2014年西城区初三数学二模试题及答案
2014届中考二模数学试题含答案
2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。
2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。
3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卷的整洁。
考试结束时,将试卷和答题卷一并交回。
一、选择题(本大题共10小题,每小题3分,共30分。
在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
2014北京西城区初三数学一模试卷解析
【解析】 (1)
1 1 1 1 ,( , ,) 2 2 2 2
(2)①,ⅰ)当 P 点在 △ABO 外部时,
m S△PBO S△PBO , n S△POA S△POA , k S△PAB S△PAB
由图 4 可知
B′ y
∴抛物线 G 所对应的函数表达式为 y ( x 1)2 2 , 即 y x2 2 x 1 . (3)连结 OB ,过 B 作 BH OC 与点 H . ∵ BH BC sin C 3 2 sin C ∴当 C 最大时 h 最大;当 C 最小时, h 最小, 由图 2 可知,当 C 与 M 重合时, C 最大, h 最大. 此时, S△OBC S△OBB S△OBC ∴
A G F E E B 图1 C B 图2 C B 备用图 C D F A G D A D
【解析】 (1) EG GC ,
EC 2; GC
(2)倍长 EG 至 H ,连接 GH 、 OH 、 CH 、 CE ; 在 △EFG 与 △HDG 中
GF GD EGF HGD EG HG
m n k S△PBO S△POA S△PAB S△ABO S△ABO
综上所述, m n k S△ ABO .
y y ②( , x, 1 x ) 2 2
y 3 2 1 1 2 F E3 D4 A B C 5 x
y 3 2 1 1 2 3 E D4 C5 F A B 6 x
【点评】近年北京中考数学第 12 题主要考察找规律问题,规律类型分递进规律和循环 规律,本题属于循环规律问题,观察图形可得每 6 次六边形各顶点回归原来的位置。
西城区14-15学年上学期九年级期末考试数学试卷及答案
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是A .2-B .1-C .1D .2 2.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果∠ADE =120°,那么∠B 等于 A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .12 6.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤5 7.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中 的三个格点,那么以这三个格点为顶点的三角形称为该抛物 线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网 格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC是该抛物线的内接格点三角形,AB =,且点A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是A .7B .8C .14D .16 二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-的图象上,AB ⊥x 轴于 点B ,那么△AOB 的面积等于 .10.如图,将△ABC 绕点A 按顺时针方向旋转某个角度得到△AB ′C ′,使AB ′∥CB , CB ,AC ′的延长线相交于点D , 如果∠D =28°,那么BAC ∠= °. 11.如图,点D 为△ABC 外一点,AD 与BC 边的交点为E ,AE=3,DE=5,BE =4,要使△BDE ∽△ACE ,且点B ,D 的对应点为A ,C ,那么线段CE 长应等于 .12.在平面直角坐标系xOy 中,(,0)A m -,(,0)B m (其0m >),点P 在以点C 为圆心,半径等于2的圆上,如果动点P 满足90APB ∠=︒,(1)线段OP 的长等于 (用含m 的代数式表示);(2)m 的最小值为 .三、解答题(本题共30分,每小题5分) 13.计算:23tan30cos 452sin 60︒+︒-︒.14.解方程:2410x x -+=.15.如图,在⊙O 中,点P 在直径AB 的延长线上,PC ,PD 与⊙O 相切,切点分别为点C ,点D ,连接CD 交AB 于 点E .如果⊙O 的半径等于1tan 2CPO ∠=,求弦CD 的长.16.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC 的三个顶点A ,B ,C 都在格点上,将△ABC 绕点A 顺时针方向旋转90°得到△AB C ''.(1)在正方形网格中,画出△AB C '';(2)计算线段AB 在旋转到AB '的过程中所扫过区域的面积. (结果保留π)17.某商店以每件20元的价格购进一批商品,若每件商品售价a 元,则每天可卖出(80010)a -件.如果商店计划要每天恰好盈利8000元,并且要使每天的销售量尽量大,求每件商品的售价是多少元.18.如果关于x 的函数2(2)1y ax a x a =++++的图象与x 轴只有一个公共点,求实数a的值.四、解答题(本题共20分,每小题5分)19.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在它的北偏东60°方向上,在A 的正东400米的B 处,测得海中灯塔P 在它的北偏东30°方向上.问:灯塔P 到环海路的距离PC 1.732,结果精确到1米)20.如图,在正方形ABCD 中,有一个小正方形EFGH ,其中顶点E ,F ,G 分别在AB ,BC ,FD 上.(1)求证:△EBF ∽△FCD ;(2)连接DH ,如果BC=12,BF =3,求tan HDG ∠的值.21.如图,在⊙O 中,弦BC ,BD 关于直径AB 所在直线对称.E 为半径OC 上一点,3OC OE =, 连接AE 并延长交⊙O 于点F ,连接DF 交BC 于点M .(1)请依题意补全图形; (2)求证:AOC DBC ∠=∠; (3)求BMBC的值.22. 已知抛物线C :2=23y x x +-.角坐标系中画出抛物线C ;(2)将抛物线C 上每一点的横坐标变为原来的2倍,纵坐标变为原来的12,可证明得到的曲线仍是抛物线,(记为1C ),且抛物线1C 的顶点是抛物线C 的顶点的对应点,求抛物线1C 对应的函数表达式.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.如图,在平面直角坐标系xOy 中,点1(,2)2A ,(3,)B n 在反比例函数my x=(m 为常数)的图象G 上,连接AO 并延长与图象G 的另一个交点为点C ,过点A 的直线l 与 x 轴的交点为点(1,0)D ,过点C 作CE ∥x 轴交直线l 于点E .(1)求m 的值及直线l 对应的函数表达式; (2)求点E 的坐标;(3)求证:BAE ACB ∠=∠.24.如图,等边三角形ABC 的边长为4,直线l 经过点A 并与AC 垂直.当点P 在直线l上运动到某一位置(点P 不与点A 重合)时,连接PC ,并将△ACP 绕点C 按逆时针 方向旋转60︒得到△BCQ ,记点P 的对应点为Q ,线段P A 的长为m (0m >). (1) ①QBC ∠= ︒;② 如图1,当点P 与点B 在直线AC 的同侧,且3m =时,点Q 到直线l 的距离 等于 ;(2) 当旋转后的点Q 恰好落在直线l 上时,点P ,Q 的位置分别记为0P ,0Q .在图2中画出此时的线段0P C 及△0BCQ ,并直接写出相应m 的值;(3)当点P 与点B 在直线AC 的异侧,且△P AQ 时,求m 的值.25.如图1,对于平面上不大于90︒的MON ∠,我们给出如下定义:若点P 在MON ∠的内部或边界上,作PE OM ⊥于点E ,PF ON ⊥于点F ,则称PE PF +为点P 相对于 MON ∠的“点角距离”,记为(),d P MON ∠.如图2,在平面直角坐标系xOy 中,对于xOy ∠,点P 为第一象限内或两条坐标轴正 半轴上的动点,且满足(),d P xOy ∠=5,点P 运动形成的图形记为图形G . (1)满足条件的其中一个点P 的坐标是 ,图形G 与坐标轴围成图形的面积等于 ; (2)设图形G 与x 轴的公共点为点A ,已知(3,4)B ,(4,1)M ,求(),d M AOB ∠的值;(3)如果抛物线212y x bx c =-++经过(2)中的A ,B 两点,点Q 在A ,B 两点之间 的抛物线上(点Q 可与A ,B 两点重合),求当(),d Q AOB ∠取最大值时,点Q 的坐标.北京市西城区2014-2015学年度第一学期期末九年级数学试卷参考答案及评分标准2015.1一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分) 9.3. 10.28. 11.415. 12.(1)m ;(2)3. 三、解答题(本题共30分,每小题5分) 13.解: 23tan30cos 452sin 60︒+︒-︒232=+-⎝⎭……………………………………………………… 3分 121.2= ………………………………………………………………………………… 5分 14.解:2410x x -+=.∵ 1a =,4b =-,1c =, ……………………………………………………… 1分∴ 224(4)41112b ac -=--⨯⨯=.……………………………………………… 2分∴ 42x ==……………………………………………… 3分2==∴ 原方程的解是12x =+22x =…………………………………… 5分15.解:连接OC .(如图1)∵ PC ,PD 与⊙O 相切,切点分别为点C ,点D , ∴ OC ⊥PC ,……………………………………………………………………… 1分 PC =PD ,∠OPC=∠OPD . ∴ CD ⊥OP ,CD =2CE . …………………………2分∵ 21tan =∠CPO , ∴ 1tan tan 2OCE CPO ∠=∠=.……………3分设 OE=k ,则CE=2k,OC =.(0k >) ∵ ⊙O的半径等于=3k =.∴ CE=6 .………………………………………………………………………… 4分 ∴ CD =2CE=12 .………………………………………………………………… 5分16.(1)画图见图2. …………………………… 2分 (2)由图可知△ABC 是直角三角形,AC=4,BC=3,所以AB=5.…………………… 3分 线段AB 在旋转到AB '的过程中所扫过区域 是一个扇形,且它的圆心角为90°,半径为5.……………………………………… 4分 ∴ 221125ππ5π444AB B S AB '=⨯=⨯=扇形. …………………………………… 5分所以线段AB 在旋转到AB '的过程中所扫过区域的面积为25π4. 17.解:根据题意,得(20)(80010)8000a a --=.(20≤a ≤80) …………………… 1分整理,得 210024000a a -+=.可得 (40)(60)0a a --=.解方程,得140a =,260a =.…………………………………………………… 3分 当140a =时,800108001040400a -=-⨯=(件). 当260a =时,800108001060200a -=-⨯=(件).因为要使每天的销售量尽量大,所以40a =. ………………………………… 4分 答:商店计划要每天恰好盈利8000元,并且要使每天的销售量尽量大,每件商品的售价应是40元.……………………………………………………………………… 5分 18.解:(1)当0a =时,函数21y x =+的图象与x 轴只有一个公共点成立.…………1分 (2)当a ≠0时,函数2(2)1y ax a x a =++++是关于x 的二次函数.∵ 它的图象与x 轴只有一个公共点,∴ 关于x 的方程 2(2)10ax a x a ++++=有两个相等的实数根. ………2分∴ 2(2)4(1)0a a a ∆=+-+=.………………………………………………3分整理,得 2340a -=.解得a =.…………………………………………………………… 5分 综上,0a =或a =四、解答题(本题共20分,每小题5分)19.解:如图3,由题意,可得∠P AC =30°,∠PBC =60°. ………………………………………… 2分 ∴ 30APB PBC PAC ∠=∠-∠=︒.∴ ∠P AC=∠APB . ∴ PB =AB = 400.…………………………… 3分在Rt △PBC 中,∠PCB =90°,∠PBC =60°,PB =400,∴sin 400346.4PC PB PBC =⋅∠==≈346(米).………………4分 答:灯塔P 到环海路的距离PC 约等于346米. …………………………………… 5分 20.(1)证明:如图4.∵ 正方形ABCD ,正方形EFGH ,∴ ∠B =∠C =90°,∠EFG =90°,BC =CD ,GH=EF=FG .又∵ 点F 在BC 上,点G 在FD 上,∴ ∠DFC +∠EFB =90°,∠DFC +∠FDC =90°, ∴ ∠EFB =∠FDC . …………………… 1分 ∴ △EBF ∽△FCD .…………………… 2分 (2)解:∵ BF =3,BC =CD =12,∴ CF =9,15DF =.由(1)得BE CFBF CD=. ∴ 399124BF CF BE CD ⨯⨯===. …………………………………………… 3分∴154GH FG EF ==.……………………………………4分454DG DF FG =-=.∴ 1tan 3GH HDG DG ∠==. ………………………………………………… 5分21.(1)补全图形见图5.…………………………………………1分 (2)证明:∵ 弦BC ,BD 关于直径AB 所在直线对称,∴ ∠DBC =2∠ABC . ……………………………2分 又∵2AOC ABC ∠=∠,∴ AOC DBC ∠=∠.……………………………3分(3)解:∵,∴ ∠A =∠D .又∵ AOC DBC ∠=∠,BF=BF∴ △AOE ∽△DBM . ……………………………………………………… 4分∴OE BMOA BD=. ∵ 3OC OE =,OA =OC ,∴ 13BM OE OE BD OA OC ===.∵ 弦BC ,BD 关于直径AB 所在直线对称, ∴ BC =BD . ∴13BM BM BC BD ==.………………………………………………………… 5分 22.解:(1)(1,4)A --,(3,0)B -. ……………………………………………………… 2分画图象见图6.……………………………………………………………… 3分(2)由题意得变换后的抛物线1C 的相关点的坐标如下表所示:设抛物线1C 对应的函数表达式为 2(2)2y a x =+-.(a ≠0) ∵ 抛物线1C 与y 轴交点的坐标为(0, 1.5)-, ∴ 3422a -=-. 解得 18a =. ∴ 221113(2)28822y x x x =+-=+-.……… 5分 ∴ 抛物线1C 对应的函数表达式为2113822y x x =+-说明:其他正确解法相应给分.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.解:(1)∵ 点1(,2)2A 在反比例函数my x =(m 为常数)的图象G 上,∴ 1212m =⨯=.………………………………………………………………1分∴ 反比例函数m y x =(m 为常数)对应的函数表达式是1y x=.设直线l 对应的函数表达式为y kx b =+(k ,b 为常数,k ≠0).∵ 直线l 经过点1(,2)2A ,(1,0)D ,∴ 12,20.k b k b ⎧+=⎪⎨⎪+=⎩ 解得4,4.k b =-⎧⎨=⎩∴ 直线l 对应的函数表达式为44y x =-+. ………………………………2分 (2)由反比例函数图象的中心对称性可知点C 的坐标为1(,2)2C --. ………… 3分 ∵ CE ∥x 轴交直线l 于点E , ∴ E C y y =.∴ 点E 的坐标为3(,2)2E -.………………………………………………… 4分(3)如图7,作AF ⊥CE 于点F ,与过点B 的y 轴的垂线交于点G ,BG 交AE 于点M ,作CH ⊥BG 于点H ,则BH ∥CE ,BCE CBH ∠=∠.∵ 1(,2)2A ,1(,2)2C --,3(,2)2E -,∴ 点F 的坐标为1(,2)2F -.∴ CF =EF .∴ AC =AE .∴ ∠ACE =∠AEC .………………………… 5分∵ 点(3,)B n 在图象G 上,∴ 13n =,∴ 1(3,)3B ,11(,)23G ,11(,)23H -.在Rt △ABG 中,1223tan 1332AG ABH BG -∠===-, 在Rt △BCH 中,1223tan 1332CH CBH BH +∠===+, ∴ ABH CBH ∠=∠.………………………………………………………… 6分 ∴ BCE ABH ∠=∠.∵ BAE AMH ABH AEC ABH ∠=∠-∠=∠-∠,ACB ACE BCE ∠=∠-∠, ∴ ∠BAE =∠ACB . …………………………………………………………… 7分24.解:(1)①QBC ∠= 90︒;………………………………………………………………1分② m =3时,点Q 到直线l 的距离等于.……………………………… 2分 (2)所画图形见图8.………………………… 3分m =4分(3)作BG ⊥AC 于点G ,过点Q 作直线l 的垂线交l 于点D ,交BG 于点F .∵ CA ⊥直线l ,∴ ∠CAP =90︒.易证四边形ADFG 为矩形.∵ 等边三角形ABC 的边长为4, ∴ ∠ACB =60︒,122DF AG CG AC ====,1302CBG CBA ∠=∠=︒. ∵ 将△ACP 绕点C 按逆时针方向旋转60︒得到△BCQ , ∴ △ACP ≌△BCQ .∴ AP = BQ = m ,∠P AC =∠QBC =90︒. ∴ ∠QBF =60︒.在Rt △QBF 中,∠QFB =90︒,∠QBF =60︒,BQ=m , ∴QF =.…………………………………………………………… 5分 要使△P AQ 存在,则点P 不能与点A ,0P 重合,所以点P 的位置分为以下两 种情况:① 如图9,当点P 在(2)中的线段0P A 上(点P 不与点A ,0P 重合)时,可得0m <<,此时点Q 在直线l 的下方. ∴2DQ DF QF =-=.∵12APQ S AP DQ ∆=⋅=,∴1(2)2m =.240m -+=.解得1m =或2m =经检验,m =0m << 7分② 如图10,当点P 在(2)中的线段0AP 的延长线上(点P 不与点A ,0P 重合)时,可得m >,此时点Q 在直线l 的上方. ∴2DQ QF DF =-=-. ∵12APQ S AP DQ ∆=⋅=,∴.12)2m -=.整理,得2330m --=.解得 m =. 经检验,m =m >的范围内,符合题意.…………8分综上所述,m =32132+时,△P AQ .25.解:(1)满足条件的其中一个点P 的坐标是(5,0);………………………………… 1分(说明:点(,)P x y 的坐标满足5x y +=, 0≤x ≤5,0≤y ≤5均可)图形G 与坐标轴围成图形的面积等于252.…………………………………2分 (2)如图11,作ME ⊥OB 于点E ,MF ⊥x 轴于点F ,则MF =1,作MD ∥x 轴,交OB 于点D ,作BK ⊥x 轴于点K .由点B 的坐标为(3,4)B ,可求得直线OB 对应的函数关系式为43y x =. ∴ 点D 的坐标为3(,1)4D ,313444DM =-=. ∴ OB =5,4sin 5BK AOB OB ∠==, 4sin sin 5MDE AOB ∠=∠=.∴ 13413sin 455ME DM MDE =⋅∠=⨯=.……………………………………… 3分∴ 1318(,)155d M AOB ME MF ∠=+=+=.……………………………………… 4分(3)∵ 抛物线212y x bx c =-++经过(5,0)A ,(3,4)B 两点,∴ 221055,21433.2b c b c ⎧=-⨯++⎪⎪⎨⎪=-⨯++⎪⎩解得2,5.2b c =⎧⎪⎨=⎪⎩∴ 抛物线对应的函数关系式为215222y x x =-++.………………………5分 如图12,作QG ⊥OB 于点G ,QH ⊥x 轴于点H .作QN ∥x 轴,交OB 于点N .设点Q 的坐标为(,)Q m n ,其中3≤m ≤5, 则215222QH n m m ==-++.同(2)得 4sin sin 5QNG AOB ∠=∠=. ∴ 点N 的坐标为3(,)4N n n ,34NQ m n =-.∴ 43sin ()54QG NQ QNG m n =⋅∠=-4355m n =-. ∴ 434(,)5555d Q AOB QG QH m n n ∠=+=-+=24215(2)5522m m m =+-++ 218155m m =-++2121(4)55m =--+.∴ 当4m =(在3≤m ≤5范围内)时,(),d Q AOB ∠取得最大值(215). ………………………………………………………… 6分此时点Q 的坐标为5(4,)2.…………………………………………………7分。
2014年北京市西城区初三二模数学试卷及答案
2014年北京市西城区初三二模2014. 6一、选择题(本题共32分,每小题4分) 1.在12,0,1-,2-这四个数中,最小的数是 A .12B .0C .1-D .2-2.据报道,按常住人口计算,2013年北京市人均GDP (地区生产总值)达到约93 210元, 将93 210用科学记数法表示为A .393.2110⨯B .49.32110⨯C .50.932110⨯D . 2932.110⨯ 3.如图,四边形ABCD 为⊙O 的内接四边形, 若∠BCD=110°,则∠BAD 的度数为 A .140° B .110° C .90° D .70°4.在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0, 1,3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为A . 4 5B . 3 5C . 2 5D . 1 55.如图,为估算学校的旗杆的高度,身高 1.6米的小红同学沿着旗杆在地面的影子AB 由A 向B 走去,当她走到点C 处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC =2m ,BC =8m ,则旗杆的高度是( )A .6.4mB .7mC . 8mD .96.如图,菱形ABCD 的周长是20,对角线AC ,BD 相交于点O ,若BD =6,则菱形ABCD 的面积是 A . 6 B . 12 C . 24 D .487.如图,在平面直角坐标系xOy中,直线y =经过点A ,作AB⊥x 轴于点B ,将△ABO 绕点B 顺时针旋转o60得到△BCD ,若点B的坐标为(2,0),则点C 的坐标为A .B . (5,1)C .D .(6,1)8.右图表示一个正方体的展开图,下面四个正方体中只有一个符合要求,那么这个正方体是O CBAA .B .C .D . 二、填空题(本题共16分,每小题4分) 9.函数=y 中,自变量x 的取值范围是_________10.若一次函数的图像过点(0,2),且函数y 随自变量x 的增大而增大,请写出一个符合要求的一次函数表达式:_________11.一组数据:3,2,1,2,2的中位数是_____,方差是_____. 12.如图,在平面直角坐标系xOy 中,已知抛物线y =-x (x -3)(0≤x ≤3)在x 轴上方的部分,记作C 1,它与x 轴交于点O ,A 1,将C 1绕点A 1旋转180°得C 2,C 2与x 轴交于另一点A 2.请继续操作并探究:将C 2绕点A 2旋转180°得C 3,与x 轴交于另一点A 3;将C 3绕点A 2旋转180°得C 4,与x 轴交于另一点A 4,这样依次得到x 轴上的点A 1,A 2,A 3,…,A n ,…,及抛物线C 1,C 2,…,C n ,….则点A 4的坐标为 ;C n 的顶点坐标为 (n 为正整数,用含n 的代数式表示) .三、解答题(本题共30分,每小题5分)13.计算:101()(3)3tan304-+-π-+︒14.已知:如图,C 是AE 上一点,∠B=∠DAE ,BC ∥DE ,AC=DE . 求证:AB=DA . 15.解分式方程:22142xx x +=--16.列方程或方程组解应用题:一列“和谐号”动车组,有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设有座位64个,每节二等车厢设有座位92个.问该列车一等车厢和二等车厢各有多少节?17.已知关于x 的一元二次方程x 2+2x +3k -6=0有两个不相等的实数根 (1)求实数k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.18.抛物线2y x bx c =++(b ,c 均为常数)与x 轴交于(1,0),A B 两点,与y 轴交于点(0,3)C .. (1)求该抛物线对应的函数表达式;(2)若P 是抛物线上一点,且点P 到抛物线的对称轴的距离为3,请直接写出点P 的坐标.EDCBA四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,AB ∥DC , DB 平分∠ADC , E 是CD 的延长线上一点,且12AEC ADC ∠=∠.(1)求证:四边形ABDE 是平行四边形.(2)若DB ⊥CB ,∠BCD =60°,CD =12,作AH ⊥BD 于H ,求四边形AEDH 的周长.21.据报道:2013年底我国微信用户规模已到达6亿.以下是根据相关数据制作的统计图表的一部分:请根据以上信息,回答以下问题:(1)从2012年到2013年微信的人均使用时长增加了________分钟;(2)补全2013年微信用户对“微信公众平台”参与关注度扇形统计图,在我国6亿微信用户中,经常使用户约为_________亿(结果精确到0.1);(3)从调查数学看,预计我国微信用户今后每年将以20%的增长率递增,请你估计两年后,我国微信用户的规模将到达_________亿.21.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,过点B 作⊙O 的切线与AD 的延长线交于F . (1)求证:ABC F ∠=∠(2)若sinC=35,DF=6,求⊙O 的半径..22.阅读下面材料:小明遇到这样一个问题: 如图1,五个正方形的边长都为1,将这五个正方形分割为四部分,再拼接为一个大正方形.小明研究发现:如图2“日”五个正方形被两条互相垂直的线段AB ,CD 分割为四部分,将这四部分图形分别标号,以CD 为一边画大正方形,把这四部分图形分别移入正方形内,就解决问题.请你参考小明的画法,完成下列问题:(1)如图3,边长分别为a ,b 的两个正方形被两条互相垂直的线段AB ,CD 分割为四部分图形,现将这四部分图形拼接成一个大正方形,请画出EB拼接示意图(2)如图4,一个八角形纸板有个个角都是直角,所有的边都相等,将这个纸板沿虚线分割为八部分,再拼接成一个正方形,如图5所示,画出拼接示意图;若拼接后的正方形的面积为8+,则八角形纸板的边长为 .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.经过点(1,1)的直线l : 2 (0)y kx k =+≠与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,B (b ,-1),与y 轴交于点D .(1)求直线l 对应的函数表达式及反比例函数G 1的表达式; (2)反比例函数G 2::2 (0)ty t x=≠, ①若点E 在第一象限内,且在反比例函数G 2的图象上,若EA =EB ,且△AEB 的面积为8,求点E 的坐标及t 值;②反比例函数G 2的图象与直线l 有两个公共点M ,N (点M 在点N 的左侧),若DM DN +<t 的取值范围.24.在△ABC ,∠BAC 为锐角,AB >AC , AD 平分∠BAC 交BC 于点D .(1)如图1,若△ABC 是等腰直角三角形,直接写出线段AC ,CD ,AB 之间的数量关系; (2)BC 的垂直平分线交AD 延长线于点E ,交BC 于点F .①如图2,若∠ABE =60°,判断AC ,CE ,AB 之间有怎样的数量关系并加以证明;②如图3,若AC AB AE +,求∠BAC 的度数.25.在平面直角坐标系xOy 中,对于⊙A 上一点B 及⊙A 外一点P ,给出如下定义:若直线PB 与 x 轴有公共点(记作M ),则称直线PB 为⊙A 的“x 关联直线”,记作PBM l . (1)已知⊙O 是以原点为圆心,1为半径的圆,点P (0,2),①直线1l :2y =,直线2l :2y x =+,直线3l :2y +,直线4l :22y x =-+都经过点P ,在直线1l , 2l , 3l , 4l 中,是⊙O 的“x 关联直线”的是 ;②若直线PBM l 是⊙O 的“x 关联直线”,则点M 的横坐标M x 的最大值是 ; (2)点A (2,0),⊙A 的半径为1,①若P (-1,2),⊙A 的“x 关联直线”PBM l :2y kx k =++,点M 的横坐标为M x ,当M x 最大时,求k 的值;②若P 是y 轴上一个动点,且点P 的纵坐标2p y >,⊙A 的两条“x 关联直线”PCM l ,PDN l 是⊙A 的两条切线,切点分别为C ,D ,作直线CD 与x 轴点于点E ,当点P 的位置发生变化时, AE 的长度是否发生改变?并说明理由.北京市西城区2014年初三二模试卷数学试卷参考答案及评分标准2014.6一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:101()(3)3tan304-+-π-+︒=4133+⨯······················································································ 4分=3+······························································································· 5分14. 证明:(1)∵BC∥DE,∴∠ACB=∠DEA.…………1分在△ABC和△DAE中,,B DAEACB DEAAC DE∠=∠⎧∠∠⎪⎩=⎪⎨,=∴△ABC≌△DAE.·························································· 4分∴AB=DA.··········································································· 5分15.方程两边同时乘以24x-,得22(2)4x x x++=-,·········································· 3分解得,3x=-. ······································································································· 4分经检验,3x=-是原方程的解3x=-······································································ 5分16.解:设该列车一等车厢有x节,二等车厢有y节.······························································1分由题意,得66494,296x yx y+=+=⎧⎨⎩,·····························································································2分解得4,2xy==⎧⎨⎩,·································································································································4分EDCBA答:该列车一等车厢有2节,二等车厢有4节 ········································································· 5分17.解:(1)由题意,得 Δ=4-4(3k -6)>0∴73k <. ······································································································· 2分 (2)∵k 为正整数, ∴k =1,2 ····································································································· 3分 当k =1时,方程x 2+2x -3=0的根x 1=-3,x 2=1都是整数; ······························ 4分 当k =2时,方程x 2+2x =0的根x 1=-2,x 2=0都是整数. 综上所述,k =1,2. ·························································································· 5分18.解:(1) ∵抛物线2y x bx c =++与y 轴交于点(0,3)C ,∴c =3 . ∴23y x bx =++.又∵抛物线2y x bx c =++与x 轴交于点(1,0)A ,∴b =-4 .∴243y x x =-+. ···························································································· 3分(2)点P 的坐标为(5,8)或(1,8)-. 四、解答题(本题共20分,每小题5分) 19.解:(1)∵DB 平分∠ADC ,∴1122ADC ∠=∠=∠.又∵12AEC ADC ∠=∠,∴1AEC ∠=∠.∴AE ∥BD . ························································································ 1分 又∵AB ∥EC ,∴四边形AEDB 是平行四边形. ························································· 2分 (2)∵DB 平分∠ADC ,,∠ADC =60°,AB ∥EC ,∴∠1=∠2=∠3=30°. ∴AD =AB . 又∵DB ⊥BC , ∴∠DBC =90°.在Rt △BDC 中, CD=12,∴BC=6,DB = ········································································· 3分 在等腰△ADB 中,AH ⊥BD ,∴DH= BH=12DB = 在Rt △ABH 中,∠AHB =90°,∴AH =3,AB=6. ··················································································· 4分 ∵四边形AEDB 是平行四边形.∴AE BD == ED=AB=6.∴9AE ED DH AH +++=. ··················································· 5分 ∴四边形AEDH的周长为9.20.解:(1)6.7; ········································································································· 1分(2)42.4%, 1.5 ····························································································· 4分 (3)8.64··········································································································· 5分21.(1)证明:∵BF 为⊙O 的切线,∴AB ⊥BF 于点B . ∵ CD ⊥AB ,∴∠ABF =∠AHD =90°. ∴CD ∥BF . ∴∠ADC=∠F . 又∵∠ABC=∠ADC ,∴∠ABC=∠F .······················································································ 2分(2)解:连接BD .∵AB 为⊙O 的直径, ∴∠ADB =90°, 由(1)∠ABF =90°, ∴∠A=∠DBF . 又∵∠A=∠C .∴∠C=∠DBF . ································································································ 3分在Rt △DBF 中,3sin sin 5C DBF =∠=,DF=6, ∴BD=8. ······································································································ 4分 在Rt △ABD 中,3sin sin 5C A ==, ∴403AB =. ∴⊙O 的半径为203. ··················································································· 5分22.解:(1)拼接示意图如下;……………… 2分(2)接示意图如下,八角形纸板的边长为 1 . ······································· 5分B五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(1)解:∵直线l : 2 (0)y kx k =+≠经过(1,1)-,∴1k =-,∴直线l 对应的函数表达式2y x =-+. ················································· 1分 ∵直线l 与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,B (b ,-1), ∴3a b ==.∴(1,3)A -,B (3,-1).∴3m =-.∴反比例函数G 1函数表达式为3y x=-. ··············································· 2分(2)∵EA =EB ,(1,3)A -,B (3,-1),∴点E 在直线y=x 上.∵△AEB 的面积为8,AB =∴EH =∴△AEB 是等腰直角三角形.∴E (3,3), ······································································································ 5分(3)分两种情况:(ⅰ)当0t >时,则01t <<; ········································································ 6分 (ⅱ)当0t <时,则504t -<<.综上,当504t -<<或01t <<时,反比例函数2G 的图象与直线l 有两个公共点M ,N ,且DM DN +< ········································································································· 7分24.解:(1)AB=AC+CD ; ·················································································· 1分 (2)①AB=AC+CE ; ·························································································· 2分证明:在线段AB 上截取AH=AC ,连接EH .∴CE=HE . ·························································································· 3分EF 垂直平分BC ,∴CE=BE . ································································································· 4分 又∠ABE =60°,∴△EHB 是等边三角形. ∴BH=HE .∴AB=AH+HB=AC+CE . ·········································································· 5分 ②在线段AB 上截取AH=AC ,连接EH ,作EM ⊥AB 于点M . 易证△ACE ≌△AHE , ∴CE=HE . ∴∠EAB =30°.∴∠CAB =2∠EAB =60°. ······································································· 7分25.解:(1)①34,l l ; ·································································································· 2分 ②M x ; ···················································································· 3分(2)①如图,当直线PB 与⊙A 相切于点B 时,此时点M 的横坐标M x 最大,作PH ⊥x 轴于点H ,∴HM =1M x +,AM = 2M x -,在Rt △ABM 和Rt △PHM 中, tan AB PH B M MA M HB =∠=,∴BM =12HM =1(1)2M x +.在Rt △ABM 中, 222AM AB BM =+, ∴221(2)1(1)4M M x x -=++.解得3M x =±.∴点M 的横坐标M x 最大时,3M x =∴34k =. ·························································································· 6分 ②当P 点的位置发生变化时,AE 的长度不发生改变. 如图,⊙A 的两条“x 关联直线”与⊙A 相切于点C ,D , ∴PC=PD .又∵AC=AD∴AP 垂直平分BC .在Rt △ADF 和Rt △ADP 中,sin sin ADF APD ∠=∠,∴2AF AP AD ⋅=在Rt △AEF 和Rt △AOP 中,cos AF AO A A PE E AF =∠=, ∴AF AP AE AO ⋅=⋅∴2AD AE AO =⋅ ∴12AE =.即当P 点的位置发生变化时,AE 的长度不发生改变. ·············································· 8分。
2014中考数学二模试卷及答案(最新两套)
13.已知一次函数 的图象过点 、 .若 ,则
▲.
14.如图,四边形ABCD内接于⊙O,AD∥BC,∠ACB=50°,则∠CBD=▲°.
15.如图,在函数 (x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为1,且后面每个点的横坐标与它前面相邻点的横坐标的差都是1,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则Sn=▲.(用含n的代数式表示)
∴△ABD的外接圆⊙O的圆心O在AC上.…………………………2分
∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.
∴∠OBC=∠ODC=90°.………………………………………………3分
又∵OB为半径,∴⊙O与BC相切.……………………………………4分
(没有说明圆心在AC上,扣1分.)
(2)∵AD=CD,∴∠ACD=∠CAD.∠COD=2∠CAD.
一、选择题(本大题共6小题,每小题2分,共12分)
题号
1
2
3
4
5
6
答案
C
D
D
B
D
B
二、填空题(本大题共10小题,每小题2分,共20分)
7. 8.39.x1=2,x2=4 10.乙11.2
12. 13.-2 14.50°15. 16.0.5或1.5
三、解答题(本大题共11小题,共88分)
17.(本题6分)
=.…………………………………………6分
19.(本题8分)
(1)∵△ABC≌△CAD,
北京中考二模数学2014---23题汇编
23.在平面直角坐标系xOy 中,点P (m ,0)为x 轴正半轴上的一点,过点P 做x 轴的垂线,分别交抛物线y =-x 2+2x 和y =-x 2+3x 于点M ,N . (1)当21=m 时, _____MN PM=; (2)如果点P 不在这两条抛物线中的任何一条上.当四条线段OP ,PM ,.PN ,MN 中恰好有三条线段相等时, 求m 的值.14大兴23.已知:关于x 的一元二次方程2)13()1(22=+---x k x k (1)当方程有两个相等的实数根时,求k 的值;(2)若k 是整数,且关于x 的一元二次方程02)13()1(22=+---x k x k 有两个不相等的整数根时,把抛物线2)13()1(22+---=x k x k y 向右平移21个单位长度,求平移后抛物线的顶点坐标.23.经过点(1,1)的直线l : 2 (0)y kx k =+≠与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,B (b ,-1),与y 轴交于点D .(1)求直线l 对应的函数表达式及反比例函数G 1的表达式; (2)反比例函数G 2::2 (0)ty t x=≠, ①若点E 在第一象限内,且在反比例函数G 2的图象上,若EA =EB ,且△AEB 的面积为8,求点E 的坐标及t 值;②反比例函数G 2的图象与直线l 有两个公共点M ,N (点M 在点N 的左侧),若DM DN +<t 的取值范围.14房山23. 已知关于x 的一元二次方程0132=-+-k x x 有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个不为0的整数根时,将关于x 的二次函数132-+-=k x x y 的图象向下平移2个单位,求平移后的函数图象的解析式;(3)在(2)的条件下,将平移后的二次函数图象位于y 轴左侧的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象G .当直线5y x b =+与图象G 有3个公共点时,请你直接写出b 的取值范围.23.已知关于x 的方程:2(1)0x m x m ---=①和2(9)2(1)3x m x m --++=②,其中0m >. (1)求证:方程①总有两个不相等的实数根;(2)设二次函数21(1)y x m x m =---的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),将A 、B 两点按照相同的方式平移后,点A 落在点'(1,3)A 处,点B 落在点'B 处,若点'B 的横坐标恰好是方程②的一个根,求m 的值;(3)设二次函数22(9)2(1)y x m x m =--++,在(2)的条件下,函数1y ,2y 的图象位于直线3x =左侧的部分与直线y kx =(0k >)交于两点,当向上平移直线y kx =时,交点位置随之变化,若交点间的距离始终不变,则k 的值是________________.14顺义23.已知关于的一元二次方程2440mx x m ++-=.(1)求证:方程总有两个实数根;(2)若m 为整数,当此方程有两个互不相等的负整数根时,求m 的值;(3)在(2)的条件下,设抛物线244y mx x m =++-与x 轴交点为A 、B (点B 在点A的右侧),与y 轴交于点C .点O 为坐标原点,点P 在直线BC 上,且OP =12BC ,求点P 的坐标.x23.已知抛物线2(31)2(1)(0)y ax a x a a =-+++≠.(1)求证:无论a 为任何非零实数,该抛物线与x 轴都有交点;(2)若抛物线2(31)2(1)y ax a x a =-+++与x 轴交于A (m ,0)、 B (n ,0)两点,m 、n 、a 均为整数,一次函数y =kx +b (k ≠0)的图象经过点P (n -l ,n +l )、Q (0,a ),求一次函数的表达式.14东城23.已知:关于x 的一元二次方程2(3)-30mx m x +-=. (1)求证:无论m 取何值,此方程总有两个实数根;(2)设抛物线2(3)-3y mx m x =+-,证明:此函数图像一定过x 轴,y 轴上的两个定点(设x 轴上的定点为点A ,y 轴上的定点为点C );(3)设此函数的图像与x 轴的另一交点为B ,当△ABC 为锐角三角形时,求m 的取值范围.14丰台23.如图,二次函数2y x bx c =++经过点(-1,0)和点(0,-3). (1)求二次函数的表达式;(2)如果一次函数4y x m =+的图象与二次函数的图象有且只有一个公共点,求m 的值和 该公共点的坐标;(3)将二次函数图象y 轴左侧部分沿y 轴翻折,翻折后得到的图象与原图象剩余部分组成 一个新的图象,该图象记为G ,如果直线4y x n =+与图象G 有3个公共点,求n 的值.14门头沟23. 已知二次函数223y x x =-++图象的对称轴为直线.14平谷23.已知关于x 的一元二次方程210x mx m -+-=. (1)求证:无论m 取任何实数时,方程总有实数根;(2)关于x 的二次函数211y x mx m =-+-的图象1C 经过2(168)k k k --+,和2(568)k k k -+-+,两点.①求这个二次函数的解析式;②把①中的抛物线1C 沿x 轴翻折后,再向左平移2个单位,向上平移8个单位得到抛物线2C .设抛物线2C 交x 轴于M 、N 两点(点M 在点N 的左侧),点P (a ,b )为抛物线2C 在x 轴上方部分图象上的一个动点.当∠MPN ≤45°时,直接写出a 的取值范围.。
北京西城区中考二模数学试题答案
北京市西城区20XX 年初三二模试卷数学答案及评分标准 2011.6一、选择题(本题共32分,每小题4分)题号1 2 3 4 56 7 8 答案B A DC BCAA二、填空题(本题共16分,每小题4分)题号 9 10 1112答案()()22-+m m m2≠x32,34()20122011,11+n n 三、解答题(本题共30分,每小题5分) 13.解:原式=132122--- ……………………………………………………………4分 =3222-. ……………………………………………………………………5分 14.证明: 如图1.在△ACE 和△BDE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BD AC BED AEC DBE CAE ………………………………3分∴ △ACE ≌△BDE . ……………………………………………………………4分 ∴ AE =BE .………………………………………………………………………5分 15.解:(1)∵ 关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,∴ 16420k ∆=-⨯>. ………………………………………………………1分 解得2k <. ……………………………………………………………………2分 (2)∵2k <,∴ 符合条件的最大整数1k =,此时方程为2420x x ++=. ……………3分∴ 142a b c ===,,. ∴ 22444128b ac -=-⨯⨯=.………………………………………………4分代入求根公式242b b acx a-±-=,得422222x -±==-±.…………5分 ∴ 122222x x =-+=--,.16.解:原式=222222x xy y xy y ++--=22x y -.………………………………………2分 ∵ 122=+xy x ①,152=+y xy ②,∴ ①-②,得223x y -=-. ………………………………………………………4分∴ 原式=3-. ………………………………………………………………………5分图117.解:(1)∵ 反比例数my x=()0≠m 的图象经过(3,1)A -,(2,)B n 两点,(如图2) ∴ 313m =-⨯=-,322m n ==-.∴ 反比例函数解析式为3y x =-.………………………1分点B 的坐标为3(2)2B -,.……………………………2分∵ 一次函数y kx b =+()0≠k 的图象经过(3,1)A -,3(2)2B -,两点,∴ 31,32.2k b k b -+=⎧⎪⎨+=-⎪⎩解得 1,21.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴ 一次函数的解析式为1122y x =--.……………………………………3分(2)设一次函数1122y x =--的图象与x 轴的交点为C ,则点C 的坐标为(1,0)C -.∴ =AOB ACO COB S S S ∆∆∆+113=11+1222⨯⨯⨯⨯5=4. …………………………5分18.解:(1)50;………………………………………………………………………………1分(2)………………………………………………………………………………3分 (3)3.………………………………………………………………………………5分四、解答题(本题共20分,每小题5分) 19.解:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆. ()62402022800y x x x =+-=+.…………………………………………2分 (2)依题意得x -20< x .解得x >10.……………………………………………………………………3分∵ 22800y x =+,y 随着x 的增大而增大,x 为整数,∴ 当x=11时,购车费用最省,为22×11+800=1 042(万元). …………4分 此时需购买大型客车11辆,中型客车9辆.……………………………5分答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.图220.解:(1)作DM ⊥AB 于点M ,CN ⊥AB 于点N .(如图3)∵ AB ∥DC ,DM ⊥AB ,CN ⊥AB ,∴ ∠DMN =∠CNM =∠MDC =90︒. ∴ 四边形MNCD 是矩形. ∵4CD =,∴ MN =CD = 4.∵ 在梯形ABCD 中,AB ∥DC ,5AD BC ==, ∴ ∠DAB =∠CBA ,DM=CN . ∴ △ADM ≌△BCN . 又∵10AB =, ∴ AM =BN =()11(104)322AB MN -=⨯-=. ∴ MB =BN +MN =7.……………………………………………………………2分∵ 在Rt △AMD 中,∠AMD =90︒,AD =5,AM =3, ∴ 224DM AD AM =-=.∴ 4tan 7DM ABD BM ∠==.……………………………………………………3分 (2)∵ EF AB ⊥,∴ ∠F =90︒.∵∠DMN =90︒, ∴ ∠F =∠DMN .∴ DM ∥EF .∴ △BDM ∽△BEF . ∵ DE BD =,∴12BM BD BF BE ==. ∴ BF =2BM =14. ……………………………………………………………4分∴ AF =BF -AB =14-10=4. …………………………………………………5分21.(1)证明:如图4. ∵ 点A 是劣弧BC 的中点,∴ ∠ABC =∠ADB .………………………1分 又∵ ∠BAD =∠EAB ,∴ △ABE ∽△ADB .………………………2分 ∴AB AD AE AB=. ∴ 2AB AE AD =⋅.………………………………………………………3分 (2)解:∵ AE =2,ED =4,∴()22612AB AE AD AE AE ED =⋅=+=⨯=.∴23AB =(舍负).………………………………………………………4分∵ BD 为⊙O 的直径,∴ ∠A =90︒.图4EC OF A D B 图3又∵ DF 是⊙O 的切线,∴ DF ⊥BD.∴ ∠BDF =90︒.在Rt △ABD 中,233tan 63AB ADB AD ∠===, ∴ ∠ADB =30︒.∴ ∠ABC =∠ADB =30︒. ∴∠DEF=∠AEB=60︒,903060EDF BDF ADB ∠=∠-∠=︒-︒=︒. ∴ ∠F =18060DEF EDF ︒-∠-∠=︒. ∴ △DEF 是等边三角形.∴ EF = DE =4.………………………………………………………………5分22.解:(1)……………………………………………………1分(2)……………………………………………………3分(3)……………………………………………………5分 23.解:(1)=,>,<.……………………………………………………………………3分(2)2ca.……………………………………………………………………………4分 (3)答:当x =5m +时,代数式2ax bx c ++的值是正数.理由如下:设抛物线2y ax bx c =++(a ≠0),则由题意可知,它经过A (,0)2ca,B (2,0) 两点.∵ a >0,c <0,∴ 抛物线2y ax bx c =++开口向上,且2ca<0<2,即点A 在点B 左侧. …………………………………………………………………………5分设点M 的坐标为2(,)M m am bm c ++,点N 的坐标为(5,)N m y +.∵ 代数式2am bm c ++的值小于0,∴ 点M 在抛物线2y ax bx c =++上,且点M 的纵坐标为负数. ∴ 点M 在x 轴下方的抛物线上.(如图5)∴ A M B x x x <<,即22cm a<<. ∴ 5572c m a +<+<,即572N c x a+<<.以下判断52ca+与B x 的大小关系:∵ 42a b c ++=0,a >b ,a >0, ∴ 66(42)(5)(5)202222B c c a c a a b a b x a a a a a+-+-+-=+-===>. ∴B x ac>+52. ∴ 52N B cx x a>+>.…………………………………………………………6分 ∵ B ,N 两点都在抛物线的对称轴的右侧,y 随x 的增大而增大, ∴B N y y >,即y >0.∴ 当x =5m +时,代数式2ax bx c ++的值是正数. ………………………7分24.解:(1)52,265.………………………………………………………………………2分 (2)只有点P 在DF 边上运动时,△PDE 才能成为等腰三角形,且PD=PE .(如 图6)……………………………………………………………………………3分 ∵ BF=t ,PF=2t ,DF =8, ∴ 82PD DF PF t =-=-.在Rt △PEF 中,2222436PE PF EF t =+=+=2PD.即()2228364t t -=+.解得 78t =.…………………………………4分 ∴ t 为78时△PDE 为等腰三角形.(3)设当△DEF 和点P 运动的时间是t 时,点P 与点G 重合,此时点P 一定在DE边上,DP= DG . 由已知可得93tan 124AC B BC ===,63tan 84EF D DF ===. ∴.D B ∠=∠∴.90︒=∠=∠BFH DGH∴ 3tan 4FH BF B t =⋅=, 384D H D F F H t=-=-, .5325354438cos +-=⨯⎪⎭⎫ ⎝⎛-=⋅=t t D DH DG∵ 2DP DF t +=,∴ 28DP t =-. 由DP=DG 得3322855t t -=-+. 图5解得 7213t =. …………………………………………………………………5分 检验:724613<<,此时点P 在DE 边上.∴ t 的值为7213时,点P 与点G 重合.(4)当0<t ≤4时,点P 在DF 边上运动(如图6),t a n 2PFPBF BF∠==.…………………………………………………………………………………6分 当4< t ≤6时,点P 在DE 边上运动(如图7),作PS ⊥BC 于S ,则t a n PSPBF BS∠=. 可得10(28)182PE DE DP t t =-=--=-.此时()5725821854cos cos +-=-=⋅=∠⋅=t t D PE EPS PE PS ,()5545621853sin sin +-=-=⋅=∠⋅=t t D PE EPS PE ES .524511554566-=⎪⎭⎫ ⎝⎛+--+=-+=t t t ES EF BF BS .∴ 728tan 1124PS tPBF BS t -∠==-.………………………………………………7分 综上所述, 2 (04),tan 728 (46).1124t PBF t t t <≤⎧⎪∠=-⎨≤≤⎪-⎩(以上时间单位均为s ,线段长度单位均为cm )25.解:(1)B 点的坐标为(23,6),………………………………………………………1分 C 点的坐标为(63,2).………………………………………………………3分 (2)当AB =4k ,(0,)A m 时,OA =m ,与(1)同理可得B 点的坐标为(23,2)B k k m +,C 点的坐标为(233,2)C k m k +.如图8,过点B 作y 轴的垂线,垂足为F ,过点C 作x 轴的垂线,垂足为G , 两条垂线的交点为H ,作DM ⊥FH 于点M ,EN ⊥OG 于点N .由三角形中位线的性质可得点D 的坐标为(3,)D k k m +,点E 的坐标为3(3,)2mE k k +.由勾股定理得2237()22m DE m m =+=. ∵ DE=27,∴ m=4. ……………………………4分 ∵ D 恰为抛物线2123(21)23(2)k y x x m k k +=-++++的顶点,它的顶点横坐标为3(21)3k +, ∴3(21)33k k +=.解得k=1.此时抛物线的解析式2123433y x x =-++. …………………………………5分此时D ,E 两点的坐标分别为(3,5)D ,(33,1)E .∴ 27OD =,27OE =.∴ OD=OE=DE .∴ 此时△ODE 为等边三角形,cos ∠ODE= cos60°=12.……………………6分 (3)E 1,E 3点的坐标分别为13(3,1)2m E +,E 33(33,3)2m+. 设直线13E E 的解析式为y ax b =+(a ≠0).则 3(3)1,23(33) 3.2ma b ma b ⎧++=⎪⎪⎨⎪++=⎪⎩解得 3,3.2a m b ⎧=⎪⎪⎨⎪=-⎪⎩∴ 直线13E E 的解析式为332my x =-. ……………………………………7分 可得直线13E E 与y 轴正方向的夹角等于60°.∵ 直线13D D ,13E E 与y 轴正方向的夹角都等于60°, ∴ 13D D ∥13E E .∵ D 1,D 3两点的坐标分别为1(3,1)D m +,3(33,3)D m +, 由勾股定理得13D D =4,13E E =4. ∴ 1313D D E E =.∴ 四边形1331D D E E 为平行四边形.设直线13E E 与y 轴的交点为P ,作AQ ⊥13E E 于Q .(如图9)可得点P 的坐标为.23,2,0m AP m P =⎪⎭⎫ ⎝⎛-∴.43360sin sin m AP OPQ AP AQ =︒⋅=∠⋅= ∴ 133113334334D DE E mS D D AQ m =⨯=⨯=四边形.…………………………8分。
北京西城二模试题及答案
北京西城二模试题及答案一、选择题(每题3分,共30分)1. 下列关于北京西城的描述,不正确的是:A. 北京西城是北京市的一个区B. 北京西城是北京市的中心区域C. 北京西城是北京市的郊区D. 北京西城拥有丰富的历史文化资源答案:C2. 北京西城二模试题的发布时间是:A. 2024年1月B. 2024年2月C. 2024年3月D. 2024年4月答案:B3. 北京西城二模试题的总分是:A. 100分B. 150分C. 200分D. 300分答案:C4. 在北京西城二模试题中,选择题的分值是:A. 每题1分B. 每题2分C. 每题3分D. 每题4分答案:C5. 下列哪项不是北京西城二模试题的题型:A. 选择题B. 填空题C. 判断题D. 论述题答案:D6. 北京西城二模试题的考试时间是:A. 90分钟B. 120分钟C. 150分钟D. 180分钟答案:B7. 北京西城二模试题的考试地点通常是:A. 北京市西城区的中学B. 北京市东城区的中学C. 北京市朝阳区的中学D. 北京市海淀区的中学答案:A8. 参加北京西城二模试题考试的学生需要携带:A. 身份证B. 学生证C. 准考证D. 以上都是答案:D9. 北京西城二模试题的考试目的主要是:A. 选拔优秀学生B. 检验学生的学习成果C. 作为毕业考试D. 作为升学考试答案:B10. 北京西城二模试题的考试形式是:A. 闭卷B. 开卷C. 半开卷D. 口试答案:A二、填空题(每题2分,共20分)1. 北京西城二模试题的考试时间是每年的_________。
答案:2月2. 北京西城二模试题的题型包括选择题、填空题、_________。
答案:判断题3. 北京西城二模试题的考试地点一般设在_________。
答案:西城区的中学4. 参加北京西城二模试题考试的学生需要提前_________分钟到达考场。
答案:305. 北京西城二模试题的考试形式是_________。
2014数学二模试题及答案
海 淀 区 九 年 级 第 二 学 期 期 末练 习(二模)数学2014.6.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.6-的相反数是 A .16-B .16C .6-D .62.2013年12月2日凌晨,承载了国人登月梦想的“嫦娥三号”在西昌卫星发射中心成功发射.在此次发射任务中,火箭把“嫦娥三号”送入近地点高度约210千米、远地点高度约368000千米的地月转移轨道.数字368000用科学记数法表示为 A .36.8×104B .3.68×106 C .3.68×105D .0.368×1063.如图是某个几何体的三视图,该几何体是A .长方体B .圆锥C .圆柱D .三棱柱4.如图,AB ∥CD ,点E 在CA 的延长线上. 若∠BAE =40°,则∠ACD 的大小为 A .150° B .140° C .130°D .120°5.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷一次骰子,在骰子向上的一面上出现点数大于4的概率为俯视图左视图主视图E DCBAA .16B .13C .12D .236.如图,四边形ABCD 是⊙O 的内接正方形,点P 是CD ⌒上不同于点C 的任意一点,则∠BPC 的大小是 A .45° B .60° C .75° D .90°7.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分,全班40,他们的得分情况如下表所示:则全班40名同学的成绩的中位数和众数分别是 A .75,70 B .70,70 C .80,80D .75,808.如图1,AB 是半圆O 的直径,正方形OPNM 的对角线ON 与AB 垂直且相等,Q 是OP 的中点. 一只机器甲虫从点A 出发匀速爬行,它先沿直径爬到点B ,再沿半圆爬回到点A ,一台微型记录仪记录了甲虫的爬行过程. 设甲虫爬行的时间为t ,甲虫与微型记录仪之间的距离为y ,表示y 与t 的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的 A.点M B. 点N C. 点P D. 点Q二、填空题(本题共16分,每小题4分) 9.分解因式:3269bb b -+=___________________.10.请写出一个y 随x 增大而增大的正比例函数表达式,y =______________. 11.在矩形ABCD 中,由9个边长均为1的正方形组成的“L 型”模板如图放置,此时量得CF=3,则BC 边的长度为_____________.PFED CBA12.平面直角坐标系中有一点(1, 1)A ,对点A 进行如下操作:第一步,作点A 关于x 轴的对称点1A , 延长线段1AA 到点2A ,使得122A A =1AA ; 第二步,作点2A 关于y 轴的对称点3A , 延长线段23A A 到点4A ,使得34232A A A A =; 第三步,作点4A 关于x 轴的对称点5A , 延长线段45A A 到点6A ,使得56452A A A A =; ·······则点2A 的坐标为________,点2014A 的坐标为________. 三、解答题(本题共30分,每小题5分) 13.计算:011|π12cos302--+--()()14.解方程组:3,23 1.x y x y +=⎧⎨-=⎩15.如图,在△ABC 与△BAD 中,AD 与BC 相交于点E ,∠C =∠D ,EA=EB . 求证:BC=AD .16.已知22440a ab b -+=,0ab ≠,求222()a ba b a b+⋅--的值. 17. 列方程(组)或不等式(组)解应用题:每年的5月20日是中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?A18. 如图,一次函数2+=kx y 的图象与反比例函数xy 4=的图象交于点A m (1,),与x 轴交于点B . (1)求一次函数的解析式和点B 的坐标; (2)点C 在x 轴上,连接AC 交反比例函数xy 4=的图象于点P ,且点P 恰为线段AC 的中点.请直接写出点P 和点C 的坐标.四、解答题(本题共20分,每小题5分)19.如图,在△ABC 中,点D 、E 分别是边BC 、AC 的中点,过点A 作AF ∥BC 交DE 的延长线于F 点,连接CF . (1)求证:四边形ABDF 是平行四边形;(2)若∠CAF =45°,BC=4,CAF 的面积.20.为了满足广大手机用户的需求,某移动通信公司推出了三种套餐,资费标准如下表所示:套餐资费标准小莹选择了该移动公司的一种套餐,下面两个统计图都反映了她的手机消费情况.(1)已知小莹2013年10月套餐外通话费为33.6元,则她选择的上网套餐为套餐(填“一”、“二”或“三”);(2)补全条形统计图,并在图中标明相应的数据;(3)根据2013年后半年每月的消费情况,小莹估计自己每月本地主叫市话通话大约430分钟,发短信大约240条,国内移动数据流量使用量大约为120兆,除此之外不再产生其他费用,则小莹应该选择套餐最划算(填“一”、“二”或“三”);选择该套餐后,她每月的手机消费总额约为元.35%42%11.75%11.25% 86.176.088.184.683.1总额/元月份套餐费用套餐外 通话费套餐外 短信费套餐外数 据流量费2013年后半年每月手机消费总额统计图21.如图,AB 为⊙O 直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD=2∠BAC ,连接CD .过点C 作CE ⊥DB ,垂足为E ,直线AB 与CE 相交于F 点. (1)求证:CF 为⊙O 的切线;(2)当BF =5,3sin 5F =时,求BD 的长.22.在数学课上,同学们研究图形的拼接问题.比如:两个全等的等腰直角三角形纸片既能拼成一个大的等腰直角三角形(如图1),也能拼成一个正方形(如图2).图1 图2 (1)现有两个相似的直角三角形纸片,各有一个角为30,恰好可以拼成另一个含有30°角的直角三角形,那么在原来的两个三角形纸片中,较大的与较小的纸片的相似比为,请画出拼接的示意图;(2)现有一个矩形恰好由三个各有一个角为30的直角三角形纸片拼成,请你画出两种不同拼法的示意图.在拼成这个矩形的三角形中,若每种拼法中最小的三角形的斜边长为a ,请直接写出每种拼法中最大三角形的斜边长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x 的方程:2(1)0x m x m ---=①和2(9)2(1)3x m x m --++=②,其中0m >.(1)求证:方程①总有两个不相等的实数根;(2)设二次函数21(1)y x m x m =---的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),将A 、B 两点按照相同的方式平移后,点A 落在点'(1,3)A 处,点B 落在点'B 处,若点'B 的横坐标恰好是方程②的一个根,求m 的值;(3)设二次函数22(9)2(1)y x m x m =--++,在(2)的条件下,函数1y ,2y 的图象位于直线3x =左侧的部分与直线y kx =(0k >)交于两点,当向上平移直线y kx =时,交点位置随之变化,若交点间的距离始终不变,则k 的值是________________.A24.在ABC △中,90ABC ∠=,D 为平面内一动点,AD a =,AC b =,其中a ,b 为常数,且a b <.将ABD △沿射线BC 方向平移,得到FCE △,点A 、B 、D 的对应点分别为点F 、C 、E .连接BE .(1)如图1,若D 在ABC △内部,请在图1中画出FCE △;(2)在(1)的条件下,若AD BE ⊥,求BE 的长(用含, a b 的式子表示);(3)若=BAC α∠,当线段BE 的长度最大时,则BAD ∠的大小为__________;当线段BE 的长度最小时,则BAD ∠的大小为_______________(用含α的式子表示).图1 备用图25.对于半径为r 的⊙P 及一个正方形给出如下定义:若⊙P 上存在到此正方形四条边距离都相等的点,则称⊙P 是该正方形的“等距圆”.如图1,在平面直角坐标系xOy 中,正方形ABCD 的顶点A 的坐标为(2,4),顶点C 、D 在x 轴上,且点C 在点D 的左侧. (1)当r=①在P 1(0,-3),P 2(4,6),P 3(2)中可以成为正方形ABCD 的“等距圆”的圆心的是;②若点P 在直线2y x =-+上,且⊙P 是正方形ABCD 的“等距圆”,则点P 的坐标为; (2)如图2,在正方形ABCD 所在平面直角坐标系xOy 中,正方形EFGH 的顶点F 的坐标为(6,2),顶点E 、H 在y 轴上,且点H 在点E 的上方. ①若⊙P 同时为上述两个正方形的“等距圆”,且与BC 所在直线相切,求⊙P 在y 轴上截得的弦长;②将正方形ABCD 绕着点D 旋转一周,在旋转的过程中,线段HF 上没有一个点能成为它的“等距圆”的圆心,则r 的取值范围是.图1图2AB CAB海淀区九年级第二学期期末测评数学试卷答案及评分参考2014.6 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13. 解:011|π12cos302--++-()()122=+-…………………………………………………………4分=1. …………………………………………………………………………………5分14.323 1.x yx y+=⎧⎨-=⎩,①②解:由①3⨯+②得, 510x=.解得, 2x=. …………………………………………………………………………2分把2x=代入①得,1y=. ……………………………………………………………4分∴原方程组的解为2,1.xy=⎧⎨=⎩……….……………………………………………………5分15.证明:在△CAE和△DBE中,,,,C DCEA DEBEA EB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CAE≌△DBE.……………………………………………………………………3分∴CE=DE.……………………………………………………………………………4分∵EA= EB,A∴CE +EB=DE+EA .即BC=AD . ……………………………………………………5分 16. 解:∵22440,a ab b -+=2(2)0.a b -=∴ ………………………………………………………………………1分2.a b =∴ ……………………………………………………………………………2分∵0ab ≠, ∴2222()()()()a b a ba b a b a b a b a b ++⋅-=⋅---+2a ba b+=+ ………………………………………………………3分 222b bb b+=+ ………………………………………………………4分 4.3= ……………………………………………………………5分 17. 解:设这份快餐含有x 克的蛋白质. ……………………………………………………1分 根据题意可得:440070%x x +≤⨯,……………………………………………3分 解不等式,得56.x ≤ …………………………………………………………4分 答:这份快餐最多含有56克的蛋白质. …………………………………………5分18.解:(1)A (1)m ,在4y x=的图象上,∴441m ==. …………………………………………………………………………1分 ∴A 点的坐标为(14),.∵A 点在一次函数2+=kx y 的图象上,4 2 .k =+∴ 2 .k =∴2 2.y x =+∴一次函数的解析式为 …………………………………………………2分令0,y =即220x +=,解得1x =-.∴点B 的坐标为(-1,0). ……………………………………………………………3分 (2)点P 的坐标为(2,2);点C 的坐标为(3,0). ………………………………5分 四、解答题(本题共20分,每小题5分)19.(1)证明:∵点D 、E 分别是边BC 、AC 的中点,∴DE ∥AB . ……………………………………………………………………1分 ∵AF ∥BC ,∴四边形ABDF 是平行四边形. ………………………………………………2分(2)解:过点F 作FG ⊥AC 于G 点. ∵BC=4,点D 是边BC 的中点,∴BD=2.由(1)可知四边形ABDF 是平行四边形,∴AF =BD=2. ∵∠CAF =45°,∴AG =. …………………………………………………………………3分 在Rt △FGC 中,∠FGC =90°,,∴=…………………………………………………4分 ∴AC =AG+GC=113.22CAFSAC FG =⋅=⨯= ……………………………………5分 20. 解:(1)二;……………………………………………………………………………1分(2)……………………………………3分(3)三;77. ………………………………………………………………………5分21. 证明:(1)连接OC .∵OA OC =,∴1 2.∠=∠.又∵312,∠=∠+∠∴32 1.∠=∠又∵421∠=∠,∴4 3.∠=∠ ……………………1分 ∴OC ∥DB . ∵CE ⊥DB , ∴OC ⊥CF .又∵OC 为⊙O 的半径,∴CF 为⊙O 的切线. ………………………………………………………2分 (2)连结AD .在Rt △BEF 中,∠BEF =90°, BF =5,3sin 5F =,∴3BE =. ……………………………………………………………………3分 ∵OC ∥BE ,∴FBE △∽FOC △. ∴.FB BEFO OC=A设⊙O 的半径为r ,∴53.5r r =+ ∴152r =. ……………………………………………………………………4分∵AB 为⊙O 直径, ∴15AB =. ∴90ADB ∠=. ∵4EBF ∠=∠, ∴F BAD ∠=∠. ∴3sin sin .5BD BAD F AB ∠=== ∴3.155BD = ∴9BD =.……………………………………………………………………5分22. 解:(1; …………………………………………………………………1分……………………………………………………………2分(2)…………………4分最大三角形的斜边长分别是2a ,2a .………………………………………………………5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 解:(1)222(1)421(1)m m m m m ∆=-+=++=+,……………………………1分由0m >知必有10m +>,故0∆>.∴方程①总有两个不相等的实数根. ……………………………………………2分 (2)令10y =,依题意可解得(1,0)A -,(,0)B m .∵平移后,点A 落在点'(1,3)A 处,∴平移方式是将点A 向右平移2个单位,再向上平移3个单位得到.∴点(,0)B m 按相同的方式平移后,点'B 为(2,3)m +. ……………………3分 则依题意有2(2)(9)(2)2(1)3m m m m +--+++=. …………………………4分 解得13m =,252m =-(舍负). ∴m 的值为3. ………………………………………………………………………5分(3)32k =. ………………………………………………………………………7分 24.解:(1) …………………………………………………2分(2)连接BF .∵将ABD △沿射线BC 方向平移,得到FCE △,∴AD ∥EF , AD =EF ;AB ∥FC , AB =FC .∵∠ABC=90°,∴四边形ABCF 为矩形.∴AC =BF . ……………………………………3分∵AD BE ⊥,∴EF BE ⊥. …………………………………4分∵AD a =,AC b =,∴EF a =,BF b =.∴BE . ………………………………………………………………5分(3)180α︒-; α . ……………………………………………………………7分 25. 解:(1)①P 2,P 3; ……………………………………………………………………2分 ②P (-4,6)或P (4,-2). …………………………………………………4分 (2)①解:∵⊙P 同时为正方形ABCD 与正方形EFGH 的“等距圆”,∴⊙P 同时过正方形ABCD 的对称中心E 和正方形EFGH 的对称中心I .∴点P 在线段EI 的中垂线上.∵A (2,4),正方形ABCD 的边CD 在x 轴上;F (6,2),正方形EFGH 的边HE 在y 轴上,∴E (0,2),I (3,5)∴∠I EH=45°,设线段EI 的中垂线与y 轴交于点L ,与x 轴交于点M ,∴△LIE 为等腰直角三角形,LI ⊥y 轴,∴L (0,5),∴△LOM 为等腰直角三角形,LO=OM∴M (5,0),∴P 在直线y=-x +5上,∴设P (p ,-p +5)过P 作PQ ⊥直线BC 于Q ,连结PE ,∵⊙P 与BC 所在直线相切,∴PE=PQ ,∴()()222522p p p +-+-=+,解得:15p =+25p =-∴.12(5(5P P +--..……………………………………5分 ∵⊙P 过点E ,且E 点在y 轴上,∴⊙P 在y 轴上截得的弦长为224224-=或.…6分②0r r <<>…………………………………………………8分注:其他解法请参照给分.。
北京市西城区2014届下学期初中九年级毕业会考数学试卷
北京市西城区2014届下学期初中九年级毕业会考数学试卷本试卷共四道大题,22道小题,满分100分。
考试时间60分钟。
一、选择题(本题共38分,第1~8题每小题4分,第9、10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的。
1. -2的倒数是 A. -2 B. 2 C.12D. 12-2.A. 2B. -2C. ±2D. ±3. 下列运算正确的是 A. 2323a a a += B. 236a a a ⋅= C. 325()a a =D. 624a a a ÷=4. 某几何体的三视图如图所示,则该几何体是A. 圆柱B. 圆锥C. 长方体D. 三棱柱5. 如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是A. 40°B. 50°C. 60°D. 140°6. 在下列图案中,是中心对称图形的是7. 甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表:A. 甲B. 乙C. 丙D. 丁8. 若一个多边形的每一个外角都等于72°,则这个多边形的边数是 A. 4B. 5C. 6D. 79. 某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,要保证利润率不低于5%,该种商品最多可打A. 9折B. 8折C. 7折D. 6折10. 如图,在平面直角坐标系xOy 中,四边形OABC 是菱形,OC =4,∠AOC =60°,N 是OC 边上一个动点,过点N 作MN ⊥x 轴与边OA 或边AB 交于点M 。
设ON =x ,△OMN 的面积为y ,下列图象能表示y 与x 之间的函数关系的图象大致是二、填空题(本题共16分,每小题4分) 11. 函数12y x =-中,自变量x 的取值范围是_________。
12. 如图,在△ABC 中,DE ∥BC ,AD =2,AB =6,AE =3,则AC 的长为________。
北京2014中考数学二模分类汇编---第12题
1、(2014西城二模)12.如图,在平面直角坐标系xOy中,已知抛物线y=x(x3)(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x轴交于另一点A3;将C3绕点A2旋转180°得C4,与x轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,An,…,及抛物线C1,C2,…,Cn,….则点A4的坐标为;Cn的顶点坐标为(n为正整数,用含n的代数式表示).
2、(2014海淀二模)12.平面直角坐标系中有一点 ,对点 进行如下操作:
第一步,作点 关于 轴的对称点 ,延长线段 到点 ,使得 = ;
第二步,作点 关于 轴的对称点 ,延长线段 到点 ,使得 ;
第三步,作点 关于 轴的对称点 ,延长线段 到点 __,点 的坐标为________.
5、(2014丰台二模)12.如图,在数轴上,从原点A开始,以AB=1为边长画等边三角形,记为第一个等边三角形;以BC=2为边长画等边三角形,记为第二个等边三角形;以CD=4 为边长画等边三角形,记为第三个等边三角形;以DE=8为边长画等边三角形,记为第四个等边三角形;……按此规律,继续画等边三角形,那么第五个等边三角形的面积是,第n个等边三角形的面积是。
13、(2014怀柔二模)
12.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆被覆盖部分(阴影部分)的面积为_____________.
14、(2014平谷二模)14、(2014平谷二模) 12.如图,□ABCD的面积为16,对角线交于点O;以AB、AO为邻边做□AOC1B,对角线交于点O1;以AB、AO1为邻边做□AO1C2B,对角线交于点O2;…;依此类推.则□AOC1B的面积为_______;□AO4C5B的面积为_______;□AOnCn+1B的面积为___________.
北京市各区中考二模数学几何综合题题汇总含答案
EDMBC AEDMBC AMBCAE MBC2014年北京市各城区中考二模数学几何综合题24题汇总1、(2014年门头沟二模)24. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME(1)如图24-1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图24-2所示,若AB ≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系请给出证明过程;(3) 在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧..作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图24-3中补全图形,并直接判断△MED 的形状.(1)MD=ME ……………1分(2)如图,作DF ⊥AB ,EG ⊥AC ,垂足分别为F 、G .因为DF 、EG 分别是等腰直角三角形ABD 和等腰直角三角形 ACE 斜边上的高,所以F 、G 分别是AB 、AC 的中点.又∵M 是BC 的中点,所以MF 、MG 是△ABC 的中位线. ∴12MF AC =,12MG AB =,MF 12EG AC =12DF AB =图1,在ABC △中,90ACB ∠=°,2BC =,∠A=30°,点E ,F 分别是线段BC ,AC 的中点,连结EF .(1)线段BE 与AF 的位置关系是________, AFBE =________.(2)如图2,当CEF △绕点C 顺时针旋转α时(0180α<<),连结AF ,BE ,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当CEF △绕点C 顺时针旋转α时(0180α<<),延长FC 交AB 于点D ,如果623AD =-α的度数.DEAFAFA图24-1图24-2图24-3图2图1ED C A解:(12分 (2)答:(1)中结论仍然成立.…………………………………3分 证明:∵点E ,F 分别是线段BC ,AC 的中点,∴EC=12BC ,FC=12AC ∴12EC FC BC AC == ∵BCE ACF α∠=∠= BEC ∴∆∽AFC ∆13tan 30AF AC BE BC ∴===4分12∠=∠ , 延长BE 交AC 于点O ,交AF 于点M∵∠BOC=∠AOM ,∠1=∠2 ∴∠BCO=∠AMO=90°∴BE ⊥AF …………………………………………………5分 (3)∵∠ACB=90°,BC=2,∠A=30° ∴AB=4,∠B=60° 过点D作DH ⊥BC 于H∴DB=4(62--=∴1BH =,3DH =又∵21)3CH =-= ∴CH=BH ………………………………………………………6分∴∠HCD=45°∴∠DCA=45°18045135α∴=-=……………………………………7分 3、(2014年平谷二模)24.(1)如图1,在四边形ABCD 中,∠B=∠C=90°,E 为BC 上一点,且CE=AB ,BE=CD ,连结AE 、DE 、AD ,则△ADE 的形状是_________________________.(2)如图2,在90ABC A ∆∠=︒中,,D 、E 分别为AB 、AC 上的点,连结BE 、CD ,两线交于点P . ①当BD=AC ,CE=AD 时,在图中补全图形,猜想BPD ∠的度数并给予证明. ②当BD CEAC AD==时, BPD ∠的度数____________________.(1)等腰直角三角形 ----------------------------------------------------1分(2) 45°. ------------------------------------------------------------2分DH F EC BAαPFEAC图1F E DC BA 证明:过B 点作FB ⊥AB,且FB=AD. ∴90FBD A ∠=∠=︒,∵BD=AC ,∴△FBD ≌△DAC.∴∠FDB=∠DCA ,ED=DC∵∠DCA+∠CDA=90︒,∴∠FDB +∠CDA=90︒, ∴∠CDF=90︒,∴∠FCD=∠CFD =45︒. ∵AD=CE ,∴BF=CE∵90FBD A ∠=∠=︒,∴180FBD A ∠+∠=︒. ∴BF ∥EC.∴四边形BECF 是平行四边形. ∴BE ∥FC.∴45BPD FCD ∠=∠=︒.-------------------------------------------------6分 (3)60︒. --------------------------------------------7分4、(2014年顺义二模) 24.在△ABC 中, A B AC ,A 0,将线段 B C 绕点 B 逆时针旋转 60得到线段 B D ,再将线段BD 平移到EF ,使点E 在AB 上,点F 在AC 上.(1)如图 1,直接写出 A BD 和CFE 的度数; (2)在图1中证明: E CF ; (3)如图2,连接 C E ,判断△CEF 的形状并加以证明.(1)ABD= 15 °,CFE= 45 °.……………………………………… 2分(2)证明:连结CD 、DF .∵线段 B C 绕点 B 逆时针旋转 60得到线段 B D ,∴BD BC ,CBD 0. ∴△BCD 是等边三角形. ∴CD BD .∵线段BD 平移到EF ,∴EF ∥BD ,EF BD .∴四边形BDFE 是平行四边形,EF CD .……… 3分 ∵AB AC ,A 0, ∴ABC ACB .∴ABD ABCCBDACD . ∴DFE ABD ,AEF ABD .∴AEF ACD .………………………………………………… 4分 ∵CFE A+AEF ,∴CFD CFEDFE .∴ACFD .…………………………………………………… 5分 ∴△AEF ≌△FCD (AAS ).图2图1A DEFF E DA图2∴E CF . …………………………………………………………… 6分(3)解:△CEF 是等腰直角三角形.证明:过点E 作EG ⊥CF 于G ,∵CFE ,∴FEG . ∴EG FG . ∵A 0,AGE ,∴12EG AE =.∵E CF ,∴12EG CF =. ∴12FG CF =. ∴G 为CF 的中点.∴EG 为CF 的垂直平分线. ∴EF EC .∴CEF FEG=9.∴△CEF 是等腰直角三角形.………………………………………… 8分5、(2014年石景山二模)24.将△ABC 绕点A 顺时针旋转α得到△ADE ,DE 的延长线与BC 相交于点F ,连接AF .(1)如图1,若BAC ∠=α=︒60,BF DF 2=,请直接写出AF 与BF 的数量 关系;(2)如图2,若BAC ∠<α=︒60,BF DF 3=,猜想线段AF 与BF 的数量关 系,并证明你的猜想;(3)如图3,若BAC ∠<α,mBF DF =(m 为常数),请直接写出BFAF的值 (用含α、m 的式子表示). 解:解:( (2)解:猜想:BF AF 2=.证明:在DF 上截取BF DG =,连接AG (如图). 由旋转得AB AD =, ADG ∠=ABF ∠.∴△ADG ≌△ABF .∴AF AG =,DAG ∠=BAF ∠.∴ GAF GAB BAF ∠=∠+∠∴60GAB DAG DAB =∠+∠=∠=︒.G ABCDEFDAG∴△GAF 是等边三角形. 又∵BF DF 3=.∴BF BF DF DG DF GF AF 2=-=-==.…5分 (3)BFAF 2sin21α-=m . ……………7分6、(2014年海淀二模)24.在ABC △中,90ABC ∠=,D 为平面内一动点,AD a =,AC b =,其中a , b 为常数,且 a b <. 将ABD △沿射线BC 方向平移,得到FCE △,点A 、B 、D 的对应点分别为点F 、C 、E.连接BE .(1)如图1,若D 在ABC △内部,请在图1中画出FCE △;(2)在(1)的条件下,若AD BE ⊥,求BE 的长(用含, a b 的式子表示);(3)若=BAC α∠,当线段BE 的长度最大时,则BAD ∠的大小为__________;当线段BE 的长度最小时,则BAD ∠的大小为_______________(用含α的式子表示).图1 备用图解:(1)…………………………………………………2分(2)连接BF.∵将ABD △沿射线BC 方向平移,得到FCE △, ∴AD ∥EF, AD=EF ;AB ∥FC, AB=FC. ∵∠ABC=90°,∴四边形ABCF 为矩形.∴AC=BF. ……………………………………3分 ∵AD BE ⊥,∴EF BE ⊥. …………………………………4分 ∵AD a =,AC b =, ∴EF a =,BF b =.∴BE . ………………………………………………………………5分 (3)180α︒-; α . ……………………………………………………………7分7、(2014年西城二模)24.在△ABC ,∠BAC 为锐角,AB>AC , AD 平分∠BAC 交BC 于点D .(1)如图1,若△ABC 是等腰直角三角形,直接写出线段AC ,CD ,AB 之间的数量关系; (2)BC 的垂直平分线交AD 延长线于点E ,交BC 于点F .①如图2,若∠ABE=60°,判断AC ,CE ,AB 之间有怎样的数量关系并加以证明;②如图3,若AC AB +=,求∠BAC的度数.解:(1)AB=AC+CD ; ························ 1分 (2)①AB=AC+CE ; ························ 2分AB CAB证明:在线段AB 上截取AH=AC ,连接EH . ∵AD 平分∠BAC ∴12∠=∠. 又∵AE=AE ,∴△ACE ≌△AHE .∴CE=HE . ························ 3分 EF 垂直平分BC ,∴CE=BE . ························· 4分 又∠ABE=60°,∴△EHB 是等边三角形. ∴BH=HE .∴AB=AH+HB=AC+CE . ····················· 5分 ②在线段AB 上截取AH=AC ,连接EH ,作EM ⊥AB 于点M . 易证△ACE ≌△AHE , ∴CE=HE .∴△EHB 是等腰三角形. ∴HM=BM . ∴AC+AB=AH+AB=AM-HM+AM+MB =2AM .∵3AC AB AE +=, ∴3AM AE =. 在Rt △AEM 中,3cos AM EAM AE ∠==, ∴∠EAB=30°.∴∠CAB=2∠EAB=60°. ··················· 7分8、(2014年通州二模)23.已知:△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ),点E 、F分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 于点G .D M HFECAB(1)如图l ,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF=12∠BAF ,AF =23AD ,请你判断线段FM 和FN 之间的数量关系,并证明你的判断是正确的.证明:(1)如图1,连接FE 、FC ∵点F 在线段EC 的垂直平分线上 ∴FE=FC∴∠FEC=∠FCE∵△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ) ∴AB=CB ,∠ABD=∠CBD ∵在△ABF 与△CBF 中AB =CB∠ABD =∠CBD BF =BF ∴△ABF ≌△CBF (SAS ) ∴∠BAF=∠FCE ,FA=FC ∴FE=FA ,∠FEC=∠BAF ∴∠EAF=∠AEF∵∠FEC +∠BEF=180° ∴∠BAF+∠BEF=180°∵∠BAF+∠BEF+∠AFE+∠ABE=360°∴∠AFE+∠ABE=∠AFE+∠ABD+∠CBD =180° 又∵∠AFE+∠EAF+∠AEF=180° ∴∠EAF+∠AEF=∠ABD+∠CBD ∵∠ABD =∠CBD, ∠EAF=∠AEF∴∠EAF=∠ABD………………………………..(3分) (2)FM=72FN 证明: 由(1)可知∠EAF=∠ABD又∵∠AFB=∠GFA∴△AFG ∽△BFA∴∠AGF=∠BAF 又∵∠MBF=12∠BAF . GFCBDENG FDBEM图1图2G FCBDEDBAEQP DC BA∴∠MBF=12∠AGF又∵∠AGF=∠MBG+∠BMG∴∠MBG=∠BMG∴BG=MG∵AB=AD∴∠ADB=∠ABD=∠EAF 又∵∠FGA=∠AGD∴△AGF∽△DGAGF AG AFAG GD AD∴==∵AF=23AD23GF AGAG GD∴==设GF=2a AG=3a.∴GD=92a∴FD=52a∵∠CBD=∠ABD ∠ABD=∠ADB ∴∠CBD=∠ADB∴BE BG EGGD AG=23EG AGBG GD∴==54252===aaFDGFQEGQQEGQ54=4989k89k359k72MF MQFN QE∴==72(6分)9、(2014年东城二模)24.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE ⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化如果不变,求出线段ED的长;如果变化请说明理由;(3)在整个运动过程中,设AP为x,BD为y,求y关于x的函数关系式,并求出当△BDQ为等腰三角形时BD的值.FEQP DCBA解:(1)∵ ∠ACB=90°,AC=BC=4,设AP 为x , ∴PC=4-x ,CQ=4+x. ∵∠BQD=30°, ∴3CQ PC =. ∴43(4)x x +=-.解得843x =-.…………2分(2)当点P ,Q 运动时,线段DE 的长度不会改变.理由如下:作QF⊥AB,交直线AB 的延长线于点F , 又∵PE⊥AB 于E , ∴∠DFQ=∠AEP=90°,∵点P ,Q 做匀速运动且速度相同, ∴AP=BQ .∵△ABC 是等腰直角三角形, ∴可证 PE=QF=AE=BF. ∵∠PDE=∠QDF, ∴△PDE≌△QDF . ∴DE =DF. ∴DE=AB. 又∵AC =BC=4, ∴42AB =∴22DE =∴当点P ,Q 运动时,线段DE 的长度不会改变.…………5分 (3)∵AP =x ,∴22AE x =. ∵AB AE DE BD =++, ∵24222x y =+.即 222y x =-+(0<x <4). 当△BDQ 为等腰三角形时,x=y . ∴424x =-.…………7分 即BD 的值为424-.10、(2014年朝阳二模)24. 已知∠ABC=90°,D 是直线AB 上的点,AD=BC .(1)如图1,过点A 作AF ⊥AB ,并截取AF=BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明; (2)如图2,E 是直线BC 上的一点,直线AE 、CD 相交于点P ,且∠APD=45°,求证BD=CE .解:(1)△CDF 是等腰直角三角形 .………………1分 证明:∵∠ABC=90°,AF⊥AB, ∴∠FAD=∠DBC . ∵AD=BC,AF=BD ,∴△FAD≌△DBC .∴FD=DC .…………………………………………2分 ∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°.即∠CDF =90°. ……………………………………3分 ∴△CDF 是等腰直角三角形.(2)过点A 作AF⊥AB,并截取AF=BD ,连接DF 、CF .…………………………4分 ∵∠ABC =90°,AF⊥AB, ∴∠FAD=∠DBC .P EC 图2 C A B 图1 312CB∵AD=BC,AF=BD ,∴△FAD≌△DBC . ∴FD=DC ,∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°. 即∠CDF=90°.∴△CDF 是等腰直角三角形.………………………………………………………5分 ∴∠FCD=∠APD=45°. ∴FC∥AE.∵∠ABC =90°,AF⊥AB, ∴AF∥CE.∴四边形AFCE 是平行四边形. …………………………………………………6分 ∴AF=CE.∴BD=CE.……………………………………………………………………………7分11、(2014年密云二模)24.已知等腰Rt ABC ∆和等腰Rt AED ∆中,∠ACB=∠AED=90°,且AD=AC (1)发现:如(图1),当点E 在AB 上且点C 和点D 重合时,若点M 、N 分别是DB 、EC 的中点,则MN 与EC 的位置关系是 ,MN 与EC 的数量关系是(2)探究:若把(1)小题中的△AED 绕点A 旋转一定角度,如(图2)所示,连接BD 和EC,并连接DB 、EC 的中点M 、N,则MN 与EC 的位置关系和数量关系仍然能成立吗若成立,以顺时针旋转45°得到的图形(图3)为例给予证明数量关系成立,若不成立,请说明理由;请以逆时针旋转45°得到的图形(图4)为例给予证明位置关系成立,(1)1,2MN EC MN EC ⊥=.------------1分(2)连接EF并延长交BC 于F , ∵∠AED=∠ACB=90°(图2) (图1) (图3) A (图4)∴DE ∥BC∴∠DEM=∠AFM ,∠EDM=∠MBF 又BM=MD ∴△EDM ≌△FBM ∴BF=DE=AE,EM=FM∴1111()()2222MN FC BC BF AC AE EC ==-=-=--------------4分延长ED 到F ,连接AF 、MF ,则AF 为矩形ACFE 对角线,所以比经过EC 的中点N 且AN=NF=EN=NC. 在Rt △BDF 中,M 是BD 的中点,∠B=45° ∴FD=FB∴FM ⊥AB , ∴MN=NA=NF=NC∴点A 、C 、F 、M 都在以N 为圆心的圆上 ∴∠MNC=2∠DAC由四边形MACF 中,∠MFC=135° ∠FMA=∠ACB=90° ∴∠DAC=45°∴∠MNC=90°即MN ⊥FC-------------------7分12、(2014年延庆二模)13、(2014年房山二模) 24. 边长为2的正方形ABCD 的两顶点A 、C 分别在正方形EFGH 的两边DE 、DG 上(如图1),现将正方形ABCD 绕D 点顺时针旋转,当A 点第一次落在DF 上时停止旋转,旋转过程中,AB 边交DF 于点M ,BC 边交DG 于点N . (1)求边DA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时(如图2),求正方形ABCD 旋转的度数;(3)如图3,设MBN ∆的周长为p ,在旋转正方形ABCD 的过程中,p 值是否有变化请证明你的结论. (1)∵A 点第一次落在DF 上时停止旋转, ∴DA 旋转了045.BNMDE∴DA 在旋转过程中所扫过的面积为24523602ππ⨯=......................................2分 (2)∵MN ∥AC ,∴45BMN BAC ∠=∠=︒,45BNM BCA ∠=∠=︒. ∴BMN BNM ∠=∠.∴BM BN =. 又∵BA BC =,∴AM CN =.又∵DA DC =,DAM DCN ∠=∠,∴DAM DCN ∆≅∆. ∴ADM CDN ∠=∠.∴1(90452ADM ∠=︒-︒)=22.5︒. ∴旋转过程中,当MN 和AC 平行时,正方形ABCD 旋转的度数为45︒-22.5︒=22.5︒ (5)分(3)证明:延长BA 交DE 轴于H 点,则045ADE ADM ∠=-∠,000904545CDN ADM ADM ∠=--∠=-∠,∴ADE CDN ∠=∠.又∵DA DC =,01809090DAH DCN ∠=-==∠. ∴DAH DCN ∆≅∆. ....................................................6分∴,DH DN AH CN ==.又∵045MDE MDN ∠=∠=,DM DM =,∴DMH DMN ∆≅∆. ........................................................7分∴MN MH AM AH ==+. ∴MN AM CN =+,∴4p MN BN BM AM CN BN BM AB BC =++=+++=+=.∴在旋转正方形ABCD 的过程中,p 值无变化............................8分14、(2014年昌平二模)24.【探究】如图1,在△ABC 中, D 是AB 边的中点,AE ⊥BC 于点E ,BF ⊥AC于点F ,AE ,BF 相交于点M ,连接DE ,DF. 则DE ,DF 的数量关系为 .【拓展】如图2,在△ A B C 中 ,C B = C A ,点 D 是AB 边的 中点 ,点M 在 △ A B C 的内部 ,且 ∠MBC =∠MAC . 过点M 作ME ⊥BC 于点E ,MF ⊥AC 于点F ,连接DE ,DF. 求证:DE=DF ;【推广】如图3,若将上面【拓展】中的条件“CB=CA ”变为“CB ≠CA ”,其他条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.ADBE CMFAD BECMF MABCDFE图3图2图1【探究】DE=DF. …………………………………………………………………………………1分【拓展】如图2,连接CD. ∵在△ A B C 中 ,C B = C A , ∴∠CAB=∠CBA. ∵∠MBC =∠MAC ,∴∠MAB=∠MBA. …………………………… 2分 ∴AM=BM.∵点 D 是 边 AB 的 中点 ,∴点M 在CD 上. ……………………………………………………………………… 3分 ∴CM 平分∠FCE. ∴∠FCD=∠ECD.∵ME ⊥BC 于E ,MF ⊥AC 于F , ∴MF=ME. 又∵CM=CM, ∴△CMF ≌△CME. ∴CF=CE. ∵CD=CD ,∴△CFD ≌△CED.∴DE=DF. ……………………………………………………………………………… 4分图2F MCE BD A【推广】 DE=DF.如图3,作AM 的中点G,BM 的中点H. ∵点 D 是 边 AB 的 中点 ,∴1//,.2DG BM DG BM =同理可得:1//,.2DH AM DH AM =∵ME ⊥BC 于E ,H 是BM 的中点, ∴在Rt △BEM 中, 1.2HE BM BH == ∴DG=HE. ………………………………………………………………………………… 5分 同理可得:.DH FG = ∵DG ∴∠DGM=∠DH M.∵∠MGF=2∠MAC, ∠MHE=2∠MBC, 又∵∠MBC =∠MAC , ∴∠MGF=∠MHE.∴∠DGM+∠MGF =∠DHM+∠MHE.∴∠DGF=∠DHE. ……………………………………………………………………… 6分 ∴△DHE ≌△FGD.∴DE=DF. ………………………………………………………………………………… 7分15、(2014年怀柔二模)24.已知△ABC 是等边三角形,E 是AC 边上一点,F 是BC 边延长线上一点,且CF=AE ,连接BE 、EF .(1)如图1,若E 是AC 边的中点,猜想BE 与EF 的数量关系为 .(2)如图2,若E 是线段AC 上的任意一点,其它条件不变,上述线段BE 、EF 的数量关系是否发生变化,写出你的猜想并加以证明.(3)如图3,若E 是线段AC 延长线上的任意一点,其它条件不变,上述线段BE 、EF 的数量关系是否发生变化,写出你的猜想并加以证明.解 :(1)猜想BE 与:BE=EF. …………………1分 (2)猜想BE=EF .证明:将线段BE 绕点B 顺时针旋转60°,AB EF 图AB C E F 图2 AB C E F 图3 图3H GF M CE BD A得线段BE ’,连接E ’C 、E ’E ,………………………………2分∴△EB E ’为等边三角形,∴BE=E E ’,又∵△ABC 为等边三角形,∴AB=BC ,∠ABC=∠ACB= 60°,∴∠1=∠2, ∴△ABE ≌△CB E ’(SAS ),………………………………3分∴AE=C E ’, ∠A=∠3=60°,又∵CF=AE , ∴C E ’=CF ,∵∠ACB=60°,∠3=60°,∴∠AC E ’=∠AC F=120°, ∵EC=EC∴△E C E ’≌△ECF (SAS ),………………………………4分 ∴E E ’=EF . ∴BE=EF .………………………………5分 (3)猜想BE=EF .证明:将线段BE 绕点B 顺时针旋转60°,得线段BE ’,连接E ’C 、E ’E ,∴△EB E ’为等边三角形,∴BE=E E ’, 又∵△ABC 为等边三角形,∴AB=BC ,∠ABC=∠ACB= 60°,∴∠ABE=∠CB E ’,∴△ABE ≌△CB E ’(SAS ),∴AE=C E ’, ∠A=∠B C E ’=60°, 又∵CF=AE ,∴C E ’=CF ,∵∠ACB=60°,∠B C E ’=60°,∴∠EC E ’=∠EC F=60°, ∵EC=EC∴△E E ’C ≌△EFC (SAS ),………………………………6分∴E E ’=EF .又∵BE=E E ’,∴BE=EF .………………………………7分16、(2014年大兴二模)25. 已知:E 是线段AC 上一点,AE=AB ,过点E 作直线EF ,在EF 上取一点D ,使得∠EDB=∠EAB ,联结AD.(1)若直线EF 与线段AB 相交于点P ,当∠EAB=60°时,如图1,求证:ED =AD+BD ;(2)若直线EF 与线段AB 相交于点P ,当∠EAB= α(0o ﹤α﹤90o )时,如图2,请你直接写出线段ED 、AD 、BD 之间的数量关系(用含α的式子表示);4321'F ECB A ABCE F E '(3)若直线EF 与线段AB 不相交,当∠EAB=90°时,如图3,请你补全图形,写出线段ED 、AD 、BD 之间的数量关系,并证明你的结论.(1)证明:作∠DAH=∠EAB 交DE 于点H. …………………………1分∴∠DAB=∠HAE.∵∠EAB=∠EDB ,∠APE=∠BPD , ∴∠ABD=∠AEH. ∵又AB=AE ,∴△ABD ≌△AEH. ………………2分 ∴BD=EH ,AD=AH. ∵∠DAH=∠EAB=60°, ∴△ADH 是等边三角形. ∴AD=HD. ∵ED = HD+EH∴ED =AD+BD. …………………………………………………………………3分 (2) BD AD ED +=2sin 2α ……………………5分(3)ED=BD -2AD ……………6分作∠DAH=∠EAB 交DE 于点H. ∴∠DAB=∠HAE. ∵∠EDB=∠EAB=90°,∴∠ABD+∠1=∠AEH+∠2 =90°. ∵∠1=∠2 ∴∠ABD=∠AEH.∵又AB=AE ,∴△ABD≌△AEH. ……………………………………………………7分 ∴BD=EH ,AD=AH. ∵∠DAH=∠EAB=90°, ∴△ADH 是等腰直角三角形.∵ED=EH-HD∴AD BD ED 2-=……………………………………………………8分17、(2014年燕山二模)24.如图1,已知ABC ∆是等腰直角三角形,︒=∠90BAC ,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接 AE ,BG .(1)试猜想线段BG 和AE 的数量关系是 ; (2)将正方形DEFG 绕点D 逆时针方向旋转)3600(︒≤<︒αα, ①判断(1)中的结论是否仍然成立请利用图2证明你的结论; ②若4==DE BC ,当AE 取最大值时,求AF 的值.图1 图2F GE DC A B B AC D EGF。
2014北京西城初三期末数学(含解析)
6 / 17
25.已知:二次函数 y ax2 2ax 4 (a 0) 的图象与 x 轴交于点 A , B ( A 点在 B 点的左侧), 与 y 轴交于点 C , △ABC 的面积为 12 . (1)①填空:二次函数图象的对称轴为___________; ②求二次函数的解析式; (2)点 D 的坐标为 (2 , 1) ,点 P 在二次函数图象上, ADP 为锐角,且 tan ADP 2 ,求点 P 的 横坐标; (3)点 E 在 x 轴的正半轴上, OCE 45 ,点 O 与点 O 关于 EC 所在直线对称.作 ON EO 于 点 N ,交 EC 于点 M .若 EM EC 32 ,求点 E 的坐标.
2013 年底,该市城区绿地总面积约为 108 公顷,求从 2011 年底至 2013 年底该市城区绿地总面积的
年平均增长率.
17.如图,为了估算某河的宽度,在河对岸边选定一个目标点 A ,在近岸取点 B , C , D ,使得
AB BD , ACB 45 , ADB 30 ,并且点 B ,C , D 在同一条直线上.若测得 CD 30 米,
) .
1 B.当 x 时, y 随 x 的增大而增大 2 C. a b c 0 1 4c b D.当 x 时, y 的最小值是 2 4
7.如 图 ,在平面直角坐标系 xOy 中,△ABC 顶 点 的 横 、纵 坐 标 都 是 整 数 . 若 将 △ABC 以 某 点 为 旋 转 中 心 , 顺 时 针 旋 转 90 得 到 △DEF, 则 旋 转 中 心 的 坐 标 是 ( A . (0, 0) B . (1,0) C . (1, 1) D . (2.5, 0.5) ) .
3 2 (2)当 0≤x≤2 时,求函数 y x mx m 1 的最小值(用 含 m 的 代 数 式 表 示 ) . 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年北京市西城区初三二模数 学 试 卷 2014. 6学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.在12,0,1-,2-这四个数中,最小的数是 A .12B .0C .1-D .2-2.据报道,按常住人口计算,2013年北京市人均GDP (地区生产总值)达到约93 210元, 将93 210用科学记数法表示为A .393.2110⨯B .49.32110⨯C .50.932110⨯D . 2932.110⨯3.如图,四边形ABCD 为⊙O 的内接四边形, 若∠BCD=110°,则∠BAD 的度数为 A .140° B .110° C .90° D .70°4.在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0, 1,3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为A . 4 5B . 3 5C . 2 5D . 1 55.如图,为估算学校的旗杆的高度,身高 1.6米的小红同学沿着旗杆在地面的影子AB 由A 向B 走去,当她走到点C 处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC =2m ,BC =8m ,则旗杆的高度是( ) A .6.4m B .7m C . 8m D .9 6.如图,菱形ABCD 的周长是20,对角线AC ,BD 相交于点O ,若BD =6,则菱形ABCD 的面积是 A . 6B . 12C . 24D .48O DCBA7.如图,在平面直角坐标系xOy中,直线y =经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 顺时针旋转o 60得到△BCD ,若点B 的坐标为(2,0),则点C 的坐标为 A .B . (5,1)C .D .(6,1)8.右图表示一个正方体的展开图,下面四个正方体中只有一个符合要求,那么这个正方体是A .B .C .D . 二、填空题(本题共16分,每小题4分) 9.函数=y 中,自变量x 的取值范围是_________10.若一次函数的图像过点(0,2),且函数y 随自变量x 的增大而增大,请写出一个符合要求的一次函数表达式:_________11.一组数据:3,2,1,2,2的中位数是_____,方差是_____. 12.如图,在平面直角坐标系xOy 中,已知抛物线y =-x (x -3)(0≤x ≤3)在x 轴上方的部分,记作C 1,它与x 轴交于点O ,A 1,将C 1绕点A 1旋转180°得C 2,C 2与x 轴交于另一点A 2.请继续操作并探究:将C 2绕点A 2旋转180°得C 3,与x 轴交于另一点A 3;将C 3绕点A 2旋转180°得C 4,与x 轴交于另一点A 4,这样依次得到x 轴上的点A 1,A 2,A 3,…,A n ,…,及抛物线C 1,C 2,…,C n ,….则点A 4的坐标为 ;C n 的顶点坐标为 (n 为正整数,用含n 的代数式表示) .三、解答题(本题共30分,每小题5分) 13.计算:101()(3)3tan304-+-π-+︒14.已知:如图,C 是AE 上一点,∠B=∠DAE ,BC ∥DE ,AC=DE . 求证:AB=DA .EDCBA15.解分式方程:22142xx x +=--16.列方程或方程组解应用题:一列“和谐号”动车组,有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设有座位64个,每节二等车厢设有座位92个.问该列车一等车厢和二等车厢各有多少节?17.已知关于x 的一元二次方程x 2+2x +3k -6=0有两个不相等的实数根 (1)求实数k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.18.抛物线2y x bx c =++(b ,c 均为常数)与x 轴交于(1,0),A B 两点,与y 轴交于点(0,3)C .. (1)求该抛物线对应的函数表达式;(2)若P 是抛物线上一点,且点P 到抛物线的对称轴的距离为3,请直接写出点P 的坐标.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,AB ∥DC , DB 平分∠ADC , E 是CD 的延长线上一点,且12AEC ADC ∠=∠.(1)求证:四边形ABDE 是平行四边形.(2)若DB ⊥CB ,∠BCD =60°,CD =12,作AH ⊥BD求四边形AEDH 的周长.E21.据报道:2013年底我国微信用户规模已到达6亿.以下是根据相关数据制作的统计图表的一部分:请根据以上信息,回答以下问题:(1)从2012年到2013年微信的人均使用时长增加了________分钟;(2)补全2013年微信用户对“微信公众平台”参与关注度扇形统计图,在我国6亿微信用户中,经常使用户约为_________亿(结果精确到0.1);(3)从调查数学看,预计我国微信用户今后每年将以20%的增长率递增,请你估计两年后,我国微信用户的规模将到达_________亿.21.如图,AB为⊙O的直径,弦CD⊥AB于点H,过点B作⊙O的切线与AD的延长线交于F.(1)求证:ABC F∠=∠(2)若sinC=35,DF=6,求⊙O的半径..B22.阅读下面材料:小明遇到这样一个问题: 如图1,五个正方形的边长都为1,将这五个正方形分割为四部分,再拼接为一个大正方形.小明研究发现:如图2,“日”五个正方形被两条互相垂直的线段AB,CD分割为四部分,将这四部分图形分别标号,以CD为一边画大正方形,把这四部分图形分别移入正方形内,就解决问题.请你参考小明的画法,完成下列问题:(1)如图3,边长分别为a,b的两个正方形被两条互相垂直的线段AB,CD分割为四部分图形,现将这四部分图形拼接成一个大正方形,请画出拼接示意图(2)如图4,一个八角形纸板有个个角都是直角,所有的边都相等,将这个纸板沿虚线分割为八部分,再拼接成一个正方形,如图5所示,画出拼接示意图;若拼接后的正方形的面积为8 则八角形纸板的边长为.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.经过点(1,1)的直线l : 2 (0)y kx k =+≠与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,B (b ,-1),与y 轴交于点D .(1)求直线l 对应的函数表达式及反比例函数G 1的表达式; (2)反比例函数G 2::2 (0)ty t x=≠, ①若点E 在第一象限内,且在反比例函数G 2的图象上,若EA =EB ,且△AEB 的面积为8,求点E 的坐标及t 值;②反比例函数G 2的图象与直线l 有两个公共点M ,N (点M 在点N 的左侧),若DM DN +<t 的取值范围.24.在△ABC,∠BAC为锐角,AB>AC,AD平分∠BAC交BC于点D.(1)如图1,若△ABC是等腰直角三角形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若∠ABE=60°,判断AC,CE,AB之间有怎样的数量关系并加以证明;+=,求∠BAC的度数.②如图3,若AC AB AE25.在平面直角坐标系xOy 中,对于⊙A 上一点B 及⊙A 外一点P ,给出如下定义:若直线PB 与 x 轴有公共点(记作M ),则称直线PB 为⊙A 的“x 关联直线”,记作PBM l . (1)已知⊙O 是以原点为圆心,1为半径的圆,点P (0,2),①直线1l :2y =,直线2l :2y x =+,直线3l :2y +,直线4l :22y x =-+都经过点P ,在直线1l , 2l , 3l , 4l 中,是⊙O 的“x 关联直线”的是 ;②若直线PBM l 是⊙O 的“x 关联直线”,则点M 的横坐标M x 的最大值是 ; (2)点A (2,0),⊙A 的半径为1,①若P (-1,2),⊙A 的“x 关联直线”PBM l :2y kx k =++,点M 的横坐标为M x ,当M x 最大时,求k 的值;②若P 是y 轴上一个动点,且点P 的纵坐标2p y >,⊙A 的两条“x 关联直线”PCM l ,PDN l 是⊙A 的两条切线,切点分别为C ,D ,作直线CD 与x 轴点于点E ,当点P 的位置发生变化时, AE 的长度是否发生改变?并说明理由.北京市西城区2014年初三二模试卷数学试卷参考答案及评分标准2014.6一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:101()(3)3tan304-+-π-+︒=413+······················································································ 4分=3+······························································································· 5分14. 证明:(1)∵BC∥DE,∴∠ACB=∠DEA.…………1分在△ABC和△DAE中,,B DAEACB DEAAC DE∠=∠⎧∠∠⎪⎩=⎪⎨,=∴△ABC≌△DAE.·························································· 4分∴AB=DA. ·········································································· 5分15.方程两边同时乘以24x-,得22(2)4x x x++=-, ·········································· 3分解得,3x=-. ······································································································· 4分经检验,3x=-是原方程的解3x=-······································································ 5分16.解:设该列车一等车厢有x节,二等车厢有y节.····························································· 1分由题意,得66494,296x yx y+=+=⎧⎨⎩,···························································································· 2分EDCBA解得 4,2x y ==⎧⎨⎩,································································································································ 4分答:该列车一等车厢有2节,二等车厢有4节 ········································································ 5分. 17.解:(1)由题意,得 Δ=4-4(3k -6)>0∴73k <. ······································································································· 2分 (2)∵k 为正整数, ∴k =1,2 ···································································································· 3分 当k =1时,方程x 2+2x -3=0的根x 1=-3,x 2=1都是整数; ······························ 4分 当k =2时,方程x 2+2x =0的根x 1=-2,x 2=0都是整数. 综上所述,k =1,2. ·························································································· 5分18.解:(1) ∵抛物线2y x bx c =++与y 轴交于点(0,3)C ,∴c =3 . ∴23y x bx =++.又∵抛物线2y x bx c =++与x 轴交于点(1,0)A , ∴b =-4 .∴243y x x =-+. ···························································································· 3分(2)点P 的坐标为(5,8)或(1,8)-. 四、解答题(本题共20分,每小题5分) 19.解:(1)∵DB 平分∠ADC ,∴1122ADC ∠=∠=∠.又∵12AEC ADC ∠=∠,∴1AEC ∠=∠.∴AE ∥BD . ························································································ 1分 又∵AB ∥EC ,∴四边形AEDB 是平行四边形. ························································· 2分 (2)∵DB 平分∠ADC ,,∠ADC =60°,AB ∥EC ,∴∠1=∠2=∠3=30°. ∴AD =AB . 又∵DB ⊥BC , ∴∠DBC =90°.在Rt △BDC 中, CD=12,∴BC=6,DB =. ········································································· 3分 在等腰△ADB 中,AH ⊥BD , ∴DH= BH=12DB = 在Rt △ABH 中,∠AHB =90°,∴AH =3,AB=6. ··················································································· 4分 ∵四边形AEDB 是平行四边形.∴AE BD == ED=AB=6.∴9AE ED DH AH +++=. ··················································· 5分 ∴四边形AEDH的周长为9.20.解:(1)6.7;········································································································· 1分(2)42.4%, 1.5 ····························································································· 4分 (3)8.64 ·········································································································· 5分21.(1)证明:∵BF 为⊙O 的切线,∴AB ⊥BF 于点B . ∵ CD ⊥AB ,∴∠ABF =∠AHD =90°. ∴CD ∥BF . ∴∠ADC=∠F . 又∵∠ABC=∠ADC ,∴∠ABC=∠F . ··················································································· 2分(2)解:连接BD .∵AB 为⊙O 的直径, ∴∠ADB =90°,由(1)∠ABF =90°, ∴∠A=∠DBF . 又∵∠A=∠C .∴∠C=∠DBF . ······························································································ 3分在Rt △DBF 中,3sin sin 5C DBF =∠=,DF=6, ∴BD=8. ······································································································ 4分B在Rt △ABD 中,3sin sin 5C A ==, ∴403AB =. ∴⊙O 的半径为203. ·················································································· 5分22.解:(1)拼接示意图如下;……………… 2分(2)接示意图如下,八角形纸板的边长为 1 . ······································· 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(1)解:∵直线l : 2 (0)y kx k =+≠经过(1,1)-,∴1k =-,∴直线l 对应的函数表达式2y x =-+. ················································· 1分 ∵直线l 与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,B (b ,-1), ∴3a b ==.∴(1,3)A -,B (3,-1).∴3m =-.∴反比例函数G 1函数表达式为3y x=-. ··············································· 2分(2)∵EA =EB ,(1,3)A -,B (3,-1),∴点E 在直线y=x 上.∵△AEB 的面积为8,AB =∴EH =∴△AEB 是等腰直角三角形.∴E (3,3), ······································································································ 5分(3)分两种情况:(ⅰ)当0t >时,则01t <<;········································································ 6分 (ⅱ)当0t <时,则504t -<<.综上,当504t -<<或01t <<时,反比例函数2G 的图象与直线l 有两个公共点M ,N ,且DM DN +< ······························································································· 7分24.解:(1)AB=AC+CD ; ·················································································· 1分 (2)①AB=AC+CE ; ·························································································· 2分证明:在线段AB 上截取AH=AC ,连接EH . ∴CE=HE . ·························································································· 3分EF 垂直平分BC ,∴CE=BE .································································································· 4分 又∠ABE =60°,∴△EHB 是等边三角形. ∴BH=HE .∴AB=AH+HB=AC+CE . ·········································································· 5分 ②在线段AB 上截取AH=AC ,连接EH ,作EM ⊥AB 于点M . 易证△ACE ≌△AHE , ∴CE=HE .∴AM =.在Rt △AEM 中,cos AM EAM AE ∠==, ∴∠EAB =30°.∴∠CAB =2∠EAB =60°. ······································································· 7分25.解:(1)①34,l l ; ·································································································· 2分②M x =; ····················································································· 3分 (2)①如图,当直线PB 与⊙A 相切于点B 时,此时点M 的横坐标M x 最大,作PH ⊥x 轴于点H ,∴HM =1M x +,AM = 2M x -, 在Rt △ABM 和Rt △PHM 中, tan AB PH B M MA M HB =∠=,∴BM =12HM =1(1)2M x +.在Rt △ABM 中, 222AM AB BM =+,∴221(2)1(1)4M M x x -=++.解得3M x =±.∴点M 的横坐标M x 最大时,33M x =+.∴k = ·························································································· 6分②当P 点的位置发生变化时,AE 的长度不发生改变. 如图,⊙A 的两条“x 关联直线”与⊙A 相切于点C ,D , ∴PC=PD . 又∵AC=AD ∴AP 垂直平分BC .在Rt △ADF 和Rt △ADP 中,。