正弦和余弦(四)
正弦定理和余弦定理
04—正弦定理和余弦定理突破点(一) 利用正、余弦定理解三角形利用正弦定理解三角形利用正弦定理可以解决的两类问题:(1)已知两角和任一边,求其他两边和一角.(2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角.由于三角形的形状不能唯一确定,会出现两解、一解和无解三种情况.[例1] (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( ) A.π6 B.π3 C.2π3 D.5π6(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)利用正弦定理的变形,得a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a sin B cos C +c sin B cosA =12b 中,得2R sin A ·sinB cosC +2R sin C sin B cos A =12×2R sin B ,所以sin A cos C +sin C cos A =12,即sin(A+C )=12,所以sin B =12.已知a >b ,所以B 不是最大角,所以B =π6.(2)在△ABC 中,∵sin B =12,0<B <π,∴B =π6或B =5π6.又∵B +C <π,C =π6,∴B =π6,∴A =π-π6-π6=2π3.∵a sin A =b sin B ,∴b =a sin B sin A=1.[答案] (1)A (2)1[易错提醒](1)应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍. (2)求角时易忽略角的范围而导致错误,需要根据大边对大角,大角对大边的规则,画图帮助判断.利用余弦定理解三角形边,求三个内角.[例2] (1)在△ABC 中,已知a -b =4,a +c =2b ,且最大角为120°,则这个三角形的最大边等于( ) A .4 B .14 C .4或14 D .24(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a cos C +32c =b ,则A =________.[解析] (1)因为a -b =4,所以b =a -4且a >b .又a +c =2b ,所以c =a -8,所以a 大于c ,则A =120°.由余弦定理得a 2=b 2+c 2-2bc cos A =(a -4)2+(a -8)2-2(a -4)·(a -8)·⎝⎛⎭⎫-12,所以a 2-18a +56=0. 所以a =14或a =4(舍去).故选B.(2)由余弦定理得cos C =a 2+b 2-c 22ab ,将其代入a cos C +32c =b 中得,a ×a 2+b 2-c 22ab +32c =b ,化简整理得b 2+c 2-a 2=3bc ,于是cos A =b 2+c 2-a 22bc =32,所以A =π6.[答案] (1)B (2)π6利用正、余弦定理解三角形[例3] 设△ABC 1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎫A +π4的值. [解] (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理,得a =2b ·a 2+c 2-b 22ac .因为b=3,c =1,所以a 2=12,a =2 3.(2)由余弦定理,得cos A =b 2+c 2-a 22bc =9+1-126=-13.因为0<A <π,所以sin A =1-cos 2A =1-19=223.故sin ⎝⎛⎭⎫A +π4=sin A cos π4+cos A sin π4=4-26. [方法技巧]正、余弦定理的运用技巧解三角形时,一般是根据正弦定理求边或列等式,若式子中含有角的正弦或边的一次式时,则考虑用正弦定理;余弦定理揭示的是三角形的三条边与其中一个角之间的关系,若式子中含有角的余弦或边的二次式,则考虑用余弦定理;若以上特征都不明显,则要考虑两个定理都有可能用到.突破点(二) 利用正、余弦定理判断三角形的形状1.应用余弦定理判断三角形形状的方法:在△ABC 中,c 是最大的边,若c 2<a 2+b 2,则△ABC 是锐角三角形;若c 2=a 2+b 2,则△ABC 是直角三角形;若c 2>a 2+b 2,则△ABC 是钝角三角形.2.判断三角形形状的常用技巧:若已知条件中既有边又有角,则:(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三利用正、余弦定理判断三角形的形状[典例] (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形(2)(2017·锦州模拟)在△ABC 中,cos 2B 2=a +c2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形[解析] (1)已知c b <cos A ,由正弦定理,得sin Csin B <cos A ,即sin C <sin B cos A ,所以sin(A +B )<sin B cosA ,即sinB ·cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,则B 为钝角,所以△ABC 是钝角三角形.(2)∵cos 2B2=a +c 2c ,∴1+cos B 2=a +c 2c ,即1+cos B =a +c c .由余弦定理得1+a 2+c 2-b 22ac =a +c c .整理得c 2=a 2+b 2,即△ABC 为直角三角形.[答案] (1)A (2)B[易错提醒]在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.三角形面积问题练掌握三角形面积公式,具体的题型及解题策略为:(1)利用正弦定理、余弦定理解三角形,求出三角形的有关元素之后,直接求三角形的面积,或求出两边之积及夹角正弦,再求解.(2)把面积作为已知条件之一,与正弦定理、余弦定理结合求出三角形的其他各量.面积公式中涉及面积、两边及两边夹角正弦四个量,结合已知条件列方程求解.[例1] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且(2b -c )cos A =a cos C . (1)求角A 的大小;(2)若a =3,b =2c ,求△ABC 的面积.[解] (1)根据正弦定理,由(2b -c )cos A =a cos C ,得2sin B cos A =sin A cos C +sin C cos A , 即2sin B cos A =sin(A +C ),所以2sin B cos A =sin B ,因为0<B <π,所以sin B ≠0,所以cos A =12,因为0<A <π,所以A =π3.(2)因为a =3,b =2c ,由(1)得A =π3,所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12,解得c =3,所以b =2 3.所以S △ABC =12bc sin A =12×23×3×32=332.[方法技巧]三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.三角形中的范围问题解三角形问题中,求解某个量(式子)的取值范围是命题的热点,其主要解决思路是:要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.[例2] 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,且B 为钝角.(1)证明:B -A =π2;(2)求sin A +sin C 的取值范围.[解] (1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin A sin B,所以sin B =cos A ,即sin B =sin ⎝⎛⎭⎫π2+A . 因为B 为钝角,所以A 为锐角,所以π2+A ∈⎝⎛⎭⎫π2,π,则B =π2+A ,即B -A =π2. (2)由(1)知,C =π-(A +B )=π-⎝⎛⎭⎫2A +π2=π2-2A >0,所以A ∈⎝⎛⎭⎫0,π4.于是sin A +sin C =sin A +sin ⎝⎛⎭⎫π2-2A =sin A +cos 2A =-2sin 2A +sin A +1=-2⎝⎛⎭⎫sin A -142+98.因为0<A <π4,所以0<sin A <22, 因此22<-2⎝⎛⎭⎫sin A -142+98≤98.由此可知sin A +sin C 的取值范围是⎝⎛⎦⎤22,98. [易错提醒]涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.正、余弦定理在平面几何中的应用在平面几何图形中考查正弦定理、余弦定理是近几年高考的热点,解决这类问题既要抓住平面图形的几何性质,也要灵活选择正弦定理、余弦定理、三角恒等变换公式.此类题目求解时,一般有如下思路:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解; (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[例3] (2017·广东茂名模拟)如图,已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若B =π3,b =7,c =2,D 为BC 的中点.(1)求cos ∠BAC 的值;(2)求AD 的值.[解] (1)法一:由正弦定理得sin C =c b sin B =27×32=37.又∵在△ABC 中,b >c ,∴C <B ,∴0<C <π3,∴cos C =1-sin 2C = 1-37=27,∴cos ∠BAC =cos(π-B -C )=-cos(B +C )=-(cos B cos C -sin B sin C )=sin B sin C -cos B cos C =32×37-12×27=714.法二:在△ABC 中,由余弦定理得b 2=c 2+a 2-2c ·a cos B ,∴7=4+a 2-2×2×a ×12,即(a -3)(a +1)=0,解得a =3(a =-1舍去),∴cos ∠BAC =c 2+b 2-a 22cb =4+7-92×2×7=714.(2)法一:在△ABC 中,由余弦定理得a 2=c 2+b 2-2c ·b cos ∠BAC =4+7-2×2×7×714=9. ∴a =3,∴BD =32.在△ABD 中,由余弦定理得AD 2=AB 2+BD 2-2AB ·BD ·cos B =4+94-2×2×32×12=134.∴AD =132.法二:如图,取AC 的中点E ,连接DE ,则DE =12AB =1,AE =12AC =72,cos ∠AED =-cos ∠BAC .在△ADE 中,由余弦定理得AD 2=AE 2+DE 2-2AE ·DE ·cos ∠AED =74+1-2×72×1×⎝⎛⎭⎫-714=134. ∴AD =132.[检验高考能力]一、选择题1.在△ABC 中,若sin C sin A =3,b 2-a 2=52ac ,则cos B 的值为( )A.13B.12C.15D.14解析:选D 由题意知,c =3a ,b 2-a 2=52ac =c 2-2ac cos B ,所以cos B =c 2-52ac 2ac =9a 2-152a 26a 2=14.2.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若S +a 2=(b +c )2,则cos A 等于( )A.45 B .-45 C.1517 D .-1517解析:选D 由S +a 2=(b +c )2,得a 2=b 2+c 2-2bc (14sin A -1),由余弦定理可得14sin A -1=cos A ,结合sin 2A +cos 2A =1,可得cos A =-1517或cos A =-1(舍去).3.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C ,∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.4.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC的面积等于( )A.32B.34C.36D.38解析:选B 由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =π3=B ,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.5.(2017·渭南模拟)在△ABC 中,若a 2-b 2=3bc 且sin (A +B )sin B=23,则A =( )A.π6B.π3C.2π3D.5π6解析:选A 因为sin (A +B )sin B =23,故sin Csin B =23,即c =23b ,则cos A =b 2+c 2-a 22bc =12b 2-3bc 43b 2=6b 243b 2=32,所以A =π6.6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( ) A.π6 B.π4 C.π3 D.3π4解析:选C 根据正弦定理a sin A =b sin B =c sin C =2R ,得c -b c -a =sin A sin C +sin B =a c +b ,即a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,故B =π3.二、填空题7.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =35,则b =________.解析:因为cos A =35,所以sin A =1-cos 2A =1-⎝⎛⎭⎫352=45,所以sin C =sin [180°-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =17210×sin45°=57.答案:578.在△ABC 中,若b =2,A =120°,三角形的面积S =3,则三角形外接圆的半径为________.解析:由面积公式,得S =12bc sin A ,代入数据得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =22+22-2×2×2cos 120°=12,故a =23,由正弦定理,得2R =a sin A =2332,解得R =2.答案:29.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=________.解析:由正弦定理得sin A sin C =a c ,由余弦定理得cos A =b 2+c 2-a 22bc ,∵a =4,b =5,c =6,∴sin 2Asin C=2sin A cos A sin C =2·sin A sin C ·cos A =2×a c ×b 2+c 2-a 22bc =2×46×52+62-422×5×6=1.答案:110.在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.解析:如图,在△ABD 中,由正弦定理,得AD sin B =ABsin ∠ADB,∴sin ∠ADB =22. 由题意知0°<∠ADB <60°,∴∠ADB =45°,∴∠BAD =180°-45°-120°=15°.∴∠BAC =30°,C =30°,∴BC =AB = 2.在△ABC 中,由正弦定理,得AC sin B =BCsin ∠BAC ,∴AC = 6.答案: 6三、解答题11.(2017·河北三市联考)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a sin B =-b sin ⎝⎛⎭⎫A +π3. (1)求A ;(2)若△ABC 的面积S =34c 2,求sin C 的值. 解:(1)∵a sin B =-b sin ⎝⎛⎭⎫A +π3, ∴由正弦定理得sin A sin B =-sin B sin ⎝⎛⎭⎫A +π3,则sin A =-sin ⎝⎛⎭⎫A +π3,即sin A =-12sin A -32cos A ,化简得tan A =-33,∵A ∈(0,π),∴A =5π6.(2)∵A =5π6,∴sin A =12,由S =12bc sin A =14bc =34c 2,得b =3c ,∴a 2=b 2+c 2-2bc cos A =7c 2,则a =7c ,由正弦定理得sin C =c sin A a =714.12.(2017·郑州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos 2C -cos 2A =2sin ⎝⎛⎭⎫π3+C ·sin ⎝⎛⎭⎫π3-C . (1)求角A 的值;(2)若a =3且b ≥a ,求2b -c 的取值范围.解:(1)由已知得2sin 2A -2sin 2C =2(34cos 2C -14sin 2C ),化简得sin A =32,故A =π3或2π3.(2)由题知,若b ≥a ,则A =π3,又a =3,所以由正弦定理可得b sin B =c sin C =asin A=2,得b =2sin B ,c =2sin C ,故2b -c =4sin B -2sin C =4sin B -2sin ⎝⎛⎭⎫2π3-B =3sin B -3cos B =23sin ⎝⎛⎭⎫B -π6. 因为b ≥a ,所以π3≤B <2π3,π6≤B -π6<π2,所以23sin ⎝⎛⎭⎫B -π6∈[3,23).即2b -c 的取值范围为[3,23).。
第04讲 正弦定理和余弦定理 (精练)(含答案解析)
第04讲正弦定理和余弦定理(精练)-2023年高考数学一轮复习讲练测(新教材新高考)第04讲正弦定理和余弦定理(精练)一、单选题(2022·全国·高三专题练习)1.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若222a b c +<,则ABC 是()A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形(2022·江苏·高一课时练习)2.已知正三角形的边长为2,则该三角形的面积()A .4BC D .1(2022·江苏·高一课时练习)3.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,45,30,6A C c === ,则a 等于()A .B .C .D .(2022·河南·高二阶段练习(文))4.如图,在直角梯形ABCD 中,//AB CD ,90ABC ∠=︒,2AB =,5CD =,6BC =,则CAD ∠=()A .30︒B .45︒C .60︒D .75︒(2022·江苏·南京市第九中学高一期中)5.图1是我国古代数学家赵爽创制的一幅“赵爽弦图”,它是由四个全等的直角三角形和一个小的正方形拼成一个大的正方形.某同学深受启发,设计出一个图形,它是由三个全等的钝角三角形和一个小的正三角形拼成一个大的正三角形,如图2,若BD =1,且三个全等三角形的面积和与小正三角形的面积之比为94,则△ABC 的面积为()A .94B C .134D .4(2022·江苏·盐城市伍佑中学高一期中)6.已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin cos c A C =,c =,18ab =,则a b +的值是()A .B .C .9D .11(2022·重庆八中高一期中)7.如图,四边形ABCD 四点共圆,其中BD 为直径,4AB =,3BC =,60ABC ∠=︒,则ACD 的面积为()A .6B .2C .6D .6(2022·河南·唐河县第一高级中学高一阶段练习)8.设向量a 与b 的夹角为θ,定义a 与b 的“向量积”:a b ⨯ .可知a b ⨯是一个向量,它的模为||||||sin a b a b θ⨯=⋅.已知在ABC 中,角,,A B C 所对的边分别为,,,3a b c A π=,)22||896BA BC b a ⨯=- ,则cos B =()A B .C .7-D 二、多选题(2022·山东淄博·高一期中)9.在ABC 中,如下判断正确的是()A .若sin 2sin 2AB =,则ABC 为等腰三角形B .若A B >,则sin sin A B >C .若ABC 为锐角三角形,则sin cos A B >D .若sin sin A B >,则A B>10.在ABC 中,内角、、A B C 所对的边分别为a 、b 、c ,则下列说法正确的是()A .sin sin sin +=+a b cA B CB .若A B >,则sin 2sin 2A B >C .cos cos c a B b A =+D .若0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC 为等边三角形(2022·山东菏泽·高一期中)11.在ABC 中,D 在线段AB 上,且AD =5,BD =3,若CB =2CD,cos CDB ∠=则()A.sin CDB ∠B .△DBC 的面积为3C .ABC的周长为8+D .ABC 为钝角三角形三、填空题(2022·江西·上高二中高二阶段练习(文))12.已知ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,D 为边BC 上一点,且AD 为BAC ∠的角平分线,若3BAC π∠=,AD =,则4b c +最小值为___________.(2022·全国·高三专题练习)13.一艘渔船航行到A 处看灯塔B 在A 的北偏东75°,距离为C 在A 的北偏西45°,距离为海里,该船由A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东45°方向,则CD =______海里.四、解答题(2022·山东·肥城市教学研究中心模拟预测)14.如图,在ABC 中,内角,,A B C 所对的边分别为,,a b c ,2cos 2b A c a =-.(1)求角B ;(2)若2sin sinC sin A B ⋅=,2AD CD ==,求四边形ABCD 面积的最大值.(2022·宁夏·平罗中学三模(文))15.已知函数()f x m n =⋅ ,向量()sin cos n x x x =+ ,()cos sin ,2sin m x x x =- ,在锐角ABC 中内角,,A B C 的对边分别为,,a b c ,(1)若()1f A =,求角A 的大小;(2)在(1)的条件下,a cb +的最大值.(2022·安徽·安庆一中高三阶段练习(理))16.在锐角ABC 中,角,,A B C所对的边分别为,,,4,sin 4a b c a b A ===.(1)求sin C 的值;(2)点,D E 分别在边,AB AC 上,ABC 的面积是ADE V 面积的2倍.求DE 的最小值.参考答案:1.D【分析】根据余弦定理,得到cos 0C <,求得(,)2C ππ∈,即可求解.【详解】因为222a b c +<,由余弦定理可得222cos 02a b c C ab+-=<,又由(0,)C π∈,所以(,)2C ππ∈,所以ABC 是钝角三角形.故选:D.2.B【分析】由三角形面积公式可求出.【详解】根据三角形面积公式可得该三角形的面积为122sin 602⨯⨯⨯︒=故选:B.3.B【分析】根据正弦定理即可求解﹒【详解】由正弦定理得sin sin a c A C =,∴66sin4521sin302a===故选:B ﹒4.B【分析】先求出22,AC AD ,再利用余弦定理求解.【详解】因为2226240AC =+=,2226(52)45AD =+-=,在ACD 中,由余弦定理得222cos 22AD AC CD CAD AD AC +-∠==⋅,又因为0180CAD ︒<∠<︒,所以45CAD ∠=︒.故选:B.5.D【分析】设小正三角形边长为x ,由面积比求得x ,再计算出小正三角形面积可得大正三角形面积.【详解】设DE x =,则211sin 1(1)sin12013224ABD DEFBD AD ADB x S x S x ⋅∠⨯⨯+︒+==!!,解得2x =(23-舍去),所以224DEF S ==!,94ABCS ==!故选:D .6.C【分析】由条件sin cos c A C =结合正弦定理可求C ,再结合余弦定理求a b +.【详解】∵sin cos c A C =,∴sin sin cos C A A C =,又(0,)A π∈,sin 0A ≠,∴tan C =(0,)C π∈,∴3C π=,又2222cos c a b ab C =+-,c =18ab =,∴222718a b =+-,∴222()281a b a b ab +=++=,∴9a b +=,故选:C.7.C【分析】先在ABC 利用余弦定理求出边AC ,再利用正弦定理求出直径BD ,进而利用直角三角形求出AD 、CD ,再利用三角形的面积公式进行求解.【详解】在ABC 中,因为4AB =,3BC =,60ABC ∠=︒,所以由余弦定理,得AC =由正弦定理,得=sin sin 603AC BD ABC ==∠;在Rt △ABD 和Rt BCD中,3AD ===3CD ===,又180120ADC ABC ∠=-∠= ,所以ACD 的面积为123326S =⨯⨯⨯=.故选:C.8.B【分析】根据新定义及三角的面积公式可化为()22182129sin b a bc A -=,再由余弦定理转化为关于,b c 的方程,得出3b c =,再由余弦定理求出cos B 即可.【详解】因为()22||896BA BC b a ⨯=-,所以)221sin 289ac b a B -=,即)2289△ABC S b a -=,)221829sin b a A -=,由余弦定理,2222cos a b c bc A =+-,即222a b c bc =+-,代入上式得,22289()b b c bc ⎤-+-=⎦,化简得22690-+=b bc c ,即2(3)0-=b c ,3b c ∴=,此时.a ==22214cos 2a c b B ac +-∴-==.故选:B 9.BCD【分析】选项A.由题意可得22A B =或22A B π+=,从而可判断;选项B.若A B >,则a b >,由正弦定理可判断;选项C.若ABC 为锐角三角形,则2A B π+>,即所以022A B ππ>>->,由正弦函数的单调性可判断;选项D.在ABC 中,若sin sin A B >,由正弦定理可得22a bR R>,从而可判断.【详解】选项A.在ABC 中,若sin 2sin 2A B =,则22A B =或22A B π+=所以A B =或2A B π+=,所以ABC 为等腰或直角三角形.故A 不正确.选项B.在ABC 中,若A B >,则a b >,由正弦定理可得2sin 2sin R A R B >,即sin sin A B >,故B 正确.选项C.若ABC 为锐角三角形,则2A B π+>所以022A B ππ>>->,所以sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭,故C 正确.选项D.在ABC 中,若sin sin A B >,由正弦定理可得22a bR R>,即a b >,所以A B >,故D 正确.故选:BCD 10.ACD【解析】利用正弦定理以及边角互化可判断A 、B 、C ,利用向量数量积可判断D.【详解】对于A ,由sin sin sin sin sin a b c b cA B C B C+===+,故A 正确;对于B ,若A B >,当120A =o ,30B = 时,则sin 2sin 2A B <,故B 不正确;对于C ,()cos cos sin sin cos sin cos sin sin c a B b A C A B B A A B C =+⇒=+=+=,故C 正确;对于D ,由0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭,可得BAC ∠的角平分线与BC 垂直,所以ABC 为等腰三角形又12AB AC AB AC ⋅=,可得3BAC π∠=,所以ABC 为等边三角形,故D 正确;故选:ACD 11.ABD【分析】由同角的三角函数关系即可判断A ,设CD a =,利用余弦定理及面积公式即可判断B ,利用余弦定理求得AC ,进而判断C ,利用余弦定理可判断D.【详解】因为cos CDB ∠=sin CDB ∠,故A 正确;设CD a =,则2BC a =,在BCD △中,2222cos BC CD BD BD CD CDB =+-⋅⋅∠,解得a =,所以112sin 33225DBC S BD CD CDB =⋅⋅∠=⨯⨯= ,故B 正确;因为ADC CDB π∠=-∠,所以()cos cos cos 5ADC CDB CDB π∠=-∠=-∠=,在ADC △中,2222cos AC AD CD AD DC ADC =+-⋅⋅∠,解得AC =所以ABC 的周长为()3584AB AC BC ++=+++,故C 错误;因为8AB =为最大边,所以2223cos 025BC AC AB C BC AC +-==-<⋅,即C 为钝角,所以ABC 为钝角三角形,故D 正确.故选:ABD.12.9【分析】第一步利用等面积法求出,b c 的关系式,再利用基本不等式求解即可.【详解】由题意画图如下:因为AD 为BAC ∠的角平分线,3BAC π∠=,ABC ABD ADC S S S =+ 所以111sin 60sin 30sin 30222AB AC AB AD AD AC ⋅︒=⋅︒+⋅︒化简得11111,,1222c c b bc b c b c⋅==++=利用基本不等式“1的代换”得()()1145+449154b c b c b c c b b c b c ⎛⎫++=+⨯=+=+≥+ ⎪⎝⎭故答案为:9.13.【分析】利用方位角求出B 的大小,利用正弦定理直接求解AD 的距离,直接利用余弦定理求出CD 的距离即可.【详解】如图,在△ABD 中,因为在A 处看灯塔B 在货轮的北偏东75°的方向上,距离为海里,货轮由A 处向正北航行到D 处时,再看灯塔B 在南偏东45°方向上,所以B =180°−75°−45°=60°由正弦定理sin sin AD ABB ADB=∠,所以sin 6s in AB BAD ADB==∠海里;在△ACD 中,AD =6,AC=CAD =45°,由余弦定理可得:(222222cos 4563263182CD AD AC AD AC ︒=+-⋅⋅=+-⨯⨯=,所以CD=故答案为:14.(1)π3B =(2)【分析】(1)根据正弦定理化边为角,然后利用两角和的正弦公式即可求解.(2)由余弦定理得到ABC 为等边三角形,在ADC △中,利用余弦定理表达出2=88cos x θ-,然后根据三角形面积公式即可求解.(1)由正弦定理得:2sin cos 2sin sin B A=C A ⋅-,所以()2sin cos sin 2sin 2sin cos 2cos sin B A+A=A B A B A B⋅+=+即sin 2sin cos A=A B⋅()10,π,sin 0cos 2A AB ∈∴≠⇒= ,()π0,π3B B ∈∴=(2)由2sin sin sin A C =B ⋅2b =ac∴由余弦定理得222222222cos b a c ac B a c ac a c b =+-=+-=+-,222+2a c =b ∴()222222+2+20a c =a c ac =a cb =∴---a c∴=ABC ∴ 为等边三角形,设=AC =x ADC θ∠,,在ADC △中,24+4cos 222x =θ-⨯⨯,解得2=88cos x θ-2++2sin 88cos +2sin ABC ACD ABCD S =S S ==θθθ- 四边形)π4sin3=θ-()当ππ=32θ-,即5π6=θ时,S 有最大值15.(1)3A π=(2)【分析】(1)利用平面向量数量积运算法则和恒等变换公式化简函数()f x 的解析式,然后求解即可,要注意角A 的取值范围;(2)利用余弦定理和基本不等式求解即可.(1)由题()22cos sin cos 2sin 26f x m n x x x x x π⎛⎫=⋅=-+=+ ⎪⎝⎭所以()2sin 216f A A π⎛⎫=+= ⎪⎝⎭,即1sin 262A π⎛⎫+= ⎪⎝⎭又因为0,2A π⎛⎫∈ ⎪⎝⎭,所以5266A ππ+=,3A π=.(2)由余弦定理2222cos a b c bc A =+-,代入数据得:223b c bc =+-,整理得到()()()2222133324b c b c bc b c b c 骣+琪=+-³+-´=+琪桫解得b c +≤b c ==等号成立.故c b +的最大值为16.(1)4(2)【分析】(1)根据题意1cos 4A =,进而结合正弦定理得sin B =cos B =()sin sin C A B =+求解即可;(2)结合(1)得4c b ==,进而根据面积关系得8AD AE ⋅=,最后结合基本不等式与余弦定理得212DE ≥,进而得答案.(1)解:ABC是锐角三角形,1sin cos 44A A =∴=.在ABC中,4a b ==,由正弦定理得4sin sin b A B a ==,cos 4B ∴=.()C A B =π-+ ,()1sin sin sin cos cos sin 4C A B A B A B ∴=+=+=⨯(2)解:由(1)知,sin sin ,4B C c b =∴==.由题意得1sin 1622,81sin 2ABC ADE bc A S AD AE S AD AE AD AE A ==∴⋅=⋅⋅⋅ .由余弦定理得,222132cos 21222DE AD AE AD AE A AD AE AD AE AD AE =+-⋅≥⋅-⋅=⋅=,当且仅当AD AE ==“=”成立.所以DE的最小值为。
(复习指导)第4章第6节正弦定理与余弦定理含解析
第6节正弦定理与余弦定理一、教材概念·结论·性质重现1.正弦定理在一个三角形中,各边的长和它所对角的正弦的比相等,即asin A=bsin B=csin C=2R,其中R是三角形外接圆的半径.正弦定理的变形公式:(1)a=2R sin A,b=2R sin B,c=2R sin C.(2)sin A=a2R,sin B=b2R,sin C=c2R.(3)a∶b∶c=sin A∶sin B∶sin C.若已知两边和其中一边的对角,解三角形时,可用正弦定理.在根据另一边所对角的正弦值,确定角的值时,要注意避免增根或漏解,常用的基本方法就是结合“大边对大角,大角对大边”及三角形内角和定理去考虑问题.2.余弦定理三角形任何一边的平方,等于其他两边的平方和减去这两边与它们夹角余弦的积的2倍.即a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理的推论:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.三角形的面积公式(1)S=12ah(h表示边a上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径). 4.常用结论在△ABC 中,常用以下结论: (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边. (4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2;cos A +B 2=sin C2.(5)tan A +tan B +tan C =tan A ·tan B ·tan C . (6)A >B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B . 二、基本技能·思想·活动体验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( √ ) (2)在△ABC 中,a sin A =a +b +c sin A +sin B +sin C.( √ )(3)在△ABC 中,a 2+b 2>c 2是△ABC 为锐角三角形的必要不充分条件.( √ ) (4)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.( √ ) 2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A . 2B . 3C .2D .3D 解析:由余弦定理,得4+b 2-2×2b cos A =5,整理得3b 2-8b -3=0,解得b =3或b =-13(舍去).故选D.3.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形C 解析:在△ABC 中,因为cos C =a 2+b 2-c 22ab ,所以a =2b cos C =2b ·a 2+b 2-c 22ab ,所以a 2=a 2+b 2-c 2,所以b =c ,所以此三角形一定是等腰三角形.4.在△ABC 中,a =3,b =5,sin A =13,则sin B =( ) A.15 B.59 C.53D.1B 解析:根据正弦定理a sin A =b sin B ,有313=5sin B ,得sin B =59.故选B.5.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,A =45°.若三角形有两解,则边b 的取值范围是________.(2,22) 解析:如图,△ABC 有两解的充要条件是b sin 45°<2<b ,解得2<b <2 2.故b 的取值范围是(2,22).考点1 利用正弦定理、余弦定理解三角形——基础性1.(2020·全国卷Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A.19 B.13 C.12D.23A 解析:由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC ·cos C=42+32-2×4×3×23=9,所以AB =3. 又由余弦定理可知cos B =AB 2+BC 2-AC 22AB ·BC =32+32-422×3×3=19.2.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3A 解析:因为a sin A -b sinB =4c ·sinC ,所以由正弦定理得a 2-b 2=4c 2,即a 2=4c 2+b 2.由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(4c 2+b 2)2bc =-3c22bc=-14,所以bc =6.3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.75° 解析:由正弦定理,得sin B =b sin Cc =6sin 60°3=22.因为0°<B <180°,且b <c ,所以B <C ,故B =45°,所以A =180°-60°-45°=75°.4.(2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =________.3π4 解析:因为b sin A +a cos B =0, 所以a sin A =b-cos B.由正弦定理a sin A =bsin B ,得-cos B =sin B ,所以tan B=-1.又B∈(0,π),所以B=3π4.利用正、余弦定理解三角形的策略(1)已知三角形的两边和其中一边的对角解三角形,可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数;用余弦定理时,可根据一元二次方程根的情况判断解的个数.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角进行判断.结合图像求解较为直观易解.考点2判断三角形的形状——应用性设△ABC的内角A,B,C所对的边分别为a,b,c.若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定B解析:因为b cos C+c cos B=a sin A,由正弦定理得sin B cos C+sin C·cos B=sin2A,所以sin(B+C)=sin2A,即sin A=sin2A.又sin A>0,所以sin A=1,所以A=π2,故△ABC为直角三角形.若本例条件变为ab=cos Bcos A,判断△ABC的形状.解:由ab=cos Bcos A,得sin Asin B=cos Bcos A,所以sin A cos A=cos B sin B,所以sin 2A=sin 2B.因为A,B为△ABC的内角,所以2A=2B或2A=π-2B,所以A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形.1.判断三角形形状的常用途径2.判断三角形的形状的注意点在判断三角形的形状时,一定要注意三角形的解是否唯一,并注重挖掘隐含条件.另外,在变形过程中,要注意角A ,B ,C 的范围对三角函数值的影响.在等式变形时,一般两边不要约去公因式,应移项提取公因式,以免漏解.1.在△ABC 中,c -a 2c =sin 2B2(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形A 解析:由cosB =1-2sin 2B 2得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B 2,即cos B =ac .(方法一)由余弦定理得cos B =a 2+c 2-b 22ac =a c ,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形.又无法判断两直角边是否相等.故选A.(方法二)由正弦定理得cos B=sin Asin C,又sin A=sin (B+C)=sin B cos C+cosB·sin C,所以cos B sin C=sin B cos C+cos B·sin C,即sin B cos C=0.又sin B≠0,所以cos C=0.又角C为三角形的内角,所以C=π2,所以△ABC为直角三角形.又因为无法判断两直角边是否相等.故选A.2.给出下列命题:①若tan A tan B>1,则△ABC一定是钝角三角形;②若sin2A+sin2B=sin2C,则△ABC一定是直角三角形;③若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC一定是等边三角形.其中正确命题的序号为________.②③解析:①因为tan A tan B>1,且A,B为三角形内角,所以tan A>0,tan B>0,所以A,B均为锐角.又因为-tan C=tan(A+B)=tan A+tan B1-tan A·tan B<0,所以tan C>0,所以C为锐角,所以△ABC不是钝角三角形,故①错误.②由正弦定理及条件,得a2+b2=c2,所以△ABC一定为直角三角形,故②正确.③由cos(A-B)cos(B-C)cos(C-A)=1及A,B,C为三角形内角,可得cos(A -B)=cos(B-C)=cos(C-A)=1,所以A=B=C.故③正确.考点3三角形的面积——综合性(2020·广东化州二模)在△ABC中,三个内角A,B,C所对的边为a,b,c.若S△ABC=23,a+b=6,a cos B+b cos Ac=2cos C,则c=()A.27 B.2 3 C.4 D.3 3B解析:因为a cos B+b cos Ac=sin A cos B+sin B cos Asin C=sin(A+B)sin(A+B)=1,所以2cos C=1,所以C=60°.若S△ABC =23,则12ab sin C=23,所以ab=8.因为a+b=6,所以c2=a2+b2-2ab·cos C=(a+b)2-2ab-ab=(a+b)2-3ab =62-3×8=12,所以c=2 3.故选B.(2020·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知B=150°.(1)若a=3c,b=27,求△ABC的面积;(2)若sin A+3sin C=22,求C.解:(1)由余弦定理得a2+c2-2ac cos B=b2,将a=3c,b=27,B=150°代入,可得(3c)2+c2-2×3c×c cos 150°=(27)2,整理得7c2=28,解得c=2.所以a=2 3.所以S△ABC =12ac sin B=12×23×2×12= 3.(2)因为A+B+C=π,所以sin A=sin(B+C).又因为sin A+3sin C=2 2,所以sin(B+C)+3sin C=2 2,所以sin B cos C+cos B sin C+3sin C=2 2.将B=150°代入,整理得12cos C+32sin C=22,即sin(C+30°)=2 2.因为B=150°,所以0°<C<30°,即0°<C+30°<60°,所以C+30°=45°,解得C=15°.求解三角形面积问题的方法技巧(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.1.(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为________.63解析:由余弦定理得b2=a2+c2-2ac cos B.又因为b=6,a=2c,B=π3,所以36=4c2+c2-2×2c2×1 2,所以c=23,a=43,所以S△ABC =12ac sin B=12×43×23×32=6 3.2.(2020·全国卷Ⅰ)如图,在三棱锥P–ABC的平面展开图中,AC=1,AB =AD=3,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=________.-14解析:AB⊥AC,AB=3,AC=1,由勾股定理得BC=AB2+AC2=2.同理得BD=6,所以BF=BD=6,在△ACE中,AC=1,AE=AD=3,∠CAE=30°,由余弦定理得CE2=AC2+AE2-2AC·AE cos 30°=1+3-2×1×3×3 2=1,所以CF=CE=1,在△BCF 中,BC =2,BF =6,CF =1,由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ·BC =1+4-62×1×2=-14. 3.(2020·菏泽高三联考)在①B =π3,②a =2,③b cos A +a cos B =3+1这三个条件中任选一个,补充在下面问题中,并解决相应问题.已知在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .若4S =b 2+c 2-a 2,b =6,且________,求△ABC 的面积S 的大小.解:因为4S =b 2+c 2-a 2,cos A =b 2+c 2-a 22bc ,S =12bc sin A .所以2bc sin A =2bc cos A . 显然cos A ≠0,所以tan A =1. 又A ∈⎝ ⎛⎭⎪⎫0,π2,所以A =π4.若选①,B =π3,由a sin A =b sin B ,得a =b sin Asin B =6×2232=2.又sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =6+24,所以S =12ab sin C =12×2×6×6+24=3+32.若选②,a =2,由a sin A =b sin B ,得sin B =b sin A a =6×222=32. 因为B ∈⎝ ⎛⎭⎪⎫0,π2,所以cos B =12.又sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =6+24, 所以S =12ab sin C =12×2×6×6+24=3+32. 若选③,b cos A +a cos B =3+1,所以a cos B =1, 即a ·a 2+c 2-62ac =1,所以a 2=6+2c -c 2.又a 2=6+c 2-26c ×22=6+c 2-23c ,所以6+2c -c 2=6+c 2-23c ,解得c =3+1. 所以S =12bc sin A =12×6×(3+1)×sin π4=3+32.已知△ABC 的三边长分别为a ,b ,c ,满足a 2+b 2+2c 2=8,则三角形ABC 面积的最大值为( )A.55B.255C.355D.53[四字程序]读想算思 △ABC 面积的最大值1.面积的表达式; 2.以谁为变量? 用适当的变量表示S 转化与化归a 2+b 2+2c 2=81.S =12ah ; 2.S =12ab sin C ; 3.边作变量; 4.角作变量; 5.海伦公式S 2=14a 2b 2·(1-cos 2C );S ≤2sin C3-2cos C1.均值不等式; 2.函数最值; 3.三角函数的性质思路参考:余弦定理+角化边+二次函数的最值. B 解析:因为a 2+b 2+2c 2=8,即a 2+b 2=8-2c 2, 所以S 2=14a 2b 2sin 2C=14a 2b 2(1-cos 2C ) =14a 2b 2⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2 =14a 2b 2-(8-3c 2)216 ≤14⎝⎛⎭⎪⎫a 2+b 222-(8-3c 2)216 =-5c 416+c 2=-516⎝ ⎛⎭⎪⎫c 2-852+45,故当a 2=b 2=125,c 2=85时,S 2有最大值45, 所以△ABC 面积的最大值为255.思路参考:设高转化,利用均值不等式. B 解析:如图,过点C 作CD ⊥AB 于点D . 设AD =m ,BD =n ,CD =h .因为a 2+b 2+2c 2=8,所以m 2+n 2+2h 2+2c 2=8. 因为m 2+n 2≥(m +n )22=c 22,当且仅当m =n 时取等号.故m 2+n 2+2h 2+2c 2≥c 22+2h 2+2c 2=5c 22+2h 2≥25ch =45S ,所以S ≤255,当且仅当m =n ,c =255h 时取等号. 所以△ABC 面积的最大值为255.思路参考:利用海伦公式S =p (p -a )(p -b )(p -c )+均值不等式.B解析:设p=12(a+b+c),则p-a=12(b+c-a),p-b=12(a+c-b),p-c=12(a+b-c).所以S=p(p-a)(p-b)(p-c)=14[(a+b)2-c2][c2-(b-a)2]=144a2b2-⎝⎛⎭⎪⎫a2+b2-c222.因为a2+b2+2c2=8,所以S=144a2b2-(8-3c2)2.因为a2+b2+2c2=8,所以4a2b2≤(a2+b2)2=(8-2c2)2.所以S≤14(8-2c2)2-(8-3c2)2=1416c2-5c4.当c2=85时,S2有最大值45.所以△ABC面积的最大值为25 5.思路参考:建系设点.B解析:如图,以AB所在直线为x轴,以线段AB的中垂线为y轴建立平面直角坐标系.不妨令x1>0,y2>0,设A(-x1,0),B(x1,0),C(x2,y2).因为a2+b2+2c2=8,所以(x1-x2)2+y22+(x1+x2)2+y22+8x21=8,所以5x21+x22+y22=4.因为S=x1y2,所以25S≤5x21+y22=4-x22≤4.所以S≤255,当且仅当x2=0,5x21=y22=2时取等号.所以△ABC面积的最大值为25 5.1.本题考查三角形的面积的最值问题,解法灵活多变,基本解题策略是借助于三角形的相关知识将目标函数转化为边之间的代数关系,借助于三角函数的性质求最值,对于此类多元最值问题要注意合理转化或消元.2.基于课程标准,解答本题一般需要熟练掌握数学阅读技能、运算求解能力、推理能力和表达能力,体现了逻辑推理、数学运算的核心素养,试题的解答过程展现了数学文化的魅力.3.基于高考数学评价体系,本题创设了数学探索创新情景,通过知识之间的联系和转化,将最值转化为熟悉的数学模型.本题的切入点十分开放,可以从不同的角度解答题目,体现了灵活性;同时,解题的过程需要知识之间的转化,体现了综合性.(2020·全国卷Ⅱ)△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.解:(1)由正弦定理和已知条件sin2A-sin2B-sin2C=sin B sin C,得BC2-AC2-AB2=AC·AB.①由余弦定理得BC2=AC2+AB2-2AC·AB cos A.②由①②得cos A=-1 2.因为0<A<π,所以A=2π3.(2)由正弦定理及(1)得ACsin B=ABsin C=BCsin A=23,从而AC=23sin B,AB=23sin(π-A-B)=3cos B-3sin B.故BC +AC +AB =3+3sin B +3cos B =3+23sin ⎝ ⎛⎭⎪⎫B +π3.又0<B <π3,所以当B =π6时,△ABC 的周长取得最大值3+2 3.。
正弦和余弦(四)
正弦和余弦(四)执教:覃小文教学目标:(1)通过复习学生掌握锐角正弦、余弦定义及熟练掌握特殊三角函数值;(2)正弦、余弦之间的关系式;(3)系统化、提纲化的使学生综合运用正弦、余弦定义解决简单问题 教学重点:锐角三角函数的正弦、余弦定义和特殊角的正弦、余弦值; 教学难点:正弦、余弦之间的关系(平方关系)教学方法:以练为主,讲为辅教学过程:一、 基础知识复习:1、回忆,什么是∠A 的正弦,余弦??如图:CBsin α=α的对边/斜边 cos α=α的邻边/斜边2、特殊角的函数值300、450、600的正弦、余弦值:s in30º=21, sin45º=22, sin60º=23. cos30º=23,cos45º=22,cos60º=21. 3、互余两角的正弦、余弦值之间具有什么关系? sinA=cos(90º-A), cosA=sin(90º-A)4、请同学思考角度变化与锐角三角函数的关系?当锐角α在00∽900之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。
二、训练:(1)、在直角三角形ΔABC 中,∠C=900,AB=5,AC=4,则 sinB= ,cosA= ,cosA= sinA= ,(2)计算cos 2450+cos600〃sin300= ,(3)已知如图:利用所学过的知识,试证明在同一个锐角A 的正弦、余弦之间存在着以下重要关系式: sin 2A+cos 2A=1∵sinA=∠A 的对边/斜边=a ,∴sin 2A= 22c acosA=∠BA 的邻边/斜边.=c b ,∴cos 2A= 22c b∴sin 2A+cos 2A= 22c a + 22c b = 222c b a +又∵在Rt △ABC 中,∠C=90°, ∴根据勾股定理: 22b a += 2c∴sin 2A+cos 2A=222c b a +=22c c =1 这就是正弦、余弦之间的平方关系.如: sin 230°+cos 230°=1深入研究:计算: sin 240°+sin 250°=3如果∠A 为锐角且cosA=41,那么( )A 、00<∠A ≤ 300B 、300<∠A ≤ 450C 、450<∠A ≤600D 、600<∠A< 900此题只要将41,21,22,23,对比一下谁大谁小,即可判断,实际上是对特殊角度正弦、余弦的考察4.△ABC 中,若|2sinA-1|+0cos 232=⎪⎪⎭⎫ ⎝⎛-B ,则∠C=( ). A.75° B.60° C.90° D.120°将老题型的转化,非负数相加问题,其本质还是考察特殊角度的正弦、余弦值. 小结:1、本节课主要复习了锐角三角函数正弦、余弦和特殊角的正弦、余弦值 .正弦、余弦除了可以互相转化外sinA=cos(90º-A), cosA=sin(90º-A), 两者之间还有平方关系sin 2A+cos 2A=1,请大家熟记他们.。
正弦和余弦
正弦和余弦【学习目标】1.了解正弦、余弦的概念的意义(用直角三角形中直角边与斜边的比表示),知道当锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.2.熟记30°、45°、60°角的正弦、余弦值,并会根据这些数值说出对应的特殊角的度数.3.了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系. 4.会查“正弦和余弦表”,即由已知锐角求对应的正弦、余弦值,已知正弦、余弦值求对应的锐角(或运用计算器).5.会用上述知识解决一些求三角形中未知元素的简单问题. 【主体知识归纳】1.如图6—1,在Rt △ABC 中,如果∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,那么∠A 的正弦sin =ca ,∠A 的余弦cos =cb .2.特殊角的正弦、余弦值.3.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.即sinA =cos (90°-A ),cosA =sin (90°-A ).4.三角函数表三角函数值的变化规律是使用三角函数表的依据.当角度在0°~90°变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大).【基础知识讲解】1.正弦、余弦的概念是本章的起点,同时又是重点、关键.这是本章知识的基础.在直角三角形ABC 中,当一个锐角(∠A )取固定值时,它的直角边与斜边的比值也是一个固定值.ABBC A A =∠=斜边的对边sin ,cos =ABAC A =∠斜边的邻边.实际上它们是一个函数关系,它的自变量的取值范围是大于0°且小于90°的所有角度. 在直角三角形中,由于斜边最长,所以函数值的范围是大于0且小于1的所有实数. 2.在查“正弦和余弦表”时,需要明确以下四点:(1)这份表的作用是:求锐角的正弦、余弦值,或由锐角的正弦、余弦值,求这个锐角;(2)这份表中,角精确到1′,正弦、余弦值具有四个有效数字; (3)凡查表所得的值,在教科书中习惯用等号“=”,而不用约等号“≈”;根据查表所得的值进行近似计算,结果经四舍五入后,一般用约等号“≈”来表示;(4)通过查表要知道:sin0°=0,sin90°=1,cos0°=1,cos90°=0.在使用余弦表中的修正值时,如果角度增加(1′~3′),相应的余弦值要减小一些;如果角度减小(1′~3′),相应的余弦值要增加.【例题精讲】例1:如图6—2,已知在△ABC 中,∠ACB =90°,CD ⊥AB ,且AC =4,CD =3,求∠B 的正弦值和余弦值.剖析:任意一个锐角的三角函数值,一般是利用一个直角三角形中相应的边的比值表示,因此要求∠B 的正弦、余弦值,首先要观察∠B 是否在一个直角三角形中,边的比值可否求出.解:∵AC ⊥BC ,C D⊥AB ,∴△ACD ∽△ABC .∴∠ACD =∠B .又∵AC =4,C D=3,由勾股定理,得AD =7. ∴sinB =sin ∠ACD =47,cosB =cos ∠ACD =43.例2:如图6—3,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,写出等于∠A 的正弦的线段比.剖析:根据三角函数定义知,在直角三角形中,角的正弦值等于对边比斜边,余弦值等于邻边比斜边.这里的前提条件一定要注意,是在直角三角形中.错解:sin =AB BC AB CD =.正解:sin =BCBD ABBC ACCD ==.说明:错解之一是所答线段比ABCD ,因为它们不在同一个直角三角形中,错解之二是所答线段比不全,不全的原因是在三种情况下形成的:一是∠A 是Rt △ABC 和Rt △ACD 的公共角,应有两个比,二是∠A =∠BCD ,则sin =sin ,三是∠A +∠ACD =90°,∠A +∠B =90°,cosACD =sinA =ACCD ,cosB =sin ∠BCD =BCBD .只不过第三种情况的比包含在前两种情况之中了.例3:如图6—4,在△ABC 中,AB =AC =5,BC =6,求cos ∠A .剖析:我们所求的任意一个锐角的三角函数值,都是根据三角函数定义,利用一个直角三角形中相应边的比值来表示.求锐角A 的三角函数值时,要观察∠A 是否存在于一个直角三角形中,如果题中没有给出这样的条件,我们要通过添加辅助线,构造出∠A 所在的直角三角形.解:作△ABC 的高AD 、BE .∵AB =AC =5,BC =6,∴BD =21BC =21³6=3.在Rt △ABD 中,由勾股定理,得 AD =222235-=-BDAB =4.∵S △ABC =21BC ²AD =21AC ²BE ,∴BC ²AD =AC ²BE , 即6³4=5³BE . ∴BE =524.在Rt △ABE 中,由勾股定理,得 AE =57)524(52222=-=-BEAB .∴cos =257=ABAE .说明:任意锐角的正弦、余弦值都是存在的,因此在求某一个锐角的正弦值、余弦值时,可把该锐角放到某一直角三角形中(如本例通过添加辅助线,构造出直角三角形),也可以利用某直角三角形中的一个和它相等的角替代(如例1中,求∠B 的三角函数值可转化为求∠ACD 的三角函数值).例4:计算:cos 245°–︒+︒60sin 2360cos 3+cos 230°+sin 245°–sin 230°.剖析:本题主要考查特殊角的三角函数值及数的运算,所以做题时,一是要牢记特殊角的三角函数值,二是运算要准确.解:原式=(22)2–211+2323⨯+(23)2+(22)2–(21)2=21–2+1+43+21–41=21.说明:牢记特殊角的三角函数值是做题的前提,运算正确是关键. 例5:在△ABC 中,若|sin –22|+(23–cos)2=0,∠A 、∠B 都是锐角,则∠C 的度数是( ) A .75°B .90°C .105°D .120°剖析:本题主要考查非负数的性质及正、余弦函数的有关知识,在△ABC 中,要求∠C 的度数,首先要确定∠B 、∠C 的度数.解:∵|sin –22|+(23–cos)2=0,∴|sin –22|=0,(23–cos)2=0,∴sin –22=0, 23–cos =0.即sin =22,cos =23.∴∠A =45°,∠B =30°. ∵∠A +∠B +∠C =180°, ∴∠C =105°. 故应选C .例6:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则BBA s in c o s c o s ∙的值是( ) A .ca B .ac C .baD .ab剖析一:四个选择支均为边的比值,因此想到将sinB 、cosB 、cosA 转化边的比,根据锐角三角函数的定义,cosA =cb ,sinB =cb ,cosB =ca ,化简得ca ,所以选A .剖析二:利用互余两角三角函数间的关系,得cosA =sinB ,即Bsin Bcos A cos ⋅=cosB =ca .因此选A .说明:(1)在解题中,常常利用锐角三角函数的定义,将锐角三角函数转化为边的比,或将边的比转化成锐角三角函数;(2)求三角函数式的值、化简三角函数式、或证明三角函数恒等式,常常利用互为余角的三角函数间的关系.将不同角的三角函数变为同角的三角函数.例7:若α是锐角,且sin α=322,求cos α的值.解:如图6—5,设∠A =α,∠C =90°,不妨设BC =22,AB =3,∴AC =2222)22(3-=-BC AB =1.∴cos α=31=ABAC .说明:(1)因α是锐角,可构造一个直角三角形,使α是其中的一个锐角,从而转化为利用锐角三角函数定义来解决问题.(2)已知sin α=322,运用特例的思想,可设BC =22,AB =3,从而转化为在直角三角形内的问题.这种解法在做选择题、填空题时应用更为广泛.(3)此题还可应用同角之间的三角函数关系求解,这将在以后的学习中学到. 【知识拓展】培养学习数学好习惯学习习惯是长时期逐渐养成的、一时不容易改变的学习行为方式和行为倾向,一个人养成什么样的学习习惯,会对其学习成绩直接产生有利或有害的影响.同学们养成怎样的学习习惯才对学习有利呢? (1)独立思考的习惯 爱因斯坦说过:“学习知识要善于思考、思考、再思考,我就是靠这个学习方法成为科学家的.” 课堂上对于老师的讲解,不要只是听或认真听,而要经过思考:老师为什么要这样讲?此题为什么要这样解?辅助线为什么要这样添?还有没有其他解法?长期坚持下去,既培养了自己独立思考的习惯,又真正掌握了知识,提高了能力,只有这样才有助于学习成绩的提高.(2)善于求异和质疑的习惯具体内容是:①独立思考问题,自己从书中、演算中或从分析自己的错例中寻找问题的答案,不畏困难,积极思考.②敢于提出自己的疑问并寻根问底,敢于提出自己不同意见.③在解题、讨论或研究问题时能突破条条框框的约束,不墨守成规,能从不同角度多方面的思考问题,寻求出创造性的解题方法.纠正懒于思考,事事依赖老师、家长、同学或单纯靠记忆模仿、照搬等不良的思维习惯.养成求异和质疑的好习惯对发展创造性思维,及将来的进一步学习都有重要的作用.要养成这种好习惯,首先要认真阅读课本,对书上的结论、注解要多问几个为什么;其次在听懂老师讲解后,要独立思考,看看所讲例题有没有别的解法;再次,就是在研究一题多解的基础上,勤积累,多思考.【同步达纲练习】1.选择题(1)下列各式中,正确的是( ) A .sin60°=21 B .cos (90°-30°)=sin60° C .cos60°=21D .sin 2x =sinx 2(2) 21cos30°+22cos45°+sin60°²cos60°等于( ) A . 22B .23 C .221+D .231+(3)在Rt △ABC 中,∠C =90°,a :b =3:4,则cosB 等于( ) A .54 B .53 C .43 D .34(4)已知在Rt △ABC 中,∠C =90°,AC =12,AB =13,那么sinA 的值是( ) A .1312 B .1213C .131 D .135(5)在Rt △ABC 中,∠C =90°,若c =2,sinA =41,则b 的值是( ) A .21 B .1C .215 D .以上都不对(6)在Rt △ABC 中,各边的长都扩大两倍,那么锐角A 的正弦值( )A .扩大两倍B .缩小到一半C .没有变化D .不能确定(7)在Rt △ABC 中,sinB =23,则cos 2B 等于( )A .21 B .23C .±23 D .以上答案都不对(8)若0°<α<45°,那么cos α–sin α的值( )A .大于零B .小于零C .等于零D .不能确定(9)α是锐角,且cos α=43,则α( ) A .0°<α<30°B .30°<α<45°C .45°<α<60°D .60°<α<90°(10)在Rt △ABC 中,∠C =90°,CD ⊥AB ,垂足为D ,AB :AC =3:2,则∠BC D的正弦值为( )A .35 B .32 C .23 D .53(11)在△ABC 中,∠C =90°,则下列叙述中正确的是( ) A .∠A 的邻边与斜边之比是∠A 的正弦B .∠A 的对边与邻边之比是∠A 的正弦C .∠A 的对边与斜边之比是∠B 的余弦D .∠A 的邻边与斜边之比是∠B 的余弦(12)在Rt △ABC 中,∠C =90°,∠A =30°,则sinA +cosA 等于( ) A .1B .231+ C .221+ D .41(13)下列等式中正确的是( ) A .sin20°+sin40°=sin60° B .cos20°+cos40°=cos60° C .sin (90°-40°)=cos40° D .cos (90°-30°)=sin60° (14)下列不等式中正确的是( ) A .cos42°>cos40°B .cos20°<cos70°C .sin70°>sin20°D .sin42°<sin40°(15)在Rt △ABC 中,∠C =90°,下列等式一定成立的是( ) A .sinA =sinB B .sinA =cosA C .sin (A +B )=cos D .sinA=cosB(16)化简22)80sin 20(sin 20sin 80sin )80cos 1(︒-︒︒-︒-︒-的结果是( )A .1–cos80°B .–cos80°C .cos80°D .cos80°–1(17)若α是锐角,sin40°=cos α,则α等于( ) A .40° B .50° C .60° D .不能确定(18)已知α、β是两个锐角,sin α=0.412,sin β=0.413,则有( ) A .α>βB .α<βC .α=βD .不能确定α、β的大小(19)已知α、β是两个锐角,cos α=0.43,cos β=0.44,则有( ) A .α>β B .α<β C .α=β D .不能确定α、β的大小(20)如果α是锐角,且cos α=54,则sin (90°-α)的值等于( )A .259 B .54C .53 D .2516(21)在△ABC 中,如果sinA =cosB =21,则△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .以上答案都不对2.填空题(1)计算:4sin60°+23cos30°-6cos 245°=__________;(2)一个直角三角形的两直角边分别为5和12,则较小锐角的正弦值是__________;(3)化简:︒+︒∙︒-︒90sin 60cos 70sin 470sin 22+cos20°的结果为__________;(4)若锐角α满足2sin α-1=0,则α=__________;(5)不查表,比较大小:sin25°_____sin24°30′,cos82°25′_______cos82°26′; (6)△ABC 的面积为24cm 2,∠B =90°,一直角边AB 为6 cm ,则sinA =__________; (7)若三角形的三边长之比为1:3:2,则此三角形的最小内角的正弦值为__________; (8)在Rt △ABC 中,∠C =90°,a =8,b =15,则sinA +sinB =__________;(9)若锐角α满足等式2sin(α+15°)–1=0,则∠α=__________,cos2α=__________. (10)如果2+3是方程x 2–8xcos α+1=0的一个根,且α是锐角,则α=__________. (11)若ααααcos sin cos sin -+没有意义,则锐角α__________.3.用符号表示: (1)∠A 的正弦; (2)∠B 的余弦; (3)40°角的正弦; (4)47°5′角的余弦. 4.求下列各式的值:(1)sin30°+2cos60°;(2)sin 230°+cos 230°;(3)2sin45°²cos45°; (4)︒︒45cos sin45-1;(5)sin30°²cos45°+cos30°²sin45°.5.把下列各角的正弦(余弦)改写成它的余角的余弦(正弦): (1)sin17°; (2)cos39°; (3)sin41°12′; (4)cos62°27′.6.在△ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ;先根据下列条件求出∠A 的正弦值和余弦值,然后直接写出∠B 的正弦值和余弦值.(1)a =5,c =29; (2)b =9,c =85; (3)a =7,b =4.7.已知△ABC 为等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE⊥AB ,垂足为E ,连结CE ,求cosAEC 的值.8.已知2+3是方程 x 2-5x ²sin θ+1=0的一个根,θ是锐角,试求sin θ、cos θ的值.参考答案【同步达纲练习】1.(1)C (2)D (3)B (4)D (5)C (6)C (7)B (8)A (9)B (10)A (11)C (12)A (13)C (14)C (15)D (16)B (17)B (18)B (19)A (20)B (21)A 2.(1)23 (2)135 (3)1 (4)45° (5)> > (6)54 (7)21 (8)1723 (9)15°23 (10)60° (11)=45°3.(1)sinA (2)cosB (3)sin40° (4)cos47°5′ 4.(1)23(2)1 (3)1 (4)0 (5)4625.(1)cos73° (2)sin51° (3)cos48°48′ (4)sin27°33′ 6.(1)sinA =cosB =29295,cosA =sinB =29292;(2)sinA =cosB =85852,cosA =sinB =85859; (3)sinA=cosB =65657,cosA =sinB =656547.cosAEC =558.sin θ=54,cos θ=53。
三角形的正弦余弦与正切计算
三角形的正弦余弦与正切计算三角函数是数学中关于角度或弧度的函数,其中最常用的三个函数是正弦(sine),余弦(cosine)和正切(tangent)。
在三角形中,正弦、余弦和正切可以用于计算角度和边长之间的关系。
本文将详细介绍如何计算三角形中的正弦、余弦和正切,以及它们的应用。
一、正弦(Sine)的计算及应用正弦是一个三角函数,通常用sin表示,表示一个角的对边与斜边的比值。
在三角形中,以角A为例,其对边为a,斜边为c,则正弦的计算公式如下:sin A = a / c正弦函数可以用于计算三角形的各个角的大小。
通过测量三角形的对边和斜边的长度,可以使用正弦函数计算出角的正弦值,从而确定角的大小。
同时,正弦函数可以用于解决与三角形相关的问题,例如计算高度、距离等。
二、余弦(Cosine)的计算及应用余弦也是一个三角函数,通常用cos表示,表示一个角的邻边与斜边的比值。
在三角形中,以角A为例,其邻边为b,斜边为c,则余弦的计算公式如下:cos A = b / c余弦函数可以用于计算角的大小,与正弦函数类似。
通过测量三角形的邻边和斜边的长度,可以使用余弦函数计算出角的余弦值,从而确定角的大小。
余弦函数也可用于求解三角形相关的问题,如计算边长、角度等。
三、正切(Tangent)的计算及应用正切是一个三角函数,通常用tan表示,表示一个角的对边与邻边的比值。
在三角形中,以角A为例,其对边为a,邻边为b,则正切的计算公式如下:tan A = a / b正切函数可以用于计算角度的大小。
通过测量三角形的对边和邻边的长度,可以使用正切函数计算出角的正切值,从而确定角的大小。
正切函数也可应用于解决与三角形相关的问题,如计算边长、角度等。
四、三角函数的应用举例例1:已知一个直角三角形,斜边长为10,求其角B的正弦和余弦函数值。
解:角B的对边为6,斜边为10。
根据正弦函数的计算公式,可得:sin B = 6 / 10 = 0.6根据余弦函数的计算公式,可得:cos B = 8 / 10 = 0.8例2:已知一个等腰三角形,底边长为4,求其顶角的正切函数值。
高中数学公式大全正弦余弦和正切的基本关系
高中数学公式大全正弦余弦和正切的基本关系高中数学公式大全: 正弦、余弦和正切的基本关系在高中数学学习中,正弦、余弦和正切是三角函数中最基本的三个函数。
它们之间存在着紧密的关系,通过这些关系可以更好地理解和应用三角函数。
1. 正弦(Sin)的定义:在直角三角形中,正弦是指对边与斜边之比,即sinA = 对边/斜边2. 余弦(Cos)的定义:在直角三角形中,余弦是指邻边与斜边之比,即cosA = 邻边/斜边3. 正切(Tan)的定义:在直角三角形中,正切是指对边与邻边之比,即tanA = 对边/邻边4. 正弦、余弦和正切之间的基本关系:根据勾股定理和定义,可以得到以下关系式:sin^2A + cos^2A = 1以及tanA = sinA / cosA5. 三角函数的周期性:正弦、余弦和正切都是周期函数,其周期为360°或2π。
也就是说,对于任意角度A,有以下关系:sin(A + 360°) = sinAcos(A + 360°) = cosAtan(A + 360°) = tanA6. 三角函数的基本性质:(1)正弦和余弦函数的值域在[-1, 1]之间,即-1 ≤ sinA, cosA ≤ 1(2)正切函数的值域是所有实数,即tanA ∈ R7. 一些常用的角度-弧度转换关系:π弧度 = 180°角度A对应的弧度值= (π/180) * A8. 三角函数的图像:正弦函数的图像呈现周期性波浪形,以原点为中心对称;余弦函数的图像也呈现周期性波浪形,但与正弦函数相比,相位相差90°;正切函数的图像则呈现周期性的射线形。
9. 三角函数的应用:正弦、余弦和正切在几何、物理、工程等领域中有广泛的应用。
例如,在三角测量中,我们可以利用正弦、余弦和正切的关系来解决实际问题,如测量不可达高度、角度等。
总结:正弦、余弦和正切是高中数学中最基本的三角函数。
它们之间存在着紧密的关系,通过这些关系可以更好地理解和应用三角函数。
第四篇 三角函数、解三角形第6讲 正弦定理和余弦定理
第6讲 正弦定理和余弦定理1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法. 【复习指导】1.掌握正弦定理和余弦定理的推导方法.2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <ba ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =csin C , 即1032=c 22.∴c =1063. 答案 C2.在△ABC 中,若sin A a =cos Bb ,则B 的值为( ). A .30° B .45° C .60° D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ). A .3 3 B .2 3 C .4 3 D. 3 解析 ∵cos C =13,0<C <π, ∴sin C =223, ∴S △ABC =12ab sin C=12×32×23×223=4 3. 答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32, 故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°, ∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin Csin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin Csin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A =2,sin 2A +cos 2A =1, 联立解得sin A =255, 再由正弦定理得a sin A =bsin B , 代入数据解得a =210.答案255 210考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac , cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π. (2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.解(1)由2cos2A2+cos A=0,得1+cos A+cos A=0,即cos A=-1 2,∵0<A<π,∴A=2π3.(2)由余弦定理得,a2=b2+c2-2bc cos A,A=2π3,则a2=(b+c)2-bc,又a=23,b+c=4,有12=42-bc,则bc=4,故S△ABC =12bc sin A= 3.考向三利用正、余弦定理判断三角形形状【例3】►在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)sin C,试判断△ABC的形状.[审题视点] 首先边化角或角化边,再整理化简即可判断.解由已知(a2+b2)sin(A-B)=(a2-b2)sin C,得b2[sin(A-B)+sin C]=a2[sin C-sin(A-B)],即b2sin A cos B=a2cos A sin B,即sin2B sin A cos B=sin2A cos B sin B,所以sin 2B=sin 2A,由于A,B是三角形的内角.故0<2A<2π,0<2B<2π.故只可能2A=2B或2A=π-2B,即A=B或A+B=π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练3】 在△ABC 中,若a cos A =b cos B =ccos C ;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径).∴sin A cos A =sin B cos B =sin C cos C .即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎨⎧ a 2+b 2-ab =4,ab =4,解得⎩⎨⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6, a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎨⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2. (1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103, 所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35, 所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a+c)2-2ac=20,(a+c)2=40.所以a+c=210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a =3,b=2,1+2cos(B+C)=0,求边BC上的高.错因忽视三角形中“大边对大角”的定理,产生了增根.实录由1+2cos(B+C)=0,知cos A=12,∴A=π3,根据正弦定理asin A=bsin B得:sin B=b sin Aa=22,∴B=π4或3π4.以下解答过程略.正解∵在△ABC中,cos(B+C)=-cos A,∴1+2cos(B+C)=1-2cos A=0,∴A=π3.在△ABC中,根据正弦定理asin A=bsin B,∴sin B=b sin Aa=22.∵a>b,∴B=π4,∴C=π-(A+B)=5 12π.∴sin C=sin(B+A)=sin B cos A+cos B sin A=22×12+22×32=6+24.∴BC边上的高为b sin C=2×6+24=3+12.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a;(2)若c2=b2+3a2,求B.[尝试解答](1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B(sin2A+cos2A)=2sin A.故sin B=2sin A,所以ba= 2.(2)由余弦定理和c2=b2+3a2,得cos B=(1+3)a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cos B>0,故cos B=22,所以B=45°.。
正弦定理与余弦定理(四)
正弦定理与余弦定理(四)教学目标:理解正弦定理,能用正弦定理解三角形;理解余弦定理,能用余弦定理解三角形;能运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题;2010年考试说明要求B 。
知识点回顾:(1)正弦定理:R Cc B b A a 2sin sin sin === (R 2是ABC ∆外接圆直径 ) 注:①C B A c b a sin :sin :sin ::=;②C R c B R b A R a sin 2,sin 2,sin 2===;③CB A c b aC c B b A a sin sin sin sin sin sin ++++===。
(2)余弦定理:A bc c b a cos 2222-+=等三个; bc a c b A 2cos 222-+=等三个。
(3)三角形面积公式: 11sin 22ABC S ah ab C ∆==;内切圆半径r=c b a S ABC ++∆2; 外接圆直径2R=Cc B b A a sin sin sin == 基础训练:1.在△OAB 中,(2cos ,2sin )OA αα= , (5cos ,5sin )OB ββ= ,若5OA OB ⋅=- ,则OAB S ∆=3.△ABC 中,三个内角A B C 、、所对的边分别为a b c 、、,设复数()()22sin sin sin sin sin z A A C B C i =-+-,且z 在复平面内所对应的点在直线y x =上. ⑴求角B 的大小;⑵若sin cos sin B A C =,△ABC 的外接圆的面积为4π,求△ABC 的面积.典型例题设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且320tan =B a ,sin 4b A =.(Ⅰ)求B cos 和边长a ;(Ⅱ)若ABC △的面积10S =,求C 4cos 的值.课堂检测:已知:复数,,且,其中、、为△ABC 的内角;(Ⅰ)求角大小;(Ⅱ) 若ABC 面积。
1.4.2 正弦函数、余弦函数的性质 课件(人教A版必修4)
第一章 三角函数
单调减区间为[34π+2kπ,74π+2kπ](k∈Z). 所以原函数 y=2sin(π4-x)的单调增区间为[34π +2kπ,74π+2kπ](k∈Z); 单调减区间为[-π4+2kπ,34π+2kπ](k∈Z).
栏目 导引
第一章 三角函数
变式训练
3.求函数 y=2sin(x+π4)的单调区间. 解:y=sinx 的单调增区间为[-π2+2kπ,π2+ 2kπ],k∈Z;单调减区间为[π2+2kπ,32π+2kπ], k∈Z. 由-π2+2kπ≤x+π4≤π2+2kπ,k∈Z,
栏目 导引
第一章 三角函数
由-π2+2kπ≤x-π4≤π2+2kπ,k∈Z, 得-π4+2kπ≤x≤34π+2kπ,k∈Z; 由π2+2kπ≤x-π4≤32π+2kπ,k∈Z, 得34π+2kπ≤x≤74π+2kπ,k∈Z. 所以函数 y=sin(x-π4)的单调增区间为[-π4 +2kπ,34π+2kπ](k∈Z);
∴y=sin12x 的周期是 4π.
(2)∵2sinx3-π6+2π=2sinx3-π6, 即 2sin13(x+6π)-π6
栏目 导引
=2sinx3-π6, ∴y=2sinx3-π6的周期是 6π.
(3)y=|sinx|的图象如图所示.
第一章 三角函数
∴周期T=π.
∴|φ|的最小值|φ|min=2π+π2-83π=π6.
栏目 导引
归纳总结
第一章 三角函数
栏目 导引
函 数 y= sinx (k∈z)
性质
y= cosx 第(k一∈章z) 三角函数
定义域 值域
最值及相应的 x的 集合
单调性
对称轴 对称中心
正余玄定理
正余玄定理正余玄定理是初中数学中的重要定理之一,它是关于三角函数的一个重要公式。
正余玄定理的全称为“正弦、余弦、正切、余切四倍角公式”,它是用于计算三角函数四倍角的公式,可以帮助我们更加方便地求解各种三角函数问题。
一、正弦、余弦、正切、余切四倍角公式的表述1. 正弦四倍角公式sin4α=2sin2αcos2α=4sinαcosα(1-2sin^2α)其中,α表示任意角度。
2. 余弦四倍角公式cos4α=2cos^22α-1=1-2sin^22α=cos^4α-6cos^22α+5其中,α表示任意角度。
3. 正切四倍角公式tan4α=(tan^2α)×(8tan^2α-1)/(1-6tan^2α+tan^4α)其中,0<|tan α|<√3。
4. 余切四倍角公式cot4 α=(cot² α)×(cot² α-8)/(cot² α+3)其中,0<|cot α|<√3/3。
二、正弦、余弦、正切、余切四倍角公式的推导1. 正弦四倍角公式的推导根据双角公式,可以得到:sin2α=2sinαcosα将上式代入双角公式中,可以得到:sin4α=2sin2αcos2α再将sin^22α用cos^22α表示,可以得到:sin4α=4sinαcosa(cos^22a-1/2)再将cos^22a用1-sin^22a表示,可以得到:sin4α=4sinαcosa(1-2sin^2a)因此,正弦四倍角公式为:sin4 α= 2 sin² α cos² α = 4 sin α cos α (1 - 2 sin² α)。
2. 余弦四倍角公式的推导根据双角公式,可以得到:cos2α=cos² α-sin² α将上式代入双角公式中,可以得到:cos4α=2cos² 2α-1再将cos² 2a用1-sin² 2a表示,可以得到:cos4 a = 1 - 2 sin^22 a - 6 cos^22 a + 8 cos^44 a因此,余弦四倍角公式为:cos4 α = 2 cos² 2 α - 1 = 1 - 8 sin² α +8 sin⁴ α。
正弦定理和余弦定理讲解
年级 高一学科数学内容标题 正弦定理和余弦定理 编稿老师褚哲一、学习目标1. 掌握正弦定理、余弦定理和三角形的面积公式,并能应用这些公式解斜三角形.2. 能正确理解实际问题中仰角、俯角、视角、方位角及坡度、经纬度等有关名词和术语的确切含义.3. 能熟练应用正、余弦定理及相关公式解决诸如测量、航海、天体运动、物理、几何等方面的问题.4. 在解决实际问题时,能准确理解题意,分清已知和未知,并能把这些实际问题转化为数学问题,培养分析解决实际问题的能力.二、重点、难点重点:正、余弦定理及其证明;用正弦定理、余弦定理解三角形. 难点:定理的推导;从实际问题中抽取出数学模型.三、考点分析本章是在学习了三角函数、平面向量等知识的基础上,进一步学习如何解三角形的.正、余弦定理是我们学习三角形相关知识的延续和发展,这些定理进一步揭示了三角形边与角之间的关系,在生产、生活中有着广泛的应用,是我们求角三解形的重要工具,本章内容经常会与三角部分结合起来综合考查,难度中等,各种题型均有可能出现.1. 正弦定理 (1)正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即在ABC ∆中R CcB b A a 2sin sin sin ===(其中R 为ABC ∆外接圆半径), 上式对任意三角形均成立.(2)利用正弦定理可以解决如下有关三角形的问题:①已知三角形的两角和任一边,求三角形的其他边与角; ②已知三角形的两边和其中一边的对角,求三角形的其他边和角. 2. 余弦定理(1)余弦定理:三角形任一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍.即在ABC ∆中,Cab b a c B ca a c b A bc c b a cos 2cos 2cos 2222222222-+=-+=-+= 余弦定理还有另一种形式:若令︒=90C ,则222b ac +=,这就是勾股定理.abc b a C ca b a c B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+=(2)利用余弦定理,可以解决以下两类三角形的相关问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 3. 在解三角形问题时,须掌握的三角关系式在ABC ∆中,以下的三角关系式,在解答有关的三角形问题时经常用到,同学们要记准、记熟,并能灵活地加以运用.(1)π=++C B A ;(2)C B A sin )sin(=+,C B A cos )cos(-=+;(3)2cos 2sinC B A =+,2sin 2cos CB A =+; (4)C ab S sin 21=∆,A bc S sin 21=∆,B ac S sin 21=∆.4. 实际应用问题中的有关名词、术语(1)仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(2)方向角:从指定方向线到目标方向线的水平角. (3)方位角:从指定方向线顺时针到目标方向线的水平角. (4)坡度:坡面与水平面所成的二面角的度数. 5. 须熟悉的三角形中的有关公式解斜三角形时主要应用正弦定理和余弦定理,有时也会用到周长公式和面积公式,比如:c b a P ++=(P 为三角形的周长) a ah S 21=(a h 表示a 边上的高)A bcB acC ab S sin 21sin 21sin 21===R abc S 4=(可用正弦定理推得))(21c b a r S ++=(r 为内切圆半径)此处还须熟悉两角和差的正弦、余弦、正切及二倍角的正弦、余弦、正切公式. 6. 关于已知两边和其中一边的对角,解三角形的讨论已知两边和其中一边的对角,不能唯一确定三角形的形状,解这类三角形问题的过程中将出现无解、一解和两解的情况,应分情况予以讨论,图1与图2即表示了在ABC ∆中,已知a 、b 和A ∠时解三角形的各种情况当A ∠为锐角时,当A ∠为直角或钝角时知识点一:正弦定理与余弦定理例1:已知∆ABC 中,∠A ︒=60,3a =sin sin sin a b cA B C++++思路分析:可通过设一参数k(k>0)使sin sin a b A B =sin ck C==,证明出sin sin a b A B =sin c C ==sin sin sin a b cA B C++++即可. 解题过程:设sin sin a bA B =()0sin >==k k Cc 则有sin a k A =,sin b k B =,sin c k C =从而sin sin sin a b c A B C ++++=sin sin sin sin sin sin k A k B k CA B C ++++=k又sin aA=k ==︒=260sin 3,所以sin sin sin a b cA B C ++++=2解题后反思:∆ABC 中,等式sin sin abAB=sin cC==()0sin sin sin a b ck k A B C++=>++恒成立.(1)定理的表示形式:sin sin abA B =sin cC==()0sin sin sin a b ck k A B C++=>++;或sin a k A =,sin b k B =,sin c k C =(0)k >(2)正弦定理的应用范围:①已知三角形的两角和任一边,求其他两边及一角;②已知三角形的两边和其中一边的对角,求另一边及角.例2:在∆ABC 中,已知=a c ︒=45B ,求b 及A 的值. 思路分析:本题的已知条件显然符合余弦定理求解的条件. 解题过程:∵2222cos =+-ba c ac B=222+-⋅cos45°=2121)+-= 8 ∴=b 求A 可以利用余弦定理,也可以利用正弦定理:解法一:∵cos 2221,22+-=b c a A bc ∴︒=60A .解法二:∵︒⋅==45sin 2232sin sin B b a A 2.4+1.4=3.8,21.8 3.6,⨯=∴a <c , 即︒0<A <︒90 ∴︒=60A解题后反思:使用解法二时应注意确定A 的取值范围.例3:在△ABC 中,已知a=3,b =2,B =45°,求A 、C 及c .思路分析:这是一道已知两边及一边的对角解三角形的问题,可用正弦定理求解,但先要判定△ABC 是否有解,有几个解,亦可用余弦定理求解. 解题过程:∵B =45°<90°,且b <a ,∴△ABC 有两解:由正弦定理得:sin A =23245sin 3sin =︒=bBa , ∴A =60°或120°.①当A =60°时,C =75°⇒c =22645sin 75sin 2sin sin +=︒︒=B C b . ②当A =120°时,C =15°⇒c =22645sin 15sin 2sin sin -=︒︒=BC b . 故A =60°,C =75°,c =226+或A =120°,C =15°,c =226-. 解题后反思:因sin A =sin(π-A ),故在解三角形中要考虑多种情况,灵活使用正、余弦定理,关键是将“条件”与情况对应.知识点二:三角形中的几何计算例4:已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sinB ,△ABC 外接圆半径为2. (1)求∠C ;(2)求△ABC 面积的最大值.思路分析:利用正、余弦定理可以进行边角互化,解题时要注意有意识地进行边角关系的统一.解题过程:(1)由22(sin 2A -sin 2C )=(a -b )sinB 得22(224R a -224R c )=(a -b )Rb2. 又∵R=2,∴a 2-c 2=ab -b 2.∴a 2+b 2-c 2=ab .∴cosC=ab c b a 2222-+=21.又∵0°<C <180°,∴C=60°. (2)ABC S ∆=21absinC=21×23ab=23sinAsinB=23sinAsin (120°-A )=23sinA (sin120°cosA -cos120°sinA )=3sinAcosA+3sin 2A =23sin2A -23cos2A+23=3sin (2A -30°)+23.∴当2A=120°,即A=60°时,S max =233. 解题后反思:求最值往往是先建立函数关系式,然后借助函数的方法去求解.例5:在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,272cos 2sin 42=-+A C B . (1)求角A 的度数;(2)若a =3,b +c =3,求b 和c 的值.思路分析:在三角形的求解中,会经常用到π=++C B A ,显然把B C +转化成A π-可是解题过程更为简便. 解题过程:(1)由272cos 2sin42=-+A C B 及︒=++180C B A ,得: ()[]271cos 2cos 122=+-+-A C B ,()5cos 4cos 142=-+A A即01cos 4cos 42=+-A A ,21cos =∴A , ︒<<︒1800A Θ,︒=∴60A (2)由余弦定理得:bca cb A 2cos 222-+=21cos =A Θ,212222=-+∴bc a c b ,()bc a c b 322=-+∴. 3=a ,3=+c b 代入上式得:2=bc由⎩⎨⎧==+23bc c b 得:⎩⎨⎧==2c a b 或⎩⎨⎧==12c b .解题后反思:正弦定理和余弦定理在解斜三角形中应用得比较广泛,应熟练掌握这些定理.此外,还须熟悉两角和差的正弦、余弦、正切及二倍角的正弦、余弦、正切公式.知识点三:应用性问题例6:如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为︒75,︒30,于水面C 处测得B 点和D 点的仰角均为︒60,AC=0.1km .试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km ,2≈1.414,6≈2.449)思路分析:解斜三角形的问题时,通常要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出所要求的量,从而得到实际问题的解. 解题过程:在△ADC 中,∠DAC=30°,∠ADC=60°-∠DAC=︒30,所以CD=AC=0.1 又∠BCD=180°-60°-60°=60°, 故CB 是△CAD 底边AD 的中垂线,所以BD=BA ,在△ABC 中,,ABC sin CBCA sin ∠=∠A AB即AB=2062315sin 60sin +=︒︒AC ,因此,BD=。
(完整版)解三角形之正弦定理与余弦定理
正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形知识点清单一.正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R(其中R是三角形外接圆的半径)sin A sin B si2.变形:1) a b c a b csin sin si nC sin sin si nC2)化边为角:a :b: c sin A: sin B :s in C -a si nA.b sin B a sin AJb sin Bc sin C c sin C '3)化边为角:a 2Rsin A, b 2Rsi nB, c 2Rs inC4)化角为边:sin A a ;J sin B b ; si nA aJ7sin B b sin C c sin C c5)化角为边:sin A a sin B b si nC c2R‘2R'2R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a,解法:由A+B+C=18°0,求角A,由正弦定理-Sn) - Sn^; b sin B c sin C a sin A;求出b与cc sin C②已知两边和其中一边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理旦血求出角B,由A+B+C=180求出角C,再使用正b sin B弦定理旦泄求出c边c sin C4. △ ABC中,已知锐角A,边b,贝U①a bsin A时,B无解;②a bsinA或a b时,B有一个解;③ bsin A a b 时,B 有两个解。
如:①已知A 60 ,a 2,b2, 3 ,求B (有一个解) ②已知A 60 ,b 2,a23,求B (有两个解)注意:由正弦定理求角时,注意解的个数。
正弦余弦正切四个象限的符号
正弦余弦正切四个象限的符号在平面直角坐标系中,正弦(sin)、余弦(cos)和正切(tan)函数的值在四个象限中的符号规律如下:1. 第一象限(Ⅰ):正弦(sin)的值为正(+)。
余弦(cos)的值为正(+)。
正切(tan)的值为正(+)。
2. 第二象限(Ⅱ):正弦(sin)的值为正(+)。
余弦(cos)的值为负(-)。
正切(tan)的值为负(-)。
3. 第三象限(Ⅲ):正弦(sin)的值为负(-)。
余弦(cos)的值为负(-)。
正切(tan)的值为正(+)。
4. 第四象限(Ⅳ):正弦(sin)的值为负(-)。
余弦(cos)的值为正(+)。
正切(tan)的值为负(-)。
这些符号规律可以通过对角度的单位圆定义和三角函数的定义进行解释。
在一个单位圆上,角度从0°到360°均匀分布,分为四个象限。
在每个象限中,角度的大小和参考角(通常是0°或360°)的关系决定了三角函数的符号。
例如,考虑一个角度α位于第一象限,那么它的大小是0°到90°之间,参考角是0°。
因为正弦函数是y坐标,余弦函数是x坐标,正切函数是y/x。
在第一象限中,x和y都是正的,所以sinα是正的,cosα也是正的,tanα也是正的。
类似地,对于第二象限,角度α的大小是90°到180°之间,参考角是90°。
在这个象限中,y是正的,但x是负的,所以sinα是正的,cosα是负的,tanα是负的。
对于第三象限,角度α的大小是180°到270°之间,参考角是180°。
在这个象限中,x和y都是负的,所以sinα是负的,cosα是负的,tanα是正的。
最后,对于第四象限,角度α的大小是270°到360°之间,参考角是270°。
在这个象限中,x是正的,但y是负的,所以sinα是负的,cosα是正的,tanα是负的。
高中《正弦和余弦定理》数学教案4篇
高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。
它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。
以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。
高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
正弦和余弦
正弦和余弦教学建议1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等。
2.重点、难点分析(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识。
有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础。
(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点。
3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心。
锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的。
如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:∽ ∽ ∽ ……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的。
这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系。
为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin 和cos这样的符号。
应当注意:单独写出三角函数的符号或cos等是没有意义的。
因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如)。
真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们。
4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式。
我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式。
如,如图所示,若,则有有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:很显然,这些表达式提供给我们丰富的边与角间的数量关系。
正弦和余弦
正弦和余弦教学建议1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.2.重点、难点分析(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:∽∽∽……所以,因为相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin 和cos这样的符号.理应注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能准确地使用它们.4.我们理应学会理解任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.我们不但理应熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有有的直角三角形隐藏在更复杂的图形中,我们也应能准确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应准确地写出如下的三角函数关系式:很显然,这些表达式提供给我们丰富的边与角间的数量关系.5.特殊角的正弦、余弦值既容易导出,也便于记忆,理应熟悉掌握它们.利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.根据定义,有另一方面,能够想像,当时,边与AC重合(即),所以当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有把以上结果能够集中列出下面的表:6.教法建议:(1)联系实际,提出问题通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.(2) 动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板实行度量,并引导学生得出规律:,再进一步对含的三角板实行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,理应即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.(3)增强数形结合思想的教学“解直角三角形”编在几何教材中,突出了它的几何特点,但这仅仅从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,所以教学中要充分利用这部分教材,协助学生掌握用代数方法解决几何问题的方法,提升在几何问题中注意使用代数知识的水平.第一课时一、教学目标1. 使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这个事实。
正弦和余弦
正弦和余弦(1)重点难点一定要理解并明确:在直角三角形中,当锐角固定时,它的对边、邻边与斜边的比值也是固定的.内容速览若一组直角三角形有一个锐角相等,可以把其顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.易知,△AB1C1∽△AB2C2∽△AB3C3∽……形中,∠A的对边、邻边与斜边的比值,是一个固定值.知识扩展当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下再研究这个“比值”!正弦和余弦(2)重点难点了解把握正弦、余弦概念;明确用含有几个字母的符号组sinA、cosA表示正弦、余弦.内容速览在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.大家一定要亲自动笔计算,对一些特殊角三角函数值一定要认记.典型一例知识扩展由以上知识,同学们应该明确对任意锐角A的正、余弦值都在0~1之间,即,0<sinA<1,0<cosA<1(∠A为锐角).正弦值随角度增大而增大,余弦值随角度增大而减小.正弦和余弦(3)重点难点了解把握一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.内容速览任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.sinA=cos(90°-A),cosA=sin(90°-A).经典一例(2)已知sin35°=0.5736,求cos55°;(3)已知cos47°6′=0.6807,求sin42°54′.分析:(1)问比较简单,对照定理,即可解答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)没有,但是仔细看,你会发现35°与55°,47°6′与42°54′分别互余解:(1)1/2,(2)0.5736,(3)0.6807.知识扩展任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.正弦和余弦(4)重点难点探索明确当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.注意:由于余弦是减函数,查表时“值增角减,值减角增”不少人常常出错. 内容速览“正弦和余弦表”简介(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.(2)表中角精确到1′,正弦、余弦值有四位有效数字.(3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).知识总结了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.正切和余切重点难点了解正切、余切的概念,熟记特殊角的正切值和余切值.在使用余切表中的修正值时,如果角度增加,相应的余切值要减少一些;如果角度减小,相应的余切值要增加一些.这里取加还是取减,不少同学极易出错. 难点解疑查锐角的正切值类似于查正弦值,应“顺”着查,若使用修正值,则角度增加时,相应的正切值要增加,反之,角度减小时,相应的正切值也减小;查余切表与查余弦表类似,“倒”着查,在使用修正值时,角度增加,就相应地减去修正值,反之,角度减小,就相应地加上修正值. 内容速览1.在Rt △ABC 中,把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA .即tanA=的邻边的对边A A ∠∠并把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cotA=的对边的邻边A A ∠∠2.tanA 与cotA 的关系A A cot 1tan =(或1cot tan ,tan 1cot =⋅=A A A A )3.锐角三角函数,cot ,tan ,cos ,sin a b A b a A c b A c a A ====把锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数.4.一些特殊锐角三角函数值3331cot 60cot 111cot 45cot 313cot 30cot 313tan 60tan 111tan 45tan ;3331tan 30tan ''''''''''====︒====︒====︒====︒====︒===︒AC BC B C B B A A BC AC A BC AC B C A C B A A 经典一例例 求下列各式的值:(1)2sin30°+3tan30°+cot45°;(2)cos245°+tan60°·cos30°.解:(1)2sin30°+3tan30°+cot45°(2)cos245°+tan60°·cos30°=2.解直角三角形重点难点大家应该理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.内容速览1.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间的等量关系如下: (1)边角之间关系a b A b aA c bA c aA ====cot ;tan ;cos ;sin b aB abB c aB c bB ====cot ;tan ;cos ;sin如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系a 2 +b 2 =c 2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.知识总结在直角三角形中,除直角外还有五个元素,大家应该了解两个元素(至少有一个是边),就可应用举例重点难点大家要善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.内容速览解直角三角形的主要依据如下(1)勾股定理:a 2+b 2=c 2(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系:tanA=的邻边的对边A A ∠∠ cotA=的对边的邻边A A ∠∠经典一例例 如图6-19,已知A 、B 两点间的距离是160米,从A 点看B 点的仰角是11°,AC 长为1.5米,求BD 的高及水平距离CD .解:过A 作AE ∥CD ,于是AC=ED , AE =CD .在Rt △ABE 中。
两角和(差)的正弦、余弦及正切(四)
两角和(差)的正弦、余弦及正切(四)教学目标:了解用向量的数量积推导出两角差的余弦公式的过程。
能从两角差的余弦公式推导出两角和的余弦、两角和与差的正弦、两角和与差的正切公式,体会化归思想的应用;掌握上述两角和与差的三角函数公式,能运用它们进行简单的三角函数式的化简、求值及恒等式证明;2010年考试说明要求C 。
知识点回顾:1、 两角和与差的三角函数____________ ;_____________;_____________2、两角和与差的三角函数公式其内涵是揭示不同角的三角函数的运算规律;对公式要会“正用、逆用、变形”运用,如;掌握角的变化规律,如等等。
3、巧变角:如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等) 4. 基本型:a sinx+b cosx =22b a +(22b a a +sinx+22b a b +cosx )= 22b a +sin(x+φ),(其中cos φ=22b a a+,sin φ=22b a b +,tan φ=a b ) 基础训练:1.计算:=3.设θγ,为常数(0,,,442πππθγ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭),若sin()sin()αγγβ++-=sin (sin θαsin )cos (cos cos )βθαβ-++对一切R ∈βα,恒成立,则2tan tan cos()sin ()4θγθγπθ+-=+_________4.已知,51)sin(,32)sin(-=-=+βαβα则βαtan tan 的值为________ 5.已知________tan tan 51)cos(31)cos(==-=+βαβαβα,则, 2.已知α、β均为锐角,且cos()sin()αβαβ+=-,则tan α==±)sin(βα=±)cos(βα=±)tan(βα)tan tan 1)(tan(tan tan βαβαβα ±=±2()(),()ααβαββαβα=++-=+-典型例题:在△ABC 中,角,,A B C 的对边分别为,,a b c ,且满足C b B c a cos cos )2(=-.(1)求角B 的大小;(2)设n m n A A m ⋅-==且),1,512(),2cos ,(cos 取最小值时,求)4tan(π-A 值.已知向量,,,其中、、为△ABC 内角.(Ⅰ)求角C 大小;(Ⅱ)若,,成等差数列,且,求AB 长.课堂检测: 1.在括号内填一个实数,使得等式 成立,这个实数是 .2. 在等式cos()(1)1= ★的括号中,填写一个锐角,使得等式成立,这个锐角是 .3.设向量(cos ,sin )a αα= ,(cos ,sin )b ββ= ,其中πβα<<<0,若|2||2|a b a b +=- ,则βα-=__________4.121()sin cos ,()(),()(),,f x x x f x f x f x f x ''=+== )()(1x f x f n n -'=,(其中2,≥∈*n N n ),则=+++)4()4()4(201021πππf f f ___________. 5. 化简:02000170cos 110cos 10cos 10sin 21---=__________)sin ,(sin B A =)cos ,(cos A B =C n m 2sin =⋅A B C A sin C sin B sin 18)(=-⋅16.(本小题满分14分)已知()cos ,sin a αα= ,()cos ,sin b ββ= ,()1,0c = ,⑴若23a b ⋅= ,记αβθ-=,求2s i n s i n2πθθ⎛⎫-+ ⎪⎝⎭的值;⑵若2k πα≠,()k k Z βπ≠∈,且()a b c + ‖,求证:tan tan 2βα=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、作业:书P107 A7,8 P108 B 3--8
板
书
设
计
课
后
反
思
当锐角α在00~900之间变化时,正弦值随着角度的增大而增大;余弦值随着角度的增大而减少。
二、训练:
(1)、在直角三角形ΔABC中,∠C=900,AB=5,AC=4,则sinB=,cosA=,
cosA=sinA=。
(2)计算cos2450+cos600·sin300=。
(3)已知如图:
利用所学过的知识,试证明在同一个锐角A的正弦、余弦之间存在着以下重要关系式:
将老题型的转化,非负数相加问题,其本质还是考察特殊角度的正弦、余弦值。
三、如何求一个任意锐角的正弦与余弦值呢?
知道一个锐角的正弦值与余弦值如何求这个锐角呢?请同学们拿出计算器,自学书P105完成书上的习题。
四、小结:
1、本节课主要复习了锐角三角函数正弦、余弦和特殊角的正弦、余弦值。
2、正弦、余弦除了可以互相转化外sinA=cos(90º-A),cosA=sin(90º-A),两者之间还有平方关系sin2A+cos2A=1,请大家熟记他们。
重点、难点
重点、锐角三角函数的正弦、余弦定义和特殊角的正弦、余弦值;
用计算器求一个锐角的正弦值与余弦值.知道一个锐角的正弦值与余弦值求这个锐角.
难点、正弦、余弦之间的关系(平方关系);注意度、分转化之后求值时。
教具准备
三角板
教学设计
一、基础知识复习:
1、回忆,什么是∠A的正弦,余弦?如图:
2、sin = cos =
课题
4.1正弦和余弦(四)
编写时间
2012-12-8
执行时间
2012-12-9
教学目标
(1)通过复习学生掌握锐角正弦、余弦定义及熟练掌握特殊三角函数值;
(2)正弦、余弦之间的关系式;
(3)系统化、提纲化的使学生综合运用正弦、余弦定义解决简单问题
(4)会用计算器求一个锐角的正弦值与余弦值.知道一个锐角的正弦值与余弦值求这个锐角.
siБайду номын сангаас2A+cos2A=1
∵sinA= = ,∴sin2A= cosA= = ,∴cos2A=
∴sin2A+cos2A= + = 又∵在Rt△ABC中,∠C=90°,
∴根据勾股定理: ∴sin2A+cos2A= = =1
这就是正弦、余弦之间的平方关系。如:sin230°+cos230°=1
深入研究:计算:sin240°+sin250°=
3、特殊角的函数值300、450、600的正弦、余弦值:
sin30º= ,sin45º= ,sin60º= 。
cos30º= ,cos45º= ,cos60º= 。
4、互余两角的正弦、余弦值之间具有什么关系?
sinA=cos(90º-A),cosA=sin(90º-A)
5、请同学思考角度变化与锐角三角函数的关系?
3、如果∠A为锐角且cosA= ,那么()
A、00<∠A≤300B、300<∠A≤450
C、450<∠A≤600D、600<∠A<900
此题只要将 , , , ,对比一下谁大谁小,即可判断,实际上是对特殊角度正弦、余弦的考察。
4、△ABC中,若|2sinA-1|+ ,则∠C=()。
A、75°B、60°C、90°D、120°