第三章 第三节 三角函数的图象和性质

合集下载

高中数学 第三章 三角函数 3.3 三角函数的图像与性质 3.3.1 正弦函数、余弦函数的图象与性质

高中数学 第三章 三角函数 3.3 三角函数的图像与性质 3.3.1 正弦函数、余弦函数的图象与性质

3.3.1 正弦函数、余弦函数的图象与性质(二)[学习目标] 1.掌握y =sin x 与y =cos x 的定义域,值域,最值、单调性、奇偶性等性质,并能解决相关问题.2.掌握y =sin x ,y =cos x 的单调性,并能利用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.[知识链接]1.观察正弦曲线和余弦曲线的对称性,你有什么发现?答 正弦函数y =sin x 的图象关于原点对称,余弦函数y =cos x 的图象关于y 轴对称. 2.上述对称性反映出正弦、余弦函数分别具有什么性质?如何从理论上加以验证? 答 正弦函数是R 上的奇函数,余弦函数是R 上的偶函数.根据诱导公式得,sin(-x )=-sin x ,cos(-x )=cos x 均对一切x ∈R 恒成立.3.观察正弦曲线和余弦曲线,正弦、余弦函数是否存在最大值和最小值?若存在,其最大值和最小值分别为多少?答 正弦、余弦函数存在最大值和最小值,分别是1和-1. [预习导引]正弦函数、余弦函数的性质(下表中k ∈Z ): 函数 y =sin x y =cos x图象定义域 R R 值域 [-1,1][-1,1]对称轴x =k π+π2x =k π对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 奇偶性 奇函数偶函数单调递增⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π[]-π+2k π,2k π 单调递减⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π []2k π,π+2k π最值在x =π2+2k π时,y max =1;在x =-π2在x =2k π时,y max =1;在x =π+2k π要点一 求正弦、余弦函数的单调区间例1 求函数y =2sin ⎝ ⎛⎭⎪⎫π4-x 的单调递增区间. 解 y =2sin ⎝ ⎛⎭⎪⎫π4-x =-2sin ⎝⎛⎭⎪⎫x -π4,令z =x -π4,则y =-2sin z .因为z 是x 的一次函数,所以要求y =-2sin z 的递增区间, 即求sin z 的递减区间,即2k π+π2≤z ≤2k π+3π2(k ∈Z ).∴2k π+π2≤x -π4≤2k π+3π2(k ∈Z ),2k π+3π4≤x ≤2k π+7π4(k ∈Z ),∴函数y =2sin ⎝⎛⎭⎪⎫π4-x 的递增区间为⎣⎢⎡⎦⎥⎤2k π+3π4,2k π+7π4(k ∈Z ).规律方法 用整体替换法求函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,如果式子中x 的系数为负数,先利用诱导公式将x 的系数变为正数再求其单调区间.再将最终结果写成区间形式.跟踪演练1 求下列函数的单调递增区间:(1)y =1+2sin ⎝ ⎛⎭⎪⎫π6-x ;(2)y =log 12cos x .解 (1)y =1+2sin ⎝ ⎛⎭⎪⎫π6-x =1-2sin ⎝⎛⎭⎪⎫x -π6.令u =x -π6,则根据复合函数的单调性知,所给函数的单调递增区间就是y =sin u 的单调递减区间,即2k π+π2≤u ≤2k π+32π(k ∈Z ),亦即2k π+π2≤x -π6≤2k π+3π2(k ∈Z ).亦即2k π+23π≤x ≤2k π+53π(k ∈Z ),故函数y =1+2sin ⎝ ⎛⎭⎪⎫π6-x 的单调递增区间是⎣⎢⎡⎦⎥⎤2k π+23π,2k π+53π(k ∈Z ).(2)由cos x >0,得2k π-π2<x <2k π+π2,k ∈Z .∵0<12<1,∴函数y =log 12cos x 的单调递增区间即为u =cos x ,x ∈⎝⎛⎭⎪⎫2k π-π2,2k π+π2(k ∈Z )的递减区间,∴2k π≤x <2k π+π2,k ∈Z .故函数y =log 12cos x 的单调递增区间为⎣⎢⎡⎭⎪⎫2k π,2k π+π2(k ∈Z ). 要点二 正弦、余弦函数的单调性的应用例2 利用三角函数的单调性,比较下列各组数的大小.(1)sin ⎝ ⎛⎭⎪⎫-π18与sin ⎝ ⎛⎭⎪⎫-π10;(2)sin196°与cos156°;(3)cos ⎝ ⎛⎭⎪⎫-235π与cos ⎝ ⎛⎭⎪⎫-174π. 解 (1)∵-π2<-π10<-π18<π2,∴sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.(2)sin196°=sin(180°+16°)=-sin16°, cos156°=cos(180°-24°)=-cos24°=-sin66°, ∵0°<16°<66°<90°,∴sin16°<sin66°; 从而-sin16°>-sin66°,即sin196°>cos156°.(3)cos ⎝ ⎛⎭⎪⎫-235π=cos 235π=cos(4π+35π)=cos 35π, cos ⎝ ⎛⎭⎪⎫-174π=cos 174π=cos ⎝ ⎛⎭⎪⎫4π+π4=cos π4.∵0<π4<35π<π,且y =cos x 在[0,π]上是减函数,∴cos 35π<co s π4,即cos ⎝ ⎛⎭⎪⎫-235π<cos ⎝ ⎛⎭⎪⎫-174π. 规律方法 用正弦函数或余弦函数的单调性比较大小时,应先将异名化同名,把不在同一单调区间内的角用诱导公式转化到同一单调区间,再利用单调性来比较大小. 跟踪演练2 比较下列各组数的大小.(1)sin ⎝ ⎛⎭⎪⎫-376π与sin ⎝ ⎛⎭⎪⎫493π; (2)cos870°与sin980°.解 (1)sin ⎝ ⎛⎭⎪⎫-376π=sin ⎝ ⎛⎭⎪⎫-6π-π6=sin ⎝ ⎛⎭⎪⎫-π6,sin ⎝ ⎛⎭⎪⎫493π=sin ⎝⎛⎭⎪⎫16π+π3=sin π3,∵y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,∴sin ⎝ ⎛⎭⎪⎫-π6<sin π3,即sin ⎝ ⎛⎭⎪⎫-376π<sin 493π. (2)cos870°=cos(720°+150°)=cos150°,sin980°=sin(720°+260°)=sin260°=sin(90°+170°)=cos170°, ∵0°<150°<170°<180°,∴cos150°>cos170°,即cos870°>sin980°. 要点三 求正弦、余弦函数的最值(值域)例3 (1)求函数y =3-2sin x 取得最大值、最小值时的自变量x 的集合,并分别写出最大值、最小值;(2)求函数f (x )=2sin 2x +2sin x -12,x ∈⎣⎢⎡⎦⎥⎤π6,5π6的值域.解 (1)∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π+3π2,k ∈Z 时,y 取得最大值5,相应的自变量x 的集合为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2k π+3π2,k ∈Z .当sin x =1,即x =2k π+π2,k ∈Z 时,y 取得最小值1,相应的自变量x 的集合为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2k π+π2,k ∈Z .(2)令t =sin x ,y =f (t ),∵x ∈⎣⎢⎡⎦⎥⎤π6,5π6,∴12≤sin x ≤1,即12≤t ≤1. ∴y =2t 2+2t -12=2⎝ ⎛⎭⎪⎫t +122-1,∴1≤y ≤72,∴函数f (x )的值域为⎣⎢⎡⎦⎥⎤1,72.规律方法 (1)形如y =a sin x +b (或y =a cos x +b )的函数的最值或值域问题,利用正弦、余弦函数的有界性(-1≤sin x ,cos x ≤1)求解.求三角函数取最值时相应自变量x 的集合时,要注意考虑三角函数的周期性.(2)求解形如y =a sin 2x +b sin x +c (或y =a cos 2x +b cos x +c ),x ∈D 的函数的值域或最值时,通过换元,令t =sin x (或cos x ),将原函数转化为关于t 的二次函数,利用配方法求值域或最值即可.求解过程中要注意t =sin x (或cos x )的有界性.跟踪演练3 已知0≤x ≤π2,求函数y =cos 2x -2a cos x 的最大值M (a )与最小值m (a ).解 设cos x =t , ∵0≤x ≤π2,∴0≤t ≤1.∵y =t 2-2at =(t -a )2-a 2,∴当a <0时,M (a )=1-2a ,m (a )=0; 当0≤a ≤12时,M (a )=1-2a ,m (a )=-a 2;当12<a <1时,M (a )=0,m (a )=-a 2; 当a ≥1时,M (a )=0,m (a )=1-2a . 综上,M (a )=⎩⎪⎨⎪⎧1-2a , a ≤12,0,a >12,m (a )=⎩⎪⎨⎪⎧0, a <0,-a 2,0≤a <1,1-2a ,a ≥1.要点四 三角函数的奇偶性 例4 判断下列函数的奇偶性:(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2;(2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2x1+sin x .解 (1)显然x ∈R ,f (x )=cos 12x ,f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ),∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .∴f (x )的定义域关于原点对称. 又∵f (x )=lg(1-sin x )-lg(1+sin x ) ∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )] =lg(1+sin x )-lg(1-sin x )=-f (x ). ∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1, ∴x ∈R 且x ≠2k π-π2,k ∈Z .∵定义域不关于原点对称,∴该函数是非奇非偶函数.规律方法 判断函数奇偶性,要先判断函数的定义域是否关于原点对称,定义域关于原点对称是函数为奇函数或偶函数的前提条件,然后再判断f (-x )与f (x )之间的关系. 跟踪演练4 判断下列函数的奇偶性:(1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2·sin x ;(2)f (x )=1-2cos x +2cos x -1. 解 (1)f (x )=sin2x +x 2sin x ,又∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x )= -sin2x -x 2sin x =-f (x ),∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧1-2cos x ≥0,2cos x -1≥0,得cos x =12.∴f (x )=0,x =2k π±π3,k ∈Z .∴f (x )既是奇函数又是偶函数.1.函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6的一个递减区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2B .[-π,0]C.⎣⎢⎡⎦⎥⎤-23π,23πD.⎣⎢⎡⎦⎥⎤π2,23π答案 D解析 由π2≤x +π6≤32π解得π3≤x ≤43π.故选D.2.下列不等式中成立的是( )A .sin ⎝ ⎛⎭⎪⎫-π8>sin ⎝ ⎛⎭⎪⎫-π10 B .sin3>sin2 C .sin 75π>sin ⎝ ⎛⎭⎪⎫-25π D .sin2>cos1 答案 D解析 ∵sin2=cos ⎝ ⎛⎭⎪⎫π2-2=cos ⎝ ⎛⎭⎪⎫2-π2,且0<2-π2<1<π,∴cos ⎝ ⎛⎭⎪⎫2-π2>cos1,即sin2>cos1.故选D.3.函数y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是( )A.⎣⎢⎡⎦⎥⎤-32,12B.⎣⎢⎡⎦⎥⎤-12,32 C.⎣⎢⎡⎦⎥⎤32,1 D.⎣⎢⎡⎦⎥⎤12,1答案 B解析 ∵0≤x ≤π2,∴π6≤x +π6≤23π.∴cos 23π≤cos ⎝ ⎛⎭⎪⎫x +π6≤cos π6,∴-12≤y ≤32.故选B. 4.设a =sin33°,b =cos55°,c =tan35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,又0<cos35°<1,∴c >b >a .1.求函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的方法是:把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2 (k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+32π (k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断. 3.求三角函数值域或最值的常用求法:将y 表示成以sin x (或cos x )为元的复合函数再利用换元或配方或利用函数的单调性等来确定y 的范围.一、基础达标1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( ) A .第一象限B .第二象限C .第三象限D .第四象限答案 C2.若α,β都是第一象限的角,且α<β,那么( ) A .sin α>sin β B .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定答案 D3.函数y =2sin 2x +2cos x -3的最大值是( ) A .-1B .1 C .-12D .-5答案 C解析 由题意,得y =2sin 2x +2cos x -3=2(1-cos 2x )+2cos x -3=-2⎝ ⎛⎭⎪⎫cos x -122-12.∵-1≤cos x ≤1,∴当cos x =12时,函数有最大值-12.4.对于下列四个命题:①sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10; ②cos ⎝ ⎛⎭⎪⎫-25π4>cos ⎝ ⎛⎭⎪⎫-17π4; ③sin138°<sin143°;④tan40°>sin40°. 其中正确命题的序号是( ) A .①③B.①④ C .②③D .②④答案 B5.关于x 的函数f (x )=sin(x +φ)有以下命题:①对任意的φ,f (x )都是非奇非偶函数;②不存在φ,使f (x )既是奇函数,又是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中正确命题的序号是________. 答案 ②③解析 易知②③成立,令φ=π2,f (x )=cos x 是偶函数,①④都不成立.6.若|x |≤π4,则函数f (x )=cos 2x +sin x 的最小值是________.答案 12-22解析 由cos 2x =1-sin 2x ,故f (x )=1-sin 2x +sin x ,令sin x =t ,由|x |≤π4,由图象知t ∈[-22,22],故函数化为y =-t 2+t +1=-(t -12)2+54,当t =-22时,y min =12-22. 7.求下列函数的单调增区间. (1)y =1-sin x2;(2)y =log 12cos ⎝ ⎛⎭⎪⎫π3-x 2.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z ,得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x2的增区间为[4k π+π,4k π+3π] (k ∈Z ). (2)y =log 12cos ⎝ ⎛⎭⎪⎫π3-x 2=log 12cos ⎝ ⎛⎭⎪⎫x 2-π3.要求原函数的增区间,即求函数y =cos ⎝ ⎛⎭⎪⎫x 2-π3的减区间,且cos ⎝ ⎛⎭⎪⎫x 2-π3>0.∴2k π≤x 2-π3<2k π+π2(k ∈Z ).整理得4k π+23π≤x <4k π+53π(k ∈Z ).所以函数y =log 12cos ⎝ ⎛⎭⎪⎫π3-x 2的单调递增区间是⎣⎢⎡⎭⎪⎫4k π+23π,4k π+53π(k ∈Z ).二、能力提升 8.函数y =2sin x的单调增区间是( )A .[2k π-π2,2k π+π2](k ∈Z )B .[2k π+π2,2k π+3π2](k ∈Z ) C .[2k π-π,2k π](k ∈Z )D .[2k π,2k π+π](k ∈Z )答案 A解析 函数y =2x 为增函数,因此求函数y =2sin x 的单调增区间即求函数y =sin x 的单调增区间9.M ,N 是曲线y =πsin x 与曲线y =πcos x 的两个不同的交点,则|MN |的最小值为( )A .πB.2πC.3πD .2π 答案 C解析 在同一坐标系中画出函数y =πsin x 与y =πcos x 的图象,如图所示,则|MN |的最小值为|PQ |.又P (π4,2π2),Q (5π4,-2π2), 故|PQ |=π4-5π42+2π2+2π22=3π.10.sin1,sin2,sin3按从小到大排列的顺序为__________________.答案 sin3<sin1<sin2解析 ∵1<π2<2<3<π, sin(π-2)=sin2,sin(π-3)=sin3.y =sin x 在⎝⎛⎭⎪⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin1<sin(π-2),即sin3<sin1<sin2.11.已知ω是正数,函数f (x )=2sin ωx 在区间[-π3,π4]上是增函数,求ω的取值范围.解 由-π2+2k π≤ωx ≤π2+2k π(k ∈Z ), 得-π2ω+2k πω≤x ≤π2ω+2k πω. ∴f (x )的单调递增区间是[-π2ω+2k πω,π2ω+2k πω],k ∈Z . 根据题意,得[-π3,π4]⊆[-π2ω+2k πω,π2ω+2k πω]. 从而有⎩⎪⎨⎪⎧ -2π2ω≤-π3,π2ω≥π4,ω>0,解得0<ω≤32. 故ω的取值范围是(0,32]. 12.判断下列函数的奇偶性:(1)f (x )=2sin ⎝⎛⎭⎪⎫2x +52π;(2)f (x )=2sin x -1;(3)f (x )=lg(sin x +1+sin 2x ). 解 (1)函数定义域为R ,且f (x )=2sin ⎝ ⎛⎭⎪⎫2x +52π=2sin ⎝⎛⎭⎪⎫2x +π2=2cos2x ,显然有f (-x )=f (x )恒成立.∴函数f (x )=2sin ⎝⎛⎭⎪⎫2x +52π为偶函数. (2)由2sin x -1>0,即sin x >12,得函数定义域为⎝⎛⎭⎪⎫2k π+π6,2k π+56π(k ∈Z ),此定义域在x 轴上表示的区间不关于原点对称.∴该函数不具有奇偶性,为非奇非偶函数.(3)函数定义域为R . f (-x )=lg(-sin x +1+sin 2x )=lg 1sin x +1+sin 2x=-lg ()sin x +1+sin 2x =-f (x ),∴函数f (x )=lg(sin x +1+sin 2x )为奇函数.三、探究与创新 13.设函数y =-2cos ⎝ ⎛⎭⎪⎫12x +π3,x ∈⎣⎢⎡⎦⎥⎤28π5,a ,若该函数是单调函数,求实数a 的最大值. 解 由2k π≤12x +π3≤2k π+π(k ∈Z )得4k π-23π≤x ≤4k π+43π(k ∈Z ). ∴函数的单调递增区间是⎣⎢⎡⎦⎥⎤4k π-23π,4k π+43π(k ∈Z ), 同理函数的单调递减区间是⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π(k ∈Z ). 令285π∈⎣⎢⎡⎦⎥⎤4k π-23π,4k π+43π, 即1615≤k ≤4730,又k ∈Z ,∴k 不存在. 令285π∈⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π,得k =1. ∴285π∈⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π, 这表明y =-2cos ⎝ ⎛⎭⎪⎫12x +π3在⎣⎢⎡⎦⎥⎤28π5,22π3上是减函数,∴a 的最大值是22π3.。

【金版教程】届高考数学总复习 第3章 第3讲 三角函数的图象与性质课件 理 新人教A版

【金版教程】届高考数学总复习 第3章 第3讲 三角函数的图象与性质课件 理 新人教A版

求形如y=Asin(ωx+φ)(A>0,ω>0)的函数的单调区间,基
本思路是把ωx+φ看作一个整体,由-
π 2
+2kπ≤ωx+φ≤
π 2

2kπ(k∈Z)求得函数的增区间,由
π 2
+2kπ≤ωx+φ≤
3π 2
+2kπ(k
∈Z)求得函数的减区间.若在y=Asin(ωx+φ)中,ω<0,则应
先利用诱导公式将解析式转化,使x的系数变为正数,再进行
(1)y=cos(x+π3)(x∈[0,π])的值域________. (2)y=tan(4π-x)的单调递减区间__________.
1.f(x+T)=f(x) 最小 最小正周期
想一想:提示:f[(x+2)+2]=-f(x+2)=f(x),即f(x+4)
=f(x),所以f(x)是周期为4的函数.
____
________
________
____
y=tanx
无最值
____ ________ 无对称轴
____
判断以下命题的正误. ①y=sinx在第一象限是增函数.( ) ②y=cosx在[0,π]上是减函数.( ) ③y=tanx在定义域上为增函数.( ) ④y=|sinx|的周期为2π.( ) ⑤y=ksinx+1,x∈R则y的最大值为k+1.( )
Z)
π+2kπ(k∈Z)



(kπ,0),k∈Z
(kπ+
π 2

0),k∈Z
(
kπ 2
,0),k∈Z
x=kπ+
π 2
,k∈Z
x=kπ,k∈Z
2π 2π π
判一判:①× ②√ ③× ④× ⑤×

第三章第三节三角函数的图象和性质

第三章第三节三角函数的图象和性质
返回
(1)y=sin 2x-π4; (2)y=sin π4-2x.
返回
2.周期性是函数的整体性质,要求对于函数整个定义 域范围内的每一个x值都满足f(x+T)=f(x),其中T是 不为零的常数.如果只有个别的x值满足f(x+T)= f(x),或找到哪怕只有一个x值不满足f(x+T)=f(x), 都不能说T是函数f(x)的周期.
返回
[精析考题]
[例3] (2011·新课标全国卷)设函数f(x)=sin 2x+π4+cos
2x+π4,则
()
A.y=f(x)在0,π2单调递增,其图象关于直线x=π4对称
B.y=f(x)在0,π2单调递增,其图象关于直线x=π2对称
C.y=f(x)在0,π2单调递减,其图象关于直线x=π4对称
返回
返回
[精析考题] [例1] (2012·珠海模拟)函数y=lg(2sin x-1)+ 1-2cos x 的定义域为________.
返回
[自主解答] 要使函数有意义,必须有
2sin x-1>0, 1-2cos x≥0
sin 即
cos
x>12, x≤12.
解得ππ63+ +22kkππ<≤xx<≤56π53+π+2k2πk,π
返回
5.(教材习题改编)y=2-3cos x+π4的最大值为________. 此时x=________. 解析:当cos x+π4=-1时, 函数y=2-3cos x+π4取得最大值5, 此时x+π4=π+2kπ,从而x=34π+2kπ,k∈Z. 答案:5 34π+2kπ,k∈Z
返回
返回
1.求三角函数的单调区间时,应先把函数式化成形如y= Asin(ωx+φ)(ω>0)的形式,再根据基本三角函数的单 调区间,求出x所在的区间.应特别注意,考虑问题应 在函数的定义域内考虑.注意区分下列两种形式的单 调增区间不同;

三角函数的图象与性质

三角函数的图象与性质

-
;
-1
y=cosx
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
y
si-n6x的对称-5轴:x
k -4
2-,3对 称点-:2(k
,0);
-
y cosx的对称轴:x k , 对称点:(k ,0);
1.4.1正弦、余弦函数的图象
复习
回顾 三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
复习回顾
一.正弦余弦函数的作图: 几何描点法(利用三角函数线) 五点法作简图
二.周期性:
函数y Asin(x )和y Acos(x ),x R的周期T 2 | |
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cosx为偶函数图像关于y轴对称。
-6 -5
-4 -3
复习回顾 y y=sinx
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)

第3节三角函数的图象与性质.pptx

第3节三角函数的图象与性质.pptx
此类问题,必须最终化为 y=Asin(ωx+φ)+h
的形式后,方可利用周期 公式来求
考点三 三角函数的性质(多维探究)
考点三 三角函数的性质(多维探究)
考点三 三角函数的性质(多维探究)
命题角度2 三角函数的单调性
x的系数必须变 形为正,不然由
整理得出的结论 看看一样吗?当 然也可以由
易理解 得y=出sin正t与确结论 y=-sint单 调增减区 间对调
考点一 三角函数的定义域Y=anx的图 像考点一 三角函数的定义域
考点一 三角函数的定义域
考点一 三角函数的定义域
考点一 三角函数的定义域
y
y=sin
1x
0
π
y=cos x
x 2π
-1
考点一 三角函数的定义域
考点二 三角函数的值域(最值)
此类题,一般先化为 y=Asin(ωx+φ)+h
第3节三角函数的图象与 性质.pptx
2020/8/16
第3节 三角函数的图象与性质
01 诊断自测
02
考点一
三角函数的 定义域
例1 训 练1
03
考点二
三角函数的值域 (最值)
例2 练2

三角函数的性 例3-
04 考点三 质
1例3-2 训
(多维探究) 练例33-
3
诊断自测
1.思考辨析(在括号内打“√”或“×”) (1)余弦函数y=cos x的对称轴是y轴.( ) (2)正切函数y=tan x在定义域内是增函数.( ) (3)已知y=ksin x+1,x∈R,则y的最大值为k 只+解(是14.)(析其y=中si(的)n1|)x一余|是条弦偶.函函数数y=.c(os x的) 对称轴有无穷多条,y轴 (2)正切函数y=tan x在每一个区间(k∈Z)上都是增函 数,但在定义域内不 是单调函数,故不是增函数. (3)当k>0时,ymax=k+1;当k<0时,ymax=-k+1. 答案 (1)× (2)× (3)× (4)√

三角函数的图象和性质

三角函数的图象和性质

三角函数的图象和性质知识网络三角函数的图象和性质结构简图画龙点晴 概念三角函数的图象:(1) 函数x y sin =的图象叫做正弦曲线, 如图1; (2) 函数x y cos =的图象叫做余弦曲线, 如图2; (3) 函数x y tan =的图象叫做正切曲线, 如图3; (4) 函数x y cot =的图象叫做余切曲线, 如图4;周期函数: 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x +T)=f (x )那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。

说明:1︒周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界;2︒“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0)); 3︒T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期). 三角函数的性质: 三角函数的性质如下表:[活用实例][例1] 求下列函数的最值: (1)y=sin(3x+4π)-1 ; (2) y=sin 2x-4sinx+5 ; (3) y=x x cos 3cos 3+- ; (4))3cos(2π-=x y (6π≤x ≤32π).[题解] (1) 当3x+4π=2k π+2π即 x=1232ππ+k (k ∈Z)时y max =0; 当3x+4π=2k π-2π即x=432ππ-k (k ∈Z)时y min =-2. (2) y=(sinx-2)2+1 ∴当x=2k π-2π k ∈Z 时y max =10; 当x=2k π-2πk ∈Z 时y min = 2. (3)y=-1+xcos 31+ 当x=2k π+π k ∈Z 时 y max =2; 当x=2k π k ∈Z 时 y min = 21.(4)∵x ∈[6π,32π] ∴x-3π∈[-6π,3π], ∴当x-3π=0 即x=3π时 y max =2; 当x-3π=3π 即x=32π时 y min =1. [例2] 求下列函数的定义域:(1)y=x x 2cos 21cos 3-- ; (2)y=lg(2sinx+1)+1cos 2-x ; (3)y=)cos(sin x . [题解] (1)∵3cosx-1-2cos 2x ≥0 ∴21≤cosx ≤1 ∴定义域为:[2k π-3π, 2k π+3π] (k ∈Z). (2))(32326726221cos 21sin Z k k x k k x k x x ∈⎪⎩⎪⎨⎧+≤≤-+<<-⇒⎪⎩⎪⎨⎧≥->ππππππππ )(3262Z k k x k ∈+≤<-⇒ππππ ∴定义域为:)](32,62(Z k k k ∈+-ππππ.(3) ∵cos(sinx)≥0 ∴ 2k π-2π≤x ≤2k π+2π(k ∈Z) ∵-1≤sinx ≤1 , ∴x ∈R , 1cos ≤y ≤1.[例3] 已知函数f(x)=2asin 2x-23asinxcosx+b 的定义域为[0,2π],值域为[-5,4],求常数a,b 的值。

三角函数的图像和性质教学课件

三角函数的图像和性质教学课件

图像变化
当角度增加时,余 弦函数的值会减小, 图像会向中心靠拢; 当角度减小时,余 弦函数的值会增加, 图像会向外扩展。
图像周期
余弦函数的图像具 有周期性,周期为 360度。在一个周 期内,图像会重复 出现。
正切函数的图像
图像形状
01 正切函数的图像在直角坐标系中呈现出周期性和无界性,其形状类似于波浪线。
调性。
PART 04
三角函数的应用
在几何学中的应用
三角函数在几何学中有着广泛的应用, 例如在计算角度、长度、面积等方面。
三角函数可以帮助我们理解几何图形的 性质,例如在研究圆、椭圆、抛物线等 方面。
三角函数还可以用于解决一些几何问题, 例如在计算最短路径、最大面积等方面。
在物理学中 的应用
交流电
三角函数的基本性质
周期性
三角函数(如正弦函数和 余弦函数)具有明显的周 期性,这意味着它们的图 像会重复出现。
振幅和相位
振幅和相位是描述三角函 数的重要参数。振幅决定 了图像的最高点和最低点, 而相位决定了图像在垂直 方向上的位置。
奇偶性
三角函数中的正弦函数和 余弦函数具有不同的奇偶 性。正弦函数是奇函数, 而余弦函数是偶函数。
图像变化规律
02 正切函数的图像随着角度的变化而呈现周期性的变化,其变化规律是每隔180度重复一次。
图像与x轴交点
03 正切函数的图像与x轴的交点是无穷多个,且分布不均,主要集中在x轴的两侧。
其他三角函数的图像
正切函数图像在直角坐标系中呈现 出周期性和无界性,是三角函数中 较为特殊的一种。
余切函数图像与正切函数图像互为 反函数,在直角坐标系中呈现出对 称性和周期性。
工程学
在工程学中,三角函数可以用于解决各种实际问题,如结 构工程中的应力分析、机械工程中的振动分析等。

第三章 第3节 三角函数的图象和性质

第三章  第3节 三角函数的图象和性质

第三章 第三节 三角函数的图象和性质1.函数y =tan 4x π(-)的定义域是 ( ) A .{x |x ≠π4,x ∈R}B .{x |x ≠-π4,x ∈R}C .{x |x ≠kπ+π4,k ∈Z ,x ∈R}D .{x |x ≠kπ+3π4,k ∈Z ,x ∈R}解析:∵x -π4≠kπ+π2,∴x ≠kπ+34π,k ∈Z.答案:D2.求下列函数的定义域:(1)y =cos x +tan x ;(2)y =lg(2sin x -1)+-tan x -1cos(x 2+π8).解:(1)要使函数有意义,则⎩⎪⎨⎪⎧ cos x ≥0,tan x ≥0,即⎩⎨⎧ 2kπ-π2≤x ≤2kπ+π2,kπ≤x <kπ+π2,(k∈Z), 所以2kπ≤x <2kπ+π2(k ∈Z).所以函数y =cos x +tan x 的定义域是{x |2kπ≤x <2kπ+π2,k ∈Z}.(2)由函数式有意义得⎩⎪⎨⎪⎧2sin x -1>0,-tan x -1≥0,cos(x 2+π8)≠0,得⎩⎪⎨⎪⎧ sin x >12,tan x ≤-1,x 2+π8≠kπ+π2,(k ∈Z).即⎩⎪⎨⎪⎧ 2kπ+π6<x <2kπ+5π6,kπ-π2<x ≤kπ-π4,x ≠2kπ+3π4,(k ∈Z).求交集得2kπ+π2<x <2kπ+3π4(k ∈Z). 所以函数的定义域是{x |2kπ+π2<x <2kπ+3π4,k ∈Z}. 3.若函数y =sin x +f (x )在[-π4,3π4]内单调递增,则f (x )可以是 ( ) A .1 B .cos x C .sin x D .-cos x解析:y =sin x -cos x =2sin(x -π4),-π2≤x -π4≤π2,满足题意,所以f (x )可以是-cos x . 答案:D4.求y =3tan(π6-x 4)的周期及单调区间. 解:y =3tan(π6-x 4)=-3tan(x 4-π6), ∴T =π|ω|=4π, ∴y =3tan(π6-x 4)的周期为4π. 由kπ-π2<x 4-π6<kπ+π2,得4kπ-4π3<x <4kπ+8π3(k ∈Z), y =3tan(x 4-π6)在(4kπ-4π3,4kπ+8π3)(k ∈Z)内单调递增. ∴y =3tan(π6-x 4)在(4kπ-4π3,4kπ+8π3)(k ∈Z)内单调递减.5.已知函数y =sin x 的定义域为[a ,b ],值域为[-1,12],则b -a 的值不可能是 ( )A.π3B.2π3 C .π D.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值范围为[2π3,4π3]. 答案:A6.已知函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则ω的最小值等于( ) A.23 B.32C .2D .3 解析:由题意知⎩⎨⎧ T 4≤π3,T =2πω,解得ω≥32. 答案:B 7.设函数f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间[0,π2]上的最小值为-4,那么a 的值等于 ( )A .4B .-6C .-4D .-3解析:y =cos2x +3sin2x +a +1=2sin(2x +π6)+a +1, ∵x ∈[0,π2],∴2x +π6∈[π6,7π6], ∴y min =2×(-12)+a +1=a =-4. 答案:C8.(2010·诸城模拟)设函数f (x )=2cos 2x +23sin x ·cos x +m (m ,x ∈R)(1)化简函数f (x )的表达式,并求函数f (x )的最小正周期;(2)当x ∈[0,π2]时,求实数m 的值,使函数f (x )的值域恰为[12,72]. 解:(1)f (x )=2cos x +23sin x cos x +m=1+cos2x +3sin2x +m=2sin(2x +π6)+m +1, ∴函数f (x )的最小正周期T =π.(2)∵0≤x ≤π2, ∴π6≤2x +π6≤7π6, ∴-12≤sin(2x +π6)≤1,m ≤f (x )≤m +3.又12≤f (x )≤72,故m =12.9.(2009·江西高考) ( )A .2π B.3π2 C .π D.π2解析:f (x )=(1+3tan x )cos x =cos x +3sin x=2sin(x +π6),T =2π|ω|=2π. 答案:A10.(2009·福建四地六校联考)若函数f (x )同时满足下列三个性质:①最小正周期为π;②图象关于直线x =π3对称;③在区间[-π6,π3]上是增函数.则y =f (x )的解析式可以是 ( )A .y =sin(2x -π6)B .y =sin(x 2+π6) C .y =cos(2x -π6) D .y =cos(2x +π3) 解析:逐一验证,由函数f (x ) 的周期为π,故排除B ;又∵cos(2×π3-π6)=cos π2=0,故y =cos(2x -π6)的图象不关于直线x =π3对称; 令-π2+2kπ≤2x -π6≤π2+2kπ,得-π6+kπ≤x ≤π3+kπ,k ∈Z , ∴函数y =sin(2x -π6)在[-π6,π3]上是增函数. 答案:A11.已知f (x )=sin(ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)有最小值,无最大值,则ω=________. 解析:由f (π6)=f (π3), 知f (x )的图像关于x =π4对称.且在x =π4处有最小值, ∴π4ω+π3=2kπ-π2, 有ω=8k -103(k ∈Z). 又∵12T =πω>π3-π6=π6,∴ω<6,故k =1,ω=143. 答案:14312.(文)若a =(3cos ωx ,sin ωx ),b =(sin ωx,0),其中ω>0,记函数f (x )=(a +b )·b +k .(1)若函数f (x )的图象中相邻两条对称轴间的距离不小于π2,求ω的取值范围; (2)若函数f (x )的最小正周期为π,且当x ∈[-π6,π6]时,函数f (x )的最大值是12,求函数f (x )的解析式,并说明如何由函数y =sin x 的图象变换得到函数y =f (x )的图象. 解:∵a =(3cos ωx ,sin ωx ),b =(sin ωx,0),∴a +b =(3cos ωx +sin ωx ,sin ωx ).故f (x )=(a +b )·b +k =3sin ωx cos ωx +sin 2ωx +k =32sin2ωx +1-cos2ωx 2+k =32sin2ωx -12cos2ωx +12+k =sin(2ωx -π6)+k +12. (1)由题意可知T 2=π2ω≥π2,∴ω≤1. 又ω>0,∴0<ω≤1.(2)∵T =2π2ω=π,∴ω=1. ∴f (x )=sin(2x -π6)+k +12. ∵x ∈[-π6,π6],∴2x -π6∈[-π2,π6]. 从而当2x -π6=π6,即x =π6时,f (x )max =f (π6)=sin π6+k +12=k +1=12, ∴k =-12.故f (x )=sin(2x -π6). 由函数y =sin x 的图象向右平移π6个单位长度,得到函数y =sin(x -π6)的图象,再将得到的函数图象上所有点的横坐标变为原来的12倍(纵坐标不变),得到函数y =sin(2x -π6)的图象. (理)(2009·重庆高考)设函数f (x )=sin(π4x -π6)-2cos 2π8x +1. (1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时,y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3), 故f (x )的最小正周期为T =2ππ4=8. (2)法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )). 由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,从而g (x )=f (2-x )=3sin[π4(2-x )-π3] =3sin(π2-π4x -π3) =3cos(π4x +π3). 当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g max =3cos π3=32. 法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x =1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值. 由(1)知f (x )=3sin(π4x -π3), 当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为 g max =3sin π6=32.。

第三节 三角函数的图象与性质

第三节  三角函数的图象与性质

题点(一) 求单调区间
[逐点例析]
[例 1] (1)函数 y=log12cos32π-2x的单调递增区间是 A.kπ-π4,kπ+π4 (k∈Z )
()
B.kπ-π4,kπ (k∈Z )
C.kπ-kπ+π4,kπ+34π (k∈Z )
D.kπ+π4,kπ+34π (k∈Z )
(2)函数 y=|tan x|的单调递增区间为________,单调递减区间为_______.
2.三角函数值域或最值的3种求法 形如y=asin x+k或y=acos x+k的三角函数,直接利用sin
直接法 x,cos x的值域求出 形如y=asin x+bcos x+k的三角函数,化为y=Asin(ωx+φ)+
化一法 k的形式,确定ωx+φ的范围,根据正弦函数单调性写出函数 的值域(最值) 形如y=asin2x+bsin x+k的三角函数,可先设sin x=t,化为 关于t的二次函数求值域(最值);形如y=asin xcos x+b(sin
[解析]
(1)y=log
1 2
cosπ3-2x=log
1 2
(-sin 2x),
由-sin 2x>0 得 sin 2x<0,即 2kπ-π<2x<2kπ,k∈Z ,
即 kπ-π2<x<kπ,k∈Z ,
设 t=-sin 2x,则 y=log 1 t 为减函数, 2
要求
y=log
1 2
cosπ3-2x的递增区间,
二、“基本技能”运用好 1.y=|tan x|·cos x0≤x<32π,x≠π2的图象是
答案:D
()
2.已知函数 f(x)=cosωx+π4 (ω>0)的最小正周期为 π,则 ω=________. 答案:2

高中数学第三章三角函数3.3三角函数的图像与性质3.3.2

高中数学第三章三角函数3.3三角函数的图像与性质3.3.2

2.如何作正切函数的图象? 答 类似于正弦、余弦函数的“五点法”作图,正切曲线的 简 图 可 用 “ 三 点 两 线 法 ” , 这 里 的 三 点 分 别 为 (kπ , 0) , kπ+π4,1,kπ-π4,-1,其中 k∈Z,两线分别为直线 x =kπ+π2(k∈Z),x=kπ-π2(k∈Z).

.

规律方法 对于形如y=tan(ωx+φ)(ω、φ为非零常数) 的函数性质和图象的研究,应以正切函数的性质与图 象为基础,运用整体思想和换元法求解.如果ω<0,一 般先利用诱导公式将x的系数化为正数,再进行求解.
跟踪演练 1 求函数 y= tan x+1+lg(1-tan x)的定义域.

tan x+1≥0, 由题意得
即-1≤tan x<1.
1-tan x>0,
在-2π,π2内,满足上述不等式的 x 的取值范围是-π4,π4. 由诱导公式得函数定义域是kπ-π4,kπ+π4(k∈Z).
(2)比较tan 1、tan 2、tan 3的大小. 解 ∵tan 2=tan(2-π),tan 3=tan(3-π), 又∵2π<2<π,∴-π2<2-π<0. ∵π2<3<π,∴-2π<3-π<0, 显然-π2<2-π<3-π<1<2π,
且 y=tan x 在-2π,π2内是增函数, ∴tan (2-π)<tan (3-π)<tan 1,即 tan 2<tan 3 <tan 1.
要点二 正切函数的单调性及应用
例 2 (1)求函数 y=tan-12x+π4的单调区间. 解 y=tan-12x+π4=-tan21x-4π, 由 kπ-π2<12x-π4<kπ+π2(k∈Z), 得 2kπ-2π<x<2kπ+32π,k∈Z,

三角函数的图像与性质

三角函数的图像与性质

第三节 三角函数的图像与性质[最新考纲] 1.能画出y =sin x ,y =cos x ,y =tan x 的图像,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图像与x轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]图像的五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0), ⎛⎭⎪⎫3π2,-1,(2π,0).余弦函数y =cos x ,x ∈[0,2π]图像的五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦函数、余弦函数、正切函数的图像与性质 函数 y =sin x y =cos x y =tan x图像定义域 R R ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z值域[-1,1][-1,1]R1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.2.正切曲线相邻两对称中心之间的距离是半个周期.3.对于函数y =Asin(ωx+φ),其对称轴一定经过图像的最高点或最低点,对称中心的横坐标一定是函数的零点.一、思考辨析(正确的打“√”,错误的打“×”)(1)函数y =sin x 的图像关于点(k π,0)(k ∈Z )中心对称. ( ) (2)正切函数y =tan x 在定义域内是增函数. ( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1. ( ) (4)y =sin |x |与y =|sin x |都是周期函数.( )二、教材改编1.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π8,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z2.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π4的最小正周期是________. 3.y =sin ⎝⎛⎭⎪⎫2x -π4的单调减区间是________.4.y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________. ⊙考点1 三角函数的定义域和值域1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.2.求三角函数最值或值域的常用方法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x ,cos x ,sin x cos x 或sin x ±cos x 换成t ,转化为二次函数求解.1.函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠π6 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π12 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π6k ∈ZD .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π6k ∈Z2.(2019·全国卷Ⅰ)函数f (x )=sin ⎝⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________.3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.4.函数y =sin x -cos x +sin x cos x 的值域为________. 求解三角函数的值域(最值)常见的几种类型(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin 3x +b sin 2x +c sin x +d ,类似于(2)进行换元,然后用导数法求最值. ⊙考点2 三角函数的单调性(1)形如y =A sin(ωx +φ)的函数的单调性问题,一般是将ωx +φ看成一个整体,再结合图像利用y =sin x 的单调性求解.(2)如果函数中自变量的系数为负值,要根据诱导公式把自变量系数化为正值,再确定其单调性.求三角函数的单调性(1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)(2019·大连模拟)函数y =12sin x +32cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的单调递增区间是________.根据函数的单调性求参数(1)(2019·西安模拟)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A .(0,2]B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,34 D.⎣⎢⎡⎦⎥⎤12,54 (2)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[0,a ] 是减函数,则a 的最大值是( )A.π4B.π2C.3π4D .π已知单调区间求参数范围的三种方法 子集法求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解反子集法由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解周期性法由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解1.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,3上单调递增,在区间⎣⎢⎡⎦⎥⎤3,2上单调递减,则ω=________.2.函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调减区间为________.⊙考点3 三角函数的周期性、奇偶性、对称性求解三角函数y =sin(ωx +φ)(ω>0)的周期性、奇偶性、对称性问题,其实质都是根据y =sin x 的对应性质,利用整体代换的思想求解.三角函数的周期性(1)(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |(2)若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.公式莫忘绝对值,对称抓住“心”与“轴” (1)公式法求周期①函数f (x )=A sin(ωx +φ)的周期T =2π|ω|;②函数f (x )=A cos(ωx +φ)的周期T =2π|ω|;③函数f (x )=A tan(ωx +φ)的周期T =π|ω|.(2)对称性求周期①两对称轴距离的最小值等于T2;②两对称中心距离的最小值等于T2;③对称中心到对称轴距离的最小值等于T4.(3)特征点法求周期①两个最大值点之差的最小值等于T ; ②两个最小值点之差的最小值等于T ; ③最大值点与最小值点之差的最小值等于T2.特征点法求周期实质上就是由图像的对称性求周期,因为最值点与函数图像的对称轴相对应.(说明:此处的T 均为最小正周期)三角函数的奇偶性已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ,φ∈(0,π). (1)若f (x )为偶函数,则φ=________; (2)若f (x )为奇函数,则φ=________.若f (x )=A sin(ωx +φ)(A ,ω≠0),则①f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );②f (x )为奇函数的充要条件是φ=k π(k ∈Z ).三角函数的对称性(1)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图像( )A .关于点⎝ ⎛⎭⎪⎫π3,0对称B .关于点⎝⎛⎭⎪⎫5π3,0对称C .关于直线x =π3对称D .关于直线x =5π3对称(2)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图像关于直线x =π3对称,则φ的值为________.三角函数图像的对称轴和对称中心的求解方法若求f (x )=A sin(ωx +φ)(ω≠0)图像的对称轴,则只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)(ω≠0)图像的对称中心的横坐标,则只需令ωx +φ=k π(k ∈Z ),求x .1.设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图像关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减 2.(2019·成都模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且任意x ∈R ,有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图像的一个对称中心坐标是( )A.⎝ ⎛⎭⎪⎫-2π3,0 B.⎝ ⎛⎭⎪⎫-π3,0C.⎝ ⎛⎭⎪⎫2π3,0D.⎝⎛⎭⎪⎫5π3,0[过关题组练]1.函数y =|cos x |的一个单调增区间是( ) A .[-π2,π2]B .[0,π]C .[π,3π2]D .[3π2,2π]2.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎝⎛⎦⎥⎤π2,πC.⎣⎢⎡⎭⎪⎫π,3π2 D .⎝⎛⎦⎥⎤3π2,2π3.函数f (x )=12cos 2x +3sin x cos x .则下列表述正确的是( )A .f (x )在⎝ ⎛⎭⎪⎫-π3,-π6上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π6,π3上单调递增C .f (x )在⎝ ⎛⎭⎪⎫-π6,0上单调递减D .f (x )在⎝⎛⎭⎪⎫0,π6上单调递增4.已知函数f (x )=cos 2x +sin 2⎝ ⎛⎭⎪⎫x +π6,则( )A .f (x )的最小正周期为πB .f (x )的最小正周期为2πC .f (x )的最大值为12D .f (x )的最小值为-125. 已知函数f (x )=(x -a )k,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( )A .当k =1,a =2时,f (sin A )<f (cosB ) B .当k =1,a =2时,f (cos A )>f (sin B )C .当k =2,a =1时,f (sin A )>f (cos B )D .当k =2,a =1时,f (cos A )>f (sin B )6. (2020·无锡期末)在函数①y =cos|2x |;②y =|cos 2x |;③y =cos ⎝ ⎛⎭⎪⎫2x +π6;④y =tan 2x 中,最小正周期为π的所有函数的序号为 .7. 已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为 .8. 已知函数f (x )=sin ωx +3cos ωx (x ∈R ),又f (α)=2,f (β)=2,且|α-β|的最小值是π2,则正数ω的值为( )A .1B .2C .3D .49. 已知函数f (x )=2cos 2⎝ ⎛⎭⎪⎫x -π6+2sin ⎝ ⎛⎭⎪⎫x -π4·sin ⎝ ⎛⎭⎪⎫x +π4.求函数f (x )的最小正周期和图象的对称中心.10. 已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. (1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.11.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32.(1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.。

高考数学第3章三角函数、解三角形第3讲三角函数的图象与性质创高三全册数学

高考数学第3章三角函数、解三角形第3讲三角函数的图象与性质创高三全册数学
12/12/2021
第四页,共七十六页。
2.正弦函数、余弦函数、正切函数的图象和性质
函数 y=sinx
y=cosx
y=tanx
图象
定义 域 值域
xx∈R,且 x≠
R
R
kπ+π2,k∈Z
01 _[-___1_,1__] 02 _[-___1_,1_]_ 03 _R_
12/12/2021
第五页,共七十六页。
续表
函数
y=sinx
y=cosx
y=tanx
最值
当 x=π2+2kπ
当 x=2kπ(k∈Z)时,ymax
x∈
(k∈Z)时,ymax=1;
=1;
-π2+kπ, π2+kπ
当 x=32π+2kπ (k∈Z)时,ymin=-1
当 x=π+2kπ (k∈Z)时,ymin=-1
,k∈Z,无最大值, 也无最小值
12/12/2021
第二十四页,共七十六页。
解析
2.已知π3为函数 f(x)=sin(2x+φ)0<φ<π2的零点,则函数 f(x)的单调递 增区间是( )
A.2kπ-152π,2kπ+1π2(k∈Z) B.2kπ+1π2,2kπ+71π2(k∈Z) C.kπ-51π2,kπ+1π2(k∈Z) D.kπ+1π2,kπ+71π2(k∈Z)
第二十页,共七十六页。
1.函数 y= tanx+ -cosx的定义域为{__x_2_k_π_+__π_≤__x_<__2_kπ_+__3_2π_,__k_∈__Z_.
解析
tanx≥0, 由
-cosx≥0,

tanx≥0,
cosx≤0.
所以 2kπ+π≤x<2kπ+32π,k∈

三角函数三角函数的图象与性质课件

三角函数三角函数的图象与性质课件

《三角函数三角函数的图象与性质课件pptx》2023-10-26•引言•三角函数的概念与性质•三角函数的图象表示目录•三角函数的应用•习题解答•总结与展望01引言三角函数是数学中的基础科目,对于高中生来说,掌握好三角函数的知识可以为后续的高等数学学习打下基础。

在本课程中,我们将从定义、图象、性质和应用等方面全面介绍三角函数的知识。

课程背景介绍课程目标熟悉三角函数的图象和变化趋势。

让学生掌握三角函数的定义、公式和基本性质。

培养学生的数学思维和逻辑推理能力。

能够灵活运用三角函数解决实际问题。

课程大纲•第一部分:三角函数的定义与公式•正弦函数、余弦函数和正切函数的定义与基本公式。

•角度与弧度的转换。

•第二部分:三角函数的图象与性质•正弦函数、余弦函数和正切函数的图象与性质。

•三角函数的周期性、最值和对称性。

•第三部分:三角函数的应用•利用三角函数解决实际问题,如物理、工程、计算机等领域的问题。

•三角函数在复数、极坐标系中的应用。

02三角函数的概念与性质1 2 3$y = \sin x$,表示单位圆上点的纵坐标。

正弦函数$y = \cos x$,表示单位圆上点的横坐标。

余弦函数$y = \tan x$,表示单位圆上点的纵坐标与横坐标的比值。

正切函数奇偶性正弦函数和正切函数为奇函数,余弦函数为偶函数。

值域正弦函数和余弦函数的值域为$\lbrack -1,1\rbrack$,正切函数的值域为全体实数。

周期性正弦函数、余弦函数和正切函数都具有周期性,最小正周期为$2\pi$。

定义域正弦函数和余弦函数的定义域为全体实数,正切函数的定义域为不等于$\frac{k\pi}{2} + \pi$的全体实数。

正弦函数的周期性$y = \sin x$的周期为$2\pi$,即$\sin(x + 2k\pi) = \sin x(k \in \mathbf{Z})$。

三角函数的周期性余弦函数的周期性$y = \cos x$的周期为$2\pi$,即$\cos(x + 2k\pi) = \cos x(k \in \mathbf{Z})$。

三角函数的图像与性质

三角函数的图像与性质

第三节三角函数的图象与性质[备考方向要明了][归纳·知识整合]正弦函数、余弦函数、正切函数的图象和性质[探究] 1.正切函数y =tan x 在定义域内是增函数吗?提示:不是.正切函数y =tan x 在每一个区间⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.2.当函数y =A sin(ωx +φ)分别为奇函数和偶函数时,φ的取值是什么?对于函数y =A cos(ωx +φ)呢?提示:函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π2(k ∈Z )时是偶函数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π2(k ∈Z )时是奇函数.[自测·牛刀小试]1.(教材习题改编)设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:选B ∵f (x )=sin(2x -π2)=-cos 2x ,∴f (x )是最小正周期为π的偶函数.2.(教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎡⎦⎤-π2,π2上是增函数,在⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π上都是减函数C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎡⎦⎤π2,π∪⎣⎡⎦⎤-π,-π2上是增函数,在⎣⎡⎦⎤-π2,π2上是减函数 解析:选B 由函数y =4sin x ,x ∈[-π,π]的图象可知,该函数在⎣⎡⎦⎤-π2,π2上是增函数,在⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π上是减函数. 3.函数y = cos x -12的定义域为( )A.⎣⎡⎦⎤-π3,π3 B.⎣⎡⎦⎤k π-π3,k π+π3,k ∈Z C.⎣⎡⎦⎤2k π-π3,2k π+π3,k ∈Z D .R解析:选C ∵cos x -12≥0,得cos x ≥12,∴2k π-π3≤x ≤2k π+π3,k ∈Z .4.(教材习题改编)函数f (x )=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为________. 解析:函数f (x )=3sin ⎝⎛⎭⎫x 2-π4的最小正周期为 T =2π12=4π.答案:4π5.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 解析:函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z ).答案:5 3π4+2k π(k ∈Z )[例1] (1)求函数y =lg(2sin x -1)+1-2cos x 的定义域; (2)求函数y =2cos 2x +5sin x -4的值域.[自主解答] (1)要使函数有意义,必须有⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12,解得⎩⎨⎧π6+2k π<x <5π6+2k π,π3+2k π≤x ≤5π3+2k π,(k ∈Z ),即π3+2k π≤x <5π6+2k π(k ∈Z ). 故所求函数的定义域为⎣⎡⎭⎫π3+2k π,5π6+2k π(k ∈Z ). (2)y =2cos 2x +5sin x -4 =2(1-sin 2x )+5sin x -4 =-2sin 2x +5sin x -2 =-2(sin x -54)2+98.故当sin x =1时,y max =1, 当sin x =-1时,y min =-9,故y =2cos 2x +5sin x -4的值域为[-9,1]. ———————————————————1.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.三角函数值域的求法求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).1.(1)求函数y =2+log 12x +tan x 的定义域;(2)设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2⎝⎛⎭⎫π2-x 满足f ⎝⎛⎭⎫-π3=f (0),求函数f (x )在⎣⎡⎦⎤π4,11π24上的最大值和最小值.解:(1)要使函数有意义则⎩⎪⎨⎪⎧2+log 12x ≥0,x >0,tan x ≥0,x ≠k π+π2(k ∈Z ),即⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2(k ∈Z). 利用数轴可得:所以函数的定义域是⎩⎨⎧⎭⎬⎫x |0<x <π2或π≤x ≤4.(2)f (x )=cos x (a sin x -cos x )+cos 2⎝⎛⎭⎫π2-x =a sin x cos x -cos 2x +sin 2x =a2sin 2x -cos 2x .由于f ⎝⎛⎭⎫-π3=f (0), 所以a 2·sin ⎝⎛⎭⎫-2π3-cos ⎝⎛⎭⎫-2π3=-1, 即-34a +12=-1,得a =2 3. 于是f (x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π6. 由于x ∈⎣⎡⎦⎤π4,11π24,所以2x -π6∈⎣⎡⎦⎤π3,3π4, 因此当2x -π6=π2即x =π3时f (x )取得最大值f ⎝⎛⎭⎫π3=2, 当2x -π6=3π4即x =11π24时f (x )取得最小值f ⎝⎛⎭⎫11π24= 2.[例2] 求下列函数的单调递减区间: (1)y =2sin ⎝⎛⎭⎫x -π4;(2)y =tan ⎝⎛⎭⎫π3-2x . [自主解答] (1)由2k π+π2≤x -π4≤2k π+3π2,k ∈Z ,得2k π+3π4≤x ≤2k π+7π4,k ∈Z .故函数y =2sin ⎝⎛⎭⎫x -π4的单调减区间为⎣⎡⎦⎤2k π+3π4,2k π+7π4(k ∈Z ).(2)把函数y =tan ⎝⎛⎭⎫π3-2x 变为y =-tan ⎝⎛⎭⎫2x -π3. 由k π-π2<2x -π3<k π+π2,k ∈Z ,得k π-π6<2x <k π+5π6,k ∈Z ,即k π2-π12<x <k π2+5π12,k ∈Z . 故函数y =tan ⎝⎛⎭⎫π3-2x 的单调减区间为 ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).若将本例(1)改为“y =2⎪⎪⎪⎪sin ⎝⎛⎭⎫x -π4”,如何求解? 解:画出函数y =2⎪⎪⎪⎪sin ⎝⎛⎭⎫x -π4的图象,易知其单调递减区间为⎣⎡⎦⎤k π+3π4,k π+5π4(k ∈Z ).———————————————————1.三角函数单调区间的求法求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中A ≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答.列不等式的原则是:①把“ωx +φ(ω>0)”视为一个“整体”;②A >0(A <0)时,所列不等式的方向与y =sin x (x ∈R ),y =cos x (x ∈R )的单调区间对应的不等式方向相同(反).对于y =A tan(ωx +φ)(A 、ω、φ为常数),其周期T =π|ω|,单调区间利用ωx +φ∈⎝⎛⎭⎫k π-π2,k π+π2,解出x 的取值范围,即为其单调区间. 2.复合函数单调区间的求法对于复合函数y =f (v ),v =φ(x ),其单调性判定方法是:若y =f (v )和v =φ(x )同为增(减)函数时,y =f (φ(x ))为增函数;若y =f (v )和v =φ(x )一增一减时,y =f (φ(x ))为减函数.3.含绝对值的三角函数单调区间的求法求含有绝对值的三角函数的单调性及周期时,通常要画出图象,结合图象判定.2.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A .3B .2C.32D.23解析:选C ∵y =sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时.y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由y =sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,故ω=32.[例3] (1)(2012·福建高考)函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2(2)(2012·新课标全国卷)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则 φ=( )A.π4 B.π3 C.π2D.3π4(3)(2012·大纲全国卷)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ) A.π2B.2π3 C.3π2D.5π3[自主解答] (1)法一:(图象特征)∵正弦函数图象的对称轴过图象的最高点或最低点,故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .取k =-1,则x =-π4.法二:(验证法)x =π4时,y =sin ⎝⎛⎭⎫π4-π4=0,不合题意,排除A ;x =π2时,y =sin ⎝⎛⎭⎫π2-π4=22,不合题意,排除B ;x =-π4时,y =sin ⎝⎛⎭⎫-π4-π4=-1,符合题意,C 项正确;而x =-π2时,y =sin ⎝⎛⎭⎫-π2-π4=-22,不合题意,故D 项也不正确. (2)由于直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,所以函数f (x )的最小正周期T =2π,所以ω=1,所以π4+φ=k π+π2(k ∈Z ).又0<φ<π,所以φ=π4.(3)若f (x )为偶函数,则f (0)=±1, 即sin φ3=±1,∴φ3=k π+π2(k ∈Z ).∴φ=3k π+3π2(k ∈Z ).只有C 项符合.[答案] (1)C (2)A (3)C本例(1)中函数f (x )的对称中心是什么? 提示:令x -π4=k π,k ∈Z ,则x =π4+k π,k ∈Z .故函数f (x )=sin ⎝⎛⎭⎫x -π4的对称中心为⎝⎛⎭⎫π4+k π,0(k ∈Z ).———————————————————函数f (x )=A sin(ωx +φ)的奇偶性、周期性及对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值. 若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.3.(1)函数y =2sin(3x +φ)⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________. (2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.解析:(1)由y =sin x 的对称轴为x =k π+π2(k ∈Z ),即3×π12+φ=k π+π2(k ∈Z ),得φ=k π+π4(k ∈Z ). 又|φ|<π2,所以k =0,故φ=π4.(2)由题意,得y =cos(3x +φ)是奇函数,故φ=k π+π2,(k ∈Z ).答案:(1)π4 (2)k π+π2,k ∈Z2个性质——周期性与奇偶性 (1)周期性函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|. (2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.3种方法——求三角函数值域(或最值)的方法 (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题. 4个注意点——研究三角函数性质应注意的问题(1)三角函数的图象从形上完全反映了三角函数的性质,求三角函数的定义域、值域时应注意利用三角函数的图象.(2)闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.(3)利用换元法求复合函数的单调性时,要注意x 系数的正负.(4)利用换元法求三角函数最值时要注意三角函数的有界性,如:y =sin 2x -4sin x +5,令t =sin x (|t |≤1),则y =(t -2)2+1≥1,解法错误.创新交汇——与三角函数性质有关的交汇问题1.高考对三角函数的图象与性质的考查不但有客观题,还有主观题,客观题常以选择题的形式出现,往往结合集合、数列、函数与导数等考查三角函数的相关性质;解答题主要与三角恒等变换、不等式等知识点的交汇处命题.2.解决此类交汇问题的关键有以下两点:(1)熟记三角函数的性质,主要为定义域、值域、单调性、奇偶性、周期性、对称性等及有关结论.(2)要善于利用函数图象的形象性和直观性分析解决问题.[典例] (2012·上海高考)若S n =sin π7+sin 2π7+…+sin n π7(n ∈N *),则在S 1,S 2,…,S 100中,正数的个数是( )A .16B .72C .86D .100[解析] ∵函数f (x )=sin πx7的最小正周期为T =14,又sin π7>0,sin 27π>0,…,sin 67π>0,sin 77π=0,sin 87π<0,…,sin 137π<0,sin 147π=0,∴在S 1,S 2,S 3,…,S 13,S 14中,只有S 13=S 14=0,其余均大于0.由周期性可知,在S 1,S 2,…,S 100中共有14个0,其余都大于0,即共有86个正数. [答案] C [名师点评]1.本题具有以下创新点(1)本题表面是考查数列求和问题,其实质考查了三角函数f (x )=sin πx7的周期性.(2)本题巧妙将三角函数值的符号、三角函数的诱导公式、三角函数的周期性及数列求和融为一体,考查了考生的数据处理能力、推理论证能力及转化与化归能力,难度较大.2.解决本题的关键有以下两点(1)正确构造函数f (x )=sin πx7,并求得其周期;(2)正确利用诱导公式求出一个周期内S 1,S 2,…,S 14中是0的个数. [变式训练]1.(2013·郑州模拟)已知曲线y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫π4-x 与直线y =12相交,若在y 轴右侧的交点自左向右依次记为P 1,P 2,P 3,…,则|15PP |等于( )A .πB .2πC .3πD .4π解析:选B 注意到y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫π4-x =2sin 2⎝⎛⎭⎫x +π4=1-cos 2⎝⎛⎭⎫x +π4=1+sin 2x ,又函数y =1+sin 2x 的最小正周期是2π2=π,结合函数y =1+sin 2x 的图象(如图所示)可知,|15PP |=2π.2.若三角函数f (x )的部分图象如图,则函数f (x )的解析式,以及S =f (1)+f (2)+…+f (2 012)的值分别为( )A .f (x )=12sin πx2+1,S =2 012B .f (x )=12cos πx2+1,S =2 012C .f (x )=12sin πx2+1,S =2 012.5D .f (x )=12cos πx2+1,S =2 012.5解析:选A 根据已知图象,可设f (x )=A sin(ωx +φ)+1(ω>0,A >0).∵由T =4得2πω=4,∴ω=π2.A =f (x )最大值-f (x )最小值2=1.5-0.52=12,又f (0)=12sin φ+1=1,∴sin φ=0得,φ=0,∴f (x )=12sin πx2+1.又f (1)+f (2)+f (3)+f (4)=1.5+1+0.5+1=4,∴S =f (1)+f (2)+…+f (2 012)=503×[f (1)+f (2)+f (3)+f (4)]=503×4=2 012.一、选择题(本大题共6小题,每小题5分,共30分)1.函数f (x )=sin x 在区间[a ,b ]上是增函数,且f (a )=-1,f (b )=1,则cos a +b2=( )A .0B.22C .-1D .1解析:选D 不妨设a =-π2,b =π2,则cos a +b 2=cos 0=1.2.(2013·银川模拟)已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2 (x ∈R ),下面结论错误的是( ) A .函数f (x )的最小正周期为π B .函数f (x )是偶函数C .函数f (x )的图象关于直线x =π4对称D .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 解析:选C f (x )=sin ⎝⎛⎭⎫2x +3π2=-cos 2x ,故其最小正周期为π,故A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象关于直线x =π4不对称,C 错误;由函数f (x )的图象易知,函数f (x )在⎣⎡⎦⎤0,π2上是增函数,D 正确. 3.(2013·郑州模拟)设函数f (x )=cos(ωx +φ)-3sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,且其图象相邻的两条对称轴为x =0,x =π2,则( )A .y =f (x )的最小正周期为π,且在⎝⎛⎭⎫0,π2上为增函数 B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎫0,π2上为减函数 C .y =f (x )的最小正周期为π,且在(0,π)上为增函数 D .y =f (x )的最小正周期为π,且在(0,π)上为减函数解析:选B 由已知可得f (x )=2cos ⎝⎛⎭⎫ωx +φ+π3,T 2=π2,得T =π,ω=2.又x =0是对称轴,故cos ⎝⎛⎭⎫φ+π3=±1,由|φ|<π2得φ=-π3,此时f (x )=2cos 2x 在⎝⎛⎭⎫0,π2上为减函数. 4.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( ) A.π3B.2π3 C .πD.4π3解析:选A 画出函数y =sin x 的草图分析知b -a 的取值范围为⎣⎡⎦⎤2π3,4π3.5.(2013·衡阳联考)给定性质:①最小正周期为π;②图象关于直线x =π3对称,则下列四个函数中,同时具有性质①②的是( )A .y =sin ⎝⎛⎭⎫x 2+π6 B .y =sin ⎝⎛⎭⎫2x -π6 C .y =sin ⎝⎛⎭⎫2x +π6 D .y =sin|x |解析:选B 注意到函数y =sin ⎝⎛⎭⎫2x -π6的最小正周期T =2π2=π,当x =π3时,y =sin ⎝⎛⎭⎫2×π3-π6=1,因此该函数同时具有性质①②. 6.(2012·新课标全国卷)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2]解析:选A 取ω=54,f (x )=sin ⎝⎛⎭⎫54x +π4,其减区间为⎣⎡⎦⎤85k π+π5,85k π+π,k ∈Z ,显然⎝⎛⎭⎫π2,π⊆⎣⎡⎦⎤85k π+π5,85k π+π,k ∈Z ,排除B ,C.取ω=2,f (x )=sin ⎝⎛⎭⎫2x +π4,其减区间为⎣⎡⎦⎤k π+π8,k π+58π,k ∈Z ,显然⎝⎛⎭⎫π2,π⃘⎣⎡⎦⎤k π+π8,k π+58π,k ∈Z ,排除D. 二、填空题(本大题共3小题,每小题5分,共15分) 7.函数y =1tan x -3的定义域为________.解析:由已知得⎩⎪⎨⎪⎧x ≠k π+π2,k ∈Z ,tan x ≠3,即⎩⎨⎧x ≠k π+π2,x ≠k π+π3,k ∈Z .故所求函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π2且x ≠k π+π3,k ∈Z . 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π2且x ≠k π+π3,k ∈Z 8.函数y =2sin ⎝⎛⎭⎫2x +π3-1,x ∈⎣⎡⎤0,π3的值域为________,并且取最大值时x 的值为________.解析:∵0≤x ≤π3,∴π3≤2x +π3≤π,∴0≤sin ⎝⎛⎭⎫2x +π3≤1, ∴-1≤2sin ⎝⎛⎭⎫2x +π3-1≤1,即值域为[-1,1],且当sin ⎝⎛⎭⎫2x +π3=1,即x =π12时,y 取最大值.答案:[-1,1]π129.已知函数f (x )=cos ⎝⎛⎭⎫ωx +π6(ω>0)的图象上的两个相邻的最高点和最低点的横坐标之差为π2,则函数在[0,2π]上的零点个数为________.解析:∵由已知f (x )=cos ⎝⎛⎭⎫ωx +π6的周期为π, ∴2πω=π,ω=2,∴f (x )=cos ⎝⎛⎭⎫2x +π6. 当f (x )=0时,2x +π6=k π+π2(k ∈Z ),x =k π2+π6,则当x ∈[0,2π]时f (x )有4个零点.答案:4三、解答题(本大题共3小题,每小题12分,共36分)10.(2012·陕西高考)函数f (x )=A sin ⎝⎛⎭⎫ωx -π6+1(A >0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;(2)设α∈⎝⎛⎭⎫0,π2,f ⎝⎛⎭⎫α2=2,求α的值. 解:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2. ∵函数图象的相邻两条对称轴之间的距离为π2,∴最小正周期T =π,∴ω=2,故函数f (x )的解析式为 y =2sin ⎝⎛⎭⎫2x -π6+1. (2)∵f ⎝⎛⎭⎫α2=2sin ⎝⎛⎭⎫α-π6+1=2, ∴sin ⎝⎛⎭⎫α-π6=12.∵0<α<π2,∴-π6<α-π6<π3,∴α-π6=π6,故α=π3.11.设a =⎝⎛⎭⎫sin 2π+2x4,cos x +sin x ,b =(4sin x ,cos x -sin x ),f (x )=a ·b . (1)求函数f (x )的解析式;(2)已知常数ω>0,若y =f (ωx )在区间⎣⎡⎦⎤-π2,2π3上是增函数,求ω的取值范围; 解:(1)f (x )=sin 2π+2x4·4sin x +(cos x +sin x )·(cos x -sin x )=4sin x ·1-cos ⎝⎛⎭⎫π2+x 2+cos 2x=2sin x (1+sin x )+1-2sin 2x =2sin x +1, 故函数解析式为f (x )=2sin x +1. (2)f (ωx )=2sin ωx +1,ω>0. 由2k π-π2≤ωx ≤2k π+π2,得f (ωx )的增区间是⎣⎡⎦⎤2k πω-π2ω,2k πω+π2ω,k ∈Z . ∵f (ωx )在⎣⎡⎦⎤-π2,2π3上是增函数, ∴⎣⎡⎦⎤-π2,2π3⊆⎣⎡⎦⎤-π2ω,π2ω. ∴-π2≥-π2ω且2π3≤π2ω,∴ω∈⎝⎛⎦⎤0,34. 12.(2012·湖北高考)已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在区间⎣⎡⎦⎤0,3π5上的取值范围. 解:(1)f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎫2ωx -π6+λ. 由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1, 所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈(12,1),k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0, 即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2, 由0≤x ≤3π5,有-π6≤53x -π6≤5π6,所以-12≤sin ⎝⎛⎭⎫53x -π6≤1, 得-1-2≤2sin ⎝⎛⎭⎫53x -π6-2≤2-2,故函数f (x )在⎣⎡⎦⎤0,3π5上的取值范围为[-1-2,2- 2 ].1.求下列函数的定义域:(1)y =lg sin(cos x );(2)y =sin x -cos x . 解:(1)要使函数有意义,必须使sin(cos x )>0.∵-1≤cos x ≤1,∴0<cos x ≤1. 利用单位圆中的余弦线OM ,依题意知0<OM ≤1,∴OM 只能在x 轴的正半轴上, ∴其定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪-π2+2k π<x <π2+2k π,k ∈Z .(2)要使函数有意义,必须使sin x -cos x ≥0.利用图象.在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪π4+2k π≤x ≤5π4+2k π,k ∈Z .2.写出下列函数的单调区间及周期: (1)y =sin ⎝⎛⎭⎫-2x +π3;(2)y =|tan x |. 解:(1)y =-sin ⎝⎛⎭⎫2x -π3, 它的增区间是y =sin ⎝⎛⎭⎫2x -π3的减区间, 它的减区间是y =sin ⎝⎛⎭⎫2x -π3的增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z ,得k π+5π12≤x ≤k π+11π12,k ∈Z .故所给函数的减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z ; 增区间为⎣⎡⎦⎤k π+5π12,k π+11π12,k ∈Z . 最小正周期T =2π2=π.(2)观察图象可知,y =|tan x |的增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z ,减区间是⎝⎛⎦⎤k π-π2,k π,k ∈Z .最小正周期:T =π.3.求下列函数的值域:(1)y =cos x +52-cos x ; (2)y =sin 2x -4sin x +5.解:(1)由y =cos x +52-cos x ,得cos x =2y -5y +1.因为-1≤cos x ≤1,所以-1≤2y -5y +1≤1,解得43≤y ≤6.因此,原函数的值域为⎣⎡⎦⎤43,6. (2)y =sin 2x -4sin x +5=(sin x -2)2+1. 因为-1≤sin x ≤1,所以2≤y ≤10. 因此,原函数的值域为[2,10].4.设函数f (x )=3sin ⎝⎛⎭⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期. (1)求f (0); (2)求f (x )的解析式;(3)已知f ⎝⎛⎭⎫α4+π12=95,求sin α的值. 解:(1)由题设可知f (0)=3sin π6=32.(2)∵f (x )的最小正周期为π2,∴ω=2ππ2=4.∴f (x )=3sin ⎝⎛⎭⎫4x +π6. (3)∵f ⎝⎛⎭⎫α4+π12=3sin ⎝⎛⎭⎫α+π3+π6=3cos α=95, ∴cos α=35,∴sin α=±1-cos 2α=±45.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回
[精析考题] [例3]
π (2011· 新课标全国卷)设函数f(x)=sin2x+4+cos π 2x+ ,则 4
(
)
π π 0, 单调递增,其图象关于直线x= 对称 A.y=f(x)在 2 4 π π B.y=f(x)在0,2单调递增,其图象关于直线x=2对称 π π C.y=f(x)在0,2单调递减,其图象关于直线x=4对称 π π 0, 单调递减,其图象关于直线x= 对称 D.y=f(x)在 2 2
7π π -π,- ,- ,0. 12 12
π -2x的减区间为 3
返回
[冲关锦囊] 求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,
ω>0)的函数的单调区间,可以通过解不等式的方法去解
答,列不等式的原则是:①把“ωx+φ(ω>0)”视为一个“整 体”;②A>0(A<0)时,所列不等式的方向与y=sin x(x∈R), y=cos x(x∈R)的单调区间对应的不等式方向相同(反).
返回
怎 么 考 1.三角函数的值域、最值、单调性、周期性等性质是高考 考查的重点. 2.主要以选择题、填空题的形式考查,也常与三角恒等变 换相结合在解答题中考查.
返回
返回
正弦函数、余弦函数、正切函数的图象和性质
函数 图 象
π {x|x≠2+kπ, k∈Z}
y=sinx
y=cosx
y=tanx
定义域
π 2x+ 2 π x+ 2 π π π,且在4,2上为减
( B.y=cos D.y=cos
π 2x+ 2 π x+ 2
)
返回
解析:对于选项A,注意到y=sin π π 且在[4,2]上是减函数.
π 2x+ =cos 2
π 2x- ; 4 π -2x. 4
返回
2.周期性是函数的整体性质,要求对于函数整个定义 域范围内的每一个x值都满足f(x+T)=f(x),其中T是 不为零的常数.如果只有个别的x值满足f(x+T)=
f(Байду номын сангаас),或找到哪怕只有一个x值不满足f(x+T)=f(x),
都不能说T是函数f(x)的周期.

返回
函数
对称
y=sinx
(k,0),
y=cosx
π (kπ+2,0), k∈Z
y=tanx
kπ ( 2 ,0), k∈Z

称 性
中心 对称 轴l:
k∈Z
π x=kπ+2, k∈Z
x=kπ, k∈Z 2π π

周期性

返回
返回
1.函数y=tan
π -x的定义域是 4
(
)
π A.x|x≠4,x∈R π x|x≠- ,x∈R B. 4 π x|x≠kπ+ ,k∈Z,x∈R C. 4 3π x|x≠kπ+ ,k∈Z,x∈R D. 4
R
R
返回
函数
y=sinx {y|-1≤y≤1}
y=cosx {y|-1≤y≤1}
y=tanx R
值域
π (- 2+kπ, π π [(2k-1)π,2kπ] [- +2kπ, +2kπ] 2 2 单调 上递增,k∈Z; π+kπ) 2 上递增,k∈Z;

[2kπ,(2k+1)π] π 3π [ +2kπ, +2kπ] 2 2 上递减,k∈Z 上递减,k∈Z
答案:>
返回
π 5.(教材习题改编)y=2-3cosx+4的最大值为________.
此时x=________.
解析:当cos
π x+ =-1时, 4 π x+ 取得最大值5, 4
函数y=2-3cos
π 3 此时x+4=π+2kπ,从而x=4π+2kπ,k∈Z.
π 3.(2012· 金华模拟)若函数 f(x)=(1+tan x)cos x,0≤x<2, 则 f(x)的最大、最小值分别为 A. 2和 1 C.2 和 2 B.2 和 1 D.2 和 3 ( )
返回
解析:f(x)=(1+tan x)cos x=cos x+sin x= 2sin π π π 3π ∵0≤x<2,∴4≤x+4< 4 . ∴1≤f(x)≤ 2.
π x+ . 4
答案: A
返回
4.(2012· 宁德质检)函数y=tan 为________.
解析:把函数y=tan
π -x的单调递减区间 3
π π -x变为y=-tan x- . 3 3
π π π 由kπ-2<x-3<kπ+2,k∈Z, π 5 得kπ-6<x<kπ+6π,k∈Z.
返回
π π 3 解析:∵x-4≠kπ+2,∴x≠kπ+4π,k∈Z.
答案: D
返回
2.函数f(x)=2cos
5π x+ 是 2
(
)
A.最小正周期为2π的奇函数 B.最小正周期为2π的偶函数 C.最小正周期为2π的非奇非偶函数 D.最小正周期为π的偶函数
返回
π x+ =-2sin 解析:因为f(x)=2cos 2
)
A.[-1,1] 5 C.[-4,1]
返回
[自主解答]
令t=sin x,则t∈[-1,1],y=t
2
12 5 +t-1=t+2 -4,
5 t∈[-1,1],∴y∈-4,1.
[答案] C
返回
若例2中函数变为“y=2cos2x+5sin x-4”试求值域.
返回
2π 2π (1)周期T= ω = 2 =π. π π π π (2)令2kπ-2≤2x-3≤2kπ+2,k∈Z,得kπ-12≤x≤kπ 5π +12,k∈Z.
返回
所以x∈R时,y=sin
π -2x的减区间为 3
π 5π kπ- ,kπ+ ,k∈Z. 12 12
从而x∈[-π,0]时,y=sin
sin x≥0 解析:由已知得 16-x2≥0 2kπ≤x≤π+2kπ,k∈Z ,∴ -4≤x≤4
.
如图:
∴所求定义域为[-4,-π]∪[0,π].
答案: [-4,-π]∪[0,π]
返回
2.(2012· 嘉兴模拟)函数 y=2sin ________.
π π π 2x+ - <x< 的值域为 3 6 6
)
A.最小正周期为2π的奇函数
B.最小正周期为2π的偶函数 C.最小正周期为π的奇函数 D.最小正周期为π的偶函数 [自主解答] T=π. [答案] C 返回 因为f(x)=2sin xcos x=sin 2x是奇函数,
[巧练模拟]—————(课堂突破保分题,分分必保!)
6.(2012· 义乌模拟)下列函数中,周期为 函数的是 A.y=sin C.y=sin
(k∈Z),
返回
π 5π ∴3+2kπ≤x< 6 +2kπ(k∈Z).
π 5π 故所求函数的定义域为3+2kπ, 6 +2kπ(k∈Z).
[答案]
π 5π +2kπ, +2kπ(k∈Z) 6 3
返回
[例2]
(2010· 江西高考)函数y=sin2x+sin x-1的值域为( 5 B.[-4,-1] 5 D.[-1,4]
返回
[精析考题] [例4] (2010· 湖北高考)函数f(x)= 3sin
x π - ,x∈R的最 2 4
小正周期为 π A.2 C.2π B.π D.4π
(
)
返回
[自主解答]
2π 依题意得函数f(x)的最小正周期是 1 =4π. 2
[答案] D
返回
[例5] (2010· 陕西高考)函数f(x)=2sin xcos x是 (
返回
[自主解答]
π 2x+ = 2
因为y=sin
π π 2x+ +cos 2x+ = 4 4
2sin
2cos 2x,所以y= 2cos
π 0, 单调递减,对 2x,在 2
kπ 称轴为2x=kπ,即x= 2 (k∈Z).
[答案]
D
返回
[巧练模拟]———————(课堂突破保分题,分分必保!)
返回
π π π 2π 解析:∵-6<x<6,∴0<2x+3< 3 . ∴0<sin
π 2x+ ≤1. 3 π 2x+ 的值域为(0,2]. 3
∴y=2sin
答案: (0,2]
返回
[冲关锦囊]
1.求三角函数定义域实际上是解简单的三角不等式,
常借助三角函数线或三角函数图象来求解.
3π 在π, 2 上递增.
答案: C
返回
π π 4.比较大小,sin-18________sin-10.
解析:因为y=sin
π π π x在-2,0上为增函数且-18>-10,
π π 故sin-18>sin-10.
x是奇函数,T=2π.
答案: A
返回
3.函数y=|sin x|的一个单调增区间是
π π A.-4,4 3π C.π, 2 π 3π B.4, 4 3π D. 2 ,2π
(
)
返回
解析:作出函数y=|sin x|的图象.观察可知,函数y=|sin x|
π 5 kπ- ,kπ+ π(k∈Z) 答案: 6 6
返回
5.(2012· 华南师大附中模拟)已知函数y=sin (1)函数的周期; (2)求函数在[-π,0]上的单调递减区间.
π -2x,求: 3
相关文档
最新文档