PECVD

合集下载

PECVD资料

PECVD资料
➢ H+ SiH4→SiH3+H2 (2.14)
这是一个放热反应,也是形成乙硅烷Si2H6的前驱 反应。当然上述基团不仅仅处于基态,在等离子体 中还会被激励到激发态。对硅烷等离子体的发射光 谱研究的结果表明,存在有 Si, SiH, H 等的光学允 许跃迁激发态[11],也存在SiH2,SiH3的振动激发态。
PECVD 方 法 区 别 于 其 它 CVD 方 法 的 特 点在于等离子体中含有大量高能量的电子, 它们可以提供化学气相沉积过程所需的激活 能。电子与气相分子的碰撞可以促进气体分 子的分解、化合、激发和电离过程,生成活 性很高的各种化学基团,因而显著降低CVD 薄膜沉积的温度范围,使得原来需要在高温 下才能进行的CVD过程得以在低温实现。
等离子体:气体在一定条件下受到高能激发, 发生电离,部分外层电子脱离原子核,形成 电子、正离子和中性粒子混合组成的一种形 态,这种形态就称为等离子态。
PECVD 原理
PECVD 技术原理是利用低温等离子体 作能量源,样品置于低气压下辉光放电的阴 极上,利用辉光放电(或另加发热体)使样 品升温到预定的温度,然后通入适量的反应 气体,气体经一系列化学反应和等离子体反 应,在样品表面形成固态薄膜。
等离子体内的高能量电子还能够发生如下的电离反 应:
• e+SiH4→SiH2++H2+2e (2.6) • e+SiH4→SiH3++ H+2e (2.7) • e+SiH4→Si++2H2+2e (2.8) • e+SiH4→SiH++H2+H+2e (2.9) ▪ 以上各电离反应(2.6)~(2.9)需要的能量分别为11.9, 12.3,13.6和15.3eV,由于反应能量的差异,因此 (2.1)~(2.9)各反应发生的几率是极不均匀的。

PECVD设备介绍

PECVD设备介绍

PECVD设备介绍PECVD(Plasma Enhanced Chemical Vapor Deposition)即等离子体增强化学气相沉积技术,是一种常用于制备薄膜的工艺方法。

该方法利用等离子体激活气体分子,使其在室温下与固体表面反应,形成薄膜。

PECVD设备是实现PECVD技术的关键设备之一,本文将对PECVD设备的工作原理、主要组成部分和应用领域进行详细介绍。

【工作原理】PECVD设备主要由气体输送系统、真空系统、等离子体激发系统、基底加热系统和反应室组成。

其工作原理是将气体通过气体输送系统进入反应室,然后通过真空系统将反应室抽成高真空状态,再利用等离子体激发系统将气体分子激发形成等离子体,最后将等离子体中的活性物种沉积在基底上,形成薄膜。

【主要组成部分】1.气体输送系统:由气体缸、气体流量计和气体控制阀等组成,用于控制和输送反应气体。

2.真空系统:由机械泵和分子泵等组成,用于将反应室抽成高真空状态,以保证薄膜质量。

3.等离子体激发系统:主要包括高频电源、等离子体发生器和电极等,用于产生等离子体并激发气体分子。

4.基底加热系统:由加热源和温度控制器等组成,用于加热基底,提供合适的反应条件。

5.反应室:是进行气体反应的空间,通常采用石英制成,具有良好的耐高温、耐腐蚀性能。

【应用领域】1.半导体器件制备:PECVD设备可用于生长SiO2、SiNx等材料,用于制备MOSFET等半导体器件的绝缘层和通道层。

2.光伏电池制备:PECVD设备可用于制备非晶硅、多晶硅等薄膜,用于制备光伏电池的光吸收层和透明导电层。

3.平板显示器制备:PECVD设备可用于制备低温多晶硅薄膜,用于制备薄膜晶体管面板的薄膜电晶体。

4.光学涂层制备:PECVD设备可用于制备SiO2、Si3N4等材料,用于制备抗反射膜、硬质涂层、光学滤波器等光学涂层。

5.纳米材料合成:PECVD设备可用于合成纳米碳管、纳米颗粒等纳米材料,应用于传感器、催化剂等领域。

PECVD简介

PECVD简介

PECVD简介太阳能电池的作用是实现光-电转换过程,限制这一过程转换效率的一个重要方面是光子利用率,提高光子利用率的即是降低光反射率,通过硅片表面制绒的方式可以使单晶和多晶的反射率降低至13%和23%以下,反射率仍然较高。

通过光学镀膜的方法可以有效的降低这一数值,增加光生载流子的数量;在镀膜的同时反应气体产生的H+可以有效的钝化硅片表面的悬挂键,使得表面陷阱减少,提高少数载流子的寿命。

1. PECVD的作用在太阳能电池中,PECVD工序主要有两方面的作用,一是制备减反膜,二是钝化作用。

1.1 减反射原理PECVD全称是等离子体增强化学气相沉积,其原理的在脉冲电压的作用下,气体辉光放电产生的低温等离子体增强反应物质的化学活性,促进了气体间的化学反应,从而使得反应在较低温度下得以进行,其反应式不再赘述,在基底上沉积的原子团主要是NSix:H,其折射率在1.9~2.5之间,在硅片(3.4)与空气(1.0)之间形成折射率梯度,根据光学反射公式,这一折射率梯度可以降低整体的反射率:当薄膜的厚度降低到光子波长数量级的时候,光子主要呈现波动性,在薄膜的上下表面反射的光子会产生光的干涉。

通过通俗的例子来说明这一现象在大学物理实验中,如果一束激光通过透镜扩束变为一束平行光,照射到一个倾斜角度很小的斜面上,在上表面会出现干涉条纹,这是由于厚度不同上下表面的光程差不同,因此其干涉效果也不同。

由于激光的相干长度很长,所以在相当大的厚度差内仍然能够观察到光的干涉。

在平时的观察中,水上的油膜或肥皂泡等在厚度很薄的时候呈现一定的色彩,这也是由于薄膜干涉造成的。

其色彩的成因我们解释如下:在薄膜上下表面进行干涉的时候,假设上表面振幅为A,下表面振幅为B,相位差为4πnd/λ,当厚度不同时,对于自然的复色光而言,不同波长的光在上下表面的相位差不同,因此会呈现相长或相消干涉,公式推导较为繁琐,通过图像说明如下,图1 图2 以上图1为不同厚度氮化硅的反射率曲线。

PECVD

PECVD
(2).进料腔的加热时间,进料腔和出料腔冲NH3的时间和流量,进料腔、预热腔和工艺腔的加热器的输出功率,微波发生器的开关时间(基本没修改过);
第二组这些参数主要是调整温度、压强和等离子体浓度的均匀性;
10.膜厚与折射率不匹配
原因:(1).工艺腔压强异常;
(2).总气流和气流比率超出界限;
平均功率为 = 361.1W
6.等离子体的沉积方向
插片时硅片载体被工艺点固定,在硅片和石墨舟片接触很紧密的情况下(即硅片本身不弯曲,插片不翘起),等离D膜的作用、简述膜的特性。
1、氮化硅膜的减反效果
减反膜是利用了光的干涉原理,两个振幅相同,波程相同的光波叠加,结果光波的振幅加强。如果有两个光波振幅相同,波程相差λ/2,则这两个光波叠加,结果相互抵消了。减反膜就是利用了这个原理。在硅片的表面镀上薄膜,使得在薄膜的前后两个表面产生的反射光相互干扰,从而抵消了反射光,达到减反射的效果。
从上面的数据中可以看出,这样的片子肯定是Jo片,所以这种片子也是一定要返工的;
6.异常色差,如下图所示:
原因:制绒槽的风刀堵住所致;
解决:更换风刀;
7.边缘色斑印,如下图所示,镀膜后该区域依然较明显:
原因:(1).清洗间出来的片子吹不干;
(2).石英舟不干净;
解决:(1).检查到底是什么原因导致,是酸洗不脱水还是风刀吹不干导致,视实际情况解决;
125单晶:1700 mTorr ,大约相当于226.65 Pa。
2.镀膜工艺温度
管式PECVD工艺时温度为430℃--450℃
3.镀膜工艺 气体流量比
156多晶: =5000sccm:600sccm (单位为每分钟标准立方厘米)

PECVD

PECVD
PECVD
6/21/2018
PECVD 简介
ØPECVD的定义、原理、作用
ØPECVD的减反射作用
Ø PECVD的钝化作用 Ø PECVD对电性能影响 Ø 安全及注意事项
6/21/2018
PECVD的定义、原理
定义: Plasma Enhanced Chemical Vapor Deposition 即“等离子增强化学气相沉积”,是一种化学 气相沉积。 原理: PECVD是借助微波使含有薄膜组成原子(Si、 N)的气体电离,在局部形成等离子体,而等离 子化学活性很强,很容易发生反应,在基片上 沉积出所期望的SixNy薄膜。 反应式如下:
紧急救助
眼睛接触:用大量的水冲洗,立即进行医疗处理。 吸入:将人员移到空气清新处,若呼吸困难,则输氧,并迅 速进行医务处理。 皮肤接触:用大量水冲洗,立即脱掉被污染的衣服,并立即 进行药物处理。
6/21/2018
安全
火灾扑救
灭火剂:干粉、二氧化碳或水 从泄漏区疏散所有的人,切断氨气泄漏源,然后根据 燃烧的物质进行灭火。由于受热钢瓶内压力会升高,如果泄 压装置功能失灵,会引起钢瓶爆炸。 硅烷是一种无色、与空气反应并会引起窒息的气体。该气体 通常与空气接触会引起燃烧并放出很浓的白色无定型二氧化 硅烟雾。它对健康的首要危害是它自燃的火焰会引起严重的 热灼伤。如果严重甚至会致命。如果火焰或高温作用在硅烷 钢瓶的某一部分会使钢瓶在安全阀启动之前爆炸,如果泄放 硅烷时压力过高或速度过快,会引起滞后性的爆炸。泄漏的 硅烷如没有自燃会非常危险,不要靠近,不要试图在切断气 源之前灭火。 硅烷会刺激眼睛,硅烷分解产生的无定型二氧化硅颗粒会引 起眼睛刺激。吸入高浓度的硅烷会引起头痛、恶心、头晕并 刺激上呼吸道。硅烷会刺激呼吸系统及粘膜。过度吸入硅烷 会引起肺炎和肾病。硅烷会刺激皮肤、硅烷分解产生无定型 二氧化硅颗粒会引起皮肤刺激。

PECVD镀膜技术简述

PECVD镀膜技术简述
薄膜纯净度
PECVD在反应过程中,利用辉光放电产生的等离子体对薄膜进行轰击, 有效降低了杂质和气体分子的沾污,提高了薄膜的纯净度。
03
薄膜附着力
由于PECVD技术中基材温度较低,避免了高温引起的基材变形和薄膜
附着力下降的问题,使得薄膜与基材之间具有更好的附着力。
生产效率
沉积速率
PECVD技术具有较高的沉积速率,能 够大幅缩短生产周期,提高生产效率。
自动化程度
批量生产能力
由于PECVD技术适用于大面积基材的 镀膜,因此在大规模生产中具有显著 的优势,能够满足大规模、高效的生 产需求。
PECVD设备通常采用自动化控制,能 够实现连续稳定生产,减少了人工干 预和操作时间。
适用材料
玻璃基材
PECVD技术适用于各种玻璃基材, 如浮法玻璃、导电玻璃、石英玻 璃等。
塑料基材
随着材料科学的发展,越来越多的 塑料材料被开发出来,而PECVD 技术也能够在一些特定的塑料基材 上进行镀膜。
其他材料
除了玻璃和塑料外,PECVD技术还 可以在陶瓷、金属等材料上进行镀 膜,具有广泛的适用性。
环保性
清洁生产
PECVD技术中使用的反应气体在反 应过程中被完全消耗,生成物为无害 的固体或气体,不会对环境造成污染 。
06
PECVD镀膜技术应用案 例
玻璃镀膜
总结词
利用PECVD技术在玻璃表面沉积功能膜 层,提高玻璃的物理和化学性能。
VS
详细描述
玻璃镀膜广泛应用于建筑、汽车、家电等 领域,通过PECVD技术,可以在玻璃表 面形成均匀、致密的膜层,提高玻璃的隔 热、防紫外线、防眩光等性能,同时还能 增强玻璃的耐候性和抗划伤性。
设备维护与清洁

PECVD

PECVD
抽风系统:位于晶片装载区上方,初步的冷却石墨舟 和一定程度的过滤残余气体
SLS系统:软着落系统,控制桨的上下,移动范围在 2—3厘米
PECVD设备结构
炉体:石英管、加热系统、冷却系统
石英管:炉体内有四根石英管,是镀膜的 作业区域,耐高温、防反应。
加热系统:位于石英管外,有五个温区。
PECVD设备结构
SiNA系统
设备核心
PECVD等离子体产生图例
面板介绍
面板介绍
工艺参数调节
影响PECVD的工艺参量
(1) 工作频率、功率 PECVD工艺是利用微波产生等离子体实现氮化硅薄膜沉积。微波一般工作频率为2.45GHz,功率范围为2600W— 3200W。高频电磁场激励下,反应气体激活,电离产生高能电子和正负离子,同时发生化学沉积反应。功率,频率 是影响氮化硅薄膜生长的重要因素,其功率和频率调整不好,会生长一些有干涉条纹的薄膜,片内薄膜的均匀性非 常差。 ①. 工作频率是影响薄膜应力的重要因素。薄膜在高频下沉积的薄膜具有张应力,而在低频下具有压应力。绝大多 数条件下,低频氮化硅薄膜的沉积速率低于高频率薄膜,而密度明显高于高频薄膜。所有条件下沉积的氮化硅薄膜 都具有较好的均匀性,相对来说,高频薄膜的沉积均匀性优于低频氮化硅薄膜。 在低频下等离子体的离化度较高,离子轰击效应明显,因此有助于去除薄膜生长中的一些结合较弱的原子团,在氮 化硅薄膜沉积中,主要是一些含氢的原子团,因此,低频氮化硅薄膜中的氢含量相对较低,薄膜的沉积速率也较低, 同时,离子轰击使薄膜致密化,使薄膜密度较大并表现出压应力。在高频下,由于离子轰击作用较弱,薄膜表现为 张应力。 近期的研究发现,氮化硅薄膜的腐蚀速率与应力有密切的关系,压应力对应于较低的腐蚀速率,而张应力对应于较 高的腐蚀速率。(消除应力的一种方法是采用两套频率不同的功率源交替工作,使总的效果为压缩应力和舒张应力 相互抵消,从而形成无应力膜。但此方法局限性在于它受设备配置的限制,必须有两套功率源;另外应力的变化跟 两个频率功率源作用的比率的关系很敏感,压应力和张应力之间有一个突变,重复性不易掌握,工艺条件难以控 制)。 ②. 功率对薄膜沉积的影响为:一方面,在PECVD工艺中,由于高能粒子的轰击将使界面态密度增加,引起基片特 性发生变化或衰退,特别是在反应初期,故希望功率越小越好。功率小,一方面可以减轻高能粒子对基片表面的损 伤,另一方面可以降低淀积速率,使得反应易于控制,制备的薄膜均匀,致密。另一方面,功率太低时不利于沉积 出高质量的薄膜,且由于功率太低,反应物离解不完全,容易造成反应物浪费。因此,根据沉积条件,需要选择合 适的功率范围。

PECVD简介

PECVD简介

PECVD简介等离子体增强型化学气相沉积(简称PECVD),是一种在较低的压力下,利用电磁场产生放电,通过电子碰撞使通入气体分解成高活性的粒子,从而在气相和基板表面发生化学反应而沉积薄膜的方法。

PECVD技术可用于沉积非晶硅、微晶硅、硅锗、氮化硅等薄膜。

设备在叠层硅薄膜电池、硅基异质结(Hetero Junction)电池、OLED等领域有广泛运用。

理想能源PECVD设备具备以下特点∙等离子体稳定时间小于1s∙采用甚高频电源,极大提高沉积速率∙双层真空设计,保持稳定、清洁的成膜环境∙电极优化设计,薄膜均匀性指标达到5%∙无交叉污染∙适用于大面积生产及研发(第五代线尺寸)∙设备反应腔可同时叠层生产,有效提升产能∙控制系统的界面友善、操作简单、数据采集方便产品单腔室PECVD(PE-800TB)理想能源开发成功的单腔室研发设备(图一)适用于各高校、研究所及企业研发机构。

产品已成功通过客户的各项功能测试,交付使用。

产品特点:∙采用与理想能源量产设备相同的反应腔,研发工艺结果可直接导入大规模生产∙已开发出硅基叠层薄膜电池及异质结电池技术∙样机已运行3年,性能稳定、可靠多腔室PECVD(PE-800)产品特点:∙适用于硅基叠层薄膜电池生产,电池稳定效率超过11% ∙各反应腔之间电池效率偏差低于2%∙微晶硅晶化率可调范围:40%-80%∙设备年产能:o非晶/微晶硅叠层薄膜电池20MWo非晶硅单节薄膜电池30MW在线式单腔PECVD(HJ-1200)产品特点:∙重复、稳定、可靠,特别适用于高质量异质结晶体硅电池∙与客户合作完成异质结电池光电转换效率已经超过21.3%;∙本设备已在客户方投入量产;∙高产能:>1200片/小时(125mm*125mm);∙甚高频(40MHz)等离子体源,基片损伤低;∙无移动原件射频匹配技术,等离子体稳定时间<0.5秒;∙在线式设计可同时满足研发和量产需求图三. 理想能源异质结电池非晶层生产设。

PECVD设备简介

PECVD设备简介

感谢您的观看
THANKS
监测温度
通过温度计监测设备内部 的温度,确保温度达到工 艺要求并保持稳定。
气体通入
打开气体通入阀
打开通入阀,开始通入反应气体。
控制气体流量
通过流量计控制反应气体的流量, 确保气体流量达到工艺要求。
监测气体浓度
通过气体分析仪监测反应气体浓度, 确保气体浓度达到工艺要求。
放电与反应
启动放电系统
启动放电系统,开始进行放电操作。
应用领域
光伏产业
用于制备太阳能电池的 光电材料薄膜,如硅薄
膜、氮化硅薄膜等。
半导体产业
用于制备集成电路、微 电子器件等所需的高质
量薄膜材料。
光学产业
用于制备光学薄膜、增 透膜、反射膜等。
表面处理领域
用于提高材料表面的耐 磨性、耐腐蚀性和附着
力等性能。
02 PECVD设备组成
反应室
01
02
03
04
应用领域拓展
新材料研发
利用PECVD设备制备新型薄膜材料,探索其在新能源、光电子、生 物医学等领域的应用。
柔性电子
将PECVD设备应用于柔性电子产品的制造,如柔性显示、柔性电池 等,满足市场对可穿戴设备和便携式电子产品的需求。
纳米科技
利用PECVD设备制备纳米级薄膜材料,探索其在纳米电子、纳米光子、 纳米生物等领域的应用。
05 PECVD设备发展趋势与展 望
技术创新与升级
1 2 3
高效能
通过改进反应气体供给系统和优化反应条件,提 高PECVD设备的沉积速率和均匀性,从而提高生 产效率和产品质量。
智能化
引入自动化控制系统和人工智能技术,实现设备 智能化操作和实时监控,提高设备运行稳定性和 可靠性。

PECVD的工作原理

PECVD的工作原理

PECVD的工作原理PECVD(Plasma Enhanced Chemical Vapor Deposition)是一种常用的薄膜沉积技术,广泛应用于半导体、光电子和显示器件制备过程中。

本文将详细介绍PECVD的工作原理及其在薄膜沉积中的应用。

一、PECVD的工作原理PECVD是一种在真空环境中利用等离子体激发化学反应进行薄膜沉积的技术。

其工作原理主要包括以下几个步骤:1. 构建真空环境:首先,将待沉积的基底放置在PECVD反应室中,通过抽气系统将反应室内部的气体抽至较低的压力,通常为10^-2至10^-4Torr的范围。

2. 气体进入反应室:在真空环境建立后,需要通过进气系统将所需的沉积气体引入反应室。

沉积气体可以是单一的气体,如二甲基硅烷(SiH2(CH3)2),也可以是多种气体的混合物,如甲烷(CH4)和二氧化硅(SiO2)前体气体。

3. 等离子体激发:一旦沉积气体进入反应室,高频电源将被连接到反应室中的电极上,产生高频电场。

这将导致沉积气体份子中的电子被电场加速,并与其它气体份子碰撞,形成等离子体。

等离子体中的电子和离子之间的碰撞会引起一系列的化学反应。

4. 薄膜沉积:在等离子体激发的化学反应过程中,沉积气体中的前体份子将分解,并释放出反应物质。

这些反应物质会在基底表面发生化学反应,形成一个薄膜层。

薄膜的成份和性质取决于所使用的沉积气体和反应条件。

5. 控制沉积过程:在PECVD过程中,可以通过调节反应室内的气体流量、压力、功率和温度等参数来控制薄膜的成份、厚度和性质。

这些参数的调节可以实现对薄膜沉积过程的精确控制。

二、PECVD在薄膜沉积中的应用PECVD技术具有广泛的应用领域,主要包括以下几个方面:1. 半导体器件制备:PECVD技术在半导体器件制备中被广泛应用,用于沉积硅氧化物(SiO2)、氮化硅(Si3N4)等绝缘薄膜,以及多晶硅(poly-Si)和非晶硅(a-Si)等导电薄膜。

PECVD原理、组成及功能简介

PECVD原理、组成及功能简介
5、真空系统: 该成膜系统是在一定的真空度下完成的,因此,需要将真空 室内的存留的空气通过真空泵浦如机械泵、鲁氏泵及扩散泵 浦等将室内的空气抽除,使室内处于真空状态并维持该本底 真空度及工作真空度;
谢谢观看
3 CVD化学气相沉积成膜过程
4 化学气相沉积的应用
5 PECVD组成及功能
尾气处理系统 (焚烧与喷淋)
电源发生器系统 (13.56MHz)
反应箱系统 (正负极板)
真空系统 (真空泵组合)
气体输运系统 (气瓶与管道)
5 PECVD组成及功能
1、电源发生器系统: 为产生Plasma的电子源,在两个极板之间产生一定频率的电 子,将由气体输运系统送入真空室的各种气体电离;如
2021
PECVD原理
半导体设备知识讲解
1 PECቤተ መጻሕፍቲ ባይዱD简介
PECVD:Plasma Enhanced-CVD,等离子体化学气相沉积;
PECVD技术是在低气压下,利用低温等离子体在工艺腔体的阴极上 (即样品放置的托盘)产生辉光放电,利用辉光放电(或另加发热体) 使样品升温到预定的温度,然后通入适量的工艺气体,这些气体经一 系列化学反应和等离子体反应,最终在样品表面形成固态薄膜。
2 等离子体概论
➢ 物质除了具有固态、液态、气态,还有具更高能量的等离子态,即物质 的第四态。等离子体是大量自由电子和离子组成的、整体上近似电中性 的物质状态。
➢ 获得方法 :加热、燃烧、激光照射、冲击波、辉光放电 ➢ 辉光放电等离子体:两极间加上电压时,阴极发射出的电子在电场被加
速获得能量,与反应室中的气体原子或分子碰撞,使其分解、激发或电 离,这一方面产生辉光,另一方面在反应室中形成很多电子、离子、活 性基团以及亚稳的原子和分子等,在一定的区域中,粒子所带的正的和 负的总电荷相等,是一种等离子体。

PECVD的工作原理

PECVD的工作原理

PECVD的工作原理PECVD(Plasma Enhanced Chemical Vapor Deposition)是一种常用的薄膜沉积技术,通过在沉积过程中引入等离子体来提高反应速率和薄膜质量。

本文将介绍PECVD的工作原理,包括等离子体生成、沉积过程、薄膜生长、应用及优缺点。

一、等离子体生成1.1 等离子体是通过放电过程产生的,通常使用射频(RF)或微波(MW)等电磁场来激发气体分子。

1.2 电磁场会将气体分子激发至高能态,导致部分分子电离形成等离子体。

1.3 等离子体中的自由电子和离子会加速反应速率,促进薄膜的生长。

二、沉积过程2.1 沉积过程中需要将前驱体气体引入反应室,并在等离子体的作用下发生化学反应。

2.2 等离子体中的活性物种会与前驱体气体发生反应,生成沉积薄膜的组分。

2.3 沉积过程中控制反应条件(如温度、压力、功率等)可以调节薄膜的性质和厚度。

三、薄膜生长3.1 PECVD可以在较低的温度下生长多种材料的薄膜,包括氮化硅、氧化硅、氮化碳等。

3.2 薄膜的生长速率受到等离子体密度、功率密度、气体流量等因素的影响。

3.3 控制沉积速率和薄膜成分可以实现对薄膜性质的调控,满足不同应用的需求。

四、应用4.1 PECVD广泛应用于半导体、光伏、显示器件等领域,用于制备绝缘层、导电层、光学薄膜等。

4.2 PECVD薄膜具有较好的均匀性、致密性和化学稳定性,适用于复杂结构和高性能器件的制备。

4.3 PECVD还可以与其他沉积技术(如PECVD、ALD等)结合使用,实现多层膜的沉积和功能性薄膜的制备。

五、优缺点5.1 优点:PECVD可以在较低的温度下生长薄膜,具有较高的生长速率和较好的均匀性。

5.2 缺点:需要复杂的气体控制系统和等离子体发生器,设备成本较高;沉积过程中可能会产生杂质和缺陷。

5.3 随着技术的不断发展,PECVD在材料沉积和器件制备方面仍具有广阔的应用前景。

综上所述,PECVD作为一种重要的薄膜沉积技术,具有独特的工作原理和广泛的应用领域。

2.PECVD工艺及设备介绍

2.PECVD工艺及设备介绍

PECVD工艺及设备介绍一、PECVD原理及作用介绍1.PECVD原理PECVD:Plasma Enhanced Chemical Vapour Deposition (等离子增强化学气相沉积)所谓等离子体:气体在一定条件下受到高能激发,发生电离,部分外层电子脱落原子核,形成电子、正离子和中性粒子混合物组成的一种形态,这种形态就称为等离子态即第四态。

等离子体从宏观来说也是电中性,但是在局部可以为非电中性。

如下图所示。

具体到太阳能电池中,PECVD是借助微波或射频等使含有薄膜组成原子的气体电离,在局部形成等离子体,而等离子化学活性很强,很容易发生反应,在硅片上沉积出所期望的薄膜。

在工业化太阳能电池生产中,最常见的薄膜是Si3N4。

所用的活性气体为SiH4和NH3。

这些气体经解离后反应,在硅片上长出氮化硅膜。

可以根据改变硅烷对氨的比率,来得到不同的折射指数。

在沉积工艺中,伴有大量的氢原子和氢离子的产生,使得晶片的氢钝化性十分良好。

理想的反应如下:正常的SiNx的Si/N之比为0.75,即Si3N4。

但是PECVD沉积氮化硅的化学计量比会随工艺不同而变化,Si/N变化的范围在0.75-2左右。

除了Si和N,PECVD的氮化硅一般还包含一定比例的氢原子,即SixNyHz 或SiNx:H.2.PECVD作用PECVD沉积Si3N4膜的主要作用是做减少反射和钝化。

下图为Si3N4膜形成前后的反射率曲线图。

SiNx减反射机理如下图所示,主要运用的薄膜的干涉相消原理。

根据形成的SiNx的厚度不同,关系的反射率也不同,同时,表现为硅片镀膜后的颜色的不同。

下图为不同的膜厚对应的颜色变化。

颜色厚度(nm)颜色厚度(nm)颜色厚度(nm)硅本色0-20 很淡蓝色100-110 蓝色210-230褐色20-40 硅本色110-120 蓝绿色230-250黄褐色40-50 淡黄色120-130 浅绿色250-280红色55-73 黄色130-150 橙黄色280-300深蓝色73-77 橙黄色150-180 红色300-330蓝色77-93 红色180-190淡蓝色93-100 深红色190-210蓝色77-93 红色180-190淡蓝色93-100 深红色190-210对于多晶硅电池片,因存在较高的晶界、点缺陷(空位、填隙原子、金属杂质、氧、氮及他们的复合物),因此对材料表面和体内缺陷进行钝化就显得特别重要。

PECVD概念

PECVD概念

1、概念:PECVD:概念英文:the plasma enhanced chemical vapor deposition.等离子增强化学气相沉积。

所谓化学气相沉积,主要是在沉积过程中通过两种气体在给定条件下气体通过化学反应来将反应物沉积在基片表面最终形成固态薄膜。

化学气相沉积和磁控溅射不同之处就在于前者发生了化学反应而后者没有发生化学反应。

所以严格地说,化学气相沉积属于化学范畴,而磁控溅射则属于物理学范畴了。

等离子化学气相沉积技术是借助于辉光放电等离子体使含有薄膜组成的气态物质发生化学反应,从而实现薄膜材料生长的一种新的薄膜制备技术。

2、PECVD法沉积的主要原理等离子体增强化学气相沉积(PECVD)技术是借助于辉光放电等离子体使含有薄膜组成的气态物质发生化学反应,从而实现薄膜材料生长的一种新的制备技术。

由于PECVD 技术是通过反应气体放电来制备薄膜的,有效地利用了非平衡等离子体的反应特征,从根本上改变了反应体系的能量供给方式。

具体说来,基于辉光放电方法的PECVD 技术,能够使得反应气体在外界电磁场的激励下实现电离形成等离子体。

在辉光放电的等离子体中,电子经外电场加速后,其动能通常可达10eV 左右,甚至更高,足以破坏反应气体分子的化学键,因此,通过高能电子和反应气体分子的非弹性碰撞,就会使气体分子电离(离化)或者使其分解,产生中性原子和分子生成物。

正离子受到离子层加速电场的加速与上电极碰撞,放置衬底的下电极附近也存在有一较小的离子层电场,所以衬底也受到某种程度的离子轰击。

因而分解产生的中性物依靠扩散到达管壁和衬底。

这些粒子和基团(这里把化学上是活性的中性原子和分子物都称之为基团)在漂移和扩散的过程中,由于平均自由程很短,所以都会发生离子-分子反应和基团-分子反应等过程。

到达衬底并被吸附的化学活性物(主要是基团)的化学性质都很活泼,由它们之间的相互反应从而形成薄膜。

问题:玻璃的装取如何实现?太阳能电池分5层:TCO层:Transparent conduction oxide:氧化锌、铝合金。

PECVD的原理及作用概述

PECVD的原理及作用概述

PECVD的原理及作用概述什么是PECVDPECVD是一种化学气相沉积技术,全称为Plasma-Enhanced Chemical Vapor Deposition,即等离子体增强化学气相沉积。

它是一种在低压等离子体中使用化学气相沉积技术的过程,通过将半导体材料薄膜沉积在基底上来制备新材料。

PECVD的原理PECVD基于化学气相沉积(CVD)技术,通过在化学气相反应中引入等离子体来增强反应速率和程度。

等离子体可以通过加热气体来激发,或者通过在气体中施加高频电场来产生。

这种等离子体激发的化学气相反应可以在较低的温度下进行,从而减少了对基底材料的热应力。

PECVD的过程中,一个带有反应气体的封闭室被置于真空室中,产生的等离子体用于激活反应气体。

激活的气体与基材表面发生化学反应,并沉积在基底上形成薄膜。

PECVD的作用PECVD技术在半导体工业中起着重要的作用。

其主要作用包括:1. 薄膜沉积PECVD可用于在基底表面沉积各种类型的薄膜。

这些薄膜可以具有不同的性质,如电绝缘性、导电性、透明性等。

薄膜的沉积过程可以通过调整反应气体的组合和流量来控制,从而实现所需薄膜的生长。

2. 导电薄膜制备PECVD可以通过在基底上沉积导电性材料薄膜来制备导电层。

这对于制作晶体管、电容器、光电二极管等器件非常重要。

常用的导电材料包括多晶硅和金属。

3. 绝缘薄膜制备PECVD还可用于制备绝缘性材料薄膜,用于电子器件的电绝缘。

这些绝缘薄膜可以用于隔离电路中的不同器件,从而减少器件之间的相互干扰。

4. 光学薄膜制备PECVD可以制备用于光学器件的薄膜,如太阳能电池、光纤和光学涂层等。

这些光学薄膜具有特殊的光学性质,用于改变光的传输和反射特性。

5. 量子点的制备PECVD也可以用来制备量子点。

量子点是具有特殊的量子大小效应的半导体纳米晶体。

PECVD在量子点的制备过程中可以控制其尺寸和形貌,以调节其光学和电学性质。

总结PECVD是一种使用等离子体增强的化学气相沉积技术,用于在基底上沉积薄膜。

光伏异质结pecvd

光伏异质结pecvd

光伏异质结pecvd是一种重要的光伏材料制备技术,它采用等离子体增强化学气相沉积(PECVD)技术制备光伏用薄膜,具有较高的光电转换效率、稳定性好、成本低等优点。

异质结(Heterostructure)是指不同半导体材料制成的半导体器件,它具有较高的光电转换效率,适合用于光伏发电领域。

在异质结光伏材料中,两种半导体材料之间的界面称为肖特基界面(Schottky Interface),它具有较低的界面态密度和较高的载流子注入效率,因此能够提高光伏材料的性能。

PECVD(Plasma-enhanced chemical vapor deposition)是一种重要的薄膜制备技术,它采用等离子体增强化学气相沉积(PECVD)技术制备薄膜。

在PECVD过程中,气体在电场作用下形成等离子体,该等离子体能产生强烈的电场和热效应,促进薄膜的生长。

与传统的热生长法相比,PECVD具有较低的温度和时间消耗,能够制备高质量的薄膜材料。

在异质结光伏材料中,PECVD通常用于制备半导体薄膜材料,如硅薄膜、氮化硅薄膜等。

这些薄膜材料的质量直接影响着光伏材料的性能和效率。

通过控制薄膜的厚度、平整度、杂质含量等因素,可以优化薄膜的光学性能和电学性能,从而提高光伏材料的性能。

异质结pecvd技术具有较高的光电转换效率、稳定性好、成本低等优点,因此在光伏领域得到了广泛的应用。

随着技术的不断进步和成本的降低,异质结pecvd技术有望在未来光伏市场中发挥更加重要的作用。

同时,为了进一步提高光伏材料的性能和效率,还需要继续研究新的材料、技术和工艺,如有机无机复合薄膜、柔性薄膜等。

总之,光伏异质结pecvd是一种重要的薄膜制备技术,它可以用于制备高质量的半导体薄膜材料,具有较高的光电转换效率和成本低等优点。

未来随着技术的不断进步和成本的降低,这种技术将在光伏领域发挥更加重要的作用。

PECVD详细介绍资料讲解

PECVD详细介绍资料讲解
值。 ❖ 系统会对石英管内的真空度三秒钟检查一次,
由于某种原因导致抽真空被延时,在特定的时 间内无法达到真空设定值的要求,系统会出现 这样的报警,检查一下状态栏中的压力值和真 空泵的工作是否正常,如正常过几分钟后报警 会自动解除;如果此报警连同第(八)个报警 一起出现的话,联系工序长和领班。
6
管式PECVD日常报警说明
❖ Boat sensor of grab has changed without permission.
❖ 说明:机械手上的传感器被非允许移动。 ❖ 机械手喜爱上下移动时不会前后移动,若
这时前后的位置发生变化,机械臂将会被 锁定,出现报警。此警报需要通知工序长 或领班。
7
管式PECVD日常报警说明
❖ Collective alert pump st.1 ❖ 说明:真空泵报警。 ❖ 一般情况下是由于真空泵的负压太大,导
致报警。如复位无效的话通知工序长或领 班。
8
管式PECVD日常报警说明
❖ Gas N2(SiH4、NH3)out of 1st(2nd) tolerance. ❖ 说明:特气氮气(硅烷、氨气)超过第一(二)个
❖ 说明:管子的状态无法被确认,请确保 CESAR接收到桨在“0”和“UP”的位置。
❖ 检查桨是否在上位和原点的位置,如果是的, 在空桨的情况下运行homing工艺;如果不 是,手动移动桨到上位和原点。
13
管式PECVD日常报警说明
❖ Boat collision. ❖ 说明:舟被撞击。 ❖ Handling对话框中将舟移动到安全的
Alarms、Help.

Jobs: 机器的工作状态。

System: 四根管子的工作状态,舟的状态以及手

PECVD

PECVD

PECVDPECVD ( Plasma Enhanced Chemical Vapor Deposition ) -- 等离子体增强化学气相沉积法。

PECVD:是借助微波或射频等使含有薄膜组成原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。

为了使化学反应能在较低的温度下进行,利用了等离子体的活性来促进反应,因而这种CVD称为等离子体增强化学气相沉积(PECVD).概念PECVD ( Plasma Enhanced Chemical Vapor Deposition ) -- 等离子体增强化学气相沉积法PECVD:是借助微波或射频等使含有薄膜组成原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。

为了使化学反应能在较低的温度下进行,利用了等离子体的活性来促进反应,因而这种CVD称为等离子体增强化学气相沉积(PECVD).实验机理是借助微波或射频等使含有薄膜组成原子的气体,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。

优点基本温度低;沉积速率快;成膜质量好,针孔较少,不易龟裂。

缺点1.设备投资大、成本高,对气体的纯度要求高;2.涂层过程中产生的剧烈噪音、强光辐射、有害气体、金属蒸汽粉尘等对人体有害;3.对小孔孔径内表面难以涂层等。

4.沉积之后产生的尾气不易处理。

例子:在PECVD工艺中由于等离子体中高速运动的电子撞击到中性的反应气体分子,就会使中性反应气体分子变成碎片或处于激活的状态容易发生反应。

衬底温度通常保持在350℃左右就可以得到良好的SiOx或SiNx薄膜,可以作为集成电路最后的钝化保护层,提高集成电路的可靠性。

例子在PECVD工艺中由于等离子体中高速运动的电子撞击到中性的反应气体分子,就会使中性反应气体分子变成碎片或处于激活的状态容易发生反应。

PECVD设备介绍

PECVD设备介绍

PECVD设备介绍PECVD(Plasma-Enhanced Chemical Vapor Deposition)是一种利用等离子体增强的化学气相沉积方法,用于在固体表面上生长薄膜。

PECVD 设备是用于执行这一过程的装置,它由若干重要组件组成。

下面将对PECVD设备的原理、构成和应用进行详细介绍。

PECVD设备的工作原理基于化学气相沉积(CVD)和等离子体技术的结合。

它通常包括一个真空室,用来确保反应环境中没有气体和杂质。

PECVD过程中,在真空室中供应一种或多种气体,通过设置一定的温度和压力条件,使其在受到等离子体激发的条件下,发生化学反应并沉积在底板上。

PECVD设备的核心部分是等离子体产生系统,它通常由高频电源、电极和等离子体构成。

高频电源产生高频电场,应用在电极上,形成电介质冷等离子体。

这个等离子体通过电极间的电场加速,进而与传递过来的气体发生碰撞,使气体电离并激发化学反应。

此外,PECVD设备还包括气体供应系统、真空泵、控制系统和监测系统等组件。

气体供应系统用于控制和提供所需的反应气体,通常通过气体质量流控制器来实现。

真空泵用于在沉积过程中创建和维持所需的真空环境。

控制系统用于控制和监测PECVD设备的各个参数,如温度、压力、频率等。

监测系统用于实时采集并分析过程中的关键参数,如等离子体密度和附着物质的化学成分。

PECVD设备在许多领域有广泛的应用。

在半导体行业中,PECVD用于沉积和改善硅氧化物(SiO2)和氮化硅(SiNx)等薄膜的性能。

在显示技术中,PECVD用于制备液晶显示器和有机发光二极管(OLED)等器件的透明导电氧化物薄膜。

在太阳能行业中,PECVD用于制备薄膜太阳电池的多层结构,如非晶硅和微晶硅薄膜。

此外,PECVD设备还广泛应用于光学镀膜、防反射涂层和生物医学领域等。

在使用PECVD设备进行表面涂层时,需要考虑反应气体的选择、流量和工艺参数的优化,以确保所需的沉积效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Á ý SiNÄ ó Ä ·ä Ê ³ » ¤º µ ´ É Â
PECVD的作用
从裸露的硅表面和从覆盖有折射率为1.9和2.3的减反射膜的硅表面反射的正常入射光的百分比与波长的关系
减反射膜的选取使得波长在600nm处产生最小的反射.虚线表示将硅 封装在玻璃或有类似折射率的材料之下的结果.
PECVD的作用
PECVD作用
SixNy之所以被广泛应用是因为它具有独特的无可比拟的优点 : 介电常数高 ,其值为 8 F·m-1,而二氧化硅或二氧化钛的均为 3.9 F·m-1; SixNy质硬耐磨 ,疏水性好 ,针孔密度低 ,气体和水汽极难穿透; 化学稳定性也很好,除氢氟酸和热磷酸能缓慢腐蚀外,其它酸与它 基本不起作用。 减反射效果好 ,SixNy薄膜的折射率接近 2.0 ,比二氧化硅 ( n = 1. 46)、二氧化钛 ( n = 2. 4)更接近太阳电池所需的最佳折射率 1.96 ,是所有已应用的介质膜中最符合太阳电池减反射层要求的; PECVD法制备的 SixNy薄膜同时为太阳电池提供较为理想的表面和 体钝化 .二氧化硅只有表面钝化作用 ,二氧化钛没有钝化作用; 能有效地提高电池效率 ,对多晶硅电池等低效率电池作用尤其明显。
SiH4 + NH3 ---->SixNy+H2
3
PECVD 原理
PECVD 技术原理是利用低温等离子体作能量源,样品置 于低气压下辉光放电的阴极上,利用辉光放电(或另加 发热体)使样品升温到预定的温度,然后通入适量的反 应气体,气体经一系列化学反应和等离子体反应,在样 品表面形成固态薄膜。PECVD方法区别于其它CVD方法的 特点在于等离子体中含有大量高能量的电子,它们可以 提供化学气相沉积过程所需的激活能。电子与气相分子 的碰撞可以促进气体分子的分解、化合、激发和电离过 程,生成活性很高的各种化学基团,因而显著降低CVD 薄膜沉积的温度范围,使得原来需要在高温下才能进行 的CVD过程得以在低温实现。
22
PECVD的作用
钝化太阳电池的受光面
钝化膜(介质) 的主要作用是 保护半导体器 件表面不受污 染物质的影响, 半导体表面钝 化可降低半导 体表面态密度。
PECVD的作用
钝化太阳电池的体内
在SiN减反射膜 中存在大量的H, 在烧结过程中 会钝化晶体内 部悬挂键。
二氧化硅膜和氮化硅膜的比较
热氧化二氧化硅和PECVD氮化硅钝化效果的比较
5
PECVD的减反射作用
无减反射膜时 右图为光在硅片上的反射、 折射和透射.各字母表示的意思 如图所示;反射率用R表示,透 射率用T表示.
6
PECVD的减反射作用
在左图中示出了四分之一波长减反射 膜的原理。从第二个界面返回到第一 个界面的反射光与从第一个界面的反 射光相位相差180度,所以前者在一定 程度上抵消了后者。即n1d1=λ/4
25
二氧化硅膜和氮化硅膜的比较
从比较图中看出:二氧化硅膜的表面复合速率 明显高于氮化硅膜,也就是说氮化硅膜的钝化 效果比二氧化硅膜好。若表面氧钝化采用在氢 气氛围中退火,钝化效果会有所改善。
26
PECVD对电性能影响 总结:
一方面,减反射膜提高了对太 阳光的利用率,有助于提高光生电流 密度,起到提高电流进而提高转换效 率的作用. 另一方面,薄膜中的氢对电 池的表面钝化降低了发射结的表面 复合速率,减小了暗电流, 提升了开 路电压,从而提高了光电转换效率; 在烧穿工艺中的高温瞬时退火断裂 了一些Si-H、N-H键,游离出来的H进 一步加强了对电池的钝化
21
钝化技术
氢钝化:钝化硅体内的悬挂键等缺陷。在晶体生 长中受应力等影响造成缺陷越多的硅材料,氢钝 化的效果越好。氢钝化可采用离子注入或等离子 体处理。在多晶硅太阳电池表面采用PECVD法镀上 一层氮化硅减反射膜,由于硅烷分解时产生氢离 子,对多晶硅可产生氢钝化的效果。 应用PECVD Si3N4可使表面复合速度小于20cm/s。
R 0
n n0 nsi 2 ( 2 ) n n0 nsi
2
为了使反射损失减到最小,即希望上式 等于0,就应
有:
n n0 nsi
11
对于太阳光谱,取0=0.6微米 ,如果电池直接暴露在 真空或大气中使用,最匹配的减反射膜折射率为n≈1.97。 在实际应用中,为了提高电池的使用寿命和抗湿能力, 大多采用硅橡胶封装。所以,对于减反射膜来说,外界介 质是硅橡胶,其折射率约为1.4,在这种情况下,最匹配的 减反射膜折射率应为:
多晶硅电池镀膜前后的I-V曲线
27
安全
无水氨气是一种刺激性、无色、可燃的储存于钢瓶的液化压 缩气体。其存储压力为其蒸汽压14psig(70℉)。氨气会严重 灼伤眼、皮肤及呼吸道。当它在空气中的浓度超过15%时有 立即造成火灾及爆炸的危险,因此进入这样的区域前必须排 空。进入浓度超过暴露极限的区域要佩戴自给式呼吸器。大 规模泄露时需要全身防护服,并应随时意识到潜在的火灾和 爆炸危险。暴露在氨气中会对眼睛造成中度到重度的刺激。 氨气强烈地刺激鼻子、喉咙和肺。症状包括灼伤感、咳嗽、 喘息加重、气短、头痛及恶心。过度暴露会影响中枢神经系 统并会造成痉挛和失去知觉。上呼吸道易受伤害并导致气管 炎。声带在高浓度下特别容易受到腐蚀,下呼吸道伤害会造 成水肿和出血,暴露在5000ppm下5分钟会造成死亡。
Байду номын сангаас
安全
紧急救助
由于硅烷泄漏引起人员灼伤应由受过培训的人员进行 急救,并立即寻求医疗处理,眼睛接触:应立即用水冲洗至少 15分钟,水流不要太快,同时翻开眼睑,使受难者为“O”形眼, 立即寻求眼科处理;吸入:将患者尽快移到空气清新处,如有 必要由受过培训的人员进行输氧或人工呼吸。皮肤接触:用大 量的水清洗至少15分钟,脱掉已暴露在硅烷中被污染的衣服, 小心不要接触到眼睛,如果患者有持续的刺激感或其他进一步的 健康影响需立即进行医疗处理。
8
二、有减反射膜时
如果在硅表面制备一层透明的介质膜,由于介质膜 的两个界面上的反射光互相干涉,可以在很宽波长 范围内降低反射率。此时反射率由下式给出:
r12 r22 2r1r2 cos R 1 r12 r22 2r1r2 cos
式中,r1、r2分别是外界介质-膜和膜-硅界面 上的菲涅尔反射系数;△为膜层厚度引起的相位 角。
19
以下是5种多晶材料钝化前后体寿命变化:
如上图所示,PECVD确实具备体钝化效果.
20
钝化技术
对于Mc—Si,因存在较高的晶界、点缺陷(空位、 填隙原子、金属杂质、氧、氮及他们的复合物) 对材料表面和体内缺陷的钝化尤为重要,除前面 提到的吸杂技术外,钝化工艺一般分表面氧钝化 和氢钝化。 表面氧钝化:通过热氧化使硅悬挂键饱和是一种 比较常用的方法,可使Si-SiO2界面的复合速度大 大下降,其钝化效果取决于发射区的表面浓度、 界面态密度和电子、空穴的俘获截面。在氢气氛 围中退火可使钝化效果更加明显。
氮化硅颜色与厚度的对照表
颜色 硅本色 褐 色 厚度(nm) 0-20 20-40 40-50 55-73 73-77 77-93 93-100 颜色 很淡蓝色 硅 本 色 淡 黄 色 黄 色 厚度(nm) 100-110 110-120 120-130 130-150 150-180 180-190 190-210 颜色 蓝 色 厚度(nm) 210-230 230-250 250-280 280-300 300-330
18
钝化效果检验—少子寿命:
一、对硅的表面钝化: 采用PCD方法测镀膜后的少子寿命 制备SiO2膜后的少子寿命为4ms, 制备SixNy膜后的少子寿命为6.6ms, 显然SixNy膜表面钝化效果更好 二、对硅的体钝化: 采用PCD方法比较钝化前后的少子寿命,为了排除 表面钝化带来的影响,样本的寿命都是在含HF溶液 中测量的.
紧急救助
眼睛接触:用大量的水冲洗,立即进行医疗处理。 吸入:将人员移到空气清新处,若呼吸困难,则输氧,并迅 速进行医务处理。 皮肤接触:用大量水冲洗,立即脱掉被污染的衣服,并立即 进行药物处理。
安全
火灾扑救
灭火剂:干粉、二氧化碳或水 从泄漏区疏散所有的人,切断氨气泄漏源,然后根据 燃烧的物质进行灭火。由于受热钢瓶内压力会升高,如果泄 压装置功能失灵,会引起钢瓶爆炸。 硅烷是一种无色、与空气反应并会引起窒息的气体。该气体 通常与空气接触会引起燃烧并放出很浓的白色无定型二氧化 硅烟雾。它对健康的首要危害是它自燃的火焰会引起严重的 热灼伤。如果严重甚至会致命。如果火焰或高温作用在硅烷 钢瓶的某一部分会使钢瓶在安全阀启动之前爆炸,如果泄放 硅烷时压力过高或速度过快,会引起滞后性的爆炸。泄漏的 硅烷如没有自燃会非常危险,不要靠近,不要试图在切断气 源之前灭火。 硅烷会刺激眼睛,硅烷分解产生的无定型二氧化硅颗粒会引 起眼睛刺激。吸入高浓度的硅烷会引起头痛、恶心、头晕并 刺激上呼吸道。硅烷会刺激呼吸系统及粘膜。过度吸入硅烷 会引起肺炎和肾病。硅烷会刺激皮肤、硅烷分解产生无定型 二氧化硅颗粒会引起皮肤刺激。
火灾扑救
切断气源灭火,用水雾减少空气中形成的燃烧产物,不要 用卤化物类灭火器。从最远的距离用水冷却暴露在火焰中的钢瓶。 从泄漏区疏散所有人,切断气源,根据燃烧的物质灭火。由于热 量的作用气瓶内压力会升高,如果泄压装置失灵会引起钢瓶爆炸。 泄漏的微波会损伤人体
蓝绿色 浅绿色 橙黄色 红 色
黄褐色 红 色
深蓝色 蓝 色
橙 黄 色 红 色
淡蓝色
深 红 色
PECVD的钝化作用
为什么要进行钝化? 由于太阳电池级硅材料中不可避免的含有大量的杂质 和缺陷,导致硅中少子寿命及扩散长度降低从而影响电池 的转换效率 H的钝化机理: H能钝化硅中缺陷的主要原因是:H能与硅中的缺陷或 杂质进行反应,从而将禁带中的能带转入价带或者导 带.
n n0 nsi 1.4 3.9 2.35
相关文档
最新文档