201X秋七年级数学上册第2章整式加减2.2整式加减2.2.1合并同类项课件新版沪科版
合集下载
人教版七年级初中数学上册第二章整式的加减-整式的加减(整式加减运算)PPT课件
b
1.5a
2b
解:小纸盒的表面积是(2ab+2bc+2ca
)c2
大纸盒的表面积是( 6ab+8bc+6ca)c2
新知探究
求 1 x 2( x 1 y 2 ) ( 3 x 1 y 2 ) 的值,其中 x 2, y 2
2
3
2
3
3
1
1 2
3
1 2
解: x 2( x y ) ( x y )
第二章 整式的加减
2.2.3 整 式 加 减 运 算
人教版七年级(初中)数学上册
授课老师:11
前 言
学习目标
1、熟练进行整式的加减运算。
2、利用去括号法则会进行整式的化简。
重点难点
重点:熟练进行整式的加减运算。
难点:利用去括号法则会进行整式的化简。
新知探究
(1)(2x-3y)+(5x+4y)
整式加减运算需注意:
A.14a+6b
B.7a+3b
C.10a+10b
D.12a+8b
提示:1.先求另一边边长。
2.长方形周长=(长+宽)*2
课堂练习
3.计算
(1) 3xy-4xy-(-2xy)
(2) (-x+2x2 +5)- (4x2 -3-6x)
课堂练习
4.填空
如果用a,b分别表示一个两位数的十位数字和个位数字,
小红买这种笔记本3本,买圆珠笔2支;
小明买这种笔记本4本,买圆珠笔3支.
问:买这些笔记本和圆珠笔,小红和小明一共花费多少钱?
分析
笔记本花费
圆珠笔花费
人教版七年级数学上册教学课件-2.2整式的加减 第1课时 - 合并同类项 品质课件PPT
人教版七(上)
整 式的 加减ຫໍສະໝຸດ 人教版七(上)单 整式 项 式
多 项 式
整式的加减
第1课时 : 合并同类项
1、填空
①3kg
+2kg
= 5kg
;
②3m ③3kg
+2m +2m
= 5m
;
= 不能计算 .
为什么③不能运算? 因为它们不是同一类事物,不能进行加减 那么怎样的式子是同一类呢?
一、学习目标
1、判断同类项 2、合并同类项
①3kg +2kg = 5kg ; ②3m +2m = 5m ; ③3kg +2m =
填一填:
因为同类项 可以合并
(1). 100t-252t=( 100-252 )t =( -152 )t (2). 3 x2 + 2x2 =( 3 + 2 ) x2 =( 5 ) x2
(3). 3ab2 - 4 ab2 =( 3 - 4 ) ab2 =(-1) ab2
一找
二移
三合并
方法与技巧
1找
x3 x2 y xy2 3x2 y 4xy2 3y2
2 移( x2 y 3x2 y) +(xy2 4xy2 ) + x3 + 3y2
3 合并 -4x2 y 5xy2 x3 3y2
x3 x2 y xy2 3x2 y 4xy2 3y2
1
解:原式=(-x2 y 3x2 y) (xy2 4xy2 ) x3 3y2
8x 2 y和-x 2 y
mn2和7mn2和0.4mn2
5a和9a
3 和0和- 5
8
9
xy2 和2 y2 x 3
概念学习:
整 式的 加减ຫໍສະໝຸດ 人教版七(上)单 整式 项 式
多 项 式
整式的加减
第1课时 : 合并同类项
1、填空
①3kg
+2kg
= 5kg
;
②3m ③3kg
+2m +2m
= 5m
;
= 不能计算 .
为什么③不能运算? 因为它们不是同一类事物,不能进行加减 那么怎样的式子是同一类呢?
一、学习目标
1、判断同类项 2、合并同类项
①3kg +2kg = 5kg ; ②3m +2m = 5m ; ③3kg +2m =
填一填:
因为同类项 可以合并
(1). 100t-252t=( 100-252 )t =( -152 )t (2). 3 x2 + 2x2 =( 3 + 2 ) x2 =( 5 ) x2
(3). 3ab2 - 4 ab2 =( 3 - 4 ) ab2 =(-1) ab2
一找
二移
三合并
方法与技巧
1找
x3 x2 y xy2 3x2 y 4xy2 3y2
2 移( x2 y 3x2 y) +(xy2 4xy2 ) + x3 + 3y2
3 合并 -4x2 y 5xy2 x3 3y2
x3 x2 y xy2 3x2 y 4xy2 3y2
1
解:原式=(-x2 y 3x2 y) (xy2 4xy2 ) x3 3y2
8x 2 y和-x 2 y
mn2和7mn2和0.4mn2
5a和9a
3 和0和- 5
8
9
xy2 和2 y2 x 3
概念学习:
2024年新沪科版七年级上册数学教学课件 第2章 整式加减 2.2 整式加减 2.2.1 合并同类项
(1)-8x+8x=___0____;(2)-a-7a+3a=__-_5_a___;
(3)1 xy2 2 y2 x =___53_x_y_2_;
3
(4)abc
4 3
abc
1 3
abc
=___0____.
5.已知 -4xaya+1 与 mx5yb-1 的和是 3x5yn, 求(m-n)(2a-b)的值. 解:因为-4xaya+1与mx5yb-1的和是3x5yn, 所以-4+m=3,a=5,a+1=b-1=n. 所以a=5,b=7,m=7,n=6. 所以(m-n)(2a-b)=(7-6)×(2×5-7)=3.
2ab和ab都含有字 母a和b,并且a的指 数都是1,b的指数 也都是1
πr2和πr2都含 字母r,并且r的 指数都是2
2 ab + ab – (π r2 + π r2 )
像这样,所含字母相同,并且相同字母的指数也 分别相同的项叫作同类项. ➢ 常数项与常数项是同类项
练一练:下列各组式子中,是同类项的是( C ) ①2 x3 y5与x5 y3 ;②x2 y3z与 3 x2 y3 ;③6xy与 5 xy ; 3 ④x4与34 ;⑤4 x2 y与3 yx2 ;⑥-100与 1 . 5
谢谢 大家
(1)3a2b与3ab2; 不是 (2)4abc与4ac; 不是
(2)xy与-xy;是
(4)-3与
1 3
.
是
2.下列运算正确的是( B ) A. 3a+2b=5ab B. 3a2b-3ba2=0 C. 3x2+2x3=5x5 D. 5y2-4y2=1
【选自教材P76练习 第2题】
3.下列合并同类项的结果是否正确?若不正确,请给出正
七年级上册数学精品课件:第二章第二节 整式的加减
(2)做大纸盒比做小纸盒多用料 (6ab+8bc+6ca)-(2ab+2bc+2ca) =6ab+8bc+6ca- 2ab-2bc-2ca =4ab+6bc+4ca(2cm )
总结归纳
整式加减解决实际问题的一般步骤: ⑴ 根据题意列代数式; ⑵ 去括号、合并同类项.; ⑶ 得出最后结果.
例5
求
1 x 2(x 1 y2的) 值(,3 x 1 y2 )
总结归纳
1.几个整式相加减,通常用括号把每一个整式 括起来,再用加、减连接,然后进行运算.
2.整式加减实际上就是: 去括号、合并同类项.
3.运算结果,常将多项式的某个字母(如x)的
降幂(升幂)排列.
二 整式的加减的应用 例3 一种笔记本的单价是x元,圆
珠笔的单价是y元.小红买这种笔 记本3本,买圆珠笔2支;小明买 这种笔记本4本,买圆珠笔3支.买 这些笔记本和圆珠笔,小红和小 明一共花费多少钱?
小红和小明一共花费(单位:元)
(3x+4x)+(2y+3y)=7x+5y
例4 做大小两个长方体纸盒,尺寸如下(单位:cm): 长宽高
小纸盒 a b c 大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c 2b
1.5a
解:小纸盒的表面积是(2ab+2b+c 2ca )c2m 大纸盒的表面积是(6ab+8bc+ 6ca )c2 m
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4去b 括号 =7a+b 合并同类项
总结归纳
整式加减解决实际问题的一般步骤: ⑴ 根据题意列代数式; ⑵ 去括号、合并同类项.; ⑶ 得出最后结果.
例5
求
1 x 2(x 1 y2的) 值(,3 x 1 y2 )
总结归纳
1.几个整式相加减,通常用括号把每一个整式 括起来,再用加、减连接,然后进行运算.
2.整式加减实际上就是: 去括号、合并同类项.
3.运算结果,常将多项式的某个字母(如x)的
降幂(升幂)排列.
二 整式的加减的应用 例3 一种笔记本的单价是x元,圆
珠笔的单价是y元.小红买这种笔 记本3本,买圆珠笔2支;小明买 这种笔记本4本,买圆珠笔3支.买 这些笔记本和圆珠笔,小红和小 明一共花费多少钱?
小红和小明一共花费(单位:元)
(3x+4x)+(2y+3y)=7x+5y
例4 做大小两个长方体纸盒,尺寸如下(单位:cm): 长宽高
小纸盒 a b c 大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c 2b
1.5a
解:小纸盒的表面积是(2ab+2b+c 2ca )c2m 大纸盒的表面积是(6ab+8bc+ 6ca )c2 m
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4去b 括号 =7a+b 合并同类项
2024年秋新沪科版七年级上册数学教学课件 第2章 整式加减 2.2 整式加减 2.2.3 整式加减
同学们,通过这节课的学习 ,你有什么收获呢?
谢谢 大家
对于某些特殊式子,可采用“整体代入”进行计算.
随堂演练
1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这 个多项式是( A )
A.-5x-1
B.5x+1
C.-13x-1
D.13x+1
2.计算: (1)-3a+(-2a2)-(-2a)-3a2;
【选自教材P80练习 第1题】
解:(1) -3a+(-2a2)-(-2a)-3a2 = -3a-2a2+2a-3a2 = (-2a2-3a2)+(-3a+2a) = -5a2-a
解:A-B=(-3x2+4x-1)-(2x2+4x) = -5x2-1.
因为-5x20, 所以-5x2-1<0. 所以 A-B<0,即 A<B.
课堂小结
①列代数式
整式加减的步骤 ②去括号
整
③合并同类项
式
加
①化简
减
整式的化简求值 ②值代入化简后的式子
③计算
布置作业
1.从教材习题中选取. 2.完成练习册本课时的习题.
【选自教材P81练习 第2题】
3.(1)求3x2-2x+1与3-2x2-x的和,结果按x的降幂排列; (2)求7-2x+x2与5+3x-2x2的差,结果按x的升幂排列.
解:(1)(3x2-2x+1)+(3-2x2-x) =3x2-2x+1+3-2x2-x =x2-3x+4
(2)(7-2x+x2)-(5+3x-2x2) =7-2x+x2-5-3x+2x2 =2-5x+3x2
人教版七年级数学上册第二章2.2.1合并同类项
§2.2 整式的加减(1)
号 A 11号
-x -x
22
B 2号
π
C 3号
abc2
C 4号
103c2ba
B 8号
B 5号
D 6号
E 7号
2%
E 9号
5ab
10号 A10号 2 2 x2 3 D 14号
-2yx2 xy 5 abc
-1
12号 5y2x B 16号
1 3
-4x2y
1 16
E 11号 2 2 15号
=3 3x2 = =5 = 5x
5x2y =
§2.2 整式的加减(1)
相加 3 x2y
2 x2y = 5 +
不变 2y x
多项式中的同类项可以合并成一项, 这样的 过程叫做合并同类项(combining like terms).
法则: 合并同类项后,所得项的系数是合
并前各同类项的系数的和,且字母部分不变.
值得注意的是:
① 同类项与系数(即字母前面的具体
的数)无关;
② 同类项与字母的排列顺序也无关; ③ 特别的,几个常数项也是同类项; ④ 相同字母是多项式或整体时,底相同 或互为相反数的项也是同类项.
§2.2 整式的加减(1)
同类项定义: 多项式中,所含字母相同,并且
相同字母的指数也相同的项叫做同类项。
(3x y 5x y ) (4 xy 2 xy ) (3 5)
2 2 2 2
2 2
3x y 5 x y 4 xy 2 xy 3 5
2 2 2 2
加法的 形式
(3 5) x y ( 4 2) xy ( 3 5) 2 2 8 x y 2 xy 2. 合并 乘法分配律
人教版七年级数学上册第二章整式的加减复习课件(1)
xy2 4;
a 2 1 b; 2
1a;
1 1 xy; 3
e f ; 5
3 b2
(9)下列各式中哪些是单项式(系数、次数), 哪些是多项式(项、次数)?
(1) 3abc 2
(2) x 2 y 3
(3) 4 R3
3
(4)0
(5)3x2y - 3xy 2 y3 - x3
5 (6)
x2 y
z3
4
= - x2 - 1
当x=
1 2
时:
- x2- 1= - (1 )2 - 1 2
=
-
5 4
3、长方形的长为2x cm ,宽为4cm,梯形的上底为x cm,下底为上底的3倍,高为5cm,两者谁的面积大? 大多少?
解:长方形的面积为:8x cm2 梯形的面积为:5(x+3x)=10x cm2
2
因为 x 是正数, 所以 10x>8x 所以 梯形的面积比长方形的面积大
❖ 解:因为:B=4x2-5x-6; A-B= 7x2+10x+12
❖ 所以:A= -7x2+10x+12+(4x2-5x-6)
❖
A= -3X2+5X+6
❖ 所以:A+B=-3X2+5X+6+(4x2-5x-6)
❖
= X2
课堂练习
1.选择题:
(1)一个二次式加上一个一次式,其和是( B )
A.一次式 B.二次式 C.三次式 D.次数不定
(1)
1 1 1 ; 1 1 1; 1 2 2 23 2 3
1 11; 34 3 4
.....
1 n (n 1)
人教版七年级上册数学作业课件 第二章 整式的加减 整式的加减 第1课时 合并同类项
答:当 x=60 时,三个班共植树 205 棵.
16.有这样的一道题:“当 x=14,y=2 022 时,求多 项式 7x3-6x3y+3x2y+3x3+6x3y-3x2y-10x3+3 的 值.”小聪同学说题目中给出的条件“x =14,y= 2 022”是多余的,他的说法有道理吗?为什么?
解:小聪的说法有道理.理由如下: 因为 7x3-6x3y+3x2y+3x3+6x3y-3x2y-10x3+3 =(7+3-10)x3+(6-6)x3y+(3-3)x2y+3=3, 所以无论 x,y 取何值,此多项式的值总等于 3, 即此多项式的值与 x,y 的取值无关. 故小聪的说法有道理.
14.先合并同类项,再求式子的值: (1)32m2-2m-52m2+6m-5,其中 m=2; 解:原式=-m2+4m-5. 当 m=2 时,原式=-1.
(2)5x2y2+1xy-2x2y2-1xy-3x2y2,其中 x=3,y=-4;
4
6
解:原式=112xy.
当 x=3,y=-4 时,原式=-1.
知识点二 合并同类项及其应用 5.下列运算中,正确的是( C )
A.2a+3b=5ab B.3a2-2a2=1 C.4a2b-3ba2=a2b D.-a-2a-3a=0
6.若等式 2a3+□=3a3 成立,则“□”填写的单项式
是( C )
A.a
B.a2
C.a3
D.1
7.某工厂第一年生产 a 件产品,第二年比第一年增产
了 20% ,则两年共生产产品的件数为( D )
A.0.2a B.a
C.1.2a D.2.2a
8.把多项式 2x2-5x+x3+4x+3x2 合并同类项后,所 得结果按 x 的降幂排列为 x3+5x2-x .
16.有这样的一道题:“当 x=14,y=2 022 时,求多 项式 7x3-6x3y+3x2y+3x3+6x3y-3x2y-10x3+3 的 值.”小聪同学说题目中给出的条件“x =14,y= 2 022”是多余的,他的说法有道理吗?为什么?
解:小聪的说法有道理.理由如下: 因为 7x3-6x3y+3x2y+3x3+6x3y-3x2y-10x3+3 =(7+3-10)x3+(6-6)x3y+(3-3)x2y+3=3, 所以无论 x,y 取何值,此多项式的值总等于 3, 即此多项式的值与 x,y 的取值无关. 故小聪的说法有道理.
14.先合并同类项,再求式子的值: (1)32m2-2m-52m2+6m-5,其中 m=2; 解:原式=-m2+4m-5. 当 m=2 时,原式=-1.
(2)5x2y2+1xy-2x2y2-1xy-3x2y2,其中 x=3,y=-4;
4
6
解:原式=112xy.
当 x=3,y=-4 时,原式=-1.
知识点二 合并同类项及其应用 5.下列运算中,正确的是( C )
A.2a+3b=5ab B.3a2-2a2=1 C.4a2b-3ba2=a2b D.-a-2a-3a=0
6.若等式 2a3+□=3a3 成立,则“□”填写的单项式
是( C )
A.a
B.a2
C.a3
D.1
7.某工厂第一年生产 a 件产品,第二年比第一年增产
了 20% ,则两年共生产产品的件数为( D )
A.0.2a B.a
C.1.2a D.2.2a
8.把多项式 2x2-5x+x3+4x+3x2 合并同类项后,所 得结果按 x 的降幂排列为 x3+5x2-x .
人教版七年级数学上册第二章整式的加减整式的加减——合并同类项课件(共19张)
示提升
探究1.运用有理数的运算律计算. (1) 100×2 +252×2 ; =(100+252)×2 (2)100×(-2)+252×(-2);
=(100+252)×(-2)
分组合作,展示提升
(3)根据上题的方法完成下面的运算,并说 明其中的道理。
100t+252t =(100+252)t =352t
列)
分组合作,展示提升
6.归纳:
(1)把多项式中的同类项合并成 一项,叫做合并同类项.
(2)合并同类项后,所得项的系 数是合并前各同类项的系数的 和,且字母部分不变.
分组合作,展示提升
归纳步骤: (1)找出同类项并做标记; (2)运用交换律、结合律将多项式的 同类项结合; (3)合并同类项; (4)按同一个字母的降幂.
小结归纳,自我完善
(1)本节课学了哪些主要内容? (2)你能举例说明同类项的概念吗? (3)举例说明合并同类项的方法. (4)本节课主要运用了什么思想方法
研究问题?
也相同的项,叫同类项。
注:所有常数项都是同类项。
分组合作,展示提升
4.练习与 :下列各组单项式是不是同类项
(1)4abc与4ab; (2)5 x2 y 与 1.8xy 2 ;
3
(3)23 与 32; (4)53 与 a 3 ;
(5) 5m2n3 与 2n3m 2
(6) 与 -3
分组合作,展示提升
分组合作,展示提升
(1)上述各多项式的项有什么共同特点?
①各多项式的每一项含有相同的字母; ②并且相同字母的指数也相同.
(2)上述多项式的运算有什么共同特点?
①根据分配律把多项式各项的系数相加; ②字母部分保持不变.
探究1.运用有理数的运算律计算. (1) 100×2 +252×2 ; =(100+252)×2 (2)100×(-2)+252×(-2);
=(100+252)×(-2)
分组合作,展示提升
(3)根据上题的方法完成下面的运算,并说 明其中的道理。
100t+252t =(100+252)t =352t
列)
分组合作,展示提升
6.归纳:
(1)把多项式中的同类项合并成 一项,叫做合并同类项.
(2)合并同类项后,所得项的系 数是合并前各同类项的系数的 和,且字母部分不变.
分组合作,展示提升
归纳步骤: (1)找出同类项并做标记; (2)运用交换律、结合律将多项式的 同类项结合; (3)合并同类项; (4)按同一个字母的降幂.
小结归纳,自我完善
(1)本节课学了哪些主要内容? (2)你能举例说明同类项的概念吗? (3)举例说明合并同类项的方法. (4)本节课主要运用了什么思想方法
研究问题?
也相同的项,叫同类项。
注:所有常数项都是同类项。
分组合作,展示提升
4.练习与 :下列各组单项式是不是同类项
(1)4abc与4ab; (2)5 x2 y 与 1.8xy 2 ;
3
(3)23 与 32; (4)53 与 a 3 ;
(5) 5m2n3 与 2n3m 2
(6) 与 -3
分组合作,展示提升
分组合作,展示提升
(1)上述各多项式的项有什么共同特点?
①各多项式的每一项含有相同的字母; ②并且相同字母的指数也相同.
(2)上述多项式的运算有什么共同特点?
①根据分配律把多项式各项的系数相加; ②字母部分保持不变.
2024七年级数学上册第2章整式及其加减2.2整式加减3整式加减第2课时整式加减课件新版沪科版
(C)
A. x2-5 x +3
B. - x2+ x -1
C. - x2+5 x -3
D. x2-5 x -3
【点拨】
设这个多项式为 A ,由题意得 A +( x2-2 x +1)=3 x
-2,求解即可.
Байду номын сангаас返回
1 2 3 4 5 6 7 8 9 10 11
10. (1)当 x =1时,多项式 px3+ qx +1的值为2 025,求当 x =-1时,多项式 px3+ qx +1的值; 【解】因为当 x =1时,多项式 px3+ qx +1的值为 2 025,所以 p ×13+ q ×1+1=2 025,则 p + q = 2 024.所以当 x =-1时, px3+ qx +1= p ×(-1)3+ q ×(-1)+1=- p - q +1=-( p + q )+1=-2 024+1 =-2 023.
则 M 与 N 的关系是( B )
A. M = N
B. M > N
C. M < N
D. 无法确定
【点拨】 可采用作差法进行比较:因为 M - N =4>0,所以
M>N.
返回
1 2 3 4 5 6 7 8 9 10 11
易错点 两个多项式相减时,因忽视括号的作用而出错
9. 一个多项式与 x2-2 x +1的和是3 x -2,则这个多项式为
次项,则 m 等于( D )
A. 2
B. -2
C. 4
D. -4
【点拨】 先将两个多项式的差进行化简,找到 x 的二次项的系
数,再令系数等于0,即可求出答案.
返回
1 2 3 4 5 6 7 8 9 10 11
8. [新考法 作差法]若 M =3 x2-5 x +2, N =3 x2-5 x -2,
第二章整式的加减2.2.1同类项与合并同类项
(1) (3) (4)
3a 2b 5ab
2 2
(2) 5 y 2 y 3 2ab 2ba 0 3 x y 5 xy 2 x y
2 2 2
(1)水库中水位第一天连续下降了a小 时,每小时平均下降2cm;第二天连
续上升了a小时,每小时平均上升
0.5cm,这两天水位总的变化情况如
a bc ba
解:由题意得:
∵a<0;b-c<0;b+a<0
∴
a a; b c (b c) b c; b a (b a) b a;
原式=-a+(-b+c)-(-b-a) =-a-b+c+b+a =c
问题回顾:
小
结
(1)什么是同类项? 几个常数项是不是同类项?
第三课时
(3)4a 3b 2ab 4a 4b .
2 2 2 2
解:原式 (4a 4a ) (3b 4b ) 2ab
2 2 2 2
(4 4)a (3 4)b 2ab
2 2
0 (1)b 2ab
2
b 2ab
2
下列各题计算的结果对不对? 如果不对,指出错在哪里?
(2) 1.618 9 0.118 9 0.5 9
原式 9 (1.618 0.118 0.5)
复习与探究
二、填空,并解释其中依据: ) (1)79t 21t (79 21 t
100t
2
2
(2)3ab
2
4ab ( 3 4 )ab ab
特别的:所有常数项都是同类项。
如: 3与 - 4
人教版七年级上册数学第2节《整式的加减》参考课件(共16张PPT)
(1)求多项式 求:
的值. 的值.
的值,
第一天水位的变化量为-2acm, 上的数交换位置,计算所得数与原数的和,所得
进货后这个商店有大米多少千克? 例5 已知m是绝对值最小的有理数,且
第二天水位的变化量为0.5acm. 其中
,
,
(1)水库中水位第一天连续下降了a 小时,每小时平均
问题.本节课设计了大量的实际问题,可以让学生
2
求:
的值.
例6 若
,
8x 3xy 将整式化简求值,运2用整式的加法解决简单的实际
86
2
例6 若 a2a b2 0 ,a bb 2 1 3 ,
求:a22abb2的值.
例6 若 a2a b2 0 ,a bb 2 1 3,
求:a22abb2的值.
解:a2 ab20 ①
abb2 13②
①+②得:a2ababb27
10a b 10b a
11a 11b
11(a b)
∴所得数与原数的和能被11整除.
例5 已知m是绝对值最小的有理数,且am1by1 与 3 a x b 3 是同类项, 求 :2 x 2 3 x y 6 x 2 3 m x 2 m x y 9 m y 2的值
例5 已知m是绝对值最小的有理数,且am1by1与
例3(2)某商店原有5袋大米,每袋大米为x千克.
解: 例1 下列各题计算的结果对不对?如果不对
将整式化简求值,运用整式的加法解决简单的实际
例1 下列各题计算的结果对不对?如果不对
把下降的水位变化量记为负, 答:这两天水位总的变化情况为下降了1.
(2)某商店原有5袋大米,每袋大米为x千克.
把上升的水位变化量记为正. 求:
的值. 的值.
的值,
第一天水位的变化量为-2acm, 上的数交换位置,计算所得数与原数的和,所得
进货后这个商店有大米多少千克? 例5 已知m是绝对值最小的有理数,且
第二天水位的变化量为0.5acm. 其中
,
,
(1)水库中水位第一天连续下降了a 小时,每小时平均
问题.本节课设计了大量的实际问题,可以让学生
2
求:
的值.
例6 若
,
8x 3xy 将整式化简求值,运2用整式的加法解决简单的实际
86
2
例6 若 a2a b2 0 ,a bb 2 1 3 ,
求:a22abb2的值.
例6 若 a2a b2 0 ,a bb 2 1 3,
求:a22abb2的值.
解:a2 ab20 ①
abb2 13②
①+②得:a2ababb27
10a b 10b a
11a 11b
11(a b)
∴所得数与原数的和能被11整除.
例5 已知m是绝对值最小的有理数,且am1by1 与 3 a x b 3 是同类项, 求 :2 x 2 3 x y 6 x 2 3 m x 2 m x y 9 m y 2的值
例5 已知m是绝对值最小的有理数,且am1by1与
例3(2)某商店原有5袋大米,每袋大米为x千克.
解: 例1 下列各题计算的结果对不对?如果不对
将整式化简求值,运用整式的加法解决简单的实际
例1 下列各题计算的结果对不对?如果不对
把下降的水位变化量记为负, 答:这两天水位总的变化情况为下降了1.
(2)某商店原有5袋大米,每袋大米为x千克.
把上升的水位变化量记为正. 求:
整式加减第1课时合并同类项 沪科版数学七年级上册教学课件
=(2+1-3)x2+(-5+4)x-2
=-x-2 当x = 1 ;
2
原式=- 1 -2= - 5
2
2
课程讲授
2 合并同类项
例3
(2)求多项式3a abc 1 c2 3a 1 c2
3
3
的值,其中a=- 1
6
,
b=2,c=-3.
解: 3a abc 1 c2 3a 1 c2
3
3
3 - 3a abc 1 1 c2
随堂练习
4.合并下列各式中的同类项: (1)15x+4x-10x;
解:原式=9x (2)6x-10x2+12x2-5x; 解:原式=2x2+x (3)x2y-3xy2+2yx2-y2x;
解:原式=3x2y-4xy2
课堂小结
同类项的概念
所含字母相同,相同字母的指数也相同 的项叫做同类项.
合并同类项 合并同类项
同类项. 4x2+2x+7+3x-8x2-2 =-4x2+5x+5
合并同类项法则: 同类项的系数相加,所得的结果作为系数,字母和字 母的指数不变.
课程讲授
2 合并同类项
例1 合并下列各式的同类项:
(1) 4x4 5x4 x4 ; (2)3x2 y 3 x2 y x2 y. 4
解:(1)4x4 5x4 x4 (4 5 1)x4 8x4 ;
(2)3x2 y 3 x2 y x2 y 4
3
3 4
1
x2
y
11 x2 y. 4
课程讲授
2 合并同类项
例2 合并下列各式的同类项:
(1)3x2 14x 5x2 4x2; (2) xy3 x3 y 2xy3 5x3 y 9.