楚雄州2017—2018学年八年级下期末教学质量监测数学试题(含答案)
2017—2018学年八年级数学下期末试题
2017 —2018 学年八年级数学下期末试题2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题(满分120 分,时间:120 分钟)一、选择题: 本大题共8 个小题,每题 3 分,共24 分,在每题给出的四个选项A、B、c、D 中,只有一项为哪一项正确的,请把正确的选项填在答题卡的相应地点1. 在数轴上与原点的距离小于8 的点对应的x 知足A.x <8B.x >8c.x <-8 或x>8D.-8 <x<82. 将多项式﹣6a3b2﹣3a2b2+12a2b3 分解因式时,应提取的公因式是A .-3a2b2B.-3abc .-3a2bD.-3a3b33. 以下分式是最简分式的是A .B.c.D.4. 如图,在Rt △ABc中,∠c=90°,∠ABc=30°,AB=8,将△ABc沿cB 方向向右平移获得△DEF.若四边形ABED的面积为8,则平移距离为A .2B.4c.8D.165. 如下图,在△ABc 中,AB=Ac,AD 是中线,DE⊥A B,D F⊥Ac,垂足分别为E、F,则以下四个结论中:①AB 上任一点与Ac 上任一点到D的距离相等;②AD上任一点到AB、Ac 的距离相等;③∠BDE=∠cDF;④∠1=∠2. 正确的有A.1 个B.2 个c.3 个D.4 个6. 每千克元的糖果x 千克与每千克n 元的糖果y 千克混淆成杂拌糖,这样混淆后的杂拌糖果每千克的价钱为A. 元B. 元c. 元D.元7. 如图,□ABcD的对角线Ac,BD交于点o,已知AD=8,BD=12,Ac=6,则△oBc 的周长为A .13B.26c.20D.178. 如图,DE是△ABc的中位线,过点 c 作cF∥BD交DE的延伸线于点F,则以下结论正确的选项是A .EF=cFB.EF=DEc.cF<BDD.EF>DE二、填空题(本大题共 6 个小题,每题 3 分,共18 分,只需求把最后的结果填写在答题卡的相应地区内)9. 利用因式分解计算:2012-1992= ;10. 若x+y=1,xy=-7 ,则x2y+xy2= ;11. 已知x=2 时,分式的值为零,则k=;12. 公路全长为sk,骑自行车t 小时可抵达,为了提早半小时抵达,骑自行车每小时应多走;13. 一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为;14. 如图,△AcE 是以□ABcD的对角线Ac 为边的等边三角形,点 c 与点E对于x 轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.三、解答题(本大题共78 分, 解答要写出必需的文字说明、演算步骤)15. (6 分)分解因式(1)20a3-30a2 (2)25(x+y)2-9 (x-y )216. (6 分)计算:(1)(2)17. (6 分)A、B 两地相距200 千米,甲车从 A 地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A 地80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.18. (7 分)已知:如图,在△ABc中,AB=Ac,点D 是Bc 的中点,作∠EAB=∠BAD,AE边交cB 的延伸线于点E,延伸AD到点F,使AF=AE,连结cF.求证:BE=cF.19.(8 分)“二广”高速在益阳境内的建设正在紧张地进行,现有大批的沙石需要运输.“益安”车队有载重量为8 吨、10 吨的卡车共12 辆,所有车辆运输一次能运输110 吨沙石.(1)求“益安”车队载重量为8 吨、10 吨的卡车各有多少辆?(2)跟着工程的进展,“益安”车队需要一次运输沙石165 吨以上,为了达成任务,准备新增购这两种卡车共 6 辆,车队有多少种购置方案,请你一一写出.20. (8 分)如图,在Rt△ABc 中,∠AcB=90°,点D, E 分别在AB,Ac 上,cE=Bc,连结cD,将线段cD 绕点c 按顺时针方向旋转90°后得cF,连结EF.(1) 增补达成图形;(2) 若E F∥cD,求证:∠BDc=90° .21.(8 分)下边是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y ,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)= (y+4)2(第三步)= (x2-4x+4 )2(第四步)(1)该同学第二步到第三步运用了因式分解的.A .提取公因式B.平方差公式c .两数和的完整平方公式D.两数差的完整平方公式(2)该同学因式分解的结果能否完全?.(填“完全”或“不完全”)若不完全,请直接写出因式分解的最后结果.( 3 )请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1 进行因式分解.22. (8 分)如图,四边形ABcD中,对角线Ac,BD订交于点o,点E,F 分别在oA,oc 上(1)给出以下条件;①oB=oD,②∠1=∠2,③oE=oF,请你从中选用两个条件证明△BEo≌△DFo;(2)在(1)条件中你所选条件的前提下,增添AE=cF,求证:四边形ABcD是平行四边形.23. (10 分)如图,在□ABcD中,E是Bc 的中点,连结AE并延伸交Dc 的延伸线于点F.(1)求证:AB=cF;(2)连结DE,若AD=2AB,求证:D E⊥A F.24. (11 分)如图,在直角梯形ABcD中,AD∥Bc,∠B=90°,且AD=12c,AB=8c,Dc=10c,若动点P从A点出发,以每秒2c 的速度沿线段AD向点D运动;动点Q从c 点出发以每秒3c 的速度沿cB 向B 点运动,当P点抵达D点时,动点P、Q 同时停止运动,设点P、Q 同时出发,并运动了t 秒,回答以下问题:(1)Bc=c;(2)当t 为多少时,四边形PQcD成为平行四边形?(3)当t 为多少时,四边形PQcD为等腰梯形?(4)能否存在t ,使得△DQc是等腰三角形?若存在,请求出t 的值;若不存在,说明原因.2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题参照答案一、选择题( 每题 3 分,共24 分)1 、D 2、A 3、c4、A 5、c6、B7、D8、B二、填空题( 每题 3 分,共18 分)9.1.-711.-612.-13.6( 六)14. (5,0)三、解答题( 共78 分 )15. ( 1 )解:20a3 ﹣30a2=10a2 (2a ﹣3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)解:25(x+y)2﹣9(x﹣y)2=[5 (x+y)+3(x﹣y)][5 (x+y)﹣3(x﹣y) ]= (8x+2y)(2x+8y);=4(4x+y)(x+4y) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分16. (1)解:== ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)====⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分17. 设甲车的速度是x 千米/ 时,乙车的速度为(x+30)千米/ 时,⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分解得,x=60,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x=60 是原方程的解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分则x+30=90,即甲车的速度是60 千米/ 时,乙车的速度是90 千米/ 时.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分18. 证明:∵AB=Ac,点D是Bc 的中点,∴∠cAD= ∠BAD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分又∵∠EAB=∠BAD,∴∠cAD= ∠EAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分在△AcF 和△ABE中,∴△AcF≌△ABE(SAS).∴BE=cF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分19. 解:(1)设“益安”车队载重量为8 吨、10 吨的卡车分别有x 辆、y 辆,依据题意得:,解之得:.答:“益安”车队载重量为8 吨的卡车有 5 辆,10 吨的卡车有7 辆;⋯⋯⋯⋯⋯⋯⋯ 4 分(2)设载重量为8 吨的卡车增添了z 辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z <,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵z≥0 且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有 3 种购车方案:①载重量为8 吨的卡车购置 1 辆,10 吨的卡车购置 5 辆;②载重量为8 吨的卡车购置 2 辆,10 吨的卡车购置 4 辆;③载重量为8 吨的卡车不购置,10 吨的卡车购置 6 辆.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20.(1) 解:补全图形,如图所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 证明:由旋转的性质得∠DcF=90°,Dc=Fc,∴∠DcE +∠EcF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∵∠AcB=90°,∴∠DcE+∠BcD=90°,∴∠EcF=∠BcD∵E F∥Dc,∴∠EFc+∠DcF=180°,∴∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分在△BDc和△EFc 中,Dc =Fc,∠BcD=∠EcF,Bc=Ec,∴△BDc≌△EFc(SAS),∴∠BDc= ∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分21. 解:(1)该同学第二步到第三步运用了因式分解的两数和的完整平方公式;故选:c;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)该同学因式分解的结果不完全,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x ﹣ 2 )4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)(x2﹣2x)(x2﹣2x+2)+1= (x2﹣2x)2+2(x2﹣2x)+1= (x2﹣2x+1)2= (x ﹣ 1 )4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22. 证明:(1)选用①②,∵在△BEo和△DFo中,∴△BEo ≌△DFo (ASA);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)由(1)得:△BEo≌△DFo,∴Eo=Fo,Bo=Do,∵AE=cF,∴Ao=co,∴四边形ABcD 是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分23. 证明:(1)∵四边形ABcD是平行四边形,∴AB∥DF,∴∠ABE=∠FcE,∵E为Bc 中点,∴BE=cE,在△ABE与△FcE 中,,∴△ABE≌△FcE(ASA),∴AB=Fc;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(2)∵AD=2AB,AB=Fc=cD,∴AD=DF,∵△ABE≌△FcE,∴AE=EF,∴DE ⊥A F.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24. 解:依据题意得:PA=2t,cQ=3t ,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12c,在直角△cDE中,∵∠cED=90°,Dc=10c,DE=8c,∴Ec==6c,∴Bc=BE+Ec=18c.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(直接写出最后结果18c 即可)(2)∵AD∥Bc,即PD∥cQ,∴当PD=cQ时,四边形PQcD为平行四边形,即12-2t=3t ,解得t= 秒,故当t= 秒时四边形PQcD 为平行四边形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12,c当PQ=cD时,四边形PQcD为等腰梯形.过点P 作PF⊥Bc 于点F,过点D作DE⊥Bc 于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△cDE中,,∴Rt△PQF≌Rt△cDE(HL),∴QF=cE,∴Qc-PD=Qc-EF=QF+Ec=2c,E即3t- (12-2t )=12,解得:t= ,即当t= 时,四边形PQcD 为等腰梯形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(4)△DQc是等腰三角形时,分三种状况议论:①当Qc=Dc时,即3t=10 ,∴t= ;②当DQ=Dc时,∴t=4 ;③当QD=Qc时,3t ×∴t= .故存在t ,使得△DQc是等腰三角形,此时t 的值为秒或 4 秒或秒.⋯⋯⋯11 分③在Rt△D Q中,DQ2=D2+Q236t=100t=。
【全国市级联考】云南省楚雄州2017—2018学年八年级下学期期末教学质量监测数学试题(解析版)
楚雄州2017—2018学年下学期期末教学质量监测八年级数学试题一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)1. 下列各组数中,是勾股数的为()A. 1,2,3B. 4,5,6C. 3,4,5D. 7,8,9【答案】C【解析】分析:根据勾股定理的逆定理分别对各组数据进行检验即可.详解:A.∵12+22=5≠32=9,∴不是勾股数,故A错误;B.∵42+52=41≠62=36,∴不是勾股数,故B错误;C.∵32+42=25=52=25,∴是勾股数,故C正确;D.∵72+82=113≠92=81,∴不是勾股数,故D错误.故选C.点睛:本题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.2. 汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q(升)与行驶间(t小时)之间的函数关系的图象是()A. (A)B. (B)C. (C)D. (D)【答案】B【解析】由题意得函数解析式为:Q=40-5t,(0≤t≤8)结合解析式可得出图象,如图所示:故选:B.3. 我国在近几年奥运会上所获金牌数(单位:枚)统计如下:则这组数据的众数与中位数分别是()A. 32,32B. 32,16C. 16,16D. 16,32【答案】C【解析】数据16出现了两次最多为众数,16处在第5位和第6位,它们的平均数为16.所以这组数据的中位数是16,众数是16,故选C.【点睛】确定一组数据的中位数和众数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4. 若a<0,则下列不等式不成立的是()A. a+5<a +7B. 5 a>7 aC. 5-a<7-aD. >【答案】D【解析】试题分析:A、a<0,则a是负数,a+5<a+7可以看作5<7两边同时加上a,故A选项正确;B、5a>7a可以看作5<7两边同时乘以一个负数a,不等号方向改变,故B选项正确;C、﹣a<7﹣a是不等号两边同时加上﹣a,不等号不变,故C选项正确;D、a<0,>可以看作>两边同时乘以一个负数a,不等号方向改变,故D选项错误.故选D.考点:不等式的性质.5. 如图,在△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A´OB´,边A´B´与边OB交于点C(A´不在OB上),则∠A´CO的度数为()A. 85°B. 75°C. 95°D. 105°【答案】A【解析】:∵△AOB绕点O顺时针旋转60°,得到△A′OB′,∴∠B′=25°,∠BOB′=60°,∵∠A′CO=∠B′+∠BOB′,∴∠A′CO=25°+60°=85°,故选A.6. 下列图形中,既是轴对称图形,又是中心对称图形的是()A. (A)B. (B)C. (C)D. (D)【答案】D【解析】试题解析:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选C.7. 下列多项式中不能用公式分解的是()A. a2+a+B. -a2-b2-2abC. -a2+25 b2D. -4-b2【答案】D【解析】分析:各项利用平方差公式及完全平方公式判断即可.详解:A.原式=(a+)2,不合题意;B.原式=-(a+b)2,不合题意;C.原式=(5b+a)(5b﹣a),不合题意;D.原式不能分解,符合题意.故选D.点睛:本题考查了因式分解﹣运用公式法,熟练掌握公式是解答本题的关键.8. 如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,则∠AED的度数是()A. 120°B. 110°C. 115°D. 100°【答案】A【解析】分析:根据多边形的外角和求出∠5的度数,然后根据邻补角的和等于180°列式求解即可.详解:∵∠1=∠2=∠3=∠4=75°,∴∠5=360°﹣75°×4=360°﹣300°=60°,∴∠AED=180°﹣∠5=180°﹣60°=120°.故选A.点睛:本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.二、填空题(本大题共6个小题,每小题3分,满分18分)9. 分解因式:a3b-ab3 =_______________;【答案】ab(a+b)(a-b)...... .........考点:用提公因式法和公式法进行因式分解,10. 如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),如果要使△ABD 与△ABC全等,且点D坐标在第四象限,那么点D的坐标是__________;【答案】(5,-1)【解析】试题分析:根据全等三角形的性质结合格点的特征即可得到结果.由题意得点D的坐标是(-2,5).考点:全等三角形的性质,点的坐标点评:解答本题的关键是熟练掌握全等三角形的对应边相等,注意对应字母在对应位置上.11. 在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=10,则△EDB 的周长是________;【答案】10【解析】分析:由题中条件可得Rt△ACD≌Rt△AED,进而得出AC=AE,把△BDE的边长通过等量转化即可得出结论.详解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED,∴AC=AE.又∵AC=BC,∴BC=AE,∴△DBE的周长为DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=10.故答案为:10.点睛:本题主要考查了角平分线的性质以及全等三角形的判定及性质,能够掌握并熟练运用.12. 若m+n=3,则代数式2m2+4mn+2n2-6的值为____________;【答案】12【解析】分析:原式前三项提取2变形后,利用完全平方公式化简,将m+n的值代入计算即可求出值.详解:∵m+n=3,∴2m2+4mn+2n2﹣6=2(m+n)2﹣6=18﹣6=12.故答案为:12.点睛:本题考查了因式分解的应用,将所求式子进行适当的变形是解答本题的关键.13. 如图,E为△ABC中AB边的中点,EF∥AC交BC于点F,若EF=3cm,则AC=____________.【答案】6cm【解析】分析:根据平行线分线段成比例定理,得到BF=FC,根据三角形中位线定理求出AC的长.详解:∵E为△ABC中AB边的中点,∴BE=EA.∵EF∥BC,∴=,∴BF=FC,则EF为△ABC的中位线,∴AC=2EF=6.故答案为:6.14. 如图,已知函数y = 3x + b和y = ax-3的图象交于点P(-2,-5) ,则根据图象可得不等式3x+b>ax-3的解集是______________;【答案】x> -2;【解析】试题解析:从图象得到,当x>-2时,y=3x+b的图象对应的点在函数y=ax-3的图象上面,∴不等式3x+b>ax-3的解集为:x>-2.三、解答题(本大题共9个小题,满分70分)15. 化简:【答案】+2+1【解析】分析:原式前三项化为最简二次根式,最后一项利用零指数幂法则计算即可得到结果.详解:原式=2﹣3×+2+1=2﹣+2+1=+2+1.点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.16. 解下列不等式组,并把它的解集表示在数轴上:【答案】原不等式组的解集为2≤x<3.【解析】分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.详解:解不等式3x+1>5(x﹣1),得:x<3,解不等式x﹣6≥,得:x≥2,在同一条数轴上表示不等式的解集为:所以原不等式组的解集为2≤x<3.点睛:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17. 解分式方程:【答案】原分式方程无解【解析】分析:观察可得方程最简公分母为:(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:方程两边同乘(x+1)(x﹣1),得:(x+1)2﹣4=(x+1)(x﹣1),整理得:2x﹣2=0,解得:x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去,∴原方程无解.点睛:解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.18. 先化简:,然后给a选择一个你喜欢的数代入求值。
2017-2018学年下学期人教版八年级数学期末教学质量检测试卷及答案
2017-2018学年下学期人教版八年级数学期末教学质量检测试卷及答案2017-2018学年八年级数学下学期期末教学质量检测试卷一、选择题(1-5每题2分,6-15每题3分,共40分)1.以下各组数能构成直角三角形的是()A。
4,5,6B。
1,1,2C。
6,8,11D。
5,12,232.下列二次根式是最简二次根式的是()A。
$\sqrt{1/2}$B。
4C。
2D。
83.下列函数中,y是x的正比例函数的是()A。
y=x/3B。
y=2x-1C。
y=2x²D。
y=-2x+14.一鞋店试销一款女鞋,销量情况如右表:这个型号 22.5 23 23.5 24 24.5数量/双 5 10 15 8 3鞋店的经理最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A。
平均数B。
众数C。
中位数D。
方差5.如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。
已知AB=4,BC=5,EF=3.那么四边形EFCD的周长是()A。
14B。
12C。
16D。
106.顺次连结对角线相等的四边形各边中点所得的四边形必是()A。
菱形B。
矩形C。
正方形D。
无法确定7.下列根式中,与3是同类二次根式的是()A。
$\sqrt{46}$B。
$\sqrt{18}$C。
$\sqrt{3/2}$D。
$\sqrt{12}$8.如图,爷爷从家(点O)出发,沿着扇形AOB上OA→弧AB→BO的路径匀速散步。
设爷爷与家(点O)的距离为s,散步的时间为t,则下列图形中能大致刻画s与t之间函数关系的图象是()A。
B。
C。
D。
9.如图,在四边形ABCD中,AB=12cm,BC=3cm,CD=4cm,∠C=90°,当AD为多少时,∠ABD=90°()A。
13B。
63C。
12D。
6210.如果$(x-2)^2=2-x$,那么()A。
x<2B。
x≥2C。
x>2D。
x≤211.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A。
云南省楚雄彝族自治州八年级下学期数学期末考试试卷
云南省楚雄彝族自治州八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017八下·合浦期中) 下列性质中,矩形具有但平行四边形不一定具有的是()A . 对边相等B . 对角相等C . 对角线相等D . 对角线互相平分2. (2分)二次根式有意义,则应满足的条件是()A .B .C .D .3. (2分)(2018·邵阳) 根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A . 李飞或刘亮B . 李飞C . 刘亮D . 无法确定4. (2分)如图,直线y= 与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A . ﹣2B . ﹣2≤h≤1C . ﹣1D . ﹣15. (2分)不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A . y=2x2B . y=-xC . y=-2xD . y=x6. (2分) (2018八下·兴义期中) 计算的结果是()A .B .C .D .7. (2分)今年的“六•一”儿童节是个星期五,某校学生会在初一年级进行了学生对学校作息安排的三种期望(全天休息、半天休息、全天上课)的抽样调查,并把调查结果绘成了如图1、2的统计图,已知此次被调查的男、女学生人数相同.根据图中信息,下列判断:①在被调查的学生中,期望全天休息的人数占53%;②本次调查了200名学生;③在被调查的学生中,有30%的女生期望休息半天;④若该校现有初一学生900人,根据调查结果估计期望至少休息半天的学生超过了720人.其中正确的判断有()A . 4个B . 3个C . 2个D . 1个8. (2分)如果函数y=ax+b(a<0,b>0)和y=kx(k>0)的图象交于点P,那么点P应该位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)下列命题是真命题的是()A . 对角线垂直且相等的四边形是正方形B . 两条对角线相等的平行四边形是矩形C . 两边相等的平行四边形是菱形D . 有一个角是直角的平行四边形是正方形10. (2分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A . (1,1)B . (, 1)C . (1,)D . (, 2)11. (2分) (2016八上·嵊州期末) 如图,是一台自动测温记录仪的图象,它反映了嵊州市冬季某天气温T 随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A . 凌晨4时气温最低为﹣3℃B . 从0时至14时,气温随时间增长而上升C . 14时气温最高为8℃D . 从14时至24时,气温随时间增长而下降12. (2分) (2016八下·和平期中) 顺次连接矩形各边中点所得的四边形是()A . 平行四边形B . 矩形C . 菱形D . 等腰梯形二、填空题 (共6题;共10分)13. (1分) (2019九上·昌平期中) 在Rt△ABC中,∠ACB=90°,如果斜边AB上的中线CD=4cm,那么斜边AB=________cm.14. (1分)计算:3÷ 的结果是________.15. (1分)(创新题)老师在一直角坐标系中画了一个反比例函数的图象和正比例函y=﹣x的图象,请同学们观察有什么特点,并说出来.同学甲:与直线y=﹣x有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为5.请你根据同学甲和乙的说法写出反比例函数表达式:________ .16. (1分) (2016八下·青海期末) 某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取________.候选人甲乙丙丁测试成绩(百分制)面试86929083笔试9083839217. (1分)如图,直线y=﹣ x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为________.18. (5分) (2017八下·和平期末) 如图,在15×15的网格中,每个小正方形的边长均为1,每个小格的顶点叫做格点,图①中的三角形是以格点为顶点,边长都为整数的锐角三角形.在图②③④中分别画出一个以格点为顶点,边长都为整数的锐角三角形,并在每条边上标出其长度(图①﹣④中的三角形互不全等)三、解答题 (共7题;共89分)19. (10分) (2019八下·嘉兴开学考) 计算:(1)(2)()()-()20. (17分) (2018九下·江都月考) 设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了________名学生,A级所占的百分比a=________;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为多少度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?21. (15分)如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在甲图中作出的四边形是中心对称图形但不是轴对称图形;(2)在乙图中作出的四边形是轴对称图形但不是中心对称图形;(3)在丙图中作出的四边形既是轴对称图形又是中心对称图形.22. (10分)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.(1)求证:△ABC≌△DEF;(2)试判断:四边形AECD的形状,并说明理由.23. (10分) (2019九上·沭阳开学考) 某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?24. (12分)(2017·鹰潭模拟) 如图1,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(x﹣b1),C1与x轴的正半轴交与点A1 ,且其对称轴分别交抛物线C,C1于点B1 , D1 ,此时四边形OB1A1D1恰为正方形;按上述类似方法,如图2,抛物线C1:y1=a1x(x﹣b1)经过变换可得到抛物线C2:y2=a2x(x﹣b2),C2与x轴的正半轴交与点A2 ,且其对称轴分别交抛物线C1 , C2于点B2 , D2 ,此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图3,可得到抛物线C3:y3=a3x(x﹣b3)与正方形OB3A3D3 .请探究以下问题:(1)填空:a1=________,b1=________;(2)求出C2与C3的解析式;(3)按上述类似方法,可得到抛物线Cn:yn=anx(x﹣bn)与正方形OBnAnDn(n≥1).①请用含n的代数式直接表示出Cn的解析式;②当x取任意不为0的实数时,试比较y2015与y2016的函数值的大小并说明理由.25. (15分) (2018八上·孝感月考) 如图所示,△ABC的顶点分别为A(-4, 5),B(﹣3, 2),C(4,-1).(1)作出△ABC关于x轴对称的图形△A1B1C1;(2)写出A1、B1、C1的坐标;(3)若AC=10,求△ABC的AC边上的高.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共10分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共89分) 19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
20172018八年级下期末教学质量监测数学试题含答案
学年末教学质量监测八年级数学试卷—20182017分钟)分,考试时间120(全卷三个大题,共23个小题,满分120分)324分,满分(本大题共8个小题,每小题只有一个正确选项,每小题一、选择题)、下列各组数中,是勾股数的为( 1 9,7,8,,D、4,5,6,C、3,4,51 A、,2,3,B、Q(升)与行驶时间40升,如果每小时耗油5升,则油箱内的余油量2、汽车开始行驶时,油箱内有油)(t小时)之间的函数关系的图象是() Q(升)升Q(升) Q(升) Q(40 4040 40O OO O ) 8 t(小时) ) 8 t(小时8 t(小时) 8 t(小时A C B D)则这组数据的众数与中位数分别是(32 ,D、16 C、16,16 A、32,32 B、32,16)4、若a<0,则下列不等式不成立的是( Baa、>a<7-a D、<a +7 B、5 a>7 a C5-A、a+575 A′C AOB绕点O顺时针旋转5、如图,在△AOB中,∠B=25°,将△,OB交于点C(A′不在OB上),得到△60°A′OB′,边A′B′与边′BA 的度数为()则∠A′COOD、105°、B、75° C 95°A、85°第5题)6、下列图形中,既是轴对称图形,又是中心对称图形的是()7、下列多项式中不能用公式分解的是(E 5122222D -4-b+25b DB、-ab--2ab C、-a、a A、++a 1 44 A 是五边形ABCDE的外角,52,∠3,∠4,∠18、如图,∠,∠2 )AED的度数是(2=且∠1=∠∠3=∠4=75°,则∠CB 3 D、100°、115°C 、、A120°B110°y 18分)个小题,每小题二、填空题(本大题共63分,满分C33;aba9、分解因式:b- =A 1BO的坐标为10、如图,在直角坐标平面内的△ABC中,点A 与,5),如果要使△ABD0(,2),点C的坐标为(5 ;全等,且点D坐标在第四象限,那么点D的坐标是ABC△,交BC于点D,、在△ABC中,∠C=90°,AC=BC,AD平分∠CAB11 ,则△EDB的周长是________;DE⊥AB于点E,且AB=10 CA D EBCF ABE)13题(第(第11题)22;,则代数式、若m+n=32m +4mn+2n -6的值为12AC交BC 于点F,∥13、如图,E为△ABC中AB边的中点,EF .若EF=3cm,则AC=,,-5) 和+ b y = ax-3的图象交于点P(-214、如图,已知函数y = 3x题14第;x则根据图象可得不等式3+b>ax-3的解集是分)(本大题共9个小题,满分70三、解答题1??0?1?12?3??8?化简:分)615、(本题3分)解下列不等式组,并把它的解集表示在数轴上。
楚雄州2017—2018学年八年级下期末教学质量监测数学试题有答案-北师大版
ABOA´B ´C第5题Q(升)Q(升)Q(升)Q(升)D楚雄州2017—2018学年末教学质量监测八年级数学试卷(全卷三个大题,共23个小题,满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 1、下列各组数中,是勾股数的为( )A 、1,2,3,B 、4,5,6,C 、3,4,5,D 、7,8,9,2、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间(t 小时)之间的函数关系的图象是( )3、我国在近几年奥运会上所获金牌数(单位:枚)统计如下:则这组数据的众数与中位数分别是( )A 、32,32B 、32,16C 、16,16D 、16,32 4、若a <0,则下列不等式不成立的是( ) A 、 a +5<a +7 B 、5 a >7 a C 、5-a <7-a D 、5a >7a 5、如图,在△AOB 中,∠B=25°,将△AOB 绕点O顺时针旋转 60°,得到△A ´OB ´,边A ´B ´与边OB 交于点C (A ´不在OB 上), 则∠A ´CO 的度数为( )A 、85°B 、75°C 、 95°D 、105°6、下列图形中,既是轴对称图形,又是中心对称图形的是( )1 234 5A B CD E A BCOxy第14题FEACB7、下列多项式中不能用公式分解的是( )A 、 a 2+a +41 B 、-a 2-b 2-2ab C 、-a 2+25b D 、-4-b 28、如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=75°,则∠AED 的度数是( ) A 、120° B 、110° C 、115° D 、100° 二、填空题(本大题共6个小题,每小题3分,满分18分) 9、分解因式:a 3b -ab 3= ;10、如图,在直角坐标平面内的△ABC 中,点A 的坐标为 (0,2),点C 的坐标为(5,5),如果要使△ABD 与△ABC 全等,且点D 坐标在第四象限,那么点D 的坐标是 ; 11、在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于点D , DE ⊥AB 于点E ,且AB=10,则△EDB 的周长是________;(第11题) (第13题) 12、若m+n=3,则代数式2m 2+4mn+2n 2-6的值为 ;13、如图,E 为△ABC 中AB 边的中点,EF ∥AC 交BC 于点F ,若EF=3cm ,则AC= .14、如图,已知函数y = 3x + b 和y = ax -3的图象交于点P(-2,-5) , 则根据图象可得不等式3x +b >ax -3的解集是 ; 三、解答题(本大题共9个小题,满分70分) 15、(本题6分)化简:()01831312+++⨯-πBAD16、(本题7分)解下列不等式组,并把它的解集表示在数轴上。
2017-2018学年第二学期教学质量检测八年级数学试题卷及答案
2017-2018学年第二学期教学质量检测八年级数学试题卷及答案注意事项:1. 本试卷分试题卷和答题卷两部分,试题卷共4页,三大题,满分120分,考试时间100分钟.2. 略一.选择题(每小题3分,共30分)1. 若二次根式3-x 有意义,则x 的取值范围是 【 】 A. X<3 B. x ≠3 C. x ≤3 D. x ≥32. 下列运算结果正确的是 【 】 A.()29-=-9 B. ()22-=2 C.26÷=3 D.525±=3. 平行四边形ABCD 的对角线AC 与BD 相交于点O ,要使它成为矩形,需再添加的一个条件是 【 】 A. AO=CO B. AC=BD C. AC ⊥BD D. BD 平分∠ABC4. 如图所示,直线a 经过正方形ABCD 繁荣顶点A ,分别过顶点B,D 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE=4,BF=3,则EF 的长为 【 】 A. 1 B. 5 C. 7 D. 125. △ABC 的三边分别为a,b,c ,其对角分别为∠A,∠B ,∠C.下列条件不能判定△ABC 是直角三角形的是 【 】 A. ∠B=∠A-∠C B. a:b:c=5:12:13 B. 222c a b =- D. ∠A:∠B:∠C=3:4:56. 如图,已知一次函数y=kx+b ,y 随着x 的增大而增大,且kb<0则在直角坐标系中它的图像大致是 【 】7. 如图,平行四边形ABCD 中,AB=4,BC=6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是【 】A.6B. 8C. 10D. 128.周末小丽从家里出发骑单车去公园,图中他在路边的便利店挑选一瓶库矿泉水,耽误以一段时间后继续骑行,愉快地到了公园,图中描述了小丽路上的情景,下列说法错误的是 【 】 A. 小丽从家到公园共用时间20分钟 B. 公园离小丽家的距离为2000米 C.小丽在便利店停留时间为15分钟 D.便利店离小丽家的距离为1000米 9.如图,菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为【 】 A. 2.4cm B. 4.8cm C. 5cm D. 9,6cm10.已知,如图,△ABC 中,∠A=90°,D 是AC 上一点,且∠ADB=2∠C ,P 是BC 上任一点,PE ⊥BD 于E ,PF ⊥AC 于F ,下列结论:①△DBC 是等腰三角形;②∠C=30° ;③PE+PF=AB;④222BP AF PE =+,其中正确的结论是【 】A.①②B. ①③④C.①④D.①②③④二.填空题(每小题3分,共15分)11.如图P (3,4)是直角坐标系中一点,则点P 到原点的距离是 .12.如图,平行四边形ABCD 的对角线AC,BD 相交于点O ,且AC+BD=18,AB=6,那么△OCD 的周长是 .13.如图,在正方形ABCD 的内侧,作等边△EBC ,则∠AEB 的度数是 .14.如图,ABCD 是一块正方形场地,小华和小芳在AB 边上取定了一点E ,测量知,EC=30m,EB=10m,这块场地的对角线长是 .15.已知点A (-4,0)及第二象限的动点P (x ,y ),且y-x =5,设△OPA 的面积是S ,则S 关于x 的函数关系式为 .三、解答题(本大题共8个题目,满分75分) 16.(10分)计算:()()()482-8-1827 1=+()()()()223353-5 2+++17. (8分)如图,已知正比例函数kx y =(k ≠0)经过点P (2,4)(1)求这个正比例函数的解析式;(2)该直线向下平移4个单位,求平移后所得直线的解析式.18. (9分)甲、乙两名射击运动员最近5次射击的成绩如下(单位:环): 甲:7、8、6、8、9. 乙:9、7、5、8、6.(1)甲运动员这5次射击成绩的中位数和众数分别是多少? (2)求乙运动员这5次射击成绩的平均数和方差.19. (9分)学完《一次函数》后,老师布置了这样一道思考题:已知:如图,在长方形ABCD 中,BC=4,AB=2,点E 为AD 中点,BD 和CE 相交于点P ,求△BPC 的面积.小明同学的思路是:以点B 为坐标原点建立“平面直角坐标系”,根据一次函数的知识点求出点P 的坐标,从而可求得△BPC 的面积,请你按照小明的思路解决这道思考题.20. (9分)如图,在△ABC 中,∠ABC=90°,D,E 分别为AB,AC 的中点,延长DE 到点F ,使EF=2DE,连接CF ,求证:四边形BCFE 是平行四边形.21. (8分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费,假设这两位家长带领x 名学生去旅行,甲、乙旅行社的收费分别为乙甲,y y .(1)写出乙甲,y y 与x 的函数关系式;(2)学生人数在什么情况下,选择哪个旅行社合算?22. 如图,将一个三角板放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于Q.(1)当点Q 在DC 边上时,过点P 作MN ∥AD 分别交AB,DC 于点M ,N ,证明:PQ=BP (2)当点Q 在线段DC 的延长线时,设A,P 两点间的距离为x ,CQ 的长为y. ①直接写出y 与x 之间的函数关系式;并写出函数自变量的x 的取值范围;②△PCQ 能否为等腰三角形?如果能,直接写出相应的x 的值;如果不能说明理由.23. (12分)如图,一次函数4+-=x y 的图象与y 轴交于点A,与x 轴交于点B ,过AB 中点D 的直线CD 交x 轴于点C (-2,0).(1)求A,B 两点的坐标及直线CD 的函数解析式;(2)若坐标平面内的点F ,能使以点B,C,D,F 为顶点的四边形为平行四边形,请直接写出满足条件的点F 的坐标.2017-2018学年第二学期教学质量检测八年级数学试题卷答案题号 1 2 3 4 5 6 7 8 9 10 答案DBBCDACCBB二、填空题11.5 ;12.15 ;13. 75°;14.40m;15. )0(-5 102<<+=x x y . 三.解答题16.(1)解:原式=2373422-2333+=++(2)解:原式=5-3+3+43+4=9+4317.解(1)把点P (2,4)代入kx y =得:4=2k k =2 ∴这个正比例函数是y=2x(2)平移后的直线解析式是y=2x+418. 解:(1)甲的中位数是8,众数是8; (2)乙的平均数是:)(6857951++++=7;()()()()[]27-67-87-57-95122222=+++=乙S19. 解:如图,由题意可得C (4,0)A (0,2),B (0,0) D (4,2)∵E 是AD 的中点,∴E (2,2)设BD 的函数解析式为kx y =,由题意得:4k=2 ∴21=k ,∴BD 的函数解析式为x y 21= 设直线CE 的函数解析式为b x k y +=/,由题意得:⎪⎩⎪⎨⎧=+=+2204//b k b k解得:⎩⎨⎧=-=41/b k ,∴直线CE 的函数解析式为4-+=x y解方程组⎪⎩⎪⎨⎧+-==421x y x y 解得⎪⎪⎩⎪⎪⎨⎧==3438y x 所以点P (3438,)∴△BPC 的面积:383442121=⨯⨯=•=P BPC y BC S △ 20. 证明:∵D,E 分别为AB,AC 的中点,∴DE ∥BC ,且BC=2DE∵F 在DE 的延长线上,且EF=2DE ,∴EF=BC ,且EF ∥BC , ∴四边形BCFE 是平行四边形.21. 解:(1)200070010007.02000+=⨯+=x x y 甲1600800210008.0+=+⨯=x x y )(乙(2)700x+2000=800x+1600 解得x=4当学生人数小于4人时,选择乙旅行社合算;当学生人数是4人时,两家收费一样;当学生人数大于4人时,选择甲旅行社合算.22. (1)证明:∵四边形ABCD 是正方形, ∴AB=DC ,∠BAD=∠D=90°,∠BAC=∠NCA=45° ∵MN ∥AD ,∴∠D=∠PNC=∠AMP=∠BMP=90°, ∴∠APM=∠NPC=45°,四边形ADNM 是矩形 ∴∠APM=∠BAC=∠NCA=∠NPC=45°AM=DN , ∴PN=NC,AM=PM ∴BM=CN ∴PN=BM∵∠BPQ=90°,∴∠BPM+∠NPQ=90°,在Rt △BPM 中,∠MBP+∠BPM=90°∴∠NPQ=∠MBP ∴△BPM ≌△QPN ,∴BP=QP (2)①x y 21-=(220<<x ) ②△PCQ 可能成为等腰三角形.第一种情况:当点P 与点A 重合时,点Q 与点D 重合, PQ=QC ,此时,x=0.第二种情况:当点Q 在DC 的延长线上,且CP=CQ 时, 有:QN=AM=PM=22x ,CP==2-x ,CN=22CP=1-22x ,CQ=QN-CN=22x-(1-22x )=2x-1,∴当2-x=2x-1时,x=1综上所述,当x=0或1时,△PCQ 成为等腰三角形.23. 解:把y=0代入y=-x+4得,x=4,∴点B (4,0) 把x=0代入y=-x+4得,y=4,∴点A (0,4) ∵D 为AB 的中点,∴D (2,2) 设CD 的解析式为b kx y +=由题意得:⎩⎨⎧=+-=+0222b k b k 解得:b=1,k=21∴CD 的解析式是121+=x y (2)∵B (4,0),C (-2,0);∴BC=6当BC 是平行四边形的一边时,则DF ∥BC 且DF=BC=6,则F (8,2)或F (-4,2) 当BC 是平行四边形对角线时,DB ∥CF ,则F (0,-2)。
2017-2018年第二学期八年级数学期末试卷(参考答案)
∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF
DC AH
5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°
2017-2018学年第二学期期末调研考试八年级数学试题及答案(含评分标准与解析)
2017—2018学年度第二学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
题号 一 二 三20 21 22 23 24 25 26 得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.) 题号1 2 3 4 5 6 7 8 答案 题号 9 10 11 12 13 14 15 16 答案1. 下列根式中,不能与3合并的是………………………….……………………( )A .13 B .13C .23D .12 2.下表记录了甲、乙、丙、丁四名同学参加该市 “我们身边的感动”演讲比赛学校选拔赛,最近几次成绩的平均数与方差如下表:甲 乙 丙 丁 平均数(分) 90 80 85 80方差 2.4 3.6 5.4 2.4根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择…( ) A .甲 B .乙 C .丙 D .丁3.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为…………………………………………………………………………( ) A .y=x+2 B .y=x 2+2 C .2y x =+ D .12y x =+ 4.下列计算正确的是…………………………………………………………………( ) A .4646⨯= B .4610+= C .()21515-=- D .40522÷=5.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是………( ) A .平均数 B .中位数 C .众数 D .方差 6.矩形ABCD 的对角线AC 、BD 交于点O ,以下结论不一定...成立的是……………( ) 总分 核分人A .∠BCD=90°B .AC ⊥BD C .AC=BD D .OA=OB7.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则这组数据的中位数是…( ) A .2 B .3 C .5 D .7 8.已知:2xy =,521x y -=-,则(x+1)(y ﹣1)的值为……………………( ) A .42- B .622- C .62 D .无法确定9.在四边形ABCD 中AC 、BD 相交于点O ,下列说法错误..的是……………………( ) A .AB ∥CD ,AD=BC ,则四边形ABCD 是平行四边形B .AO=CO ,BO=DO 且AC ⊥BD ,则四边形ABCD 是菱形 C .AO=OB=OC=OD ,则四边形ABCD 是矩形D .∠A=∠B=∠C=∠D 且AB=BC ,则则四边形ABCD 是正方形10.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC ,那么这四个三角形中,不是..直角三角形的是……………………………………………( ) A . B . C . D .11.关于函数y=﹣x ﹣2的图象,有如下说法:①图象过(0,﹣2)点;②图象与x 轴交点是(﹣2,0);③从图象知y 随x 增大而增大;④图象不过第一象限;⑤图象是与y=﹣x 平行的直线.其中正确说法有………( ) A .2个 B .3个 C .4个 D .5个 12.如图,在△ABC 中,∠ACB=90°,D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB .若∠B=20°,则∠DFE 等于……( ) A .30° B .40° C .50° D .60° 13.若式子()011k k -+-有意义,则一次函数y=(1﹣k )x+k ﹣1的图象可能是…( )A .B .C .D .14.平面直角坐标系中,O 是坐标原点,点A 的坐标是(4,0),点P 在直线y=﹣x+m 上,且AP=OP=4.则m 的值为……………………………………………………( ) A .223+或223- B .4或﹣4 C .23或23- D .423+或423-15.如图,在Rt△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从B点出发,沿B→C→A运动.如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则图(2)中Q点的坐标是……………………………()A.(4,4)B.(4,3)C.(4,6)D.(4,12)16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=25.以上结论中,你认为正确的是………………………………………………………()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图,函数y=ax+m和y=bx的图象相交于点A,则不等式bx≥ax+m的解集为.18.如图,平行四边形ABCD中,AE⊥BD于E,CF⊥BD于F,∠ABC=75°,∠DBC=30°,BC=2,则BD的长度为.19.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第3个等腰直角三角形A3B2B3顶点B3的横坐标为,第2018个等腰直角三角形A2018B2017B2018顶点B2018的横坐标为.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题共2小题,每小题4分,满分8分)(1)11484320.583⎛⎫⎛⎫---⎪ ⎪⎪ ⎪⎝⎭⎝⎭;(2)()()()215225382-+--+⨯.21.(本题满分9分)有一块边长为40米的正方形绿地ABCD,如图所示,在绿地旁边E处有健身器材,BE=9米.由于居住在A 处的居民去健身践踏了绿地(图中AE),小明想在A处树立一个标牌“少走米,踏之何忍”.请你计算后帮小明在标牌的处填上适当的数.22.(本题满分9分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)这20名学生每人植树量的众数是,中位数是;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本题满分9分)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为点E.连接DE,则线段DE与线段AC有怎样的数量关系?请证明你的结论.24.(本题满分10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点M的坐标.25.(本题满分11分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)。
2017-2018学年 八年级(下)期末数学试卷(有答案和解析)
2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。
20172018学年度第二学期期末教学质量检测
2017/2018学年度第二学期期末教学质量检测八年级数学答案一、选择题:1-5 B D D A B 6-10 A B C C D二、填空题:11. 3 12.75或 13. y=kx+3 (k<0即可)(答案不唯一,其它答案可酌情给 分) 14.522或三、分分分)()(解:原式8 33 6 23-2-34 4 2-3-2-34.15 =+==16.解:(1)应聘者A 的总分为8610290385585=⨯+⨯+⨯ …………2分应聘者B 的总分为10270390580⨯+⨯+⨯ = 82 …………4分 应聘者C 的总分为10270390580⨯+⨯+⨯ = 81 …………6分 (2)公司最终会录用A. …………8分四、17(1)如图: …………4分(2)AA 1=52 …………8分 18.证明:∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在▱ABCD 中,AB ∥CD ,AB=CD ,∴∠ABE=∠CDF , …………3分 在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ),∴AE=CF . …………6分 同理可证:AF=CE∴四边形AECF 是平行四边形 …………8分19. 解:(1)由题意得:2k+b=1 解得: k=2K+b=-1 b=-3∴一次函数的解析式y=2x-3 …………5分(2)一次函数的解析式y=2x-3的图象与x 轴的交点A (1.5,0),与y 轴交点B (0,-3)。
…………7分∴S △AOB=½OA ▪OB=½×1.5×3=2.25 …………10分{20. 解(1)在Rt △AOB 中,∵OA 2=AB 2-OB 2=132-52∴OA=12 …………4分(2)在Rt △COD 中,CD=AB=13,CO=OA-AC=8OD 2=CD 2-OC 2=132-82=105 …………8分45105105≠-=-==OB OD BD OD …………10分21.(1) …………6分平均数 方差 中位数 众数 甲75 125 75 75 乙 75 33.3 72.5 70(方差为125,乙同窗成绩的方差为33.3,因此乙同窗的成绩更为稳固. …………9分②从折线图中甲、乙两名同窗分数的走势上看,乙同窗的6次成绩有时进步,有时退步,而甲的成绩一直是进步的.…………12分22.解:(1)设咸味的粽子售价为每千克x元,甜味的粽子售价为每千克y元;依照题意得:,………………3分解得:;答:咸味的售价为每千克15元,甜味的售价为每千克20元; (6)分(2)设购买咸味t千克,总费用为W元,那么购买甜味(12﹣t)千克,依照题意得:12﹣t≥2t,∴t≤4,…………8分∵W=15t+20(12﹣t)=﹣5t+240,…………10分k=﹣5<0,∴W随t的增大而减小,∴当t=4时,W的最小值=220(元),现在12﹣4=8;答:购买咸味4千克,甜味8千克时,所需总费用最低.…………12分E E23. F FA D AOB C B G C解:(1)依照折叠,∠DBC=∠DBE,有AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB ∴FB=FD ∴△BDF是等腰三角形。
2017-2018学年度第二学期期末教学质量检测八年级数学试题二
2017-2018学年度第二学期期末教学质量检测试题八年级数学注意事项:1. 本试卷共120分.考试时间90分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,只将答题卡收回.2.答题注意事项见答题卡,答在本试卷上不得分. 一、选择题1.列根式中,与3是同类二次根式的是( )A . 64B . 18 C.23D. 12 2.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .中位数 C .众数 D .方差 3.下列运算中错误的是( ) A .+=B .×=C .÷=2 D .=34.一次函数y=ax+b (a <0)图象上有A 、B 两点,A (x 1,y 1),B (x 2,y 2),且x 1>x 2,则y 1和y 2的大小关系为( ) A .y 1>y 2 B .y 1<y 2 C .y 1=y 2D .无法判断5.已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( )A .选①②B .选①③C .选②④D .选②③6.如图,爷爷从家(点O )出发,沿着扇形AOB 上OA →弧AB →BO 的路径匀速散步。
设爷爷与家(点O )的距离为s ,散步的时间为t ,则下列图形中能大致刻画s 与t 之间函数关系的图象是( )A .B . C. D.型号(厘米) 38 39 40 41 42 43 数量(件)253036502887.如图,在四边形ABCD 中,AB =12cm ,BC =3cm ,CD =4cm ,∠C =90°,当AD 为多少时,∠ABD =90°( ) A. 13B. 36C. 12D. 268.已知一组数据x 1,x 2,x 3,…,x n 的方差是7,那么数据x 1﹣5,x 2﹣5,x 3﹣5,…,x n ﹣5的方差为( ) A .2B .5C .7D .99.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为( ) A .4B .6C .8D .1010.如图,直线y=kx+b 经过A (3,1)和B (6,0)两点,则不等式组0<kx+b <x 的解集为( ) A . 3<x <6B .x >3C .x <6D .x >3或x <611. 如图,在矩形ABCD 中,AB =1,AD =3,AF 平分∠DAB ,过C 点作CE ⊥BD 于E ,延长AF 、EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ;④BE =3ED 。
2017---2018学年度第二学期末考试八年级数学试卷(答案)
2017~2018学年度第二学期期末考试八年级数学答案1.B 2. D 3. D 4. C 5. C 6.D 7 .A 8.B 9.B 10.A11.x≥512.26 13.5, 18 14.3 215.216.y x a=-,-3≤a≤117.解:(1)设一次函数的解析式y=kx+b, ……………………………………………………………1分∵经过点(1,3)与(﹣1,﹣1),∴31k bk b+=⎧⎨-+=-⎩……………………………………………………………3分∴解得:k=2;b=1……5分∴直线的解析式为y=2x+1……………6分(2)∵在y=2x+1中,当x=12-时,y=0 ∴一次函数的图象是经过点12-(,)…8分18. 证明:∵□ABCD,∴AD=CB,AD∥CB ∴∠ADE=∠CBF又∵AE⊥BD,CF⊥BD ∴∠AED=∠CFB=90°∴△AED≌△CFB(AAS)……………………………………………………………………………5分∴AE=CF∵AE⊥BD,CF⊥BD ∴∠AEF=∠CFE=90°AE∥CF∴四边形AFCE是平行四边形…………………………………………………………………………8分19.解:(1)方式一:y=0.3x+30方式二:y=0.4x………………………………………………………………………………………4分(2) ∵0.3x+30=0.4x ∴x=300答:通话300分钟时,两种计费方式费用相等…………………………………………………………8分20. (1) 12 图略(2) 72°(3) 中位数是2 ……………………………………………………6分(4) (1102203124652)50 2.4⨯+⨯+⨯+⨯+⨯÷=…………………………………………8分21.解:(1)∵80x+60(100-x)≤7500 ∴x≤75……………………………….……………………………2分y=40x+30(100-x)=10x+3000 (65≤x≤75)……………………….……………………………………5分(2)∵y =(40-a)x+30(100-x)=(10-a)x+3000 ……………………….…………………………………………………….…………6分方案1:当0<a<10时,10-a>0,y随x的增大而增大所以当x=75时,y有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10-a<0,w随x的增大而减小所以当x=65时,y有最大值,则购进甲种服装65件,乙种服装35件..……………………….….….8分22.解:(1)B (2,0),A (0,4) …………….……………………………………………….3分 (2)∵直线y =2x ﹣2k 经过A (0,4) ∴k=﹣2………….…………………………………………………………4分 作CF ⊥x 轴于点F, 证△AOB ≌△BFC(AAS) ………….………………………………………………………5分 CF=BO=2, BF=AO=4,∴OF=6 ,∴OF=6 ∴C (6,2)………………………………………………6分 ∵DC ∥AB ,设DC :y =﹣2x +b ∵直线y =﹣2x +b 经过C (6,2) ∴b=14∴直线DC 的解析式为y =﹣2x +14………….………………………………………………………………………7分 (3) ﹣3<x <0或x >3 …….……………………………………………………………………………………10分23.(1)∵正方形ABCD 中 BA=AD=CD, ∠BAE =D=90° 又DE=CF ∴AE=DF∴△BAE ≌△ADF(SAS) …………………………….………………………………………………………………1分 ∴BE=AF …………………………….………………………………………………………………2分 ∠1=∠2∴∠1+∠BAG=∠2+∠BAG=90° ∴∠BGA=90°即BE ⊥AF……………………………………………………………………………………………………………3分 (2)过点D 作DN ⊥AF 于N,DM ⊥BE 交BE 延长线于M 在Rt △ADF 中,∵1122ADF S AD FD AF DN =⋅=⋅△∴DN =分 ∵△BAE ≌△ADF(已证)∴BAE S △=ADF S △ ,BE=AF ∴AG=DN又∵△AEG ≌△DEM(AAS) ∴AG=DM……………………………………………………………………………5分 ∴DN=DM ∴GD 平分∠MGN ∴∠DGN=12∠MGN=45°…………………………………………………………………………………………6分 ∴有等腰直角△DGNGD==…………………………………………………………………………………………………7分 (3)FQ 分24. (1)令x=0,则 y=6,∴A (0,6)………………………………………….…………………………1分令y=0,则3064x =-+,解得x=8, ∴D (8,0)………………………………………………2分∴AC=AO=6,OD=8=10 ∴CD=AD-AC=4设BC=BO=x ,则BD=8-x,CD=4 在Rt △BCD 中,222BC CD BD += ∴2224(8x)x +=-,解得x=3∴点B 的坐标为(3,0) ……………………………………………………………………………4分(2)设直线AB 的解析式为y=kx+6 ∵点B 的坐标为(3,0) ∴0=3k+6 解得:k= -2∴直线AB 的解析式为y=-2x+6……………………………………………………………………5分 过点G 、F 作GM ⊥x 轴于M ,FN ⊥x 轴于N ∵△DFG 为等腰直角三角形∴DG=FD ∠1=∠2, ∠DMG =∠FND,∴△DMG ≌△FND (AAS )………………………………………………………………………6分 ∴设GM=DN=m ,DM=FN=n 求出G(8-n , m), F(8-m , -n) ∵点G 、F 在直线AB 上 ∴2(8n)62(8)6m n m =--+⎧⎨-=--+⎩ 解得 m=2,n=6∴点G 的坐标为(2,2) ……………………………………8分(3)如图, 设点3(,6)4Q a a -+,∵PQ ∥x 轴,且点P 在直线26y x =-+上∴点P 坐标为33(,6)84P a a -+…………………………………9分∴PQ=58a = DQ作QH ⊥x 轴于点H,∴DH=a -8, QH=364a -∴34QH DH = 由勾股定理可知 QH :DH :DQ= 3:4:5 …………………………………………10分 ∴QH=35DQ =38a即38a = 364a -,解得a=16∴点Q 、P 的坐标为 (16,6)Q - (6,6)P -∵ED ∥PQ ,ED=PQ D(8,0)∴E(2,0)-…………………………………………………………………………………………12分。
2017-2018学年云南省楚雄州八年级(下)期末数学试卷(解析版)
2017-2018学年云南省楚雄州八年级(下)期末数学试卷一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)1.(4分)下列各组数中,是勾股数的为()A.1,2,3B.4,5,6C.3,4,5D.7,8,92.(4分)汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与行驶时间t(时)的函数关系用图象表示应为()A.B.C.D.3.(4分)我国在近几年奥运会上所获金牌数(单位:枚)统计如下:则这组数据的众数与中位数分别是()A.32,32B.32,16C.16,16D.16,324.(4分)若a<0,则下列不等式不成立的是()A.a+5<a+7B.5 a>7 a C.5﹣a<7﹣a D.>5.(4分)如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.85°B.75°C.95°D.105°6.(4分)如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.(4分)下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2D.﹣4﹣b28.(4分)如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,∠AED的度数是()A.120°B.115°C.105°D.100°二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)分解因式:a3b﹣ab3=.10.(3分)如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),如果要使△ABD与△ABC全等,且点D坐标在第四象限,那么点D的坐标是.11.(3分)如图在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,若AB=10,则△BDE的周长等于.12.(3分)若m+n=3,则2m2+4mn+2n2﹣6的值为.13.(3分)如图,E为△ABC中AB边的中点,EF∥BC交AC于点F,若EF=3,则AC=.14.(3分)如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.三、解答题(本大题共9个小题,满分70分)15.(6分)化简:﹣3×++(π+1)0.16.(7分)解下列不等式组,并把它的解集表示在数轴上.17.(7分)解方程:﹣=1.18.(8分)先化简:,然后给a选择一个你喜欢的数代入求值.19.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.20.(7分)已知:在平行四边形ABCD中,AM=CN.求证:四边形MBND是平行四边形.21.(9分)如图,直线l1过点A(0,4),点D(4,0),直线l2:与x轴交于点C,两直线l1,l2相交于点B.(1)求直线l1的解析式和点B的坐标;(2)求△ABC的面积.22.(9分)某市石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y1元和y2元,分别求y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?23.(9分)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?2017-2018学年云南省楚雄州八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)1.【解答】解:A、错误,∵12+22=5≠32=9,∴不是勾股数;B、错误,∵42+52=41≠62=36,∴不是勾股数;C、正确,∵32+42=25=52=25,∴是勾股数;D、错误,∵72+82=113≠92=81,∴不是勾股数.故选:C.2.【解答】解:由题意得函数解析式为:Q=40﹣5t,(0≤t≤8)结合解析式可得出图象.故选:B.3.【解答】解:数据16出现了两次最多为众数,16处在第5位和第6位,它们的平均数为16.所以这组数据的中位数是16,众数是16,故选:C.4.【解答】解:A、a<0,则a是负数,a+5<a+7可以看作5<7两边同时加上a,故A选项成立;B、5a>7a可以看作5<7两边同时乘以一个负数a,不等号方向改变,故B选项成立;C、5﹣a<7﹣a是不等号5<7两边同时加上﹣a,不等号不变,故C选项成立;D、a<0,>可以看作>两边同时乘以一个负数a,不等号方向改变,故D选项不成立.故选:D.5.【解答】解:∵△AOB绕点O顺时针旋转60°,得到△A′OB′,∴∠B′=25°,∠BOB′=60°,∵∠A′CO=∠B′+∠BOB′,∴∠A′CO=25°+60°=85°,故选:A.6.【解答】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、是轴对称图形,也是中心对称图形.故本选项正确;故选:D.7.【解答】解:A、原式=(a+)2,不合题意;B、原式=(a﹣b)2,不合题意;C、原式=(5b+a)(5b﹣a),不合题意;D、原式不能分解,符合题意.故选:D.8.【解答】解:∵∠1=∠2=∠3=∠4=75°,∴∠5=360°﹣75°×4=360°﹣300°=60°,∴∠AED=180°﹣∠5=180°﹣60°=120°.故选:A.二、填空题(本大题共6个小题,每小题3分,满分18分)9.【解答】解:a3b﹣ab3,=ab(a2﹣b2),=ab(a+b)(a﹣b).10.【解答】解:∵△ABD与△ABC全等,∴C、D关于AB对称,顶点C与顶点D相对应,即C点和D点到AB的相对位置一样.∵由图可知,AB平行于x轴,∴D点的横坐标与C的横坐标一样,即D点的横坐标为5.又∵点A的坐标为(0,2),点C的坐标为(5,5),点D在第四象限,∴C点到AB的距离为3.∵C、D关于AB轴对称,∴D点到AB的距离也为3,∴D的纵坐标为﹣1.故D(5,﹣1).11.【解答】解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED,∴AC=AE.又∵AC=BC,∴BC=AE,∴△DBE的周长为DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=10.(提示:设法将DE+BD+EB转成线段AB).故答案为:10.12.【解答】解:∵m+n=3,∴2m2+4mn+2n2﹣6=2(m+n)2﹣6=18﹣6=12.故答案为:12.13.【解答】解:∵E为△ABC中AB边的中点,∴BE=EA,∵EF∥BC,∴=,∴BF=FC,则EF为△ABC的中位线,∴AC=2EF=6,故答案为:6.14.【解答】解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),∴不等式3x+b>ax﹣3的解集是x>﹣2,故答案为:x>﹣2.三、解答题(本大题共9个小题,满分70分)15.【解答】解:原式=2﹣3×+2+1=2﹣+2+1=+2+1.16.【解答】解:解不等式3x+1>5(x﹣1),得:x<3,解不等式x﹣6≥,得:x≥2,在同一条数轴上表示不等式的解集为:所以原不等式组的解集为2≤x<3.17.【解答】解:方程两边同乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),整理得2x﹣2=0,解得x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去.∴原方程无解.18.【解答】解:原式=(﹣)×═(﹣)×=×=∵要使分式有意义,故a+1≠0且a﹣2≠0∴a≠﹣1且a≠2∴a=1时,原式==3.19.【解答】解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).20.【解答】解:证明:(法一)∵四边形ABCD是平行四边形∴AD∥CB,AD=CB∵AM=CN∴AD﹣AM=CB﹣CN即DM=BN又∵DM∥BN∴四边形MBND是平行四边形(法二)∵四边形ABCD是平行四边形∴∠A=∠C,AB=CD在△AMN和△CND中又∵∴△AMN≌△CND∴BM=DN∵AM=CN∴AD﹣AM=CB﹣CN即DM=BN又∵BM=DN∴四边形MBND是平行四边形21.【解答】解:(1)设l1的解析式为:y=ax+b∵l1经过A(0,4),D(4,0)∴将A、D代入解析式得:b=44a+b=0∴a=﹣1,b=4即l1的解析式为:y=﹣x+4,l1与l2联立,得B(2,2);(2)C是l2与x轴的交点,在y=x+1中所以令y=0,得C(﹣2,0)∴|CD|=6,|AO|=4,B到X的距离为2∵AO⊥CD∴△ACD的面积为|AO||CD|=×4×6=12 ①△CBD的面积为×B到X轴的距离×CD=×2×6=6 ②∴△ABC的面积为①﹣②=622.【解答】解:(1)依题意得:y1=(2100﹣800﹣200)x=1100x,y2=(2400﹣1100﹣100)x﹣20000=1200x﹣20000,(2)设该月生产甲种塑料x吨,则乙种塑料(700﹣x)吨,总利润为W元,依题意得:W=1100x+1200(700﹣x)﹣20000=﹣100x+820000.∵解得:300≤x≤400.∵﹣100<0,∴W随着x的增大而减小,∴当x=300时,W最大=790000(元).此时,700﹣x=400(吨).因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.23.【解答】(1)证明:∵△A1CB1≌△ACB,∴CA1=CA,∵图①中的△A1B1C顺时针旋转45°得图②,∴∠B1CB=∠A1CA=45°,∴∠BCA1=45°在△CQA1和△CP1A中,,∴△CQA1≌△CP1A,∴CP1=CQ;(2)解:过点P1作P1P⊥AC于点P,如图②,在Rt△AP1P中,∵∠A=30°,∴P1P=AP1=×2=1,在Rt△CP1P中,∵∠P1CP=45°,∴CP=P1P=1,∴CP1=PP1=,∴CQ=CP1=.。
2017—2018学年度下学期期末教学质量监测八年级数学试题
2017—2018学年度下学期期末教学质量监测八年级数学试题一、选择题1. 使式子“x x =2不成立...“.的x 的值是 A. 0 B.21C. 1D. 2-2. 下列二次根式,不能与2合并的是A.2 B.8C.12D.183. 下列函数中,y 是x 的正比例函数的是A.12-=x yB.3xy =C. 22x y = D.xy 1=4. 正方形具有而菱形不具有的性质是A. 对角线互相平分B. 每一条对角线平分一组对角C. 对角线相等D. 对边相等5. 在Rt △ABC 中,斜边AB =3,则AB 2+AC 2+BC 2的值为 A. 18 B. 16 C. 12D. 8 6. 在□ABCD 中,对角线AC 与BD 交于点O ,∠DAC =42°,∠CBD =23°,则∠COD =A. 61°B. 63°C. 65°D. 67°7. 已知一次函数43+-=x y ,则下列说法不正确...的是 A. 该函数的图象经过点(1,1) B. 该函数的图象不经过第三象限 C. y 的值随x 的增大而减小 D. 该函数的图象与x 轴的交点坐标为⎪⎭⎫ ⎝⎛-0,348. 数据1x ,2x ,3x ,4x 的平均数是5,方差是4,则数据11x +,21x +,31x +,41x +的平均数和 方差分别是A. 5, 4B. 6, 4C. 6, 5D. 5,59. 如图,甲轮船以16海里/小时的速度离开港口O 向东南方向航行,乙轮船同时同地向西南 方向航行,已知他们离开港口1.5小时后分别到达A 、B 两地点,若AB =30海里,则乙轮 船的航行速度为A. 14海里 B . 12海里 C . 10海里 D. 8海里10. 如图,有一□ABCD 与一正方形CEFG ,其中E 点在边AD 上,若︒=∠35ECD ,︒=∠15AEF ,则B∠的度数为 A. 70°B. 55°C. 50°D. 75°(第6题图)(第12题图)(第17题图)11. 已知某一次函数的图象经过)0,3(-,)5,0(-两点,判断此图象与下列哪条直线的交点在第三象限?A. 04=-xB. 04=+xC.04=-yD.04=+y12. 如图,四边形ABCD 中,︒=∠90A ,3,33==AD AB ,点 M 、N 分别为线段BC 、AB 上的动点(含端点,但点M 不与点B 重合),点E 、F 分别为DM 、MN 的中点,则EF 长度的最大值为 A. 6 B. 4C. 3D. 2二、填空题3. 小明同学将连续10天引体向上的测试成绩(单位:个)记录如下:16, 18, 18, 16, 19, 19, 18,21, 18, 21.则这组数据的中位数是_____________________________.14. 若一直角三角形的两边长分别为3与5,则第三边长为__________________.15. 已知一次函数()283my m x-=-,则y 随x 的增大而__________________.16.如图,在□ABCD 中,AB =4,AC=AB ,若︒=∠60B ,则此□ABCD 的周长为 . 17. 如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点. 若AD =6,DE =5,则CD 的长等 于 .18. 如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰ABC ∆,连接OC ,以O 为圆心,OC 长为半径画弧交数轴于点M ,则点M 对应的实数为_______________.19. 已知点),(00y x P 和直线b kx y +=,则点P 到直线b kx y +=的距离d 可用公式2001kb y kx d ++-=计算. 例:求点)1,2(-P 到直线1+=x y 的距离.解:由直线1+=x y 可知1,1==b k . 所以点)1,2(-P 到直线1+=x y 的距离为2221111)2(112200==++--⨯=++-=k b y kx d ,根据以上材料,写出点)1,2(-P 到直线12-=x y 的距离为___________________________ .三、解答题20.计算下列各题: (1)2321-(2))132)(132(+--+.21. 如图,已知四边形ABCD 是菱形,对角线AC 与BD 交于点O ,若8=AC ,6=DB ,AB DH ⊥于H ,试求DH 的长.22.如图,AC 为矩形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处.(1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.23、如图,l A 、l B 分别表示A 步行与B 骑车在同一路上行驶的路程y (据图象回答下列问题:(1)B 出发时与A 相距______千米.(2)B 骑车一段路后,自行车发生故障,进行修理,所用的时间是______小时. (3)当B 再次出发后______小时与A 相遇.(4)若B 的自行车不发生故障,保持出发时的速度匀速前进,A ,B 肯定会提前相遇,在原图中画出这种假设情况下B 骑车行驶过程中路程y 与时间x 的函数图象,在图中标出这个相遇点P ,并回答P 离B 的出发点O 相距多少千米? (写出解答过程)2524.目前节能灯已在大城市基本普及,某市又面向县级及农村地区推广,为响应号召,某商场计划购进节能灯240只,这两种节能灯的进价、售价如下表:(1)若该商场购进这两种节能灯的进货款为7800元,求甲、乙两种型号节能灯各进多少只?(2)若该商场决定购进乙型的进货量不超过甲型的进货量的3倍,应怎样安排进货才能使该商场在销售完这批节能灯时获利最多?25.如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=B F,连接DE,过点E作EG DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是________________________,位置关系是_____________________;(2)如图2,若点E、F分别是CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E、F分别是BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.(第25题图)。
云南省楚雄彝族自治州数学八年级下学期期末考试试卷
云南省楚雄彝族自治州数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2017八下·德州期末) 若有意义,则m能取的最小整数值是()A . m=0B . m=1C . m=2D . m=32. (2分) (2020八下·大理期末) 以下列各数为边长,能构成直角三角形的是()A . 1,2,2B . 1,,2C . 4,5,6D . 1,1,3. (2分) (2020九上·奉化期末) 如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB,若AB=3BD。
则S△ADE:S△EFC的值为()A . 4:1B . 3:2C . 2:1D . 3:14. (2分) (2019八下·南安期末) 下列说法中正确的是()A . 有一组对边平行的四边形是平行四边形B . 对角线互相垂直的四边形是菱形C . 有一组邻边相等的平行四边形是菱形D . 对角线互相垂直平分的四边形是正方形5. (2分) (2020八下·长沙期中) 对一组数据:2,2,1,3,3 分析错误的是()A . 中位数是1B . 众数是3和2C . 平均数是2.2D . 方差是0.566. (2分) (2017八下·双柏期末) 一次函数y=kx+b,则k、b的值为()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<0二、填空题 (共8题;共10分)7. (2分)若x,y为实数,且=0,则的值为________ .8. (1分)(2019·黄埔模拟) 如果一次函数是常数,的图象经过点,那么y的值随x的增大而________ 填“减小”或“增大”9. (1分)小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是________米.10. (1分) (2016九上·思茅期中) 如图,在Rt△ABC中,∠ABC=90°,AC=10cm,点D为AC的中点,则BD=________cm.11. (2分) (2017七下·抚宁期末) 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有________个.12. (1分) (2019九上·北京开学考) 在平面直角坐标系中,已知点P的坐标是(3,4),则线段OP的长为________。
楚雄彝族自治州八年级下学期数学期末考试试卷
楚雄彝族自治州八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八下·江都期中) 完成下列任务,宜用抽样调查的是()A . 调查你班同学的年龄情况B . 了解你所在学校男、女生人数C . 考察一批炮弹的杀伤半径D . 奥运会上对参赛运动员进行的尿样检查2. (2分)如图,AB∥CD∥EF,BC∥AD,AC为∠BAD的平分线,图中与∠AOE相等(不含∠AOE)的角有()A . 2个B . 3个C . 4个D . 5个3. (2分)(2018·邯郸模拟) 已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A . ∠DAE=∠BAEB . ∠DEA=∠DABC . DE=BED . BC=DE4. (2分)下列函数中,当x<0时,y随x的增大而增大的是()A . y=﹣3x+4B .C .D .5. (2分)平行四边形内角平分线能够围成的四边形是()A . 梯形B . 矩形C . 正方形D . 不是平行四边形6. (2分) (2017七下·萧山期中) 如图,图形W,X,Y,Z是形状和大小相同,能完全重合的图形.根据图中数据可计算的图形W的面积是()A . 4-πB . 1-0.25πC . 4-0.25πD . 1-7. (2分) (2020八上·邛崃期末) 在平面直角坐标系中,点P与点M关于y轴对称,点N与点M关于x轴对称,若点P的坐标为(-2,3),则点N的坐标为()A . (-3,2)B . (2,3)C . (2,-3)D . (-2,-3)8. (2分)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是()A . 45°B . 120°C . 60°D . 90°9. (2分)已知E是矩形ABCD的边BC的中点,那么S△AED=________S矩形ABCD()A .B .C .D .10. (2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB与E,交AC于F,过点O作OD⊥AC于D,下列四个结论:其中正确的结论是()①EF=BE+CF;②∠BOC=90°+∠A;③设OD=m,AE+AF=n,则S△AEF=mn.④EF不能成为△ABC的中位线.A . 1个B . 2个C . 3个D . 4个二、填空题 (共10题;共14分)11. (1分) (2015八下·扬州期中) 如图,菱形ABCD和菱形ECGF的边长分别为4和6,∠A=120°,则阴影部分的面积是________.12. (1分)为了考察我校八年级同学的视力情况,从八年级的10个班共330名学生中,每班随机抽取了5名同学进行调查,在这个问题中,样本的容量是________13. (1分)如图,已知平行四边形ABCD的周长为20,对角线AC,BD相交于点O,过O作EO⊥AC,连接EC,则△DEC的周长为________15. (2分)观察下面折线图,回答问题:(1) ________组的数据的极差较大;(2) ________组的数据的方差较大.16. (1分)(2017·桥西模拟) 一个n边形的内角和是其外角和的2倍,则n=________.17. (3分)在一次徒步活动中,有甲、乙两支徒步队伍.队伍甲由A地步行到B地后按原路返回,队伍乙由A地步行经B地继续前行到C地后按原路返回,甲、乙两支队伍同时出发.设步行时间为x(分钟),甲、乙两支队伍距B地的距离为y1(千米)和y2(千米).(甲、乙两队始终保持匀速运动)图中的折线分别表示y1、y2与x之间的函数关系,请你结合所给的信息回答下列问题:(1)A、B两地之间的距离为________ 千米,B、C两地之间的距离为________ 千米;(2)求队伍乙由A地出发首次到达B地所用的时间,并确定线段MN表示的y2与x的函数关系式________18. (2分) (2015八下·津南期中) 已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.19. (1分) (2017八上·西安期末) 已知方程|x|=ax+1有一个负根但没有正根,则a的取值范围是________20. (1分)如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=________.三、解答题 (共6题;共66分)21. (5分)如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形纸片的两条对边上,如果∠MEF=90°,∠EMF=30°,AB∥CD,∠1=28°,求∠2的度数.22. (10分)(2016·南山模拟) 今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.对雾霾天气了解程度的条形统计图对雾霾天气了解程度的扇形统计图(1)本次参与调查的学生共有________人,m=________,n=________;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是________度;(3)请补全图1示数的条形统计图________;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.23. (15分)(2019·宜兴模拟) 如图,在平面直角坐标系中,过A(-2, 0), C(0, 6)两点的抛物线y=-x2+ax+b与x轴交于另一点B,点D是抛物线的顶点.备用图(1)求a、b的值;(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.随着点P的运动,若以A、P、Q、C为顶点的四边形是平行四边形,请直接写出符合条件的点Q的坐标;(3)在直线AC上是否存在一点M,使△BDM的周长最小,若存在,请找出点M并求出点M的坐标.若不存在,请说明理由。
楚雄彝族自治州八年级下学期数学期末试卷
楚雄彝族自治州八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共18分)1. (3分) (2017七下·南安期中) 不等式组的解集在数轴上表示正确的是()A .B .C .D .2. (3分)(2019·锦州) 下列既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (3分)到△ABC的三条边距离相等的点是△ABC的是()A . 三条中线的交点,B . 三条角平分线的交点C . 三条高线的交点D . 三条边的垂直平分线的交点4. (3分) (2019八下·余杭期中) 若多边形的边数由3增加到n(n为大于3的正整数),则其外角和的度数()A . 增加B . 减少C . 不变D . 不能确定5. (3分)若关于x的方程产生增根,则m是()A . -1B . 1C . -2D . 26. (3分)(2016·葫芦岛) 如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A . 4B . 8C . 2D . 4二、填空题 (共6题;共18分)7. (3分)(2017·镇江) 分解因式:9﹣b2=________.8. (3分)若分式的值为0,则x的值为________ .9. (3分)如图,△ABC绕点A旋转后到达△ADE处,若∠BAC=120°,∠BAD=30°,则∠CAE=________ °.10. (3分)(2017·湖州模拟) 不等式组的解集是________.11. (3分) (2019八上·南浔月考) 如图,已知△ABC为等边三角形,高AH=10 cm,P为AH上的一个动点,D为AB的中点,则PD+PB的最小值为________cm.12. (3分) (2017八上·揭阳月考) 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、4、2、3,则最大正方形E的面积是________.三、(本大题共5小题,每小题12分,共30分) (共5题;共36分)13. (12分)(2017·天桥模拟) 完成下列各题:(1)计算:2﹣1﹣(4﹣π)0+(2)解方程: = .14. (6分) (2018八上·黑龙江期末) 先化简,再求值:,其中x=315. (6分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.16. (6分) (2020七上·奉化期末) 根据下列语句,画出图形.如图,已知平面内有四个点、、、,共中任意三点都不在同一直线上.①画直线;②连接、,相交于点;③画射线、,交于点;④过点作所在直线的垂线段,垂足为点17. (6分) (2017八上·云南月考) 如图,某市区有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,现准备进行绿化,中间的有一边长为(a+b)米的正方形区域将修建一座雕像,则绿化的面积是多少平方米?并求出当a=5,b=3时的绿化面积.四、(本大题共3小题,每小题6分,共24分) (共3题;共18分)18. (6分) (2016九下·江津期中) 商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7000元.(1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8000元,6月全月商场进行“六一儿童节”促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?19. (6分)(2013·义乌) 解方程(1) x2﹣2x﹣1=0(2) = .20. (6分)阅读后作答:我们知道,有些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2 ,就可以用图1所示的面积关系来说明.(1)图2中阴影部分的面积为________;(2)根据图3写出一个等式;(3)已知等式(x+p)(x+q)=x2+(p+q)x+pq,请画出一个相应的几何图形加以说明.五、(本大题共2小题,每小题9分,共18分) (共2题;共18分)21. (9.0分) (2015八下·罗平期中) 如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC 的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.22. (9分)(2019·昌图模拟) 如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接, .(1)求证:四边形是菱形;(2)若,,,求的值.六、(本大题共1小题,共12分) (共1题;共12分)23. (12分)(2019·包头) 如图,在平面直角坐标系中,已知抛物线与轴交于),两点,与轴交于点,连接.(1)求该抛物线的解析式,并写出它的对称轴;(2)点为抛物线对称轴上一点,连接,若,求点的坐标;(3)已知,若是抛物线上一个动点(其中),连接,求面积的最大值及此时点的坐标.(4)若点为抛物线对称轴上一点,抛物线上是否存在点,使得以为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由.参考答案一、选择题 (共6题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共18分)7-1、8-1、9-1、10-1、11-1、12-1、三、(本大题共5小题,每小题12分,共30分) (共5题;共36分) 13-1、13-2、14-1、15-1、16-1、17-1、四、(本大题共3小题,每小题6分,共24分) (共3题;共18分) 18-1、18-2、19-1、19-2、20-1、20-2、20-3、五、(本大题共2小题,每小题9分,共18分) (共2题;共18分) 21-1、21-2、22-1、22-2、六、(本大题共1小题,共12分) (共1题;共12分) 23-1、23-2、23-3、23-4、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABOA´B´C第5题12345ABCDE Q(升)t(小时)O 840Q(升)t(小时)O 840BQ(升)t(小时)O 840CQ(升)t(小时)O 840DCy楚雄州2017—2018学年末教学质量监测八年级数学试卷(全卷三个大题,共23个小题,满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)1、下列各组数中,是勾股数的为()A、1,2,3,B、4,5,6,C、3,4,5,D、7,8,9,2、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q(升)与行驶时间(t小时)之间的函数关系的图象是()3、我国在近几年奥运会上所获金牌数(单位:枚)统计如下:则这组数据的众数与中位数分别是()A、32,32B、32,16C、16,16D、16,324、若a<0,则下列不等式不成立的是()A、a+5<a +7B、5 a>7 aC、5-a<7-aD、5a>7a5、如图,在△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A´OB´,边A´B´与边OB交于点C(A´不在OB上),则∠A´CO的度数为()A、85°B、75°C、95°D、105°6、下列图形中,既是轴对称图形,又是中心对称图形的是()7、下列多项式中不能用公式分解的是()A、a2+a+41B、-a2-b2-2abC、-a2+25bD、-4-b28、如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,则∠AED的度数是()A、120°B、110°C、115°D、100°二、填空题(本大题共6个小题,每小题3分,满分18分)9、分解因式:a3b-ab3 = ;届数23届24届25届26届27届28届金牌数15 5 16 16 28 32第14题F E A C B 10、如图,在直角坐标平面内的△ABC 中,点A 的坐标为 (0,2),点C 的坐标为(5,5),如果要使△ABD 与△ABC 全等,且点D 坐标在第四象限,那么点D 的坐标是 ; 11、在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于点D , DE ⊥AB 于点E ,且AB=10,则△EDB 的周长是________;(第11题) (第13题)12、若m+n=3,则代数式2m 2+4mn+2n 2-6的值为 ; 13、如图,E 为△ABC 中AB 边的中点,EF ∥AC 交BC 于点F ,若EF=3cm ,则AC= .14、如图,已知函数y = 3x + b 和y = ax -3的图象交于点P(-2,-5) , 则根据图象可得不等式3x +b >ax -3的解集是 ; 三、解答题(本大题共9个小题,满分70分) 15、(本题6分)化简:()01831312+++⨯-π16、(本题7分)解下列不等式组,并把它的解集表示在数轴上。
⎪⎩⎪⎨⎧-≥-->+386634)1(513x x x x17、(本题7分)解分式方程:114112=---+x x x18、(本题8分)先化简:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,然后给a 选择一个你喜欢的数代入求值。
B A DNMDC B AABCO D x y1l 2l19、(本题8分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1, 并写出点A 1的坐标; (2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标;20、(本题7分)已知:在平行四边形ABCD 中,AM=CN 。
求证:四边形MBND 是平行四边形。
21、(本题9分)如图,直线1l 过点A (0,4),点D (4,0),直线2l :121+=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。
(1)求直线1l 的解析式和点B 的坐标;(2)求△ABC 的面积。
出厂价 成本价 排污处理费 甲种塑料 2100(元/吨) 800(元/吨) 200(元/吨) 乙种塑料2400(元/吨)1100(元/吨)100(元/吨)另每月还需支付设备管理、维护费20000元(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨时,获得的总利润最大?最大利润是多少?23、(本题9分)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?楚雄州2017—2018学年末教学质量监测八年级数学参考答案一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)题 号 1 2 3 4 5 6 7 8 答 案CBCDADDA二、填空题(本大题共6个小题,每小题3分,满分18分)9、ab (a +b )(a -b ) 10、(5,-1) 11、10 12、12 13、6cm 14、x > -2;三、解答题(本大题共9个小题,满分70分) 15、(本题6分)解:原式=223221+ ......(4分) =4231+ ......(6分)16、(本题7分)解:解不等式①得,x <3; ......(2分)解不等式②得,x ≥2; ......(4分) 在同一条数轴上表示不等式①②的解集为:...(6分)所以,原不等式组的解集为2≤x <3. ......(7分) 17、(本题7分)解:方程两边同时乘以x 2-1,得 ......(1分) (x +1)2-4= x 2-1 ......(3分)2x =2 ......(4分)x =1 ......(5分)检验:经检验x =1是原方程的增根; ......(6分)所以,原分式方程无解。
......(7分)18、(本题8分) 解:原式=()221111a 3-+•⎪⎭⎫⎝⎛--+a a a ......(2分)=()22211a 11a 3-+•⎪⎪⎭⎫ ⎝⎛+--+a a a ......(3分)NM D CBAABCODxy1l 2l =()22211a -4-+•+a a a ......(4分) =()222-4a a - ......(5分) =aa-+22 ......(6分) ∵要使分式有意义,故a +1≠0且a -2≠0∴ a ≠-1且a ≠2 ......(7分) ∴a =1时,原式=31-212=+ ......(8分) (注意:a 取其它值时,参照给分,但是a ≠-1且a ≠2)19、(本题8分)解:(1)如图所示:点A 1的坐标(2,﹣4); ….(4分)(2)如图所示,点A 2的坐标(﹣2,4).……(8分)20、(本题7分)证明:∵平行四边形ABCD∴AD ∥CB 且AD=CB ......(2分)又∵AM=CN∴AD-AM=CB-CN即DM=BN ......(5分)又∵DM ∥BN ......(6分) ∴四边形MBND 是平行四边形。
......(7分)(其它方法参照给分)21、(本题9分)解:(1)设直线1l 的解析式为y=kx +b ......(1分) ∵直线1l 经过点A(0,4)和D(4,0) ∴⎩⎨⎧=-=⎩⎨⎧=+=41k ,044b b k b ......(3分)∴直线1l 的解析式为y=-x+4 ......(4分) ∵点B 是直线1l 和直线2l 的交点由⎩⎨⎧==⎪⎩⎪⎨⎧+=--=22x 解之,得,1214y y x y x ∴点B 的坐标为(2,2) ......(6分)(2)∵点C 是直线2l 与x 轴的交点 ∴在121+=x y 中令y=0,得01x 21=+,解之,得x=-2 ∴ OC=2, CD=6 ......(7分) ∴B BCD ACD ABC y CD OA CD S S S •-•=-=2121△△△ (平方单位)661226214621=-=⨯⨯-⨯⨯=......(9分)(其它解法参照给分) 22、(本题9分)解:(1)根据题意,得:1y =(2100-800-200)x=1100x2y =(2400-1100-100)x-20000=1200x-20000 ......(4分) ∴1y 与x 的函数关系式为1y =1100x ;2y 与x 的函数关系式为2y =1200x-20000 ......(5分)(2)设该月生产甲种塑料m 吨,则乙种塑料(700-m)吨,总利润为w 元,根据题意,得:w=1100m+1200(700-m)-20000=-100m+820000 ......(6分) ∵400m 300解之,得,400700400m ≤≤⎩⎨⎧≤-≤m ......(7分)∵在w=-100m+820000中,w 随m 的增大而减小∴当m=300时,W 最大=-30000+820000=790000(元),此时,700-m=400(吨) 所以,该月生产甲、乙两种塑料分别为300吨和400吨时总利润最大,最大总利润是790000元。
......(9分)23、(本题9分)解:(1)∵ACB CB A ≌△△11∴CA CA =1 A A ∠=∠1 ......(1分) 又∵图①中的C B A 11△顺时针旋转45°得到图② ∴︒=∠=∠4511CA A CB B∴︒=︒︒=∠-∠=∠4545-901111CB B CA B BCP ......(2分) 在A CP 1△和1△CQA 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠1111AA CA CA QCA CA P ∴A CP 1△≌1△CQA (ASA )∴1CP =CQ ......(5分) (2)过点P 1作P 1P ⊥CA 于点P∵∠A=30°,AP 1=2∴12212111=⨯==AP P P ......(6分) ∵在Rt ︒=∠45中,△11CP P CP P∴CP=P 1P=1 ......(7分) 在Rt 211中,由勾股定理,得△2211=+=CP CP P ......(8分)∴CQ=CP 1=2 ......(9分) (其它解法,参照给分)。