A density functional theory for general hard-core lattice gases
Density Functional
Density Functional (DFT) MethodsDESCRIPTIONGaussian 09 offers a wide variety of Density Functional Theory (DFT) [Hohenberg64, Kohn65, Parr89, Salahub89] models (seealso [Salahub89, Labanowski91, Andzelm92, Becke92, Gill92, Perdew92 , Scuseria92,Becke92a, Perdew92a, Perdew93a, Sosa93a, Stephens94, St ephens94a, Ricca95] for discussions of DFT methods and applications). Energies [Pople92], analytic gradients, and true analyticfrequencies [Johnson93a,Johnson94, Stratmann97] are available for all DFT models.The self-consistent reaction field (SCRF) can be used with DFT energies, optimizations, and frequency calculations to model systems in solution. Pure DFT calculations will often want to take advantage of density fitting. See the discussion in Basis Sets for details.The next subsection presents a very brief overview of the DFT approach. Following this, the specific functionals available in Gaussian 09 are given. The final subsection surveys considerations related to accuracy in DFT calculations.The same optimum memory sizes given by freqmem are recommended for DFT frequency calculations.Polarizability derivatives (Raman intensities) and hyperpolarizabilities are not computed by default during DFT frequency calculations.Use Freq=Raman to request them. Polar calculations do compute them. Note: The double hybrid functionals are discussed with the MP2 keyword since they have similar computational cost.BACKGROUNDIn Hartree-Fock theory, the energy has the form:E HF = V + <hP> + 1/2<PJ(P)> - 1/2<PK(P)>where the terms have the following meanings:V The nuclear repulsion energy.P The density matrix.<hP> The one-electron (kinetic plus potential) energy.1/2<PJ(P)> The classical coulomb repulsion of the electrons.-1/2<PK(P)> The exchange energy resulting from the quantum(fermion) nature of electrons.In the Kohn-Sham formulation of density functional theory [Kohn65], the exact exchange (HF) for a single determinant is replaced by a more general expression, the exchange-correlation functional, which can include terms accounting for both the exchange and the electron correlation energies, the latter not being present in Hartree-Fock theory: E KS = V + <hP> + 1/2<PJ(P)> + E X[P] + E C[P]where E X[P] is the exchange functional, and E C[P] is the correlation functional.Within the Kohn-Sham formulation, Hartree-Fock theory can be regarded as a special case of density functional theory, with E X[P] given by the exchange integral -1/2<PK(P)> and E C=0. The functionals normally used in density functional theory are integrals of some function of the density and possibly the density gradient:E X[P] = ∫f(ρα(r),ρβ(r),∇ρα(r),∇ρβ(r))drwhere the methods differ in which function f is used for E X and which (if any) f is used for E C. In addition to pure DFT methods, Gaussian supports hybrid methods in which the exchange functional is a linear combination of the Hartree-Fock exchange and a functional integral of the above form.Proposed functionals lead to integrals which cannot be evaluated in closed form and are solved by numerical quadrature.KEYWORDS FOR DFT METHODSNames for the various pure DFT models are given by combining the names for the exchange and correlation functionals. In some cases, standard synonyms used in the field are also available as keywords. Exchange Functionals. The following exchange functionals are available in Gaussian 09. Unless otherwise indicated, these exchange functionals must be combined with a correlation functional in order to produce a usable method.∙S: The Slate r exchange, ρ4/3 with theoretical coefficient of 2/3, also referred to as Local Spin Densityexchange [Hohenberg64, Kohn65, Slater74]. Keyword if usedalone: HFS.∙XA: The XAlpha exchange, ρ4/3 with the empirical coefficient of0.7, usually employed as a standalone exchange functional, withouta correlation functional [Hohenberg64, Kohn65, Slater74].Keyword if used alone: XAlpha.∙B: Becke’s 1988 functional, which includes the Slater exchange along with corrections involving the gradient of thedensity [Becke88b]. Keyword if used alone: HFB.∙PW91: The exchange componen t of Perdew and Wang’s 1991 functional [Perdew91, Perdew92, Perdew93a, Perdew96, Burke98] .∙mPW: The Perdew-Wang 1991 exchange functional as modified by Adamo and Barone [Adamo98].∙G96: The 1996 exchange functional of Gill [Gill96, Adamo98a]. ∙PBE: The 1996 functional of Perdew, Burke andErnzerhof [Perdew96a, Perdew97].∙O: Handy’s OPTX modification of Becke’s exchange functional [Handy01, Hoe01].∙TPSS: The exchange functional of Tao, Perdew, Staroverov, and Scuseria [Tao03].∙BRx: The 1989 exchange functional of Becke [Becke89a].∙PKZB: The exchange part of the Perdew, Kurth, Zupan and Blaha functional [Perdew99].∙wPBEh: The exchange part of screened Coulomb potential-based final of Heyd, Scuseria and Ernzerhof (also knownas HSE) [Heyd03].∙PBEh: 1998 revision of PBE [Ernzerhof98].Correlation Functionals. The following correlation functionals are available, listed by their corresponding keyword component, all of which must be combined with the keyword for the desired exchange functional:∙VWN: Vosko, Wilk, and Nusair 1980 correlation functional(III) fitting the RPA solution to the uniform electron gas, often referred to as Local Spin Density (LSD) correlation [Vosko80] (functional III in this article).∙VWN5: Functional V from reference [Vosko80] which fits the Ceperly-Alder solution to the uniform electron gas (this is thefunctional recommended in [Vosko80]).∙LYP: The correlation functional of Lee, Yang, and Parr, which includes both local and non-local terms [Lee88, Miehlich89].∙PL (Perdew Local): The local (non-gradient corrected) functional of Perdew (1981) [Perdew81].∙P86 (Perdew 86): The gradient corrections of Perdew, along with his 1981 local correlation functional [Perdew86].∙PW91(Perdew/Wang 91): Perdew and Wang’s 1991gradient-corrected correlationfunctional [Perdew91, Perdew92, Perdew93a, Perdew96, Burke98] .∙B95(Becke 95): Becke’s τ-dependent gradient-corrected correlation functional (defined as part of his one parameter hybridfunctional [Becke96]).∙PBE: The 1996 gradient-corrected correlation functional of Perdew, Burke and Ernzerhof [Perdew96a, Perdew97].∙TPSS: The τ-dependent gradient-corrected functional of Tao, Perdew, Staroverov, and Scuseria [Tao03].∙KCIS: The Krieger-Chen-Iafrate-Savin correlationfunctional [Rey98, Krieger99, Krieger01, Toulouse02].∙BRC: Becke-Roussel correlation functional [Becke89a].∙PKZB: The correlation part of the Perdew, Kurth, Zupan and Blaha functional [Perdew99].Specifying Actual Functionals. Combine an exchange functional component keyword with the one for desired correlation functional. For example, the combination of the Becke exchange functional (B) andthe LYP correlation functional is requested by the BLYP keyword. Similarly, SVWN requests the Slater exchange functional (S) andthe VWN correlation functional, and is known in the literature by its synonym LSDA (Local Spin Density Approximation). LSDA is a synonym for SVWN. Some other software packages with DFT facilities use the equivalent of SVWN5when “LSDA” is requested. Check the documentation carefully for all packages when making comparisons.Correlation Functional Variations. The following correlation functionals combine local and non-local terms from different correlation functionals:∙VP86: VWN5 local and P86 non-local correlation functional.∙V5LYP: VWN5 local and LYP non-local correlation functional. Standalone Functionals. The following functionals are self-contained and are not combined with any other functional keyword components:∙VSXC: van Voorhis and Scuseria’s τ-dependent gradient-corrected correlation functional [VanVoorhis98].∙HCTH/*: Handy’s family of functi onals includinggradient-correctedcorrelation [Hamprecht98, Boese00, Boese01]. HCTH refers toHCTH/407, HCTH93 to HCTH/93, HCTH147 to HCTH/147,and HCTH407 to HCTH/407. Note that the related HCTH/120functional is not implemented.∙tHCTH: The τ-dependent member of the HCTH family [Boese02].See also tHCTHhyb below.∙M06L: The pure functional of Truhlar and Zhao [Zhao06a]. See also M06 below.∙B97D: Grimme’s functional including dispersion [Grimme06].Hybrid Functionals. A number of hybrid functionals, which include a mixture of Hartree-Fock exchange with DFT exchange-correlation, are available via keywords:Becke Three Parameter Hybrid Functionals. These functionals have the form devised by Becke in 1993 [Becke93a]:A*E X Slater+(1-A)*E X HF+B*ΔE X Becke+E C VWN+C*ΔE C non-localwhere A, B, and C are the constants determined by Becke viafitting to the G1 molecule set.There are several variations of this hybrid functional. B3LYP uses the non-local correlation provided by the LYP expression, andVWN functional III for local correlation (not functional V). Notethat since LYP includes both local and non-local terms, thecorrelation functional used is actually:C*E C LYP+(1-C)*E C VWNIn other words, VWN is used to provide the excess localcorrelation required, since LYP contains a local term essentiallyequivalent to VWN.B3P86 specifies the same functional with the non-local correlation provided by Perdew 86, and B3PW91 specifies this functional with the non-local correlation provided by Perdew/Wang 91.∙Becke One Parameter Hybrid Functionals. The B1B95 keyword is used to specify Becke’s one-parame∙ter hybrid functional as defined in the original paper [Becke96].The program also provides other, similar one parameter hybridfunctionals [Becke96], as implemented by Adamo andBarone [Adamo97]. In one variation, B1LYP, the LYP correlation functional is used (as described for B3LYP above). Anotherversion, mPW1PW91, uses Perdew-Wang exchange as modified by Adamo and Barone combined with PW91correlation [Adamo98];the mPW1LYP,mPW1PBE and mPW3PBE variations areavailable.∙Becke’s 1998 revisions to B97 [Becke97, Schmider98]. The keyword is B98, and it implements equation 2c inreference [Schmider98].∙Handy, Tozer and coworkers modification toB97: B971 [Hamprecht98].∙Wilson, Bradley and Tozer’s modification toB97: B972 [Wilson01a].∙The 1996 pure functional of Perdew, Burke andErnzerhof [Perdew96a, Perdew97], as made into a hybrid byAdamo [Adamo99a]. The keyword is PBE1PBE. This functional uses 25% exchange and 75% correlation weighting, and is known in the literature as PBE0.∙HSEh1PBE: The recommended version of the fullHeyd-Scuseria-Ernzerhof functional, referred to as HSE06 in the literature [Heyd04, Heyd04a, Heyd05, Heyd06, Krukau06]. Two earlier forms are also available:o HSE2PBE: the first form of this functional, referred to as HSE03 in the literature.o HSE1PBE: The version of the functional prior tomodification to support third derivatives.∙PBEh1PBE: Hybrid using the 1998 revised form of PBE pure functional (exchange and correlation) [Ernzerhof98].∙O3LYP: A three-parameter functional similar to B3LYP: A*E X LSD+(1-A)*E X HF+B*ΔE X OPTX+C*ΔE C LYP+(1-C)E C VWNwhere A, B and C are as defined by Cohen and Handy inreference [Cohen01].∙TPSSh: Hybrid functional using the TPSS functionals [Tao03].∙BMK: Boese and Martin’s τ-dependent hybridfunctional [Boese04].∙M06: The hybrid functional of Truhlar and Zhao [Zhao08].The M06HF [Zhao08] and M062X [Zhao06b] variations are alsoavailable.∙X3LYP: Functional of Xu and Goddard [Xu04].∙Half-and-half Functionals, which implement the following functionals. Note that these are not the same as the “half-and-half”functionals proposed by Becke [Becke93]. These functionals areincluded for backward-compatibility only.o BHandH: 0.5*E X HF + 0.5*E X LSDA + E C LYPo BHandHLYP: 0.5*E X HF + 0.5*E X LSDA+ 0.5*ΔE X Becke88 +E C LYPLong range corrected functionals. The non-Coulomb part of exchange functionals typically dies off too rapidly and becomes very inaccurate at large distances, making them unsuitable for modeling processes such as electron excitations to high orbitals. Various schemes have been devised to handle such cases. Gaussian 09 offers the following functionals which include long range corrections:∙LC-wPBE: Long range-corrected version ofwPBE [Tawada04, Vydrov06, Vydrov06a, Vydrov07].∙CAM-B3LYP: Handy and coworkers’ long range corrected version of B3LYP using the Coulomb-attenuatingmethod [Yanai04].∙wB97XD: The latest functional from Head-Gordon and coworkers, which includes empirical dispersion [Chai08a].The wB97 and wB97X [Chai08] variations are also available.These functionals also include long range corrections.In addition, the prefix LC- may be added to any pure functional to apply the long correction of Hirao and coworkers [Iikura01]: e.g., LC-BLYP. User-Defined Models. Gaussian 09 can use any model of the general form:P2E X HF + P1(P4E X Slater + P3ΔE x non-local) + P6E C local + P5ΔE C non-localThe only available local exchange method is Slater (S), which should be used when only local exchange is desired. Any combinable non-local exchange functional and combinable correlation functional may be used (as listed previously).The values of the six parameters are specified with various non-standard options to the program:∙IOp(3/76=mmmmmnnnnn) sets P1 to mmmmm/10000 and P2 to nnnnn/10000. P1 is usually set to either 1.0 or 0.0, depending on whether an exchange functional is desired or not, and anyscaling is accomplished using P3 and P4.∙IOp(3/77=mmmmmnnnnn) sets P3 to mmmmm/10000 and P4 to nnnnn/10000.∙IOp(3/78=mmmmmnnnnn) sets P5 to mmmmm/10000 and P6 to nnnnn/10000.For example, IOp(3/76=1000005000) sets P1 to 1.0 and P2 to 0.5. Note that all values must be expressed using five digits, adding any necessary leading zeros.Here is a route section specifying the functional corresponding tothe B3LYP keyword:#P BLYP IOp(3/76=1000002000) IOp(3/77=0720008000)IOp(3/78=0810010000)The output file displays the values that are in use:IExCor= 402 DFT=T Ex=B+HF Corr=LYP ExCW=0 ScaHFX=0.200000ScaDFX= 0.800000 0.720000 1.000000 0.810000where the value of ScaHFX is P2, and the sequence of values given for ScaDFX are P4, P3, P6 and P5.ACCURACY CONSIDERATIONSA DFT calculation adds an additional step to each major phase of a Hartree-Fock calculation. This step is a numerical integration of the functional (or various derivatives of the functional). Thus in addition to the sources of numerical error in Hartree-Fock calculations (integral accuracy, SCF convergence, CPHF convergence), the accuracy of DFT calculations also depends on the number of points used in the numerical integration.The “fine” integration grid (corresponding to Integral=FineGrid) is the default in Gaussian 09. This grid greatly enhances calculation accuracy at minimal additional cost. We do not recommend using any smaller grid in production DFT calculations. Note also that it is important to usethe same grid for all calculations where you intend to compare energies (e.g., computing energy differences, heats of formation, and so on).Larger grids are available when needed (e.g. tight geometry optimizations of certain kinds of systems). An alternate grid may be selected by including Integral(Grid=N) in the route section (see the discussion of the Integral keyword for details).AVAILABILITYEnergies, analytic gradients, and analyticfrequencies; ADMP calculations.Third order properties such as hyperpolarizabilities and Raman intensities are not available for functionals for which third derivatives are not implemented: the exchangefunctionals Gill96, P (Perdew86), BRx,PKZB, TPSS, wPBEh and PBE h; the correlation functionals PKZB and TPSS; the hybridfunctionals HSE1PBE and HSE2PBE.RELATED KEYWORDSIOp, Int=Grid, Stable, TD, DenFitEXAMPLESThe energy is reported in DFT calculations in a form similar to that of Hartree-Fock calculations. Here is the energy output froma B3LYP calculation:SCF Done: E(RB+HF-LYP) = -75.3197099428 A.U. after5 cyclesThe item in parentheses following the E denotes the method used to obtain the energy. The output from a BLYP calculation is labeled similarly:SCF Done: E(RB-LYP) = -75.2867073414 A.U. after 5 cyclesQUICK REFERENCE OF AVAILABLE FUNCTIONALS COMBINATION FORMS STAND ALONE FUNCTIONALSEXCHANGEONLY PURE HYBRID EXCHANGE CORRELATIONS VWN HFS VSXC B3LYPXA VWN5XAlpha HCTH B3P86B LYP HFB HCTH93B3PW91PW91PL HCTH147B1B95mPW P86HCTH407mPW1PW91G96PW91tHCTH mPW1LYP PBE B95M06L mPW1PBE O PBE B97D mPW3PBE TPSS TPSS B98 BRx KCIS B971 PKZB BRC B972 wPBEh PKZB PBE1PBE PBEh VP86B1LYPV5LYP O3LYPBHandHLONG RANGE BHandHLYPCORRECTIONBMK LC-M06M06HFM062XtHCTHhybHSEh1PBEHSE2PBEHSEhPBEPBEh1PBEwB97XDwB97wB97XTPSShX3LYP LC-wPBECAM-B3LYP。
密度泛函理论
r r r 2 r 2 P r1, r2 1 r1 1 r2
Second Semester
Academic Year 2009 - 2010
maurizio casarin
Chimica Computazionale
QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.
is a very complex object including more information than we need!
Second Semester Academic Year 2009 - 2010 maurizio casarin
Chimica Computazionale
QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.
Wavefunctions
Electron Density
Hartree-Fock
DFT
MP2-CI
TD-DFT
The HF equations have to be solved iteratively because VHF depends upon solutions (the orbitals). In practice, one adopts the LCAO scheme, where the orbitals are expressed in terms of N basis functions, thus obtaining matricial equations depending upon N4 bielectron integrals.
新型冠状病毒(SARS-CoV-2) RNA聚合酶抑制剂的密度泛函理论计算辅助筛选
Hans Journal of Medicinal Chemistry 药物化学, 2020, 8(2), 29-37Published Online May 2020 in Hans. /journal/hjmcehttps:///10.12677/hjmce.2020.82005Density Functional Theory CalculationAided Screening of SARS-CoV-2RNA Polymerase InhibitorsLi Zhang, Kaiyun Pan, Xiaoling Zhang, Weiming Sun*School of Pharmacy, Fujian Medical University, Fuzhou FujianReceived: Apr. 9th, 2020; accepted: Apr. 29th, 2020; published: May 6th, 2020AbstractRemdesivir (GS-5734) is a valuable nucleoside RNA polymerase inhibitor, which is considered to be a potential drug for curing COVID-19 and has been used in clinical trials now. In this paper, six potential RNA polymerase inhibitors were compared with Remdesivir based on the density func-tional theory (DFT). By comparing electronic structure properties of the chosen inhibitors with Remdesivir, it is found that the dipole moment, energy gap, and conceptual density functional pa-rameters of compound 6 were similar to those of Remdesivir, indicating its potential of serving as inhibitor of SARS-CoV-2 RNA polymerase. Moreover, the potential inhibitory ability of compound 6 against SARS-CoV-2 was further confirmed by molecular docking study. This paper is expected to provide a quantum chemical computation aided strategy for further screening drug candidates.KeywordsRemdesivir, SARS-CoV-2, RNA Polymerase Inhibitor, Quantum Chemistry新型冠状病毒(SARS-CoV-2) RNA聚合酶抑制剂的密度泛函理论计算辅助筛选张莉,潘凯云,张小玲,孙伟明*福建医科大学药学院,福建福州收稿日期:2020年4月9日;录用日期:2020年4月29日;发布日期:2020年5月6日*通讯作者。
理论化学中的密度泛函理论研究
理论化学中的密度泛函理论研究密度泛函理论(Density Functional Theory,简称DFT)是理论化学中重要的研究手段之一。
本文将从理论化学的角度,对密度泛函理论的研究进行探讨,并对其在不同领域中的应用进行概述。
一、密度泛函理论的基本原理密度泛函理论是基于量子力学和统计力学的理论,旨在描述物质的电子结构和性质。
其基本原理是以电子的密度来描述体系的构型,而非直接求解薛定谔方程。
根据泡利不相容原理和库伦排斥定律,系统中任意两个电子的运动是相互耦合的,因此要准确地描述电子结构以及相互作用,需要考虑所有电子的密度分布。
二、密度泛函理论的发展历程密度泛函理论的发展可以追溯到20世纪60年代,由卡恩-肖姆方程的提出为其开创了先河。
在接下来的几十年里,密度泛函理论经历了快速发展,尤其是引入了一系列密度泛函近似方法,如局域密度近似(LDA)、广义梯度近似(GGA)等。
这些近似方法在提高计算效率的同时,尽可能保持原始密度泛函理论的准确性。
三、密度泛函理论在化学反应研究中的应用密度泛函理论在化学反应研究中发挥着重要作用。
通过计算反应能垒、反应活化能以及反应速率常数等,可以预测和解释化学反应的机理和动力学。
例如,利用密度泛函理论可以研究催化剂表面上的活性位点以及催化反应中的中间体形成机理,进一步指导实验设计和催化性能的改进。
四、密度泛函理论在材料科学研究中的应用密度泛函理论在材料科学研究中也广泛应用。
通过计算材料的电子结构、能带结构以及物理性质,可以预测和解释材料的电子输运性质、光学性质、磁性等。
例如,密度泛函理论可以用来研究光催化材料的吸光性质以及光生载流子的分离和转移行为,为光催化材料的设计和合成提供理论指导。
五、密度泛函理论在生物化学研究中的应用随着计算机技术的快速发展,密度泛函理论在生物化学研究中的应用也越来越广泛。
通过计算生物大分子(如蛋白质、核酸等)的结构和性质,可以揭示其功能机制并设计相关的药物分子。
Conceptual Density Functional Theory
1793
Conceptual Density Functional Theory
P. Geerlings,*,† F. De Proft,† and W. Langenaeker‡
Eenheid Algemene Chemie, Faculteit Wetenschappen, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium, and Department of Molecular Design and Chemoinformatics, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium Received April 2, 2002
* Corresponding author (telephone +32.2.629.33.14; fax +32.2.629. 33.17; E-mail pgeerlin@vub.ac.be). † Vrije Universiteit Brussel. ‡ Janssen Pharmaceutica NV.
Contents
I. Introduction: Conceptual vs Fundamental and Computational Aspects of DFT II. Fundamental and Computational Aspects of DFT A. The Basics of DFT: The Hohenberg−Kohn Theorems B. DFT as a Tool for Calculating Atomic and Molecular Properties: The Kohn−Sham Equations C. Electronic Chemical Potential and Electronegativity: Bridging Computational and Conceptual DFT III. DFT-Based Concepts and Principles A. General Scheme: Nalewajski’s Charge Sensitivity Analysis B. Concepts and Their Calculation 1. Electronegativity and the Electronic Chemical Potential 2. Global Hardness and Softness 3. The Electronic Fukui Function, Local Softness, and Softness Kerndness Kernel 5. The Molecular Shape FunctionsSimilarity 6. The Nuclear Fukui Function and Its Derivatives 7. Spin-Polarized Generalizations 8. Solvent Effects 9. Time Evolution of Reactivity Indices C. Principles 1. Sanderson’s Electronegativity Equalization Principle 2. Pearson’s Hard and Soft Acids and Bases Principle 3. The Maximum Hardness Principle IV. Applications A. Atoms and Functional Groups B. Molecular Properties 1. Dipole Moment, Hardness, Softness, and Related Properties 2. Conformation 3. Aromaticity C. Reactivity 1. Introduction 2. Comparison of Intramolecular Reactivity Sequences 1793 1795 1795 1796 1797 1798 1798 1800 1800 1802 1807 1813 1814 1816 1819 1820 1821 1822 1822 1825 1829 1833 1833 1838 1838 1840 1840 1842 1842 1844 V. VI. VII. VIII. IX.
密度泛函理论Density Functional Theory讲座
Outline
• Analyzing functionals in DFT through the Perspectives of Fractional Charges and Fractional Spins.
• Band Gaps, Derivative Discontinuity and LUMO
Delocalization Error
Error Increases for systems with fractional number of electrons: Zhang and Yang, JCP 1998
H
+ 2
at the dissociation limit
too low energy for delocalized electrons
Fractional Charges
A large class of problems • Wrong dissociation limit for molecules and ions • Over-binding of charge transfer complex • too low reaction barriers • Overestimation of polarizabilities and hyperpolarizabilities • Overestimation of molecular conductance in molecular electronics • Incorrect long-range behavior of the exchange-correlation potential • Charge-transfer excited states • Band gaps too small • Diels-Alder reactions, highly branched alkanes, dimerization of aluminum complexes
Density-Functional-Theory(DFT)-CaculationPPT课件
9
2016/3/5
The Ion structure shows longer O-H distance and shorter O-O distance than the OO structure. The Ion structure has a larger rotational constant A than the OO structure.
13
2016/3/5
conclusion
At the CCSD(T)/CBS level of theory, the Ion structure is much more stable than the OO structure
most DFT calculations with various functionals favor the OO structure the DFT results with MPW1K and BH&HLYP functionals are very close to
CBS(complete basis set)-完全基组 6-311++G** aug-cc-pVDZ(aVDZ) aug-cc-pVTZ(aVTZ) aug-cc-pVQZ(aVQZ)
最小基组 劈裂价键基组 极化基组 弥散基组
高角动量基组
相关一致基组
5
2016/3/5
结果与讨论
the OO structure is much more stable than the Ion structure both structures are compatible the Ion structure is much more stable than the OO structure
First Principle——第一性原理
• This is (clearly!) a unique functional of the external potential, V
精选可编辑ppt
11
Model Systems
In this kind of first-principles calculation
– Are 3D-periodic
– Are small: from one atom to a
few thousand atoms
Bulk alloy
Supercells
精选可编辑ppt
15
The electron density
• The electronic charge density is given by
n ( r ) . . . * r 1 , r 2 , . . . , r n r 1 , r 2 , . . . , r n d r 2 d r 3 . . . d r n
• Toolbox for material properties
精选可编辑ppt
7
The starting point
Hˆ E
As you can see, quantum mechanics is “simply” an eigenvalue problem
精选可编辑ppt
8
Set up the problem
18
Unique potential
• If we add these two final equations we are left with the contradiction
固体理论作业-密度泛函理论简介
密度泛函理论简介本文简要介绍密度泛函理论以及本人论文中用到的概念、方法等。
基于密度泛函理论的第一性原理(First-Principles)计算方法,在材料的设计和模拟计算等方面有突破性进展,已经成为计算材料科学的重要基础。
第一性原理计算方法的基本思路是:将固体看作是由电子和原子核组成的多粒子体系,求解多粒子体系的量子力学薛定谔方程,求出描述体系状态的本征值和本征函数(波函数),就可以推出材料包括电子、结构、光学和磁学在内的所有性质。
固体是存在大量原子核和电子的多粒子系统,处理问题必须采用一些近似和简化:通过绝热近似将原子核的运动与电子的运动分开;通过哈特利-福克(Hartree-Fock )自洽场方法将多电子问题简化为单电子问题,以及这一问题更严格、更精确的描述——密度泛函理论(DFT );通过将固体抽象为具有平移周期性的理想晶体,将能带问题归结为单电子在周期性势场中的运动。
1.密度泛函理论简介[2,3,4]第一性原理计算的核心是采用合理的近似和简化,利用量子力学求解多体问题。
组成固体的多粒子系统的薛定谔方程:(,)(,)H H E ψ=ψr R r R (1.1)如果不考虑其他外场的作用,晶体的哈密顿量应包括原子核和电子的动能以及这些粒子之间的相互作用能,形式上写成N e N e H H H H -++= (1.2)我们对研究体系进行简化,把在原子结合中起作用的价电子和内层电子分离,内层电子与原子核一起运动,构成离子实(ion core ),离子实与价电子构成凝聚态体系的基本单元。
晶体哈密顿量可以改写为:2222222,112222i i i j i ij i Z Z e Z e e H m M αβααααβαααβ≠≠⎛⎫⎛⎫=-∇+-∇++- ⎪ ⎪-⎝⎭⎝⎭∑∑∑∑∑αr R r R (1.3) 第一项为电子动能,第二项为离子的动能,第三项和第四项是成对离子和电子之间的静电能,第五项为电子和核之间的吸引作用。
密度泛函理论用于材料科学计算方法
密度泛函理论用于材料科学计算方法材料科学作为一个重要的学科领域,涉及到材料的设计、合成、性能优化等诸多方面。
而材料科学计算方法的发展对于材料研究和应用起着至关重要的作用。
在材料计算方法中,密度泛函理论是一种常用且有效的方法。
本文将介绍密度泛函理论的基本原理和在材料科学中的应用。
密度泛函理论(Density Functional Theory,DFT)是一种基于波函数密度的理论,用以描述复杂的量子体系。
该理论的核心思想是将体系的波函数看作电子密度的函数,并通过最小化电子能量来获得系统的基态性质。
相较于传统的波函数理论,密度泛函理论有效地降低了计算成本,提高了计算效率,因此得到了广泛的应用。
密度泛函理论广泛应用于研究和解释材料的结构、电子结构和性质。
其中,最重要的是通过密度泛函理论计算材料的能带结构和态密度。
能带结构是描述材料电子结构的重要概念,它可以揭示材料的导电性、绝缘性以及半导体特性。
利用密度泛函理论,可以通过计算得到材料的能带结构,进而进一步预测和研究材料的电导率、光吸收性、光电导等电子性质。
例如,通过密度泛函理论计算材料的能带结构,可以预测新材料的带隙大小,有助于寻找新的光电材料。
此外,密度泛函理论还可以用于计算材料的结构性质和热力学性质。
例如,通过计算材料的晶格常数、结构参数和晶胞参数,可以预测材料的晶体结构、晶格畸变等结构性质。
通过计算材料的热力学性质,如形成能、分解能和反应焓等,可以探索材料的相变行为、化学稳定性和热稳定性等。
另外,密度泛函理论还可以用于计算材料的各种性质,如磁性、光学性质、催化性能等。
通过计算材料的能态密度和态密度的积分,可以得到材料的总能级数和带隙大小,进而揭示材料的电子结合性质、磁性等。
利用密度泛函理论计算材料的光学性质,可以预测材料的能带间距、折射率、透射率等,有助于设计和优化光学器件。
此外,通过计算材料表面和催化剂的电荷分布和反应能垒等,可以预测催化反应的活性和选择性。
密度泛函理论
得
库仑势即可按下式展开
2 电荷密度多极展开措施 (1)
将(1)式和
1 r r'
旳Laplace展开式代入,化简得
总库仑势为
七、近代密度泛函旳显体现式
1 局域密度近似LDA
将密度泛函理论旳K-S措施用于实际计算,必须懂得 或
与 旳泛函关系。这是密度泛函理论旳关键问题,对于一般体
1978年Peukert首先得到含时K-S方程,1984年Runge和Gross 基于含时薛定谔方程,严格导出含时密度泛函理论(TD-DFT)
含时K-S方程
近来单旳近似是绝热局域密度近似(ALDA或TDLDA)
含时密度泛函,都要要求懂得不处于基态时旳互换-有关问题,所以 诸多人致力于致力于这方面旳研究,其中TD-DFT响应理论比较广泛 ,其对低激发态具有很好旳计算构造,误差在0.1-1.0eV。但对高激 发态误差比较大。所以还需进一步旳工作。
无相互作用动能
则 即得Kohn-Sham方程
式中
有效势 称为互换有关势
五、某些化学概念旳明拟定义
1 电负性 1934年Mulliken根据下列推理定义电负性 设有B和D两原子,原子旳第一电离势为I 第一电子亲和能为A
这只是根据某些试验成果归纳出来旳,没有严格定量旳理论论证。
1978年Parr等从密度泛函理论出发定义电负性 (1)
根据K-S措施,设自旋轨道函数基组 {i , , } 满足条件
其中
SDFT.
相对论性密度泛函理论
在重元素原子核紧邻区域电子运动速度不高,相对论效应很明显 。化学变化是与价电子相联络旳,价电子旳运动速度并不高,因 此相对论量子力学旳奠基人Dirac以为在考虑原子和分子旳构造以及 一般化学反应时相对论效应并不主要,这一观点被普遍接受长达四 十年。在20世纪70年代前后,人们发觉这一认识具有片面性,相对 论效应对重元素化合物旳性质具有明显影响。
计算化学6-密度泛函理论
N (N )
Fˆi
1 2
2 i
M k 1
Zk rik
2 Jˆ i
Kˆ i
Tˆi
Vˆi h f
考虑存在一个无相互作用的多粒子体系, 其Hamiltonian为
Hˆ s Fˆi Tˆi V i h f
i
i
i
精选课件
20
无相互作用体系的波函数
KS
1 (1) 1 1(2) N!
1(N )
E 0 ,b (V e x ta V e x tb ) 0 ( r ) d r E 0 ,a
E 0 , a E 0 ,b E E 0 精, a 选课件 0 ,b
15
1965年,运用变分原理导出 Kohn-Sham 自洽 场方程 ( DFT的基础方程 )
t ˆ [ ( r ) ˆ j [ ] ( r ) v ˆ x ] [ ( c r )( r ] ) ( r )
(rA)
rA
rA0
2ZA(rA)
精选课件
8
早期的尝试
Thomas-Fermi的均匀电子气模型(1927年)
精选课件
9
DFT的关键是找到依赖电子密度的能量函 数
() t()j() v x(c )
借用早年Thomas-Fermi-Dirac“均匀电子气” 的能量函数,计算晶体的电子结构当年即取得成 功(但分子计算结果不佳)
22
Kohn-Sham近似的核心思想:
1. 动能的大部分通过相同电子密度的无相互作用体 系来计算
2. 电子相互作用中库仑作用占据了主要部分,而交 换相关是相对次要的
3. 非经典的交换和相关作用,动能校正项,自相互 作用折入交换相关泛函中
精选课件
阿昔洛韦的药理活性密度泛函研究_高立峰
收稿日期:2013-05-20基金项目:湖南省衡阳市科技局一般项目(10C1023)资助作者简介:龙威(1983-),男,汉族,湖南湘潭人,实验师,硕士,主要从事量子化学理论计算研究。
文章编号:1002-1124(2013)07-0027-03Sum214No.7化学工程师ChemicalEngineer2013年第7期脂质体作为药物载体一直在医药和保健上发挥着重要作用,基于脂质体的阿昔洛韦作为国内外[1,2]广泛使用的高度选择和低毒的核苷类高校光谱抗病毒药物。
在医药上主要用于各种疱疹病毒所致的各种感染,如初发或复发性皮肤、粘膜、外生殖器感染或HSV1、HSV2感染。
临床应用中阿昔洛韦可以作为乙肝治疗的高效药物,药理上它与细胞作用进入肝细胞,控制乙肝病毒的复制而提高发挥药力[3,4]。
阿昔洛韦的分子式为C8H11N5O3,其分子结构主要是一个苯环与一个咪唑联合,开链中有一个醚氧基和一个醇羟基基团(分子结构和原子编号见图1),它亦包含了一个醌式结构(C4=O16)。
图1阿昔洛韦分子结构及原子编号Fig.1Structare and atom number of acyclovir1计算方法密度泛函理论(DensityFunctionTheory,DFT)方法的计算精度高、速度快,已在量子化学领域中得到了充分的展现。
本文对阿昔洛韦分子采用DFT理论的B3LYP方法在6-311+G(d,p)基组水平上进行了优化计算,对生成的自由基进行优化计算的方法一致,但自旋多重度设置为2。
优化得到的稳定构型基础上,采用Freq方法进行了频率分析,结果表明所有简谐振动频率全部为正值,表明其计算结果是可信的。
类似的计算[5]已在国内报道过,本项目的全部计算工作通过Gaussian03程序在PC机上完成。
2计算结果和数据分析2.1分子几何构型分析利用Gaussian03程序在B3LYP/6-311+G(d,p)水平上进行优化计算得到了阿昔洛韦的分子几何阿昔洛韦的药理活性密度泛函研究*高立峰1a ,熊双喜1b ,龙威2*(1.台州学院a.生命科学学院;b.台州学院医药化工学院,浙江临海317000;2.南华大学化学化工学院,湖南衡阳421001)摘要:采用密度泛函理论B3LYP方法在6-311+G(d,p)基组上对阿昔洛韦进行了理论计算,对其分子构型、偶极矩、疏水参数、红外光谱、自旋密度分布和前线轨道结构进行了分析探究。
density functional theory
density functional theory密度泛函理论(Density Functional Theory, DFT)的基本原理。
DFT是一个求解多电子体系的重要方法,在计算材料学和计算化学中有着广泛的应用。
1 DFT计算简介DFT理论,是一种从头算(ab initio)理论,意思是只是纯粹从量子力学的基本原理出发来对多电子体系进行运算,而不包含任何经验常数。
但是为了与其他的量子化学从头算方法区分,人们通常把基于密度泛函理论的计算叫做第一性原理(first-principles)计算。
正如“密度泛函”这个词所揭示的,与传统的量子理论将波函数作为体系的基本物理量不同,DFT是一个通过计算电子数密度研究多电子体系的方法。
具体到操作中,我们首先通过两个基本定理,把求解多电子总体波函数的问题简化为求解空间电子数密度的问题,再通过一些近似,把难以解决的包含电子-电子相互作用的问题简化成无相互作用的问题,再将所有误差单独放进一项中,之后再对这个误差进行分析,最后求出电子数密度,进而得出系统的种种性质。
2 基本概念这一节旨在对一些理解DFT所必须的量子力学概念进行回顾:•波函数:在量子力学中,求解薛定谔方程波函数完备地描述了这个系统的状态,可以类比为经典力学中求得的牛顿方程的解。
•算符:对变量施加的数学运算(比如乘上一个数,对它求导等等)。
量子力学中,可观测量(比如位置、动量)由一类特殊的算符,即厄米算符表示。
•基态:一个系统最稳定的状态,或者说能量最低的状态。
3 从量子力学到凝聚态物理理论化学实际上就是物理。
但是,必须强调的是,这种解释只是原则上的。
我们已经讨论过了解下棋规则与擅长下棋之间的差别。
也就是说,我们可能知道有关的规则,但是下得不很好。
我们知道,精确地预言某个化学反应中会出现什么情况是十分困难的;然而,理论化学的最深刻部分必定会归结到量子力学。
——理查德·费曼,费曼物理学讲义,1962这一节中,我们从凝聚态物理和材料学的实际需求出发,探讨量子力学的基本原理如何应用于多原子体系的计算,进而指出引出密度泛函理论的讨论对象——电荷数密度的必要性。
第一性原理与密度泛函理论 ppt课件
密度泛函理论
• 在密度泛函理论中,将电子密度作为描述体系状态的基本变量,可追 溯到Thomas和Fermi用简并的非均匀电子气来描述单个原子的多电子 结构。
• 直到Hohenberg和Kohn提出了两个基本定理才奠定了密度泛函理论的 基石。
• 随后Kohn和Sham的工作使密度泛函理论成为实际可行的理论方法。
这在很大程度上导致了密度泛函理论的产生。
密度泛函理论
• Hartree-Fock方法的主要缺陷
– 完全忽略电子关联作用 – 计算量偏大,随系统尺度4次方关系增长
• Density Functional Theory (DFT 1964)
一种用电子密度分布n(r)作为基本变量,研究多粒子 体系基态性质的新理论
密度泛函理论
密度泛函理论—物质电子结构的新理论
1. 氢原子
1)Bohr:
电子=粒子
2)Schrodinger: 电子=波 ψ(r) .
3)DFT:
电子是电子云的密度分布。 n(r).
密度泛函理论
3)DFT: 电子是电子云的密度分布。
2. DFT中的氢分子。 由密度分布表示。
密度泛函理论
3. 大分子(例如DNA) N个原子
20世纪初量子力学的出现,原则上提出 了像原子核和电子这样的微观粒子运动
和交互作用的定律。
理论上,给定一块固体化学成分(即所 含原子核的电荷和质量),我们就可以 计算这些固体的性质。因为一块固体实 际上是一个多粒子体系。决定这个体系 性质的波函数可以通过解薛定谔 (Schrödinger)波动方程来获得。
1998获奖诺贝尔化学奖
表彰Walter Kohn在60年代提出密度泛函理论及John A. Pople 发明了测验化学结构和物质特性的计算机技术
the density functional theoretical study
the density functional theoretical study
密度泛函理论(Density Functional Theory,DFT)是一种计算化学和物理中广泛应用的量子力学方法,用于研究分子、固体和纳米材料的性质。
它通过计算体系的电子密度来预测其物理和化学性质,具有较高的精确性和可靠性。
在DFT研究中,研究者通常关注以下几个方面:
1.电子密度:描述体系中电子在空间中的分布。
通过计算电子密度,可以了解化学键的强度和位置,以及电子在不同区域的空间分布。
2.能量:包括体系的基态和激发态能量。
通过计算不同状态的能量,可以研究体系的稳定性和反应途径。
3.电荷密度:描述体系中电子的净分布。
电荷密度分布与原子或分子中的电子云有关,可用于研究静电相互作用和电荷转移过程。
4.结构:通过计算原子或分子之间的距离和角度,可以研究体系的立体构型和几何性质。
5.反应动力学:研究化学反应过程中体系的能量变化和速率常数。
6.分子轨道:描述分子中电子轨道的相互作用。
通过分析分子轨道,可以了解分子的化学键性质和反应性。
7.材料性质:研究固态材料的电子、磁性和光学性质。
DFT在材料科学中的应用包括计算晶格常数、弹性模量、电子传输性质等。
在密度泛函理论研究中,专业程序员需要开发和优化计算方法、算法和软件,以实现高效、精确的数值计算。
此外,还需要关注计算方法的收敛性和稳定性,以及如何减小计算误差。
在实际应用中,程序员需熟练掌
握相关编程语言(如Python、C++等)和量子化学软件,以实现对复杂体系的建模和计算。
密度泛函理论常见的
密度泛函理论常见的密度泛函理论(Density functional theory ,缩写DFT)是一种研究多电子体系电子结构的方法。
密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理计算材料学和计算化学领域最常用的方法之一。
电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock方法,是基于复杂的多电子波函数的。
密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。
因为多电子波函数有3N 个变量(N 为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。
虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。
最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。
正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。
在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。
这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换相关作用。
处理交换相关作用是KS DFT中的难点。
目前并没有精确求解交换相关能EXC 的方法。
最简单的近似求解方法为局域密度近似(LDA近似)。
LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :c o n d -m a t /0401186v 3 [c o n d -m a t .s t a t -m e c h ] 8 O c t 2004A density functional theory for general hard-core lattice gasesLuis Lafuente 1,∗and Jos´e A.Cuesta 1,†1Grupo Interdisciplinar de Sistemas Complejos (GISC),Departamento de Matem´a ticas,Universidad Carlos III de Madrid,Avenida de la Universidad 30,E-28911,Legan´e s,Madrid,Spain(Dated:February 2,2008)We put forward a general procedure to obtain an approximate free energy density functional for any hard-core lattice gas,regardless of the shape of the particles,the underlying lattice or the dimension of the system.The procedure is conceptually very simple and recovers effortlessly previous results for some particular systems.Also,the obtained density functionals belong to the class of fundamental measure functionals and,therefore,are always consistent through dimensional reduction.We discuss possible extensions of this method to account for attractive lattice models.PACS numbers:05.50.+q,05.20.-y,61.20.GyDespite the crucial role that lattice models have had in the development of Statistical Physics,when one looks for such models in the literature of density functional theory,the results are scarce.In the last few years,though,some of the most classical approximations have been extended to lattice systems [1,2,3]and used to study different phenomena (like freezing and fluid-solid interfaces [1,2]or confined fluids [3]).Also very recently,fundamental measure (FM)theory has been added to the list through its formulation for systems of parallel hard hypercubes in hypercubic lattices [4].The construction mimics that of its continuum counterpart [5],and like the FM functional for hard spheres,it is obtained from a zero-dimensional (0d )functional (a functional for cavities holding one par-ticle at most).This theory possesses a remarkable prop-erty:dimensional crossover,which allows obtaining the functional for d −1dimensions from the one for d di-mensions by confining the system through an external field to lie in a (d −1)-dimensional slit.Dimensional crossover has been applied to the already mentioned sys-tem of parallel hard hypercubes in order to obtain FM functionals for nearest-neighbor exclusion lattice gases in two-dimensional (square and triangular)and three-dimensional (simple,body-centered and face-centered cu-bic)lattices [6].This increasing interest in density functionals for lat-tice models has several motivations.On the one hand,some systems are particularly difficult to study using con-tinuum models.For them,lattice models provide conve-nient simplifications.This is the case of glasses [7]or fluids in porous media [8],to name only two.On the other hand,lattice models cover a wider range of prob-lems,many of which do not even belong to the theory of fluids (like roughening [9]or DNA denaturation [10],to name only two)and so have never been studied with density functional theory.Finally,from a purely theo-retical point of view,these extensions are also interest-ing because they reveal features of the structure of the approximate functionals which are hidden or at least not apparent in their continuum counterparts (this is the caseof FM functionals).In this letter we propose a simple systematic procedure to construct a FM functional for any hard-core lattice model.The construction is based on the dimensional crossover of this theory,much like the latest versions for continuum models.Let us begin by realizing that all FM functionals for lattice models studied in Refs.[4,6]share a common pattern,namely,the excess free energy can be written asβF ex[ρ]=s ∈Lk ∈Ia k Φ0 n (k )(s ),(1)where L denotes the lattice,I is a set of indices suit-ably chosen to denote the different weighted densities n (k )(s )≡ t ∈C k (s )ρ(t ),a k are integer coefficients which depend on the specific model,Φ0(η)=η+(1−η)ln(1−η)is the excess free energy of a 0d cavity with average occu-pancy 0≤η≤1,ρ(s )is the density profile of the system (specifically,the occupancy probability of node s )and C k (s )is,for each k ∈I ,a finite labeled subgraph of the lattice placed at node s (vertices are labeled with node vectors).The shape of the graphs C k (s )also depends on the model.From the definition,n (k )(s )appears as the mean occupancy of the lattice region defined by C k (s ).For the sake of clarity we will illustrate this formal setup and the arguments to come with a simple exam-ple:the two-dimensional square lattice gas with first and second neighbor exclusion.With the help of a diagram-matic notation already introduced in [13],the excess free-energy functional for this model takes the formβF ex[ρ]=s ∈Z 2[Φ0−Φ0−Φ0+Φ0,(2)where the the (four in this case)weighted densities =n (1,1)(s ),=n (1,0)(s ),=n (0,1)(s )and =(s ),where [s =(s 1,s 2)]n(k 1,k 2)(s )=k 1 i =0k 2 j =0ρ(s 1+i,s 2+j ).(3)2(a)(b)FIG.1:Examples of0d profiles corresponding to maximalcavities for thefirst and second neighbor exclusion lattice gasin the square lattice(a)and the nearest neighbor exclusionlattice gas in the triangular lattice(b).The density can onlyhave nonzero values at the black nodes(which define maximalcavities)).This notation uses explicitly the shape of the graphs C k(s).Thanks to this more visual representation it is easily verified that all these graphs represent0d cavities of the lattice,because we can place at most one particle in any of them.This is ageneral feature of all FM func-tionals described by the pattern(1),so from now on,the C k(s)will be referred to as0d cavities.As we will make clear immediately,the form(1)with the C k(s)given by0d cavities is a direct consequence of the exact dimensional crossover to any0d cavity that FM functionals possess.The latter means that if we take a density profile which vanishes outside a given0d cavity (henceforth a0d profile)and evaluate the functional,we will obtain the exact value of the free energy.The only known approximate density functionals having this prop-erty are FM ones[4,5,6,11].(As a matter of fact,the property can be regarded as the very constructive prin-ciple of FM theory[11].)Before we start let us define a maximal cavity to be any0d cavity which,enlarged by any lattice site,stops being a0d cavity because it can accommodate more than one particle.Clearly,any0d cavity must be contained in a maximal cavity,so0d dimensional crossover needs only be proved for maximal cavities.(Notice that there can be more than one maximal cavity in a given system.) Let us now try to construct the simplest possible func-tional of the class(1)which fulfills the exact dimensional crossover requirement.Its construction will proceed it-eratively.In thefirst place,if the functional must return the exact free energy when evaluated at any0d profile, there must appear a term in(1)for each maximal cav-ity of the model,and the corresponding coefficient a k must be1.For the running example we are consider-ing,Eq.(2),this means that we should start offwith the ansatzβF ex1[ρ]= s∈Z2Φ0,(4) because is the only maximal cavity of this model.If(4)were thefinal functional,evaluated at any maxi-mal0d profile(one corresponding to a maximal cavity)it should return the exact free energy.In the example,all maximal0d profiles have the form illustrated in Fig.1a. Let us now substitute this profile in(4)and see what comes out.For an easy way to do the evaluation,just imagine the graphs C k(s)as windows which only allow to see the content of the lattice nodes they overlap.Then the sum over the lattice nodes implies that we must place these windows at every lattice site,evaluate the content and add up the results of these evaluations.When the density profile is a0d one(as in Fig.1a),all contributions will vanish except those for which the window overlaps at least one node of the0d profile.In our example,this means that(4)will returnβF ex1[ρ0d]=Φ0+[Φ0(12+Φ0(34+[Φ0)+Φ0+4i=1Φ0),(5)whereρ0d(s)denotes a0d profile of the form given in Fig.1a.(Filled numbered circles in the diagrams rep-resent actual evalutations of the density profile for the corresponding numbered nodes of the lattice.)We can see that,apart from the exact value(thefirst term on the r.h.s.),there appear a number of spurious contributions.Therefore(4)cannot be thefinal func-tional.These spurious terms are like evaluations ofρ0d with non-maximal cavities,so we will try to eliminate them by adding new terms to(4)corresponding to non-maximal cavities,with the appropriate coefficients.Since a term like sΦ0evaluated atρ0d(s)will returnΦ0(12+Φ0(34)+4i=1Φ0),it seems reasonable to choose it to remove thefirst bracket on the r.h.s.of (5)(and the vertical one to remove the second bracket). Thus we use as our second ansatzβF ex2[ρ]= s∈Z2[Φ0−Φ0−Φ0.(6)Note that in doing this,we have chosen new graphs C k(s) and their corresponding coefficients a k in(1).When we insertρd(s)in this new functional we obtainβF ex2[ρ0d]=Φ0− 4i=1Φ0).We have indeed removed many contributions,but there still remain some.It should now be clear that in order to remove the latter we must add to the previous ansatz the term s∈Z2Φ0 This way we obtain the functional(2),which was already derived in[4]by a different is straightfor-ward to check thatβF ex[ρ0d]=Φ0thus proving its exact dimensional crossover.In order to be illustrative,let us apply this procedure again to obtain the FM functional for a different model: the nearest-neighbor exclusion lattice gas in the trian-gular lattice(hard hexagons).This example is different from the previous one in that it has two maximal cavi-ties:and Then,thefirst-step functional must be3βF ex1[ρ]=s ∈Z 2[Φ0+Φ0.(7)Corresponding to the existence of two different maximalcavities thereare two different density profiles,as illus-trated in Fig.1b.The exact 0d dimensional crossover must be satisfied for both of them.Let us start by the one with a triangle-up shape and let us denote it ρ0d (s ).Substituting it in each of the two terms of (7)we obtain (using again the window metaphor)s ∈Z 2Φ0=Φ0()+23 i =1Φ0),s ∈Z 2Φ0=Φ0()+Φ0)+Φ0(1)+3 i =1Φ0).(8)As in the previous example,to remove the “largest”spu-rious contributions (those of the dimers)we propose βF ex 2[ρ]=βF ex1[ρ]−s ∈Z 2[Φ0+Φ0+Φ0.(9)Substituting ρ0d (s )again we get βF ex2[ρ0d ]=Φ0()− 3i =1Φ0),so we have to add a last correction the point-like cavities,what finally leads toβF ex [ρ]=s ∈Z 2[Φ0+Φ0−Φ0)−Φ0(−Φ0+Φ0.(10)This functional is exact for ρ0d (s ).We would now have to check if the same occurs for the 0d cavity corresponding to the triangle-down in Fig.1b,but symmetry consider-ations immediately show that this is the case.In gen-eral,checking dimensional crossover for a new 0d cavity may lead to the appearance of additional spurious con-tributions.These have to be eliminated by adding the corresponding terms to the functional.Finally,notice that (10)coincides with the functional obtained in [6]through a completely different (and far more involved)route.Let us summarize the procedure to follow for an ar-bitrary lattice gas with hard-core interaction.The steps are:(i)Determine the complete set of maximal 0d cavitiesof the model.If we denote them by C ∗k (k =1,...,m ),then the first-step approximation to the functional will be [n (k )(s )= t ∈C ∗kρ(t )]βF ex1[ρ]=s ∈L mk =1Φ0n (k )(s ) .(11)(ii)Select a maximal cavity C ∗k and let ρ0d (s )denote a generic density profile for it.(iii)Insert ρ0d in the current functional,βF ex i [ρ],and see which spurious contributions appear.Identify the terms with the “largest”graphs (those not contained inany other of the graphs appearing,except C ∗k )and pick one of them.(iv)Construct the next step functional βF ex i +1[ρ]byadding to βF exi [ρ]a new term,with its corresponding coefficient a k ,so that it eliminates the selected spurious contribution.(v)Repeat steps (iii)–(v)until no spurious contribu-tion remains.(Of course,one can exploit the symmetries of the model to resume several steps of this process in just one,as we have done in the examples.)(vi)Repeat steps (ii)–(vi)until exhausting all maximal cavities.The functional resulting from this process will be of the form (1)and will have,by construction,an exact 0d dimensional crossover.It can be proven that start-ing from (11)there is a unique functional of the form (1)with an exact 0d dimensional crossover,so any other pro-cedure leading to it is equally valid.(In other words,the fact that we have chosen to remove the spurious terms in decreasing order of “size”is immaterial,but in doing so we abbreviate the process.)A sketch of the existence and uniqueness proof goes as follows (a more detailed account will be reported in [14]).Let us form the set P with the lattice L and all max-imal cavities C ∗k (s )(s ∈L ,k =1,...,m ),and let us complete it with all nonempty intersection of any num-ber of maximal cavities.For any x,y ∈P ,we will say that x ≤y iffall nodes of x are in y .This transforms P into a partially ordered set or poset .Any interval [x,y ]≡{z ∈P :x ≤z ≤y }is a finite subset of P ,so P is a locally finite poset .Locally finite posets have the property [17]that for any mapping f :P →V ,with V a vector space,there exists g :P →V such thatf (x )= y ≤xg (y ),g (x )=y ≤xf (y )µ(y,x ).(12)The way to prove this is by inserting the second expres-sion into the first,what leads toµ(x,x )=1,µ(y,x )=−y<z ≤xµ(z,x ),(13)a recursion which defines the (integer)coefficients µ(y,x ).This scheme is referred to in the literature as a M¨o bius inversion ,and µ(y,x )is a M¨o bius function [17].For the poset P defined above,let V be the space ofdensity functionals and take f (x )≡F exx [ρ]the (exact)excess free energy functional of a given model on the graph x .Specializing (12)to x =L ,F exL [ρ]=ΨL [ρ]+ x<L−µ(x,L ) F exx [ρ].(14)4where ΨL [ρ]is an unknown functional.The sum on ther.h.s.of (14)only contains evaluations of F exx [ρ]for 0d cavities and so is an expression similar to (1).Now let ρ0d x (s )a generic 0d density profile for cavity x .Then,F ex y [ρ0dx ]= 0if x ∩y =∅,F exy ∩x[ρ]otherwise.(15)As x ∩L =x ,evaluating (14)for ρ0dx (s )yieldsΨL [ρ0d x ]= z ≤xν(z,x )F exz [ρ],ν(z,x )= y ∩x =zµ(y,L ),(16)and it is a consequence of Weisner’s theorem [17]thatν(z,x )=0for any x <L ;therefore ΨL [ρ0dx ]=0or,in other words,the sum on the r.h.s.of (14)is exact for any 0d cavity.This completes the proof that the requirement of an exact dimensional reduction to 0d cavities leads to a func-tional of the form (1).As to the uniqueness,it suffices to realize that ν(z,x )=0(a necessary condition for a functional of the form (1)to have an exact dimensional reduction to 0d cavities)is a particular case of the recur-rence (13),whose only solution is µ(x,L ).With this method one can easily recover all functionals previously obtained in Refs.[4,6,13]and obtain those of virtually any other hard-core lattice gas [15].One further striking feature of all functionals obtained in this way is that they also have an exact dimensional crossover to one dimension,simply because the exact one-dimensional functional is of the form (1)[4,6].Clearly the procedure presented above has no restric-tion in its application other than the determination of the maximal cavities.It can be applied to particles of any shape,in any lattice (including regular lattices,Bethe lattices,Husimi trees,etc.)and in any dimension.It can even be applied to mixtures,either additive or non-additive,provided a 0d cavity is properly defined as a superposition of cavities,one for each species,such that at most one particle of only one species can be placed in it (see [4]for more details).The readers familiar with Kikuchi’s cluster variation method may have recognized a similarity with the pro-cedure we have presented here.The connection is more prominent through the M¨o bius inversion formula [16]and will be properly discussed elsewhere [14].Finally,the theory can be generalized in several ways.First of all,we have already mentioned that there is a straightforward extension to mixtures which recovers the functionals for mixtures already derived in [4,12,13].A second extension is the inclusion of “extended”0d cavities in which there can be up to n particles.We have already checked that the inclusion of two-particle 0d cavities for the Ising lattice gas (which has repulsive and attractive interactions!)yields the functional ob-tained from the cluster variation method at the level ofthe Bethe approximation [19],which is exact in one di-mension.Finally,there is a third extension for latticegases in the presence of a porous matrix that we have already began to explore [18].Work along these lines is in progress.We acknowledge A.S´a nchez,C.Rasc´o n and Y.Mart´ı-nez-Rat´o n for their valuable suggestions.This work is supported by project BFM2003-0180from Ministerio de Ciencia y Tecnolog´ıa (Spain).∗Electronic address:llafuent@math.uc3m.es †Electronic address:cuesta@math.uc3m.es[1]M.Nieswand,W.Dieterich and A.Majhofer,Phys.Rev.E 47,718(1993);M.Nieswand,A.Majhofer and W.Dieterich,Phys.Rev.E 48,2521(1993);D.Reinel,W.Dieterich and A.Majhofer,Phys.Rev.E 50,4744(1994).[2]S.Prestipino and P.V.Giaquinta,J.Phys.:Condens.Matter 15,3931(2003);S.Prestipino,J.Phys.:Condens.Matter 15,8065(2003).[3]J.Reinhard,W.Dieterich,P.Maass and H.L.Frisch,Phys.Rev.E 61,422(2000).[4]fuente and J.A.Cuesta,J.Phys.:Condens.Matter 14,12079(2002).[5]J.A.Cuesta and Y.Mart´ınez-Rat´o n,Phys.Rev.Lett.78,3681(1997).[6]fuente and J.A.Cuesta,Phys.Rev.E 68,066120(2003).[7]G.Biroli and M.M´e zard,Phys.Rev.Lett.88,025501(2002).[8]E.Kierlik,P.A.Monson,M.L.Rosinberg,L.Sarkisov and G.Tarjus,Phys.Rev.Lett.87,055701(2001).[9]S.T.Chui and J.D.Weeks,Phys.Rev.B 23,2438(1981).[10]M.Ya.Azbel,Phys.Rev.A 20,1671(1979).[11]Y.Rosenfeld,M.Schmidt,H.L¨o wen and P.Tarazona,J.Phys.:Condens.Matter 8,L577(1996);P.Tarazona and Y.Rosenfeld,Phys.Rev.E 55,R4873(1997);P.Tarazona,Phys.Rev.Lett.84,694(2000).[12]fuente and J. A.Cuesta,Phys.Rev.Lett.89,145701(2003).[13]fuente and J.A.Cuesta,J.Chem.Phys.119,10832(2003).[14]fuente and J.A.Cuesta,to be published (2004).[15]Applying this procedure,it should now be straightfor-ward to obtain,e.g.,the FM functional for the first and second neighbor exclusion lattice the triangular lattice (the so-called t-model of as βF ex [ρ]=s ∈Z 2Φ0+Φ0+Φ0−2Φ0−2Φ0+Φ0(the meaning of the diagrams should be [16]T.Morita,J.Stat.Phys.59,819(1990);Prog.Theor.Phys.115,27(1994).[17]R.P.Stanley,Enumerative combinatorics ,vol.1(Cam-bridge University Press,Cambridge,1999),pp.116–124.[18]M.Schmidt,fuente and J.A.Cuesta,J.Phys.:Con-dens.Matter 15,4695(2003).[19]D.R.Bowman and K.Levin,Phys.Rev.B 25,3438(1982).。