Statistical Encoding of Succinct Data Structures
统计学术语中英文对照
population 母体sample 样本census 普查sampling 抽样quantitative 量的qualitative/categorical质的discrete 离散的continuous 连续的population parameters 母体参数sample statistics 样本统计量descriptive statistics 叙述统计学inferential/inductive statistics 推论 ...抽样调查(sampliing survey单纯随机抽样(simple random sampling 系统抽样(systematic sampling分层抽样(stratified sampling整群抽样(cluster sampling多级抽样(multistage sampling常态分配(Parametric Statistics)无母数统计学(Nonparametric Statistics) 实验设计(Design of Experiment)参数(Parameter)Data analysis 资料分析Statistical table 统计表Statistical chart 统计图Pie chart 圆饼图Stem-and-leaf display 茎叶图Box plot 盒须图Histogram 直方图Bar Chart 长条图Polygon 次数多边图Ogive 肩形图Descriptive statistics 叙述统计学Expectation 期望值Mode 众数Mean 平均数Variance 变异数Standard deviation 标准差Standard error 标准误Covariance matrix 共变异数矩阵Inferential statistics 推论统计学Point estimation 点估计Interval estimation 区间估计Confidence interval 信赖区间Confidence coefficient 信赖系数Testing statistical hypothesis 统计假设检定Regression analysis 回归分析Analysis of variance 变异数分析Correlation coefficient 相关系数Sampling survey 抽样调查Census 普查Sampling 抽样Reliability 信度Validity 效度Sampling error 抽样误差Non-sampling error 非抽样误差Random sampling 随机抽样Simple random sampling 简单随机抽样法Stratified sampling 分层抽样法Cluster sampling 群集抽样法Systematic sampling 系统抽样法Two-stage random sampling 两段随机抽样法Convenience sampling 便利抽样Quota sampling 配额抽样Snowball sampling 雪球抽样Nonparametric statistics 无母数统计The sign test 等级检定Wilcoxon signed rank tests 魏克森讯号等级检定Wilcoxon rank sum tests 魏克森等级和检定Run test 连检定法Discrete uniform densities 离散的均匀密度Binomial densities 二项密度Hypergeometric densities 超几何密度Poisson densities 卜松密度Geometric densities 几何密度Negative binomial densities 负二项密度Continuous uniform densities 连续均匀密度Normal densities 常态密度Exponential densities 指数密度Gamma densities 伽玛密度Beta densities 贝他密度Multivariate analysis 多变量分析Principal components 主因子分析Discrimination analysis 区别分析Cluster analysis 群集分析Factor analysis 因素分析Survival analysis 存活分析Time series analysis 时间序列分析Linear models 线性模式Quality engineering 品质工程Probability theory 机率论Statistical computing 统计计算Statistical inference 统计推论Stochastic processes 随机过程Decision theory 决策理论Discrete analysis 离散分析Mathematical statistics 数理统计统计学: Statistics母体: Population样本: Sample资料分析: Data analysis统计表: Statistical table统计图: Statistical chart圆饼图: Pie chart茎叶图: Stem-and-leaf display盒须图: Box plot直方图: Histogram长条图: Bar Chart次数多边图: Polygon肩形图: Ogive叙述统计学: Descriptive statistics 期望值: Expectation众数: Mode平均数: Mean变异数: Variance标准差: Standard deviation标准误: Standard error共变异数矩阵: Covariance matrix推论统计学: Inferential statistics点估计: Point estimation区间估计: Interval estimation信赖区间: Confidence interval信赖系数: Confidence coefficient统计假设检定: Testing statisticalhypothesis回归分析: Regression analysis变异数分析: Analysis of variance相关系数: Correlation coefficient抽样调查: Sampling survey普查: Census抽样: Sampling信度: Reliability效度: Validity抽样误差: Sampling error非抽样误差: Non-sampling error随机抽样: Random sampling简单随机抽样法: Simple randomsampling分层抽样法: Stratified sampling群集抽样法: Cluster sampling系统抽样法: Systematic sampling两段随机抽样法: Two-stage randomsampling便利抽样: Convenience sampling配额抽样: Quota sampling雪球抽样: Snowball sampling无母数统计: Nonparametric statistics等级检定: The sign test魏克森讯号等级检定: Wilcoxon signedrank tests魏克森等级和检定: Wilcoxon rank sumtests连检定法: Run test离散的均匀密度: Discrete uniformdensities二项密度: Binomial densities超几何密度: Hypergeometric densities卜松密度: Poisson densities几何密度: Geometric densities负二项密度: Negative binomial densities连续均匀密度: Continuous uniformdensities常态密度: Normal densities指数密度: Exponential densities伽玛密度: Gamma densities贝他密度: Beta densities多变量分析: Multivariate analysis主因子分析: Principal components区别分析: Discrimination analysis群集分析: Cluster analysis因素分析: Factor analysis存活分析: Survival analysis时间序列分析: Time series analysis线性模式: Linear models品质工程: Quality engineering机率论: Probability theory统计计算: Statistical computing统计推论: Statistical inference随机过程: Stochastic processes决策理论: Decision theory离散分析: Discrete analysis数理统计: Mathematical statistics统计名词市调辞典众数(Mode) 普查(census)指数(Index) 问卷(Questionnaire)中位数(Median) 信度(Reliability)百分比(Percentage) 母群体(Population)信赖水准(Confidence level) 观察法(Observational Survey)假设检定(Hypothesis Testing) 综合法(Integrated Survey)卡方检定(Chi-square Test) 雪球抽样(Snowball Sampling)差距量表(Interval Scale) 序列偏差(Series Bias)类别量表(Nominal Scale) 次级资料(Secondary Data)顺序量表(Ordinal Scale) 抽样架构(Sampling frame)比率量表(Ratio Scale) 集群抽样(Cluster Sampling)连检定法(Run Test) 便利抽样(Convenience Sampling)符号检定(Sign Test) 抽样调查(SamplingSur)算术平均数(Arithmetic Mean) 非抽样误差(non-sampling error)展示会法(Display Survey)调查名词准确效度(Criterion-RelatedValidity)元素(Element) 邮寄问卷法(Mail Interview)样本(Sample) 信抽样误差(Sampling error)效度(Validity) 封闭式问题(Close Question)精确度(Precision) 电话访问法(TelephoneInterview)准确度(Validity) 随机抽样法(RandomSampling)实验法(Experiment Survey)抽样单位(Sampling unit) 资讯名词市场调查(Marketing Research) 决策树(Decision Trees)容忍误差(Tolerated erro) 资料采矿(DataMining)初级资料(Primary Data) 时间序列(Time-Series Forecasting)目标母体(Target Population) 回归分析(Regression)抽样偏差(Sampling Bias) 趋势分析(TrendAnalysis)抽样误差(sampling error) 罗吉斯回归(Logistic Regression)架构效度(Construct Validity) 类神经网络(Neural Network)配额抽样(Quota Sampling) 无母数统计检定方法(Non-Parametric Test)人员访问法(Interview) 判别分析法(Discriminant Analysis)集群分析法(cluster analysis) 规则归纳法(Rules Induction)内容效度(Content Validity) 判断抽样(Judgment Sampling)开放式问题(Open Question) OLAP(OnlineAnalytical Process)分层随机抽样(Stratified Randomsampling) 资料仓储(Data Warehouse)非随机抽样法(Nonrandom Sampling) 知识发现(Knowledge DiscoveryAbsolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additive Noise, 加性噪声Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alpha factoring,α因子法Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis Of Effects, 效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs),BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector,卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Collinearity, 共线性Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate,相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照, 质量控制图Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation, 相关性Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Crosstabs 列联表分析Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve Estimation, 曲线拟合Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Direct Oblimin, 斜交旋转Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Error Bar, 均值相关区间图Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance (已说明方差)Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点High-Low, 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Image factoring,, 多元回归法Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K-Means Cluster逐步聚类分析K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least Squared Criterion,最小二乘方准则Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Leveage Correction,杠杆率校正Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logi t转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形MSC(多元散射校正)Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围Normal value, 正常值Normalization 归一化Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Pareto, 直条构成线图(又称佩尔托图)Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式PCA(主成分分析)Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡PLS(偏最小二乘法)Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal axis factoring,主轴因子法Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified randomsampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q 图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和residual variance (剩余方差)Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequence, 普通序列图Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significant Level, 显著水平Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数。
journal of nonparametric statistics分区
journal of nonparametric statistics分区
《Nonparametric Statistics》是一本致力于非参数统计学研究的国际性学术期刊。
非参数统计学是一种不依赖于数据分布假设的统计方法,它可以在不知道数据分布的情况下对数据进行分析和推断。
这本期刊的主要目标是发布关于非参数统计方法及其在各个领域应用的高质量研究论文。
关于《Nonparametric Statistics》的分区,根据我国《中国科学引文数据库》(CSCD)的划分,该期刊属于自然科学领域的数学部分。
此外,根据《期刊引证报告》(JCR),《Nonparametric Statistics》的分区为Q2。
请注意,这些信息可能会随着时间的推移而发生变化,建议您查阅最新的数据库和期刊评价报告以获取最准确的信息。
如果您想了解更多关于该期刊的具体信息,如投稿要求、审稿周期等,您可以访问其官方网站或联系编辑部获取详细信息。
同时,为了更好地把握您的研究方向,您还可以查阅该期刊近年来的论文目录和摘要,以了解当前的非参数统计学研究热点和趋势。
统计学术语中英对照
population 母体sample 样本census 普查sampling 抽样quantitative 量的qualitative/categorical质的discrete 离散的continuous 连续的population parameters 母体参数sample statistics 样本统计量descriptive statistics 叙述统计学inferential/inductive statistics 推论 ...抽样调查(sampliing survey单纯随机抽样(simple random sampling系统抽样(systematic sampling分层抽样(stratified sampling整群抽样(cluster sampling多级抽样(multistage sampling常态分配(Parametric Statistics)无母数统计学(Nonparametric Statistics)实验设计(Design of Experiment)参数(Parameter)Data analysis 资料分析Statistical table 统计表Statistical chart 统计图Pie chart 圆饼图Stem-and-leaf display 茎叶图Box plot 盒须图Histogram 直方图Bar Chart 长条图Polygon 次数多边图Ogive 肩形图Descriptive statistics 叙述统计学Expectation 期望值Mode 众数Mean 平均数Variance 变异数Standard deviation 标准差Standard error 标准误Covariance matrix 共变异数矩阵Inferential statistics 推论统计学Point estimation 点估计Interval estimation 区间估计Confidence interval 信赖区间Confidence coefficient 信赖系数Testing statistical hypothesis 统计假设检定Regression analysis 回归分析Analysis of variance 变异数分析Correlation coefficient 相关系数Sampling survey 抽样调查Census 普查Sampling 抽样Reliability 信度Validity 效度Sampling error 抽样误差Non-sampling error 非抽样误差Random sampling 随机抽样Simple random sampling 简单随机抽样法Stratified sampling 分层抽样法Cluster sampling 群集抽样法Systematic sampling 系统抽样法Two-stage random sampling 两段随机抽样法Convenience sampling 便利抽样Quota sampling 配额抽样Snowball sampling 雪球抽样Nonparametric statistics 无母数统计The sign test 等级检定Wilcoxon signed rank tests 魏克森讯号等级检定Wilcoxon rank sum tests 魏克森等级和检定Run test 连检定法Discrete uniform densities 离散的均匀密度Binomial densities 二项密度Hypergeometric densities 超几何密度Poisson densities 卜松密度Geometric densities 几何密度Negative binomial densities 负二项密度Continuous uniform densities 连续均匀密度Normal densities 常态密度Exponential densities 指数密度Gamma densities 伽玛密度Beta densities 贝他密度Multivariate analysis 多变量分析Principal components 主因子分析Word 资料Discrimination analysis 区别分析Cluster analysis 群集分析Factor analysis 因素分析Survival analysis 存活分析Time series analysis 时间序列分析Linear models 线性模式Quality engineering 品质工程Probability theory 机率论Statistical computing 统计计算Statistical inference 统计推论Stochastic processes 随机过程Decision theory 决策理论Discrete analysis 离散分析Mathematical statistics 数理统计统计学: Statistics母体: Population样本: Sample资料分析: Data analysis统计表: Statistical table统计图: Statistical chart圆饼图: Pie chart茎叶图: Stem-and-leaf display 盒须图: Box plot直方图: Histogram长条图: Bar Chart次数多边图: Polygon肩形图: Ogive叙述统计学: Descriptive statistics 期望值: Expectation众数: Mode平均数: Mean变异数: Variance标准差: Standard deviation标准误: Standard error共变异数矩阵: Covariance matrix推论统计学: Inferential statistics点估计: Point estimation区间估计: Interval estimation信赖区间: Confidence interval信赖系数: Confidence coefficient统计假设检定: Testing statistical hypothesis回归分析: Regression analysis变异数分析: Analysis of variance相关系数: Correlation coefficient抽样调查: Sampling survey普查: Census抽样: Sampling信度: Reliability效度: Validity抽样误差: Sampling error非抽样误差: Non-sampling error随机抽样: Random sampling简单随机抽样法: Simple random sampling分层抽样法: Stratified sampling群集抽样法: Cluster sampling系统抽样法: Systematic sampling两段随机抽样法: Two-stage randomsampling便利抽样: Convenience sampling配额抽样: Quota sampling雪球抽样: Snowball sampling无母数统计: Nonparametric statistics等级检定: The sign test魏克森讯号等级检定: Wilcoxon signed ranktests魏克森等级和检定: Wilcoxon rank sum tests连检定法: Run test离散的均匀密度: Discrete uniform densities二项密度: Binomial densities超几何密度: Hypergeometric densities卜松密度: Poisson densities几何密度: Geometric densities负二项密度: Negative binomial densities连续均匀密度: Continuous uniform densities常态密度: Normal densities指数密度: Exponential densities伽玛密度: Gamma densities贝他密度: Beta densities多变量分析: Multivariate analysis主因子分析: Principal components区别分析: Discrimination analysis群集分析: Cluster analysis因素分析: Factor analysisWord 资料.Word 资料存活分析 : Survival analysis 时间序列分析 : Time series analysis 线性模式 : Linear models 品质工程 : Quality engineering 机率论 : Probability theory 统计计算 : Statistical computing 统计推论 : Statistical inference 随机过程 : Stochastic processes 决策理论 : Decision theory 离散分析 : Discrete analysis 数理统计 : Mathematical statistics 统 计 名 词 市 调 辞 典 众数(Mode) 普查(census) 指数(Index) 问卷(Questionnaire) 中位数(Median) 信度(Reliability) 百分比(Percentage) 母群体(Population) 信赖水准(Confidence level) 观察法(Observational Survey) 假设检定(Hypothesis Testing) 综合法(Integrated Survey) 卡方检定(Chi-square Test) 雪球抽样(Snowball Sampling) 差距量表(Interval Scale) 序列偏差(Series Bias) 类别量表(Nominal Scale) 次级资料(Secondary Data) 顺序量表(Ordinal Scale) 抽样架构(Sampling frame) 比率量表(Ratio Scale) 集群抽样(Cluster Sampling) 连检定法(Run Test) 便利抽样(Convenience Sampling) 符号检定(Sign Test) 抽样调查(Sampling Sur) 算术平均数(Arithmetic Mean) 非抽样误差(non-sampling error) 展示会法(Display Survey) 调 查 名 词 准确效度(Criterion-Related Validity) 元素(Element) 邮寄问卷法(Mail Interview) 样本(Sample) 信抽样误差(Sampling error) 效度(Validity) 封闭式问题(Close Question) 精确度(Precision) 电话访问法(Telephone Interview) 准确度(Validity) 随机抽样法(Random Sampling) 实验法(Experiment Survey) 抽样单位(Sampling unit) 资 讯 名 词 市场调查(Marketing Research) 决策树(Decision Trees) 容忍误差(Tolerated erro) 资料采矿(Data Mining) 初级资料(Primary Data) 时间序列(Time-Series Forecasting) 目标母体(Target Population) 回归分析(Regression) 抽样偏差(Sampling Bias) 趋势分析(Trend Analysis) 抽样误差(sampling error) 罗吉斯回归(Logistic Regression) 架构效度(Construct Validity) 类神经网络(Neural Network) 配额抽样(Quota Sampling) 无母数统计检定方法(Non-Parametric Test) 人员访问法(Interview) 判别分析法(Discriminant Analysis) 集群分析法(cluster analysis) 规则归纳法(Rules Induction) 内容效度(Content Validity) 判断抽样(Judgment Sampling) 开放式问题(Open Question) OLAP(Online Analytical Process) 分层随机抽样(Stratified Random sampling) 资料仓储(Data Warehouse) 非随机抽样法(Nonrandom Sampling) 知识发现(Knowledge Discovery Absolute deviation, 绝对离差 Absolute number, 绝对数 Absolute residuals, 绝对残差 Acceleration array, 加速度立体阵 Acceleration in an arbitrary direction, 任意方向上的加速度 Acceleration normal, 法向加速度 Acceleration space dimension, 加速度空间的维数 Acceleration tangential, 切向加速度 Acceleration vector, 加速度向量 Acceptable hypothesis, 可接受假设 Accumulation, 累积 Accuracy, 准确度 Actual frequency, 实际频数.Word 资料Adaptive estimator, 自适应估计量 Addition, 相加Addition theorem, 加法定理 Additive Noise, 加性噪声 Additivity, 可加性 Adjusted rate, 调整率 Adjusted value, 校正值 Admissible error, 容许误差 Aggregation, 聚集性 Alpha factoring,α因子法Alternative hypothesis, 备择假设 Among groups, 组间 Amounts, 总量Analysis of correlation, 相关分析 Analysis of covariance, 协方差分析 Analysis Of Effects, 效应分析 Analysis Of Variance, 方差分析 Analysis of regression, 回归分析Analysis of time series, 时间序列分析 Analysis of variance, 方差分析 Angular transformation, 角转换ANOVA (analysis of variance ), 方差分析 ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析 Arcing, 弧/弧旋Arcsine transformation, 反正弦变换 Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸 Arithmetic mean, 算术平均数 Arrhenius relation, 艾恩尼斯关系 Assessing fit, 拟合的评估 Associative laws, 结合律Asymmetric distribution, 非对称分布 Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率 Asymptotic variance, 渐近方差 Attributable risk, 归因危险度 Attribute data, 属性资料 Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关 Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率 Bar chart, 条形图 Bar graph, 条形图 Base period, 基期Bayes' theorem , Bayes 定理 Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布 Best-trim estimator, 最好切尾估计量 Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归 Binomial distribution, 二项分布 Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布 Bivariate normal population, 双变量正态总体 Biweight interval, 双权区间Biweight M-estimator, 双权M 估计量 Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP 统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点 Canonical correlation, 典型相关 Caption, 纵标目Case-control study, 病例对照研究 Categorical variable, 分类变量 Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系 Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标 Central tendency, 集中趋势 Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测 Chance, 机遇Chance error, 随机误差 Chance variable, 随机变量Characteristic equation, 特征方程.Word 资料Characteristic root, 特征根 Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则 Chernoff faces, 切尔诺夫脸谱图 Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解 Circle chart, 圆图 Class interval, 组距Class mid-value, 组中值 Class upper limit, 组上限 Classified variable, 分类变量 Cluster analysis, 聚类分析 Cluster sampling, 整群抽样 Code, 代码Coded data, 编码数据 Coding, 编码Coefficient of contingency, 列联系数 Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数 Coefficient of partial correlation, 偏相关系数 Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数 Coefficient of regression, 回归系数 Coefficient of skewness, 偏度系数 Coefficient of variation, 变异系数 Cohort study, 队列研究 Collinearity, 共线性 Column, 列Column effect, 列效应Column factor, 列因素 Combination pool, 合并 Combinative table, 组合表 Common factor, 共性因子Common regression coefficient, 公共回归系数 Common value, 共同值Common variance, 公共方差 Common variation, 公共变异 Communality variance, 共性方差 Comparability, 可比性Comparison of bathes, 批比较 Comparison value, 比较值Compartment model, 分部模型 Compassion, 伸缩Complement of an event, 补事件 Complete association, 完全正相关 Complete dissociation, 完全不相关 Complete statistics, 完备统计量Completely randomized design, 完全随机化设计 Composite event, 联合事件 Composite events, 复合事件 Concavity, 凹性Conditional expectation, 条件期望 Conditional likelihood, 条件似然 Conditional probability, 条件概率 Conditionally linear, 依条件线性 Confidence interval, 置信区间 Confidence limit, 置信限Confidence lower limit, 置信下限 Confidence upper limit, 置信上限 Confirmatory Factor Analysis , 验证性因子分析 Confirmatory research, 证实性实验研究 Confounding factor, 混杂因素 Conjoint, 联合分析 Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布 Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布 Contamination, 污染Contamination model, 污染模型 Contingency table, 列联表 Contour, 边界线Contribution rate, 贡献率 Control, 对照, 质量控制图Controlled experiments, 对照实验 Conventional depth, 常规深度 Convolution, 卷积Corrected factor, 校正因子 Corrected mean, 校正均值Correction coefficient, 校正系数 Correctness, 正确性Correlation coefficient, 相关系数 Correlation, 相关性.Word 资料Correlation index, 相关指数 Correspondence, 对应 Counting, 计数 Counts, 计数/频数 Covariance, 协方差 Covariant, 共变Cox Regression, Cox 回归 Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则 Critical ratio, 临界比 Critical region, 拒绝域 Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析 Cross-section survey, 横断面调查 Crosstabs , 交叉表 Crosstabs 列联表分析Cross-tabulation table, 复合表 Cube root, 立方根Cumulative distribution function, 分布函数 Cumulative probability, 累计概率 Curvature, 曲率/弯曲 Curvature, 曲率Curve Estimation, 曲线拟合 Curve fit , 曲线拟和 Curve fitting, 曲线拟合Curvilinear regression, 曲线回归 Curvilinear relation, 曲线关系 Cut-and-try method, 尝试法 Cycle, 周期Cyclist, 周期性 D test, D 检验Data acquisition, 资料收集 Data bank, 数据库Data capacity, 数据容量 Data deficiencies, 数据缺乏 Data handling, 数据处理 Data manipulation, 数据处理 Data processing, 数据处理 Data reduction, 数据缩减 Data set, 数据集Data sources, 数据来源Data transformation, 数据变换 Data validity, 数据有效性 Data-in, 数据输入 Data-out, 数据输出 Dead time, 停滞期Degree of freedom, 自由度 Degree of precision, 精密度 Degree of reliability, 可靠性程度 Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量 Dependent variable, 因变量 Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法 Design, 设计Determinacy, 确定性 Determinant, 行列式 Determinant, 决定因素 Deviation, 离差Deviation from average, 离均差 Diagnostic plot, 诊断图Dichotomous variable, 二分变量 Differential equation, 微分方程Direct standardization, 直接标准化法 Direct Oblimin, 斜交旋转 Discrete variable, 离散型变量 DISCRIMINANT, 判断Discriminant analysis, 判别分析 Discriminant coefficient, 判别系数 Discriminant function, 判别值 Dispersion, 散布/分散度 Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布 Distribution shape, 分布形状Distribution-free method, 任意分布法 Distributive laws, 分配律 Disturbance, 随机扰动项Dose response curve, 剂量反应曲线 Double blind method, 双盲法 Double blind trial, 双盲试验Double exponential distribution, 双指数分布 Double logarithmic, 双对数 Downward rank, 降秩Dual-space plot, 对偶空间图.Word 资料DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan 新法Error Bar, 均值相关区间图 Effect, 实验效应 Eigenvalue, 特征值 Eigenvector, 特征向量 Ellipse, 椭圆Empirical distribution, 经验分布 Empirical probability, 经验概率单位 Enumeration data, 计数资料Equal sun-class number, 相等次级组含量 Equally likely, 等可能 Equivariance, 同变性 Error, 误差/错误Error of estimate, 估计误差 Error type I, 第一类错误 Error type II, 第二类错误 Estimand, 被估量Estimated error mean squares, 估计误差均方 Estimated error sum of squares, 估计误差平方和 Euclidean distance, 欧式距离 Event, 事件 Event, 事件Exceptional data point, 异常数据点 Expectation plane, 期望平面 Expectation surface, 期望曲面 Expected values, 期望值 Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance (已说明方差) Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析 Explore Summarize, 探索-摘要 Exponential curve, 指数曲线 Exponential growth, 指数式增长 EXSMOOTH, 指数平滑方法 Extended fit, 扩充拟合 Extra parameter, 附加参数 Extrapolation, 外推法Extreme observation, 末端观测值 Extremes, 极端值/极值 F distribution, F 分布 F test, F 检验Factor, 因素/因子Factor analysis, 因子分析 Factor Analysis, 因子分析 Factor score, 因子得分 Factorial, 阶乘Factorial design, 析因试验设计 False negative, 假阴性False negative error, 假阴性错误 Family of distributions, 分布族 Family of estimators, 估计量族 Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查 Field survey, 现场调查Finite population, 有限总体 Finite-sample, 有限样本 First derivative, 一阶导数First principal component, 第一主成分 First quartile, 第一四分位数 Fisher information, 费雪信息量 Fitted value, 拟合值Fitting a curve, 曲线拟合 Fixed base, 定基Fluctuation, 随机起伏 Forecast, 预测Four fold table, 四格表 Fourth, 四分点Fraction blow, 左侧比率 Fractional error, 相对误差 Frequency, 频率Frequency polygon, 频数多边图 Frontier point, 界限点Function relationship, 泛函关系 Gamma distribution, 伽玛分布 Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布 Gauss-Newton increment, 高斯-牛顿增量 General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型 Geometric mean, 几何平均数 Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型 Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度.Word 资料Graeco-Latin square, 希腊拉丁方 Grand mean, 总均值 Gross errors, 重大错误Gross-error sensitivity, 大错敏感度 Group averages, 分组平均 Grouped data, 分组资料 Guessed mean, 假定平均数 Half-life, 半衰期Hampel M-estimators, 汉佩尔M 估计量 Happenstance, 偶然事件 Harmonic mean, 调和均数 Hazard function, 风险均数 Hazard rate, 风险率 Heading, 标目Heavy-tailed distribution, 重尾分布 Hessian array, 海森立体阵 Heterogeneity, 不同质Heterogeneity of variance, 方差不齐 Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法 High-leverage point, 高杠杆率点 High-Low, 低区域图Higher Order Interaction Effects ,高阶交互作用 HILOGLINEAR, 多维列联表的层次对数线性模型 Hinge, 折叶点 Histogram, 直方图Historical cohort study, 历史性队列研究 Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M 估计量 Hyperbola, 双曲线Hypothesis testing, 假设检验 Hypothetical universe, 假设总体 Image factoring,, 多元回归法 Impossible event, 不可能事件 Independence, 独立性Independent variable, 自变量 Index, 指标/指数Indirect standardization, 间接标准化法 Individual, 个体Inference band, 推断带Infinite population, 无限总体 Infinitely great, 无穷大 Infinitely small, 无穷小 Influence curve, 影响曲线Information capacity, 信息容量 Initial condition, 初始条件 Initial estimate, 初始估计值 Initial level, 最初水平 Interaction, 交互作用Interaction terms, 交互作用项 Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距 Interval estimation, 区间估计Intervals of equal probability, 等概率区间 Intrinsic curvature, 固有曲率 Invariance, 不变性 Inverse matrix, 逆矩阵 Inverse probability, 逆概率Inverse sine transformation, 反正弦变换 Iteration, 迭代Jacobian determinant, 雅可比行列式 Joint distribution function, 分布函数 Joint probability, 联合概率Joint probability distribution, 联合概率分布 K-Means Cluster 逐步聚类分析 K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度 Kaplan-Merier chart, Kaplan-Merier 图Kendall's rank correlation, Kendall 等级相关 Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal 及Wallis 检验/多样本的秩和检验/H 检验 Kurtosis, 峰度 Lack of fit, 失拟Ladder of powers, 幂阶梯 Lag, 滞后Large sample, 大样本Large sample test, 大样本检验 Latin square, 拉丁方Latin square design, 拉丁方设计 Leakage, 泄漏Least favorable configuration, 最不利构形 Least favorable distribution, 最不利分布 Least significant difference, 最小显著差法.Word 资料Least square method, 最小二乘法Least Squared Criterion ,最小二乘方准则Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合 Least-absolute-residuals line, 最小绝对残差线 Legend, 图例L-estimator, L 估计量L-estimator of location, 位置L 估计量 L-estimator of scale, 尺度L 估计量 Level, 水平Leveage Correction ,杠杆率校正 Life expectance, 预期期望寿命 Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布 Likelihood function, 似然函数 Likelihood ratio, 似然比 line graph, 线图Linear correlation, 直线相关 Linear equation, 线性方程Linear programming, 线性规划 Linear regression, 直线回归 Linear Regression, 线性回归 Linear trend, 线性趋势 Loading, 载荷Location and scale equivariance, 位置尺度同变性 Location equivariance, 位置同变性 Location invariance, 位置不变性 Location scale family, 位置尺度族Log rank test, 时序检验 Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布 Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换 Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布 Logit transformation, Logit 转换 LOGLINEAR, 多维列联表通用模型 Lognormal distribution, 对数正态分布 Lost function, 损失函数 Low correlation, 低度相关 Lower limit, 下限Lowest-attained variance, 最小可达方差 LSD, 最小显著差法的简称 Lurking variable, 潜在变量 Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数 Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布 Matched data, 配对资料Matched distribution, 匹配过分布 Matching of distribution, 分布的匹配 Matching of transformation, 变换的匹配 Mathematical expectation, 数学期望 Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量 Maximum likelihood method, 最大似然法 Mean, 均数 Mean squares between groups, 组间均方 Mean squares within group, 组内均方 Means (Compare means), 均值-均值比较 Median, 中位数Median effective dose, 半数效量 Median lethal dose, 半数致死量 Median polish, 中位数平滑 Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量 Minimum distance estimation, 最小距离估计 Minimum effective dose, 最小有效量 Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量 MINITAB, 统计软件包 Minor heading, 宾词标目 Missing data, 缺失值Model specification, 模型的确定 Modeling Statistics , 模型统计 Models for outliers, 离群值模型 Modifying the model, 模型的修正 Modulus of continuity, 连续性模 Morbidity, 发病率Most favorable configuration, 最有利构形 MSC (多元散射校正)Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较 Multiple correlation , 复相关.Word 资料Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归 Multiple response , 多重选项 Multiple solutions, 多解Multiplication theorem, 乘法定理 Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样 Multivariate T distribution, 多元T 分布 Mutual exclusive, 互不相容Mutual independence, 互相独立 Natural boundary, 自然边界 Natural dead, 自然死亡 Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关 Negatively skewed, 负偏Newman-Keuls method, q 检验 NK method, q 检验No statistical significance, 无统计意义 Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性 Nonlinear regression, 非线性相关 Nonparametric statistics, 非参数统计 Nonparametric test, 非参数检验 Nonparametric tests, 非参数检验 Normal deviate, 正态离差 Normal distribution, 正态分布 Normal equation, 正规方程组 Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围 Normal value, 正常值 Normalization 归一化Nuisance parameter, 多余参数/讨厌参数 Null hypothesis, 无效假设 Numerical variable, 数值变量 Objective function, 目标函数 Observation unit, 观察单位 Observed value, 观察值 One sided test, 单侧检验One-way analysis of variance, 单因素方差分析 Oneway ANOVA , 单因素方差分析 Open sequential trial, 开放型序贯设计 Optrim, 优切尾Optrim efficiency, 优切尾效率 Order statistics, 顺序统计量 Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归 Ordinal variable, 有序变量 Orthogonal basis, 正交基Orthogonal design, 正交试验设计 Orthogonality conditions, 正交条件 ORTHOPLAN, 正交设计 Outlier cutoffs, 离群值截断点 Outliers, 极端值OVERALS , 多组变量的非线性正规相关 Overshoot, 迭代过度 Paired design, 配对设计 Paired sample, 配对样本 Pairwise slopes, 成对斜率 Parabola, 抛物线Parallel tests, 平行试验 Parameter, 参数Parametric statistics, 参数统计 Parametric test, 参数检验Pareto, 直条构成线图(又称佩尔托图) Partial correlation, 偏相关 Partial regression, 偏回归 Partial sorting, 偏排序 Partials residuals, 偏残差 Pattern, 模式PCA (主成分分析)Pearson curves, 皮尔逊曲线 Peeling, 退层Percent bar graph, 百分条形图 Percentage, 百分比 Percentile, 百分位数Percentile curves, 百分位曲线 Periodicity, 周期性 Permutation, 排列 P-estimator, P 估计量 Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量 Pivot, 枢轴量 Planar, 平坦Planar assumption, 平面的假设 PLANCARDS, 生成试验的计划卡PLS (偏最小二乘法) Point estimation, 点估计.Word 资料Poisson distribution, 泊松分布 Polishing, 平滑Polled standard deviation, 合并标准差 Polled variance, 合并方差 Polygon, 多边图 Polynomial, 多项式Polynomial curve, 多项式曲线 Population, 总体Population attributable risk, 人群归因危险度 Positive correlation, 正相关 Positively skewed, 正偏Posterior distribution, 后验分布 Power of a test, 检验效能 Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析 Principal axis factoring,主轴因子法Principal component analysis, 主成分分析 Prior distribution, 先验分布 Prior probability, 先验概率 Probabilistic model, 概率模型 probability, 概率Probability density, 概率密度 Product moment, 乘积矩/协方差 Profile trace, 截面迹图 Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样 Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查 Proximities, 亲近性Pseudo F test, 近似F 检验 Pseudo model, 近似模型 Pseudosigma, 伪标准差Purposive sampling, 有目的抽样 QR decomposition, QR 分解Quadratic approximation, 二次近似 Qualitative classification, 属性分类 Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q 图 Quantitative analysis, 定量分析 Quartile, 四分位数Quick Cluster, 快速聚类 Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计 Random event, 随机事件 Randomization, 随机化 Range, 极差/全距Rank correlation, 等级相关 Rank sum test, 秩和检验 Rank test, 秩检验Ranked data, 等级资料 Rate, 比率 Ratio, 比例Raw data, 原始资料 Raw residual, 原始残差 Rayleigh's test, 雷氏检验 Rayleigh's Z, 雷氏Z 值 Reciprocal, 倒数Reciprocal transformation, 倒数变换 Recording, 记录Redescending estimators, 回降估计量 Reducing dimensions, 降维 Re-expression, 重新表达 Reference set, 标准组Region of acceptance, 接受域 Regression coefficient, 回归系数Regression sum of square, 回归平方和 Rejection point, 拒绝点Relative dispersion, 相对离散度 Relative number, 相对数 Reliability, 可靠性Reparametrization, 重新设置参数 Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和 residual variance (剩余方差) Resistance, 耐抗性 Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R 估计量 R-estimator of scale, 尺度R 估计量 Retrospective study, 回顾性调查 Ridge trace, 岭迹Ridit analysis, Ridit 分析 Rotation, 旋转.Word 资料Rounding, 舍入 Row, 行Row effects, 行效应 Row factor, 行因素 RXC table, RXC 表 Sample, 样本Sample regression coefficient, 样本回归系数 Sample size, 样本量Sample standard deviation, 样本标准差 Sampling error, 抽样误差SAS(Statistical analysis system ), SAS 统计软件包 Scale, 尺度/量表Scatter diagram, 散点图 Schematic plot, 示意图/简图 Score test, 计分检验 Screening, 筛检 SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图 Semi-logarithmic paper, 半对数格纸 Sensitivity curve, 敏感度曲线 Sequential analysis, 贯序分析 Sequence, 普通序列图Sequential data set, 顺序数据集 Sequential design, 贯序设计 Sequential method, 贯序法 Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法 Sigmoid curve, S 形曲线 Sign function, 正负号函数 Sign test, 符号检验 Signed rank, 符号秩Significant Level, 显著水平 Significance test, 显著性检验 Significant figure, 有效数字Simple cluster sampling, 简单整群抽样 Simple correlation, 简单相关Simple random sampling, 简单随机抽样 Simple regression, 简单回归 simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计 Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布 Skewness, 偏度Slash distribution, 斜线分布 Slope, 斜率Smirnov test, 斯米尔诺夫检验 Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关 Specific factor, 特殊因子Specific factor variance, 特殊因子方差 Spectra , 频谱Spherical distribution, 球型正态分布 Spread, 展布SPSS(Statistical package for the social science), SPSS 统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换 Stabilizing variance, 稳定方差 Standard deviation, 标准差 Standard error, 标准误Standard error of difference, 差别的标准误 Standard error of estimate, 标准估计误差 Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布 Standardization, 标准化 Starting value, 起始值 Statistic, 统计量Statistical control, 统计控制 Statistical graph, 统计图Statistical inference, 统计推断 Statistical table, 统计表Steepest descent, 最速下降法 Stem and leaf display, 茎叶图 Step factor, 步长因子Stepwise regression, 逐步回归 Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样 Stratified sampling, 分层抽样 Strength, 强度 Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t 化残差.Word 资料Sub-class numbers, 次级组含量 Subdividing, 分割Sufficient statistic, 充分统计量 Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和 Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和 Sure event, 必然事件 Survey, 调查Survival, 生存分析 Survival rate, 生存率Suspended root gram, 悬吊根图 Symmetry, 对称Systematic error, 系统误差 Systematic sampling, 系统抽样 Tags, 标签Tail area, 尾部面积 Tail length, 尾长 Tail weight, 尾重 Tangent line, 切线Target distribution, 目标分布 Taylor series, 泰勒级数 Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势 Testing of hypotheses, 假设检验 Theoretical frequency, 理论频数 Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限 Tolerance upper limit, 容忍上限 Torsion, 扰率Total sum of square, 总平方和 Total variation, 总变异 Transformation, 转换 Treatment, 处理 Trend, 趋势Trend of percentage, 百分比趋势 Trial, 试验Trial and error method, 试错法 Tuning constant, 细调常数 Two sided test, 双向检验Two-stage least squares, 二阶最小平方 Two-stage sampling, 二阶段抽样 Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析 Two-way table, 双向表Type I error, 一类错误/α错误 Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称 Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量 Ungrouped data, 不分组资料 Uniform coordinate, 均匀坐标 Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Unweighted least squares, 未加权最小平方法 Upper limit, 上限 Upward rank, 升秩Vague concept, 模糊概念 Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性 Variable, 变量 Variance, 方差 Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转 Volume of distribution, 容积 W test, W 检验Weibull distribution, 威布尔分布 Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran 检验Weighted linear regression method, 加权直线回归 Weighted mean, 加权平均数Weighted mean square, 加权平均方差 Weighted sum of square, 加权平方和 Weighting coefficient, 权重系数 Weighting method, 加权法 W-estimation, W 估计量W-estimation of location, 位置W 估计量 Width, 宽度。
统计学术语中英文对照详解
统计学术语中英文对照Absolute deviation 绝对离差Absolute number 绝对数Absolute residuals 绝对残差Acceleration array 加速度立体阵Acceleration in an arbitrary direction 任意方向上的加速度Acceleration normal 法向加速度Acceleration space dimension 加速度空间的维数Acceleration tangential 切向加速度Acceleration vector 加速度向量Acceptable hypothesis 可接受假设Accumulation 累积Accuracy 准确度Actual frequency 实际频数Adaptive estimator 自适应估计量Addition 相加Addition theorem 加法定理Additivity 可加性Adjusted rate 调整率Adjusted value 校正值Admissible error 容许误差Aggregation 聚集性Alternative hypothesis 备择假设Among groups 组间Amounts 总量Analysis of correlation 相关分析Analysis of covariance 协方差分析Analysis of regression 回归分析Analysis of time series 时间序列分析Analysis of variance 方差分析Angular transformation 角转换ANOVA (analysis of variance)方差分析ANOVA Models 方差分析模型Arcing 弧/弧旋Arcsine transformation 反正弦变换Area under the curve 曲线面积AREG 评估从一个时间点到下一个时间点回归相关时的误差ARIMA 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper 算术格纸Arithmetic mean 算术平均数Arrhenius relation 艾恩尼斯关系Assessing fit 拟合的评估Associative laws 结合律Asymmetric distribution 非对称分布Asymptotic bias 渐近偏倚Asymptotic efficiency 渐近效率Asymptotic variance 渐近方差Attributable risk 归因危险度Attribute data 属性资料Attribution 属性Autocorrelation 自相关Autocorrelation of residuals 残差的自相关Average 平均数Average confidence interval length 平均置信区间长度Average growth rate 平均增长率Bar chart 条形图Bar graph 条形图Base period 基期Bayes' theorem Bayes定理Bell-shaped curve 钟形曲线Bernoulli distribution 伯努力分布Best-trim estimator 最好切尾估计量Bias 偏性Binary logistic regression 二元逻辑斯蒂回归Binomial distribution 二项分布Bisquare 双平方Bivariate Correlate 二变量相关Bivariate normal distribution 双变量正态分布Bivariate normal population 双变量正态总体Biweight interval 双权区间Biweight M—estimator 双权M估计量Block 区组/配伍组BMDP(Biomedical computer programs)BMDP统计软件包Boxplots 箱线图/箱尾图Breakdown bound 崩溃界/崩溃点Canonical correlation 典型相关Caption 纵标目Case—control study 病例对照研究Categorical variable 分类变量Catenary 悬链线Cauchy distribution 柯西分布Cause-and—effect relationship 因果关系Cell 单元Censoring 终检Center of symmetry 对称中心Centering and scaling 中心化和定标Central tendency 集中趋势Central value 中心值CHAID —χ2 Automatic Interaction Detector 卡方自动交互检测Chance 机遇Chance error 随机误差Chance variable 随机变量Characteristic equation 特征方程Characteristic root 特征根Characteristic vector 特征向量Chebshev criterion of fit 拟合的切比雪夫准则Chernoff faces 切尔诺夫脸谱图Chi-square test 卡方检验/χ2检验Choleskey decomposition 乔洛斯基分解Circle chart 圆图Class interval 组距Class mid—value 组中值Class upper limit 组上限Classified variable 分类变量Cluster analysis 聚类分析Cluster sampling 整群抽样Code 代码Coded data 编码数据Coding 编码Coefficient of contingency 列联系数Coefficient of determination 决定系数Coefficient of multiple correlation 多重相关系数Coefficient of partial correlation 偏相关系数Coefficient of production-moment correlation 积差相关系数Coefficient of rank correlation 等级相关系数Coefficient of regression 回归系数Coefficient of skewness 偏度系数Coefficient of variation 变异系数Cohort study 队列研究Column 列Column effect 列效应Column factor 列因素Combination pool 合并Combinative table 组合表Common factor 共性因子Common regression coefficient 公共回归系数Common value 共同值Common variance 公共方差Common variation 公共变异Communality variance 共性方差Comparability 可比性Comparison of bathes 批比较Comparison value 比较值Compartment model 分部模型Compassion 伸缩Complement of an event 补事件Complete association 完全正相关Complete dissociation 完全不相关Complete statistics 完备统计量Completely randomized design 完全随机化设计Composite event 联合事件Composite events 复合事件Concavity 凹性Conditional expectation 条件期望Conditional likelihood 条件似然Conditional probability 条件概率Conditionally linear 依条件线性Confidence interval 置信区间Confidence limit 置信限Confidence lower limit 置信下限Confidence upper limit 置信上限Confirmatory Factor Analysis 验证性因子分析Confirmatory research 证实性实验研究Confounding factor 混杂因素Conjoint 联合分析Consistency 相合性Consistency check 一致性检验Consistent asymptotically normal estimate 相合渐近正态估计Consistent estimate 相合估计Constrained nonlinear regression 受约束非线性回归Constraint 约束Contaminated distribution 污染分布Contaminated Gausssian 污染高斯分布Contaminated normal distribution 污染正态分布Contamination 污染Contamination model 污染模型Contingency table 列联表Contour 边界线Contribution rate 贡献率Control 对照Controlled experiments 对照实验Conventional depth 常规深度Convolution 卷积Corrected factor 校正因子Corrected mean 校正均值Correction coefficient 校正系数Correctness 正确性Correlation coefficient 相关系数Correlation index 相关指数Correspondence 对应Counting 计数Counts 计数/频数Covariance 协方差Covariant 共变Cox Regression Cox回归Criteria for fitting 拟合准则Criteria of least squares 最小二乘准则Critical ratio 临界比Critical region 拒绝域Critical value 临界值Cross-over design 交叉设计Cross-section analysis 横断面分析Cross—section survey 横断面调查Crosstabs 交叉表Cross-tabulation table 复合表Cube root 立方根Cumulative distribution function 分布函数Cumulative probability 累计概率Curvature 曲率/弯曲Curvature 曲率Curve fit 曲线拟和Curve fitting 曲线拟合Curvilinear regression 曲线回归Curvilinear relation 曲线关系Cut—and-try method 尝试法Cycle 周期Cyclist 周期性D test D检验Data acquisition 资料收集Data bank 数据库Data capacity 数据容量Data deficiencies 数据缺乏Data handling 数据处理Data manipulation 数据处理Data processing 数据处理Data reduction 数据缩减Data set 数据集Data sources 数据来源Data transformation 数据变换Data validity 数据有效性Data—in 数据输入Data-out 数据输出Dead time 停滞期Degree of freedom 自由度Degree of precision 精密度Degree of reliability 可靠性程度Degression 递减Density function 密度函数Density of data points 数据点的密度Dependent variable 应变量/依变量/因变量Dependent variable 因变量Depth 深度Derivative matrix 导数矩阵Derivative—free methods 无导数方法Design 设计Determinacy 确定性Determinant 行列式Determinant 决定因素Deviation 离差Deviation from average 离均差Diagnostic plot 诊断图Dichotomous variable 二分变量Differential equation 微分方程Direct standardization 直接标准化法Discrete variable 离散型变量DISCRIMINANT 判断Discriminant analysis 判别分析Discriminant coefficient 判别系数Discriminant function 判别值Dispersion 散布/分散度Disproportional 不成比例的Disproportionate sub—class numbers 不成比例次级组含量Distribution free 分布无关性/免分布Distribution shape 分布形状Distribution-free method 任意分布法Distributive laws 分配律Disturbance 随机扰动项Dose response curve 剂量反应曲线Double blind method 双盲法Double blind trial 双盲试验Double exponential distribution 双指数分布Double logarithmic 双对数Downward rank 降秩Dual-space plot 对偶空间图DUD 无导数方法Duncan’s new multiple range method 新复极差法/Duncan新法Effect 实验效应Eigenvalue 特征值Eigenvector 特征向量Ellipse 椭圆Empirical distribution 经验分布Empirical probability 经验概率单位Enumeration data 计数资料Equal sun—class number 相等次级组含量Equally likely 等可能Equivariance 同变性Error 误差/错误Error of estimate 估计误差Error type I 第一类错误Error type II 第二类错误Estimand 被估量Estimated error mean squares 估计误差均方Estimated error sum of squares 估计误差平方和Euclidean distance 欧式距离Event 事件Event 事件Exceptional data point 异常数据点Expectation plane 期望平面Expectation surface 期望曲面Expected values 期望值Experiment 实验Experimental sampling 试验抽样Experimental unit 试验单位Explanatory variable 说明变量Exploratory data analysis 探索性数据分析Explore Summarize 探索-摘要Exponential curve 指数曲线Exponential growth 指数式增长EXSMOOTH 指数平滑方法Extended fit 扩充拟合Extra parameter 附加参数Extrapolation 外推法Extreme observation 末端观测值Extremes 极端值/极值F distribution F分布F test F检验Factor 因素/因子Factor analysis 因子分析Factor Analysis 因子分析Factor score 因子得分Factorial 阶乘Factorial design 析因试验设计False negative 假阴性False negative error 假阴性错误Family of distributions 分布族Family of estimators 估计量族Fanning 扇面Fatality rate 病死率Field investigation 现场调查Field survey 现场调查Finite population 有限总体Finite-sample 有限样本First derivative 一阶导数First principal component 第一主成分First quartile 第一四分位数Fisher information 费雪信息量Fitted value 拟合值Fitting a curve 曲线拟合Fixed base 定基Fluctuation 随机起伏Forecast 预测Four fold table 四格表Fourth 四分点Fraction blow 左侧比率Fractional error 相对误差Frequency 频率Frequency polygon 频数多边图Frontier point 界限点Function relationship 泛函关系Gamma distribution 伽玛分布Gauss increment 高斯增量Gaussian distribution 高斯分布/正态分布Gauss—Newton increment 高斯—牛顿增量General census 全面普查GENLOG (Generalized liner models)广义线性模型Geometric mean 几何平均数Gini’s mean difference 基尼均差GLM (General liner models) 通用线性模型Goodness of fit 拟和优度/配合度Gradient of determinant 行列式的梯度Graeco—Latin square 希腊拉丁方Grand mean 总均值Gross errors 重大错误Gross-error sensitivity 大错敏感度Group averages 分组平均Grouped data 分组资料Guessed mean 假定平均数Half-life 半衰期Hampel M-estimators 汉佩尔M估计量Happenstance 偶然事件Harmonic mean 调和均数Hazard function 风险均数Hazard rate 风险率Heading 标目Heavy-tailed distribution 重尾分布Hessian array 海森立体阵Heterogeneity 不同质Heterogeneity of variance 方差不齐Hierarchical classification 组内分组Hierarchical clustering method 系统聚类法High—leverage point 高杠杆率点HILOGLINEAR 多维列联表的层次对数线性模型Hinge 折叶点Histogram 直方图Historical cohort study 历史性队列研究Holes 空洞HOMALS 多重响应分析Homogeneity of variance 方差齐性Homogeneity test 齐性检验Huber M—estimators 休伯M估计量Hyperbola 双曲线Hypothesis testing 假设检验Hypothetical universe 假设总体Impossible event 不可能事件Independence 独立性Independent variable 自变量Index 指标/指数Indirect standardization 间接标准化法Individual 个体Inference band 推断带Infinite population 无限总体Infinitely great 无穷大Infinitely small 无穷小Influence curve 影响曲线Information capacity 信息容量Initial condition 初始条件Initial estimate 初始估计值Initial level 最初水平Interaction 交互作用Interaction terms 交互作用项Intercept 截距Interpolation 内插法Interquartile range 四分位距Interval estimation 区间估计Intervals of equal probability 等概率区间Intrinsic curvature 固有曲率Invariance 不变性Inverse matrix 逆矩阵Inverse probability 逆概率Inverse sine transformation 反正弦变换Iteration 迭代Jacobian determinant 雅可比行列式Joint distribution function 分布函数Joint probability 联合概率Joint probability distribution 联合概率分布K means method 逐步聚类法Kaplan-Meier 评估事件的时间长度Kaplan—Merier chart Kaplan—Merier图Kendall’s rank correlation Kendall等级相关Kinetic 动力学Kolmogorov-Smirnove test 柯尔莫哥洛夫—斯米尔诺夫检验Kruskal and Wallis test Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis 峰度Lack of fit 失拟Ladder of powers 幂阶梯Lag 滞后Large sample 大样本Large sample test 大样本检验Latin square 拉丁方Latin square design 拉丁方设计Leakage 泄漏Least favorable configuration 最不利构形Least favorable distribution 最不利分布Least significant difference 最小显著差法Least square method 最小二乘法Least-absolute-residuals estimates 最小绝对残差估计Least—absolute-residuals fit 最小绝对残差拟合Least—absolute—residuals line 最小绝对残差线Legend 图例L-estimator L估计量L-estimator of location 位置L估计量L-estimator of scale 尺度L估计量Level 水平Life expectance 预期期望寿命Life table 寿命表Life table method 生命表法Light—tailed distribution 轻尾分布Likelihood function 似然函数Likelihood ratio 似然比line graph 线图Linear correlation 直线相关Linear equation 线性方程Linear programming 线性规划Linear regression 直线回归Linear Regression 线性回归Linear trend 线性趋势Loading 载荷Location and scale equivariance 位置尺度同变性Location equivariance 位置同变性Location invariance 位置不变性Location scale family 位置尺度族Log rank test 时序检验Logarithmic curve 对数曲线Logarithmic normal distribution 对数正态分布Logarithmic scale 对数尺度Logarithmic transformation 对数变换Logic check 逻辑检查Logistic distribution 逻辑斯特分布Logit transformation Logit转换LOGLINEAR 多维列联表通用模型Lognormal distribution 对数正态分布Lost function 损失函数Low correlation 低度相关Lower limit 下限Lowest-attained variance 最小可达方差LSD 最小显著差法的简称Lurking variable 潜在变量Main effect 主效应Major heading 主辞标目Marginal density function 边缘密度函数Marginal probability 边缘概率Marginal probability distribution 边缘概率分布Matched data 配对资料Matched distribution 匹配过分布Matching of distribution 分布的匹配Matching of transformation 变换的匹配Mathematical expectation 数学期望Mathematical model 数学模型Maximum L—estimator 极大极小L 估计量Maximum likelihood method 最大似然法Mean 均数Mean squares between groups 组间均方Mean squares within group 组内均方Means (Compare means)均值-均值比较Median 中位数Median effective dose 半数效量Median lethal dose 半数致死量Median polish 中位数平滑Median test 中位数检验Minimal sufficient statistic 最小充分统计量Minimum distance estimation 最小距离估计Minimum effective dose 最小有效量Minimum lethal dose 最小致死量Minimum variance estimator 最小方差估计量MINITAB 统计软件包Minor heading 宾词标目Missing data 缺失值Model specification 模型的确定Modeling Statistics 模型统计Models for outliers 离群值模型Modifying the model 模型的修正Modulus of continuity 连续性模Morbidity 发病率Most favorable configuration 最有利构形Multidimensional Scaling (ASCAL) 多维尺度/多维标度Multinomial Logistic Regression 多项逻辑斯蒂回归Multiple comparison 多重比较Multiple correlation 复相关Multiple covariance 多元协方差Multiple linear regression 多元线性回归Multiple response 多重选项Multiple solutions 多解Multiplication theorem 乘法定理Multiresponse 多元响应Multi-stage sampling 多阶段抽样Multivariate T distribution 多元T分布Mutual exclusive 互不相容Mutual independence 互相独立Natural boundary 自然边界Natural dead 自然死亡Natural zero 自然零Negative correlation 负相关Negative linear correlation 负线性相关Negatively skewed 负偏Newman-Keuls method q检验NK method q检验No statistical significance 无统计意义Nominal variable 名义变量Nonconstancy of variability 变异的非定常性Nonlinear regression 非线性相关Nonparametric statistics 非参数统计Nonparametric test 非参数检验Nonparametric tests 非参数检验Normal deviate 正态离差Normal distribution 正态分布Normal equation 正规方程组Normal ranges 正常范围Normal value 正常值Nuisance parameter 多余参数/讨厌参数Null hypothesis 无效假设Numerical variable 数值变量Objective function 目标函数Observation unit 观察单位Observed value 观察值One sided test 单侧检验One—way analysis of variance 单因素方差分析Oneway ANOVA 单因素方差分析Open sequential trial 开放型序贯设计Optrim 优切尾Optrim efficiency 优切尾效率Order statistics 顺序统计量Ordered categories 有序分类Ordinal logistic regression 序数逻辑斯蒂回归Ordinal variable 有序变量Orthogonal basis 正交基Orthogonal design 正交试验设计Orthogonality conditions 正交条件ORTHOPLAN 正交设计Outlier cutoffs 离群值截断点Outliers 极端值OVERALS 多组变量的非线性正规相关Overshoot 迭代过度Paired design 配对设计Paired sample 配对样本Pairwise slopes 成对斜率Parabola 抛物线Parallel tests 平行试验Parameter 参数Parametric statistics 参数统计Parametric test 参数检验Partial correlation 偏相关Partial regression 偏回归Partial sorting 偏排序Partials residuals 偏残差Pattern 模式Pearson curves 皮尔逊曲线Peeling 退层Percent bar graph 百分条形图Percentage 百分比Percentile 百分位数Percentile curves 百分位曲线Periodicity 周期性Permutation 排列P-estimator P估计量Pie graph 饼图Pitman estimator 皮特曼估计量Pivot 枢轴量Planar 平坦Planar assumption 平面的假设PLANCARDS 生成试验的计划卡Point estimation 点估计Poisson distribution 泊松分布Polishing 平滑Polled standard deviation 合并标准差Polled variance 合并方差Polygon 多边图Polynomial 多项式Polynomial curve 多项式曲线Population 总体Population attributable risk 人群归因危险度Positive correlation 正相关Positively skewed 正偏Posterior distribution 后验分布Power of a test 检验效能Precision 精密度Predicted value 预测值Preliminary analysis 预备性分析Principal component analysis 主成分分析Prior distribution 先验分布Prior probability 先验概率Probabilistic model 概率模型probability 概率Probability density 概率密度Product moment 乘积矩/协方差Profile trace 截面迹图Proportion 比/构成比Proportion allocation in stratified random sampling 按比例分层随机抽样Proportionate 成比例Proportionate sub—class numbers 成比例次级组含量Prospective study 前瞻性调查Proximities 亲近性Pseudo F test 近似F检验Pseudo model 近似模型Pseudosigma 伪标准差Purposive sampling 有目的抽样QR decomposition QR分解Quadratic approximation 二次近似Qualitative classification 属性分类Qualitative method 定性方法Quantile-quantile plot 分位数-分位数图/Q-Q图Quantitative analysis 定量分析Quartile 四分位数Quick Cluster 快速聚类Radix sort 基数排序Random allocation 随机化分组Random blocks design 随机区组设计Random event 随机事件Randomization 随机化Range 极差/全距Rank correlation 等级相关Rank sum test 秩和检验Rank test 秩检验Ranked data 等级资料Rate 比率Ratio 比例Raw data 原始资料Raw residual 原始残差Rayleigh’s test 雷氏检验Rayleigh’s Z 雷氏Z值Reciprocal 倒数Reciprocal transformation 倒数变换Recording 记录Redescending estimators 回降估计量Reducing dimensions 降维Re—expression 重新表达Reference set 标准组Region of acceptance 接受域Regression coefficient 回归系数Regression sum of square 回归平方和Rejection point 拒绝点Relative dispersion 相对离散度Relative number 相对数Reliability 可靠性Reparametrization 重新设置参数Replication 重复Report Summaries 报告摘要Residual sum of square 剩余平方和Resistance 耐抗性Resistant line 耐抗线Resistant technique 耐抗技术R-estimator of location 位置R估计量R-estimator of scale 尺度R估计量Retrospective study 回顾性调查Ridge trace 岭迹Ridit analysis Ridit分析Rotation 旋转Rounding 舍入Row 行Row effects 行效应Row factor 行因素RXC table RXC表Sample 样本Sample regression coefficient 样本回归系数Sample size 样本量Sample standard deviation 样本标准差Sampling error 抽样误差SAS(Statistical analysis system ) SAS统计软件包Scale 尺度/量表Scatter diagram 散点图Schematic plot 示意图/简图Score test 计分检验Screening 筛检SEASON 季节分析Second derivative 二阶导数Second principal component 第二主成分SEM (Structural equation modeling)结构化方程模型Semi-logarithmic graph 半对数图Semi-logarithmic paper 半对数格纸Sensitivity curve 敏感度曲线Sequential analysis 贯序分析Sequential data set 顺序数据集Sequential design 贯序设计Sequential method 贯序法Sequential test 贯序检验法Serial tests 系列试验Short-cut method 简捷法Sigmoid curve S形曲线Sign function 正负号函数Sign test 符号检验Signed rank 符号秩Significance test 显著性检验Significant figure 有效数字Simple cluster sampling 简单整群抽样Simple correlation 简单相关Simple random sampling 简单随机抽样Simple regression 简单回归simple table 简单表Sine estimator 正弦估计量Single—valued estimate 单值估计Singular matrix 奇异矩阵Skewed distribution 偏斜分布Skewness 偏度Slash distribution 斜线分布Slope 斜率Smirnov test 斯米尔诺夫检验Source of variation 变异来源Spearman rank correlation 斯皮尔曼等级相关Specific factor 特殊因子Specific factor variance 特殊因子方差Spectra 频谱Spherical distribution 球型正态分布Spread 展布SPSS(Statistical package for the social science) SPSS统计软件包Spurious correlation 假性相关Square root transformation 平方根变换Stabilizing variance 稳定方差Standard deviation 标准差Standard error 标准误Standard error of difference 差别的标准误Standard error of estimate 标准估计误差Standard error of rate 率的标准误Standard normal distribution 标准正态分布Standardization 标准化Starting value 起始值Statistic 统计量Statistical control 统计控制Statistical graph 统计图Statistical inference 统计推断Statistical table 统计表Steepest descent 最速下降法Stem and leaf display 茎叶图Step factor 步长因子Stepwise regression 逐步回归Storage 存Strata 层(复数)Stratified sampling 分层抽样Stratified sampling 分层抽样Strength 强度Stringency 严密性Structural relationship 结构关系Studentized residual 学生化残差/t化残差Sub—class numbers 次级组含量Subdividing 分割Sufficient statistic 充分统计量Sum of products 积和Sum of squares 离差平方和Sum of squares about regression 回归平方和Sum of squares between groups 组间平方和Sum of squares of partial regression 偏回归平方和Sure event 必然事件Survey 调查Survival 生存分析Survival rate 生存率Suspended root gram 悬吊根图Symmetry 对称Systematic error 系统误差Systematic sampling 系统抽样Tags 标签Tail area 尾部面积Tail length 尾长Tail weight 尾重Tangent line 切线Target distribution 目标分布Taylor series 泰勒级数Tendency of dispersion 离散趋势Testing of hypotheses 假设检验Theoretical frequency 理论频数Time series 时间序列Tolerance interval 容忍区间Tolerance lower limit 容忍下限Tolerance upper limit 容忍上限Torsion 扰率Total sum of square 总平方和Total variation 总变异Transformation 转换Treatment 处理Trend 趋势Trend of percentage 百分比趋势Trial 试验Trial and error method 试错法Tuning constant 细调常数Two sided test 双向检验Two—stage least squares 二阶最小平方Two-stage sampling 二阶段抽样Two-tailed test 双侧检验Two-way analysis of variance 双因素方差分析Two—way table 双向表Type I error 一类错误/α错误Type II error 二类错误/β错误UMVU 方差一致最小无偏估计简称Unbiased estimate 无偏估计Unconstrained nonlinear regression 无约束非线性回归Unequal subclass number 不等次级组含量Ungrouped data 不分组资料Uniform coordinate 均匀坐标Uniform distribution 均匀分布Uniformly minimum variance unbiased estimate 方差一致最小无偏估计Unit 单元Unordered categories 无序分类Upper limit 上限Upward rank 升秩Vague concept 模糊概念Validity 有效性VARCOMP (Variance component estimation) 方差元素估计Variability 变异性Variable 变量Variance 方差Variation 变异Varimax orthogonal rotation 方差最大正交旋转Volume of distribution 容积W test W检验Weibull distribution 威布尔分布Weight 权数Weighted Chi—square test 加权卡方检验/Cochran检验Weighted linear regression method 加权直线回归Weighted mean 加权平均数Weighted mean square 加权平均方差Weighted sum of square 加权平方和Weighting coefficient 权重系数Weighting method 加权法W—estimation W估计量W—estimation of location 位置W估计量Width 宽度Wilcoxon paired test 威斯康星配对法/配对符号秩和检验Wild point 野点/狂点Wild value 野值/狂值Winsorized mean 缩尾均值Withdraw 失访Youden's index 尤登指数Z test Z检验Zero correlation 零相关Z-transformation Z变换。
统计学里面数据均衡问题
统计学里面数据均衡问题Balanced data is crucial in statistics because it ensures that the sample accurately represents the population. When dealing with imbalanced data, the analysis results could be skewed and less reliable. This is especially true in areas such as medical research or credit risk assessment, where accurate predictions are essential for decision-making.数据均衡在统计学中非常重要,因为它确保样本准确地代表了总体。
当处理不平衡的数据时,分析结果可能会出现偏差,不够可靠。
在医学研究或信用风险评估等领域,准确的预测对决策至关重要。
Imbalanced data occurs when one or more classes in the dataset have significantly more or fewer instances compared to other classes. This can lead to biased model performance and misinterpretation of results. In order to address this issue, various techniques have been developed, such as resampling methods, cost-sensitive learning, and ensemble methods.不平衡数据指的是数据集中的一个或多个类别与其他类别相比具有显著较多或较少的实例。
医学统计学 英语
Introduction to Medical StatisticsMedical statistics, also known as biostatistics or health statistics, is a vital field that applies statistical methods to the study of health and medicine. This discipline is crucial for designing research studies, analyzing data, and interpreting results in a meaningful way. It plays an essential role in medical research, clinical trials, epidemiology, and public health.Key Concepts in Medical Statistics:1. Descriptive Statistics:Descriptive statistics summarize and describe the main features of a dataset. In medical statistics, this includes measures such as mean, median, mode, standard deviation, and range. These measures help researchers understand the distribution and central tendencies of their data.2. Inferential Statistics:Inferential statistics are used to make generalizations from a sample to a larger population. This involves hypothesis testing, confidence intervals, and p-values. Techniques such as t-tests, chi-square tests, and ANOVA are commonly used to determine if observed differences are statistically significant.3. Probability:Understanding probability is fundamental to medical statistics. It helps in assessing the likelihood of events occurring, such as the probability of a patient developing a particular condition. Probability distributions, such as the normal distribution, binomial distribution, and Poisson distribution, are often used.4. Regression Analysis:Regression analysis examines the relationship between dependent and independent variables. In medical research, this can be used to explore how various factors, such as age, weight, or treatment type, affect health outcomes. Linear regression, logistic regression, and Cox proportional hazards models are common methods.5. Survival Analysis:Survival analysis focuses on time-to-event data, often used in clinical trials to study the time until a patient experiences an event of interest, such as relapse or death. The Kaplan-Meier estimator and Cox proportional hazards model are key tools in this area.6. Clinical Trials:Clinical trials are research studies performed on patients to evaluate medical, surgical, or behavioral interventions. Medical statistics is essential in designing trials (randomization, blinding), analyzing the results (efficacy, safety), and ensuring that the findings are valid and reliable.7. Epidemiology:Epidemiology is the study of the distribution and determinants of health-related states and events in populations. Medical statistics is used to identify risk factors, track disease outbreaks, and evaluate preventive measures. Measures such as incidence, prevalence, and odds ratios are commonly used.Applications of Medical Statistics:- Drug Development:Medical statistics is crucial in the development and testing of new drugs. It helps in determining the efficacy and safety of new treatments through carefully designed clinical trials.- Public Health:In public health, medical statistics is used to monitor and control diseases, plan and evaluate health services, and inform policy decisions. It helps in understanding the spread of diseases and the effectiveness of interventions.- Medical Research:Researchers rely on statistical methods to analyze data from experiments and observational studies. This includes everything from basic research in laboratories to applied research in clinical settings.- Healthcare Decision Making:Statistical analysis helps healthcare providers make informed decisions based on evidence. This includes diagnostic tests, treatment plans, and resource allocation.Challenges in Medical Statistics:- Data Quality:Ensuring high-quality, accurate, and complete data is essential for reliable statistical analysis.- Ethical Considerations:Handling patient data requires strict adherence to ethical guidelines to protect patient confidentiality and ensure informed consent.- Complexity of Medical Data:Medical data can be complex, with numerous variables and potential confounding factors. Advanced statistical techniques are often needed to address these challenges.In conclusion, medical statistics is a fundamental discipline that supports the entire spectrum of healthcare, from research and development to public health and clinical practice. Its rigorous methods enable the medical community to make data-driven decisions that improve patient outcomes and advance our understanding of health and disease.。
统计学中英文对照表
统计学中英文对照表2008—03—21 11:39Absolutedeviation,绝对离差Absolutenumber,绝对数Absoluteresiduals,绝对残差Accelerationarray,加速度立体阵Accelerationinanarbitrarydirection,任意方向上的加速度Accelerationnormal,法向加速度Accelerationspacedimension,加速度空间的维数Accelerationtangential,切向加速度Accelerationvector,加速度向量Acceptablehypothesis,可接受假设Accumulation,累积Accuracy,准确度Actualfrequency,实际频数Adaptiveestimator,自适应估计量Addition,相加Additiontheorem,加法定理Additivity,可加性Adjustedrate,调整率Adjustedvalue,校正值Admissibleerror,容许误差Aggregation,聚集性Alternativehypothesis,备择假设Amonggroups,组间Amounts,总量Analysisofcorrelation,相关分析Analysisofcovariance,协方差分析Analysisofregression,回归分析Analysisoftimeseries,时间序列分析Analysisofvariance,方差分析Angulartransformation,角转换ANOVA(analysisofvariance),方差分析ANOVAModels,方差分析模型Arcing,弧/弧旋Arcsinetransformation,反正弦变换Areaunderthecurve,曲线面积AREG,评估从一个时间点到下一个时间点回归相关时的误差ARIMA,季节和非季节性单变量模型的极大似然估计Arithmeticgridpaper,算术格纸Arithmeticmean,算术平均数Arrheniusrelation,艾恩尼斯关系Assessingfit,拟合的评估Associativelaws,结合律Asymmetricdistribution,非对称分布Asymptoticbias,渐近偏倚Asymptoticefficiency,渐近效率Asymptoticvariance,渐近方差Attributablerisk,归因危险度Attributedata,属性资料Attribution,属性Autocorrelation,自相关Autocorrelationofresiduals,残差的自相关Average,平均数Averageconfidenceintervallength,平均置信区间长度Averagegrowthrate,平均增长率Barchart,条形图Bargraph,条形图Baseperiod,基期Bayes’theorem,Bayes定理Bell-shapedcurve,钟形曲线Bernoullidistribution,伯努力分布Best-trimestimator,最好切尾估计量Bias,偏性Binarylogisticregression,二元逻辑斯蒂回归Binomialdistribution,二项分布Bisquare,双平方BivariateCorrelate,二变量相关Bivariatenormaldistribution,双变量正态分布Bivariatenormalpopulation,双变量正态总体Biweightinterval,双权区间BiweightM—estimator,双权M估计量Block,区组/配伍组BMDP(Biomedicalcomputerprograms),BMDP统计软件包Boxplots,箱线图/箱尾图Breakdownbound,崩溃界/崩溃点Canonicalcorrelation,典型相关Caption,纵标目Case-controlstudy,病例对照研究Categoricalvariable,分类变量Catenary,悬链线Cauchydistribution,柯西分布Cause—and-effectrelationship,因果关系Cell,单元Censoring,终检Centerofsymmetry,对称中心Centeringandscaling,中心化和定标Centraltendency,集中趋势Centralvalue,中心值CHAID-χ2AutomaticInteractionDetector,卡方自动交互检测Chance,机遇Chanceerror,随机误差Chancevariable,随机变量Characteristicequation,特征方程Characteristicroot,特征根Characteristicvector,特征向量Chebshevcriterionoffit,拟合的切比雪夫准则Chernofffaces,切尔诺夫脸谱图Chi—squaretest,卡方检验/χ2检验Choleskeydecomposition,乔洛斯基分解Circlechart,圆图Classinterval,组距Classmid-value,组中值Classupperlimit,组上限Classifiedvariable,分类变量Clusteranalysis,聚类分析Clustersampling,整群抽样Code,代码Codeddata,编码数据Coding,编码Coefficientofcontingency,列联系数Coefficientofdetermination,决定系数Coefficientofmultiplecorrelation,多重相关系数Coefficientofpartialcorrelation,偏相关系数Coefficientofproduction-momentcorrelation,积差相关系数Coefficientofrankcorrelation,等级相关系数Coefficientofregression,回归系数Coefficientofskewness,偏度系数Coefficientofvariation,变异系数Cohortstudy,队列研究Column,列Columneffect,列效应Columnfactor,列因素Combinationpool,合并Combinativetable,组合表Commonfactor,共性因子Commonregressioncoefficient,公共回归系数Commonvalue,共同值Commonvariance,公共方差Commonvariation,公共变异Communalityvariance,共性方差Comparability,可比性Comparisonofbathes,批比较Comparisonvalue,比较值Compartmen***el,分部模型Compassion,伸缩Complementofanevent,补事件Completeassociation,完全正相关Completedissociation,完全不相关Completestatistics,完备统计量Completelyrandomizeddesign,完全随机化设计Compositeevent,联合事件Compositeevents,复合事件Concavity,凹性Conditionalexpectation,条件期望Conditionallikelihood,条件似然Conditionalprobability,条件概率Conditionallylinear,依条件线性Confidenceinterval,置信区间Confidencelimit,置信限Confidencelowerlimit,置信下限Confidenceupperlimit,置信上限ConfirmatoryFactorAnalysis,验证性因子分析Confirmatoryresearch,证实性实验研究Confoundingfactor,混杂因素Conjoint,联合分析Consistency,相合性Consistencycheck,一致性检验Consistentasymptoticallynormalestimate,相合渐近正态估计Consistentestimate,相合估计Constrainednonlinearregression,受约束非线性回归Constraint,约束Contaminateddistribution,污染分布ContaminatedGausssian,污染高斯分布Contaminatednormaldistribution,污染正态分布Contamination,污染Contaminationmodel,污染模型Contingencytable,列联表Contour,边界线Contributionrate,贡献率Control,对照Controlledexperiments,对照实验Conventionaldepth,常规深度Convolution,卷积Correctedfactor,校正因子Correctedmean,校正均值Correctioncoefficient,校正系数Correctness,正确性Correlationcoefficient,相关系数Correlationindex,相关指数Correspondence,对应Counting,计数Counts,计数/频数Covariance,协方差Covariant,共变CoxRegression,Cox回归Criteriaforfitting,拟合准则Criteriaofleastsquares,最小二乘准则Criticalratio,临界比Criticalregion,拒绝域Criticalvalue,临界值Cross-overdesign,交叉设计Cross—sectionanalysis,横断面分析Cross—sectionsurvey,横断面调查Crosstabs,交叉表Cross—tabulationtable,复合表Cuberoot,立方根Cumulativedistributionfunction,分布函数Cumulativeprobability,累计概率Curvature,曲率/弯曲Curvature,曲率Curvefit,曲线拟和Curvefitting,曲线拟合Curvilinearregression,曲线回归Curvilinearrelation,曲线关系Cut-and-trymethod,尝试法Cycle,周期Cyclist,周期性Dtest,D检验Dataacquisition,资料收集Databank,数据库Datacapacity,数据容量Datadeficiencies,数据缺乏Datahandling,数据处理Datamanipulation,数据处理Dataprocessing,数据处理Datareduction,数据缩减Dataset,数据集Datasources,数据来源Datatransformation,数据变换Datavalidity,数据有效性Data—in,数据输入Data-out,数据输出Deadtime,停滞期Degreeoffreedom,自由度Degreeofprecision,精密度Degreeofreliability,可靠性程度Degression,递减Densityfunction,密度函数Densityofdatapoints,数据点的密度Dependentvariable,应变量/依变量/因变量Dependentvariable,因变量Depth,深度Derivativematrix,导数矩阵Derivative—freemethods,无导数方法Design,设计Determinacy,确定性Determinant,行列式Determinant,决定因素Deviation,离差Deviationfromaverage,离均差Diagnosticplot,诊断图Dichotomousvariable,二分变量Differentialequation,微分方程Directstandardization,直接标准化法Discretevariable,离散型变量DISCRIMINANT,判断Discriminantanalysis,判别分析Discriminantcoefficient,判别系数Discriminantfunction,判别值Dispersion,散布/分散度Disproportional,不成比例的Disproportionatesub—classnumbers,不成比例次级组含量Distributionfree,分布无关性/免分布Distributionshape,分布形状Distribution-freemethod,任意分布法Distributivelaws,分配律Disturbance,随机扰动项Doseresponsecurve,剂量反应曲线Doubleblindmethod,双盲法Doubleblindtrial,双盲试验Doubleexponentialdistribution,双指数分布Doublelogarithmic,双对数Downwardrank,降秩Dual—spaceplot,对偶空间图DUD,无导数方法Duncan'snewmultiplerangemethod,新复极差法/Duncan新法Effect,实验效应Eigenvalue,特征值Eigenvector,特征向量Ellipse,椭圆Empiricaldistribution,经验分布Empiricalprobability,经验概率单位Enumerationdata,计数资料Equalsun—classnumber,相等次级组含量Equallylikely,等可能Equivariance,同变性Error,误差/错误Errorofestimate,估计误差ErrortypeI,第一类错误ErrortypeII,第二类错误Es***,被估量Estimatederrormeansquares,估计误差均方Estimatederrorsumofsquares,估计误差平方和Euclideandistance,欧式距离Event,事件Event,事件Exceptionaldatapoint,异常数据点Expectationplane,期望平面Expectationsurface,期望曲面Expectedvalues,期望值Experiment,实验Experimentalsampling,试验抽样Experimentalunit,试验单位Explanatoryvariable,说明变量Exploratorydataanalysis,探索性数据分析ExploreSummarize,探索—摘要Exponentialcurve,指数曲线Exponentialgrowth,指数式增长EXSMOOTH,指数平滑方法Extendedfit,扩充拟合Extraparameter,附加参数Extrapolation,外推法Extremeobservation,末端观测值Extremes,极端值/极值Fdistribution,F分布Ftest,F检验Factor,因素/因子Factoranalysis,因子分析FactorAnalysis,因子分析Factorscore,因子得分Factorial,阶乘Factorialdesign,析因试验设计Falsenegative,假阴性Falsenegativeerror,假阴性错误Familyofdistributions,分布族Familyofestimators,估计量族Fanning,扇面Fatalityrate,病死率Fieldinvestigation,现场调查Fieldsurvey,现场调查Finitepopulation,有限总体Finite—sample,有限样本Firstderivative,一阶导数Firstprincipalcomponent,第一主成分Firstquartile,第一四分位数Fisherinformation,费雪信息量Fittedvalue,拟合值Fittingacurve,曲线拟合Fixedbase,定基Fluctuation,随机起伏Forecast,预测Fourfoldtable,四格表Fourth,四分点Fractionblow,左侧比率Fractionalerror,相对误差Frequency,频率Frequencypolygon,频数多边图Frontierpoint,界限点Functionrelationship,泛函关系Gammadistribution,伽玛分布Gaussincrement,高斯增量Gaussiandistribution,高斯分布/正态分布Gauss—Newtonincrement,高斯—牛顿增量Generalcensus,全面普查GENLOG(Generalizedlinermodels),广义线性模型Geometricmean,几何平均数Gini'smeandifference,基尼均差GLM(Generallinermodels),通用线性模型Goodnessoffit,拟和优度/配合度Gradientofdeterminant,行列式的梯度Graeco-Latinsquare,希腊拉丁方Grandmean,总均值Grosserrors,重大错误Gross—errorsensitivity,大错敏感度Groupaverages,分组平均Groupeddata,分组资料Guessedmean,假定平均数Half—life,半衰期HampelM-estimators,汉佩尔M估计量Happenstance,偶然事件Harmonicmean,调和均数Hazardfunction,风险均数Hazardrate,风险率Heading,标目Heavy—taileddistribution,重尾分布Hessianarray,海森立体阵Heterogeneity,不同质Heterogeneityofvariance,方差不齐Hierarchicalclassification,组内分组Hierarchicalclusteringmethod,系统聚类法High-leveragepoint,高杠杆率点HILOGLINEAR,多维列联表的层次对数线性模型Hinge,折叶点Histogram,直方图Historicalcohortstudy,历史性队列研究Holes,空洞HOMALS,多重响应分析Homogeneityofvariance,方差齐性Homogeneitytest,齐性检验HuberM—estimators,休伯M估计量Hyperbola,双曲线Hypothesistesting,假设检验Hypotheticaluniverse,假设总体Impossibleevent,不可能事件Independence,独立性Independentvariable,自变量Index,指标/指数Indirectstandardization,间接标准化法Individual,个体Inferenceband,推断带Infinitepopulation,无限总体Infinitelygreat,无穷大Infinitelysmall,无穷小Influencecurve,影响曲线Informationcapacity,信息容量Initialcondition,初始条件Initialestimate,初始估计值Initiallevel,最初水平Interaction,交互作用Interactionterms,交互作用项Intercept,截距Interpolation,内插法Interquartilerange,四分位距Intervalestimation,区间估计Intervalsofequalprobability,等概率区间Intrinsiccurvature,固有曲率Invariance,不变性Inversematrix,逆矩阵Inverseprobability,逆概率Inversesinetransformation,反正弦变换Iteration,迭代Jacobiandeterminant,雅可比行列式Jointdistributionfunction,分布函数Jointprobability,联合概率Jointprobabilitydistribution,联合概率分布Kmeansmethod,逐步聚类法Kaplan-Meier,评估事件的时间长度Kaplan-Merierchart,Kaplan—Merier图Kendall'srankcorrelation,Kendall等级相关Kinetic,动力学Kolmogorov—Smirnovetest,柯尔莫哥洛夫-斯米尔诺夫检验KruskalandWallistest,Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis,峰度Lackoffit,失拟Ladderofpowers,幂阶梯Lag,滞后Largesample,大样本Largesampletest,大样本检验Latinsquare,拉丁方Latinsquaredesign,拉丁方设计Leakage,泄漏Leastfavorableconfiguration,最不利构形Leastfavorabledistribution,最不利分布Leastsignificantdifference,最小显著差法Leastsquaremethod,最小二乘法Least-absolute—residualsestimates,最小绝对残差估计Least—absolute—residualsfit,最小绝对残差拟合Least-absolute-residualsline,最小绝对残差线Legend,图例L—estimator,L估计量L—estimatoroflocation,位置L估计量L-estimatorofscale,尺度L估计量Level,水平Lifeexpectance,预期期望寿命Lifetable,寿命表Lifetablemethod,生命表法Light—taileddistribution,轻尾分布Likelihoodfunction,似然函数Likelihoodratio,似然比linegraph,线图Linearcorrelation,直线相关Linearequation,线性方程Linearprogramming,线性规划Linearregression,直线回归LinearRegression,线性回归Lineartrend,线性趋势Loading,载荷Locationandscaleequivariance,位置尺度同变性Locationequivariance,位置同变性Locationinvariance,位置不变性Locationscalefamily,位置尺度族Logranktest,时序检验Logarithmiccurve,对数曲线Logarithmicnormaldistribution,对数正态分布Logarithmicscale,对数尺度Logarithmictransformation,对数变换Logiccheck,逻辑检查Logisticdistribution,逻辑斯特分布Logittransformation,Logit转换LOGLINEAR,多维列联表通用模型Lognormaldistribution,对数正态分布Lostfunction,损失函数Lowcorrelation,低度相关Lowerlimit,下限Lowest-attainedvariance,最小可达方差LSD,最小显著差法的简称Lurkingvariable,潜在变量Main effect,主效应Major heading,主辞标目Marginal density function,边缘密度函数Marginal probability,边缘概率Marginal probability distribution,边缘概率分布Matched data,配对资料Matched distribution,匹配过分布Matching of distribution,分布的匹配Matching of transformation,变换的匹配Mathematical expectation,数学期望Mathematical model,数学模型Maximum L-estimator,极大极小L 估计量Maximum likelihood method,最大似然法Mean,均数Mean squares between groups,组间均方Mean squares within group,组内均方Means (Compare means),均值-均值比较Median,中位数Median effective dose,半数效量Median lethal dose,半数致死量Median polish,中位数平滑Median test,中位数检验Minimal sufficient statistic,最小充分统计量Minimum distance estimation,最小距离估计Minimum effective dose,最小有效量Minimum lethal dose,最小致死量Minimum variance estimator,最小方差估计量MINITAB,统计软件包Minor heading,宾词标目Missing data,缺失值Model specification,模型的确定Modeling Statistics ,模型统计Models for outliers,离群值模型Modifying the model,模型的修正Modulus of continuity,连续性模Morbidity,发病率Most favorable configuration,最有利构形Multidimensional Scaling (ASCAL),多维尺度/多维标度Multinomial Logistic Regression ,多项逻辑斯蒂回归Multiple comparison,多重比较Multiple correlation ,复相关Multiple covariance,多元协方差Multiple linear regression,多元线性回归Multiple response ,多重选项Multiple solutions,多解Multiplication theorem,乘法定理Multiresponse,多元响应Multi-stage sampling,多阶段抽样Multivariate T distribution,多元T分布Mutual exclusive,互不相容Mutual independence,互相独立Natural boundary,自然边界Natural dead,自然死亡Natural zero,自然零Negative correlation,负相关Negative linear correlation,负线性相关Negatively skewed,负偏Newman-Keuls method,q检验NK method,q检验No statistical significance,无统计意义Nominal variable,名义变量Nonconstancy of variability,变异的非定常性Nonlinear regression,非线性相关Nonparametric statistics,非参数统计Nonparametric test,非参数检验Nonparametric tests,非参数检验Normal deviate,正态离差Normal distribution,正态分布Normal equation,正规方程组Normal ranges,正常范围Normal value,正常值Nuisance parameter,多余参数/讨厌参数Null hypothesis,无效假设Numerical variable,数值变量Objective function,目标函数Observation unit,观察单位Observed value,观察值One sided test,单侧检验One—way analysis of variance,单因素方差分析Oneway ANOVA ,单因素方差分析Open sequential trial,开放型序贯设计Optrim,优切尾Optrim efficiency,优切尾效率Order statistics,顺序统计量Ordered categories,有序分类Ordinal logistic regression ,序数逻辑斯蒂回归Ordinal variable,有序变量Orthogonal basis,正交基Orthogonal design,正交试验设计Orthogonality conditions,正交条件ORTHOPLAN,正交设计Outlier cutoffs,离群值截断点Outliers,极端值OVERALS ,多组变量的非线性正规相关Overshoot,迭代过度Paired design,配对设计Paired sample,配对样本Pairwise slopes,成对斜率Parabola,抛物线Parallel tests,平行试验Parameter,参数Parametric statistics,参数统计Parametric test,参数检验Partial correlation,偏相关Partial regression,偏回归Partial sorting,偏排序Partials residuals,偏残差Pattern,模式Pearson curves,皮尔逊曲线Peeling,退层Percent bar graph,百分条形图Percentage,百分比Percentile,百分位数Percentile curves,百分位曲线Periodicity,周期性Permutation,排列P—estimator,P估计量Pie graph,饼图Pitman estimator,皮特曼估计量Pivot,枢轴量Planar,平坦Planar assumption,平面的假设PLANCARDS,生成试验的计划卡Point estimation,点估计Poisson distribution,泊松分布Polishing,平滑Polled standard deviation,合并标准差Polled variance,合并方差Polygon,多边图Polynomial,多项式Polynomial curve,多项式曲线Population,总体Population attributable risk,人群归因危险度Positive correlation,正相关Positively skewed,正偏Posterior distribution,后验分布Power of a test,检验效能Precision,精密度Predicted value,预测值Preliminary analysis,预备性分析Principal component analysis,主成分分析Prior distribution,先验分布Prior probability,先验概率Probabilistic model,概率模型probability,概率Probability density,概率密度Product moment,乘积矩/协方差Profile trace,截面迹图Proportion,比/构成比Proportion allocation in stratified random sampling,按比例分层随机抽样Proportionate,成比例Proportionate sub-class numbers,成比例次级组含量Prospective study,前瞻性调查Proximities,亲近性Pseudo F test,近似F检验Pseudo model,近似模型Pseudosigma,伪标准差Purposive sampling,有目的抽样QR decomposition,QR分解Quadratic approximation,二次近似Qualitative classification,属性分类Qualitative method,定性方法Quantile-quantile plot,分位数—分位数图/Q-Q图Quantitative analysis,定量分析Quartile,四分位数Quick Cluster,快速聚类Radix sort,基数排序Random allocation,随机化分组Random blocks design,随机区组设计Random event,随机事件Randomization,随机化Range,极差/全距Rank correlation,等级相关Rank sum test,秩和检验Rank test,秩检验Ranked data,等级资料Rate,比率Ratio,比例Raw data,原始资料Raw residual,原始残差Rayleigh’s test,雷氏检验R ayleigh’s Z,雷氏Z值Reciprocal,倒数Reciprocal transformation,倒数变换Recording,记录Redescending estimators,回降估计量Reducing dimensions,降维Re-expression,重新表达Reference set,标准组Region of acceptance,接受域Regression coefficient,回归系数Regression sum of square,回归平方和Rejection point,拒绝点Relative dispersion,相对离散度Relative number,相对数Reliability,可靠性Reparametrization,重新设置参数Replication,重复Report Summaries,报告摘要Residual sum of square,剩余平方和Resistance,耐抗性Resistant line,耐抗线Resistant technique,耐抗技术R-estimator of location,位置R估计量R-estimator of scale,尺度R估计量Retrospective study,回顾性调查Ridge trace,岭迹Ridit analysis,Ridit分析Rotation,旋转Rounding,舍入Row,行Row effects,行效应Row factor,行因素RXC table,RXC表Sample,样本Sample regression coefficient,样本回归系数Sample size,样本量Sample standard deviation,样本标准差Sampling error,抽样误差SAS(Statistical analysis system ),SAS统计软件包Scale,尺度/量表Scatter diagram,散点图Schematic plot,示意图/简图Score test,计分检验Screening,筛检SEASON,季节分析Second derivative,二阶导数Second principal component,第二主成分SEM (Structural equation modeling),结构化方程模型Semi-logarithmic graph,半对数图Semi-logarithmic paper,半对数格纸Sensitivity curve,敏感度曲线Sequential analysis,贯序分析Sequential data set,顺序数据集Sequential design,贯序设计Sequential method,贯序法Sequential test,贯序检验法Serial tests,系列试验Short-cut method,简捷法Sigmoid curve,S形曲线Sign function,正负号函数Sign test,符号检验Signed rank,符号秩Significance test,显著性检验Significant figure,有效数字Simple cluster sampling,简单整群抽样Simple correlation,简单相关Simple random sampling,简单随机抽样Simple regression,简单回归simple table,简单表Sine estimator,正弦。
计量经济学名词
计量经济学名词A校正R2〔Adjusted R-Squared〕:多元回归剖析中拟合优度的量度,在估量误差的方差时对添加的解释变量用一个自在度来调整。
统一假定〔Alternative Hypothesis〕:检验虚拟假定时的相对假定。
AR〔1〕序列相关〔AR(1) Serial Correlation〕:时间序列回归模型中的误差遵照AR〔1〕模型。
渐近置信区间〔Asymptotic Confidence Interval〕:大样本容量下近似成立的置信区间。
渐近正态性〔Asymptotic Normality〕:适当正态化后样本散布收敛到规范正态散布的估量量。
渐近性质〔Asymptotic Properties〕:当样本容量有限增长时适用的估量量和检验统计量性质。
渐近规范误〔Asymptotic Standard Error〕:大样本下失效的规范误。
渐近t 统计量〔Asymptotic t Statistic〕:大样本下近似听从规范正态散布的t 统计量。
渐近方差〔Asymptotic Variance〕:为了取得渐近规范正态散布,我们必需用以除估量量的平方值。
渐近有效〔Asymptotically Efficient〕:关于听从渐近正态散布的分歧性估量量,有最小渐近方差的估量量。
渐近不相关〔Asymptotically Uncorrelated〕:时间序列进程中,随着两个时点上的随机变量的时间距离添加,它们之间的相关趋于零。
衰减偏误〔Attenuation Bias〕:总是朝向零的估量量偏误,因此有衰减偏误的估量量的希冀值小于参数的相对值。
自回归条件异方差性〔Autoregressive Conditional Heteroskedasticity, ARCH〕:静态异方差性模型,即给定过去信息,误差项的方差线性依赖于过去的误差的平方。
一阶自回归进程[AR〔1〕]〔Autoregressive Process of Order One [AR(1)]〕:一个时间序列模型,其以后值线性依赖于最近的值加上一个无法预测的扰动。
stata卡方统计量
stata卡方统计量英文回答:The chi-square statistic is a commonly used measure in statistics to determine if there is a significant association between two categorical variables. It is particularly useful when analyzing data from a contingency table, which displays the frequency distribution of two variables.To calculate the chi-square statistic, we start by setting up the null hypothesis, which states that there is no association between the variables. We then calculate the expected frequencies for each cell in the contingency table under the assumption of independence. The expected frequency for a cell is calculated by multiplying the row total and column total for that cell and dividing by the total sample size.Once we have the expected frequencies, we can calculatethe chi-square statistic by summing the squared differences between the observed and expected frequencies for each cell, and dividing by the expected frequency. This process is repeated for all cells in the contingency table. The resulting chi-square statistic follows a chi-square distribution with degrees of freedom equal to (number of rows 1) multiplied by (number of columns 1).To determine if the association between the variablesis statistically significant, we compare the calculatedchi-square statistic to the critical value from the chi-square distribution at a given significance level. If the calculated chi-square statistic is greater than thecritical value, we reject the null hypothesis and conclude that there is a significant association between the variables.For example, let's say we want to determine if there is an association between gender (male or female) and smoking status (smoker or non-smoker). We collect data from a sample of individuals and create a contingency table. We then calculate the expected frequencies and the chi-squarestatistic. If the calculated chi-square statistic isgreater than the critical value at a 5% significance level, we can conclude that there is a significant association between gender and smoking status.中文回答:卡方统计量是统计学中常用的一种度量,用于确定两个分类变量之间是否存在显著关联。
A Critical Review Evaluating the Effectiveness of
US-China Foreign Language, January 2019, Vol. 17, No. 1, 43-47doi:10.17265/1539-8080/2019.01.006 A Critical Review: Evaluating the Effectiveness of ExplicitInstruction on Implicit and Explicit L2 KnowledgeSami Sulaiman AlsalmiSchool of education, University of Bristol, Bristol, United KingdomThis review discusses Akakura’s research study, entitled “valuating the Effectiveness of Explicit Instruction onImplicit and Explicit L2 Knowledge”. The argument presented here will be developed by means of a critique ofAkakura’s study, in turn addressing a summary of the study with the focus placed on the method and statisticaltechniques, as well as the evaluation of the study. Some explanations will be added to the summary of study tomake some points more obvious, specifically those that do not receive enough description in the study. In addition,given that the study is rather broad and includes many situations that are worthy of discussion but that they cannotbe covered in a paper, the evaluation will be narrowed down to concentrate on two aspects of the study: measuresof implicit knowledge and explicit instructions (treatment stage).Keywords: explicit instruction, implicit knowledge, explicit knowledgeSummary of the StudyAkakura’s (2012) study sought to explore to what extent explicit instruction can develop second-languagelearners’ implicit and explicit knowledge of English articles. Explicit instruction is concerned with “developing a metalinguistic awareness of the target rule” (Ellis, 2009, p. 54). That is, learners are provided with the instruction of the target grammatical rules. Implicit knowledge refers to the procedures comprising “knowledge which can be easily and rapidly accessed in unplanned language use. In contrast, explicit knowledge exists as a declarative fact that can only be accessed through the application of attentional processes” (Ellis, 2009, p. 12). The study claims that research has not enough discussed which measures can best test the spontaneous status of the implicit grammatical knowledge.The study employs a quasi-experimental design with a pretest/posttest and delayed test model entailing two groups: experimental (N = 49) and the control group (N = 45). In each testing stage, participants were exposed to four measures: elicited imitation task, oral production task (for implicit knowledge), grammaticality judgement task, and metalinguistic knowledge task (for explicit knowledge). A pretest was run first for the two groups, and then the experimental group was exposed to explicit instruction, using computer-assisted language learning, for one week following the pretest. The form/function mappings of articles were explained to participants, and then the participants were provided with form-focused exercises and quizzes. The posttest was administered after the participants completed article lessons achieved by explicit instruction. The delayed posttest was then completed six weeks after the treatment.Sami Sulaiman Alsalmi, Ph.D. candidate at Bristol University in the UK.All Rights Reserved.EV ALUATING THE EFFECTIVENESS OF EXPLICIT INSTRUCTION44 As indicated above, four instruments were employed to measure the two types of knowledge, and a succinct description of each measure is provided below.Elicited Imitation Task (EIT)This task required a participant to listen to a storey while looking at a sequence of pictures depicting it. Half the recorded storey contained sentences that are incompatible with the pictures and simultaneously included grammatical (N = 10) and ungrammatical (N = 10) articles. Participants were then asked to decide whether or not these sentences match the picture, and to repeat the statement when they heard a bell sound. The inclusion of picture plausibility of the storey is to ensure that a participant’s attention is on meaning and not form. The study does not describe the overall goal of this task. According to literature in the field of implicit knowledge acquisition, the underlying assumption of this task is that if a participant could repeat the statement under time constrains and orally correct the ungrammatical articles spontaneously, it would imply that the participant had internalized the target articles.Oral Production Task (OPT)In this task, participants were required to narrate the identical storey that they had been exposed to in ELT but in their own words. It was hypothesized by the authors that that using the identical pictures could minimize cognitive load during performance and raise the possibility of language complexity. Participants, furthermore, were required to think that their audiences were children. The authors hypothesized that this technique can reduce the likelihood of reliance on hearer knowledge and hence the definite article was excessively used. Grammaticality Judgement Task (GJT)Participants in this task were asked to grammatically judge the underlined portions of sentences. Thejudgement scale was created as a confidence measure requiring coding such as: 1) correct, 2) probably correct,3) probably incorrect, and 4) incorrect. Although such a task allows a participant to process the sentence for its form, time-constraint is hypothesized to stimulate a participant to access implicit knowledge. That is, the likelihood of the participant re-examining and monitoring the response is heavily reduced and that of intuitive linguistic judgement is raised, indicating a high degree of automaticity of the implicit knowledge.Metalinguistic Knowledge Task (MKT)Participants were required to correct 10 sentences and each sentence included an article error that was underlined (N = 10). Next, participants were required to give written explanations for the ungrammatical articles (N = 5). Participants were provided unlimited time to complete the task, and conducted two practice items prior to commencing. Responses were scored as either correct (1 point) or incorrect (0 points).As has already been described, the participants of experimental and control groups were exposed to each measure three times (pretest, posttest, and delayed test). To find out if the explicit instruction exerted an influence on implicit and explicit knowledge, the mean of the observed data in each measure was calculated to explore the extent to which the mean of (ex. EIT) in the pretest was statistically different from the posttest and delayed test and different between the two groups. A statistical test in this case should be employed to test the strength of mean differences between the three testing stages within one group and between the two groups. One-way ANOVA, thus, was the appropriate technique to employ in this case.The study provided a detailed and complex description of statistical data; for instance, the observed data of each measure in each group (experimental and control) was divided into four sections: non-generic articles,All Rights Reserved.EV ALUATING THE EFFECTIVENESS OF EXPLICIT INSTRUCTION 45generic articles, grammatical articles, and ungrammatical articles. Descriptive statistics were also calculated for each section. The author has sought to reorganize part of the observed data of one measure in a way that gives a patent representative sample of the results.Table 1Elicited Imitation Task (Sample)20 articlesExperimental group Control groupM SD N D M SD NPretest 10.29 3.202 49 -0.20 10.96 3.567 45Posttest 13.80 2.993 49 0.79 11.14 3.690 45Delayed test 14.98 3.058 49 1.37 10.64 3.276 45The output presented above shows that the scores generally increased over both posttest and delayed test in the Experimental Group, which outperformed the control group. ANOVA was computed to test the meandifferences of the three testing stages of the elicited imitation task between the two groups. A statisticaldifference was found in the posttest (F(1,92) = 14.866, p = 0.000) with an increase in the delayed test (F(1,92)= 44.023, p = 0.000). The results elucidated, based on the measure “EIT”, that implicit knowledge can bepromoted by explicit instruction.ANOVA was also computed for the other tasks and revealed that there is no significant difference between groups in the posttest of OPT (F(1,92) = 1.609, p = 0.208), but there was a significant difference in the delayedtask (F(1,92) = 5.161, p = 0.025). It also offered no significant difference between the groups in the posttest ofGJT (F(1,92) = 3.496, p = 0.065). However, it revealed a significant difference in the delayed test (F(1,92) =4.457, p = 0.037). Finally, ANOVA showed a significant difference between the groups in the posttest of MKT(F(1,92) = 28.787, p = 0.000). This was sustained in the delayed test (F(1,92) = 27.344, p = 0.000). (Instatistics, a p-value can never be exactly zero, but the zero here was reported based on SPSS output.) The overall findings suggest that implicit and explicit knowledge can be developed as a result of explicit instruction. In addition, the study demonstrated that the measures of implicit and explicit grammaticalknowledge can be reasonably separate. The two measures of implicit knowledge required time constraints and afocus placed on the meaning. The other measures of explicit knowledge did not entail time pressure and a focusplaced on form (greater discussion will be presented under “critique of the study”).Critique of the StudyAs suggested in the introduction, the author is going to present a concise critical discussion of measures of implicit knowledge and explicit instruction. The former was selected because one of the biggest challenges inpsycholinguistics-based research is how best to assess the spontaneous level of acquired language (implicitknowledge). The latter was chosen because it is the independent variable upon which the change in thedependent variables (explicit and implicit knowledge) occurs.Measuring implicit knowledge entails more cautious treatment to ensure that it accurately assesses the unconscious status of specific acquired structures, unlike explicit knowledge. Historically, oral production taskhas been employed to measure implicit knowledge, and although it supplies an amount of natural speech, itlacks the accurate elicitation of the spontaneous use of a specific language structure (Ellis, 2009). Putdifferently, it might give the learner a chance to use his/her explicit knowledge (to plan and monitor their All Rights Reserved.EV ALUATING THE EFFECTIVENESS OF EXPLICIT INSTRUCTION46 responses) rather than to test the spontaneous, contextualized use of a specific structure. This appears in Akakura’s study, where the oral production task reflected the difficulty of generating the specific articles. Thus, we find that the impact of explicit instruction was evident only in the delayed test, although the effect was supposed to appear in the posttest.The elicited imitation test task has been later developed (more description of this task is provided under The Summary of the Study), but some threats have appeared that might potentially affect the validity level of the EIT. Studies have revealed that an L2 learner’s attention could be turned to the form of the sentence rather than the meaning. Other studies have also elucidated that L2 learners imitate the stimulus statement by rote (Erlam, Loewen, & Philp, 2009); they repeat the statement verbatim without understanding the stimulus sentence. Akakura’s (2012) research study could achieve a pioneering success in enhancing the control of these two limitations to provide a higher level of validity. The picture plausibility is employed in the task to make a participant’s attention focus on meaning rather than on form. In addition, it provides a chance for delaying repetition so that participants do not repeat the sentence verbatim. In Rebuschat and William’s (2012) study, semi-artificial grammar is used and participants are required to listen to statements on an item-by-item basis, to judge the plausibility of the semantics of the stimulus statement, and then to repeat the statement. In Erlam, Loewen, and Philp’s (2009) study, the statements are designed to enable the subjects to decide whether they agree with, disagree with, or do not comprehend a statement. However, a storey-based elicited imitation test had not been previously employed to measure implicit knowledge, and it is considered, to my knowledge, that its first use was in the Akakura (2012) study.When a deeper scrutiny is applied to measures of implicit knowledge, we explore that the EIT includes a choice that can increase the level of internal validity, such as the choice not sure (if the sentence fits with thepicture). This is because, if some participants guessed the option correctly more by luck than by judgement, it isexpected that they would not correctly guess during the posttest or delayed-test phase, and then that they would obtain a low score. This threat, statistically, implies that the scores in the distribution regress to the mean as a result of guesswork, not of the explicit instruction itself (Gravetter & Forzano, 2011).The oral production test, as indicated above, might fail to bolster the rigour of the measure of implicit knowledge, and, additionally, it could be influenced by the tutors’ personal prejudices, resulting in a low level of reliability. For instance, some tutors might lose control or their confidence when they are assessing enormous amounts of free natural speech, and, accordingly, they might be inclined to give participants scores in the middle range to ward off severe errors (Morgan, Dunn, Parry, & O’Reilly, 2003). The study further failed to provide a patent description of how the oral production test is achieved and how the data are gathered in a numerical pattern.However, at the treatment stage of the study procedure, the study does not exactly elucidate the role of the researcher—for example, regarding who has taught the participants, the researcher himself or another hired tutor. In addition, the treatment stage is confined to only one learning condition. Other learning conditions of explicit instruction are not addressed in the study. Snobul and Schmitt (2013), for instance, employed three learning conditions—enriched input, enhanced input, and decontextualized input—to evaluate under which conditions both adult native speakers and advanced non-native speakers of English acquire collocations. Tagarelli, Mota and Rebuschat (2015) used two conditions: implicit and explicit input. In the implicit learning condition, subjects were aware of neither the underlying goal of the experiment nor the target knowledge that would be learned or tested . The explicit learning condition is similar to the condition employed in Akakura’sAll Rights Reserved.EV ALUATING THE EFFECTIVENESS OF EXPLICIT INSTRUCTION 47(2012) study, where participants were aware of what knowledge they would acquire. The author considers thatthe Akakura (2012) study could be enhanced if more learning conditions were included to determine whichimplicit knowledge and explicit knowledge of English articles might best be developed.In summary, the study succeeded in bolstering control of the limitations of EIT, in clearly describing the instruction process and in employing the appropriate statistical test (ANOVA). Nonetheless, some threats in thestudy need to be reduced by a more careful treatment related to validity and reliability, such as guesswork andan oral production task. Some further directions have been suggested to improve the treatment stage, such asemploying more than one learning condition in the treatment stage.Finally, the method used has many crucial implications, and the most promising one appears to be pedagogy. For instance, when an L2 learner obtains a high score in grammar, this does not imply that the learnerhas externalized the target rule and thus can use it spontaneously and in unplanned language use. Rather, it showshow well a learner might apply the rule in a context in which close analysis of text is involved. Therefore, policymakers in education should be aware of the learning conditions that enhance not only explicit knowledge but alsoimplicit knowledge, which is considered the chief aim of language learning.ReferencesAkakura, M. (2012). Evaluating the effectiveness of explicit instruction on implicit and explicit L2 knowledge. Language Teaching Research, 16(1), 9-37.Ellis, R. (2009). Implicit and explicit knowledge in second language learning, testing and teaching. London: Multilingual Matter.Erlam, R., Loewen, S., & Philp, J. (2009). Form-focused instruction and the acquisition of implicit and explicit knowledge. In R.Ellis (Ed.), Implicit and explicit knowledge in second language learning, testing and teaching (pp. 237-261). Bristol:Multilingual Matters.Gravetter, F., & Forzano, L. A. (2011). Research methods for the behavioral sciences. New York, NY: Cengage Learning.Morgan, C., Dunn, L., Parry, S., & O’Reilly, M. (2003). The student assessment handbook: New directions in traditional and online assessment. New York, NY: Routledge.Rebuschat, P., & Williams, J. N. (2012). Implicit and explicit knowledge in second language acquisition. Applied Psycholinguistics, 33(4), 829-885.Sonbul, S., & Schmitt, N. (2013). Explicit and implicit lexical knowledge: Acquisition of collocations under different input conditions. Language Learning, 63(1), 121-159.Tagarelli, K. M., Mota, M. B., & Rebuschat, P. (2015). Working memory, learning conditions and the acquisition of L2 syntax. In Z. E. Wen, M. B. Mota, & A. McNeill (Eds.), Working Memory in Second Language Acquisition and Processing (pp.224-247). Bristol, UK: Multilingual Matters.All Rights Reserved.。
E9 Statistical Principles for Clinical Trials
INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USEICH H ARMONISED T RIPARTITE G UIDELINES TATISTICAL P RINCIPLES FOR C LINICAL T RIALSE9Current Step 4 versiondated 5 February 1998This Guideline has been developed by the appropriate ICH Expert Working Group and has been subject to consultation by the regulatory parties, in accordance with the ICH Process. At Step 4 of the Process the final draft is recommended for adoption to the regulatory bodies of the European Union, Japan and USA.E9Document HistoryFirst CodificationHistory Date New Codification November 2005 E9 Approval by the Steering Committee under Step 2 and release for public consultation. 16 January 1997 E9Current Step 4 versionE9 Approval by the Steering Committee under Step 4 and recommendation for adoption to the three ICH regulatory bodies. 5 February 1998 E9S TATISTICAL P RINCIPLES FOR C LINICAL T RIALSICH Harmonised Tripartite GuidelineHaving reached Step 4 of the ICH Process at the ICH Steering Committee meeting on 5 February 1998, this guideline is recommended foradoption to the three regulatory parties to ICHTABLE OF CONTENTSI.INTRODUCTION (1)1.1Background and Purpose (1)1.2Scope and Direction (2)II.CONSIDERATIONS FOR OVERALL CLINICAL DEVELOPMENT (3)2.1Trial Context (3)2.1.1Development Plan (3)2.1.2Confirmatory Trial (4)2.1.3Exploratory Trial (4)2.2Scope of Trials (4)2.2.1Population (4)2.2.2Primary and Secondary Variables (5)2.2.3Composite Variables (6)2.2.4Global Assessment Variables (6)2.2.5Multiple Primary Variables (7)2.2.6Surrogate Variables (7)2.2.7 Categorised Variables (7)2.3Design Techniques to Avoid Bias (8)2.3.1Blinding (8)2.3.2Randomisation (9)III.TRIAL DESIGN CONSIDERATIONS (11)3.1Design Configuration (11)3.1.1Parallel Group Design (11)3.1.2Crossover Design (11)3.1.3Factorial Designs (12)3.2Multicentre Trials (12)3.3Type of Comparison (14)3.3.1Trials to Show Superiority (14)3.3.2Trials to Show Equivalence or Non-inferiority (14)3.3.3Trials to Show Dose-response Relationship (16)Statistical Principles for Clinical Trials3.4Group Sequential Designs (16)3.5Sample Size (16)3.6Data Capture and Processing (18)IV.TRIAL CONDUCT CONSIDERATIONS (18)4.1Trial Monitoring and Interim Analysis (18)4.2Changes in Inclusion and Exclusion Criteria (19)4.3Accrual Rates (19)4.4Sample Size Adjustment (19)4.5Interim Analysis and Early Stopping (19)4.6Role of Independent Data Monitoring Committee (IDMC) (21)V.DATA ANALYSIS CONSIDERATIONS (21)5.1Prespecification of the Analysis (21)5.2Analysis Sets (22)5.2.1Full Analysis Set (22)5.2.2Per Protocol Set (23)5.2.3Roles of the Different Analysis Sets (24)5.3Missing Values and Outliers (24)5.4Data Transformation (25)5.5Estimation, Confidence Intervals and Hypothesis Testing (25)5.6Adjustment of Significance and Confidence Levels (26)5.7Subgroups, Interactions and Covariates (26)5.8Integrity of Data and Computer Software Validity (27)VI.EVALUATION OF SAFETY AND TOLERABILITY (27)6.1Scope of Evaluation (27)6.2Choice of Variables and Data Collection (27)6.3Set of Subjects to be Evaluated and Presentation of Data (28)6.4Statistical Evaluation (29)6.5Integrated Summary (29)VII.REPORTING (29)7.1Evaluation and Reporting (29)7.2Summarising the Clinical Database (31)7.2.1Efficacy Data (31)7.2.2 Safety Data (32)GLOSSARY (32)S TATISTICAL P RINCIPLES FOR C LINICAL T RIALSI. INTRODUCTION1.1 Background and PurposeThe efficacy and safety of medicinal products should be demonstrated by clinical trials which follow the guidance in 'Good Clinical Practice: Consolidated Guideline' (ICH E6) adopted by the ICH, 1 May 1996. The role of statistics in clinical trial design and analysis is acknowledged as essential in that ICH guideline. The proliferation of statistical research in the area of clinical trials coupled with the critical role of clinical research in the drug approval process and health care in general necessitate a succinct document on statistical issues related to clinical trials. This guidance is written primarily to attempt to harmonise the principles of statistical methodology applied to clinical trials for marketing applications submitted in Europe, Japan and the United States.As a starting point, this guideline utilised the CPMP (Committee for Proprietary Medicinal Products) Note for Guidance entitled 'Biostatistical Methodology in Clinical Trials in Applications for Marketing Authorisations for Medicinal Products' (December, 1994). It was also influenced by 'Guidelines on the Statistical Analysis of Clinical Studies' (March, 1992) from the Japanese Ministry of Health and Welfare and the U.S. Food and Drug Administration document entitled 'Guideline for the Format and Content of the Clinical and Statistical Sections of a New Drug Application' (July, 1988). Some topics related to statistical principles and methodology are also embedded within other ICH guidelines, particularly those listed below. The specific guidance that contains related text will be identified in various sections of this document.E1A: The Extent of Population Exposure to Assess Clinical SafetyE2A: Clinical Safety Data Management: Definitions and Standards for Expedited ReportingE2B: Clinical Safety Data Management: Data Elements for Transmission of Individual Case Safety ReportsE2C: Clinical Safety Data Management: Periodic Safety Update Reports for Marketed DrugsE3: Structure and Content of Clinical Study ReportsE4: Dose-Response Information to Support Drug RegistrationE5: Ethnic Factors in the Acceptability of Foreign Clinical DataE6: Good Clinical Practice: Consolidated GuidelineE7: Studies in Support of Special Populations: GeriatricsE8: General Considerations for Clinical TrialsE10: Choice of Control Group in Clinical TrialsM1: Standardisation of Medical Terminology for Regulatory PurposesM3: Non-Clinical Safety Studies for the Conduct of Human Clinical Trials for Pharmaceuticals.Statistical Principles for Clinical TrialsThis guidance is intended to give direction to sponsors in the design, conduct, analysis, and evaluation of clinical trials of an investigational product in the context of its overall clinical development. The document will also assist scientific experts charged with preparing application summaries or assessing evidence of efficacy and safety, principally from clinical trials in later phases of development.1.2 Scope and DirectionThe focus of this guidance is on statistical principles. It does not address the use of specific statistical procedures or methods. Specific procedural steps to ensure that principles are implemented properly are the responsibility of the sponsor. Integration of data across clinical trials is discussed, but is not a primary focus of this guidance. Selected principles and procedures related to data management or clinical trial monitoring activities are covered in other ICH guidelines and are not addressed here. This guidance should be of interest to individuals from a broad range of scientific disciplines. However, it is assumed that the actual responsibility for all statistical work associated with clinical trials will lie with an appropriately qualified and experienced statistician, as indicated in ICH E6. The role and responsibility of the trial statistician (see Glossary), in collaboration with other clinical trial professionals, is to ensure that statistical principles are applied appropriately in clinical trials supporting drug development. Thus, the trial statistician should have a combination of education/training and experience sufficient to implement the principles articulated in this guidance.For each clinical trial contributing to a marketing application, all important details of its design and conduct and the principal features of its proposed statistical analysis should be clearly specified in a protocol written before the trial begins. The extent to which the procedures in the protocol are followed and the primary analysis is planned a priori will contribute to the degree of confidence in the final results and conclusions of the trial. The protocol and subsequent amendments should be approved by the responsible personnel, including the trial statistician. The trial statistician should ensure that the protocol and any amendments cover all relevant statistical issues clearly and accurately, using technical terminology as appropriate.The principles outlined in this guidance are primarily relevant to clinical trials conducted in the later phases of development, many of which are confirmatory trials of efficacy. In addition to efficacy, confirmatory trials may have as their primary variable a safety variable (e.g. an adverse event, a clinical laboratory variable or an electrocardiographic measure), a pharmacodynamic or a pharmacokinetic variable (as in a confirmatory bioequivalence trial). Furthermore, some confirmatory findings may be derived from data integrated across trials, and selected principles in this guidance are applicable in this situation. Finally, although the early phases of drug development consist mainly of clinical trials that are exploratory in nature, statistical principles are also relevant to these clinical trials. Hence, the substance of this document should be applied as far as possible to all phases of clinical development. Many of the principles delineated in this guidance deal with minimising bias (see Glossary) and maximising precision. As used in this guidance, the term 'bias' describes the systematic tendency of any factors associated with the design, conduct, analysis and interpretation of the results of clinical trials to make the estimate of a treatment effect (see Glossary) deviate from its true value. It is important to identify potential sources of bias as completely as possible so that attempts to limit such bias may be made. The presence of bias may seriously compromise the ability to draw valid conclusions from clinical trials.Statistical Principles for Clinical Trials Some sources of bias arise from the design of the trial, for example an assignment of treatments such that subjects at lower risk are systematically assigned to one treatment. Other sources of bias arise during the conduct and analysis of a clinical trial. For example, protocol violations and exclusion of subjects from analysis based upon knowledge of subject outcomes are possible sources of bias that may affect the accurate assessment of the treatment effect. Because bias can occur in subtle or unknown ways and its effect is not measurable directly, it is important to evaluate the robustness of the results and primary conclusions of the trial. Robustness is a concept that refers to the sensitivity of the overall conclusions to various limitations of the data, assumptions, and analytic approaches to data analysis. Robustness implies that the treatment effect and primary conclusions of the trial are not substantially affected when analyses are carried out based on alternative assumptions or analytic approaches. The interpretation of statistical measures of uncertainty of the treatment effect and treatment comparisons should involve consideration of the potential contribution of bias to the p-value, confidence interval, or inference.Because the predominant approaches to the design and analysis of clinical trials have been based on frequentist statistical methods, the guidance largely refers to the use of frequentist methods (see Glossary) when discussing hypothesis testing and/or confidence intervals. This should not be taken to imply that other approaches are not appropriate: the use of Bayesian (see Glossary) and other approaches may be considered when the reasons for their use are clear and when the resulting conclusions are sufficiently robust.II. CONSIDERATIONS FOR OVERALL CLINICAL DEVELOPMENT2.1 Trial Context2.1.1 Development PlanThe broad aim of the process of clinical development of a new drug is to find out whether there is a dose range and schedule at which the drug can be shown to be simultaneously safe and effective, to the extent that the risk-benefit relationship is acceptable. The particular subjects who may benefit from the drug, and the specific indications for its use, also need to be defined.Satisfying these broad aims usually requires an ordered programme of clinical trials, each with its own specific objectives (see ICH E8). This should be specified in a clinical plan, or a series of plans, with appropriate decision points and flexibility to allow modification as knowledge accumulates. A marketing application should clearly describe the main content of such plans, and the contribution made by each trial. Interpretation and assessment of the evidence from the total programme of trials involves synthesis of the evidence from the individual trials (see Section 7.2). This is facilitated by ensuring that common standards are adopted for a number of features of the trials such as dictionaries of medical terms, definition and timing of the main measurements, handling of protocol deviations and so on. A statistical summary, overview or meta-analysis (see Glossary) may be informative when medical questions are addressed in more than one trial. Where possible this should be envisaged in the plan so that the relevant trials are clearly identified and any necessary common features of their designs are specified in advance. Other major statistical issues (if any) that are expected to affect a number of trials in a common plan should be addressed in that plan.Statistical Principles for Clinical Trials2.1.2 Confirmatory TrialA confirmatory trial is an adequately controlled trial in which the hypotheses are stated in advance and evaluated. As a rule, confirmatory trials are necessary to provide firm evidence of efficacy or safety. In such trials the key hypothesis of interest follows directly from the trial’s primary objective, is always pre-defined, and is the hypothesis that is subsequently tested when the trial is complete. In a confirmatory trial it is equally important to estimate with due precision the size of the effects attributable to the treatment of interest and to relate these effects to their clinical significance.Confirmatory trials are intended to provide firm evidence in support of claims and hence adherence to protocols and standard operating procedures is particularly important; unavoidable changes should be explained and documented, and their effect examined. A justification of the design of each such trial, and of other important statistical aspects such as the principal features of the planned analysis, should be set out in the protocol. Each trial should address only a limited number of questions.Firm evidence in support of claims requires that the results of the confirmatory trials demonstrate that the investigational product under test has clinical benefits. The confirmatory trials should therefore be sufficient to answer each key clinical question relevant to the efficacy or safety claim clearly and definitively. In addition, it is important that the basis for generalisation (see Glossary) to the intended patient population is understood and explained; this may also influence the number and type (e.g. specialist or general practitioner) of centres and/or trials needed. The results of the confirmatory trial(s) should be robust. In some circumstances the weight of evidence from a single confirmatory trial may be sufficient.2.1.3 Exploratory TrialThe rationale and design of confirmatory trials nearly always rests on earlier clinical work carried out in a series of exploratory studies. Like all clinical trials, these exploratory studies should have clear and precise objectives. However, in contrast to confirmatory trials, their objectives may not always lead to simple tests of pre-defined hypotheses. In addition, exploratory trials may sometimes require a more flexible approach to design so that changes can be made in response to accumulating results. Their analysis may entail data exploration; tests of hypothesis may be carried out, but the choice of hypothesis may be data dependent. Such trials cannot be the basis of the formal proof of efficacy, although they may contribute to the total body of relevant evidence.Any individual trial may have both confirmatory and exploratory aspects. For example, in most confirmatory trials the data are also subjected to exploratory analyses which serve as a basis for explaining or supporting their findings and for suggesting further hypotheses for later research. The protocol should make a clear distinction between the aspects of a trial which will be used for confirmatory proof and the aspects which will provide data for exploratory analysis.2.2 Scope of Trials2.2.1 PopulationIn the earlier phases of drug development the choice of subjects for a clinical trial may be heavily influenced by the wish to maximise the chance of observing specific clinical effects of interest, and hence they may come from a very narrow subgroup of the total patient population for which the drug may eventually be indicated. However by the time the confirmatory trials are undertaken, the subjects in the trials should more closely mirror the target population. Hence, in these trials it is generally helpful toStatistical Principles for Clinical Trials relax the inclusion and exclusion criteria as much as possible within the target population, while maintaining sufficient homogeneity to permit precise estimation of treatment effects. No individual clinical trial can be expected to be totally representative of future users, because of the possible influences of geographical location, the time when it is conducted, the medical practices of the particular investigator(s) and clinics, and so on. However the influence of such factors should be reduced wherever possible, and subsequently discussed during the interpretation of the trial results.2.2.2 Primary and Secondary VariablesThe primary variable (‘target’ variable, primary endpoint) should be the variable capable of providing the most clinically relevant and convincing evidence directly related to the primary objective of the trial. There should generally be only one primary variable. This will usually be an efficacy variable, because the primary objective of most confirmatory trials is to provide strong scientific evidence regarding efficacy. Safety/tolerability may sometimes be the primary variable, and will always be an important consideration. Measurements relating to quality of life and health economics are further potential primary variables. The selection of the primary variable should reflect the accepted norms and standards in the relevant field of research. The use of a reliable and validated variable with which experience has been gained either in earlier studies or in published literature is recommended. There should be sufficient evidence that the primary variable can provide a valid and reliable measure of some clinically relevant and important treatment benefit in the patient population described by the inclusion and exclusion criteria. The primary variable should generally be the one used when estimating the sample size (see section 3.5).In many cases, the approach to assessing subject outcome may not be straightforward and should be carefully defined. For example, it is inadequate to specify mortality as a primary variable without further clarification; mortality may be assessed by comparing proportions alive at fixed points in time, or by comparing overall distributions of survival times over a specified interval. Another common example is a recurring event; the measure of treatment effect may again be a simple dichotomous variable (any occurrence during a specified interval), time to first occurrence, rate of occurrence (events per time units of observation), etc. The assessment of functional status over time in studying treatment for chronic disease presents other challenges in selection of the primary variable. There are many possible approaches, such as comparisons of the assessments done at the beginning and end of the interval of observation, comparisons of slopes calculated from all assessments throughout the interval, comparisons of the proportions of subjects exceeding or declining beyond a specified threshold, or comparisons based on methods for repeated measures data. To avoid multiplicity concerns arising from post hoc definitions, it is critical to specify in the protocol the precise definition of the primary variable as it will be used in the statistical analysis. In addition, the clinical relevance of the specific primary variable selected and the validity of the associated measurement procedures will generally need to be addressed and justified in the protocol.The primary variable should be specified in the protocol, along with the rationale for its selection. Redefinition of the primary variable after unblinding will almost always be unacceptable, since the biases this introduces are difficult to assess. When the clinical effect defined by the primary objective is to be measured in more than one way, the protocol should identify one of the measurements as the primary variable on the basis of clinical relevance, importance, objectivity, and/or other relevant characteristics, whenever such selection is feasible.Statistical Principles for Clinical TrialsSecondary variables are either supportive measurements related to the primary objective or measurements of effects related to the secondary objectives. Their pre-definition in the protocol is also important, as well as an explanation of their relative importance and roles in interpretation of trial results. The number of secondary variables should be limited and should be related to the limited number of questions to be answered in the trial.2.2.3 Composite VariablesIf a single primary variable cannot be selected from multiple measurements associated with the primary objective, another useful strategy is to integrate or combine the multiple measurements into a single or 'composite' variable, using a pre-defined algorithm. Indeed, the primary variable sometimes arises as a combination of multiple clinical measurements (e.g. the rating scales used in arthritis, psychiatric disorders and elsewhere). This approach addresses the multiplicity problem without requiring adjustment to the type I error. The method of combining the multiple measurements should be specified in the protocol, and an interpretation of the resulting scale should be provided in terms of the size of a clinically relevant benefit. When a composite variable is used as a primary variable, the components of this variable may sometimes be analysed separately, where clinically meaningful and validated. When a rating scale is used as a primary variable, it is especially important to address such factors as content validity (see Glossary), inter- and intra-rater reliability (see Glossary) and responsiveness for detecting changes in the severity of disease.2.2.4 Global Assessment VariablesIn some cases, 'global assessment' variables (see Glossary) are developed to measure the overall safety, overall efficacy, and/or overall usefulness of a treatment. This type of variable integrates objective variables and the investigator’s overall impression about the state or change in the state of the subject, and is usually a scale of ordered categorical ratings. Global assessments of overall efficacy are well established in some therapeutic areas, such as neurology and psychiatry.Global assessment variables generally have a subjective component. When a global assessment variable is used as a primary or secondary variable, fuller details of the scale should be included in the protocol with respect to:1) the relevance of the scale to the primary objective of the trial;2) the basis for the validity and reliability of the scale;3) how to utilise the data collected on an individual subject to assign him/her to aunique category of the scale;4) how to assign subjects with missing data to a unique category of the scale, orotherwise evaluate them.If objective variables are considered by the investigator when making a global assessment, then those objective variables should be considered as additional primary, or at least important secondary, variables.Global assessment of usefulness integrates components of both benefit and risk and reflects the decision making process of the treating physician, who must weigh benefit and risk in making product use decisions. A problem with global usefulness variables is that their use could in some cases lead to the result of two products being declared equivalent despite having very different profiles of beneficial and adverse effects. For example, judging the global usefulness of a treatment as equivalent or superior to analternative may mask the fact that it has little or no efficacy but fewer adverse effects. Therefore it is not advisable to use a global usefulness variable as a primary variable. If global usefulness is specified as primary, it is important to consider specific efficacy and safety outcomes separately as additional primary variables.2.2.5 Multiple Primary VariablesIt may sometimes be desirable to use more than one primary variable, each of which (or a subset of which) could be sufficient to cover the range of effects of the therapies. The planned manner of interpretation of this type of evidence should be carefully spelled out. It should be clear whether an impact on any of the variables, some minimum number of them, or all of them, would be considered necessary to achieve the trial objectives. The primary hypothesis or hypotheses and parameters of interest (e.g. mean, percentage, distribution) should be clearly stated with respect to the primary variables identified, and the approach to statistical inference described. The effect on the type I error should be explained because of the potential for multiplicity problems (see Section 5.6); the method of controlling type I error should be given in the protocol. The extent of intercorrelation among the proposed primary variables may be considered in evaluating the impact on type I error. If the purpose of the trial is to demonstrate effects on all of the designated primary variables, then there is no need for adjustment of the type I error, but the impact on type II error and sample size should be carefully considered.2.2.6 Surrogate VariablesWhen direct assessment of the clinical benefit to the subject through observing actual clinical efficacy is not practical, indirect criteria (surrogate variables - see Glossary) may be considered. Commonly accepted surrogate variables are used in a number of indications where they are believed to be reliable predictors of clinical benefit. There are two principal concerns with the introduction of any proposed surrogate variable. First, it may not be a true predictor of the clinical outcome of interest. For example it may measure treatment activity associated with one specific pharmacological mechanism, but may not provide full information on the range of actions and ultimate effects of the treatment, whether positive or negative. There have been many instances where treatments showing a highly positive effect on a proposed surrogate have ultimately been shown to be detrimental to the subjects' clinical outcome; conversely, there are cases of treatments conferring clinical benefit without measurable impact on proposed surrogates. Secondly, proposed surrogate variables may not yield a quantitative measure of clinical benefit that can be weighed directly against adverse effects. Statistical criteria for validating surrogate variables have been proposed but the experience with their use is relatively limited. In practice, the strength of the evidence for surrogacy depends upon (i) the biological plausibility of the relationship, (ii) the demonstration in epidemiological studies of the prognostic value of the surrogate for the clinical outcome and (iii) evidence from clinical trials that treatment effects on the surrogate correspond to effects on the clinical outcome. Relationships between clinical and surrogate variables for one product do not necessarily apply to a product with a different mode of action for treating the same disease.2.2.7 Categorised VariablesDichotomisation or other categorisation of continuous or ordinal variables may sometimes be desirable. Criteria of 'success' and 'response' are common examples of dichotomies which require precise specification in terms of, for example, a minimum percentage improvement (relative to baseline) in a continuous variable, or a ranking categorised as at or above some threshold level (e.g., 'good') on an ordinal rating scale.。
跨文化交际考试英语
I.定义Chapter 1 CultureCulture(from intellectual perspective)从知性角度定义文化:作为整体的人类智力成就的艺术和其余表现Culture(from anthropologic perspective)从人类学角度定义文化:文化有清楚和模糊的行为模式组成,这些模式经过符号获取并流传,这些符号有人类集体的特别成就组成,包含详细的人工制品。
文化的基本中心由传统思想和与其有关的价值观组成。
Culture(from psychological perspective)从心理学角度定义文化:文化是使一个人类集体成员差别于其余人类集体的思想的整体规划。
Culture(from sociological perspective)从社会学角度定义文化:文化是一种可习得的,鉴于集体的认知模式——包含语言与非语言符号,态度,价值观,信仰和非崇奉系统以及行为。
Culture(from intercultural communication perspective)从跨文化社交学角度定义文化:文化是个人和集体在种族发展过程中所获取的知识,经验,崇奉,价值观,行为,态度,阶级,宗教,时间观,角色,空间观和艺术品的会合。
Culture Identity文化身份:以为自己归属于某一文化或民族集体的感觉。
Subculture亚文化:指存在于主流文化中的文化,其区分往常鉴于经济地位,社会阶层,民族,种族或地理地区。
Co-culture共文化——指拥有独到的社交特色,感知特色,价值观,崇奉和行为,差别于其余集体,社团以及主流文化的集体或社团。
Subgroup 亚集体——有关于亚文化和共文化集体,亚集体往惯例模不大,也不一定有文化集体时代相传累积的价值观点和行为模式。
Chapter 2 Communication and Intercultural Communication1.Sender/Source信息发出者/信息源:指传达信息的人2.Message 信息:只惹起信息接受者反响的任何信号。
SPSS统计分析最全中英文对照表
SPSS 专业技术词汇、短语的中英文对照索引%of cases 各类别所占百分比1—tailed 单尾的2 Independent Samples 两个独立样本的检验2 Related Samples 两个相关样本检验2—tailed 双尾的3—D (=dimensional) 三维——〉三维散点图AAbove 高于Absolute 绝对的—->绝对值Add 加,添加Add Cases 合并个案Add cases from.。
. 从……加个案Add Variables 合并变量Add variables from。
从……加变量Adj。
(=adjusted)standardized 调整后的标准化残差Aggregate 汇总—->分类汇总Aggregate Data 对数据进行分类汇总Aggregate Function 汇总函数Aggregate Variable 需要分类汇总的变量Agreement 协议Align 对齐-—〉对齐方式Alignment 对齐——〉对齐方式All 全部,所有的All cases 所有个案All categories equal 所有类别相等All other values 所有其他值All requested variables entered 所要求变量全部引入Alphabetic 按字母顺序的—->按字母顺序列表Alternative 另外的,备选的Analysis by groups is off 分组分析未开启Analyze 分析——>统计分析Analyze all cases, do not create groups 分析全部个案,不建立分组Annotation 注释ANOV A Table ANOV A表ANOV A table and eta (对分组变量)进行单因素方差分析并计算其η值Apply 应用Apply Data Dictionary 应用数据字典Apply Dictionary 应用数据字典Approximately 大约Approximately X%of all cases 从所有个案中随机选择约X%的个案Approximation 近似估计Area 面积Ascend 上升Ascending counts 按频数的升序排列Ascending means 按均值升值排序Ascending values 按变量值的升序排列Assign 指定,分配Assign Rank 1 to 把秩值1 分配给Assume 假定Asymp。
医学常用英语词汇——医用统计学
医学常用英语词汇——医用统计学MEDICAL STATISTICS1.绪论INTRODUCTIONbinary data[ˈbainəri ˈdeitə/ ˈdɑ:tə// ˈbaɪneri ˈdeɪtə/ ˈdætə]二分类资料biostatistics[ˌbaiəustəˈtistiks // ˌbaɪοʊstəˈtɪstɪks] n.生物统计学code[kəud // kοʊd] n.编码count data[kaunt ˈdeitə/ ˈdɑ:tə// kaʊnt ˈdeɪtə/ ˈdætə]计数资料data analysis[ˈdeitə/ ˈdɑ:təəˈnæləsis // ˈdeɪtə/ ˈdætəəˈnælɪsɪs]资料分析data collection[ˈdeitə/ ˈdɑ:təkəˈlekʃn // ˈdeɪtə/ ˈdætəkəˈlekʃən]资料收集data processing[ˈdeitə/ ˈdɑ:təˈprəusesiŋ// ˈdeɪtə/ ˈdætəˈprοʊsesɪŋ/ ˈprɑ:sesɪŋ]资料整理dichotomous data[daiˈkɔtəməs ˈdeitə/ ˈdɑ:tə// daɪˈkɑ:təməs ˈdeɪtə/ ˈdætə]二分类资料homogeneity[ˌhɔməudʒeˈni:əti // ˌhoʊmoʊdʒəˈni:ɪti] n.同质性individual[ˌindiˈvidjuəl / ˌindiˈvidʒuəl // ˌɪndɪˈvɪdjuəl / ˌɪndɪˈvɪdʒuəl] n.个体logical check[ˈlɔdʒikəl tʃek // ˈlɑ:dʒɪkəl tʃek]逻辑检查measurement data[ˈmeʒəmənt ˈdeitə/ ˈdɑ:tə// ˈmeʒəmənt ˈdeɪtə/ ˈdætə]计量资料nominal data[ˈnɔminəl ˈdeitə/ ˈdɑ:tə// ˈnɑ:mɪnəl ˈdeɪtə/ ˈdætə]名义资料ordinal data[ˈɔ:dinəl ˈdeitə/ ˈdɑ:tə// ˈɔ:rdɪnəl ˈdeɪtə/ ˈdætə]等级资料parameter estimation[pəˈræmitəˌestiˈmeiʃən // pəˈræmətɚˌestɪˈmeɪʃən]参数估计qualitative data[ˈkwɔlitətiv ˈdeitə/ ˈdɑ:tə// ˈkwɑ:lɪˌteɪtɪv / ˈkwɑ:ləˌteɪtɪv ˈdeɪtə/ˈdætə]计量资料quantitative data[ˈkwɔntitətiv ˈdeitə/ ˈdɑ:tə// ˈkwɑ:ntəˌteɪtɪv / ˈkwɑ:ntɪˌteɪtɪv ˈdeɪtə/ˈdætə]计数资料random[ˈrændəm // ˈrændɑ:m] n.随机sample[ˈsɑ:mpl // ˈsæmpəl] n.样本sampling[ˈsɑ:mplɪŋ// ˈsæmplɪŋ] n.抽样statistical analysis[stəˈtistikəl əˈnæləsis // stəˈtɪstɪkəl əˈnælɪsɪs]统计分析statistical check[stəˈtistikəl tʃek // stəˈtɪstɪkəl tʃek]统计检查statistical description[stəˈtistikəl disˈkripʃən // stəˈtɪstɪkəl dɪsˈkrɪpʃən]统计描述statistical inference[stəˈtistikəl ˈinfərəns // stəˈtɪstɪkəl ˈɪnfɚəns]统计推断statistics[stəˈtistiks // stəˈtɪstɪks] n.统计学2.实验性研究设计概述DESIGN OF EXPERIMENT STUDY accuracy[ˈækjurəsi // ˈækju:rəsi] n.准确度balance[ˈbæləns // ˈbæləns] n.均衡baseline[ˈbeislain // ˈbeɪsˌlaɪn] n.基线block size[blɔk saiz // blɑ:k saɪz]区组大小composite variable[ˈkɔmpəzit ˈvɛəriəbl // kəmˈpɑ:zɪt ˈverɪəbəl]复合指标exclusion criteria[iksˈklu:ʒən / eksˈklu:ʒən kraiˈtiəriə// eksˈklu:ʒən kraɪˈtɪrɪə]排除标准experiment study[ikˈsperimənt / ekˈsperimənt ˈstʌdi // ekˈsperɪmənt ˈstʌdi]实验性研究experiment unit[ikˈsperimənt / ekˈsperimənt ˈju:nit // ekˈsperɪmənt ˈju:nɪt]实验单位experimental effect[ikˌsperiˈmentl / ekˌsperiˈmentl iˈfekt // ekˌsperɪˈmentl əˈfekt]实验效应inclusion criteria[inˈklu:ʒən kraiˈtiəriə// ɪnˈklu:ʒən kraɪˈtɪrɪə]纳入标准measurement bias[ˈmeʒəmənt ˈbaiəs // ˈmeʒəmənt ˈbaɪəs]测量偏倚outcome[ˈautkʌm // ˈaʊtkʌm] n.结果,结局precision[priˈsiʒən // pri:ˈsɪʒən] n.精确度protocol[ˈprəutəkɔl // ˈprοʊtοʊkɑ:l] n.研究计划;原始记录pseudo-random number[ˈsju:dəu ˈrændəm ˈnʌmbə// ˈsu:dοʊˈrændɑ:m ˈnʌmbɚ]伪随机数random allocation[ˈrændəm ˌæləˈkeiʃən // ˈrændɑ:m ˌæləˈkeɪʃən]随机分组random blocking[ˈrændəm ˈblɔkiŋ// ˈrændɑ:m ˈblɑ:kɪŋ]随机区组random number[ˈrændəm ˈnʌmbə// ˈrændɑ:m ˈnʌmbɚ]随机数random order[ˈrændəm ˈɔ:də// ˈrændɑ:m ˈɔ:rdɚ]实验顺序随机randomization[ˌrændəm(a)iˈzeiʃən // ˌrændɑ:maɪˈzeɪʃən] n.随机化rating scale[ˈreitiŋskeilz // ˈreɪtɪŋskeɪlz]量表reliability[riˌlaiəˈbiləti // ri:ˌlaɪəˈbɪlɪti] n.信度replication[ˌrepliˈkeiʃən // ˌreplɪˈkeɪʃən] n.重复response[riˈspɔns // ri:ˈspɑ:ns] n. & v.应答,反应selection bias[siˈlekʃən ˈbaiəs // səˈlekʃən ˈbaɪəs]选择偏倚sensitivity[ˌsensiˈtivəti / ˌsensiˈtiviti // ˌsensɪˈtɪvɪti] n.灵敏度specificity[ˌspesiˈfisiti / ˌspesiˈfisəti // ˌspesɪˈfɪsɪti] n.特异度stratified randomization[ˈstrætifaid ˌrændəm(a)iˈzeiʃən // ˈstrætɪˌfaɪd ˌrændɑ:maɪˈzeiʃən]分层随机化study factor[ˈstʌdi ˈfæktə// ˈstʌdi ˈfæktɚ]处理因素subject[ˈsʌbdʒikt // ˈsʌbdʒəkt] n.实验对象uniform distribution[ˈju:nifɔ:m ˌdistriˈbju:ʃən // ˈju:nɪfɔ:rm ˌdɪstrɪˈbju:ʃən]均匀分布validity[vəˈlidəti // vəˈlɪdɪtɪ] n.效度3.观察性研究设计概述DESIGN OF OBSERVATIONAL STUDY acceptability[əkˌseptəˈbiliti // əkˌseptəˈbɪlɪti] n.可接受性census[ˈsensəs // ˈsensəs] n.普查cohort study[ˈkəuhɔ:t ˈstʌdi // ˈkoʊhɔ:rt ˈstʌdi]队列研究cross-sectional study[krɔs ˈsekʃənəl ˈstʌdi // krɑ:s ˈsekʃənəl ˈstʌdi]横断面研究differentiation[ˌdifərenʃiˈeiʃən // ˌdɪfɚˌenʃi:ˈeɪʃən] n.区分度disease surveillance[diˈzi:z sə:ˈveiləns // dɪˈzi:z sɚˈveɪləns]疾病监测ecological study[ˌekəˈlɔdʒikəl ˈstʌdi // ˌekəˈlɑ:dʒɪkəl ˈstʌdi]生态学研究multi-stage sampling[ˌmʌltiˈsteidʒˈsɑ:mpliŋ// ˌmʌltɪˈsteɪdʒˈsæmplɪŋ]多阶段抽样non-proportional allocation[ˌnɔnprəˈpɔ:ʃənəl ˌæləˈkeiʃən // ˌnɑ:nprəˈpɔ:rʃənəl ˌæləˈkeɪʃən]非等比例分配overall survey[əuvəˈrɔ:l sə:ˈvei // οʊvɚˈɔ:l sɜ:rˈvei]全面调查proportional allocation[prəˈpɔ:ʃənəl ˌæləˈkeiʃən // prəˈpɔ:rʃənəl ˌæləˈkeɪʃən]等比例分配prospective survey[prəˈspektiv sə:ˈvei // prəˈspektɪv sɜ:rˈvei]前瞻性调查questionnaire[kwestʃəˈnɛə// kwestʃəˈner] n.问卷sampling frame[ˈsɑ:mpliŋfreim // ˈsæmplɪŋfreɪm]抽样框架sampling frame list[ˈsɑ:mpliŋfreim list // ˈsæmplɪŋfreɪm lɪst]抽样框架清单stratified sampling[ˈstrætifaid ˈsɑ:mpliŋ// ˈstrætɪˌfaɪd ˈsæmplɪŋ]分层抽样4.统计描述STATISTICAL DESCRIPTIONactive life expectancy life[ˈæktiv laif ikˈspektənsi laif // ˈæktɪv laɪf ekˈspektənsi laɪf]活动期望寿命age structure[eidʒˈstrʌktʃə// eɪdʒˈstrʌktʃɚ]年龄构成age-specific death rate[ˈeidʒspiˈsifik / spəˈsifik deθreit // ˈeɪdʒspəˈsɪfɪk deθreɪt]年龄别死亡率age-specific fertility rate[ˈeidʒspiˈsifik / spəˈsifik fəˈtiləti reit // ˈeɪdʒspəˈsɪfɪk fɚˈtɪlɪtireɪt]年龄别生育率average life[ˈævəridʒlaif // ˈævɚɪdʒ/ ˈævɚədʒlaɪf]平均寿命average speed of development[ˈævəridʒspi:d diˈveləpmənt // ˈævɚɪdʒ/ ˈævɚədʒspi:d dɪˈveləpmənt]平均发展速度average speed of increase[ˈævəridʒspi:d ˈinkri:s // ˈævɚɪdʒ/ ˈævɚədʒspi:d ˈɪnkri:s]平均增长速度bar chart[bɑ: tʃɑ:t // bɑ:r tʃɑ:rt]条图box plot[bɔks plɔt // bɑ:ks plɑ:t]箱图cause-specific death rate, CSDR[kɔ:z spiˈsifik / spəˈsifik deθreit // kɔ:z spəˈsɪfɪk deθreɪt]死因别死亡率central tendency[ˈsentrəl ˈtendənsi // ˈsentrəl ˈtendənsi]集中趋势child mortality rate, CMR[tʃaild mɔ:ˈtæləti / mɔ:ˈtæliti reit // tʃaɪld mɔ:rˈtælɪti reɪt]儿童死亡率coefficient of child dependency ratio[ˌkəuiˈfiʃənt tʃaild diˈpendənsi ˈreiʃiəu //ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃənt tʃaɪld di:ˈpendənsi ˈreɪʃi:οʊ]少儿负担系数coefficient of child ratio[ˌkəuiˈfiʃənt tʃaild ˈreiʃiəu // ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃənt tʃaɪldˈreɪʃi:οʊ]少儿人口系数coefficient of gross dependency ratio[ˌkəuiˈfiʃənt ɡrəus diˈpendənsi ˈreiʃiəu //ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃənt ɡrοʊs di:ˈpendənsi ˈreɪʃi:οʊ]总负担系数coefficient of older dependency ratio[ˌkəuiˈfiʃənt ˈəuldədiˈpendənsi ˈreiʃiəu //ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃənt ˈοʊldɚdi:ˈpendənsi ˈreɪʃi:οʊ]老年负担系数coefficient of older ratio[ˌkəuiˈfiʃənt ˈəuldəˈreiʃiəu // ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃənt ˈοʊldɚˈreɪʃi:οʊ]老年人口系数composition of population[ˌkɔmpəˈziʃən ˌpɔpjuˈleiʃən // ˌkɑ:mpəˈzɪʃən ˌpɑ:pju:ˈleɪʃən]人口构成contraceptive prevalence[ˌkɔntrəˈseptiv ˈprevələns // ˌkɑ:ntrəˈseptɪv ˈprevələns]避孕现用率crude birth rate[kru:d bə:θreit // kru:d bɜ:rθreɪt]粗出生率cumulative frequence[ˈkju:mjulətiv ˈfri:kwəns // ˈkju:mju:lətɪv ˈfri:kwəns]累计频数cumulative quantity of increase[ˈkju:mjulətiv ˈkwɔntiti ˈinkri:s // ˈkju:mju:lətɪvˈkwɑ:ntɪti ˈɪnkri:s]累计增长量death population[deθˌpɔpjuˈleiʃən // deθˌpɑ:pju:ˈleɪʃən]人口死亡demography[diˈmɔɡrəfi // dɪˈmɑ:ɡrəfi] n.人口统计学disability adjusted life years[ˌdisəˈbiliti əˈdʒʌstid laif jiəz // ˌdɪsəˈbɪlɪti əˈdʒʌstɪd laɪf jɪrz]残疾调整生命年amily planning rate[ˈfæmili ˈplæniŋreit // ˈfæmɪli ˈplænɪŋreɪt]计划生育率frequency distribution table[ˈfri:kwənsi ˌdistriˈbju:ʃən ˈteibl // ˈfri:kwənsi ˌdɪstrɪˈbju:ʃənˈteɪbl]频数分布表general fertility rate[ˈdʒenərəl fəˈtiləti reit // ˈdʒenɚəl fɚˈtɪlɪti reɪt]总生育率histogram[ˈhistəɡræm // ˈhɪstοʊɡræm] n.直方图incidence rate[ˈinsidəns reit // ˈɪnsɪdəns reɪt]发病率induce abortion rate[inˈdju:s əˈbɔ:ʃən reit // ɪnˈdu:s əˈbɔ:rʃən reɪt]人工流产率infant mortality rate, IMR[ˈinfənt mɔ:ˈtæləti / mɔ:ˈtæliti reit // ˈɪnfənt mɔ:rˈtælɪti reɪt]婴儿死亡率left-skewed distribution[left ˈskju:d ˌdistriˈbju:ʃən // left ˈskju:d ˌdɪstrɪˈbju:ʃən]左偏态分布life expectancy free of disability[laif ikˈspektənsi fri: ˌdisəˈbiliti // laɪf ekˈspektənsi friˌdɪsəˈbɪlɪti]无残疾期望寿命life-time fertility rate[laif taim fəˈtiləti reit // laɪf taɪm fɚˈtɪlɪti reɪt]终生生育率maternal mortality rate, MMR[məˈtə:nəl mɔ:ˈtæləti / mɔ:ˈtæliti reit // məˈtɜ:rnəl mɔ:rˈtælɪti reɪt]孕产死亡率measures of location[ˈmeʒəz ləuˈkeiʃən // ˈmeʒɚz lοʊˈkeɪʃən]位置度量指标measures of variation[ˈmeʒəz ˌvεəriˈeiʃən // ˈmeʒɚz ˌverɪˈeɪʃən]变异度量指标medical demography[ˈmedikəl diˈmɔɡrəfi // ˈmedɪkəl dɪˈmɑ:ɡrəfi]医学人口统计学morbidity statistics[mɔ:ˈbidəti / mɔ:ˈbiditi stəˈtistiks // mɔ:rˈbɪdɪti stəˈtɪstɪks]疾病统计natural increase rate[ˈnætʃrəl ˈinkri:s reit // ˈnætʃrəl ˈɪnkri:s reɪt]自然增长率negative-skewed distribution[ˈneɡətiv ˈskju:d ˌdistriˈbju:ʃən // ˈneɡətɪv ˈskju:d ˌdɪstrɪˈbju:ʃən]负偏态分布neonatal mortality rate, NMR[ˌni(:)əuˈneitəl mɔ:ˈtæləti / mɔ:ˈtæliti reit // ˌni:οʊˈneɪtəlmɔ:rˈtælɪti reɪt]新生儿死亡率odds ratio[ɔdz ˈreiʃiəu // ɑ:dz ˈreɪʃi:οʊ]优势比,比值比percent[pəˈsent // pɜ:rˈsent] n.百分数percent bar chart[pəˈsent bɑ: tʃɑ:t // pɜ:rˈsent bɑ:r tʃɑ:rt]百分条图percentile[pəˈsentail // pɚˈsentaɪl] n.百分位数perinatal mortality rate, PMR[ˌperiˈneitl mɔ:ˈtæləti / mɔ:ˈtæliti reit // ˌperɪˈneɪtəl mɔ:rˈtælɪti reɪt]围产儿死亡率pie chart[pai tʃɑ:t // paɪtʃɑ:rt]圆形图population life[ˌpɔpjuˈleiʃən laif // ˌpɑ:pju:ˈleɪʃən laɪf]人口寿命population size[ˌpɔpjuˈleiʃən saiz // ˌpɑ:pju:ˈleɪʃən saɪz]人口总数positive-skewed distribution[ˈpɔzətiv / ˈpɔzitiv ˈskju:d ˌdistriˈbju:ʃən // ˈpɑ:zɪtɪv ˈskju:dˌdɪstrɪˈbju:ʃən]正偏态分布potential years of life lost[pə(u)ˈtenʃəl jə:z / jiəz laif lɔst // pοʊˈtenʃəl jɪrz laɪf lɔst]潜在寿命损失年prevalence rate[ˈprevələns reit // ˈprevələns reɪt]患病率prevalence rate of deformity[ˈprevələns reit diˈfɔ:məti // ˈprevələns reɪt di:ˈfɔ:rmɪti]残疾患病率proportion of incidence[prəˈpɔ:ʃən ˈinsidəns // prəˈpɔ:rʃən ˈɪnsɪdəns]疾病构成比proportion of mortality rate, PMR[prəˈpɔ:ʃən mɔ:ˈtæləti / mɔ:ˈtælɪti reit //prəˈpɔ:rʃənmɔ:rˈtælɪti reɪt]死因构成比quantity of increase[ˈkwɔntiti ˈinkri:s // ˈkwɑ:ntɪti ˈɪnkri:s]增长量quartile range[ˈkwɔ:tail reindʒ// ˈkwɔ:rtaɪl reɪndʒ]四分位间距rank of cause-specific death rate[ræŋk kɔ:z spiˈsifik / spəˈsifik deθreit // ræŋk kɔ:zspəˈsɪfɪk deθreɪt]死因顺序ratio of older to child[ˈreiʃiəu ˈəuldətʃaild // ˈreɪʃi:οʊˈοʊldɚtʃaɪld]老少比record of population[ˈrekɔ:d ˌpɔpjuˈleiʃən // ˈrekɔ:rd ˌpɑ:pju:ˈleɪʃən]人口登记relative risk[ˈrelətiv risk // ˈrelətɪv rɪsk]相对危险度report of disease[riˈpɔ:t diˈzi:z // rɪˈpɔ:rt dɪˈzi:z]疾病报告right-skewed distribution[rait ˈskju:d ˌdistriˈbju:ʃən // raɪt ˈskju:d ˌdɪstrɪˈbju:ʃən]右偏态分布scatter plot[ˈskætəplɔt // ˈskætɚplɑ:t]散点图sex ratio[seks ˈreiʃiəu // seks ˈreɪʃi:οʊ]性别比skewed distribution[ˈskju:d ˌdistriˈbju:ʃən // ˈskju:d ˌdɪstrɪˈbju:ʃən]偏态分布speed of increase[spi:d ˈinkri:s // spi:d ˈɪnkri:s]增长速度statistical chart[stəˈtistikəl tʃɑ:t // stəˈtɪstɪkəl tʃɑ:rt]统计图survey of population[sə:ˈvei ˌpɔpjuˈleiʃən // sɜ:rˈvei ˌpɑ:pju:ˈleɪʃən]人口抽样调查symmetric distribution[siˈmetrik ˌdistriˈbju:ʃən // sɪˈmetrɪk ˌdɪstrɪˈbju:ʃən]对称分布underestimate[ˌʌndəˈestimeit // ˌʌndɚˈestɪmeɪt] v.低估5.概率分布PROBABILITY DISTRIBUTIONbinomial distribution[baiˈnəumjəl ˌdistriˈbju:ʃən // baɪˈnοʊmiəl ˌdɪstrɪˈbju:ʃən]二项分布chi-square distribution[skwɛəˌdistriˈbju:ʃən // skwer ˌdɪstrɪˈbju:ʃən]卡方分布conditional probability[kənˈdiʃənl ˌprɔbəˈbiliti // kənˈdiʃənəl ˌprɑ:bəˈbɪlɪti]条件概率continuous random variable[kənˈtinjuəs ˈrændəm ˈvɛəriəbl // kənˈtɪnju:əs ˈrændɑ:mˈverɪəbəl]连续性随机变量discrete random variable[disˈkri:t ˈrændəm ˈvɛəriəbl // dɪsˈkri:t ˈrændɑ:m ˈverɪəbəl]离散型随机变量distribution function[ˌdistriˈbju:ʃən ˈfʌŋkʃən // ˌdɪstrɪˈbju:ʃən ˈfʌnkʃən]分布函数independence[ˌindiˈpendəns // ˌɪndi:ˈpendəns] n.独立logarithmic normal distribution[ˌlɔɡəˈriðmik ˈnɔ:məl ˌdistriˈbju:ʃən // ˌlɔ:ɡəˈrɪðmɪk /ˌlɑ:ɡəˈrɪðmɪk ˈn ɔ:rməl ˌdɪstrɪˈbju:ʃən]对数正态分布medical reference range[ˈmedikəl ˈref(ə)rəns reindʒ// ˈmedɪkəl ˈref(ə)rəns reɪndʒ]医学参考值范围population mean[ˌpɔpjuˈleiʃən mi:n // ˌpɑ:pju:ˈleɪʃən mi:n]总体均数population variance[ˌpɔpjuˈleiʃən ˈvεəriəns // ˌpɑ:pju:ˈleɪʃən ˈverɪəns]总体方差probability density function[ˌprɔbəˈbiliti ˈdensəti / ˈdensiti ˈfʌŋkʃən // ˌprɑ:bəˈbɪlɪtiˈdensəti / ˈdensɪti ˈfʌnkʃən]概率密度函数probability function[ˌprɔbəˈbiliti ˈfʌŋkʃən // ˌprɑ:bəˈbɪlɪti ˈfʌnkʃən]概率函数quality control[ˈkwɔliti kənˈtrəul // ˈkwɑ:lɪti kənˈtrοʊl]质量控制random event[ˈrændəm iˈvent // ˈrændɑ:m ɪˈvent]随机事件random experiment[ˈrændəm ikˈsperimənt / ekˈsperimənt // ˈrændɑ:m ekˈsperɪmənt]随机试验random phenomena[ˈrændəm fiˈnɔminə// ˈrændɑ:m fəˈnɑ:mənə]随机现象random variable[ˈrændəm ˈvɛəriəbl // ˈrændɑ:m ˈverɪəbəl]随机变量reference value[ˈref(ə)rəns ˈvælju: // ˈref(ə)rəns ˈvælju:]参考值6.参数估计PARAMETER ESTIMATIONconfidence level[ˈkɔnfidəns ˈlevl // ˈkɑ:nfɪdəns ˈlevl]可信度;置信度follow-up study[ˈfɔləuˌʌp ˈstʌdi // ˈfɑ:lοʊˌʌp ˈstʌdi]随访研究odds[ɔdz // ɑ:dz] n.优势(比数)prospective study[prəˈspektiv ˈstʌdi // prəˈspektɪv ˈstʌdi]前瞻性研究sampling distribution[ˈsɑ:mpliŋˌdistriˈbju:ʃən // ˈsæmplɪŋˌdɪstrɪˈbju:ʃən]抽样分布standard error[ˈstændəd ˈerə// ˈstændɚd ˈerɚ]标准误standard error of mean[ˈstændəd ˈerəmi:n // ˈstændɚd ˈerɚmi:n]均数标准误7.假设检验HYPOTHESIS TESTalternative hypothesis[ɔ:lˈtə:nətiv haiˈpɔθisis // ɔlˈtɜ:rnətɪv haɪˈpɑ:θəsɪs]备择假设causal association[ˈkɔ:zəl əˌsəusiˈeiʃən // ˈkɔ:zəl əˌsoʊsi:ˈeɪʃən]因果联系intervention[intəˈvenʃən // ˌɪntɚˈvenʃən] n.干预level of a test[ˈlevl test // ˈlevl test]检验水准null hypothesis[nʌl haiˈpɔθisis // nʌl haɪˈpɑ:θəsɪs]无效检验(原假设)one-tail test[wʌn tail test // wʌn taɪl test]单尾检验repeated measurement data[riˈpi:tid ˈmeʒəmənt ˈdeitə/ ˈdɑ:tə// ri:ˈpi:tədˈmeʒəmənt ˈdeɪtə/ ˈdætə]重复测量资料statistical association[stəˈtistikəl əˌsəusiˈeiʃən // stəˈtɪstɪkəl əˌsoʊsi:ˈeɪʃən]统计学联系test statistic[test stəˈtistik // test stəˈtɪstɪk]检验统计量two-tail test[tu: tail test // tu: taɪl test]]双尾检验u-test[test // test] u检验8.T检验T-TESTcoefficient of kurtosis[ˌkəuiˈfiʃənt kə:ˈtəusis // ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃənt kɚˈtοʊsɪs]峰度系数coefficient of skewness[ˌkəuiˈfiʃənt ˈskju:nis // ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃənt ˈskju:nəs]偏度系数homogeneity of variance[ˌhɔməudʒeˈni:əti ˈvεəriəns // ˌhoʊmoʊdʒəˈni:ɪti ˈverɪəns]方差齐性kurtosis[kə:ˈtəusis // kɚˈtοʊsɪs] n.峰度method of moment[ˈmeθəd ˈməumənt // ˈmeθəd ˈmοʊmənt]矩法normality[nɔ:ˈmæliti // nɔ:rˈmælɪti] n.正态性normality test[nɔ:ˈmæliti test // nɔ:rˈmælɪti test]正态性检验one sample / group t-test[wʌn ˈsɑ:mpl ɡru:p test // wʌn ˈsæmpəl ɡru:p test]单样本t检验paired /matched t-test[pɛəd mætʃt test // perd mætʃt test]配对t检验proportion- proportion plot, p-p plot[prəˈpɔ:ʃən plɔt // prəˈpɔ:rʃən plɑ:t]频率-频率图quantile-quantile plot, q-q plot[ˈkwɔntail plɔt // ˈkwɑ:ntaɪl plɑ:t]分位数-分位数图separate variance estimation t-test[ˈsepərit ˈvεəriəns ˌestiˈmeiʃən test // ˈsepərət ˈverɪəns ˌestɪˈmeɪʃən test]近似t检验two-sample/group t-test[ˈsɑ:mpl ɡru:p test // ˈsæmpəl ɡru:p test]两独立样本t检验或成组t检验9.多个样本均数比较的方差分析ANALYSIS OF VARIANCE arcsine square root transformation[ˌɑ:kˈsain skwɛəru:t ˌtrænsfəˈmeiʃən // ˌɑ:kˈsaɪnskwer ru:t ˌtrænsfɔ:rˈmeɪʃən]平均根反正弦变换latin square design[ˈlætn skwɛədiˈzain // ˈlætn skwer dɪˈzaɪn]拉丁方设计logarithm transformation[ˈlɔɡəˌriðəm ˌtrænsfəˈmeiʃən // ˈlɑ:ɡəˌrɪðəm ˌtrænsfɔ:rˈmeɪʃən]对数变换square root transformation[skwɛəru:t ˌtrænsfəˈmeiʃən // skwer ru:t ˌtrænsfɔ:rˈmeɪʃən]平方根变换10.卡方检验CHI-SQUARE TESTactual frequency[ˈæktʃuəl ˈfri:kwənsi // ˈæktʃuəl ˈfri:kwənsi]实际频数association[əˌsəusiˈeiʃən // əˌsoʊsi:ˈeɪʃən] n.关联性,联系contingency coefficient[kənˈtindʒənsi ˌkəuiˈfiʃənt // kənˈtɪndʒənsi ˌkοʊəˈfɪʃənt /ˌkοʊɪˈfɪʃənt]列联系数odds ratio[ɔdz ˈreiʃiəu // ɑ:dz ˈreɪʃi:οʊ]优势比,比值比theoretical frequency[ˌθiəˈretikəl ˈfri:kwənsi // ˌθɪəˈretɪkəl ˈfri:kwənsi]理论频数11.基于秩次的假设检验方法HYPOTHESIS TESTING METHOD distribution-free test[ˌdistriˈbju:ʃən fri: test // ˌdɪstrɪˈbju:ʃən fri test]任意分布检验parametric statistics[ˌpærəˈmetrik stəˈtistiks // ˌpærəˈmetrɪk stəˈtɪstɪks]参数统计12.简单线性回归SIMPLE LINEAR REGRESSIONcoefficient of determination[ˌkəuiˈfiʃənt diˌtə:miˈneiʃən // ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃəntdi:ˌtɜ:rmɪˈneɪʃən]决定系数conditional mean[kənˈdiʃənl mi:n // kənˈdɪʃənəl mi:n]条件均数constant term[ˈkɔnstənt tə:m // ˈkɑ:nstənt tɜ:rm]常数项equal variance[ˈi:kwəl ˈvεəriəns // ˈi:kwəl ˈverɪəns]方差齐linear[ˈliniə// ˈlɪnɪɚ] adj.线性的,直线的,线的normal[ˈnɔ:məl // ˈnɔ:rməl] n.正态predictive value[priˈdiktiv ˈvælju: // pri:ˈdɪktɪv ˈvælju:]预测值residual[riˈzidjuəl // ri:ˈzɪdju:əl] n.残差residual analysis[riˈzidjuəl əˈnæləsis // ri:ˈzɪdju:əl əˈnælɪsɪs]残差分析residual plot[riˈzidjuəl plɔt // ri:ˈzɪdju:əl plɑ:t]残差图residual standard deviation[riˈzidjuəl ˈstændəd ˌdi:viˈeiʃən // ri:ˈzɪdju:əl ˈstændɚdˌdi:vi:ˈeɪʃən]剩余标准差residual sum of squares[riˈzidjuəl sʌm skwɛəz // ri:ˈzɪdju:əl sʌm skwerz]剩余平方和simple linear regression[ˈsimpl ˈliniəriˈɡreʃən // ˈsɪmpəl ˈlɪnɪɚri:ˈɡreʃən]简单直线回归,简单线性回归13.线性相关LINEAR CORRELATIONlinear correlation coefficient[ˈliniəˌkɔ:riˈleiʃən ˌkəuiˈfiʃənt // ˈlɪnɪɚˌkɔ:rəˈleɪʃən ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃənt]线性相关系数linear negative correlation[ˈliniəˈneɡətiv ˌkɔ:riˈleiʃən // ˈlɪnɪɚˈneɡətɪv ˌkɔ:rəˈleɪʃən]线性负相关linear positive correlation[ˈliniəˈpɔzətiv / ˈpɔzitiv ˌkɔ:riˈleiʃən // ˈlɪnɪɚˈpɑ:zɪtɪv ˌkɔ:rəˈleɪʃən]线性正相关Pearson correlation coefficient[ˈpiəsən ˌkɔ:riˈleiʃən ˌkəuiˈfiʃənt // ˈpɪrsən ˌkɔ:rəˈleɪʃənˌkοʊəˈfɪʃənt / ˌk οʊɪˈfɪʃənt]皮尔逊相关系数14.临床测量误差评价与诊断试验CLINIC MEASUREMENT ERRORS EVALUATION ANDDIAGNOSIS TESTactual agreement beyond chance[ˈæktʃuəl əˈɡri:mənt biˈjɔnd tʃɑ:ns // ˈæktʃuəl əˈɡrimənt bɪˈjɑ:nd tʃæns]实际一致性agreement of chance[əˈɡri:mənt tʃɑ:ns // əˈɡri:mənt tʃæns]机遇一致率diagnosis test[ˌdaiəɡˈnəusis test // ˌdaɪəɡˈnοʊsɪs test]诊断试验empirical roc curve[emˈpirikəl rɔk kə:v // emˈpɪrɪkəl rɑ:k kɜ:rv]经验roc曲线intraclass correlation coefficient[intrəˈklɑ:s ˌkɔ:riˈleiʃən ˌkəuiˈfiʃənt // ɪntrəˈklæs ˌkɔ:rəˈleɪʃən ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃənt]组内相关系数measurement errors[ˈmeʒəmənt ˈerəs // ˈmeʒəmənt ˈerɚs]测量误差negative predictive value[ˈneɡətiv priˈdiktiv ˈvælju: // ˈneɡətɪv pri:ˈdɪktɪv ˈvælju:]阴性预测值observed agreement[əbˈzə:vd əˈɡri:mənt // ɑ:bˈzə:vd əˈɡrimənt]观察一致性positive predictive value[ˈpɔzətiv / ˈpɔzitiv priˈdiktiv ˈvælju: // ˈpɑ:zɪtɪv pri:ˈdɪktɪvˈvælju:]阳性预测值potential agreement beyond chance[pə(u)ˈtenʃəl əˈɡri:mənt biˈjɔnd tʃɑ:ns //pοʊˈtenʃəl əˈɡrimənt bɪˈjɑ:nd tʃæns]非机遇一致性random error[ˈrændəm ˈerə// ˈrændɑ:m ˈerɚ]随机误差systematic error[ˌsistiˈmætik ˈerə// ˌsɪstəˈmætɪk ˈerɚ]系统误差variance component[ˈvεəriəns kəmˈpəunənt // ˈverɪəns kɑ:mˈpοʊnənt]方差分量15.研究设计方法STUDY AND DESIGN METHODanalysis set[əˈnæləsis set // əˈnælɪsɪs set]数据集bioequivalence[ˌbaiəuiˈkwivələns // ˌbaɪοʊi:ˈkwɪvələns] n.生物等效性breaking of blindness[ˈbreikiŋˈblaindnis // ˈbreɪkɪŋˈblaɪndnəs]破盲carry-over effect[ˈkæri ˈəuvəiˈfekt // ˈkæri ˈοʊvɚəˈfekt]延滞作用clinical equivalence[ˈklinikəl iˈkwivələns // ˈklɪnɪkəl i:ˈkwɪvələns]临床等效性cross-over trial[krɔs ˈəuvəˈtraiəl // krɑ:s ˈοʊvɚˈtraɪəl / ˈtraɪl]交叉试验double blind[ˈdʌbl blaind // ˈdʌbl blaɪnd]双盲double dummy[ˈdʌbl ˈdʌmi // ˈdʌbl ˈdʌmi]双盲双模拟exposure[ikˈspəuʒə/ ekˈspəuʒə// ekˈspοʊʒɚ] n.暴露factorial analysis[fækˈtɔ:riəl əˈnæləsis // fækˈtɔ:rɪəl əˈnælɪsɪs]析因分析full analysis set[ful əˈnæləsis set // fʊl əˈnælɪsɪs set]全分析表informed consent[inˈfɔ:md kənˈsent // ɪnˈfɔ:rmd kənˈsent]知情同意intention-to-treat[inˈtenʃən tri:t // ɪnˈtenʃən tri:t]意向性分析longitudinal study[ˌlɔndʒiˈtju:dinəl ˈstʌdi // ˌlɑ:ndʒɪˈtu:dainəl ˈstʌdi]纵向研究loss to follow-up[lɔ(:)s ˈfɔləuˌʌp // lɔ:s ˈfɑ:lοʊˌʌp]失访main effect[mein iˈfekt // meɪn əˈfekt]主效应multi-center[ˌmʌltiˈsentə// ˌmʌltɪˈsentɚ]多中心open label[ˈəupən ˈleibl // ˈοʊpən ˈleɪbl]非盲per protocol set[pə(:)ˈprəutəkɔl set // pɚˈprοʊtοʊkɑ:l set]符合方案集protocol[ˈprəutəkɔl // ˈprοʊtοʊkɑ:l] n.试验方案;原始记录recall bias[riˈkɔ:l ˈbaiəs // ri:ˈkɔ:l / ˈri:kɔ:l ˈbaɪəs]回忆偏倚retrospective study[ˌretrəˈspektɪv ˈstʌdi // ˌretrοʊˈspektɪv ˈstʌdi]回顾性调查研究risk ratio[risk ˈreiʃiəu // rɪsk ˈreɪʃi:οʊ]危险比run in period[rʌn ˈpiəriəd // rʌn ˈpɪrɪəd / ˈpi:ri:ɑ:d]准备期safety set[ˈseifti set // ˈseɪfti set]安全性评价数据集selection bias[siˈlekʃən ˈbaiəs // səˈlekʃən ˈbaɪəs]选择性偏倚sequence[ˈsi:kwəns // ˈsi:kwəns] n.次序single blind[ˈsiŋɡl blaind // ˈsɪŋɡl blaɪnd]单盲treat phase[tri:t feiz // tri:t feɪz]处理期wash out period[wɔʃaut ˈpiəriəd // wɑ:ʃaʊt ˈpɪrɪəd / ˈpi:ri:ɑ:d]洗脱期16.样本量的估计SAMPLE SIZE ESTIMATEdesign effect[diˈzain iˈfekt // dɪˈzaɪn əˈfekt]设计效率exponential distribution[ˌekspəˈnenʃl ˌdistriˈbju:ʃən // ˌekspəˈnenʃəl ˌdɪstrɪˈbju:ʃən]指数分布mean survival time[mi:n səˈvaivəl taim // mi:n sɜ:rˈvaɪvəl taɪm]平均生存时间sample size estimate[ˈsɑ:mpl saiz ˈestimeit // ˈsæmpəl saɪz ˈestɪmət]样本量估算17.多因素实验的方差分析ANALYSIS OF VARIANCE BASED ON MULTIPLE FACTORSprofile plot[ˈprəufail plɔt // ˈprοʊfaɪl plɑ:t]轮廓图18.多变量数据的统计描述与统计推断STATISTIC DESCRIPTION AND DEDUCTION OFMULTIVARIATE DATAcorrelation coefficient matrix[ˌkɔ:riˈleiʃən ˌkəuiˈfiʃənt ˈmeitriks // ˌkɔ:rəˈleɪʃən ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃənt ˈmeɪtrɪks]相关系数矩阵covariance[kəuˈvεəriəns // kοʊˈverɪəns] n.协方差covariance matrix[kəuˈvεəriəns ˈmeitriks // kοʊˈverɪəns ˈmeɪtrɪks]协方差矩阵inverse matrix[ˌinˈvə:s ˈmeitriks // ˌɪnˈvɜ:rs ˈmeɪtrɪks]逆矩阵level profile[ˈlevl ˈprəufail // ˈlevl ˈproʊfaɪl]水平直线轮廓multivariate data[ˌmʌltiˈvεəriət ˈdeitə/ ˈdɑ:tə// ˌmʌltɪˈverɪət ˈdeɪtə/ ˈdætə]多变量数据profile analysis[ˈprəufail əˈnæləsis // ˈprοʊfaɪl əˈnælɪsɪs]轮廓分析repeated contrasts matrix[riˈpi:tid ˈkɔntræsts ˈmeitriks // ri:ˈpi:təd ˈkɑ:ntræstsˈmeɪtrɪks]重复测量对比矩阵repeated measure[riˈpi:tid ˈmeʒə// ri:ˈpi:təd ˈmeʒɚ]重复测量responsible variables[risˈpɔnsəbl ˈvɛəriəblz // rɪsˈpɑ:nsəbl ˈverɪəbəlz]反应变量19.重复测量设立资料的方差分析ANALYSIS OF COVARIANCE monitoring data[ˈmɔnitəriŋˈdeitə/ ˈdɑ:tə// ˈmɑ:nɪtɚɪŋˈdeɪtə/ ˈdætə]监测数据premeasure-postmeasure design[pri:ˈmeʒəpəustˈmeʒədiˈzain // pri:ˈmeʒɚpοʊstˈmeʒɚdɪˈzaɪn]前后测量设计repeated measurement design[riˈpi:tid ˈmeʒəmənt diˈzain // ri:ˈpi:təd ˈmeʒəmənt dɪˈzaɪn]重复测量设计sphericity[ˌsfiəˈrisiti // ˌsfɪˈrɪsɪti] n.球对称20.多重线性回归REGRESSION OF MULTICOLINEARITY backward[ˈbækwəd // ˈbækwɚd] n.后退法backward stepwise[ˈbækwəd ˈstepwaiz // ˈbækwɚd ˈstepwaɪz]后退逐步回归法forward[ˈfɔ:wəd // ˈfɔ:rwɚd] n.前进法forward stepwise[ˈfɔ:wəd ˈstepwaiz // ˈfɔ:rwɚd ˈstepwaɪz]前进逐步回归法multicolinearity[ˌmʌltikəˌliniˈæriti // ˌmʌltɪkοʊˌlɪnɪˈærɪti] n.多重共线性optimum subsets regression[ˈɔptiməm ˈsʌbsets riˈɡreʃən // ˈɑ:ptɪməm ˈsəbsets ri:ˈɡreʃən]最优子集回归21.协方差分析ANALYSIS OF COVARIANCEadjusted means[əˈdʒʌstid mi:nz // əˈdʒʌstɪd mi:nz]校正均数analysis of covariance[əˈnæləsis kəuˈvεəriəns // əˈnælɪsɪs kοʊˈverɪəns]协方差分析analysis of multiple covariance[əˈnæləsis ˈmʌltipl kəuˈvεəriəns // əˈnælɪsɪs ˈmʌltɪplkοʊˈverɪəns]多元协方差分析22.回归LOGISTICadjusted odds ratio[əˈdʒʌstid ɔdz ˈreiʃiəu // əˈdʒʌstɪd ɑ:dz ˈreɪʃi:οʊ]调整优势比conditional logistic regression[kənˈdiʃənl ləˈdʒistik riˈɡreʃən // kənˈdɪʃənəl ləˈdʒɪstɪkri:ˈɡreʃən]条件logistic回归dummy variable[ˈdʌmi ˈvɛəriəbl // ˈdʌmi ˈverɪəbəl]哑变量explanatory variable[ikˈsplænət(ə)ri ˈvɛəriəbl // ɪkˈsplænəˌtɔ:ri ˈverɪəbəl]解释变量generalized coefficient of determination[ˈdʒenərəlaizd ˌkəuiˈfiʃənt diˌtə:miˈneiʃən //ˈdʒenɚəlaɪzd ˌkοʊəˈfɪʃənt / ˌkοʊɪˈfɪʃənt di:ˌtɜ:rmɪˈneɪʃən]广义决定系数likelihood ratio test[ˈlaiklihud ˈreiʃiəu test // ˈlaɪkli:hʊd ˈreɪʃi:οʊtest]似然比检验score test[skɔ: test // skɔ:r test]计分检验survival analysis[səˈvaivəl əˈnæləsis // sɜ:rˈvaɪvəl əˈnælɪsɪs]生存分析unconditional logistic regression[ˌʌnkənˈdiʃənl ləˈdʒistik riˈɡreʃən // ˌʌnkənˈdɪʃənəlləˈdʒɪstɪk ri:ˈɡreʃən]非条件logistic回归Wald test[wɔ:ld test // wɑ:ld test]沃尔德检验23.生存分析SURVIVAL ANALYSIScensoring[ˈsensəriŋ// ˈsensɚɪŋ] n.删失endpoint event[ˈendpɔint iˈvent // ˈendpɔɪnt ɪˈvent]终点事件failure time[ˈfeiljətaim // ˈfeɪljɚtaɪm]失效时间median survival time[ˈmi:djən səˈvaivəl taim // ˈmi:dɪən sɜ:rˈvaɪvəl taɪm]中位生存率,半数生存率partial likelihood function[ˈpɑ:ʃəl ˈlaiklihud ˈfʌŋkʃən // ˈpɑ:rʃəl ˈlaɪkli:hʊd ˈfʌnkʃən]部分似然函数product-limit method[ˈprɔdʌkt ˈlimit ˈmeθəd // ˈprɑ:dəkt ˈlɪmɪt ˈmeθəd]乘积限法proportional hazards[prəˈpɔ:ʃənəl ˈhæzədz // prəˈpɔ:rʃənəl ˈhæzɚdz]比例风险survival curve[səˈvaivəl kə:v // sɜ:rˈvaɪvəl kɜ:rv]生存曲线survival probability[səˈvaivəl ˌprɔbəˈbiliti // sɜ:rˈvaɪvəl ˌprɑ:bəˈbɪlɪti]生存概率survival time[səˈvaivəl taim // sɜ:rˈvaɪvəl taɪm]生存时间24.判别分析与聚类分析DISCRIMINANT ANALYSIS AND CLUSTER ANALYSIScanonical discriminant[kəˈnɔnikəl disˈkriminənt // kəˈnɑ:nɪkəl dɪsˈkrɪmɪnənt]典则判别cross validation[krɔs ˌvæliˈdeiʃən // krɑ:s ˌvælɪˈdeɪʃən]交叉核实法euclidean distance[ju:ˈklidiən ˈdistəns // ju:ˈklɪdiən ˈdɪstəns]欧氏距离jackknife[ˈdʒæknaif // ˈdʒæknaɪf] n.刀切法manhattan distance[mænˈhætən ˈdistəns // mænˈhætən ˈdɪstəns]绝对距离similarity coefficient[ˌsiməˈlærəti ˌkəuiˈfiʃənt // ˌsɪməˈlærəti ˌkοʊəˈfɪʃənt /ˌkοʊɪˈfɪʃənt]相似性系数25.主成分分析与因子分析PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIScommunality[kɔmjuˈnæliti // kɔmjuˈnælɪti] n.公共度,共性方差equamax[ˈikwəmæks // ˈi:kwəmæks] n.均方最大旋转factor analysis[ˈfæktəəˈnæləsis // ˈfæktɚəˈnælɪsɪs]因子分析factor loading[ˈfæktəˈləudiŋ// ˈfæktɚˈlοʊdɪŋ]因子载荷factor pattern[ˈfæktəˈpætən // ˈfæktɚˈpætɚn]因子载荷矩阵principal component analysis[ˈprinsəpəl kəmˈpəunənt əˈnæləsis // ˈprɪnsəpəl /ˈprɪnsɪpəl kɑ:mˈpοʊn ənt əˈnælɪsɪs]主成分分析quartimax[ˈkwɔ:timæks // ˈkwɔ:rtɪmæks] n.四次方最大旋转varimax[ˈvɛərimæks // ˈverɪmæks] n.方差最大法26.统计分析的一般原则与方法GENERAL PRINCIPLE AND METHOD OF STATISTICALANALYSIScategorical variable[ˌkætəˈɡɔrikəl ˈvɛəriəbl // ˌkætəˈɡɔ:rɪkəl ˈverɪəbəl]分类变量outlier[ˈautlaiə// ˈaʊtlaɪɚ] n.离群值。
计量经济学中英文词汇对照
Controlled experiments Conventional depth Convolution Corrected factor Corrected mean Correction coefficient Correctness Correlation coefficient Correlation index Correspondence Counting Counts Covaห้องสมุดไป่ตู้iance Covariant Cox Regression Criteria for fitting Criteria of least squares Critical ratio Critical region Critical value
Asymmetric distribution Asymptotic bias Asymptotic efficiency Asymptotic variance Attributable risk Attribute data Attribution Autocorrelation Autocorrelation of residuals Average Average confidence interval length Average growth rate BBB Bar chart Bar graph Base period Bayes' theorem Bell-shaped curve Bernoulli distribution Best-trim estimator Bias Binary logistic regression Binomial distribution Bisquare Bivariate Correlate Bivariate normal distribution Bivariate normal population Biweight interval Biweight M-estimator Block BMDP(Biomedical computer programs) Boxplots Breakdown bound CCC Canonical correlation Caption Case-control study Categorical variable Catenary Cauchy distribution Cause-and-effect relationship Cell Censoring
计量经济学英语词汇
A校正R2(Adjusted R-Squared):多元回归分析中拟合优度的量度,在估计误差的方差时对添加的解释变量用一个自由度来调整。
对立假设(Alternative Hypothesis):检验虚拟假设时的相对假设。
AR(1)序列相关(AR(1) Serial Correlation):时间序列回归模型中的误差遵循AR(1)模型。
渐近置信区间(Asymptotic Confidence Interval):大样本容量下近似成立的置信区间。
渐近正态性(Asymptotic Normality):适当正态化后样本分布收敛到标准正态分布的估计量。
渐近性质(Asymptotic Properties):当样本容量无限增长时适用的估计量和检验统计量性质。
渐近标准误(Asymptotic Standard Error):大样本下生效的标准误。
渐近t 统计量(Asymptotic t Statistic):大样本下近似服从标准正态分布的t统计量。
渐近方差(Asymptotic Variance):为了获得渐近标准正态分布,我们必须用以除估计量的平方值。
渐近有效(Asymptotically Efficient):对于服从渐近正态分布的一致性估计量,有最小渐近方差的估计量。
渐近不相关(Asymptotically Uncorrelated):时间序列过程中,随着两个时点上的随机变量的时间间隔增加,它们之间的相关趋于零。
衰减偏误(Attenuation Bias):总是朝向零的估计量偏误,因而有衰减偏误的估计量的期望值小于参数的绝对值。
自回归条件异方差性(Autoregressive Conditional Heteroskedasticity, ARCH):动态异方差性模型,即给定过去信息,误差项的方差线性依赖于过去的误差的平方。
一阶自回归过程[AR(1)](Autoregressive Process of Order One [AR(1)]):一个时间序列模型,其当前值线性依赖于最近的值加上一个无法预测的扰动。
journal of colloid and interface science 格式 -回复
journal of colloid and interface science 格式-回复Journal of Colloid and Interface ScienceIn this article, we will explore the formatting guidelines for the Journal of Colloid and Interface Science, focusing on its structure and key components. This information will help authors in preparing and submitting their papers to this esteemed journal.I. Introduction (100-200 words)The introduction section should provide a succinct overview of the topic of the research article. It should briefly state the importance and novelty of the study, along with any previous work in the field. The introduction should lead the readers into the main objectives and research questions.II. Experimental Section (300-500 words)In the experimental section, authors should provide a detailed description of the materials and methods used in the study. This section should be organized in a clear and logical manner, presenting the step-by-step procedures followed. It is essential to include all necessary details to allow for reproducibility of the study.III. Results and Discussion (700-1000 words)The results and discussion section should present the findingsof the research. Authors should present the data in a concise and organized manner, using appropriate tables, graphs, or figures. Results should be accompanied by statistical analysis, where relevant. The discussion should interpret the results and provide rational explanations for the observed phenomena, relating them back to the objectives stated in the introduction.IV. Conclusion (100-200 words)The conclusion section should summarize the main findings of the research and their significance. Authors should highlight the contributions of their study to the existing knowledge in the field. It is important to avoid repetition of information already presented in the results and discussion section.V. AcknowledgmentsIn this section, authors should acknowledge any individuals or organizations who contributed to the research but are not listed as authors. This typically includes individuals who provided valuable assistance, funding institutions, or technical support.VI. ReferencesAll references cited in the manuscript should be listed in the reference section. Authors should follow the specific formatting guidelines provided by the Journal of Colloid and Interface Science. It is essential to ensure accuracy and consistency in formatting,such as the use of proper citation styles (e.g., APA, MLA, or Chicago).VII. Supplementary Materials (if applicable)Authors should include any supplementary materials that enhance the understanding or support the findings of the research. These materials are typically provided as online appendices and may include additional data, images, or videos.VIII. Manuscript Preparation and SubmissionAuthors should carefully adhere to the guidelines provided by the Journal of Colloid and Interface Science for manuscript preparation. This includes the required formatting, word count limits, and any specific instructions related to figures, tables, or supplementary materials. The manuscript should be submitted online through the journal's submission system, ensuring that all requisite files and documents are included.In conclusion, the Journal of Colloid and Interface Science has a specific formatting style that authors should carefully follow. By structuring their manuscripts according to the guidelines provided, authors can ensure that their work is presented effectively, increasing its chances of publication in this prestigious journal.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Statistical Encoding of Succinct Data StructuresRodrigo Gonz´a lez⋆and Gonzalo Navarro⋆⋆Department of Computer Science,University of Chile.{rgonzale,gnavarro}@dcc.uchile.clAbstract.In recent work,Sadakane and Grossi[SODA2006]intro-duced a scheme to represent any sequence S=s1s2...s n,over an alpha-bet of sizeσ,using nH k(S)+O(n⋆Work supported by Mecesup Grant UCH0109,Chile.⋆⋆Work supported by a grant from Yahoo!Research Latin America.1In this paper log stands for log.2precisely,they show that S can be encoded using nH k(S)+O(n2The term k logσappears as k in[18],but this is a mistake[17].The reason is that they take from[8]an extra space of the formΘ(kt+t)as stated in Lema2.3,whereas the proof in Theorem A.4gives a term of the form kt logσ+Θ(t).2Background and notationHereafter we assume that S[1,n]=S1,n=s1s2...s n is the sequence we wish to encode and query.The symbols of S are drawn from an alphabet A= {a1,...,aσ}of sizeσ.We write|w|to denote the length of sequence w.Let B[1,n]be a binary sequence.Function rank b(B,i)returns the number of times b appears in the prefix B[1,i].Function select b(B,i)returns the position of the i-th appearance of b within sequence B.Both rank and select can be computed in constant time using o(n)bits of space in addition to B[11].2.1The k-th order empirical entropyThe empirical entropy resembles the entropy defined in the probabilistic setting (for example,when the input comes from a Markov source).However,the empir-ical entropy is defined for any string and can be used to measure the performance of compression algorithms without any assumption on the input[10].The empirical entropy of k-th order is defined using that of zero-order.This is defined asH0(S)=− a∈A n a S n)(1)with n a S the number of occurrences of symbol a in sequence S.This definition extends to k>0as follows.Let A k be the set of all sequences of length k over A.For any string w∈A k,called a context of size k,let w S be the string consisting of the concatenation of characters following w in S.Then,the k-th order empirical entropy of S isH k(S)=1|w S|,where w=s i−k...s i−1.It is not hard to see,bygrouping all the terms with the same w in the summation[10,7],that−ni=k+1p i log p i=nH k(S).(3)2.2Statistical encodingWe are interested in the use of semi-static statistical encoders in this paper. Thus,we are given a k-th order modeler as described above,which will yield the probabilities p1,p2,...,p n for each symbol in S,and we will encode thesuccessive symbols of S trying to use−p i log p i bits for s i.If we reach exactly −p i log p i bits,the overall number of bits produced will be nH k(S)+O(k log n), according to Eq.(3).Different encoders provide different approximations to the ideal−p i log p ibits.The simplest encoder is probably Huffman coding[1],while the best one, from the point of view of the number of bits generated,is Arithmetic coding[1].Given a statistical encoder E and a semi-static modeler over sequence S[1,n] yielding probabilities p1,p2,...,p n,we call E(S)the bitwise output of E forthose probabilities,and|E(S)|its bit length.We call f k(E,S)=|E(S)|−(− 1≤i≤n p i log p i)the extra space in bits needed to encode S using E,on top of the entropy of the model.For example,the wasted space of Huffman en-coding is bounded by1bit per symbol,and thus f k(Huffman,S)<|S|(tighter bounds exist but are not useful for this paper[1]).On the other hand,Arithmetic encoding approaches−p i log p i as closely as desired,requiring only at most two extra bits to terminate the whole sequence[1,Section5.2.6and5.4.1].Thus f k(Arithmetic,S)≤2.Again,we can relate the model entropy of p1,p2,...,p n with the empirical entropy of S using Eq.(3),achieving that,say,Arithmetic coding encodes S using at most nH k(S)+O(k log n)+2bits.Arithmetic coding essentially expresses S using a number in[0,1)which lies within a range of size P=p1·p2···p n.We need−log P=− log p i bits to distinguish a number within that range(plus two extra bits for technical reasons).Thus each new symbol s i,which appears within its context np i times, requires−log p i bits to be encoded.This totalizes−n p i log p i+2bits.There are usually some limitations to the near-optimality achieved by Arith-metic coding in practice[1].One is that many bits are required to manipulate P,which can be cumbersome.This is mainly alleviated by emitting the most significant bits of thefinal number as soon as they are known,and thus scaling the remainder of the number again to the range[0,1)(that is,dropping the emitted bits from our number).Still,some symbols with very low probability may require many bits.To simplify matters,fixed precision arithmetic is used to approximate the real values,and this introduces a very small(yet linear)in-efficiency in the coding.In our case,we never run into this problem because,as seen later,we do not encode any sequence that requires more than log n2-bit compressed stream as an index toa precomputed table that will directly yield the uncompressed symbols.2.3Implementing succinct full-text self-indexesA succinct full-text index provides fast search functionality using a space pro-portional to that of the text itself.A less space-demanding index,in particular, using space proportional to that of the compressed text is known as a compressed full-text index.Those indexes that contain sufficient the information to recreate the original text are known as self-indexes.An example of the latter is the FM-index family[5,6,9]based on the Burrows-Wheeler Transform(BWT)[2].The BWT of a text T,T bwt=bwt(T),is a reversible transformation from strings to strings.For this paper,it is enough to say that T bwt is a permutation of the characters of T which is easier to compress by local optimization methods[10].Full-text indexes need essentially to perform symbol rank queries over T bwt: Occ c(T bwt,i)is the number of occurrences of character c in T bwt[1,i].This can be done in constant time for very small alphabets[5],but to handle larger alphabets [6]a tool called the wavelet tree[7]of S=T bwt is used.Given a sequence S[1,n]the wavelet tree wt(S)[7]built on S is a per-fect binary tree of height⌈logσ⌉,built on the alphabet symbols,such that the root represents the whole alphabet and each leaf represents a distinct alpha-bet symbol.If a node v represents alphabet symbols in the range A v=[i,j], then its left child v l represents A v l=[i,i+j2+1,j].We associate to each node v the subsequence S v of S formedby the characters in A v.However,sequence S v is not really stored at the node. Instead,we store a bit sequence B v telling whether characters in S v go left or right,that is,B v i=1iffS v i∈A v r.The wavelet tree of S requires nH0(S)+O(n log log n/logσn)bits of space. 3A new entropy-bound succinct data structureGiven a sequence S[1,n]over an alphabet A of sizeσ,we encode S into a compressed data structure S′within entropy bounds.To perform all the original operations over S under the RAM model,it is enough to allow extracting any b=12logσn⌋in constant time.Thisstructure is built using any statistical encoder E as described in Section2.2. Structure.We divide S into blocks of length b=⌊12log n⌋bits(and hopefully less).We define the following sequences indexed by block number i=0,...,⌊n/b⌋:–S i=S[bi+1,b(i+1)]is the sequence of symbols forming the i-th block of S.–C i=S[bi−k+1,bi]is the sequence of symbols forming the k-th order context of the i-th block(a dummy value is used for C0).–E i=E(S i)is the encoded sequence for the i-th block of S,initializing the k-th order modeler with context C i.–ℓi=|E i|is the size in bits of E i.–˜E i= S i ifℓi>b′,is the shortest sequence among E i and S i.E i otherwise–˜ℓi=|˜E i|≤min(b′,ℓi)is the size in bits of˜E i.The idea behind˜E i is to ensure that no encoded block is longer than b′bits (which could happen if a block contains many infrequent symbols).These special blocks are encoded explicitly.Our compressed representation of S stores the following information:–W[0,⌊n/b⌋]:A bit array such that,W[i]= 0ifℓi>b′1otherwisewith the additional o(n/b)bits to answer rank queries over W in constant time[11].–C[1,rank(W,⌊n/b⌋)]:C[rank(W,i)]=C i,that is,the k-th order context for the i-th block of S iffℓi≤b′,with1≤i≤⌊n/b⌋.–U=˜E0˜E1...˜E⌊n/b⌋:A bit sequence obtained by concatenating all the variable-length˜E i.–T:A k×2b′−→2b:A table defined as T[α,β]=γ,whereαis any context of size k,βrepresents any encoded block of b′bits at most,andγrepresents the decoded form ofβ,truncated to thefirst b symbols(as less than the b′bits will be usually necessary to obtain the b symbols of the block).–Information to answer where each˜E i starts within U.We group together every c=⌈log n⌉consecutive blocks to form superblocks of sizeΘ(log2n) and store two tables:•R g[0,⌊n/(bc)⌋]contains the absolute position of each superblock.•R l[0,⌊n/b⌋]contains the relative position of each block with respect to the beginning of its superblock.3.2Substring decoding algorithmWe want to retrieve q=S[i,i+b−1]in constant time.To achieve this,we take the following steps:1.We calculate j=i div b and j′=(i+b−1)div b.2.We calculate h=j div c,h′=(j+1)div c and u=U[R g[h]+R l[j],R g[h′]+R l[j+1]−1],then–if W[j]=0then we have S j=u.–if W[j]=1then we have S j=T[C[rank(W,j)],u′],where u′is u padded with b′−|u|dummy bits.We note that|u|≤b′and thus it can be manipulated in constant time. 3.If j′=j then we repeat Step2for j′=j+1and obtain S j′.Then,q=S j[i−jb+1,b]S j′[1,i−jb]is the solution.Lemma1.For a given sequence S[1,n]over an alphabet A of sizeσ,we can access any substring of S of b symbols in O(1)time using the data structures presented in Section3.1.3.3Space requirementLet us now consider the storage size of our structures.–We use the constant-time solution to answer the rank queries[11]over W, totalizing2nlogσnk logσbits.–Let us consider table U.|U|= ⌊n/b⌋i=0|˜E i|≤ ⌊n/b⌋i=0|E i|=nH k(S)+ O(k log n)+ ⌊n/b⌋i=0f k(E,S i),which depends on the statistical encoder E used.For example,in the case of Huffman coding,we have f k(Huffman,S i)< b,and thus we achieve nH k(S)+O(k log n)+n bits.For the case of Arith-metic coding,we have f k(Arithmetic,S i)≤2,and thus we have nH k(S)+ O(k log n)+4n2bits.–Finally,let us consider tables R g and R l.Table R g has⌈n/(bc)⌉entries of size ⌈log n⌉,totalizing2nlogσnbits.By considering that any substring ofΘ(logσn)symbols can be extracted in constant time by applying O(1)times the procedure of Section3.2,we have the final theorem.Theorem1.Let S[1,n]be a sequence over an alphabet A of sizeσ.Our data structure uses nH k(S)+O(n2−ǫ)logσn,but this can be pushed as close to1as desired by choosing b=14Supporting appendsWe can extend our scheme to support appending symbols,maintaining the same space and query complexity,with each appended symbol having constant amor-tized cost.Assume our current static structure holds n symbols.We use a buffer of n′=n/log n symbols where we store symbols explicitly.When the buffer is full we use our entropy-bound data structure(EBDS,Section3)to represent those n′symbols and then we empty the buffer.We repeat this until we have log n EBDS.At this moment we reencode all the structures plus our original n symbols,generating a new single EBDS,and restart the process with2n symbols. Data structures.We describe the additional structures needed to append symbols to the EBDS.–BF[1,n′]is the sequence of at most n′=n/log n uncompressed symbols.–AP i is the i-th EBDS,with0≤i≤N.N≤log n is the number of EBDS we currently have.We call AS i the sequence AP i represents.AP0is the original EBDS.So|AS0|=n and|AS i|=n/log n,i>0.Substring decoding algorithm.We want to retrieve q=S[i,i+b−1].To achieve this,we take the following steps:–We algebraically calculate the indexes0≤t≤t′≤N+1where the positions i(for t)and i+b−1(for t′)belong;N+1represents BF.The case when part of q belongs to BF is trivially solved because the symbols are explicitly represented in BF.–If t=t′we obtain q as in Section3.2.Otherwise,we calculate the local indexes t off and t′off where q starts in structure AP t andfinishes in AP t′, respectively.We decode q1as the last n′−t off+1≤b symbols of AP t and q2as thefirst t′off≤b symbols of AP t′.Finally,we obtain q=q1q2.Construction time Just after we reencode everything we have that n/2sym-bols have been reencoded once,n/4symbols twice,n/8symbols3times and so on.The total number of reencodings is i≥1n ilogσ|AS i|(k logσ+log log|AS i|))bits of space.Lemma2.The space requirement of all AP i,for0≤i≤N,is log n i=0|AP i|≤|S AS1...AS N|H k(S AS1...AS N)+O(nn ).Thelatter term is negligible for k<(1−ǫ)logσn,for any0<ǫ<1.On the other hand,the total space obtained by ourfirst-order encoder cannot be less than nH1(S).Thus we get our result:Lemma3.Let S=bwt(T),where T[1,n]is a text over an alphabet of sizeσ. Then H1(S)≤1+H k(T)logσ+o(1)for any k<(1−ǫ)logσn and any constant 0<ǫ<1.We can improve this upper bound if we use Arithmetic encoding to encode the0and1bits that distinguish run heads.Their zero-order probability is p= H k(T)+σk2n log n2nlog n−12n log1n).Therefore H k(S)≃25klog kν0+13kν1,asH k(ν2)≃0.Therefore,in this case,H k(S)<H k(wt(S)),by aΘ(log k)factor.–Second,we show a case where H k(S)>H k(wt(S)).Now we choose S= (a k0a k3a k0a k2)n,thenwt(S)=...................................................................................................................1ν1=(0k0k)nν2=(1k0k)nν0=(0k1k0k1k)na2a3a0a1In this case,H k(S)≃2n ).ThusH k(S)>H k(wt(S))by a factor ofΘ(n/(k log n)).Lemma4.The ratio between the k-th order entropy of the wavelet tree representation of a sequence S,H k(wt(S)),and that of S itself,H k(S),can be at leastΩ(log k).More precisely,H k(wt(S))/H k(S)can beΩ(log k)and H k(S)/H k(wt(S))can beΩ(n/(k log n)).What is most interesting is that H k(wt(S))can beΘ(log k)times larger than H k(S).We have not been able to produce a larger gap.Whether H k(wt(S))= O(H k(S)log k)remains open.6ConclusionsWe have presented a scheme based on k-th order modeling plus statistical en-coding to convert any succinct data structure on sequences into a compressed data structure.This structure permits retrieving any string of S ofΘ(logσn) symbols in constant time.This is an alternative to thefirst work achieving the same result[18],which is based on Ziv-Lempel compression.We also show how to append symbols to the original sequence within the same space complexity and with constant amortized cost per appended symbol.This method also works on the structure presented in[18].We also analyze the behavior of this technique when applied to full-text self-indexes,as advocated in[18].Many compressed self-indexes achieve space proportional to nH k(T)byfirst applying the Burrows-Wheeler Transform[2] over T,S[1,n]=bwt(T).In this paper,we show a relationship between the entropies of H1(S)and H k(T).More precisely,H1(S)≤H k(T)logσ+o(1)for small k=o(logσn).On the other hand,several indexes represent S=bwt(T) as a wavelet tree[7]on S,wt(S).We show in this paper that H k(wt(S))can be at leastΘ(log k)times larger than H k(S).This means that,by applying the new technique to compress wavelet trees,we have no guarantee of compressing the original sequence more than n min(H0(S),O(H k(T)log k)).Yet,we do have guarantees if we compress S directly.There are several future challenges on k-th order entropy-bound data struc-tures:(i)making them fully dynamic(we have shown how to append symbols); (ii)better understanding how the entropies evolve upon transformations such bwt or wt;(iii)testing them in practice.Acknowledgment.We thank K.Sadakane and R.Grossi for providing us article[18]and for confirming the correctness of Footnote2.References1.T.Bell,J.Cleary,and I.Witten.Text compression.Prentice Hall,1990.2.M.Burrows and D.Wheeler.A block sorting lossless data compression algorithm.Technical Report124,Digital Equipment Corporation,1994.3.P.Ferragina,F.Luccio,G.Manzini,and S.Muthukrishnan.Structuring labeledtrees for optimal succinctness,and beyond.In Proc.46st FOCS,2005.4.P.Ferragina,F.Luccio,G.Manzini,and pressing andsearching XML data via two zips.In Proc.15th WWW’06,2006.5.P.Ferragina and G.Manzini.Opportunistic data structures with applications.InProc.41st FOCS,pages390–398,2000.6.P.Ferragina,G.Manzini,V.M¨a kinen,and G.Navarro.An alphabet-friendly FM-index.In Proc.11th SPIRE,LNCS3246,pages150–160.Springer,2004.Extended version to appear in ACM TALG.7.R.Grossi,A.Gupta,and J.Vitter.High-order entropy-compressed text indexes.In Proc.14th SODA,pages841–850,2003.8.R.Kosaraju and pression of low entropy strings with Lempel-Zivalgorithms.SIAM Journal on Computing,29(3):893–911,1999.9.V.M¨a kinen and G.Navarro.Succinct suffix arrays based on run-length encoding.Nordic Journal of Computing,12(1):40–66,2005.10.G.Manzini.An analysis of the Burrows-Wheeler transform.Journal of the ACM,48(3):407–430,2001.11.I.Munro.Tables.In Proc.16th FSTTCS,LNCS v.1180,pages37–42,1996.12.I.Munro,R.Raman,V.Raman,and S.Rao.Succinct representations of permu-tations.In Proc.30th ICALP,pages345–356,2003.13.I.Munro and V.Raman.Succinct representation of balanced parentheses,statictrees and planar graphs.In Proc.38th FOCS,pages118–126,1997.14.I.Munro and S.S.Rao.Succinct representations of functions.In Proc.31thICALP,pages1006–1015,2004.15.G.Navarro.Indexing text using the Ziv-Lempel trie.Journal of Discrete Algo-rithms(JDA),2(1):87–114,2004.16.R.Raman,V.Raman,and S.Rao.Succinct indexable dictionaries with applica-tions to encoding k-ary trees and multisets.In Proc.13th SODA,pages233–242, 2002.17.K.Sadakane and R.Grossi.Personal communication,2005.18.K.Sadakane and R.Grossi.Squeezing succinct data structures into entropybounds.In Proc.17th SODA,pages1230–1239,2006.。