2-1 有理数.好doc
新华师大版七年级上册初中数学 2-1-1 正数与负数 教案
第二章有理数2.1 有理数2.1.1 正数和负数1.明白生活中存在着无数表示相反意义的量,能举例说明;2.能体会引进负数的必要性和意义,建立正数和负数的数感.理解正数和负数的意义.体会现实生活中具有相反意义的量.一、情境导入,激发兴趣1.回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的.如:0,1,2,3,…,,.2.下面的温度怎样表示?【教学说明】让学生了解数的产生过程,初步认识到以前学过的数不能满足实际的需要.1.在日常生活中,常会遇到这样的一些量:如:汽车向东行驶3千米和向西行驶2千米;温度是零上10℃和零下5℃;收入500元和支出237元;水位升高1.2米和下降0.7米;像这样的日常生活中描述温度的零上多少摄氏度和___________________,水位的升高和_______,现金的收入和_______,商品的买进和_______等类似的数量都具有相反的意义,我们称之为具有相反意义的量.2.问题:你能再举几个其他的具有相反意义的量吗?【教学说明】必须满足两个条件:(1)意义相反;(2)同一种量.3.定义:一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,在过去学过的数(零除外)的前面放上一个“-”号来表示.如:在表示温度时,通常规定零上为“正”,零下为“负”,即零上10℃表示为10℃,零下5℃表示为-5℃.(1)正数小学学过的那些数(零除外),如10,3,500,5.5等,都是_______. 为了加以强调,_______前可加上“+”(读作正)号,但一般省略不写.如5可以写成+5, +5和5是一样的.(2)负数在正数的前面加上“-”(读作负)号的数是_______.“-”号不能省略.如:-5,-0.36.(3)0既不是_______,也不是_______(0不再仅仅表示“没有”,也是正、负数的分界点).【教学说明】通过归纳总结正数和负数的概念,举出实际例子加深对正数和负数的理解,使学生掌握正数和负数的特征及表示方法.例1 填空:(1)出口货物500吨记作-500,进口货物262吨记作_______;(2)如果产量增加20%,记作_______,那么产量减少3%记作_______;(3)向东前进30m记作+30,向西前进10m记作_______.【教学说明】让学生先观察记法,找到具有相反意义的量,再用正负数来表示.例2 把下列叙述改成使用正负数的方法(1)向南走-20 m,即_______;(2)飞机下降-200 m,即_______;(3)飞机上升-3000 m,即_______;(4)商店赢利-1000元,即_______.【教学说明】通过讲解,使学生理解正数和负数是表示相反意义的量,掌握它的表示方法.1.由于实际问题中存在着相反意义的量,所以要引入负数,这样数的范围就扩大了.2.正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”.【教学说明】教师引导学生总结负数的产生是实际生活的需要,进一步理解用正数和负数表示互为相反意义的量.课本习题1.1。
人教新版(2024)七年级数学上册-2.1.2 有理数的减法(教案)
2.1.2有理数的减法第1课时【教学目标】1.理解、掌握有理数的减法法则,会将有理数的减法运算转化为加法运算.2.通过把有理数的减法运算转化为加法运算,培养学生观察、归纳、概括及运算能力.3.经历由特殊到一般的归纳过程,培养学生抽象概括能力及表达能力.4.通过减法法则的转化,让学生初步体会转化、化归的思想.【教学重点难点】重点:有理数减法法则和运算.难点:有理数减法法则的理解与应用.【教学过程】一、创设情境复习引入:1.叙述有理数的加法法则.2.计算:①(-2)+(-6).②(-8)+(+6).③-7+=5.④+(-3)=12.3.问题:在月球表面,“白天”的温度可达127 ℃,太阳落下后的“月夜”气温竟下降到-183 ℃,请问在月球上温差是多少?(310 ℃)应如何列式计算呢?通过分析启发学生应该用减法计算上题,从而引出新课.二、探究归纳探究点1:有理数的减法法则问题1:温差是指最高气温减最低气温.北京市某天的气温为-5~5℃.(1)根据你的生活经验,你会说出这天的温差吗?(2)你还能从温度计上看出5℃比-5℃高多少℃吗?(3)你会列式求该天北京市的温差?追问1:怎样理解5-(-5)=10;①追问2:想一想,5+=10;②追问3:观察①,②两个等式的结果,你发现了什么?从结果中你能看出减-5相当于加哪个数?问题2:将式中的5换成0,-1,-4,用上述方法考虑:0-(-5),-1-(-5),-4-(-5).追问:这些数减-5的结果与它们加+5的结果相同吗?0-(-5)=,0+(+5)=;-1-(-5)=,-1+(+5)=;-4-(-5)= ,-4+(+5)= .问题3:计算:9-8= ;9+(-8)= ;15-7= ;15+(-7)= .从以上的运算中,你可以得到什么结论?要点归纳:有理数减法法则:减去一个数,等于加上这个数的 .表达式为:a -b =a +(-b ),显然两个有理数相减,差是一个有理数.【典例剖析】例1:(教材P31【例4】)计算:(1)-3-(-5);(2)0-7;(3)2-5;(4)7.2-(-4.8);(5) (-312)-514. 解:(1)(2)(3)2-5=2+(-5)=-3.(4)7.2-(-4.8)=7.2+4.8=12.(5) (-312)-514=(-312)+(-514)=-834. 【师生活动】师生共同完成.在完成过程中教师示范前两小题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下几个小题学生尝试完成,体验法则的运用.教师要提醒学生注意0-7这个式子,是学生容易出错的一个问题.【解题反思】在小学里,我们只会计算较大的数减去较小的数,观察例题中的计算,思考下面的问题:在有理数范围内,当较小的数减去较大的数的时候,所得的差的符号是什么?【设计意图】使学生加深对法则的理解与掌握,同时引导学生体会引入负数的好处.探究点2:有理数减法的应用例2:世界上最高的山峰是珠穆朗玛峰,其海拔高度是8 844.43米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米?例3:P36T10思路点拨:温差即最高气温与最低气温的差.首先要根据题意列式,利用法则求解,最后比较大小.要点归纳:应用有理数的减法解决温差、时差等实际问题时,一般是两个量比较,求一个量比另一个量多多少,列减法算式即可.三、检测反馈1.下列结论不正确的是()A.若a>0,b<0,则a-b>0B.若a<0,b>0,则a-b<0C.若a<0,b<0,则a-(-b)>0D.若a <0,b <0,且|b |<|a |,则a -b >02.下列运算中,正确的是 ( )A.3.58-(-1.58)=3.58+(-1.58)=2B.(-2.6)-(-4)=2.6+4=6.6C.0-(+25) - 75 =(+25)-75 = 25+(-75) = -1 D.38-145 = 38+(-95)=-57403.(1)(-3)- =1.(2) -7=-2.4.P32练习T15.P32练习T2四、本课小结内容 有理数的减法法则减去一个数,等于加上这个数的相反数 运算步骤1.将减号变为加号,将减数变为其相反数.2.利用有理数的加法法则进行计算. 五、布置作业P34T3,P35T4;P36T11六、板书设计七、教学反思1.通过创设情境引导学生参与探究,给学生充足的时间合作探究并归纳(用自己的语言叙述)有理数减法法则.重在培养学生自主学习的能力和语言表达能力.注意培养学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听别人的意见和建议.2.学生在合作交流、探索混合运算中,首先让学生考虑运算顺序的问题,这是所有混合运算必需首先解决好的问题,然后再从引例的角度遵循减法法则,让学生尝试将加减混合运算统一为加法运算;通过运算的比较,让学生感受到其中的必要性,而在整个探索活动中都充满着学生与学生之间的交流合作,给学生以充分发表意见的机会;让学生在自己与同伴的合作中去发现与探究.同时也注意教师与学生之间的对话;引导学生的思维方向,渗透转化的思想.3.减法运算时学生最容易出现的错误就是在把减变加时,往往不是变成相反数如:5-(-16)=5+(-16)就只变符号.加减混合运算学生更容易出错,并且方法掌握不好,要加强这方面的训练,注重算理的掌握.第2课时【教学目标】1.理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.2.通过加减法的相互转化,培养应变能力、计算能力.3.经历加减法之间的相互转化,培养学生的应变能力、口头表达能力及计算能力.4.理解有理数减法运算可以表示数轴上两点之间距离,体会数形结合思想的应用.【教学重点难点】重点:把加减混合运算理解为加法运算.难点:能把加、减法正确地统一成加法运算,并用加法运算律合理地进行运算.【教学过程】一、创设情境巩固复习:1.叙述有理数加法法则.2.叙述有理数减法法则.3.叙述加法的运算律.4.符号“+”和“-”各表达哪些意义?5.化简:+(+3);+(-3);-(+3);-(-3).6.口算:(1)2-7.(2)(-2)-7.(3)(-2)-(-7).(4)2+(-7).(5)(-2)+(-7).(6)7-2.引入新课:一架飞机作特技表演,起飞后的高度变化如下表:高度变化记作上升4.5千米+4.5千米下降3.2千米-3.2千米上升1.1千米+1.1千米下降1.4千米-1.4千米此时飞机比起飞点高了多少千米?如何计算呢?解法1:4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=1(千米)解法2:4.5-3.2+1.1-1.4=1.3+1.1-1.4=1(千米)【师生活动】学生快速组内思考回答.教师根据学生回答的情况给出两种解法,比较4.5+(-3.2)+1.1+(-1.4)和4.5-3.2+1.1-1.4,同时指出:我们实际问题中有时还要涉及有理数的加减混合运算,进而引入新知.二、探究归纳探究点1:有理数的加减混合运算问题1:引入相反数后,加减混合运算可以统一为加法运算.如:a +b -c =a +b + .将(-20)+(+3)-(-5)-(+7)转化为加法:(-20)+(+3)+(+5)+(-7).这个算式我们可以看作是 、 、 、 这四个数的和.为书写简单,省略算式中的括号和加号写为-20+3+5-7.可以读作负20、正3、正5、负7的和,或读作负20加3加5减7.在符号简写这个环节,有什么小窍门吗?问题2:观察下列式子,你能发现简化符号的规律吗?(-40)-(+27)+19-24-(-32)=-40-27+19-24+32(-9)-(-2)+(-3)-4=-9+2-3-4规律:数字前“-”号是奇数个取“-”;数字前“-”号是偶数个取“+”例1:计算:(-2)+(+30)-(-15)-(+27).例2:计算:(1)-712+611-512+511. (2)(-18.25)-425+(+1814)+4.4. 【解题反思】有理数加减混合运算的步骤:(1)将减法转化为加法运算.(2)省略加号和括号.(3)运用加法交换律和结合律,将同号两数相加.(4)按有理数加法法则计算.探究点2:数轴上两点间的距离问题:在数轴上,点A,B分别表示数a,b,对于下列各组数a,b,a=2,b=6;a=0,b=6;a=2,b=-6;a=-2,b=-6.(1)观察点A,B在数轴上的位置,你能得出它们之间的距离吗?(2)利用有理数减法法则探究:分别计算每组两个数的差,对比结果的绝对值与这两点之间的距离的关系.(3)你能说说对于任意的两个点A,B之间的距离与a,b的关系吗?(1)若点A,B有一个点在原点,不妨设点A在原点,如图(1)所示,则|AB|=|OB|=|b|=|a-b|;(2)若点A,B都不在原点,①设点A,B都在原点右侧,如图(2)所示,则|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②设点A,B都在原点左侧,如图(3)所示,则|AB|=|OB|-|OA|=|b|-|a|=-b―(―a)=|a-b|;③设点A,B在原点两边,如图(4)所示,则|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.归纳总结:设点A,B在数轴上分别表示数a,b,则点A,B之间的距离|AB|=|a-b|.说明:只要求学生利用数轴,通过观察几组数的情况后,知道用较大的数减去较小的数,得到的差就是这两点的距离即可,不需进行拓展.【设计意图】提出了利用有理数的减法计算数轴上两点之间的距离问题,让学生进一步体会数形结合的数学思想.探究点3:加减混合运算的应用例3:教材P35T7三、检测反馈1.若a =-2,b =3,c =-4,则a -(b -c )的值为 .2.计算:(1)-11-9-7+6-8+10.(2)-5.75-(-3)+(-5)-3.125.(3)|-114|-(-34)+1-|12-1|. 3.下列交换加数的位置的变形中,正确的是( )A.1-4+5-4=1-4+4-5B.-13+34-16-14=14+34-13-16C.1-2+3-4=2-1+4-3D.4.5-1.7-2.5+1=4.5-2.5+1-1.74.计算1-2+3-4+5+…+99-100= .5.-4,-5,+7这三个数的和比这三个数的绝对值的和小 .四、本课小结1.本节课学习的主要内容有哪些?这些内容中体现了哪些数学思想方法?2.解答有理数加减混合运算需要注意的事项有哪些?其基本的运算步骤是什么?有理数加减法混合运算的步骤为:方法一:减法转化成加法1.减法变加法:a+b-c=a+b+(-c);2.运用加法交换律使同号两数分别相加;3.按有理数加法法则计算.方法二:省略括号法1.省略括号;2.同号放一起;3.进行加减运算.五、布置作业P34练习;P35T5;P36T13六、板书设计七、教学反思本节课的教学跨度大.相比前面的内容对学生的要求更高.要讲清楚有理数加减混合运算的步骤.教学中,尤其要注意在运用加法交换律和结合律时,存在4个易错点.如:3-8-6+7在进行用运算律时需要注意下面4点.1.这里的4项中的“-”均认为是“负号”.进行加法交换律时要连同数字前面的符号,不能只交换数字而不带上符号.如(3-7)-8+6这样就是错误的.2.进行加法结合律时要注意括号的位置应该包括数字前面的符号.如(3+7)-(8-6)这里的“-”应该包含在括号内.3.在两个括号之间要补上省略的加号.如(3+7)+(-8-6).4.括号里的两项-8-6其实是-8和-6进行加法运算.可以向学生说明,如果理解为减法的话,根据减法法则转化为加法,再省略加号会出现重复的结果.步骤如下:-8-6=-8+(-6)=-8-6所以对-8-6应该理解为-8和-6进行加法运算.可以认为是省略了“加号”,即两个负数进行加法运算.。
七年级数学上册第2章有理数2.1有理数2.1.1正数和负数教学设计(新版)华东师大版
1.1正数和负数一、教学目标(一)知识与技能:1.会判断一个数是正数还是负数2.能用正、负数表示生活中具有相反意义的量(二)过程与方法:经历从现实生活中的实例引入负数的过程,体会引入负数的必要性与合理性(三)情感态度价值观:感知到数学知识来源于生活并为生活服务。
二、学法引导1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识。
2.学生学法:研究实际问题→认识负数→负数在实际中的应用。
三、重点、难点、疑点及解决办法1.重点:会判断正数、负数,运用正负数表示具有相反意义的量。
2.难点:负数的引入。
3.疑点:负数概念的建立。
四、课时安排2课时五、教具学具准备投影仪(电脑)、自制活动胶片、中国地图。
六、教学设计思路教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈。
七、教学步骤(一)创设情境,复习导入师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分。
提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?学生活动:学生们思考,头脑中产生疑问。
【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求。
(二)探索新知,讲授新课师:为了研究这个问题,我们看两个实例(出示投影1)用复合胶片翻四次在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)学生活动:看图回答10℃,5℃,零下5℃,零下10℃。
人教版七年级数学上册:第一章有理数1.2.2数轴(教案)
-理解数轴上的对称性,尤其是关于原点的对称。
-掌握数轴上两点间距离的计算方法。
-理解数轴上的相反数和绝对值概念。
-解决与数轴相关的复杂问题。
举例:难点在于让学生理解数轴上对称性的概念,如-3和3在数轴上是关于原点对称的。同时,解释数轴上两点间距离的计算,如点A表示数-2,点B表示数5,点A和点B之间的距离是7个单位长度。此外,帮助学生理解一个数的相反数在数轴上的位置关系,以及绝对值表示的几何意义。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解数轴的基本概念。数轴是一个直线,用来表示有理数,它有三个要素:原点、正方向和单位长度。数轴是数学中非常重要的工具,它帮助我们直观地理解数的大小和相对位置。
2.案例分析:接下来,我们来看一个具体的案例。比如,气温的变化可以用数轴来表示,零上温度在原点右侧,零下温度在原点左侧,这样我们可以清楚地看到温度的升降。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用尺子在教室内创建一个数轴,并标出不同的有理数位置。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数轴在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
学生小组讨论的环节,让我看到了学生们思维的火花。他们能够从不同的角度看待问题,提出各种有趣的见解。但我也意识到,我需要更好地引导他们,将讨论聚焦于数轴的核心概念和应用上,避免讨论偏离主题。
总的来说,今天的课堂让我认识到,教学过程中需要关注每一个学生的个体差异,因材施教,充分调动他们的学习积极性。在今后的教学中,我将不断总结经验,努力提高教学效果,让数学课堂变得更加生动有趣。
2-1初一数学课件:有理数
1.(1)如果零上5 C记作+5 C,那么零下3 O C记作什么? 零下3 ℃记作-3℃ (2)东、西为两个相反方向,如果- 4米表 示一个物体向西运动4米,那么+2米表示什 向东2米 记为0米 么? 物体原地不动记为什么? (3)某仓库运进面粉7.5吨记作+7.5吨, 那 么运出3.8吨应记作什么? 记作- 3.8吨
练习
2.把下列各数填入它所属于的集合的 圈内: 15,
1 , 9
-5,
13 2 , 8 , 0.1, -5.32, 15
…
-80,
…
123, 2.333.
正整数集合
…
负整数集合
…
正分数集合
负分数集合
课堂小结
到现在为止我们学过的数都是 有理数(圆周率除外),有理数 可以按不同的标准进行分类,标 准不同,分类的结果也不同。
拓展
1、 0是整数吗?自然数一定是整数
吗?0一定是正整数吗?整数一定是自然 数吗? 2、图中两个圆圈分别表示正整数集合和整 数集合,请写并填入两个圆圈的重叠部分.你 能说出这个重叠部分表示什么数的集合吗?
… … …
正数集合
整数集合
课堂 小结
1、正数:以前学过的数中,除0外的数 叫做正数;如:+5,+0.23, 8818…… 2、负数:在正数前面加上“-”号的数叫 做负数;如:-5, -0.54, …… 3、0既不是正数,也不是负数。
2-1有理数
知识回顾
引入负数后,数的范围扩大了。现在请同学们 在草稿纸上任意写出3个不同种类的数 。
小组讨论
观察小组成员所写的数,并给它们进行分类.
1-1-2有理数基本运算[1].题库教师版
内容 基本要求略高要求较高要求有理数运算理解乘方的意义掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主) 能运用有理数的运算解决简单问题 有理数的运算律 理解有理数的运算律 能用有理数的运算律简化运算板块一、有理数基本加、减混合运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值. ③一个数同0相加,仍得这个数. 有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差. 有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.例题精讲中考要求有理数基本运算()()a b c a b c ++=++(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式. ②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零. ④若有可以凑整的数,即相加得整数时,可先结合相加. ⑤若有同分母的分数或易通分的分数,应先结合在一起. ⑥符号相同的数可以先结合在一起. 有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b -=+- 有理数减法的运算步骤:①把减号变为加号(改变运算符号) ②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算. 有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.例如:()(3)(0.15)9(5)(11)30.159511++-+-+++-=--+-, 它的含义是正3,负0.15,负9,正5,负11的和.【例1】 (2级)计算:⑴5116( 2.39)( 1.57)(3)(5)(2)(7.61)(32)( 1.57)6767-+-+++-+-+-+-++⑵11(0.75)0.375(2)84+-++- 【解析】 ⑴原式21(10)0138)4633=-++=-+(-;⑵原式133111()(2)(3)2884422=++-+-=+-=-【例2】 (2级)计算:⑴()()()()3133514--++---;⑵31212 1.753463--+⑶413 4.5727⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭; ⑷110.5 2.50.336⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦【解析】 ⑴原式313351437=---+=-⑵原式321311 1.753201143662⎛⎫⎛⎫=-+-=+= ⎪ ⎪⎝⎭⎝⎭⑶原式430.5 4.541577=---=--=-⑷原式115=【巩固】 (2级)⑴21(4)(3)833-+-=- ⑵21(6)(9)|3|7.49.2(4)055-+-+-+++-=⑶17(14)(5)( 1.25)9.588-+++-=- ⑷111(8.5)3(6)110332-++-+=⑸5317(9)15(3)(22.5)(15)35124412-++-+-+-=-⑹434(18)(53)(53.6)(18)(100)100555-+++-+++-=-⑺11324|1()|235535-----=- ⑻ 4.7( 3.3)( 5.6)( 2.1)0.3--+----=-⑼1111(3)[(3)3](3)04444⎡⎤-------=⎢⎥⎣⎦【巩固】 (2级)⑴0a >,0b <则a b - 0; ⑵0a <,0b >则a b - 0;⑶0a <,0b <,则()a b -- 0;⑷0a <,0b <,且||||a b <,则a b - 0. 【解析】 ⑴>;⑵<;⑶<;⑷>.【例3】 (6级)设三个互不相等的有理数,既可分别表示为1a b a +,,的形式,又可分别表示为0bb a,,的形式,则20042001a b +=【解析】 这两个三数组在适当的顺序下对应相等,于是可以判定,a b +与a 中有一个为0,ba与b 中有一个为1,可推出11a b =-=,,原式值为2【例4】 (2级)给出一连串连续整数:203202...20032004--,,,,,这串连续整数共有 个;它们的和是【解析】 2208个,和为()2032004220819883042-+⨯=【例5】 (6级)(第8届希望杯)1997个不全相等的有理数之和为0,则这1997个有理数中( )A .至少有一个是零B .至少有998个正数C .至少有一个是负数D .至多有995个是负数 【解析】 答案为C【巩固】 (6级)(第17届希望杯2试)若0a b c d <<<<,则以下四个结论中,正确的是( )A .a b c d +++一定是正数.B .d c a b +--可能是负数.C .d c b a ---一定是正数.D .c d b a ---一定是正数.【解析】 分析:答案为C .a b c d +++不能确定正负;d c a b +--一定为正;d c b a ---一定是正数;c d-为负,b a --为正,c d b a ---不能确定正负.【例6】 (2级)(北京)北京市2007年5月份某一周的日最高气温(单位:ºC )分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值为( )A . 28ºCB . 29ºC C . 30ºCD . 31ºC【解析】B . 当一组大小比较集中的数字求和时,我们可以先找一个“基准数”,(基准数尽量选用这组数的中间数,同时兼顾它是整十、整百的数,方便计算).本题中我们可以选用30为“基准数”,那么平均值=30+(-5-2+0-1+1+2-2)÷7=29(ºC );其总和=30×7+(-5-2+0-1+1+2-2)=203(ºC ).【例7】 (4级)(07年济南中考题)出租车司机小李某天下午的营运全都是在东西方向的人民大街上进行的,如果规定向东为正, 向西为负,他这天下午行车里程表示如下:15+,2-,5+,1-,10+,3-,2-,12+,4+,5-,6+,⑴将最后一名乘客送到目的地时,小李距离下午出车时的出发点多远? ⑵如果汽车耗油量为0.5升/千米,这天下午小李共耗油多少升? 【解析】 ⑴(15)(2)(5)(1)(10)(3)(2)(12)(+4)+(5)+(+6)=39++-+++-+++-+-+++-,距离出发点为39千米;⑵共走了+15+2++5+1++10+3+2++12++4+5++6 =65-----(千米)的里程,所以耗油为650.532.5⨯=(升).【巩固】 (4级)(07~08学年北京四中阶段测试)A 市的出租车无起步价,每公里收费2元,不足1公里的按1公里计价,9月4号上午A 市 某出租司机在南北大道上载人,其承载乘客的里程记录为:2.3、7.2-、 6.1-、8、9.3、 1.8-(单位:公里,向北行驶记为正,向南行驶记为负),车每公里耗 油0.1升,每升油4元,那么他这一上午的净收入是多少元?他最后距离出发点多远? 【解析】 毛收入:(3878102)276+++++⨯=(元),汽油成本:(2.37.2 6.189.3 1.8)0.1413.88+-+-+++-⨯⨯=(元),收入7613.8862.12-=(元).他最后距离出发点的距离:2.3(7.2)(6.1)89.3(1.8) 4.5+-+-+++-=(公里).【例8】 (8级)(无锡市中考题、人大附中练习题改编)数轴的原点O 上有一个蜗牛,第1次向正方向爬1个单位长度,紧接着第2次反向爬2个单位长度,第3次向正方向爬3个单位长度,第4次反向爬4个单位长度……,依次规律爬下去,当它爬完第100次处在B 点.① 求O 、B 两点之间的距离(用单位长度表示).② 若点C 与原点相距50个单位长度,蜗牛的速度为每分钟2个单位长度,需要多少时间 才能到达?③ 若蜗牛的速度为每分钟2个单位长度,经过1小时蜗牛离O 点多远? 【解析】 ①1(2)3(4)99(100)50+-++-+++-=-L ,故O 、B 两点之间的距离为50个单位长度.②分两种情况,第一种情况:点C 在数轴的正半轴,观察规律可知:除去第一次,依次每两次 结合相当于向正方向前进1米,所以再经过(501)298-⨯=(次)运动即可前进50米,到达B 地;用时为:(1239899)22475++++÷=L (分钟).第二种情况:点C 在数轴的负半轴,观察规律可知,每两次结合相当于向负半轴前进1米,故经过100次运动即可前进50米,到达B 地,用时为:(12100)22525+++÷=L (分钟).③设第n 次运动时,正好60分钟,那么有123456602222222n+++++++=L ,所以15n =,此时它离A 点:1234561314158-+-+-++-+=L (米).【巩固】 (6级)(第5届希望杯2试)电子跳蚤在数轴上的某一点0K ,第一步0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步有点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,...... ,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94. 求电子跳蚤的初始位置点0K 所表示的数.【解析】 假设电子跳蚤的起点0K 为0x ,规定向左为负,向右为正,根据题意可得:01234569910019.94x -+-+-+--+=L L ,030.06x =-.【巩固】 (10级)在整数1,3,5,7,…,21k -,…,2005之间填入符号“+”和“-”号,依此运算,所有可能的代数和中最小的非负数是多少? 【解析】 这道题也是一个老题,由于整数的符号不影响其奇偶性,因此也不影响代数和的奇偶性,我们首先可以利用:213520051003++++=L ,得知所有可能的代数和均为奇数,再考虑到非负数这一条件,我们期望这一最小值为1.接下来我们的目标无非是填入符号“+”和“-”凑出1来,考虑到共有1003个数,我们需要利用周期性.注意到,7911130--+=,151719210--+=,L ,()(23)(21)(21)230k k k k ----+++=L ,19992001200320050--+=,因此容易凑出所要的结果来 ()()()11357911131999200120032005=--++--+++--+L .但是题目中要求在数与数之间填入符号“+”和“-”号,所以可以对算式的前7项做处理,修改为:()()11357911131999200120032005=++++--++--+L【巩固】 (10级)(07年希望杯培训试题)在1,3,5,…,101这51个奇数中的每个数的前面任意添加一个正号或一个负号,则其代数式的绝对值最小为多少?【解析】 由于2135710151+++++=L 为奇数,对于连续的4个奇数我们添加符号如下,使其结果为0,即:(21)(23)(25)(27)0n n n n +-+-+++=,这样我们可以使后48个奇数和为0,对于1、3、5我们可以如下添加符号使其绝对值最小:1351--+=,于是可得和的绝对值最小为1.【巩固】 (8级)(2000年辽宁)在数1,2,3,……,1998前添符号“+”或“-”,并依次运算,所得结果中最小的非负数是多少? 【解析】 由于12319991999999++++=⨯L 是一个奇数,而在1,2,3,…,1998之间任意添上“+”号或“-”号不会改变其代数式和的奇偶性,故所得额非负数不小于1.现考虑在四个连续自然数n ,1n +,2n +,3n +之间添加符号,显然(1)(2)(3)0n n n n -+-+++=,这提示我们将1,2,3,L ,1998每连续四个数分成一组,再按上述规则添加符号,即:()()()123456781993199419951996199719981--++--+++--+-+=L 所求的最小非负数为1.【例9】 (6级)试利用正方形的面积,计算以下无穷个数的和:1111111 (248163264128)+++++++ 【解析】 如图,把一个面积为1的正方形等分成两个面积为12的矩形,接着,再把面积为12的矩形中的一个等分成面积为14的矩形,在把面积为14的矩形中的一个等分成两个面积为18的矩形,…,显然,图中所有矩形面积之和是整个正方形的面积,所以1111 (124816)++++=∙∙∙132116181412【例10】 (6级)(2005年大连市中考)在数学活动中,小明为了求23411111 (22222)n +++++的值(结果用n 表示),设计了如图所示的几何图形图2图112412312212⑴请你用这个几何图形求23411111 (22222)n +++++的值⑵请你用图2,再设计一个能求231111 (2222)n ++++的值的几何图形 【解析】 ⑴原式112n=-;⑵略【例11】 (4级)(芜湖市课改实验区中考试题)小王上周五在股市以收盘价每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下星期 一 二 三 四 五每股涨跌(元)2+0.5- 1.5+ 1.8- 0.8+⑴星期二收盘时,该股票每股多少元?⑵本周内该股票收盘时的最高价,最低价分别是多少?⑶已知买入股票与卖出股票均需要支付成交金额的千分之五的交易费,若小王在本周五以收盘价将全部股票卖出,他的受益情况如何?【解析】 ⑴星期二收盘价为2520.526.5+-=⑵收盘价最高为2520.5 1.528+-+=;收盘最低价为2520.5 1.5 1.826.2+-+-= ⑶小王的收益为()()00000027100015251000151740⨯--⨯+=(元)板块二、有理数基本乘法、除法有理数乘、除法 Ⅰ:有理数乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 有理数乘法运算律:①两个数相乘,交换因数的位置,积相等. ab ba =(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. ()abc a bc =(乘法结合律) ③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. ()a b c ab ac +=+(乘法分配律) 有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.【例12】 (2级)看谁算的又对又快:⑴()()()345826-⨯--⨯--⨯-⎡⎤⎡⎤⎣⎦⎣⎦⑵4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑶1571(8)16-⨯- ⑷()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑸111112211142612⎛⎫-⨯-+- ⎪⎝⎭【解析】 ⑴()()[]()()34582(6)12581228-⨯--⨯--⨯-=-⨯-+=⎡⎤⎣⎦;⑵化带分数为假分数后约分.原式9101133959211⎛⎫=-⨯⨯⨯⨯=- ⎪⎝⎭;⑶变形后使用分配律,原式()1571816⎛⎫=--⨯- ⎪⎝⎭()()()151571885685687.5575.5162⎛⎫=-⨯-+-⨯-=+=+= ⎪⎝⎭;⑷逆向运用分配律,较复杂的有理数混合运算,要注意解题方法的选取.原式()9985412121616⎛⎫=---+⨯-⎡⎤ ⎪⎣⎦⎝⎭=-; ⑸应用乘法分配律;原式()()()()937131212121242612⎛⎫⎛⎫=-⨯+-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭()2718(14)1310=-++-+=-.【巩固】 (2级)计算下列各题:⑴()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭; ⑵()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭;⑶735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦; ⑷111(0.25)(5)( 3.5)()2244-⨯-+⨯-+-⨯;⑸114()1()16845-⨯⨯-⨯; ⑹11171113()71113⨯⨯⨯++;⑺1113.55 2.87()() 6.42333⨯-⨯-+-⨯; ⑻1111136()23469⨯+---.【解析】 ⑴小数结合相乘凑成整数.原式()()()330.250.54700.2527055⎛⎫⎛⎫=-⨯⨯⨯-=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭()313533530.57052510⎛⎫⎛⎫=-⨯-=+⨯=⎪ ⎪⎝⎭⎝⎭; ⑵小数化成分数,互为倒数结合相乘为1.原式31001133100322⎡⎤⎛⎫=-⨯-⨯= ⎪⎢⎥⎝⎭⎣⎦;⑶原式=()735(36)(36)36(1)(36)21273036121246⎛⎫⎛⎫-⨯-+⨯-+-⨯---⨯-=-+-=- ⎪ ⎪⎝⎭⎝⎭;⑷原式111111()(5)()( 3.5)()2()(5 3.52)0424442=-⨯---⨯-+-⨯=-⨯-++=;⑸原式154()16()2845⎡⎤⎡⎤=-⨯⨯⨯-=⎢⎥⎢⎥⎣⎦⎣⎦;⑹原式1113713711311=⨯+⨯+⨯=;⑺原式1(3.55 2.87 6.42)03=+-⨯=;⑻原式181296411=+---=.【例13】 (2级)计算:⑴()()()71000.01999011⎛⎫-⨯⨯-⨯⨯- ⎪⎝⎭⑵()()()()18120.1250.23⎛⎫-⨯-⨯-⨯-⨯- ⎪⎝⎭【解析】 ⑴原式0=⑵原式180.125120.20.83⎛⎫=-⨯⨯⨯⨯=- ⎪⎝⎭【例14】 (8级)(第10届希望杯)1111(1)(1)(1).....(1)_______1998199719961000----=【解析】 11997119981998-=-,11996119971997-=-,11995119961996-=,…,1999110001000-=-. 把这999个式子相乘,得原式999119982=-=-.【巩固】 (8级)计算:11111(1)(1)(1)(1)(1)4916252500-⨯-⨯-⨯-⨯⨯-L【解析】 原式11111111(1)(1)(1)(1)(1)(1)(1)(1)2233445050=-⨯+⨯-⨯+⨯-⨯+⨯⨯-⨯+L132435464951223344555050⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯L =(-)(-)(-)(-)(-)13243546495115151223344555050250100=-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=-⨯=-L【例15】 (8级)积11111111...111324359810099101⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪ ⎪⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值的整数部分是【解析】 原式22222399100...13249810099101=⨯⨯⨯⨯⨯⨯⨯⨯ ()()2222234...9910012345 (99100101)⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯991101=【例16】 (8级)设()2n n ≥个正整数123...n a a a a ,,,,,任意改变他们的顺序后,记作123...n b b b b ,,,,,若 ()()()()112233...n n P a b a b a b a b =----,则( ) A .P 一定是奇数 B .P 一定是偶数C .当n 是奇数时,P 是偶数D .当n 是偶数时,P 是奇数 【解析】 C【例17】 (8级)若a ,b ,c ,d 是互不相等的整数,且9abcd =则a b c d +++的值为( )A .0B .4C .8D .无法确定. 【解析】 a b c d ,,,4个数是13±±,,所以0a b c d +++=【巩固】 (8级)如果4个不同的正整数m ,n ,p ,q 满足(7)(7)(7)(7)4m n p q ----=,那么m n p q +++的值是多少?【解析】 (7)(7)(7)(7)1(1)2(2)m n p q ----=⨯-⨯⨯-,所以,,,m n p q 分别取值6,8,5,9,所以28m n p q +++=.【例18】 (8级)如果a b c ,,均为正数,且()()()152162170a b c b a c c a b +=+=+=,,,那么abc 的值等于 【解析】 720【例19】 (6级)(第9届希望杯)若19980a b +=,则ab 是( )A . 正数B . 非正数C . 负数D . 非负数【解析】 由19980a b +=,得1998a b =-,可知a 、b 的符号相反或者0a b ==,故有0ab ≤.【巩固】 (2级)奇数个负数相乘,积的符号为 , 个负数相乘,积的符号为正. 【解析】 负号;偶数.【补充】(6级)(第16届希望杯2试)如果22()()4a b a b +--=,则一定成立的是( )A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数 【解析】 将原式展开,合并后得到1ab =,选择C .【补充】(2级)若a b c ,,三个数互不相等,则在a b b c c ab c c a a b------,,中,正数一定有( ) A .0个 B .1个 C .2个 D .3个【解析】 不妨设a b c >>,则000a b b c c ab c c a a b---><<---,,,显然有两个负数,一个正数.Ⅱ:有理数除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b a b÷=⋅,(0b ≠)两数相除,同号得正,异号得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.【例20】 (2级)计算:⑴111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⑵()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭【解析】 ⑴原式10352537621⎛⎫=-⨯⨯-= ⎪⎝⎭;⑵原式=511011210356⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【巩固】 (2级)⑴231(4)()324+÷⨯÷-; ⑵71()2(3)93-÷⨯+;⑶11111()()234560-+-÷-; ⑷44192()77÷-;⑸19(7)128(7)33(7)÷--÷-+÷-; ⑹5315()( 1.25)(3) 1.4()24423--÷÷-⨯-÷⨯-.【解析】 在进行有理数混合运算时,常常将小数化为假分数方便计算.⑴36-;⑵1-;⑶13-;⑷337-;⑸6107;⑹2527-.【例21】 (2级)如果0acb>,0bc <,且()0a b c ->,试确定a 、b 、c 的符号.【解析】 0bc <说明b 、c 异号,那么0c b <;又因为0acb>,所以0a <;因为()0a b c ->,所以0b c -<,进而得b c <,且0bc <,所以0b <,0c >.【巩固】 (2级)如果0a b<,0bc <,试确定ac 的符号.【解析】 0a b<说明a 、b 异号;0bc <说明b 、c 异号,所以a 、c 同号,所以ac 的符号为正.【例22】 (6级)(第15届希望杯邀请赛试题)观察下面的式子:224224;31313434;222241414545;3333515156564444⨯=+=⨯=+=⨯=+=⨯=+=,,,,⑴小明归纳了上面各式得出一个猜想:两个有理数的积等于这两个有理数的和,小明的猜想正确吗?为什么?⑵请你观察上面各式的结构特点,归纳出一个猜想,并证明你的猜想【解析】 ⑴小明的猜想显然是不正确的,反例:如1313⨯≠+⑵将第一组等式变形为22242411⨯=+=,,得出如下猜想:“若n 是正整数,则()()1111n n n n n n ++⨯+=++”,证明:左边()()11111n n n n n +⎛⎫=++=++= ⎪⎝⎭右边板块三、有理数常考经典计算题型一、应用定律 【例23】 (4级)(第五届“五羊杯”竞赛试题)计算: 131711010 5.2149 5.2 5.43 4.61255102⎡⎤⎛⎫-÷⨯-⨯+⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦【解析】 原式[]1010.5 5.214.69.2 5.2 5.4 3.7 4.6 1.5=-÷⨯-⨯-⨯+⨯ []1010.5 5.2 5.4 5.4 3.7 4.6 1.5=-÷⨯-⨯+⨯ []1010.5 5.4 1.5 4.6 1.5=-÷⨯+⨯ []1010.5 1.510=-÷⨯ 100.79.3=-=【例24】 (2级)计算:567678433322678433322567⨯+⨯+⨯+⨯ 【解析】 原式567678678433322567322433=⨯+⨯+⨯+⨯ ()()678567433322567433=⨯++⨯+ ()1000678322=⨯+ 1000000=二、应用公式 【例25】 (2级)计算:1039710009⨯⨯ 【解析】 原式()()()10031003100009=+-+ ()()2210091009=-+ 421009=- 99999919=【例26】 (6级)计算:()()()()()()2481632212121212121++++++【解析】 原式()()()()()()()248163221212121212121=-++++++ ()()()()()()22481632212121212121=-+++++...=()()32322121=-+6421=-三、整体代换 【例27】 (6级)计算:1111111111...1...1 (23)20042200322004232003⎛⎫⎛⎫⎛⎫⎛⎫++++++-++++++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭【解析】 分析:仔细观察发现,四个括号里有一个公共的部分:111 (232003)+++,不妨以b 代替这个和,且设12004a =,这样就可以简化过程设1111...2320032004b a =+++=, 原式()()()11b a b b a b =++-++()22b b a ab b b ab =+++-++a =所以原式12004=四、裂项【例28】 (6级)计算:11111111()1288244880120168224288+++++++⨯= .【解析】 原式11111282446681618⎛⎫=++++⨯ ⎪⨯⨯⨯⨯⎝⎭L1111111128224461618⎛⎫=⨯-+-++-⨯ ⎪⎝⎭L 1164218⎛⎫=-⨯ ⎪⎝⎭4289=【例29】 (4级)(2008年第十三届“华杯赛”决赛集训题)已知2(1)|2|0a ab -+-=,试求111(1)(1)(2)(2)ab a b a b +++++++L 1(2004)(2004)a b +++L 的值. 【解析】 ∵2(1)|2|0a ab -+-=,且2(1)0a -≥,20ab -≥.∴1020a ab -=⎧⎨-=⎩解得1a =,2b =.∴ 原式111112233420052006=+⨯++⨯⨯⨯⨯L 111111112233420052006=-+-+-+-L 12005120062006=-=.五、分离法【例30】 (6级)计算:133121583132642586538-+---+【解析】 原式()111323583132642635588⎛⎫=-+---+----++ ⎪⎝⎭606=+=练习 1. (2级)计算下列各题⑴23132[(12)()]273424273---+--+⑵212(738)(78.36)(53)(13.64)(43)2323+-+--+--- ⑶11110()()()()3462-----+--⑷9.3712.84 6.24 3.12--+-⑸18961713142114735++--- ⑹112.75(3)(0.5)(7)42---+-+⑺1111|||0|||()||2394---+-----⑻11121717142412318-+--课后练习⑼11211 4.5352553-+-+- ⑽1223|()()||()|5532--+----+【解析】 ⑴12-;⑵743;⑶1112;⑷19.09-;⑸8315-;⑹2-;⑺1136-;⑻172218-;⑼11515-;⑽23230-练习 2. (8级)(第14届希望杯)有一串数:2003-,1999-,1995-,1991-,…,按一定的规律排列,那么这串数中前 个数的和最小. 【解析】 这个数列构成了公差为4的等差数列,故其第n 项为20034(1)42007n a n n =-+-=-,420070n -≤,35014n ≤,即5010a <,5020a >,故前501个和最小.练习 3. (2级)超市新进了10箱橙子,每箱标准重量为50kg ,到货后超市复秤结果如下(超市标准重量的千克数记为正数,不足的千克数记为负数):+0.5,+0.3,-0.9,+0.1,+0.4,-0.2,-0.7,+0.8, +0.3,+0.1.那么超市购进的橙子共多少千克? 【解析】 (+0.5)+(+0.3)+(-0.9)+(+0.1)+(+0.4)+(-0.2)+(-0.7)+(+0.8)+(+0.3)+(+0.1)=(0.5+0.3+0.1-0.9)+(0.8+0.1-0.2-0.7)+(0.4+0.3)=0+0+0.7=0.7(kg )50×10+0.7=500.7(kg ),即:橙子共有500.7千克.练习 4. (6级)计算:1111111111(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)246810357911+⨯+⨯+⨯+⨯+⨯-⨯-⨯-⨯-⨯-【解析】 原式3579112468101246810357911=-⨯⨯⨯⨯⨯⨯⨯⨯⨯=-练习 5. (2级)a 、b 、c 为非零有理数,它们的积必为正数的是( )A .0a >,b 、c 同号B .0b >,a 、c 异号C .0c >,a 、b 异号D .a 、b 、c 同号 【解析】 A .练习 6. (2级)用“>”或“<”填空⑴如果0ab c >,0ac <那么b 0 ; ⑵如果0a b>,0bc <那么ac 0 .【解析】 <;<.练习 7. (4级)『第18届希望杯』有理数a ,b ,c 在数轴上对应的点的位置如图所示,给出下面四个命题:①0abc <; ②||||||a b b c a c -+-=-;③()()()0a b b c c a --->; ④1a bc >-. 其中正确的命题有( )A .4个B .3个C .2个D . 1个【解析】 选择A .练习 8. (4级)『第14届希望杯』a 为有理数,下列说法中正确的是( )A .21()2003a +为正数B .21()2003a --为负数C .21()2003a +为正数D .212003a +为正数 (2)在2007(1)-,3|1|-,18(1)--,18这四个数中,负数共有( ) A . 1个 B . 2个 C . 3个 D . 4个【解析】 ⑴选D .对于任意实数a ,都有20a ≥,所以总有212003a +为正数. ⑵选B练习 9. (4级)已知a 、b 互为相反数,c 、d 互为负倒数,x 的绝对值等于它相反数的2倍.求3x abcdx a bcd ++- 的值. 【解析】 根据题意可知0a b +=,1cd =-,2x x =-,0x =,故3x abcdx a bcd ++-30x abx =-=。
第二章-有理数
第2章有理数本章导读第2章 有理数2.1 正数与负数预习书本P12-P13,完成下面问题:1、正数都是比 大的数,负数都是比 小的数, 既不是正数,也不是负数. 2.___________、___________、_______统称为整数;_________、_________统称为分数。
3、你能举出一些具有相反意义量的例子吗?如何来表示这些具有相反意义的量呢? 1. 指出下列各数中的正数、负数: +7;-9;-13;-4.5;998;910;0.2. 填一填(1)小明在某路口,规定向东为正,向西为负.如果他向东走了100米,则可表示为_______米,如果他向西走了150米,则可表示为_______米,如果他走了-50米,则表示他向_______走了_____米,如果他走了+200米,则表示他向______走了_____米. (2)运进了-72 吨货物的意思是________________.3. 把下列各数分别填入相应的集合中:-3,65,-7.3,3,0,-54, -2, 9.3 正整数集合{ …}负整数集合{ …} 正分数集合{ …} 负分数集合{ …}拓展提升1.在小学我们学习了偶数0 , 2 , 4 , 6 , 8,……,以及奇数1 , 3 ,5 , 7 , 9,……,现在我们学过了负数后,我们同时也知道了负偶数与负奇数,如负偶数-2,-4,-6,-8,……,负奇数-1,-3,-5,-7,……,下面我们将这此负偶数与负奇数排列如下:在上述的这些数中,观察它们的规律,回答数-101将在哪一列?达标测试1.(2011南通)如果60m表示“向北走60m”,那么“向南走40m”可以表示为()A.-20m B.-40m C.20m D.40m2.(2010连云港)下面四个数中比-2小的数是()A.1 B.0 C.-1 D.-33.(2011宿迁)下列各数中,比0小的数是()A.-1 B.1 C.12D.π4.数学测验班级平均分82分,小明85分,高出平均分3分记作+3,小强78分,记作___________.5.中午12时气温为5℃,傍晚6时气温比中午12时降低了4℃,此时气温是_______℃;凌晨4时比中午12时气温降低了7℃,这时气温是______℃.6.同学聚会,约定在中午12点到会,早到的时间记为正,迟到的时间记为负,结果最早到的同学记为+3小时,最迟到的同学记为-1.5小时,你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早到多少小时?2.2 有理数与无理数学习目标问题导学预习书本P15-P16,完成下面问题:1、把能够写成________________________________的数叫做有理数. 2. ________________________________叫做无理数. 3.下列各数722,0.3333…,-6,9.3,π,0.1, 010010001.0-,其中无理数有( ) A .2个 B .3个 C .4个 D .5个 4.有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数 典例训练1.把下列各数分别填入相应的集合中:-3,65,-7.3,3,0,-54,π,2.12112…, -2, 9.3,..0.12正整数集合{ …} 负整数集合{ …} 正分数集合{ …} 负分数集合{ …} 非负数集合{ …} 有理数集合{ …}学习目标了解 理解 掌握 应用 1.掌握有理数和无理数的概念 √ 2.会对有理数进行分类 √ 3.了解分类思想√1. 如图,将两个边长为1的小正方形,沿图中斜线剪开,重新拼成一个大正方形,它的面积为2,如果设大正方形边长为a ,请问,a 是有理数吗?1.判断题:(1)整数就是正整数和负整数 ( ) (2)零是整数但不是正数 ( )(3)正数、负数统称为有理数 ( ) (4)非负有理数是指正有理数和0 ( )2.(2010温州)在下列各数中,0,π,12-,0.3中,最小的是 ( ) A .0 B .π C .12-D .0.3 3.下列说法正确的是 ( )A 、一个有理数不是整数就是分数B 、正整数和负整数统称为整数C 、正整数、负整数、正分数、负分数统称为有理数D 、0不是有理数 4.将下列各数分别填入相应的集合中:9417,9,,,,31.25, 2.626626662, 3.5,1,010272π---+--正数集合:{ … } 负数集合:{ … } 整数集合:{ … }111111无理数集合{ … }2.3 数轴(第一课时)学习目标问题导学1.下列说法正确的是()A、一个有理数不是整数就是分数B、正整数和负整数统称为整数C、正整数、负整数、正分数、负分数统称为有理数D、0不是有理数2.将下列各数分别填入相应的集合中:211,2004,5.3,25.31,274,301,109,9,7-+---正数集合:{…}负数集合:{…}整数集合:{…}分数集合:{…}3、规定了、和的直线叫做数轴。
第二章 有理数的运算(教案)人教版(2024)数学七年级上册
第二章有理数的运算2.1有理数的加法与减法2.1.1有理数的加法(2课时)第1课时有理数的加法1.了解有理数加法的意义,理解有理数加法法则的合理性.2.能运用该法则准确进行有理数的加法运算.3.经历探索有理数加法法则的过程,理解并掌握有理数加法的法则.重点了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点有理数加法中的异号两数如何进行加法运算.一、导入新课师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?二、探究新知一个小球作左右方向的运动,我们规定向左为负,向右为正.师:根据题意列出对应的式子:(1)如果小球先向右运动3米,再向右运动5米,那么两次运动后总的运动结果是什么?(2)如果小球先向左运动5米,再向左运动3米,那么两次运动后总的结果是什么?加数加数和(+3)+(+5)=+8,(-5)+(-3)=-8)师:你从上面的两个算式中发现了什么?归纳:同号两数相加,取相同的符号,并把绝对值相加.(3)如果小球先向右运动5米,再向左运动3米,那么两次运动后总的结果是什么?(4)如果小球先向右运动3米,又向左运动5米,两次运动后小球从起点向__左__运动了__2__米.加数加数和(+5)+(-3)=+2,(+3)+(-5)=-2)师:你从上面的两个算式中发现了什么?归纳:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(5)小球先向右运动5米,再向左运动5米,小球从起点向__左(右)__运动了__0__米.师:观察,你又有什么发现?归纳:互为相反数的两个数相加得0.总结归纳:有理数加法的法则是:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.三、课堂练习试一试身手:口答下列算式的结果:(1)(+4)+(+3);(2)(-6)+(-5);(3)(+3)+(-7);(4)(+9)+(-4);(5)(+8)+(-8);(6)(-3)+0;(7)0+(+2);(8)0+0.【答案】(1)7(2)-11(3)-4(4)5(5)0(6)-3(7)2(8)0学生逐题口答后,师生共同得出.方法总结:1.先判断类型(同号、异号等);2.再确定和的符号;3.最后进行绝对值的加减运算.教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)=-0.8.教师点评法则运用过程中的注意点:先定符号,再算绝对值.下面请同学们计算下列各题以及教材第28页练习.(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.四、课堂小结五、课后作业教材P28练习第1,2,3,4题.本节课主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.第2课时有理数加法的运算律及运用1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟悉地进行加法运算.重点有理数加法运算律的运用.难点能运用有理数加法运算律来简化加法运算.一、导入新课问题1:在小学中我们学过哪些加法的运算律?加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c).问题2:加法的运算律是不是也可以扩充到有理数范围?二、探究新知探究活动(一)1.计算(口算):(1)39+15=__54__,15+39=__54__;(2)(-98)+(-12)=__-110__,(-12)+(-98)=__-110__;(3)(-24)+(+24)=__0__,(+24)+(-24)=__0__;(4)(-23)+(+17)=__-6__,(+17)+(-23)=__-6__.问题3:通过以上的运算结果,你发现了什么?归纳加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变,加法交换律:a+b=b+a.探究活动(二)2.填空:(1)(-15)+(+26)+(+9)=[__(-15)__+__(+26)__]+(+9)=(-15)+[__(+26)__+__(+9)__]=__20__.(2)(-2)+(-12)+(+12)=[__(-2)__+__(-12)__]+(+12)=(-2)+[__(-12)__+__(+12)__]问题4:请你们猜想一下结合律在有理数加法中仍然成立么?使用这些运算律有什么好处呢?请小组开始讨论.归纳加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或先把后两个数相加,和不变.加法的结合律:(a +b )+c =a +(b +c ).师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.例1 计算:16+(-25)+24+(-35). 【答案】-20 例2 灵活运用运用加法交换律和结合律做简便运算 (1)(-25)+(+56)+(-39)+(+28); (2)(-1.9)+3.6+(-10.1)+1.4;(3)13 +(-34 )+(-13 )+(-14 )+1819 ; (4)(-337 )+12.5+(-1647 )+(-2.5).【答案】(1)20 (2)-7 (3)-119(4)-10问题:回顾以上各题的解答,思考:将怎样的加数结合在一起,可使运算简便? 总结归纳:1.一般地,总是先把正数或负数分别结合在一起相加; 2.有相反数的可先把相反数相加,能凑整的可先凑整; 3.有分母相同的,可先把分母相同的数结合相加. 师投影展示教材例3.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.三、课堂练习 1.计算:(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4).2.上周五股民新买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元)【答案】1.(1)-10 (2)-3 2.34元 四、课堂小结1.谈谈你本节课的收获.2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?五、课后作业教材P30练习第1,2,3题.本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的运算律在有理数范围内是否适用?”接着让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.2.1.2有理数的减法(2课时)第1课时有理数的减法1.掌握有理数的减法法则;2.能运用有理数的减法法则进行运算;3.渗透转化思想,培养运算能力.重点有理数的减法法则.难点有理数减法法则的推导.一、导入新课师:出示温度计,提出问题:1.你能从温度计上看出5℃比-5℃高多少度吗?2.你能列式求这个结果吗?学生观察后先回答问题1得出结果,然后再列出算式5-(-5)=10.二、探究新知1.探究有理数的减法法则师:这里的计算用到了有理数的减法,通过观察我们知道了5-(-5)=10,而我们还知道5+(+5)=10.即5-(-5)=5+(+5).观察这个式子,你有什么发现?学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.计算:9-8,9+(-8).15-7,15+(-7).观察比较计算的结果,你有什么发现?师生共同归纳有理数的减法法则:减去一个数,等于加上这个数的相反数用符号表示:a-b=a+(-b).注意:减法在运算时有2个要素要发生变化: ①减号变加号;②减数变成它的相反数. 三、课堂练习师:出示教材P32例4. (1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8); (4)(-312 )-514.【答案】(1)2 (2)-7 (3)12 (4)-834计算(口答): (1)6-9;(2)(+4)-(-7); (3)(-5)-(-8); (4)(-2.5)-5.9; (5)1.9-(-0.6); (6)-25 -(45 );(7)0-(-5); (8)0-5.【答案】(1)-3 (2)11 (3)3 (4)-8.4 (5)2.5 (6)-65(7)5 (8)-5师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.练习:教材32页练习. 四、课堂小结小结:谈谈本节课的收获. 思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?五、课后作业教材P32练习第1,2题.本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索.法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成,减法法则的归纳得出是本节课的难点,在这个过程中,教师适时、适度的引导,也体现教师是学生学习的引导者和伙伴的新型师生关系.第2课时 有理数的加减混合运算1.熟练掌握有理数的加法和减法运算法则;2.能进行有理数的加减混合运算,培养学生的计算能力.重点1.有理数的加减混合运算;2.将加减法统一成加法的省略括号的形式并读出来.难点1.有理数的加减混合运算;2.将加减法改写成省略括号和加号的形式并读出来.一、导入新课一口深3.5米的深井,一只青蛙从井底沿井壁往上爬,第一次爬了0.7米又下滑了0.1米,第二次往上爬了0.42米又下滑了0.15米,第三次往上爬了1.25米又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1米,第五次往上爬了0.65米.问题:小青蛙爬出井了吗?学生回答.二、探究新知师:投影展示教材例5.计算(-20)+(+3)-(-5)-(+7).学生完成.说明:学生可以按照从左到右的运算顺序去进行计算.在这一过程中本身也需要将减法统一成加法,可以先让学生感受这一方法.师:提出新的问题,可否将其先统一成加法,然后再进行运算?学生讨论后回答.师:让学生尝试新的思路,然后与刚才的方法相比较.师:进一步提出,在刚才的过程中你是否注意到了加法运算律的应用.让学生再重新尝试做一做.之后师生共同归纳方法:有理数加减法的混合运算可以统一成加法运算.探索统一成加法以后的省略括号的书写形式及读法.师:出示例子(-20)+(+3)+(+5)+(-7)并指出,这个式子是否可看作-20,3,5,-7这四个数的和,为书写简便,可以写成省略括号和加号的形式:-20+3+5-7.可以读作(1)负20,正3,正5,负7的和.(2)负20加3加5减7.注意让学生理解这两种读法,尤其是第一种,学生可能不习惯,但在后面讲到多项式时还会涉及类似的问题.例6计算:14-25+12-17.解:14-25+12-17=14+12-25-17=26-42=-16.探究:在数轴上,点A,B分别表示数a,b.对于下列各组数a=2,b=6;a=0,b=6;a=2:b=-6;a=-2,b=-6.(1)观察点A,B在数轴上的位置,你能得出它们之间的距离吗?(2)利用有理数的运算,你能用含有a,b的算式表示上述各组点A,B之间的距离吗?一般地,你能发现点A,B之间的距离与数a,b之间的关系吗?三、课堂小结小结:谈谈你这节课的收获.四、课后作业教材P34练习第1,2题.在学生的合作交流、探求新知过程中,首先让学生考虑运算顺序的问题,这是所有混合运算必需首先解决好的问题,然后再从引例的角度遵循减法法则,让学生尝试将加减混合运算统一为加法运算;通过运算的比较,让学生感受到其中的必要性,而在整个探索活动中都充满着学生与学生之间的交流合作,给学生以充分发表意见的机会;让学生在自己与同伴的合作中去发现与探究.同时也注意引导学生的思维方向,渗透了转化的思想.2.2有理数的乘法与除法2.2.1有理数的乘法(2课时)第1课时有理数的乘法1.掌握有理数的乘法法则;2.能利用乘法法则正确进行有理数乘法运算.重点运用有理数的乘法法则正确进行计算.难点有理数乘法法则的探索过程及对法则的理解.一、导入新课师:由于长期干旱,水库放水抗旱,每天水位下降2米,已经放了3天,现在水位20米,问放水抗旱前水库水位多少米?生:26米师:能写出算式吗?生:……师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题.二、探究新知1.(1)教师出示以下问题,学生以组为单位探索.a.观察下面的乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.规律:随着后一乘数逐次递减1,__积逐次递减3__.b.要使这个规律在引入负数后仍然成立,那么应有:3×(-1)=-3,3×(-2)=__-6__,3×(-3)=__-9__.c.观察下面的算式,你又能发现什么规律?3×3=9,2×3=6,1×3=3,0×3=0.规律:__左右两个因数相乘,其中一个因数为3,若另一个因数逐次减少1,乘积也相应减少3__.d.要使c中的规律在引入负数后仍成立,那么应有:(-1)×3=__-3__,(-2)×3=__-6__,(-3)×3=__-9__.(2)以小组为单位对以上问题从符号和绝对值两个角度进行观察总结归纳,得出正数乘正数,正数乘负数,负数乘正数的规律.(3)利用(2)中的结论计算下面的算式,你又发现了什么规律?(-3)×3=__-9__,(-3)×2=__-6__,(-3)×1=__-3__,(-3)×0=__0__.规律:__随着后一乘数逐次减1,积逐次加3__.(4)按照(3)中的规律,填空,并总结归纳.(-3)×(-1)=__3__,(-3)×(-2)=__6__,(-3)×(-3)=__9__.结论:__负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积__.2.师生共同归纳总结有理数的乘法法则,并用文字叙述.(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同0相乘,都得0.讨论:(1)若a<0,b>0,则ab<0;(2)若a<0,b<0,则ab>0;(3)若ab>0,则a,b应满足什么条件?(4)若ab<0,则a,b应满足什么条件?3.运用法则计算,巩固法则.教师出示教材例1,师生共同完成,学生口述,教师板书,要求学生能说出每一步依据.教师出示例2,引导学生完成.4.倒数计算并观察结果有何特点?(1)12×2; (2)(-0.25)×(-4). 【答案】(1)1 (2)1要点:有理数中,乘积是1的两个数互为倒数. 思考:数a (a ≠0)的倒数是什么?(a ≠0时,a 的倒数是1a)巩固:口答,说出下列各数的倒数:1,-1,13 ,-13 ,5,-5,0.75,-213 .例2 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1 km ,气温的变化量为-6℃,攀登3 km 后,气温有什么变化?解:(-6)×3=-18. 答:气温下降18℃. 三、课堂练习 计算: (1)4×(-9); (2)-11×5; (3)(-0.3)×(-0.6);(4)(-12 )×23 ;(5)-98×0; (6)(-0.2)×(-13).【答案】(1)-36 (2)-55 (3)0.18 (4)-13 (5)0 (6)115四、课堂小结1.有理数乘法法则;2.有理数乘法的求解步骤; 3.乘积是1的两个数互为倒数. 五、课后作业教材P40练习第1,2,3题.本节课在引入时采用形象生动的多媒体课件,先激起学生的兴趣,使学生能在兴趣的指引下逐步开展探究.在引例中把表示具有相反意义量的正负数在实际问题中求积的问题,与小学算术乘法相结合,通过直观演示与多媒体结合,采用小组讨论合作学习的方式得出法则.第2课时 有理数乘法的运算律及多个有理数相乘1.正确理解乘法交换律、结合律和分配律,能用字母表示运算律; 2.能运用运算律较熟练地进行乘法运算; 3.掌握多个有理数相乘的运算方法.重点1.掌握多个有理数相乘的计算方法以及乘法运算律,能运用乘法运算律进行简便运算.2.运用有理数的乘法解决问题.难点逆用乘法分配律进行简便运算.一、导入新课1.有理数的乘法法则是什么?2.小学时候大家学过乘法的哪些运算律?二、探究新知1.提出问题,激发学生探索的欲望和学习积极性.计算(-5)×89.2×(-2)的过程能否使用简便方法,这样做有没有依据?小学里数的运算律在有理数中是否适用?2.导入运算律:(1)通过计算①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5.(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等.(3)用公式的形式表示为:ab=ba.这里的a,b表示有理数,讲解“a×b→a·b→ab”的过程.(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论,归纳出乘法结合律.用文字语言归纳:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.用公式的形式表示为:(ab)c=a(bc).(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式.(6)分组计算、比较,5×[3+(-7)])与5×3+5×(-7)的结果,讨论归纳出分配律.用文字语言归纳:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用公式的形式表示为:a(b+c)=ab+ac.(7)一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.a(b+c+d)=ab+ac+ad.3.几个不为0的数相乘:确定下列积的符号,试分析积的符号与各因数的符号之间有什么规律?2×3×(-0.5)×(-7),2×(-2)×(-0.5)×(-7),(-2)×(-3)×(-0.5)×(-7).当负因数个数为奇数时,积为__负__;当负因数个数为偶数时,积为__正__.结论1:几个不等于0的数相乘,积的符号由__负因数的个数__决定;结论2:有一个乘数为0,则积为__0__;三、课堂练习下列各式中用了哪条运算律?如何用字母表示?1.(-4)×8=8×(-4).乘法交换律:a×b=b×a.2.[(-8)+5]+(-4)=(-8)+[5+(-4)]. 加法结合律:(a +b )+c =a +(b +c ). 例3 用两种方法计算 (14 +16 -12)×12. 比较上面两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种解法运算量小?计算:-47 ×3.59-47 ×2.41+47×(-3).师:这道题直接进行计算显然比较麻烦,同学们想一想,有没有简便方法呢?生:同学相互讨论完成. 四、课堂小结小结:这节课你有什么收获? 1.乘法的运算律;2.多个有理数相乘积的符号规律. 五、课后作业教材P43练习第1,2题.新课引入设计,期望使学生始终处于积极的思维状态,学生利用已有的知识与经验引出当前要学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题环境中.在探求新知的过程中,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情,借助于多媒体手段,生动直观地分析问题.2.2.2 有理数的除法(2课时)第1课时 有理数的除法1.了解有理数除法的定义;2.经历有理数除法法则的探索过程,会进行有理数的除法运算; 3.会化简分数.重点正确运用除法法则进行有理数的除法运算. 难点怎样根据不同的情况来选取适当的方法求商.一、导入新课1.有理数的乘法法则;2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律; 3.倒数的意义. 学生回答以上问题. 二、探究新知(一)有理数除法法则的推导师提出问题:根据“除法是乘法的逆运算”填空: (-4)×(-2)=8 → 8÷(-4)=____; 6×(-6)=-36 → -36÷6=____; (-35 )×(45 )=-1225 → -1225 ÷(-35)=____; -8×9=-72 → -72÷9=____.问题:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗? 与小学学过的除法法则一样,对于有理数除法,得到有理数除法法则(一): 除以一个不等于0的数,等于乘这个数的倒数. 用字母表示为a ÷b =a ·1b(b ≠0).师指出,有理数除法法则(二):两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于0的数,都得0.教师点评:法则(1)所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);法则(2)揭示有理数除法的运算步骤:第一步,确定商的符号;第二步,求出商的绝对值.(二)有理数除法法则的运用 教师出示教材例4. 计算: (1)(-36)÷9;(2)(-1225 )÷(-35). 师生共同完成,教师注意强调法则:两数相除,先确定商的符号,再确定商的绝对值. 教师出示教材例5. 化简下列分数: (1)-123 ;(2)-45-12. 教师点拨:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.三、课堂练习 计算: (1)24÷(-6);(2)(-4)÷12 ;(3)0÷34 ;(4)(-78 )÷(-47).【答案】(1)-4 (2)-8 (3)0 (4)4932教师分析,学生口述完成. 四、课堂小结小结:谈谈本节课的收获.(有理数的除法法则) 五、课后作业教材P45练习第1,2题,P48习题第6,8题.学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象,并应该讲清楚除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则(二)计算;2.在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法.然后统一用乘法的运算律解决问题.第2课时 有理数的加减乘除混合运算1.掌握有理数加、减、乘、除运算的法则,运算顺序,能够熟练运算; 2.能运用法则解决实际问题.重点有理数四则混合运算的方法与技巧 难点如何按有理数的运算顺序,正确而合理地进行计算.一、导入新课问题1:小学的四则混合运算的顺序是怎样的? 问题2:我们目前都学习了哪些运算? 二、探究新知教师投影出示教材P45页例6 (1)(-12557 )÷(-5);(2)-2.5÷58 ×(-14).你能尝试解决这两个问题吗?学生尝试解决,然后交流,师生再共同分析.教师提出问题,进行有理数的乘除混合运算,运算顺序是怎样的?学生讨论后回答:乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)问题1:下列式子含有哪几种运算?先算什么,后算什么?归纳:有理数混合运算的顺序:先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的运算.三、课堂练习教师投影展示教材P46例7.教师先示范(1),然后学生口述,教师板书师生共同完成(2).过程中注意联系讲解法则的运用.教师出示例8.例8某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?提示,可记盈利为正数,亏损为负数.本例题教师可让学生上黑板板演,以便发现学生的问题,及时讲解和纠正.教师布置学生练习:教材47页练习题.学生独立完成,然后同学交流,教师安排学生板演.布置自学任务,使用计算器进行计算,教师布置学生互相交流,然后完成教材47页练习3.四、课堂小结小结:说说你本节课的收获.五、课后作业教材P47习题2.2第4,9,10题.在练习过程中,学生所表现出来的问题比较多,一是运算顺序出现问题;二是符号出现问题,尤其是两个负数相加经常和乘法中的负负得正混淆,异号两数相加也往往弄错符号.究其原因还是因为没有完全熟练掌握,形成能力.因此,在教给学生解题方法的同时,还要着重强调易错点,不断加强训练,才能确保计算准确无误.2.3有理数的乘方2.3.1乘方(2课时)第1课时有理数的乘方1.理解有理数乘方的意义;2.能正确进行有理数乘方运算;3.让学生经历探索乘方的有关规律的过程.重点理解有理数乘方的意义.难点理解有理数乘方的意义,熟练进行有理数的乘方运算.一、导入新课师:我们知道,边长为2 cm的正方形的面积为2×2=4(cm2);棱长为2 cm的正方体的体积为2×2×2=8(cm3).2×2,2×2×2都是相同因数的乘法.生思考回答,为了简便,我们可以将它们记作什么,读作什么?同样:(-2)×(-2)×(-2)×(-2)记作什么?读作什么?(-25)×(-25)×(-25)×(-25)×(-25)记作什么?读作什么?a·a·a·a·a·a可以记作什么?读作什么?学生讨论交流后教师进一步提出:师:怎么表示a·a·…·a,\s\do4(几个a)) (n为正整数)呢?生归纳总结:可以记作a n,读作a的n次方.师:对于a n中的a,不仅可以取正数,还可以取0和负数,也就是说,a可以取任意有理数,这就是我们今天研究的课题:有理数的乘方(板书).二、探索新知师:求n个相同因数的积的运算,叫作乘方.乘方的结果叫作幂,相同的因数叫作底数,相同的因数的个数叫作指数.一般地,在a n中,a取任意有理数,n取正整数.注意:乘方是一种运算,幂是乘方运算的结果.a n看做是a的n次方的结果时,也可读作a的n次幂,一个数可以看做是它本身的1次方.师:出示教材例1.提出问题:怎样进行乘方的运算,你能根据乘方的意义进行上面这个例题的运算吗?学生进行交流讨论,尝试解决.然后师生共同完成例1.师:进一步提出问题:观察以上运算的结果,你发现负数的幂的正负有什么规律?。
北师大版七年级数学上册教学设计《第二章有理数及其运算2.1有理数》
北师大版七年级数学上册教学设计《第二章有理数及其运算2.1有理数》一. 教材分析《北师大版七年级数学上册》第二章“有理数及其运算”是整个初中数学的基础,而2.1节“有理数”更是这一基础中的基础。
本节内容主要介绍了有理数的定义、分类和基本性质,为后续的数的运算、方程的求解等知识点奠定了基础。
本节课的内容对于学生来说,不仅需要理解和掌握有理数的概念,还需要培养他们的逻辑思维能力和数学语言表达能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数的概念有一定的了解。
但是,对于有理数的定义、分类和性质,他们可能还比较陌生。
因此,在教学过程中,需要从学生的实际出发,循序渐进地引导他们理解和掌握有理数的概念,并能够运用有理数解决实际问题。
三. 教学目标1.理解有理数的定义,掌握有理数的分类和基本性质。
2.能够运用有理数解决实际问题,培养学生的数学应用能力。
3.培养学生逻辑思维能力和数学语言表达能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的基本性质。
3.有理数的运算。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究有理数的定义和性质。
2.利用实例和实际问题,让学生感受有理数在生活中的应用。
3.采用小组合作学习的方式,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备一些实际问题,用于引导学生运用有理数解决。
七. 教学过程1.导入(5分钟)利用问题驱动的方式,引导学生回顾实数的概念,进而引出有理数的定义。
例如:“你们知道实数包括哪些类型吗?那么有理数是实数的一部分,它又是怎样的数呢?”2.呈现(15分钟)通过讲解和示例,呈现有理数的定义、分类和基本性质。
在此过程中,引导学生积极参与,主动提问,以理解有理数的概念。
3.操练(15分钟)让学生通过解决实际问题,运用有理数进行计算。
例如:“小明有2.5个苹果,小华给了小明1个苹果,请问小明现在有几个苹果?”4.巩固(10分钟)通过小组合作学习,让学生进一步巩固有理数的定义和性质。
最新2024人教版七年级数学上册2.1.2 第1课时 有理数的减法--教案
2.1.2 有理数的减法第 1 课时有理数的减法主要师生活动一、新课导入新疆的日温差很大,正所谓,早穿棉袄午穿纱,围着火炉吃西瓜。
你能帮忙计算一下温差是多少吗?师生活动:教师引入情境并提问,学生思考,教师引出后续探究。
二、探究新知知识点:有理数的减法探究一:借助温度计求出温差,思考有理数减法的计算过程:师生活动:教师通过课件展示温度计图片并列式,提示学生回忆有理数的加法法则,引导学生思考将-(-12) 看作整体,尝试把有理数的减法转化为有理数的加法,学生通过观察温度计和加法计算得出结果.合作探究:师生活动:教师出示温度计图片和题目,学生独立思考,然后请学生代表回答,教师对学生的回答予以恰当的评价与引导,得出正确答案.动手实践:借助上面的方法,计算下列算式,从中你有哪些发现?师生活动:学生借助上面的方法先独立思考与完成题目,再小组讨论,学生充分交流见解,然后由小组代表发言,教师适时评价与引导,帮助学生发现左右两边式子的联系与区别,最终得出方法总结.方法总结:你能用精炼语言表述这一结论吗? 有理数的减法可以转化为加法来进行. 有理数的减法法则:减去一个数,等于加上这个数的相反数.师生活动:教师提问:你能用精炼语言表述这一结论吗?学生积极发言,教师适时评价并且引导学生得出答案,并共同得出有理数的减法法则.典例精析 例1 计算:(1)(-3)―(―5);(2)0-7; (3) 2-5 (4)7.2―(―4.8);(5)(-321)―541.三、当堂练习典例精析例2 世界上最高的山峰是珠穆朗玛峰,其海拔高度是8848.86 米,吐鲁番盆地艾丁湖面的海拔高度是-154.31 米,两处高度相差多少米?师生活动:教师让学生分组进行计算,然后请小组代表汇报结果。
学生计算得出8848.868848.86-(-154.31)=8848.86 + 154.31 =9003.17 米。
教师对学生的计算结果进行点评和肯定,再次强调有理数减法法则的应用。
七年级数学上册 第2章 有理数 2.1 有理数 2.1.1 正数和负数教案1(新版)华东师大版-(新
1.1 正数和负数内容简介1.《正数和负数》是人教版义务教育教科书七年级数学第一章第一节.2.“正数与负数”是“有理数”一章的第一节课,引入负数是实际的需要,也是学好后续内容的需要.本节先回顾数的产生和发展,然后通过引言中温度、产量增长率、收支情况的实例,引出负数,进而给出正数与负数的描述性定义并进一步介绍正负数在实际生活中的应用.学情分析1.学生已经学过了正整数、正分数和零的知识,即正有理数及“0”的知识,还学过用字母表示数的知识,这些都是学习本节内容的基础.2.负数是一个比较抽象的概念,为了让学生能比较容易理解负数,要多采用从学生的生活实际出发,让学生理解由于知识面的不断扩大,引入负数的必要性.教学目标1.借助生活中的实例,感受引入负数的必要性,认识到数的产生和发展离不开生活和生产的需要.2.知道什么是正数和负数,并会用正、负数表示实际问题中的数量.3.理解数“0”表示的量的意义.4.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.5.通过本节课的学习,培养观察、想象、归纳与概括的能力.6.通过正负数的学习,渗透对立、统一的辩证思想.教学重点1.知道什么是正数和负数.2.理解数“0”表示的量的意义.教学难点理解负数、数“0”表示的量的意义.教学策略1 / 81.通过师生共同活动,创设问题情景,展示一些在实际生活中出现“负数”应用的图片,激发学生对新知识的兴趣,引入“负数”.2.通过学生主动学习和研讨,让学生自己完成对负数概念的引入.3.课前把学生分成几个学习小组,培养学生主动学习与合作学习的能力.教学资源1.教具:电脑、PPT课件(或相应图片)、投影仪.2.学具:地图册等.3.多媒体教室.教学时数2课时.第1课时教学内容1.1 正数和负数.教学目标1.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念.2.能区分两种相反意义的量,会用符号表示正数和负数.3.体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重点两种相反意义的量.教学难点正确区分两种相反意义的量.教学过程一、设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.2 / 8师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.76米,体重74.5千克,今年33岁.我们的班级是七(1)班,有50个同学,其中男同学有27个,占全班总人数的54%……问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看教材(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流.(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数.二、分析问题探究新知问题3:前面带有“-”(负)号的新数我们应怎样命名它呢?为什么要引入负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?建议教师以本章引言中的实例加以说明.这些问题都必须要求学生理解.教师可以用多媒体出示这些问题,然后师生交流.也可以让学生阅读本章引言中的实例,并思考上面的问题.明确:上述问题中,表示温度、产量增长率、收支情况时,既要用到数 3,%,3.5 等,还要用到数-3,%,,等,它们的实际意义分别是:零下3摄氏度,减少%,支出元,亏空元.我们知道,像3,%,这样大于0的数叫做正数.像-3,-%,-,-这样在正数前加符号“-”(负)号的数叫做负数.有时,为了明确表达意义,在正数前面也加上“+”(正)号.强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量.3 / 8三、举一反三思维拓展经过上面的讨论交流,学生对为什么要引入负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.问题4:请同学们举出用正数和负数表示的例子.问题5:你是怎样理解“正整数”、“负整数”、“正分数”和“负分数”的呢?请举例说明.四、实例演练深化认识教科书第3页例题.例(1)一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增长值.(2)某年,下列国家的商品进口总额比上年的变化情况是:美国减少%,德国增长%,法国减少%,英国减少%,意大利增长%,中国增长%.解:(1)这个月小明体重增长2 kg. 小华体重增长-1 kg,小强体重增长0 kg.(2)六个国家这一年商品进出口总额的增长率是:美国 %,德国 %,%,英国 %,%,中国 %.五、小结围绕下面两点,以师生共同交流的方式进行.1.由于实际问题中存在着相反意义的量,所以要引入负数,这样数的X围就扩大了.2.正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”.本课作业:教科书第5页习题第1,2,4,5题.4 / 8本课评析密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引入负数是数的X围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理.负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点.当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了.第2课时教学内容1.1 正数和负数.教学目标1.通过对数“0”的意义的探讨,进一步理解正数和负数的概念.2.利用正负数正确表示相反意义的量(规定了指定方向变化的量).3.进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣.教学重点5 / 8正确理解和表示向指定方向变化的量.教学难点深化对正负数概念的理解.教学过程一、知识回顾深化理解回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的X围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考.)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示.那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。
有理数计算专项训练
有理数计算专项训练一、有理数计算的重要性嘿,小伙伴们!有理数计算可太重要啦。
在咱们日常生活里,买东西算账啦,计算各种数据啦,都离不开有理数计算。
在数学的世界里,它就像是基石一样,如果有理数计算没学好,后面那些复杂的数学知识就像是盖在沙滩上的大楼,很容易就倒啦。
而且,有理数计算在很多学科里都有应用,比如物理计算速度、距离啥的,化学计算物质的量之类的。
二、有理数的基本概念复习1. 有理数是啥呢?有理数就是整数和分数的统称。
整数呢,像-3,-2,-1,0,1,2,3这些都是整数。
分数就比如1/2,3/4,-2/3这种。
2. 有理数的分类。
有理数可以分为正有理数、负有理数和零。
正有理数包括正整数和正分数,负有理数包括负整数和负分数。
三、有理数的四则运算1. 加法同号相加。
比如说2+3,这俩都是正有理数,那结果就是5。
再比如 -2+( -3),都是负有理数,结果就是 -5。
异号相加。
这就有点小复杂啦,比如说2+( -3),那就用绝对值大的数减去绝对值小的数,符号取绝对值大的数的符号,这里3的绝对值大,所以结果就是 -1。
2. 减法有理数的减法其实可以转化为加法来做。
比如 3 - 2就相当于3+( -2)=1,5-( -3)就相当于5+3 = 8。
3. 乘法同号相乘得正,异号相乘得负。
像2×3 = 6,( -2)×( -3)=6,2×( -3)= -6。
4. 除法也是同号得正,异号得负,并且除以一个数等于乘以这个数的倒数。
比如6÷2 = 3,6÷( -2)= -3,( -6)÷( -2)=3。
四、有理数计算专项训练试卷1. 试卷内容一、选择题(每题5分,共30分)(1)计算 -2+3的结果是()A. -1B. 1C. 5D. -5(2)下列运算正确的是()A. -2×3 = 6B. -2×( -3)= -6C. 2÷( -3)= -2/3D. -2÷3 = 2/3二、填空题(每题5分,共30分)(1)计算( -3)+( -4)=______。
2.1有理数
课题: 2.1有理数一、课标要求1.理解有理数意义。
2.本节课能应用正负数表示生活中具有相反意义的量,能对有理数进行分类。
十大核心概念在本节课中突出培养学生的数感,符号意识。
二、教材与学情分析(一)教材分析:学生在小学已经初步认识了负数,本节内容在此基础上,回顾小学所学,从用正负数可以表示具有相反意义的量的角度进一步认识负数,体会数系的扩张,归纳出有理数概念及分类方法。
本节内容是本章的出发点和基础,它对于后面知识的学习起着决定性的作用。
(二)学情分析:学生在小学已经学习过整数、分数、小数的概念及运算;对负数的概念有所了解,知道正数、负数和零的区别。
同时在以前的学习中,也具备了主动与他人合作学习、积极与他人交流的经验。
通过学习,学生能进一步认识负数,理解有理数的意义,会用正负数表示具有相反意义的量,会判断一个数是正数还是负数。
学生对按一定的标准对有理数进行分类有一定困难。
三、教学重、难点重点:认识负数,理解有理数意义,能应用正负数表示生活中具有相反意义的量,能对有理数进行分类。
难点:有理数的概念。
本课先让学生学会用正负数表示一些具有相反意义的量。
再尽可能让学生自己列举生活中正负数应用的实例,体会“基准”的不唯一,进而理解有理数的意义,建立新的数系。
四、教学目标1.在具体情景中,进一步认识负数,理解有理数的意义。
2.经历用正负数表示具有相反意义的量的过程,体会负数是实际生活的需要。
3.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类。
五、目标检测1.某仓库运出30吨货记为-30吨,则运进20吨货记为____吨.2.判断:(1)上升5米,记作+5米,则下降5米记作-5米.( )(2)一个有理数不是正数就是负数.( )(3)一个有理数不是整数就是分数.( )(4)负分数一定是负有理数.( )(5)整数都是正数.( ) 3.对下列各数分类:-2,5, ,0.63,0,7,-0.05,-6,9, , 其中正数有 ;负数有 ;正分数有 ;负分数有 ;自然数有 ;整数有 .六、教学过程(一)构建动场观察课件上的图片,体会数的产生和发展过程.13 5411.5思考:你能用小学学过的数能表示温度计上的数吗?设计意图:通过回顾小学里的知识,唤起学生对负数的记忆,为下面做好知识铺垫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1有理数学案
学习目标:
1、进一步理解正数与负数的概念,并能用正负数表示生活中具有相反意义的量。
2、能对有理数进行分类
一、旧知回顾:(回忆小学学过的正负数的特征)
正数的特征:正数比0 ;负数的特征:负数比0 ;0既不是 ,也不是 ;
二、自学新知:
1、用正负数表示生活中具有相反意义的量
自学指导:认真看课本P23页至24页例一内容,从生活中的实例出发,进一步理解正负数的特征,并能结合生活实例举出具有相反意义的量。
6分钟后,独立完成自我尝试,比谁掌握的好。
将自学中不能解决的问题标出来,并填写到“反思质疑”处。
自我尝试:用正负数表示下列具有相反意义的量:
(1)收入700元和支出300元;
(2)向北走30米和向南走15米;
(3)原油增产3万吨和原油减产5万吨;
(4)节约8吨水和浪费3吨水。
(5)你还能举出其它例子吗?
反思质疑:请将自学中未能解决的问题和有疑惑的问题写下来,待课堂上与老师和同学们探究解决。
2、有理数的定义与分类
自学指导:认真看课本P24页做一做内容,整理出整数、分数和有理数的定义,并能把有理数按定义和性质两种方法进行分类,有疑问的可小组讨论。
时间5分钟。
(1)、有理数的定义:________、 _______和 _______统称为整数,______和______ 统称分数, 和________ 统称为有理数。
(2)、有理数的分类
(一) 按定义分 (二)按性质分
自我尝试:把下列各数写在相应的集合里(比一比,看谁做得快又好,时间3分钟) -5,10,-4.5,0,325
+,-2.1,0.01,+66,35-,15%,227,2013,-16 正整数: 负整数:
正分数: 负分数:
整数: 负数:
正数: 有理数:
⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎩ ⎨ ⎧ 有理数 ⎪ ⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎩ ⎪ ⎨ ⎧ 有理数
三、课堂小结:本节课你有哪些收获?
四、课堂检测:(时间:10分钟,自己独立完成)
(一)、填空题
1.如果提高10分表示+10分,那么下降8分表示_______,不升不降用_______表示.
2. 高出海平面85米记作+85米,那么-13米表示 .
3.如果收入2万元用+2万元表示,那么支出3000元,用 表示.
4.某乒乓球比赛用+1表示赢一局,那么输2局用_______表示,不输不赢用 表示.
5.一潜水艇所在的高度为-100米,如果它再下潜20米,则高度是_______,如果在原来的位置上再上升20米,则高度是________.
(二)、选择题
1.下面是关于0的一些说法,其中正确说法的个数是( )
①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.
A.0
B.1
C.2
D.3
2.下列各数,正数一共有( )
-11,0,0.2,3,+71, 3
2,1,-1 A.5个 B.6个 C.4个 D.3个
3.在0,21,-7
1,-8,+10,+19,+3,-3.4中整数的个数是( ) A.6 B.5 C.4 D.3
4.下列说法错误的是 ( )
A.0.00001是正数.
B.从银行中取出2000元,记作+2000元,那么-1000元表示存入银行1000元.
C.某数不是正数就是负数.
D.自然数都不是负数.
(三)、把下列各数填入相应的括号里:7,-3,5.7,0,-0.09,486.
正数集合﹛ …﹜ 非负数集合﹛ …﹜ 整数集合﹛ …﹜ 分数集合﹛ …﹜
五、质疑再探
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
六、作业:P26页第2、3题。
七、教学后反思:。