐标为(x,),∴(k为常数).即△ABC的面积不变.故选A.10.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.11.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或【解答】解:∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM2+DM2=1,解得DM=;②DM与BE是对应边时,DM=DN,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM=.∴DM为或时,△ABE与以D、M、N为顶点的三角形相似.故选C.12.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.2【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选:B.13.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣0.5x2D.y=0.5x2【解答】解:由题意可得,设抛物线解析式为:y=ax2,且抛物线过(2,﹣2)点,故﹣2=a×22,解得:a=﹣0.5,故选:C.14.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.【解答】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD===,只有选项C错误,符合题意.故选:C.15.将函数y=x2+x的图象向右平移a(a>0)个单位,得到函数y=x2﹣3x+2的图象,则a的值为()A.1 B.2 C.3 D.4【解答】解:y=x2+x=(x+)2﹣.y=x2﹣3x+2=(x﹣)2﹣.所以a==2.故选B.二、填空题:16.方程x2﹣3x+1=0的一次项系数是﹣3.【解答】解:方程x2﹣3x+1=0的一次项系数为﹣3.故答案为:﹣317.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5度.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是0.9m.【解答】解:∵AB∥CD,∴△PAB∽△PCD,∴,假设P到AB距离为x,则=,x=0.9.故答案为:0.9m.19.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上<r下.(填“<”“=”“>”)【解答】解:如图,r上<r下.故答案为:<.20.如图,正方形ABCD与正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),则位似中心的坐标是(0,),(﹣6,7).【解答】解:设当B与F是对应点,设直线BF的解析式为:y=kx+b,则,解得:,故直线BF的解析式为:y=﹣x+,则x=0时,y=,即位似中心是:(0,),设当C与E是对应点,设直线CE的解析式为:y=ax+c,则,解得:,故直线CE的解析式为:y=﹣x+1,设直线DF的解析式为:y=dx+e,则,解得:,故直线DF的解析式为:y=﹣x+3,则,解得:即位似中心是:(﹣6,7),综上所述:所述位似中心为:(0,),(﹣6,7).故答案为:(0,),(﹣6,7).三、计算题:21.计算:|1﹣|+3tan30°﹣(﹣5)0﹣(﹣)﹣1.【解答】解:原式=﹣1+3×﹣1﹣(﹣3)=﹣1++3=2.22.(x+3)(x﹣1)=12(用配方法)【解答】解:将原方程整理,得x2+2x=15(1分)两边都加上12,得x2+2x+12=15+12(2分)即(x+1)2=16(3分)开平方,得x+1=±4,即x+1=4,或x+1=﹣4(4分)∴x1=3,x2=﹣5(5分)四、解答题:23.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请在图中标明旋转中心P的位置并写出其坐标.【解答】解:(1)如图,△A1B1C和△A2B2C2为所作;(2)如图,点P为所作,P点坐标为(,﹣1).24.甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请说明理由.【解答】解:(1)∵袋子中装有相同大小的3个球,球上分别标有数字1,2,3,∴甲摸到标有数字3的球的概率为;(2)解:游戏公平,理由如下:列举所有可能:由表可知甲获胜的概率=,乙获胜的概率=,所以游戏是公平的.25.如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)【解答】解:过点D作DH⊥BC于点M,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣10,在Rt△ACB中,∠BAC=50°,tan∠BAC=,∴x=tan50°•[(x﹣5)],解得:x≈21,答:建筑物BC的高约为21m.26.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.27.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【解答】解:(1)设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2=,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.28.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.29.如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y 轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC 于点D,连接CP.(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积最大时,求点P的坐标.【解答】解:(1)由题意,得,解得,∴抛物线的解析式为y=﹣x﹣4;(2)设点P运动到点(x,0)时,有BP2=BD•BC,令x=0时,则y=﹣4,∴点C的坐标为(0,﹣4).∵PD∥AC,∴△BPD∽△BAC,∴.∵BC===2,AB=6,BP=x﹣(﹣2)=x+2.∴BD===.∵BP2=BD•BC,∴(x+2)2=×2,解得x1=,x2=﹣2(﹣2不合题意,舍去),∴点P的坐标是(,0),即当点P运动到(,0)时,BP2=BD•BC;(3)∵△BPD∽△BAC,∴,∴×S△PDC=S△PBC﹣S△PBD=×(x+2)×4﹣∵,有最大值为3.∴当x=1时,S△PDC即点P的坐标为(1,0)时,△PDC的面积最大.。

甘肃省兰州市2017年中考数学真题试题(含解析1)

甘肃省兰州市2017年中考数学真题试题(含解析1)

D. x = y 23
考点:比例的性质. 2. 如图所示,该几何体的左视图是( )
A
B
C
D
【答案】D
【解析】
试题解析:在 三视图中,实际存在而被遮挡的线用虚线表示,
故选 D.
考点:简单组合体的三视图.
3. 如图,一个斜坡长 130m,坡顶离水平地面的距离为 50m,那么这个斜坡与水平地面夹角的正切值等于
∴p(3﹣
5,9 3
5
).
2
④如图 3 中,当⊙P 与 AB 相切时,设线段 AB 与直线 OP 的交点为 G,此时 PB=PG,
∵OP⊥AB, ∴∠BGP=∠PBG=90°不成立, ∴此种情形,不存在 P.
2
综上所述,满足条件的 P 的坐标为(0,0)或( ,1)或(3﹣
5,9 3
5
).
D. x < - 3或 - 1< x < 0
【答案】B
观察图象可知,当﹣3<x<﹣1 时,一次函数的图象在反比例函数图象的上方,
∴关于
x
的不等式
k x
<
x
+
4(
x
<
0)
的解集为:﹣3<x<﹣1.
故选 B.
考点:反比例函数与一次函数的交点问题.
12. 如图,正方形 ABCD 内接于半径为 2 的⊙O ,则图中阴影部分的面积为( )
A. p +1 【答案】D.
B. p +2
C. p - 1
D. p - 2
圆内接正方形的边长为 2 2 ,所以阴影部分的面积= 1 [4π﹣(2 2 )2]=(π﹣2)cm2. 4
故选 D. 考点:1 正多边形和圆;2.扇形面积的计算. 13. 如图,小明为了测量一凉亭的高度 AB (顶端 A 到水平地面 BD 的距离),在凉亭的旁边放置一个与凉亭 台阶 BC 等高的台阶 DE ( DE = BC = 0.5米, A, B,C 三点共线),把一面镜子水平放置在平台上的点 G 处, 测得 CG =15 米,然后沿直线 CG 后退到点 E 处,这时恰好在镜子里看到凉亭的顶端 A ,测得 CG = 3米,小 明身高 EF =1.6 米,则凉亭的高度 AB 约为( )

【中考模拟2017】甘肃省兰州市 2017年九年级数学中考模拟试卷 一 (含答案)

【中考模拟2017】甘肃省兰州市 2017年九年级数学中考模拟试卷 一 (含答案)

2017年九年级数学中考模拟试卷一、选择题:1.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B.C.D.2.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根3.如图,平面直角坐标系中,已知点B(2,1),过点B作BA⊥x轴,垂足为A,若抛物线y=0.5x2+k与△OAB的边界总有两个公共点,则实数k的取值范围是()A.﹣2<k<0B.﹣2<k<0.125C.﹣2<k<﹣1D.﹣2<k<0.254.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.75°B.60°C.55°D.45°5.如图,在△ABC中,DE∥BC,若AD:DB=1:3,则△ADE与△ABC的面积之比是( )A.1:3 B.1:4 C.1:9 D.1:166.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°7.已知反比例函数的图象过点(2,3),那么下列四个点中,也在这个函数上的是( )A.(-6,1)B.(1,6)C.(2,-3)D.(3,-2)8.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球9.如图,等腰△ABC 的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=kx-1(x>0)的图象上运动,且 AC=BC,则△ABC 的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变10.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=011.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A. B. C. D.12.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,13.烟花厂为热烈庆祝“十一国庆”,特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-2.5t2+30t+1,礼炮点火升空后会在最高点处引爆,则这种礼炮能上升的最大高度为()A.91米B.90米C.81米D.80米14.在Rt△ABC中,∠C=90°,sinB=,则tanA的值为( )A. B. C. D.15.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①②B.①③C.②③D.①②③二、填空题:16.已知1是关于x的一元二次方程x2-x+k=0的一个根,那么k=17.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S、S2的大1小关系是____________.18.在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为20米,那么高楼的实际高度是米.19.如图,在矩形ABCD中,AB=5,BC=10,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为.20.如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是___________.三、计算题:21.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.22.x2-5x+1=0(用配方法)四、解答题:23.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.24.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为人,扇形统计图中短跑项目所对应圆心角的度数为°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.25.如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:≈1.73,≈1.41)26.如图,已知平行四边形ABCD的两条对角线相交于点O,E是BO的中点,过B点作AC的平行线,交CE的延长线于点F,连接BF(1)求证:FB=AO;(2)当平行四边形ABCD满足什么条件时,四边形AFBO是菱形?说明理由.27.在平面直角坐标系,直线y=x-1与y轴交于点A,与双曲线y=kx-1交于点B(m,2).(1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.28.如图,在⊙O中,AB为直径,OC⊥AB,弦CF与OB交于点E,过点F,A分别作⊙O的切线交于点H,且HF与AB的延长线交于点D.(1)求证:DF=DE;(2)若tan∠OCE=0.5,⊙O的半径为4,求AH的长.29.如图,在平面直角坐标系中,直线y=-2x+10与x轴,y轴相交于A,B两点,点C的坐标为(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从O点出发,沿OB以每秒两个单位长度的速度向点B运动,同时动点Q从点B出发,沿BC以每秒一个单位长度的速度向点C运动,规定其中一个动点到达端点时另一个动点也随之停止运动,设运动时间为t秒,当t 为何值时,PA=QA?;(3)在抛物线的对称轴上,是否存在点M,使A,B,M为顶点的三角形是等腰三角形?若存在,直接写出M点的坐标;若不存在,请说明理由.参考答案1.B2.A3.B4.B5.D6.D7.B8.B9.A10.C11.C12.D13.A14.D15.B16.答案为:017.答案为:S1=S218.答案为:1219.解答】解:设圆弧的圆心为O,与AD切于E,连接OE交BC于F,连接OB、OC,设圆的半径为x,则OF=x﹣5,由勾股定理得,OB2=OF2+BF2,即x2=(x﹣5)2+(5)2,解得,x=5,则∠BOF=60°,∠BOC=120°,则阴影部分面积为:矩形ABCD的面积﹣(扇形BOCE的面积﹣△BOC的面积)=10×5﹣+×10×5=75﹣,故答案为:75﹣.20.答案为:(2,1)或(﹣2,﹣1)21.答案为:222.答案为:,.23.【解答】解:(1))△ABC与△A1B1C1的位似比等于=;(2)如图所示(3)△A3B3C3是由△A2B2C2沿x轴向左平移2个单位,再沿y轴向上平移2个单位得到;(4)点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为(﹣2x﹣2,2y+2).故答案为:;(﹣2x﹣2,2y+2).24.解:(1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷32%=25(人);扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.故答案为:25,72;(2)长跑项目的男生人数为:25×12%﹣2=1,跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,∴跳高项目中男生被选中的概率=.25.解:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,∵坡面DE=20米,山坡的坡度i=1:,∴EF=10米,DF=10米,∵DH=DF+EC+CN=(10+30)米,∠ADH=30°,∴AH=×DH=(30+30)米,∴AN=AH+EF=(40+30)米,∵∠BCN=45°,∴CN=BN=20米,∴AB=AN﹣BN=20+30≈71米,答:条幅的长度是71米.26.证明:(1)如图,取BC的中点G,连接EG.∵E是BO的中点,∴EG是△BFC的中位线,∴EG=0.5BF.同理,EG=0.5OC,∴BF=OC.又∵点O是▱ABCD的对角线交点,∴AO=CO,∴BF=AO.又∵BF∥AC,即BF∥AO,∴四边形AOBF为平行四边形,∴FB=AO;(2)当平行四边形ABCD是矩形时,四边形AFBO是菱形.理由如下:∵平行四边形ABCD是矩形,∴OA=OB,∴平行四边形AFBO是菱形.27.28.(1)证明:连结OF,如图,∵DH为切线,∴OF⊥DH,∴∠1+∠2=90°,∵OC⊥AB,∴∠C+∠4=90°,∵OF=OC,∴∠2=∠C,而∠3=∠4,∴∠1=∠3,∴DE=DF;(2)解:在Rt△OEC中,∵tan∠OCE=,∴OE=OC=2,设DF=x,则DE=x,在Rt△OFD中,x2+42=(x+2)2,解得x=3,∴DF=3,DO=5,∵HF和HA为切线,∴HF=HA,DA⊥AH,设AH=t,则HF=t,在Rt△DAH中,t2+92=(t+3)2,解得t=12,即AH的长为12.29.解:(1)在y=-2x+10中,当x=0时,y=10,y=0时,x=5,∴A(5,0),B(0,10),∵抛物线经过O(0,0),故设过O,A,C三点的抛物线的解析式为y=ax2+bx(a ≠ 0),则,解得:∴过O,A,C三点的抛物线的解析式为y=x2-x,∵BA2=102+52=125,BC2=82+62=100,AC2=32+42=25,∴AC2+BC2=BA2,即△ABC为直角三角形,且∠ACB=90°;(2)作CE⊥y轴于E点,QD⊥y轴于D点,QF⊥x轴于点F,△BEC中,BE︰EC︰BC=6︰8︰10=3︰4︰5,∵CE⊥y轴,QD⊥y轴,∴QD∥ CE ,∴△BDQ ∽△BEC,∴BD︰DQ︰BQ=BE︰EC︰BC=3︰4︰5,∵BQ=t,∴BD=t,DQ=t,∴QA2=QF2+FA2=(10-t)2+(5-t)2=t2-20t+125PA2=(2t)2+52=4t2+25,若PA=QA,则PA2=QA2,∴4t2+25=t2-20t+125,∴3t2+20t-100=0,解之得:t1=,t2=-10,∵0≤t≤5,∴t=∴当t=秒时,PA=QA;(3)存在满足条件的点M.M1(,),M2(,-),M3(,),M4(,).。

【数学】2017年甘肃省兰州市数学中考真题(解析版)

【数学】2017年甘肃省兰州市数学中考真题(解析版)

2017年甘肃省兰州市中考真题一、选择题:本大题共15个小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()230x y y =?,则下面结论成立的是( ) A.32x y = B.23x y = C.23x y = D.23x y = 2.如图所示,该几何体的左视图是( )A B C D3.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡与水平地面夹角的正切值等于( )A.513B.1213C.512D.13124.如图,在O ⊙中,AB BC =,点D 在O ⊙上,25CDB =∠°,则AOB =∠( )A.45°B.50°C.55°D.60°5.下表是一组二次函数235y x x =+-的自变量与函数值y 的对应值:那么方程2350x x +-=的一个近似根是( )A.1B.1.1C.1.2D.1.36.如果一元二次方程2230x x m ++=有两个相等的实数根,那么是实数的取值为( )A.98m >B.89m >C.98m =D.89m = 7.一个不透明的盒子里有个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数为( )A.20B.24C.28D.308.如图,矩形ABCD 的对角线AC 与BD 相交于点D ,30ADB =∠°,4AB =,则OC =( )A.5B.4C.3.5D.39.抛物线233y x =-向右平移3个单位长度,得到新抛物线的表达式为( )A.()2333y x =--B.23y x =C.()2332y x =+-D.236y x =-10.王叔叔从市场上买一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为( )A.()()80703000x x --=B.2807043000x ?=C.()()8027023000x x --=D.()28070470803000x x ?-+= 11.如图,反比例函数()0k y x x=<与一次函数4y x =+的图像交于A 、B 两点的横坐标分别为3-、1-,则关于的不等式()40k x x x <+<的解集为( )A.3x <-B.31x -<<-C.10x -<<D.3x <-或10x -<<12.如图,正方形ABCD 内接于半径为2的O ⊙,则图中阴影部分的面积为( )A.1p +B.2p +C.1p -D.2p -13.如图,小明为了测量一凉亭的高度AB (顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE (0.5DE BC ==米,,,A B C 三点共线),把一面镜子水平放置在平台上的点G 处,测得15CG =米,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得3CG =米,小明身高 1.6EF =米,则凉亭的高度AB 约为( )A.8.5米B.9米C.9.5米D.10米14.如图,在正方形ABCD 和正方形DEFG 中,点G 在CD 上,2DE =,将正方形DEFG 绕点D 顺时针旋转60°,得到正方形'''DE F G ,此时点'G 在AC 上,连接'CE ,则''CE CG +=( )115.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB BC →方向运动,当点E 到达点C 时停止运动,过点E 做FE AE ^,交CD 于F 点,设点E 运动路程为,FC y =,如图2所表示的是y 与的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )图1 图2 A.235 B.5 C.6 D.254二、填空题(每题4分,满分20分,将答案填在答题纸上)16.若反比例函数k y x=的图象过点()1,2-,则k =. 17.如图,四边形ABCD 与四边形EFGH 相似,位似中心点是O ,35OE OA =,则FG BC = .18.如图,若抛物线2y ax bx c =++上的()4,0P ,Q 两点关于它的对称轴1x =对称,则Q 点的坐标为 .19.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,要使四边形ABCD 是正方形,还需添加一组条件。

甘肃省兰州市2017年中考数学模拟试卷(五)及答案

甘肃省兰州市2017年中考数学模拟试卷(五)及答案

黄石市2017年初中九年级四月调研考试数 学 试 题 卷注意事项:1.本试卷分为试题卷和答题卷两部分。

考试时间为120分钟,满分120分。

2.考生在答题前请阅读答题卷中的“注意事项”,然后按要求答题。

3.所有答案均须做在答题卡相应区域,做在其它区域无效。

一、选择题(本大题共10小题,每小题3分,共30分.在小题给出的四个选项中,只有一项 是符合题目要求的)1.有理数-0.5的相反数是( ) A.12B. 1-2C. -2D. 2 2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形B.平行四边形C.正五边形D.正六边形3.今年某市约有106500名应届初中毕业生参加中考,按四舍五入保留两位有效数字,106500用科学记数法表示为( ) A.0.10×106B.1.0×105C.0.11×106D.1.1×1054.下列运算正确的是( )A. 325a a a +=B. 32a a a -=C. 325a a a =D. ()352a a =5.如图所示的几何体的俯视图应该是()ABCD6.实施新课改亿来,某班学生采用“小组合作学习”的方式进行学习。

值周班长每周对各小组合作学习情况进行综合评分,下表是其中一周的评分结果:这组数据中的中位数和众数分别是( ) A.89,90B.90,89C.88,95D.90,957.如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC ,若DE =10,AE =16,则BE 的长度为( ) A.10B.11C.12D.138.如图,⊙O 过点B 、C ,圆心O 在等腰Rt △ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )B. 13C.6D. 9.二次函数2y ax bx c =++的图象如下所示,对于下列结论:①0a <;②0b <;③0c >;④20b a +=;⑤0a b c ++<,其中正确的个数是( ) A.1个B.2个C.3个D.4个第7题图第8题图第9题图10.如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点A 出发,以1/cm s 的速度分别沿A →B →C 和A →D →C 的路径向点C 运动,设运动时间为x (单位:s ),四边形PBDQ 的面积为y (单位:2cm ),则y 与x (08x #)之间的函数关系可用图象表示为( )A B C D二、填空题(本大题共6小题,每小题3分,共18分) 11.分解因式:34x x -=_______________ 12.分式方程24124x x x -=--的解为_______________ 13.关于x 的方程210x x a +-+=有实数根,则实数a 的取值范围是______________BA。

2017年甘肃省兰州市中考数学模拟试卷(4月份)(解析版)

2017年甘肃省兰州市中考数学模拟试卷(4月份)(解析版)

2017年甘肃省兰州市中考数学模拟试卷(4月份)一、选择题1.(4分)反比例函数y=的图象在()A.第一,三象限B.第二,四象限C.第一,二象限D.第三,四象限2.(4分)若△ABC∽△A′B′C′,已知AB=6cm,A′B′=3cm,则△ABC与△A′B′C′的面积比为()A.1:2B.2:1C.1:4D.4:13.(4分)已知一个正棱柱的俯视图和左视图如图,则其主视图为()A.B.C.D.4.(4分)如图,AB是⊙O的直径,∠CAB=40°,则∠D=()A.20°B.30°C.40°D.50°5.(4分)已知===,若a+c+e=6,则b+d+f=()A.12B.9C.6D.46.(4分)在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共50只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复以上步骤,下表为实验的一组统计数据:请估算口袋中白球的个数约为()A.20B.25C.30D.357.(4分)下列命题是假命题的是()A.两组对边分别平行的四边形是平行四边形B.两条对角线相等的平行四边形是矩形C.两条对角线互相垂直的平行四边形是菱形D.两条对角线垂直且相等的四边形是正方形8.(4分)若关于x的一元二次方程ax2﹣bx+4=0的解是x=2,则2017+2a﹣b=()A.2015B.2017C.2019D.20209.(4分)若二次函数y=﹣x2+2ax+5的图象关于直线x=4对称,则y的最值是()A.最小值21B.最小值24C.最大值21D.最大值24 10.(4分)如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan ∠OAB=()A.B.C.D.11.(4分)如图,线段BC的两端点的坐标分别为B(3,7),C(6,3),以点A(1,0)为位似中心,将线段BC缩小为原来的后得到线段DE,则端点D的坐标为()A.(1,)B.(2,)C.(1,2)D.(2,2)12.(4分)如图,在等边△ABC中,AB=2,以点A为圆心,AB为半径画,使得∠BAD=105°,过点C作CE⊥AD,则图中阴影部分的面积为()A.π﹣2B.π﹣1C.2π﹣2D.2π+113.(4分)如图,抛物线y1=ax2+bx+c与直线y2=kx+n的图象交于A(﹣4,﹣1),B两点,下列判断中:①abc>0;②a+b+c<0;③不等式ax2+bx+c<kx+n的解集为﹣4<x<;④方程ax2+bx+c=﹣1的解为x=﹣4,其中正确的个数是()A.1B.2C.3D.414.(4分)如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM =()A.B.1C.D.15.(4分)如图,点A(0,3),B(4,0),以AB为边作正方形ABCD,点F是射线OB 上一动点,过点F作EF⊥x轴交正方形ABCD于P,Q两点,设OF=x,△APQ的面积为y,下列图象中,能表示y与x之间的函数关系的图象大致是()A.B.C.D.二、填空题16.(4分)如图,⊙O的内接正三角形ABC的边心距OD为2cm,则⊙O的半径为cm.17.(4分)一元二次方程ax2﹣2x+4=0有两个不相等的实数根,则a的取值范围为.18.(4分)如图,点E为▱ABCD中AD边上一点,且AE=DE,AC与BE相交于点F,则=.19.(4分)如图,CD∥AB,且CD=AB,点E为AB的中点,若四边形ADCE为正方形,则∠B=.20.(4分)如图,直线AB分别交x轴,y轴于点A(﹣4,0),B(0,3),点C为y轴上的点,若以点C为圆心,CO长为半径的圆与直线AB相切时,则点C的坐标为.三、解答题21.(10分)(1)计算:﹣(3﹣π)0+|1﹣|﹣2cos60°;(2)解方程:(x﹣1)(x﹣2)=2x﹣2.22.(5分)已知:如图,在Rt△ABC中,∠C=90°,求作:Rt△ABC的外接圆⊙O.(用直尺、圆规作图,保留作图痕迹,不写作法)23.(7分)乔珊和高茽两人来兰州旅游,想品尝以下享有美誉“中华第一面”的“兰州牛肉面”.“兰州牛肉面”光滑爽口、味道鲜美,其搭配佐料也是独有特色:一红二绿三白四黄,辣椒油红,汤上漂着鲜绿的香菜和蒜苗,几片白萝卜掺在红绿中有尤其显纯白,面条光亮透黄,大众喜欢的面型有:毛细、细的、二细、三细、韭叶、薄宽、大宽,两人同时选择面型,乔珊准备在“毛细、二宽、薄宽”中选择:高茽准备在“细的、三细、韭叶、大宽”中选择,(毛细、二宽、薄宽分别记为A、B、C;细的、三细、韭叶、大宽分别记为D、E、F、G).(1)用树状图或表格的方法表示乔珊和高茽同时选择面型的所有可能结果;(2)求乔珊和高茽同时选择的面型都是“细”(毛细、细的、二细、三细)的概率.24.(8分)如图,我市某中学数学兴趣小组决定测量一下本校教学楼AB的高度,他们在楼梯底部C处测得∠ACB=60°,∠DCE=30°;沿楼梯向上走到D处测得∠ADF=45°,D到地面BE的距离DE为3米.求教学楼AB的高度.(结果精确到1米,参考数据:1.4,≈1.7)25.(9分)如图,直线y=mx+n与反比例函数y=(x>0)的图象交于A、B两点,交x 轴于点C(,0),过点A作AD⊥y轴于点D(0,),连接CD,S△ADC=2.(1)求反比例函数y=与直线y=mx+n的表达式;(2)求△DAB的面积;(3)直接写出关于x的不等式mx+n<的解集.26.(9分)如图,在▱ABCD中,AD=4,AB=5,延长AD到点E,连接EC过点B作BF ∥CE交AD于点F,交CD的延长线于点G.(1)求证:四边形BCEF是平行四边形;(2)当DF=时,四边形BCEF是正方形,说明理由;(3)当=时,四边形BCEF是菱形,说明理由.27.(10分)如图,直线AB与⊙O相交于C、D两点,CE是⊙O的直径,CF平分∠BCE 交⊙O于点F,过点F作FG⊥AB,垂足为点G,连接DF.(1)求证:FG是⊙O切线;(2)已知⊙O的直径为8,CG=3,求sin∠CDF的值.28.(12分)如图,抛物线y=﹣x2+bx+c的图象过A(0,1),B(1,3)两点,以AB为边作正方形ABCD(点D在x轴上),延长BC交x轴于点E.(1)求抛物线y=﹣x2+bx+c的表达式;(2)求D、E两点的坐标;(3)点M从A点出发,以每秒个单位长度的速度沿AD→DC→CB运动,点N同时从E 点出发,以每秒1个单位长度的速度沿EO方向运动,过点N作PQ⊥EO,分别交BE于点P,交抛物线于点Q,当点M运动到B点时,M、N两点同时停止运动,设运动时间为t秒.①当t=3时,求△MPQ的面积;②直接写出S△MPQ与t的函数表达式,并写出相应的t的取值范围.2017年甘肃省兰州市中考数学模拟试卷(4月份)参考答案与试题解析一、选择题1.(4分)反比例函数y=的图象在()A.第一,三象限B.第二,四象限C.第一,二象限D.第三,四象限【解答】解:∵反比例函数y=中k=3>0,根据反比例函数的性质图象在第一,三象限.故选:A.2.(4分)若△ABC∽△A′B′C′,已知AB=6cm,A′B′=3cm,则△ABC与△A′B′C′的面积比为()A.1:2B.2:1C.1:4D.4:1【解答】解:∵△ABC∽△A′B′Cˊ,AB=6cm,A′B′=3cm,∴其相似比===,∴△ABC与△A′B′C′的面积比=(AB:A′B′)2=4:1.故选:D.3.(4分)已知一个正棱柱的俯视图和左视图如图,则其主视图为()A.B.C.D.【解答】解:根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有看到两条棱,背面的棱用虚线表示,故选:D.4.(4分)如图,AB是⊙O的直径,∠CAB=40°,则∠D=()A.20°B.30°C.40°D.50°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=90°﹣40°=40°,∴∠D=∠B=50°故选:D.5.(4分)已知===,若a+c+e=6,则b+d+f=()A.12B.9C.6D.4【解答】解:由===得a=b、c=d、e=f,则b+d+f=6,即(b+d+f)=6,∴b+d+f=6×=9,故选:B.6.(4分)在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共50只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复以上步骤,下表为实验的一组统计数据:请估算口袋中白球的个数约为()A.20B.25C.30D.35【解答】解:根据摸到白球的频率稳定在0.6左右,所以摸一次,摸到白球的概率为0.6,则可估计口袋中白球的个数约为50×0.6=30(个);故选:C.7.(4分)下列命题是假命题的是()A.两组对边分别平行的四边形是平行四边形B.两条对角线相等的平行四边形是矩形C.两条对角线互相垂直的平行四边形是菱形D.两条对角线垂直且相等的四边形是正方形【解答】解:两组对边分别平行的四边形是平行四边形,选项A是真命题;两条对角线相等的平行四边形是矩形,选项B是真命题;两条对角线互相垂直的平行四边形是菱形,选项C是真命题;两条对角线垂直平分且相等的四边形是正方形,选项D是假命题;故选:D.8.(4分)若关于x的一元二次方程ax2﹣bx+4=0的解是x=2,则2017+2a﹣b=()A.2015B.2017C.2019D.2020【解答】解:∵关于x的一元二次方程ax2﹣bx+4=0的解是x=2,∴4a﹣2b+4=0,则2a﹣b=﹣2,∴2017+2a﹣b=2017+(2a﹣b)=2017+(﹣2)=2015.故选:A.9.(4分)若二次函数y=﹣x2+2ax+5的图象关于直线x=4对称,则y的最值是()A.最小值21B.最小值24C.最大值21D.最大值24【解答】解:∵二次函数y=﹣x2+2ax+5的图象关于直线x=4对称,∴﹣=4,∴a=4,∴y最大值==21,故选:C.10.(4分)如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan ∠OAB=()A.B.C.D.【解答】解:方法1、设直线AB的解析式是y=kx+b,根据题意得:,解得,则直线AB的解析式是y=﹣x+2.在y=﹣x+2中令y=0,解得x=.则B的坐标是(,0),即OB=.则tan∠OAB===.故选B.方法2、过点C作CD⊥y轴,∵C(﹣2,5),∴CD=2,OD=5,∵A(0,2),∴OA=2,∴AD=OD﹣OA=3,在Rt△ACD中,tan∠OAB=tan∠CAD=,故选:B.11.(4分)如图,线段BC的两端点的坐标分别为B(3,7),C(6,3),以点A(1,0)为位似中心,将线段BC缩小为原来的后得到线段DE,则端点D的坐标为()A.(1,)B.(2,)C.(1,2)D.(2,2)【解答】解:∵将线段BC缩小为原来的后得到线段DE,以点A(1,0)为位似中心,点B的坐标为(3,7),∴点D的坐标为(4×,7×),即(2,),故选:B.12.(4分)如图,在等边△ABC中,AB=2,以点A为圆心,AB为半径画,使得∠BAD=105°,过点C作CE⊥AD,则图中阴影部分的面积为()A.π﹣2B.π﹣1C.2π﹣2D.2π+1【解答】解:∵等边△ABC中,∠BAD=105°,∴∠CAE=105°﹣60°=45°,∵CE⊥AD,AC=AB=2,∴AE=CE=2,∴S△ACE=2,S扇形ACD==π,∴阴影部分的面积为S扇形ACD﹣S△ACE=π﹣2,故选:A.13.(4分)如图,抛物线y1=ax2+bx+c与直线y2=kx+n的图象交于A(﹣4,﹣1),B两点,下列判断中:①abc>0;②a+b+c<0;③不等式ax2+bx+c<kx+n的解集为﹣4<x<;④方程ax2+bx+c=﹣1的解为x=﹣4,其中正确的个数是()A.1B.2C.3D.4【解答】解:∵抛物线的开口向下,且对称轴x=﹣<0,∴a<0,b<0,∵抛物线与y轴交点在原点上方,即x=0时,y=c>0,∴abc>0,故①正确;由图象知x=1时,y=a+b+c<0,故②正确;∵当x<﹣4或x>时,直线y2=kx+n在抛物线y1=ax2+bx+c上方,∴不等式ax2+bx+c<kx+n的解集为x<﹣4或x>,故③错误;由图象可知直线y=﹣1和抛物线y1=ax2+bx+c的交点有2个,即方程方程ax2+bx+c=﹣1的解有2个,故④错误;故选:B.14.(4分)如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM =()A.B.1C.D.【解答】解:∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,∴AB=BE,∵四边形AEHB为菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等边三角形,∵AB=3,AD=,∴tan∠CAB==,∴∠BAC=30°,∴AC⊥BE,∴C在对角线AH上,∴A,C,H共线,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四边形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=故选:D.15.(4分)如图,点A(0,3),B(4,0),以AB为边作正方形ABCD,点F是射线OB 上一动点,过点F作EF⊥x轴交正方形ABCD于P,Q两点,设OF=x,△APQ的面积为y,下列图象中,能表示y与x之间的函数关系的图象大致是()A.B.C.D.【解答】解:∵点A(0,3),B(4,0),∴Rt△AOB中,AB=5,如图所示,当点P在AD上时,过Q作QG⊥y轴与G,则QG=OF=x,由QG∥OB可得,△AGQ∽△AOB,∴AQ=OG=x,∵∠GAQ=∠AQP,∠AGQ=∠QAP=90°,∴△AGQ∽△QAP,∴AQ2=QG×PQ,∴PQ==x,∴△APQ的面积y=×PQ×OF=×x×x=(0≤x≤3),当点P在CD上,点Q在AB上时,由CD∥AB可得,PQ的长不变,易得PQ为,故△APQ的面积y=×x=x(3<x≤4),如图所示,当点Q在BC上时,BF=OF﹣OB=x﹣4,根据△AOB∽△BFQ可得,BQ=(x﹣4),∴CQ=5﹣(x﹣4),根据△PCQ∽△AOB可得,PQ=CQ=[5﹣(x﹣4)],∴△APQ的面积y=×PQ×OF=×[5﹣(x﹣4)]×x=﹣+x(4<x≤7),综上所述,当0≤x≤3时,函数图象为开口向上的抛物线;当3<x≤4时,函数图象是线段;当4<x≤7时,函数图象是开口向下的抛物线,故选:C.二、填空题16.(4分)如图,⊙O的内接正三角形ABC的边心距OD为2cm,则⊙O的半径为4cm.【解答】解:连接OB、OC,如图所示:则∠BOC==120°,∵OB=OC,∴∠OBC=30°,∵OD⊥BC,∴OB=2OD=4cm;故答案为:4.17.(4分)一元二次方程ax2﹣2x+4=0有两个不相等的实数根,则a的取值范围为a<且a≠0.【解答】解:∵方程有两个不相等的实数根,∴△>0,即4﹣16a>0,解得a<,∵ax2﹣2x+4=0是一元二次方程,∴a≠0,答案是a<且a≠0.18.(4分)如图,点E为▱ABCD中AD边上一点,且AE=DE,AC与BE相交于点F,则=.【解答】解:∵ED=2AE,∴AE:ED=1:2,∴AE:AD=1:3,在平行四边形ABCD中,AD=BC,AD∥BC,∴△AEF∽△CBF,∴AF:FC=AE:BC=1:3,故答案为:.19.(4分)如图,CD∥AB,且CD=AB,点E为AB的中点,若四边形ADCE为正方形,则∠B=45°.【解答】证明:∵CD=AB,点E为AB的中点,∴CD=BE,∵CD∥AB,∴四边形BCDE为平行四边形,∴∠B=∠EDC,∵四边形ADCE为正方形,∴∠EDC=∠ADC=45°,∴∠B=45°.故答案为45°.20.(4分)如图,直线AB分别交x轴,y轴于点A(﹣4,0),B(0,3),点C为y轴上的点,若以点C为圆心,CO长为半径的圆与直线AB相切时,则点C的坐标为(0,)或(0,﹣12).【解答】解:设C(0,t),作CH⊥AB于H,如图,AB==5,∵以点C为圆心,CO长为半径的圆与直线AB相切,∴CH=OC,当t>3时,BC=t﹣3,CH=t,∵∠CBH=∠ABC,∴△BHC∽△BOA,∴CH:OA=BC:BA,即t:4=(t﹣3):5,解得t=﹣12(舍去)当0<t<3时,BC=3﹣t,CH=t,同样证明△BHC∽△BOA,∴CH:OA=BC:BA,即t:4=(3﹣t):5,解得t=,当t<0时,BC=3﹣t,CH=﹣t,同样证明△BHC∽△BOA,∴CH:OA=BC:BA,即﹣t:4=(3﹣t):5,解得t=﹣12,综上所述,C点坐标为(0,)或(0,﹣12).故答案为(0,)或(0,﹣12).三、解答题21.(10分)(1)计算:﹣(3﹣π)0+|1﹣|﹣2cos60°;(2)解方程:(x﹣1)(x﹣2)=2x﹣2.【解答】解:(1)原式=4﹣1+﹣1﹣2×=+1;(2)∵(x﹣1)(x﹣2)﹣2(x﹣1)=0,∴(x﹣1)(x﹣4)=0,则x﹣1=0或x﹣4=0,解得:x=1或x=4.22.(5分)已知:如图,在Rt△ABC中,∠C=90°,求作:Rt△ABC的外接圆⊙O.(用直尺、圆规作图,保留作图痕迹,不写作法)【解答】解:23.(7分)乔珊和高茽两人来兰州旅游,想品尝以下享有美誉“中华第一面”的“兰州牛肉面”.“兰州牛肉面”光滑爽口、味道鲜美,其搭配佐料也是独有特色:一红二绿三白四黄,辣椒油红,汤上漂着鲜绿的香菜和蒜苗,几片白萝卜掺在红绿中有尤其显纯白,面条光亮透黄,大众喜欢的面型有:毛细、细的、二细、三细、韭叶、薄宽、大宽,两人同时选择面型,乔珊准备在“毛细、二宽、薄宽”中选择:高茽准备在“细的、三细、韭叶、大宽”中选择,(毛细、二宽、薄宽分别记为A、B、C;细的、三细、韭叶、大宽分别记为D、E、F、G).(1)用树状图或表格的方法表示乔珊和高茽同时选择面型的所有可能结果;(2)求乔珊和高茽同时选择的面型都是“细”(毛细、细的、二细、三细)的概率.【解答】解:(1)树状图如下:共有12种等可能的结果数;(2)乔珊和高茽同时选择的面型共12种,都是“细”(毛细、细的、二细、三细)的结果有:(A,D),(A,E),(B,D),(B,E).则P(面型都是“细”)==.24.(8分)如图,我市某中学数学兴趣小组决定测量一下本校教学楼AB的高度,他们在楼梯底部C处测得∠ACB=60°,∠DCE=30°;沿楼梯向上走到D处测得∠ADF=45°,D到地面BE的距离DE为3米.求教学楼AB的高度.(结果精确到1米,参考数据:1.4,≈1.7)【解答】解:如图,在Rt△DCE中,∵∠DCE=30°、DE=3,∴CD=2DE=6,∵∠ACB=60°,∴∠ACD=180°﹣∠DCE﹣∠ACB=90°,∵∠CDF=∠DCE=30°,∴在Rt△DCF中,DF===4,设AG=x,∵∠ADF=45°,∴DG=AG=x,FG=DG﹣DF=x﹣4,在Rt△AFG中,∵∠AFG=∠ACB=60°,∴tan∠AFG=,即=,解得:x=6+6,即AG=6+6,∴AB=AG+BG=6+6+3=9+6≈19(米),答:教学楼AB的高度约为19米.25.(9分)如图,直线y=mx+n与反比例函数y=(x>0)的图象交于A、B两点,交x 轴于点C(,0),过点A作AD⊥y轴于点D(0,),连接CD,S△ADC=2.(1)求反比例函数y=与直线y=mx+n的表达式;(2)求△DAB的面积;(3)直接写出关于x的不等式mx+n<的解集.【解答】解:(1)连接OA,∵S△DAO=•AD•DO=S△DAC=2,S△DAO=,∴k=±4.∵k>0,∴k=4,∴y=;∵D(0,),∴y D=,∵y A=y D=,=,解得x A=,即A(,),∵直线y=mx+n过点A(,)和C(,0),∴解得,∴y=﹣x+4;(2)联立:解得:或.∴A(,),B(3,),∵A(,),∴AD=,S△DAB=•AD•y B=•×=1;(3)由图象知,不等式mx+n<的解集为0<x<或x>3.26.(9分)如图,在▱ABCD中,AD=4,AB=5,延长AD到点E,连接EC过点B作BF ∥CE交AD于点F,交CD的延长线于点G.(1)求证:四边形BCEF是平行四边形;(2)当DF=1时,四边形BCEF是正方形,说明理由;(3)当=时,四边形BCEF是菱形,说明理由.【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴EF∥BC.∵BF∥CE,∴四边形BCEF是平行四边形.(2)当DF=1时,四边形BCEF是正方形.理由如下:当四边形BCEF是正方形时,BF=BC=4,∠FBC=∠AFB=90°.∴AF===3.∵四边形ABCD是平行四边形,∴AD=BC=4.∴DF=AD﹣AF=4﹣3=1.∴当DF=1时,四边形BCEF是正方形.故答案为:1.(3)当=时,四边形BCEF是菱形.理由如下:当四边形BCEF是菱形时,BF=BC=4.∵四边形ABCD是平行四边形,∴CD∥AB.(8分)∴=,即==.∴当=时,四边形BCEF是菱形.故答案为:.27.(10分)如图,直线AB与⊙O相交于C、D两点,CE是⊙O的直径,CF平分∠BCE 交⊙O于点F,过点F作FG⊥AB,垂足为点G,连接DF.(1)求证:FG是⊙O切线;(2)已知⊙O的直径为8,CG=3,求sin∠CDF的值.【解答】(1)证明:连接OF.如图1所示:∵CF平分∠BCE,∴∠FCG=∠ECF.∵OC=OF,∴∠ECF=∠OFC,∴∠FCG=∠OFC.∴OF∥BC.∵FG⊥AB,∴FG⊥OF,∴FG是⊙O的切线.(2)解:连接EF.∵CE是⊙O的直径,∴∠CFE=90°.∵FG⊥AB,∴∠FGC=90°.∵∠FCG=∠ECF,∴△CEF∽△CFG,∴,即.解得:CF=2;在Rt△CEF中,sin E===,∵∠CDF=∠E,∴sin∠CDF=.28.(12分)如图,抛物线y=﹣x2+bx+c的图象过A(0,1),B(1,3)两点,以AB为边作正方形ABCD(点D在x轴上),延长BC交x轴于点E.(1)求抛物线y=﹣x2+bx+c的表达式;(2)求D、E两点的坐标;(3)点M从A点出发,以每秒个单位长度的速度沿AD→DC→CB运动,点N同时从E 点出发,以每秒1个单位长度的速度沿EO方向运动,过点N作PQ⊥EO,分别交BE于点P,交抛物线于点Q,当点M运动到B点时,M、N两点同时停止运动,设运动时间为t秒.①当t=3时,求△MPQ的面积;②直接写出S△MPQ与t的函数表达式,并写出相应的t的取值范围.【解答】解:(1)∵抛物线y=﹣x2+bx+c的图象过A(0,1),B(1,3),∴,解得,∴抛物线的表达式为:y=﹣x2+x+1;(2)如图1,过点B作BG⊥y轴于点G,∵B(1,3),∴GB=1,OG=3.∵A(0,1),∴OA=1,GB=OA,∴AG=OG﹣OA=3﹣1=2,∵四边形ABCD是正方形,∴AB=AD,∵∠BGA=∠AOD=90°,GB=OA,∴△GAB≌△ODA(HL),∴OD=AG=2.∴D(2,0),∴CD=AD===,∵四边形ABCD是正方形,∴AD∥BC,∴∠ADO=∠DEC,∴sin∠ADO=sin∠DEC.即=,=,∴DE=5,∴OE=OD+DE=2+5=7,∴E(7,0);(3)如图2,①设直线BC:y=mx+n,∵直线BC:y=mx+n过B(1,3),E(7,0)两点,则,解得,∴直线BC:y=﹣x+,设直线BC与抛物线交于B,F两点,联立,解得F(5,1),当t=3时,点M运动的路程为:×3=AD+DM=+DM,∴DM=,点N运动的路程为:NE=3,ON=4.∵x F=5,∴点N在F点左侧.过点M作MH⊥OE于点H,∴DH=DM•cos∠MDH=×=,∴HN=ON﹣OD﹣DH=4﹣2﹣=,当x Q=4时,y Q=3,当x P=4时,y P=,∴PQ=y Q﹣y P=3﹣=,∴S△MPQ=PQ•HN=××=;②由题意得:P(7﹣t,t),Q(7﹣t,﹣+﹣6)i)当0≤t≤2时,如图3,M在边AD上,PQ=t﹣(﹣+﹣6)=﹣4t+6,AM=,DM=﹣t,cos∠ODM=,∴DH=DM•cos∠ODM=(﹣t)×=2﹣t,∴OH=2﹣DH=2﹣(2﹣t)=t,∴HN=OE﹣OH﹣EN=7﹣t﹣t=7﹣2t,S△MPQ=PQ•HN=(﹣4t+6)(7﹣2t)=﹣(2t﹣7)(t2﹣8t+12);ii)当2<t≤4时,如图4,M在边CD上,PQ=﹣+﹣6﹣()=﹣+4t﹣6,DH=DM•cos∠HDM=(﹣)×=﹣1,HN=ON﹣OD﹣DH=7﹣t﹣2﹣(t﹣1)=6﹣t,S△MPQ=PQ•HN=(﹣+4t﹣6)(6﹣t)=(t﹣4)(t2﹣8t+12);iii)当4<t≤6时,如图5,M在边BC上,过M作MH⊥y轴于H,则CM=,过C作CS⊥x轴于S,易证明△AOD≌△DSC,∴DS=OA=1,SC=OD=2,∴C(3,2),过C作CR⊥y轴于R,∴CR=OS=3,KR=OK﹣OR=﹣2=,由勾股定理得:KC==,KE==,∴KM=KC﹣CM=﹣()=﹣t+,cos∠KMH=cos∠KEO==,∴HM=7﹣t,即点M在直线PQ上,此时,S△MPQ=0,综上所述:S△MPQ=.。

甘肃兰州 2017年中考真题数学(解析版)

甘肃兰州 2017年中考真题数学(解析版)

2017年兰州市中考数学一、选择题:本大题共15个小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()230x y y =?,则下面结论成立的是( ) A.32x y = B.23x y = C.23x y = D.23x y = 2.如图所示,该几何体的左视图是( )A B C D3.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡与水平地面夹角的正切值等于( )A.513 B.1213 C.512 D.13124.如图,在O ⊙中,AB BC =,点D 在O ⊙上,25CDB =∠°,则AOB =∠( )A.45°B.50°C.55°D.60°5.下表是一组二次函数235y x x =+-的自变量x 与函数值y 的对应值:x 1 1.11.2 1.3 1.4 y 1-0.49- 0.04 0.59 1.16 那么方程2350x x +-=的一个近似根是( )A.1B.1.1C.1.2D.1.36.如果一元二次方程2230x x m ++=有两个相等的实数根,那么是实数m 的取值为( ) A.98m > B.89m > C.98m = D.89m =7.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( )A.20B.24C.28D.308.如图,矩形ABCD 的对角线AC 与BD 相交于点D ,30ADB =∠°,4AB =,则OC =( )A.5B.4C.3.5D.39.抛物线233y x =-向右平移3个单位长度,得到新抛物线的表达式为( ) A.()2333y x =-- B.23y x = C.()2332y x =+- D.236y x =- 10.王叔叔从市场上买一块长80,宽70的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为( )A.()()80703000x x --=B.2807043000x ?=C.()()8027023000x x --=D.()28070470803000x x ?-+=11.如图,反比例函数()0k y x x =<与一次函数4y x =+的图像交于A 、B 两点的横坐标分别为3-、1-,则关于x 的不等式()40k x x x <+<的解集为( )A.3x <-B.31x -<<-C.10x -<<D.3x <-或10x -<<12.如图,正方形ABCD 内接于半径为2的O ⊙,则图中阴影部分的面积为( )A.1p +B.2p +C.1p -D.2p -13.如图,小明为了测量一凉亭的高度AB (顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE (0.5DE BC ==米,,,A B C 三点共线),把一面镜子水平放置在平台上的点G 处,测得15CG =米,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得3CG =米,小明身高 1.6EF =米,则凉亭的高度AB 约为( )A.8.5米B.9米C.9.5米D.10米14.如图,在正方形ABCD 和正方形DEFG 中,点G 在CD 上,2DE =,将正方形DEFG 绕点D 顺时针旋转60°,得到正方形'''DE F G ,此时点'G 在AC 上,连接'CE ,则''CE CG +=( )A.26+B.31+C.32+D.36+15.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB BC →方向运动,当点E 到达点C 时停止运动,过点E 做FE AE ^,交CD 于F 点,设点E 运动路程为x ,FC y =,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )图1图2 A.235 B.5 C.6 D.254二、填空题(每题4分,满分20分,将答案填在答题纸上)16.若反比例函数k y x =的图象过点()1,2-,则k = .17.如图,四边形ABCD 与四边形EFGH 相似,位似中心点是O ,35OE OA =,则FG BC =.18.如图,若抛物线2y ax bx c =++上的()4,0P ,Q 两点关于它的对称轴1x =对称,则Q 点的坐标为.19.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,要使四边形ABCD 是正方形,还需添加一组条件。

2017年甘肃省中考数学试卷含答案

2017年甘肃省中考数学试卷含答案

甘肃省 2017 年初中毕业、高中招生考试
一、选择题 1.【答案】B 【解析】绕某点旋转 180°后能与原图重合的图形为中心对称图形,观察各选项,只有 B 选项符合,故选 B。 【考点】中心对称图形的概念 2.【答案】B 【解析】 393000 3.93105 ,故选 B。 【提示】把一个绝对值小于 1 或大于 10 的实数记为 a 10a 的形式(其中1 | a | 10 ), 这种记数法叫做科学记数法。 【考点】科学记数法 3.【答案】C
【解析】因为 22 4 ,所以 4 的平方根为±2,故选 C。
【考点】平方根的概念 4.【答案】D 【解析】由图易得该几何体的俯视图为一个圆环,且内外圆都能看到,都为实线,故 选 D. 【考点】几何体的三视图 5.【答案】D 【解析】多项式的运算。 x2 x2 2x2 ,A 错误; x8 x2 x82 x6 ,B 错误; x2 Ax3 x23 x5 ,C 错误; ( x)2 x2 x2 x2 0 ,D 正确,故选 D。 【考点】多项式的运算 6.【答案】C
D.145 7.在平面直角坐标系中,一次函数 y kx b 的图象如图所示,观察
图象可得
( )
A. k>0>, b 0
B. k>0<, b 0
C. k<0>, b 0
D. k<0<, b 0
8.已知 a , b , c 是 △ABC 的三条边长,化简 | a b c | | c a b | 的结果为
e A. x2 x2 x4
B. x8 x2 x4
tim C. x2 Ax3 x6
D. (x)2 x2 0
6.将一把直尺与一块三角板如图放置,若∠1 45 ,则∠2 为
at a A.115 g B.120 in C.135

甘肃兰州市西固区新城中学 2017年九年级数学中考模拟试卷(含答案)

甘肃兰州市西固区新城中学 2017年九年级数学中考模拟试卷(含答案)

2017年九年级数学中考模拟试卷一、选择:1.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A.正视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图的面积一样大2.已知关于x的方程x2﹣(2k﹣1)x+k2=0有两个不相等的实数根,那么k的最大整数值是()A.﹣2B.﹣1C.0D.13.已知一个直角三角形两直角边的和为10,设其中一条直角边为x,则直角三角形的面积y与x之间的函数关系式是( )A.y=-x2+5xB.y=-x2+10xC.y=x2+5xD.y=x2+10x4.如图,□ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.105.在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是()A.一定相似B.当E是AC中点时相似C.不一定相似D.无法判断6.如图,已知☉O是△ABD的外接圆,AB是☉O的直径,CD是☉O的弦,∠ABD=58°,则∠BCD等于( )A.16°B.32°C.58°D.64°7.一次函数y=2x-1与反比例函数y=-x-1的图像的交点的情况为()A.只有一个交点B.有两个交点C.没有交点D.不能确定8.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是()A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是119.如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3B.﹣3C.D.﹣10.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.如果某一小组共有x个队,该小组共赛了90场,那么列出正确的方程是()A. B.x(x﹣1)=90 C. D.x(x+1)=9011.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()12.正多边形的一个内角的度数不可能是()A.80° B.135° C.144° D.150°13.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,为了赚得8000元的利润,商品售价应为()A.60元B.80元C.60元或80元D.30元14.在Rt△ABC中,∠ABC=90°、tanA=,则sinA的值为()A. B. C. D.15.如图,半圆A和半圆B均与y轴相切于O,其直径CD,EF均和x轴垂直,以O为顶点的两条抛物线分别经过点C,E和点D,F,则图中阴影部分面积是()A.πB.0.5πC.πD.条件不足,无法求二、填空题:16.把一元二次方程3x(x﹣2)=4化为一般形式是.17.如图,正方形ABCD的周长为8cm,顺次连结正方形ABCD各边的中点,得到正方形EFGH,则EFGH的周长等于_____cm,面积等于______cm2.18.有一张等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形.依照上述方法将原三角形折叠4次,所得小等腰直角三角形的周长是原等腰三角形周长的19.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为 cm2.20.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN= .三、计算题:21.先化简,再求代数式的值.其中=tan600-300.22.解方程:(x+8)(x+1)=-12四、解答题:23.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.24.为了解中考体育科目训练情况,某区从九年级学生中抽取了部分学生进行了一次中考体育科测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该区九年级有学生4000名,如果全部参加这次体育测试,请估计不及格的人数为;(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中小明的概率.25.在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r 的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?26.如图,E、F、 G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足时,四边形EFGH为菱形;当AC、BD满足时,四边形EFGH为矩形;当AC、BD满足时,四边形EFGH为正方形.27.用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用水(约10升),小敏每次用半盆水(约5升).如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?28.如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.29.已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;(3) 在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图像回答:当直线y=0.5x+b (b<k)与此图象有两个公共点时,b的取值范围.参考答案1.B2.C3.A4.C5.A6.B7.C8.C9.A.10.B11.D解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=K,∴BH:HG:GM=k:12k:5k=51:24:10故选D.12.A13.C14.A15.B16.【解答】解:把一元二次方程3x(x﹣2)=4去括号,移项合并同类项,转化为一般形式是3x2﹣6x﹣4=0.17.答案为:;218.略19.答案为:π.20.4或621.解:===822.化简得,x2+9x+20=0,(x+4)(x+5)=0,解得,x1=﹣4,x2=﹣5.23.【解答】解:(1))△ABC与△A1B1C1的位似比等于=;(2)如图所示(3)△A3B3C3是由△A2B2C2沿x轴向左平移2个单位,再沿y轴向上平移2个单位得到;(4)点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为(﹣2x﹣2,2y+2).故答案为:;(﹣2x﹣2,2y+2).24.解:(1)12÷30%=40(人);故答案为:40人;(2)∠α的度数=360°×0.15=54°;故答案为:54°;40×35%=14(人);把条形统计图补充完整,如图所示:(3)4000×0.2=800(人),故答案为:800人;(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P(选中小明)=0.5.25.解:(1)在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,∴OC===100,∵OC=×100=50∴雷达的有效探测半径r至少为50海里.(2)作AM⊥BC于M,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=BC=30,在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,∴BM=AB=15,AM=BM=15,∴此时敌舰A离△OBC海域的最短距离为15海里.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x,MH=x,∵BM=15,∴15=x+2x,x=30﹣15,∴AN=30﹣30,BN==15(﹣),设B军舰速度为a海里/小时,由题意≤,∴a≥20.∴B军舰速度至少为20海里/小时.26.略27.解:(1)小红的函数关系式为y1=1.5x-1,小敏的函数关系式为y2=2x-1(x为正整数).(2)小红共用水30升,小敏共用水20升,小敏的方法更值得提倡.28.【解答】(1)证明:连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,,∴△AED≌△BFD(ASA),∴AE=BF;(2)证明:连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF==,∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=,∵EF=,∴DE=×=,∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴=,即GE•ED=AE•EB,∴•GE=2,即GE=,则GD=GE+ED=.29.解:(1)由题意得,Δ=16-8(k-1)≥0.∴k≤3.∵k为正整数,∴k=1,2,3.(2)当k=1时,方程2x2+4x+k-1=0有一个根为零;当k=2时,方程2x2+4x+k-1=0无整数根;当k=3时,方程2x2+4x+k-1=0有两个非零的整数根.综上所述,k=1和k=2不合题意,舍去;k=3符合题意.当k=3时,二次函数为y=2x2+4x+2,把它的图象向下平移8个单位长度得到的图象的解析式为y=2x2+4x -6.(3)设二次函数y=2x2+4x-6的图象与x轴交于A、B两点,则A(-3,0),B(1,0).依题意翻折后的图象如图所示.当直线y=0.5x+b经过A点时,可得b=1.5;当直线y=0.5x+b经过B点时,可得-0.5.由图象可知,符合题意的b(b<3)的取值范围为-0.5<b<1.5.。

最新2017甘肃兰州市初三数学中考模拟试卷及答案修正版

最新2017甘肃兰州市初三数学中考模拟试卷及答案修正版

2017甘肃兰州市初三数学中考模拟试卷及答案$$2017年中考数学模拟试卷、选择题:1.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A.主视图B.左视图C.俯视图D.左视图和俯视图2.一元二次方程x2+x+0.25=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况3.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到抛物线是( )A.y=(x+2)2+2B.y=(x+2)2-2C.y=x2+2D.y=x2-24.下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形5.下列各线段的长度成比例的是( )A.2cm,5cm,6cm,8cmB.1cm,2cm,3cm,4cmC.3cm,6cm,7cm,9cmD.3cm,6cm,9cm,18cm6.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EBB. DE=EBC. DE=DOD.DE=OB7.若反比例函数的图象经过点(2,-6),则k的值为( )A.-12B.12C.-3D.38.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件9.教室里的饮水机接通电源就进入自动程序:开机加热时每分钟上升10 ℃,加热到100 ℃后停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30 ℃时,接通电源后,水温y(℃)和时间x(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50 ℃的水,则接通电源的时间可以是当天上午的( )A.7:20B.7:30C.7:45D.7:5010.某市2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意所列方程正确的是()A.300(1+x)=363B.300(1+x)2=363C.300(1+2x)=363D.363(1-x)2=30011.如图,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是( )A.1个B.2个C.3个D.4个12.正多边形的中心角(即正多边形的相邻两个顶点与它的中心的连线的夹角)与该正多边形一个内角关系是( )A.互余 B.互补 C.互余或互补 D.不能确定13.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣0.5x2D.y=0.5x214.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AmB上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定15.矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动至点B停止,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是图中的()、填空题:16.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a= .17.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是度.18.如图,在△ABC中,D,E分别为AC,AB上的点,∠ADE=∠B,AE=3,BE=4,则AD·AC=_______.19.如图,已知矩形ABCD中,AD=2AB=2,以B为圆心,BA为半径作圆弧交CB的延长线于E,则图中阴影部分的面积是.20.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM=___________时,△AED与以M,N,C为顶点的三角形相似.、计算题:21.计算:tan260°﹣2sin30°﹣cos45°.22.x2﹣4x+1=0(配方法)、作图题:23.如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′,(1)在图中画出线段OP′;(2)求P′的坐标和PP′的长度.、解答题:24.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4. 如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)随机掷两次骰子,求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?25.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.26.如图,延长平行四边形ABCD的边DC到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:BF=CF;(2)若AB=2,AD=4,且∠AFC=2∠D,求平行四边形ABCD的面积.27.如图,一次函数y=﹣x+2的图象与反比例函数y2=kx-1的图象相交于A,B两点,点B的坐标为(2m,-m).1(1)求出m值并确定反比例函数的表达式;(2)请直接写出当x<m时,y2的取值范围.28.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.、综合题:29.已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.参考答案1.B2.B3.D4.D5.D6.D7.A8.C9.A10.B11.C12.B13.C14.C15.A16.答案为:1.17.答案为22.5.18.略19.答案为:0.5+0.25ᴨ.20.或21.【解答】解:原式=()2﹣2×﹣×=3﹣1﹣1=1.22.x2﹣4x+1=0(配方法)x2﹣4x=﹣1(x﹣2)2=3∴x﹣2=±,∴;23.略24.25.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.26.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,BC=AD,∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴BF=CF;(2)解:∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠D,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形,∴∠BAC=90°,∵BC=AD=4,∴AC===2,∴平行四边形ABCD的面积=AB•AC=2×2=4.27.解:(1)∵据题意,点B的坐标为(2m,-m)且在一次函数y1=﹣x+2的图象上,代入得-m=-2m+2.∴m=2. ∴B点坐标为(4,-2)把B(4,﹣2)代入得k=4×(﹣2)=﹣8,∴反比例函数表达式为y2=﹣8x-1;(2)当x<4,y2的取值范围为y2>0或y2<﹣2.28.【解答】(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴=,设EC=CF=x,∴=,∴x=.∴CE=.29.解:(1)解方程x2-10x+16=0得x1=2,x2=8∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC∴点B的坐标为(2,0),点C的坐标为(0,8)又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2∴由抛物线的对称性可得点A 的坐标为(-6,0)(2)∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上,∴c =8,将A (-6,0)、B (2,0)代入表达式,得0=4a +2b +80=36a -6b +8解得 38∴所求抛物线的表达式为y =-32x 2-38x +8(3)依题意,AE =m ,则BE =8-m ,∵OA =6,OC =8,∴AC =10∵EF ∥AC ∴△BEF ∽△BAC ,∴AC EF =AB BE 即10EF =88-m ,∴EF =440-5m过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =0.8∴FG:EF =0.8∴FG =8-m∴S =S △BCE -S △BFE =0.5(8-m )×8-0.5(8-m )(8-m )=0.5(8-m )(8-8+m )=0.5(8-m )m =-0.5m 2+4m自变量m 的取值范围是0<m <8(4)存在.理由:∵S =-0.5m 2+4m =-0.5(m -4)2+8 且-0.5<0,∴当m =4时,S 有最大值,S 最大值=8 ∵m =4,∴点E 的坐标为(-2,0)∴△BCE 为等腰三角形.。

2017甘肃省兰州市中考数学试题(含解析)

2017甘肃省兰州市中考数学试题(含解析)

2017年甘肃省兰州市中考数学试卷满分:150分版本:人教版一、选择题(每小题4分,共15小题,合计60分)1.(2017甘肃兰州,1,4分)已知2x=3y(y≠0),则下面结论成立的是A.32xy= B.23xy= C.23xy= D.23x y=【答案】A【解析】根据等式的性质2,等式的两边同时乘以或者除以一个不为0的数或字母,等式依然成立。

故在等式左右两边同时除以2y,可得32xy=,故选A2.(2017甘肃兰州,2,4分)如图所示,该几何体的左视图是从正面看DCBA【答案】D【解析】在三视图中实际存在而被遮挡的线用虚线来表示,故选D3.(2017甘肃兰州,3,4分)如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于130m50mA.513B.1213C.512D.1312【答案】C【解析】在直角三角形中,根据勾股定理可知水平的直角边长度为120m,正切值为对边比邻边,故斜坡与水平地面夹角的正切值等于50120=512,故选C。

4.(2017甘肃兰州,4,4分)如图,在⊙O中,AB=BC,点D在⊙O上,∠CDB=25°,则∠AOB=A.45°B.50°C.55°D.60°【答案】B【解析】在同一个圆中,等弧所对的圆心角是圆周角的2倍,故选B 。

2那么方程x +3x -5=0的一个近似根是 A.1 B.1.1 C.1.2 D.1.3 【答案】C【解析】由表格中的数据可以看出0.04更接近于0,故方程的一个近似根是1.2,故选C 。

6.(2017甘肃兰州,6,4分)如果一元二次方程2x 2+3x +m =0有两个相等的实数根,那么是实数m 的取值为A.m >98B. m >89C. m =98D. m =89【答案】C 【解析】由题目可知,一元二次方程2x 2+3x +m =0有两个相等的实数根,所以b 2-4ac =9-8m =0,解得m =98,故选C7.(2017甘肃兰州,7,4分)一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球。

【中考模拟2017】甘肃兰州市 2017年 九年级数学中考模拟试卷 五(含答案)

【中考模拟2017】甘肃兰州市 2017年 九年级数学中考模拟试卷 五(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()A. B. C. D.2.一元二次方程x2+x+0.25=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况3.二次函数y=-x2+bx+c的图象如图所示:若点A(x,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1与y2的大小关1系是( )A.y1≤y2B.y1<y2C.y1≥y2D.y1>y24.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形5.小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,已知她的击球高度是2.4米,则她应站在离网( )A.7.5米处 B.8米处 C.10米处 D.15米处6.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2B.3C.4D.57.已知y与x-1成反比例,那么它的解析式为( )8.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示,当气球内气体的气压大于150kPa时,气球将爆炸.为了安全,气体体积V应该是()A.小于0.64m3B.大于0.64m3C.不小于0.64m3D.不大于0.64m310.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035B.x(x﹣1)=1035×2C.x(x﹣1)=1035D.2x(x+1)=103511.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F.下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①②B.②③C.②④D.③④12.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和弧BC的长分别为()13.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣0.5x2D.y=0.5x214.已知∠A为锐角,且sinA≤0.5,则()A.0°≤A≤60° B.60°≤A <90° C.0°<A ≤30° D.30°≤A≤90°15.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x 的函数关系的图象是()二、填空题:16.已知x=1是方程x2+mx﹣3=0的一个根,则m的值为.17.如图是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是_____18.如图所示,已知点E在AC上,若点D在AB上,则满足条件(只填一个条件),使△ADE与原△ABC相似.19.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为.20.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是.三、解答题:21.计算:22.x2+3x-2=0.23.在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°.画出旋转后的图形.24.某校为了解全校学生最喜欢的学习方式,随机抽取了本校部分学生,对他们最喜欢的学习方式进行了调查,并将调查结果绘制成如下两幅不完整的统计图.请你结合图中的信息解答下列问题:(1)补全条形统计图;(2)计算扇形圆心角α的度数;(3)已知该校有1500名学生,估计全校最喜欢自主探究的学生有多少名?(4)为了了解学生对合作交流学习方式的体会,从被调查的学生最喜欢的学习方式为“合作交流”的学生中随机抽取12名参加校长召开的座谈会,被抽样调查的九年级学生王华最喜欢的学习方式恰好是“合作交流”,求王华被邀请参加校长座谈会的概率.25.为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为36°,则平台DE的长约为多少米?(2)在距离坡角A点27米远的G处是商场主楼,小明在D点测得主楼顶部H的仰角为30°,那么主楼GH高约为多少米?(结果取整数,参考数据:sin36°=0.6,cos36°=0.8,tan36°=0.7, =1.7)26.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.27.病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根(1)求当0≤x≤2时,y与x的函数关系式;(2)求当x>2时,y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?28.如图,已知AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,AB=12cm,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.29.如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=0.5x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.参考答案1.A2.B3.B4.C5.C6.B7.C8.D9.C10.C11.B12.D13.C14.C15.A16.答案为:2.17.答案为:∠2=∠319.答案为:.20.答案是(﹣2,0)或(,).21.答案为:2+8.22.∵a=1,b=3,c=-2,∴Δ=32-4×1×(-2)=17,∴x=,∴x1=,x2=.23. (1)将线段AC先向右平移6个单位,再向下平移8个单位(答案不唯一).(2)F(-1,-1).(3)图略.它们旋转后的图形分别是△CMD和△EGA.24.解:(1)本次调查的学生数为:24÷20%=120,调查学生中自主探究的学生数为:120﹣24﹣48﹣12=36,故补全的条形统计图如右图所示,(2)扇形圆心角α的度数是:144°;(3)450名;(4)即王华被邀请参加校长座谈会的概率是0.25.25.解:(1)∵修建的斜坡BE的坡角(即∠BEF)为36°,∴∠BEF=36°,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=0.5BD=15,DF=15≈25.98,EF==≈21.43故:DE=DF﹣EF=4(米);(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=0.5AD=0.5×30=15,PA=AD•cos30°=×30=15,在矩形DPGM中,MG=DP=15,DM=PG=15+27,在Rt△DMH中,HM=DM•tan30°=×(15+27)=15+9,GH=HM+MG=15+15+9≈45米.答:建筑物GH高约为45米.26.27.解:(1)根据图象,正比例函数图象经过点(2,4),设函数解析式为y=kx,则2k=4,解得k=2,所以函数关系为y=2x(0≤x≤2);(2)根据图象,反比例函数图象经过点(2,4),设函数解析式为y=kx-1,则0.5k=4,解得k=8,所以,函数关系为y=8x-1(x>2);(3)当y=2时,2x=2,解得x=1,8x-1=2,解得x=4,4﹣1=3小时,∴服药一次,治疗疾病的有效时间是3小时.28.29.解:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A 的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA =×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M 的坐标为(,).第11 页共11 页。

甘肃省兰州市2017年中考数学真题试题(含解析1)

甘肃省兰州市2017年中考数学真题试题(含解析1)

3
2
考点:切线的性质;一次函数图象上点的坐标特征.
三、解答题 (本大题共 8 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)
( ) 21. (1)计算:
2- 3
0
+骣 琪 琪 桫-
1 2
-2
-
- 2 - 2cos60°.
(2)解方程: 2x2 - 4x - 1 = 0 . 【答案】2.
A. 5
B.4
C. 3.5
D.3
【答案】B
考点: 矩形的性质.
9. 抛物线 y = 3x2 - 3 向右平移 3 个单位长度,得到新抛物线的表达式为( )
A. y = 3( x - 3) 2 - 3
【答案】A 【解析】
B. y = 3x2
C. y = 3( x +3) 2 - 2 D. y = 3x2 - 6
A.20
B.24
C.28
D.30
【答案】D
【解析】
9 试题解析:根据题意得 n =30%,解得 n=30,
所以这个不透明的盒子里大约有 30 个除颜色外其他完全相同的小球. 故选 D. 考点:利用频率估计概率. 8. 如图,矩形 ABCD 的 对角线 AC 与 BD 相交于点 D ,∠ADB = 30°, AB = 4 ,则 OC = ( )
∴p(3﹣
5,9 3
5
).
2
④如图 3 中,当⊙P 与 AB 相切时,设线段 AB 与直线 OP 的交点为 G,此时 PB=PG,
∵OP⊥AB, ∴∠BGP=∠PBG=90°不成立, ∴此种情形,不存在 P.
2
综上所述,满足条件的 P 的坐标为(0,0)或( ,1)或(3﹣

甘肃省兰州市2017年中考数学真题试题(含解析1)

甘肃省兰州市2017年中考数学真题试题(含解析1)

A. 5
B.4
C. 3.5
D.3
【答案】B
考点: 矩形的性质.
9. 抛物线 y = 3x2 - 3 向右平移 3 个单位长度,得到新抛物线的表达式为( )
A. y = 3( x - 3) 2 - 3
【答案】A 【解析】
B. y = 3x2
C. y = 3( x +3) 2 - 2 D. y = 3x2 - 6
3
2
考点:切线的性质;一次函数图象上点的坐标特征.
三、解答题 (本大题共 8 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)
( ) 21. (1)计算:
2- 3
0
+骣 琪 琪 桫-
1 2
-2
-
- 2 - 2cos60°.
(2)解方程: 2x2 - 4x - 1 = 0 . 【答案】2.
(3)作直线 PQ .
参考以上材料作图的方法,解决以下问题:
(1)以上材料作图的依据是
.
(3)已知:直线 l 和 l 外一点 P ,
求作:⊙P ,使它与直线 l 相切。(尺规作图,不写做法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
【答案】(1)线段垂直平分线上的点到线段两端点的距离相等;(2)作图见解析.
B. m > 8 9
C. m = 9 8
D. m = 8 9
考点:根的判别式.
7.一个不透明的盒子里有 n 个除颜色外其他完全相同的小球,其中有 9 个黄球,每次摸球前先将盒子里的球
摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在 30% ,
那么估计盒子中小球的个数 n 为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年甘肃省兰州市西固区桃园中学中考数学模拟试卷一、选择题:1.如图是由相同小正方体组成的立体图形,它的左视图为()A.B.C.D.2.下列一元二次方程中有两个不相等的实数根的方程是()A.(x﹣1)2=0 B.x2+2x﹣19=0 C.x2+4=0 D.x2+x+l=03.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.125.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:3 B.2:5 C.3:5 D.3:26.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠A.2 B.C.1 D.7.若函数y=x2m+1为反比例函数,则m的值是()A.1 B.0 C.0.5 D.﹣18.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.9.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C 在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变10.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=19611.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或12.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.213.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣0.5x2D.y=0.5x214.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.15.将函数y=x2+x的图象向右平移a(a>0)个单位,得到函数y=x2﹣3x+2的图象,则a的值为()A.1 B.2 C.3 D.4二、填空题:16.方程x2﹣3x+1=0的一次项系数是.17.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是度.18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是.19.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“<”“=”“>”)20.如图,正方形ABCD与正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),则位似中心的坐标是.三、计算题:21.计算:|1﹣|+3tan30°﹣(﹣5)0﹣(﹣)﹣1.22.(x+3)(x﹣1)=12(用配方法)四、解答题:23.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请在图中标明旋转中心P的位置并写出其坐标.24.甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请说明理由.25.如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)26.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.27.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?28.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.29.如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y 轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC 于点D,连接CP.(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积最大时,求点P的坐标.2017年甘肃省兰州市西固区桃园中学中考数学模拟试卷参考答案与试题解析一、选择题:1.如图是由相同小正方体组成的立体图形,它的左视图为()A.B.C.D.【解答】解:从左面看可得到左边第一竖列为3个正方形,第二竖列为2个正方形,故选A.2.下列一元二次方程中有两个不相等的实数根的方程是()A.(x﹣1)2=0 B.x2+2x﹣19=0 C.x2+4=0 D.x2+x+l=0【解答】解:A、△=0,方程有两个相等的实数根;B、△=4+76=80>0,方程有两个不相等的实数根;C、△=﹣16<0,方程没有实数根;D、△=1﹣4=﹣3<0,方程没有实数根.故选:B.3.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B5.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:3 B.2:5 C.3:5 D.3:2【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF :S△ABF=4:25,∴=,∵AB=CD,∴DE:EC=2:3.故选A.6.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.2 B.C.1 D.【解答】解:∵OD⊥弦BC,∴∠BOD=90°,∵∠BOD=∠A=60°,∴OD=OB=1,故选C.7.若函数y=x2m+1为反比例函数,则m的值是()A.1 B.0 C.0.5 D.﹣1【解答】解:根据题意得2m+1=﹣1,解得m=﹣1.故选D.8.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.【解答】解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选:C.9.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C 在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变【解答】解:∵等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,设点C的坐标为(x,),∴(k为常数).即△ABC的面积不变.故选A.10.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.11.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或【解答】解:∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM2+DM2=1,解得DM=;②DM与BE是对应边时,DM=DN,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM=.∴DM为或时,△ABE与以D、M、N为顶点的三角形相似.故选C.12.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.2【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选:B.13.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣0.5x2D.y=0.5x2【解答】解:由题意可得,设抛物线解析式为:y=ax2,且抛物线过(2,﹣2)点,故﹣2=a×22,解得:a=﹣0.5,故选:C.14.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.【解答】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD===,只有选项C错误,符合题意.故选:C.15.将函数y=x2+x的图象向右平移a(a>0)个单位,得到函数y=x2﹣3x+2的图象,则a的值为()A.1 B.2 C.3 D.4【解答】解:y=x2+x=(x+)2﹣.y=x2﹣3x+2=(x﹣)2﹣.所以a==2.故选B.二、填空题:16.方程x2﹣3x+1=0的一次项系数是﹣3.【解答】解:方程x2﹣3x+1=0的一次项系数为﹣3.故答案为:﹣317.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5度.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是0.9m.【解答】解:∵AB∥CD,∴△PAB∽△PCD,∴,假设P到AB距离为x,则=,x=0.9.故答案为:0.9m.19.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上<r下.(填“<”“=”“>”)【解答】解:如图,r上<r下.故答案为:<.20.如图,正方形ABCD与正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),则位似中心的坐标是(0,),(﹣6,7).【解答】解:设当B与F是对应点,设直线BF的解析式为:y=kx+b,则,解得:,故直线BF的解析式为:y=﹣x+,则x=0时,y=,即位似中心是:(0,),设当C与E是对应点,设直线CE的解析式为:y=ax+c,则,解得:,故直线CE的解析式为:y=﹣x+1,设直线DF的解析式为:y=dx+e,则,解得:,故直线DF的解析式为:y=﹣x+3,则,解得:即位似中心是:(﹣6,7),综上所述:所述位似中心为:(0,),(﹣6,7).故答案为:(0,),(﹣6,7).三、计算题:21.计算:|1﹣|+3tan30°﹣(﹣5)0﹣(﹣)﹣1.【解答】解:原式=﹣1+3×﹣1﹣(﹣3)=﹣1++3=2.22.(x+3)(x﹣1)=12(用配方法)【解答】解:将原方程整理,得x2+2x=15(1分)两边都加上12,得x2+2x+12=15+12(2分)即(x+1)2=16(3分)开平方,得x+1=±4,即x+1=4,或x+1=﹣4(4分)∴x1=3,x2=﹣5(5分)四、解答题:23.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请在图中标明旋转中心P的位置并写出其坐标.【解答】解:(1)如图,△A1B1C和△A2B2C2为所作;(2)如图,点P为所作,P点坐标为(,﹣1).24.甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请说明理由.【解答】解:(1)∵袋子中装有相同大小的3个球,球上分别标有数字1,2,3,∴甲摸到标有数字3的球的概率为;(2)解:游戏公平,理由如下:列举所有可能:由表可知甲获胜的概率=,乙获胜的概率=,所以游戏是公平的.25.如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m .坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)【解答】解:过点D作DH⊥BC于点M,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣10,在Rt△ACB中,∠BAC=50°,tan∠BAC=,∴x=tan50°•[(x﹣5)],解得:x≈21,答:建筑物BC的高约为21m.26.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.27.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【解答】解:(1)设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2=,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.28.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.29.如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y 轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC 于点D,连接CP.(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积最大时,求点P的坐标.【解答】解:(1)由题意,得,解得,∴抛物线的解析式为y=﹣x﹣4;(2)设点P运动到点(x,0)时,有BP2=BD•BC,令x=0时,则y=﹣4,∴点C的坐标为(0,﹣4).∵PD∥AC,∴△BPD∽△BAC,∴.∵BC===2,AB=6,BP=x ﹣(﹣2)=x +2.∴BD===.∵BP 2=BD•BC , ∴(x +2)2=×2,解得x 1=,x 2=﹣2(﹣2不合题意,舍去),∴点P 的坐标是(,0),即当点P 运动到(,0)时,BP 2=BD•BC ;(3)∵△BPD ∽△BAC , ∴,∴×S △PDC =S △PBC ﹣S △PBD =×(x +2)×4﹣∵,∴当x=1时,S △PDC 有最大值为3. 即点P的坐标为(1,0)时,△PDC的面积最大.。

相关文档
最新文档