初中七年级数学导学案第2课时平行线判定方法的综合运用

合集下载

【人教版】七年级数学下册精品教案:5.2.2 第2课时 平行线判定方法的综合运用

【人教版】七年级数学下册精品教案:5.2.2 第2课时 平行线判定方法的综合运用

cP b a4321cb a 21第2课时 平行线判定方法的综合运用【学习目标】1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。

2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。

【学习重点】在观察实验的基础上进行公理的概括与定理的推导 【学习难点】定理形成过程中的逻辑推理及其书面表达。

【学具准备】三角板 【自主学习】1、预习疑难: 。

2、填空:经过直线外一点,_____ ___与这条直线平行. 【合作探究】(一)平行线判定方法1: 1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?2、判定方法1应用格式: 1=∠2(已知)∴AB ∥CD (同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3:1、思考:教材判定方法应用格式:2=∠3(已知)∴a ∥b (内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试写出推理过程)判定方法应用格式:∵∠2+∠4=180°(已知)∴a ∥b (同旁内角互补,两直线平行) 【反馈提高】(一)例 教材15页 (二)练一练:教材15页练习1、2、3 (三)总结直线平行的条件(1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。

即两条直线都与第三条直线平行,这两条直线也互相平行。

方法2:如图1,若∠1=∠3,则a ∥c 。

即 。

方法3:如图1,若 。

D C B A方法4:如图1,若 。

方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。

即在同一平面内,垂直于同一条直线的两条直线互相平行。

【达标测评】 (一)选择题:1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA 876543219654321DCB A(1) (2) (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④ (二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________;如果∠2+ ∠5= ______ 或者______,那么a ∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 3.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.4.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.D C 8765c ba 3412(2)由∠CBE=∠C 可以判断______∥______,根据是_________.六、【拓展延伸】1、已知直线a 、b 被直线c 所截,且∠1+∠2=180°,试判断直线a 、b 的位置关系,并说明理由.2、如图,已知DG AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由。

初中数学七年级下学期精品教学案5.2.2 第2课时 平行线判定方法的综合运用

初中数学七年级下学期精品教学案5.2.2 第2课时 平行线判定方法的综合运用

cP b a4321cb a 21第2课时 平行线判定方法的综合运用【学习目标】1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。

2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。

【学习重点】在观察实验的基础上进行公理的概括与定理的推导 【学习难点】定理形成过程中的逻辑推理及其书面表达。

【学具准备】三角板 【自主学习】1、预习疑难: 。

2、填空:经过直线外一点,_____ ___与这条直线平行. 【合作探究】(一)平行线判定方法1: 1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?2、判定方法1应用格式: 1=∠2(已知)∴AB ∥CD (同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3:1、思考:教材判定方法应用格式:2=∠3(已知)∴a ∥b (内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试写出推理过程)判定方法应用格式:∵∠2+∠4=180°(已知)∴a ∥b (同旁内角互补,两直线平行) 【反馈提高】(一)例 教材15页 (二)练一练:教材15页练习1、2、3 (三)总结直线平行的条件(1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。

即两条直线都与第三条直线平行,这两条直线也互相平行。

方法2:如图1,若∠1=∠3,则a ∥c 。

即 。

方法3:如图1,若 。

D C B A方法4:如图1,若 。

方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。

即在同一平面内,垂直于同一条直线的两条直线互相平行。

【达标测评】 (一)选择题:1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA 876543219654321DCB A(1) (2) (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④ (二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________;如果∠2+ ∠5= ______ 或者______,那么a ∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 3.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.4.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.D C 8765c ba 3412(2)由∠CBE=∠C 可以判断______∥______,根据是_________.六、【拓展延伸】1、已知直线a 、b 被直线c 所截,且∠1+∠2=180°,试判断直线a 、b 的位置关系,并说明理由.2、如图,已知DGN AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由。

新人教版七年级下册数学教学案-5.2.2 第2课时 平行线判定方法的综合运用

新人教版七年级下册数学教学案-5.2.2 第2课时 平行线判定方法的综合运用

D
C
(2)由∠CBE=∠C 可以判断______∥______,根据是_________.
A
BE
六、【拓展延伸】 1、已知直线 a、b 被直线 c 所截,且∠1+∠2=180°, 试判断直线 a、b 的位置关系,并说明理由.
c
1 3 2
b a
2、如图,已知 AEM DGN , 1 2 ,试问 EF 是否平行 GH,并说明理由。
第 2 课时 平行线判定方法的综合运用
【学习目标】
1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。
2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。
【学习重点】在观察实验的基础上进行公理的概括与定理的推导
【学习难点】定理形成过程中的逻辑推理及其书面表达。
【学具准备】三角板
3.如图所示,已知∠1=∠2,AC 平分∠DAB,试说明 DC∥AB.
D
C
2
1
A
B
4、如图所示,已知直线 EF 和 AB,CD 分别相交于 K,H,且 EG⊥AB,∠CHF=600,∠E=30°,试说明 AB∥CD.
E
A
K GB
CH
D
F
5、提高训练:
3
如图所示,已知直线 a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则 a 与 c 平行吗? 为-什么?
判定方法 3:
应用格式:
。 ∵∠2+∠4=180°(已知)
简单说成:
。∴a∥b(同旁内角互补,两直线平行)
(三)数学思想:教材 15 页探究。
c P3
4
bc
【反馈提高】 (一)例 教材 15 页

新人教版七下数学学案设计:5.2.2 第2课时 平行线判定方法的综合运用

新人教版七下数学学案设计:5.2.2 第2课时 平行线判定方法的综合运用

cP b a4321cb a 21第2课时 平行线判定方法的综合运用【学习目标】1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。

2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。

【学习重点】在观察实验的基础上进行公理的概括与定理的推导 【学习难点】定理形成过程中的逻辑推理及其书面表达。

【学具准备】三角板 【自主学习】1、预习疑难: 。

2、填空:经过直线外一点,_____ ___与这条直线平行. 【合作探究】(一)平行线判定方法1: 1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?2、判定方法1应用格式: 1=∠2(已知)∴AB ∥CD (同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3:1、思考:教材判定方法应用格式:2=∠3(已知)∴a ∥b (内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试写出推理过程)判定方法应用格式:∵∠2+∠4=180°(已知)∴a ∥b (同旁内角互补,两直线平行) 【反馈提高】(一)例 教材15页 (二)练一练:教材15页练习1、2、3 (三)总结直线平行的条件(1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。

即两条直线都与第三条直线平行,这两条直线也互相平行。

方法2:如图1,若∠1=∠3,则a ∥c 。

即 。

方法3:如图1,若 。

D C B A方法4:如图1,若 。

方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。

即在同一平面内,垂直于同一条直线的两条直线互相平行。

【达标测评】 (一)选择题:1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA 876543219654321DCB A(1) (2) (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④ (二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________;如果∠2+ ∠5= ______ 或者______,那么a ∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 3.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.4.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.ED C B A8765c ba 3412(2)由∠CBE=∠C 可以判断______∥______,根据是_________.六、【拓展延伸】1、已知直线a 、b 被直线c 所截,且∠1+∠2=180°,试判断直线a 、b 的位置关系,并说明理由.2、如图,已知DG AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由。

七年级数学下册5.3.1 第2课时 平行线的性质和判定及其综合运用导学案

七年级数学下册5.3.1 第2课时 平行线的性质和判定及其综合运用导学案

第五章相交线与平行线.°,做一做:已知AB∥CD,∠1 = ∠2.试说明:BE∥CF.例2.如图,AB∥CD,猜想∠A、∠P 、∠PCD的数量关系,并说明理由.例3.如图,若AB//CD,你能确定∠B、∠D与∠BED 的大小关系吗?说说你的看法.【变式题1】如图,AB//CD,探索∠B、∠D与∠DEB的大小关系 .EDCBA【变式题2】如图,AB∥CD,则∠A,∠C与∠E1,∠E2,…,∠E n有什么关系?教学备注配套PPT讲授2.探究点新知讲授(见幻灯片6-16)【变式题3】如图,若AB∥CD, 则∠A,∠C与各拐角之间有什么关系?二、课堂小结平行线的判定与性质平行线的判定已知角的关系得平行的关系.平行线的性质已知平行的关系得角的关系.1.填空:如图,(1)∠1= 时,AB∥CD.(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°,其中能判断a//b的是( )A. ①②③④ B .①③④C. ①③D. ④当堂检测教学备注配套PPT讲授3.课堂小结4.当堂检测(见幻灯片17-21)3. 有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数. 请补全下列解答过程.解:过点E作EF//AB.∵AB//CD(已知),∴ // (平行于同一直线的两直线平行).∴∠A+∠ =180°,∠C+∠ =180°(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知),∴∠ = °, ∠ = °.∴∠AEC=∠1+∠2= °+ ° = °.4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD的度数.教学备注配套PPT讲授4.当堂检测(见幻灯片17-21)。

初中数学七年级下册(人教版)精品教案-5.2.2 第2课时 平行线判定方法的综合运用.doc

初中数学七年级下册(人教版)精品教案-5.2.2 第2课时 平行线判定方法的综合运用.doc

第2课时平行线判定方法的综合运用1.灵活选用平行线的判定方法进行证明;(重点)2.掌握平行线的判定在实际生活中的应用.(难点)一、情境导入如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定.二、合作探究探究点一:平行线判定方法的综合运用【类型一】灵活选用判定方法判定平行如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,其中能判定AB∥CD的条件有()A.1个B.2个C.3个D.4个解析:根据平行线的判定定理即可求得答案.①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD.∴能得到AB∥CD的条件是①③④.故选C.方法总结:要判定两直线是否平行,首先要将题目给出的角转化为这两条直线被第三条直线所截得的同位角、内错角或同旁内角,再看这些角是否满足平行线的判定方法.【类型二】平行线的判定定理结合平行公理的推论进行证明如图,直线AB、CD、EF被直线GH所截,∠1=70°,∠2=110°,∠2+∠3=180°.求证:(1)EF∥AB;(2)CD∥AB(补全横线及括号的内容).证明:(1)∵∠2+∠3=180°,∠2=110°(已知),∴∠3=70°().又∵∠1=70°(已知),∴∠1=∠3(),∴EF∥AB().(2)∵∠2+∠3=180°,∴______∥______().又∵EF∥AB(已证),∴______∥______().解析:(1)先将∠2=110°代入∠2+∠3=180°,求出∠3=70°,根据等量代换得到∠1=∠3,再由“内错角相等,两直线平行”即可得到EF∥AB;(2)先由“同旁内角互补,两直线平行”得出CD∥EF,再根据“两条直线都和第三条直线平行,那么这两条直线平行”即可得到CD∥AB.答案分别为:(1)等量代换;等量代换;内错角相等,两直线平行;(2)CD;EF;同旁内角互补,两直线平行;CD;AB;平行于同一条直线的两直线平行.方法总结:判定两条直线平行的方法除了利用平行线的判定定理外,有时需要结合运用“平行于同一条直线的两条直线平行”.【类型三】添加辅助线证明平行如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.解析:通过观察图可以猜想AB与CD互相平行.过点F向左作FQ,使∠MFQ=∠2=50°,则可得∠NFQ=40°,再运用两次平行线的判定定理可得出结果.解:过点F向左作FQ,使∠MFQ=∠2=50°,则∠NFQ=∠MFN-∠MFQ=90°-50°=40°,AB∥FQ.又因为∠1=140°,所以∠1+∠NFQ=180°,所以CD∥FQ,所以AB∥CD.方法总结:在解决与平行线相关问题时,有时需作出适当的辅助线.探究点二:平行线判定的实际应用一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能为()A.第一次右拐60°,第二次右拐120°B.第一次右拐60°,第二次右拐60°C.第一次右拐60°,第二次左拐120°D.第一次右拐60°,第二次左拐60°解析:汽车两次拐弯后,行驶的路线与原路线一定不在同一直线上,但方向相同,说明前后路线应该是平行的.如图,如果第一次向右拐,那么第二次应左拐,两次拐的方向是相反且角度相等的,两次拐的角度是同位角,所以前后路线平行且行驶方向不变.故选D.方法总结:利用数学知识解决实际问题,关键是将实际问题正确地转化为数学问题,即画出示意图或列式表示,然后再解决数学问题,最后回归实际.三、板书设计平行线的判定方法:1.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;2.平行于同一条直线的两直线平行.用来作为证明的依据。

七年级数学下册(人教版)配套教学学案:5.2.2 第2课时 平行线判定方法的综合运用

七年级数学下册(人教版)配套教学学案:5.2.2 第2课时 平行线判定方法的综合运用

全新修订版教学设计
(学案)
七年级数学下册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
第2课时平行线判定方法的综合运用
【学习目标】
1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。

2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。

【学习重点】在观察实验的基础上进行公理的概括与定理的推导
【学习难点】定理形成过程中的逻辑推理及其书面表达。

【学具准备】三角板
【自主学习】
1、预习疑难:。

2、填空:经过直线外一点,________与这条直线平行.
【合作探究】(一)平行线判定方法1:
1、观察思考:过点P画直线CD∥AB的过程,三角尺起了什么作用?
图中,∠1和∠2什么关系?
2、判定方法1:应用格式:。

∵∠1=∠2(已知)
简单说成:。

∴AB∥CD(同位角相等,两直线平行)
应用:木工师傅使用角尺画平行线,有什么道理?
(二)平行线判定方法2、3:
1、思考:教材14页(试着写出推理过程)
判定方法2:应用格式:。

∵∠2=∠3(已知)
D C
B A。

(人教版)七年级下册数学配套教学设计:5.2.2 第2课时《平行线判定方法的综合运用》

(人教版)七年级下册数学配套教学设计:5.2.2 第2课时《平行线判定方法的综合运用》

(人教版)七年级下册数学配套教学设计:5.2.2 第2课时《平行线判定方法的综合运用》一. 教材分析《平行线判定方法的综合运用》这一节的内容,主要让学生掌握平行线的判定方法,并能运用这些方法解决实际问题。

教材通过引入实例,引导学生运用所学知识进行观察、分析、推理,从而得出平行线的判定方法。

同时,教材还设计了丰富的练习题,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析学生在学习这一节内容前,已经学习了平行线的概念、性质和画法,对平行线有了初步的认识。

但部分学生对平行线的判定方法理解不深,运用不够灵活。

因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行引导和讲解,帮助学生理解和掌握平行线的判定方法。

三. 教学目标1.知识与技能目标:让学生掌握平行线的判定方法,并能运用这些方法解决实际问题。

2.过程与方法目标:通过观察、分析、推理等方法,培养学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:平行线的判定方法。

2.难点:如何运用平行线的判定方法解决实际问题。

五. 教学方法1.情境教学法:通过引入实例,让学生在实际问题中感受和理解平行线的判定方法。

2.问题驱动法:引导学生提出问题,进行观察、分析、推理,从而得出结论。

3.练习法:设计丰富的练习题,让学生在实践中巩固所学知识。

六. 教学准备1.准备相关实例和图片,用于导入和讲解。

2.准备练习题,用于巩固和拓展。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)教师出示实例,引导学生观察并提问:这些图形中有哪些是平行线?你是如何判断的?2.呈现(10分钟)教师讲解平行线的判定方法,引导学生通过观察、分析、推理,得出结论。

3.操练(10分钟)教师出示练习题,让学生独立完成,检验学生对平行线判定方法的掌握程度。

4.巩固(10分钟)教师引导学生进行小组讨论,分享彼此的心得体会,巩固所学知识。

人教版七年级数学下册5.2.2 第2课时 平行线判定方法的综合运用 学案

人教版七年级数学下册5.2.2 第2课时 平行线判定方法的综合运用 学案

cP b a4321cb a 21第2课时 平行线判定方法的综合运用【学习目标】1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。

2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。

【学习重点】在观察实验的基础上进行公理的概括与定理的推导 【学习难点】定理形成过程中的逻辑推理及其书面表达。

【学具准备】三角板 【自主学习】1、预习疑难: 。

2、填空:经过直线外一点,_____ ___与这条直线平行. 【合作探究】(一)平行线判定方法1: 1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?2、判定方法1应用格式: 1=∠2(已知)∴AB ∥CD (同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3:1、思考:教材判定方法2应用格式:2=∠3(已知)∴a ∥b (内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试写出推理过程)判定方法3应用格式:∵∠2+∠4=180°(已知)a ∥b (同旁内角互补,两直线平行) 【反馈提高】(一)例 教材15页 (二)练一练:教材15页练习1、2、3 (三)总结直线平行的条件(1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。

即两条直线都与第三条直线平行,这两条直线也互相平行。

方法2:如图1,若∠1=∠3,则a ∥c 。

即 。

方法3:如图1,若 。

方法4:如图1,若 。

方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。

即在同一平面内,垂直于同一条直线的两条D C B A直线互相平行。

【达标测评】(一)选择题:1.如图1所示,下列条件中,能判断AB∥CD的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34D CB A21FEDCBA876543219654321DCBA(1) (2) (3) (4)2.如图2所示,如果∠D=∠EFC,那么( )A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b被直线c所截,现给出下列四个条件:•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( ) (5)A.①②B.①③C.①④D.③④(二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________;如果∠2+ ∠5= ______ 或者______,那么a∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.3.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.4.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断______∥______,根据是_________.(2)由∠CBE=∠C可以判断______∥______,根据是_________.六、【拓展延伸】ED CBA8765cba34121、已知直线a 、b 被直线c 所截,且∠1+∠2=180°,试判断直线a 、b 的位置关系,并说明理由.2、如图,已知DGN AEM ∠=∠,21∠=∠,试问是否平行GH ,并说明理由。

【学案设计】七年级数学下册(人教版)5.2.2 第2课时 平行线判定方法的综合运用

【学案设计】七年级数学下册(人教版)5.2.2 第2课时 平行线判定方法的综合运用

cP b a4321cb a 21第2课时 平行线判定方法的综合运用【学习目标】1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。

2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。

【学习重点】在观察实验的基础上进行公理的概括与定理的推导 【学习难点】定理形成过程中的逻辑推理及其书面表达。

【学具准备】三角板 【自主学习】1、预习疑难: 。

2、填空:经过直线外一点,_____ ___与这条直线平行. 【合作探究】(一)平行线判定方法1: 1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?2、判定方法1应用格式: 1=∠2(已知)∴AB ∥CD (同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3:1、思考:教材判定方法应用格式:2=∠3(已知)∴a ∥b (内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试写出推理过程)判定方法应用格式:∵∠2+∠4=180°(已知)∴a ∥b (同旁内角互补,两直线平行) 【反馈提高】(一)例 教材15页 (二)练一练:教材15页练习1、2、3 (三)总结直线平行的条件(1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。

即两条直线都与第三条直线平行,这两条直线也互相平行。

方法2:如图1,若∠1=∠3,则a ∥c 。

即 。

方法3:如图1,若 。

D C B A方法4:如图1,若 。

方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。

即在同一平面内,垂直于同一条直线的两条直线互相平行。

【达标测评】 (一)选择题:1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA 876543219654321DCB A(1) (2) (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④ (二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________;如果∠2+ ∠5= ______ 或者______,那么a ∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 3.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.4.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.ED C B A8765c ba 3412(2)由∠CBE=∠C 可以判断______∥______,根据是_________.六、【拓展延伸】1、已知直线a 、b 被直线c 所截,且∠1+∠2=180°,试判断直线a 、b 的位置关系,并说明理由.2、如图,已知DGN AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由。

新人教版初中数学七年级下册5.2.2第2课时平行线判定方法的综合运用公开课优质课导学案

新人教版初中数学七年级下册5.2.2第2课时平行线判定方法的综合运用公开课优质课导学案

第2课时平行线判定方法的综合运用【学习目标】1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。

2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。

【学习重点】在观察实验的基础上进行公理的概括与定理的推导【学习难点】定理形成过程中的逻辑推理及其书面表达。

【学具准备】三角板【自主学习】1、预习疑难:。

2、填空:经过直线外一点,_____ ___与这条直线平行.【合作探究】(一)平行线判定方法1:1、观察思考:过点P画直线CD∥AB的过程,三角尺起了什么作用?图中,∠1和∠2什么关系?2、判定方法1:应用格式:。

∵∠1=∠2(已知)简单说成:。

∴AB∥CD(同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理?(二)平行线判定方法2、3:1、思考:教材14页(试着写出推理过程)判定方法2:应用格式:。

∵∠2=∠3(已知)简单说成:。

∴a∥b(内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a∥b吗?(试写出推理过程)D CB AcPba4321cba21判定方法3: 应用格式:。

∵∠2+∠4=180°(已知)简单说成: 。

∴a ∥b (同旁内角互补,两直线平行) (三)数学思想:教材15页探究。

【反馈提高】 (一)例 教材15页(二)练一练:教材15页练习1、2、3(三)总结直线平行的条件(1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。

即两条直线都与第三条直线平行,这两条直线也互相平行。

方法2:如图1,若∠1=∠3,则a ∥c 。

即 。

方法3:如图1,若 。

方法4:如图1,若 。

方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。

即在同一平面内,垂直于同一条直线的两条直线互相平行。

【达标测评】 (一)选择题1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACDca341234D CB A21FEDCBA876543219654321DCBA(1) (2) (3) (4)2.如图2所示,如果∠D=∠EFC,那么( )A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b被直线c所截,现给出下列四个条件•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( ) (5)A.①②B.①③C.①④D.③④(二)填空题1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________;如果∠2+ ∠5= ______ 或者______,那么a∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.3.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.4.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________.六、【拓展延伸】1、已知直线a 、b 被直线c 所截,且∠1+∠2=180°, 试判断直线a 、b 的位置关系,并说明理由.2、如图,已知DGN AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由。

人教版七年级数学下册全册配套学案设计第2课时平行线判定方法的综合运用

人教版七年级数学下册全册配套学案设计第2课时平行线判定方法的综合运用

cP b a4321cb a 21第2课时 平行线判定方法的综合运用【学习目标】1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。

2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。

【学习重点】在观察实验的基础上进行公理的概括与定理的推导 【学习难点】定理形成过程中的逻辑推理及其书面表达。

【学具准备】三角板 【自主学习】1、预习疑难: 。

2、填空:经过直线外一点,_____ ___与这条直线平行. 【合作探究】(一)平行线判定方法1: 1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?2、判定方法1应用格式: 1=∠2(已知)∴AB ∥CD (同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3:1、思考:教材判定方法应用格式:2=∠3(已知)∴a ∥b (内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试写出推理过程)判定方法应用格式:∵∠2+∠4=180°(已知)∴a ∥b (同旁内角互补,两直线平行) 【反馈提高】(一)例 教材15页 (二)练一练:教材15页练习1、2、3 (三)总结直线平行的条件(1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。

即两条直线都与第三条直线平行,这两条直线也互相平行。

方法2:如图1,若∠1=∠3,则a ∥c 。

即 。

方法3:如图1,若 。

D C B A方法4:如图1,若 。

方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。

即在同一平面内,垂直于同一条直线的两条直线互相平行。

【达标测评】 (一)选择题:1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA 876543219654321DCB A(1) (2) (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④ (二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________;如果∠2+ ∠5= ______ 或者______,那么a ∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 3.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.4.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.D C 8765c ba 3412(2)由∠CBE=∠C 可以判断______∥______,根据是_________.六、【拓展延伸】1、已知直线a 、b 被直线c 所截,且∠1+∠2=180°,试判断直线a 、b 的位置关系,并说明理由.2、如图,已知DG AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由。

人教版数学七年级下 5.3.1 第2课时 平行线的性质和判定及其综合运用优秀导学案

人教版数学七年级下 5.3.1 第2课时 平行线的性质和判定及其综合运用优秀导学案

第2课时 平行线的性质和判定及其综合运用学习目标:1.分清平行线的性质和判定.已知平行用性质,要证平行用判定.2.能够综合运用平行线性质和判定解题.学习重点:平行线性质和判定综合应用 学习难点:平行线性质和判定灵活运用 学习过程: 一、学前准备1、预习疑难: 。

2、填空:①平行线的性质有哪些?②平行线的判定有哪些?二、平行线的性质与判定的区别与联系1、区别:性质是:根据两条直线平行,去证角的相等或互补.判定是:根据两角相等或互补,去证两条直线平行.2、联系:它们都是以两条直线被第三条直线所截为前提;它们的条件和结论是互逆的。

3、总结:已知平行用性质,要证平行用判定 三、应用(一) 例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

1、分析:(执果索因)从图直观分析,欲证AD ∥EF ,只需∠A +∠AEF =180°, (由因求果)因为AD ∥BC ,所以∠A +∠B =180°,又∠B =∠AEF , 所以∠A +∠AEF =180°成立.于是得证2、证明:∵ AD ∥BC (已知)∴ ∠A+∠B =180°( ) ∵ ∠AEF=∠B (已知) ∴ ∠A +∠AEF =180°(等量代换) ∴ AD ∥EF ( ) 3、思考:在填写两个依据时要注意什么问题?4、推广:你有其他方法证明这个问题吗?你写出过程。

(二)练一练: 1、如图,已知:AB ∥DE ,∠ABC+∠DEF=180°, 求证:BC ∥EF 。

A B CDFE2、如图,已知:∠1=∠2,求证:∠3+∠4=180o3、如图,已知:AB ∥CD ,MG 平分∠AMN ,NH 平分∠DNM ,求证:MG ∥NH 。

4、如图,已知:AB ∥CD ,∠A =∠C , 求证:AD ∥BC 。

四、学习体会:1、本节课你有哪些收获?你还有哪些疑惑?2、预习时的疑难解决了吗?五、自我检测:1、如图1,AB ∥EF,∠ECD=∠E,则CD ∥AB.说理如下:因为∠ECD=∠E,所以CD ∥EF( )又AB ∥EF,所以CD ∥AB( ). (1)2、下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行; ③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( ) A.① B.②和③ C.④ D.①和④3、如图,平行光线AB 、DE 照射在平面镜上,经反射得到光线BC 与EF ,已知∠1= ∠2, ∠3= ∠4,则光线BC 与EF 平行吗?为什么?4、如图,已知B 、E 分别是AC 、DF 上CAB CDMG123451ABCDMFGEHN2BEF E D CB A的点,∠1=∠2,∠C=∠D.(1)∠ABD 与∠C 相等吗?为什么.(2)∠A 与∠F 相等吗?请说明理由.5、如图,已知EAB 是直线,AD ∥BC,AD 平分∠EAC,试判定∠B 与∠C 的大小关系,并说明理由.E DBA一、拓展延伸1.已知,如图1,∠AOB 纸片沿CD 折叠,若O′C ∥BD,那么O′D 与AC 平行吗?请说明理由.O '4321ODCBA2、如图,EF ⊥AB ,CD ⊥AB ,∠EFB=∠GDC ,求证:∠AGD=∠ACB 。

【人教版七年级数学下册教案】5.2.2第2课时平行线判定方法的综合运用

【人教版七年级数学下册教案】5.2.2第2课时平行线判定方法的综合运用

第 2 课时平行线判断方法的综合运用1.灵巧采纳平行线的判断方法进行证明;(要点 )2.掌握平行线的判断在实质生活中的应用.(难点 )一、情境导入如图,装修工人正在向墙上钉木条,假如木条 b 与墙壁边沿垂直,那么木条 a 与墙壁边沿所夹角为多少度时,才能使木条 a 与木条 b 平行?要解决这个问题,就要弄清楚平行的判断.二、合作研究研究点一:平行线判断方法的综合运用【种类一】灵巧采纳判断方法判断平行如图,有以下四个条件:①∠ B+∠ BCD = 180°;②∠ 1=∠ 2;③∠ 3=∠ 4;④∠ B =∠ 5,此中能判断AB ∥CD 的条件有 ()A.1个B.2个C.3 个D.4个分析:依据平行线的判判定理即可求得答案.①∵∠ B+∠BCD=180°,∴ AB∥ CD;② ∵∠ 1=∠ 2,∴ AD∥ BC ;③∵∠ 3=∠ 4,∴ AB∥ CD;④∵∠ B=∠ 5,∴ AB∥CD .∴能获取 AB∥ CD 的条件是①③④ .应选 C.方法总结:要判断两直线能否平行,第一要将题目给出的角转变成这两条直线被第三条直线所截得的同位角、内错角或同旁内角,再看这些角能否满足平行线的判断方法.【种类二】平行线的判判定理结合平行公义的推论进行证明如图,直线 AB、 CD 、 EF 被直线 GH 所截,∠ 1=70°,∠ 2= 110 °,∠ 2+∠ 3=180 °.求证: (1)EF∥ AB; (2)CD ∥ AB(补全横线及括号的内容 ).证明: (1) ∵∠ 2+∠ 3= 180°,∠ 2= 110°(已知 ),∴∠ 3= 70° ().又∵∠ 1= 70°(已知 ),∴∠ 1=∠ 3(),∴ EF∥ AB().(2)∵∠ 2+∠ 3= 180°,∴ ______∥ ______().又∵ EF∥AB (已证 ) ,∴ ______∥ ______().分析: (1)先将∠ 2= 110°代入∠ 2+∠ 3= 180°,求出∠ 3= 70°,依据等量代换获取∠1=∠ 3,再由“内错角相等,两直线平行”即可获取 EF ∥ AB; (2) 先由“同旁内角互补,两直线平行”得出 CD ∥ EF,再依据“两条直线都和第三条直线平行,那么这两条直线平行”即可获取 CD∥ AB.答案分别为: (1)等量代换;等量代换;内错角相等,两直线平行;( 2)CD; EF;同旁内角互补,两直线平行;CD ; AB;平行于同一条直线的两直线平行.方法总结:判断两条直线平行的方法除了利用平行线的判判定理外,有时需要结合运用“ 平行于同一条直线的两条直线平行”.【种类三】增加辅助线证明平行如图, MF⊥ NF 于 F, MF 交 AB 于点 E, NF 交 CD 于点 G,∠ 1= 140°,∠ 2=50°,试判断 AB 和 CD 的地址关系,并说明原由.分析:经过观察图可以猜想AB 与 CD 相互平行.过点 F 向左作 FQ ,使∠ MFQ =∠2= 50°,则可得∠NFQ = 40°,再运用两次平行线的判判定理可得出结果.解:过点 F 向左作 FQ ,使∠ MFQ =∠ 2= 50°,则∠ NFQ =∠ MFN -∠ MFQ = 90°-50°= 40°, AB∥ FQ .又由于∠ 1= 140°,因此∠ 1+∠ NFQ = 180°,因此 CD∥ FQ,因此AB ∥CD.方法总结:在解决与平行线相关问题时,有时需作出合适的辅助线.研究点二:平行线判断的实质应用一辆汽车在公路上行驶,两次拐弯后,仍在本来的方向上行驶,那么两次拐弯的角度可能为 ()A.第一次右拐60°,第二次右拐120 °B.第一次右拐60°,第二次右拐60°C.第一次右拐60°,第二次左拐120 °D.第一次右拐60°,第二次左拐60°分析:汽车两次拐弯后,行驶的路线与原路线必定不在同向来线上,但方向同样,说明前后路线应该是平行的.如图,假如第一次向右拐,那么第二次应左拐,两次拐的方向是相反且角度相等的,两次拐的角度是同位角,因此前后路线平行且行驶方向不变.应选 D.方法总结:利用数学知识解决实质问题,要点是将实质问题正确地转变成数学问题,即画出表示图或列式表示,而后再解决数学问题,最后回归实质.三、板书设计平行线的判断方法:1.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;2.平行于同一条直线的两直线平行.在教课方案中,突出学生是学习的主体,把问题尽量抛给学生解决,有意识地对学生浸透“转变”思想,并将数学学习与生活实质联系起来.本节课对七年级的学生而言,本是一个困难的起步,应不时提示学生应注意的地方,证明要慎重,步步有依照,而且依照只好是相关看法的定义、所规定的公义及已知证明的定理,防范学生不假考虑地把以前学过的结论用来作为证明的依照。

初一七年级数学下册《5.2.2 第2课时 平行线判定方法的综合运用》学案【人教版适用】

初一七年级数学下册《5.2.2 第2课时 平行线判定方法的综合运用》学案【人教版适用】

cP b a4321cb a 21第2课时 平行线判定方法的综合运用【学习目标】1、使学生掌握平行线的四种判定方法, 并初步运用它们进行简单的推理论证。

2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。

【学习重点】在观察实验的基础上进行公理的概括与定理的推导 【学习难点】定理形成过程中的逻辑推理及其书面表达。

【学具准备】三角板 【自主学习】1、预习疑难: 。

2、填空:经过直线外一点,_____ ___与这条直线平行. 【合作探究】(一)平行线判定方法1: 1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?2、判定方法1应用格式: 1=∠2(已知)∴AB ∥CD (同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3:1、思考:教材判定方法应用格式:2=∠3(已知)∴a ∥b (内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试写出推理过程)判定方法应用格式:∵∠2+∠4=180°(已知)∴a ∥b (同旁内角互补,两直线平行) 【反馈提高】(一)例 教材15页 (二)练一练:教材15页练习1、2、3 (三)总结直线平行的条件(1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。

即两条直线都与第三条直线平行,这两条直线也互相平行。

方法2:如图1,若∠1=∠3,则a ∥c 。

即 。

D C B A方法3:如图1,若 。

方法4:如图1,若 。

方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。

即在同一平面内,垂直于同一条直线的两条直线互相平行。

【达标测评】 (一)选择题:1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA 876543219654321DCB A(1) (2) (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④ (二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________;如果∠2+ ∠5= ______ 或者______,那么a ∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 3.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.8765c ba 34124.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________. 六、【拓展延伸】1、已知直线a 、b 被直线c 所截,且∠1+∠2=180°,试判断直线a 、b 的位置关系,并说明理由.2、如图,已知DG AEM ∠=∠,21∠=∠,试问EF3.如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC ∥AB.DCBA 214、如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=•-30°,试说明AB ∥CD.GHKEDC B AE D C B A5、提高训练:如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为-什么?d ecb a 3412。

【人教版教材】初一七年级数学下册《5.2.2 第2课时 平行线判定方法的综合运用》学案

【人教版教材】初一七年级数学下册《5.2.2 第2课时 平行线判定方法的综合运用》学案

cP b a4321cb a 21第2课时 平行线判定方法的综合运用【学习目标】1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。

2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。

【学习重点】在观察实验的基础上进行公理的概括与定理的推导 【学习难点】定理形成过程中的逻辑推理及其书面表达。

【学具准备】三角板 【自主学习】1、预习疑难: 。

2、填空:经过直线外一点,_____ ___与这条直线平行. 【合作探究】(一)平行线判定方法1: 1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?2、判定方法1应用格式: 1=∠2(已知)∴AB ∥CD (同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3:1、思考:教材判定方法应用格式:2=∠3(已知)∴a ∥b (内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试写出推理过程)判定方法应用格式:∵∠2+∠4=180°(已知)∴a ∥b (同旁内角互补,两直线平行) 【反馈提高】(一)例 教材15页 (二)练一练:教材15页练习1、2、3 (三)总结直线平行的条件(1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。

即两条直线都与第三条直线平行,这两条直线也互相平行。

方法2:如图1,若∠1=∠3,则a ∥c 。

即 。

D C B A方法3:如图1,若 。

方法4:如图1,若 。

方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。

即在同一平面内,垂直于同一条直线的两条直线互相平行。

【达标测评】 (一)选择题:1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA 876543219654321DCB A(1) (2) (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④ (二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________;如果∠2+ ∠5= ______ 或者______,那么a ∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 3.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.8765c ba 34124.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________. 六、【拓展延伸】1、已知直线a 、b 被直线c 所截,且∠1+∠2=180°,试判断直线a 、b 的位置关系,并说明理由.2、如图,已知DG AEM ∠=∠,21∠=∠,试问EF3.如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC ∥AB.DCBA 214、如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=•-30°,试说明AB ∥CD.GHKEDC B AE D C B A5、提高训练:如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为-什么?d ecb a 3412。

平行线的判定与特征的综合应用导学案

平行线的判定与特征的综合应用导学案

1 2 A F E BD七年级数学下册《平行线的判定与性质的综合应用》学案一、学习目标:1、进一步加深对平行线的判定方法和特征的记忆和理解。

2、能综合应用平行线的判定方法和特征解决问题。

二、教学重、难点:重点:平行线的判定方法和特征的应用难点:灵活应用平行线的判定方法和特征解决问题 三、教学流程(一)预习导学 准备题1、平行线的判定方法有: ,两直线平行。

,两直线平行。

,两直线平行。

平行线的特征有:两直线平行, 。

两直线平行, 。

两直线平行, 。

2、完成下列推理:如图所示,已知∠1=36°,∠C =74°,∠B =36°,求∠2的度数。

因为∠1= =36°所以 ∥ (同位角相等,两直线平行)所以∠2= = (两直线平行,同位角相等)(二)新课探究 [第一次尝试] 以下问题,老师不讲,你会做吗?请试着做一做! 如图,∠1=∠2=100°,∠3=45°。

(1)判断直线AB 、CD 的位置关系,并说明理由;(2)求∠4的度数。

[第二次尝试]已知AD ⊥BC ,FG ⊥BC ,垂足分别为D 、G ,且∠1=∠2,猜想∠BDE 与∠C 有怎样的大小关系?试说明理由。

ABCDE FGH 1 2 3 4l 1l CB DPl 2 Ab ac 21(三)当堂测试1、如图,∠1=∠2,∠3=80°,则∠4= ( )A 、80°B 、70°C 、60°D 、50° 2、如图,AB ∥CD ,则∠1、∠2、∠3之间的等量关系为 ( )A 、∠1+∠2+∠3=360°B 、∠1-∠2+∠3=180°C 、∠1+∠2-∠3=180°D 、∠1+∠2+∠3=180°3、如图,BC ⊥AE ,垂足为C ,过点C 作CD ∥AB ,若∠ECD =48°,则∠B = 。

七年级数学《平行线判定(二)》导学案

七年级数学《平行线判定(二)》导学案

F E 4321D C B A 5.2.2 平行线判定(二)导学案【学习目标】:(1)理解并掌握平行线的判定方法。

(2)经历探索直线平行的条件的过程,掌握“同旁内角互补,两条直线平行”。

(3)经历观察,想象,推理,交流等活动,进一步加强自己的空间观念,推理能 力和有条理的表达能力。

【学习重点】:在观察实验的基础上进行公理的概括与定理的推导【学前回忆】忆一忆:1、我们已经学过的判定两直线平行的方法有哪些?2、有上述回顾完成下题如图,∠5=∠CDA =∠ABC ,∠1=∠4,∠2=∠3,填空:∵∠5=∠CDA (已知)∴ // ( )∵∠5=∠ABC (已知)∴ // ( )∵∠2=∠3(已知)∴ // ( )【新知探究】议一议:1、两条直线被第三条直线所截,形成的角中,有同位角,内错角,和同旁内角,同位角和内错角相等时,两条直线平行,那么,利用同旁内角的关系,能否判定两条直线平行?2、 探索直线平行的条件问题1:如图∠2和∠3是什么位置关系? 问题2:你能根据上节课学习的两直线平行的判定方法推倒一下当∠2和∠3有怎样的关系时,直线AB//CD 吗?从而你能得到什么结论? 试着总结出你的结论并写出来:判定方法3: 应用格式:。

∵∠2+∠3=180°(已知)简单说成: 。

∴AB ∥CD ( )小组讨论写出上述结论的证证明过程【自学练习】 1.当图中各角满足下列条件时,你能指出哪两条直线平行? (1) ∠1 = ∠4;___//___ (2) ∠2 = ∠4; __//___(3) ∠1 + ∠3 = 180?; ___//____说一说1.知识小结:两直线平行的方法方法一:_________________________方法二:_____________方法三:________________________________________方法四:___________________________________________方法五:________________________________________________2.学习体会:(自我评价及小组互评小结)a b l m n 1 2 3 48765c ba 3412对自己说:对同学说:对老师说:【达标检测】A 组1.下列说法错误的是( ) A.同位角不一定相等 B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行 2..如图,直线a,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( )A.①②B.①③C.①④D.③④B 组 3.如图,NO 、QO 分别是∠ONM 和∠PQN 的平分线,且∠QON=90°,那么MN 与PQ ( )A 、可能平行也可能相交B 、一定平行C 、一定相交D 、以上答案都不对4.如下图,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______, 如果∠9=_____,那么AD ∥BC;如果∠9=_____AB ∥CD . 9654321D CB AC 组5.已知,如图,点B 在AC 上,BD ⊥BE,∠1+∠C=90°,问射线CF 与BD 平行吗?试用两种方法说明理由.FE21DC B A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线
5.2
平行线及其判定
5.2.2 平行线的判定
第2课时平行线判定方法的综合运用
学习目标:1•进一步掌握平行线的判定方法,并会运用平行线的判定解决问题2•掌握垂直于同一条直线的两条直线互相平行重点:平行线的判定方法•
难点:熟练运用平行线的判定方法解决问题
、知识链接
什么叫平行线?平行线的判定方法有哪些?
、新知预习
1. 在铺设铁轨时,两条直轨必须是互相平行的,如何才能保证两条铁轨平行呢?
2. 要点归纳:垂直于同一条直线的两条直线.
三、自学自测
1.如图,若/仁/2,贝U b_j
四、我的疑惑
,贝U
AB//DC.自主学习
乙课堂探究一、要点探究
探究点1:平行线的判定的综合运用
典例精析
例1.如图,E是AB上一点,F是DC上一点,
G是BC延长线上一点
(1)如果/ B= / DCG,可以判断哪两条直线平行?为什么?
(2)如果/ D= / DCG,可以判断哪两条直线平行?为什么?
(3)如果/
D+ / DFE=180。

,可以判断哪两条直线平行?为什么?
例2.如图,已知 /仁75 ° , / 2 =105。

问:AB与CD平行吗?为什么?
例3.如图,/ 1 = Z 2,能判断AB // DF吗?为什么?若不能判断AB // DF,你认为还需要再添加的一个条
件是什么呢?写出这个条件,并说明你的理由
探究点2:在同一平面内,垂直于同一条直线的两条直线平行
问题:在同一平面内,两条直线垂直于同一条直线,这两条直线平行吗?为什么?
猜想:垂直于同一条直线的两条直线平行•
验证猜想:如图,在同一平面内,b丄a,c丄a,试说明:b / c.
解:
典例精析
例4.如图,为了说明示意图中的平安大街与长安街是互相平行的,在地图上量得/ 1=90 °,你能通过度量
A
C
图中已标出的其他的角来验证这个结论吗?说出你的理由
H 1
i

ft
2
4 J
1
判断两直线平行的方法 几何语言
图示
同位角相等,两直线平行
内错角相等,两直线平行
冋旁内角互补,两直线平行
平行于冋一直线的两直线平行
冋一平面内,垂直于冋一直线
的两直线平行
平行线的定义
3. 一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是

A. 第一次向右拐50o ,第二次向左拐
B. 第一次向左拐30o ,第二次向右拐
C. 第一次向右拐50o ,第二次向右拐
130。

30o 130o
2.用两块相同的三角板按如图所示的方式作平行线,你能解释其中的道理吗? 贝U
AB//CD.。

相关文档
最新文档