高数Ch10(2)14
高等代数北大版习题参考答案
高等代数北大版习题参考答案The pony was revised in January 2021第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。
北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品
第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。
高等数学第二版上册课后答案
高等数学第二版上册课后答案【篇一:《高等数学》详细上册答案(一--七)】lass=txt>《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1. 函数的概念及表示方法;2. 函数的有界性、单调性、周期性和奇偶性;3. 复合函数、分段函数、反函数及隐函数的概念;4. 基本初等函数的性质及其图形;5. 极限及左右极限的概念,极限存在与左右极限之间的关系;6. 极限的性质及四则运算法则;7. 极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8. 无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限; 9. 函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10. 连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.学习任务巩固练习阶段:(本阶段是复习能力提升的关键阶段,高钻学员一定要有认真吃透本章节内所有习题)第二单、元函数微分学计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——1. 导数和微分的概念、关系,导数的几何意义、物理意义,会求平面曲线的切线方程和法线方程,函数的可导性与连续性之间的关系;2. 导数和微分的四则运算法则,复合函数的求导法则,基本初等函数的导数公式,一阶微分形式的不变性;3. 高阶导数的概念,会求简单函数的高阶导数;4. 会求以下函数的导数:分段函数、隐函数、由参数方程所确定的函数、反函数;5. 罗尔(rolle)定理、拉格朗日(lagrange)中值定理、泰勒(taylor)定理、柯西(cauchy)中值定理,会用这四个定理证明;6. 会用洛必达法则求未定式的极限;7. 函数极值的概念,用导数判断函数的单调性,用导数求函数的极值,会求函数的最大值和最小值;8. 会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求函数的水平、铅直和斜渐近线;9. 曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.【篇二:高数第二册习题及答案】class=txt>系班姓名学号第一节对弧长的曲线积分一.选择题1.设l是连接a(?1,0),b(0,1),c(1,0)的折线,则?l(x?y)ds? [ b](a)0 (b)2 (c)22 (d)2x2y2d ] ?l43(a)s(b)6s(c)12s(d)24s二.填空题1.设平面曲线l为下半圆周y???x2,则曲线积分?l(x2?y2)ds?2.设l是由点o(0,0)经过点a(1,0) 到点b(0,1)的折线,则曲线积分三.计算题 1.?l(x?y)ds? 1?22??l(x2?y2)nds,其中l为圆周x?acost,y?asint(0?t?2?).解:原式??2?a2?a2n?1?2?dt?2??a 2.2n?1??l,其中l为圆周x2?y2?a2,直线y?x及x轴在第一象限内所围成的扇形的整个边界.解:设圆周与x轴和直线y?x的交点分别为a和b,于是原式???oa????abbo?在直线oa上y?0,ds?dx得?oa??exdx0aa?e?1在圆周ab上令x?acos?,y?asin?,0????4得?ab??4ea?a?ea??4在直线bo上y?x,ds?2dx得?bo?adx?e?1所以原式?(2?3.a?)ea?2 4?ly2ds,其中l为摆线的一拱x?a(t?sint),y?a(1?cost)(0?t?2?). 2解:原式?2a??(1?cost)3???(1?cost)dt52256a3?15或原式?a2?2?03(1?cost)????2?02?(1?cost)dt (1?cost)dt5252333?2?t(2sin)2dt222?ttttdt??16a3?(1?2cos2?cos4)dcos022425?8a?2?sin5256a3?15高等数学练习题第十章曲线积分与曲面积分系班姓名学号第二节对坐标的曲线积分一.选择题1.设l以(1,1),(?1,1),(?1,?1),(1,?1)为顶点的正方形周边,为逆时针方向,则?lx2dy?y2dx?[ d ](a)1(b)2(c)4(d)0 2.设l是抛物线y?x2(?1?x?1),x增加的方向为正向,则(a)0,?lxds和?xdy?ydx?[ a ]l2525(b)0,0 (c),(d),0 3838二.填空题1.设设l是由原点o沿y?x2到点a(1,1),则曲线积分?l(x?y)dy? 16232.设l是由点a(1,?1)到b(1,1)的线段,则三.计算题?l(x2?2xy)dx?(y2?2xy)dy= 1.设l为取正向圆周x2?y2?a2,求曲线积分??l(2xy?2y)dx?(x2?4x)dy.解:将圆周写成参数形式x?acos?,y?asin?,(0???2?),于是原式??{(2a2cos?sin??2asin?)?(?asin?)?(a2cos2??4acos?)?acos? }d?2???2?{(?2a3cos?sin2??2a2sin2?)?(a3cos3??4a2cos2?)}d???2a2?22.设l是由原点o沿y?x到点a(1,1),再由点a沿直线y?x到原点的闭曲线,求??larctanydy?dx x解:i1??arctan?dx ?oax?(2xarctanx?1)dx1?[x2arctanx?x?arctanx?x]10?i2???2?2yarctan?dx ?aox?1(arctan1?1)dx?1?? 4所以原式?i1?i2? ? 3.计算?24?2?1??1?4??l(x?y)dx?(y?x)dy,其中l是:2(1)抛物线y?x上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线. 解:(1)原式? ? ??2121{(y2?y)?2y?(y?y2)}dy(2y3?y2?y)dy343(2)过(1,1),(4,2)的直线方程为x?3y?2,dx?3dy 所以原式? ??21{3(4y?2)?(2?2y)}dy?21(10y?4)dy?11(3)过(1,1),(1,2)的直线方程为x?1,dx?0,1?y?2所以 i1??21(y?1)dy?1 2(3)过(1,2),(4,2)的直线方程为y?2,dy?0,1?x?4所以 i2??41(x?2)dx?272于是原式?i1?i2?14 4.求?l(y2?z2)dx?2yzdyxdz?2,其中l为曲线x?t,y?t2,z?t3(0?t?1)按参数增加的方向进行.解:由题意,原式? ? ?高等数学练习题第十章曲线积分与曲面积分系班姓名学号第三节格林公式及其应用一.选择题 1.设曲线积分?{(t01014?t6)?4t6?3t4}dt?(3t6?2t4)dt1 35?l(x4?4xyp)dx?(6xp?1y2?5y4)dy与路径无关,则p? [ c](a)1 (b)2 (c)3(d)4 2.已知(x?ay)dx?ydy为某函数的全微分,则a?[ d] 2(x?y)(a)?1 (b)0(c)1 (d)212xx223.设l为从a(1,)沿曲线2y?x到点b(2,2)的弧段,则曲线积分?dx?2dy= [ d]ly2y(a)?3 (b)3(c)3(d)0 2【篇三:高等数学(上)第二章练习题】txt>一. 填空题1.设f(x)在x?x0处可导,且x0?0,则limx?x?02.设f(x)在x处可导,则limf2(x?h)?f2(x?2h) h?02h?______________3.设f(x)???axx?0ex?1x?0在x?0处可导,则常数a?______?4.已知f?(x)?sinxx?5.曲线y?x?lnxx上横坐标为x?1的点的切线方程是 6.设y?xxsinx ,则y??7.设y?e?2x,则dyx??x0?0.1?8.若f(x)为可导的偶函数,且f?(x0)?5,则f?(?x0)?二. 单项选择题9.函数f(x)在x?x0处可微是f(x)在x?x0处连续的【】a.必要非充分条件b.充分非必要条件c.充分必要条件 d.无关条件10. 设limf(x)?f(a)x?a(x?a)2?l,其中l为有限值,则在f(x)在x?a处【】a.可导且f?(a)?0 b.可导且f?(a)?0c.不一定可导d.一定不可导11.若f(x)?max(2x,x2),x?(0,4),且f?(a)不存在,a?(0,4),则必有【a.a?1 b.a?2 c.a?3 d. a?1212.函数f(x)?x在x?0处【】a.不连续b.连续但不可导c.可导且导数为零 d.可导但导数不为零?2213.设f(x)???3xx?1,则f(x)在x?1处【】??x2x?1a.左、右导数都存在b.左导数存在但右导数不存在c.右导数存在但左导数不存在 d.左、右导数都不存在14.设f(x)?3x3?x2|x|,使f(n)(0)存在的最高阶数n为【】a.0 b. 1 c.2 d. 315.设f(u)可导,而y?f(ex)ef(x),则y??【】a.ef(x)[f?(x)f(ex)?exf?(ex)]b. ef(x)[f?(x)f(ex)?f?(ex)]c.ef(x)f?(ex)?ef?(x)f(ex) d. exef(x)f?(ex)?ef?(x)f(ex)16.函数f(x)?(x2?x?2)|x3?x|不可导点的个数是【】a.3 b. 2 c.1 d. 0】17.设f(x)可导,f(x)?f(x)(1?|sinx|),要使f(x)在x?0处可导,则必有【】a.f(0)?0b.f?(0)?0c.f(0)?f?(0)?0 d.f(0)?f?(0)?018.已知直线y?x与y?logax相切,则a?【】a.e b. e c.ee d.e19.已知f(x)?x(1?x)(2?x)?(100?x),且f?(a)?2?(98)!,则a?【】 a.0 b.1 c.2 d.3 ?1?1e1,则当?x?0时,在x?x0处dy是【】 3a.比?x高阶的无穷小b.比?x低阶的无穷小c.与?x等价的无穷小d.与?x同阶但非等价的无穷小221.质点作曲线运动,其位置与时间t的关系为x?t?t?2,y?3t2?2t?1,则当t?1时,质点的速度大小等于【】 20.已知f?(x0)?a.3 b.4 c.7 d.5三. 解答下列各题22.设f(x)?(x?a)?(x),?(x)在x?a连续,求f?(a)23.y?esin24.y?2(1?2x) ,求dy x2arcsin,求y?? 2d2y325.若f(u)二阶可导,y?f(x),求2 dx?1??,求y?(1) ?x??x?ln(1?t2)dyd2y27.若? ,求与2 dxdx?y?t?arctant28.y?(x2?1)e?x,求y(24)29.y?arctanx,求y(n)(0) 26.设y??1?1x?x2?xx?0?30.已知f(x)??ax3?bx2?cx?d0?x?1_在(??,??)内连续且可导,?2x?xx?1?求a,b,c,d的值xy31.求曲线e?2x?y?3上纵坐标为y?0的点处的切线方程?x?t(1?t)?032.求曲线?y 上对应t?0处的法线方程 ?te?y?1?0233.过原点o向抛物线y?x?1作切线,求切线方程?34.顶角为60底圆半径为a的圆锥形漏斗盛满了水,下接底圆半径为b(b?a)的圆柱形水桶,当漏斗水面下降的速度与水桶中水面上升的速度相等时,漏斗中水面的高度是多少?35.已知f(x)是周期为5的连续函数,它在x?0的某个邻域内满足关系式f(1?sinx)?3f(1?sinx)?8x??(x),其中,?(x)是当x?0时比x高阶的无穷小,且f(x)在x?1处可导,求曲线y?f(x)在点(6,f(6))处的切线方程习题答案及提示5. y?x x 6.x[(1?lnx)sinx?cosx]7. ?0.2 8. ?5 一. 1.?(x0) 2. 3f(x)f?(x) 3. 1 4二. 9. b 10. a 11. b 12. c 13. b 14. c 15. a16. b 17. a 18. c 19. c 20. d 21. d三. 22. 提示:用导数定义 f?(a)??(a) 23.dy??2esin2(1?2x)sin(2?4x)dxd2y343 24. y??? 25. 2?6xf?(x)?9xf(x) dxdytd2y1? ,2?(t?t?1) 26. y?(1)?1?2ln2 27. dx2dx428. y(24)?e?x[x2?48x?551]12x??y??29.由y?(x)? 1?x2(1?x2)2由(1?x2)y?(x)?1 两边求n阶导数,_利用莱布尼兹公式,代入x?0,得递推公式,y(n?1)(0)??n(n?1)y(n?1)(0)__利用y?(0)?1和y??(0)?0 ?(?1)k(2k)!n?2k?1 k?0,1,2,? y(0)??0n?2k?2?30. 提示:讨论分段点x?0与x?1处连续性与可导性a?2, b??3, c?1 , d?031. x?y?1?032. ex?y?1?0(n)33.y??2x35. 提示:关系式两边取x?0的极限,得f(1)?0limx?0f(1?sinx)?3f(1?sinx)?8x?(x)sinx??lim???8 ?x?0sinxxx? ?sinx而 f(1?sinx)?3f(1?sinx)f(1?t)?3f(1?t)?limx?0t?0sinxtf(1?t)?f(1)f(1?t)?f(1)???lim??3?4f?(1)?t?0t?t??得f?(1)?2,由周期性f(6)?f(1)?0f(x)?f(6)f?(6)?lim 令x?5?t 由周期性得 x?6x?6f(t)?f(1)?lim?2 t?1t?1切线方程y?2(x?6) lim。
(完整word版)高等数学第10章课后习题答案(科学出版社)
于是所求的曲面积分为
.
(2) ,其中 为旋转抛物面 介于 之间部分的下侧。
解由两类曲面积分之间的联系,可得
,
在曲面 上,有
。
故
。
再依对坐标的曲面积分的计算方法,得
。
注意到
,
故
。
(3) ,其中 为 , 的上侧;
解 在 面上的投影为半圆域 , ,
=
= =
由对称性 = , =
∴原式= =
(4) ,其中 是由平面 , , , 所围成的四面体的表面的外侧。
,
其中 为上半球面 , , ,故
,
其中 是 在 坐标面上的投影区域,利用极坐标计算此二重积分,于是得
= ,
是一个无界函数的反常积分,按反常积分的计算方法可得
,
故
。
解法2设球面方程为 ,定直径在 轴上,依题意得球面上点 的密度为 ,从而得球面的质量为 ,由轮换对称性可知: ,故有
.
2设某流体的流速为 ,求单位时间内从圆柱 : ( )的内部流向外侧的流量(通量)。
,其中 从 变到 ,
故
。
解法2作有向线段 ,其方程为
,其中 从 变到 ,
则有向曲线 与有向线段 构成一条分段光滑的有向闭曲线,设它所围成的闭区域为 ,由格林公式,有
,
即
,
而
,
故
。
3.计算 ,其中 为平面 在第一卦限中的部分;
解 将曲面 投影到 面上,得投影区域为 ,此时曲面方程可表示为
,
于是
,
。
4. 计算 ,其中 是球面 的上半部分并取外侧;
解如右图所示,因为闭曲面取外侧,所以 取下侧, 取后侧, 取左侧, 取上侧。于是
高等数学 同济二版上册课后答案
第一章1-4节 1、计算下列极限7)2382lim 222+--+→x x x x x分析:本题分子分母同时趋近于0,根据表达式的形式,考虑利用约分将趋于0的项约去。
解:原式6)1(lim )4(lim 14lim )2)(1()2)(4(lim2222=-+=-+=---+=→→→→x x x x x x x x x x x x 9))sin(sin sin lima x ax a x --→分析:本题分子分母同时趋于0,但不能约分,利用复合函数求极限,通过变量替换进行求解 解一:令0,,,→→+=-=u a x u a x a x u 时则。
a uua a u u u a a u u a a uau a u a u a u a u u u u u cos )2cos42sinsin (cos lim ]2cos2sin 2)2sin 21(sin [cos lim ]sin )1(cos sin [cos lim sin sin sin cos cos sin limsin sin )sin(lim020000=-=-+=-+=-+=-+=→→→→→原式 解二:利用三角函数的和差化积,以及等价替换a ax ax a x a x a x a x a x ax cos 22cos 2lim )sin(2sin 2cos2lim=--⋅+⋅=--+=→→原式11)6)1(lim )4(lim 14lim 4lim 020202230=++-=++-=++-→→→→t t t t t t t t t t t t t t t (应该为4) 13)31)312(lim 2lim )312)(4()4(2lim )312)(4(9)12(lim 4312lim44444=++=++--=++--+=--+→→→→→x x x x x x x x x x x x x x本题利用了分子有理化 2、计算下列极限 1)nnn arctan lim∞→解:因为2arctan 01π<→∞→n ,n,n 而时,无穷小与有界函数之积仍然为无穷小,所以原式n nn arctan 1lim∞→==0 2)0sin 1lim 1sin lim=+=+∞→∞→n n nn n n n n 3)1arctan 11arctan 11lim arctan arctan lim =+-=+-∞→∞→xxxx x x x x x x 第一章1-5节 1、计算下列极限 2)βαβαββααβα==→→x x x x x x x x sin sin lim sin sin lim00解法2:原式βαβα==→x x x 0lim5)212cos122sin 21lim 2cos 2sin 22sin 2lim sin cos 1lim 0200=⋅⋅=⋅=-→→→x x x x x x xx x x x x x 解法2:原式2121lim 20=⋅=→x x x x7)πππππ-=-=-=-=-→→→→uu u u u u x x u u u x 0001lim tan lim )1(tan lim 1tan lim分析:本题利用了变量替换和等价替换 9)2)2(21lim )12(coslim 222-=⎥⎦⎤⎢⎣⎡-=-∞→∞→x x x x x x分析:∞→x 时,02→x 。
高等数学科学出版社答案
高等数学科学出版社答案【篇一:第一章习题答案科学教育出版社高数答案(惠院)】txt>习题1-11.求下列函数的自然定义域:x3(1)y?? 21?xx?1arccos; (3) y?解:(1)解不等式组?(2) y?arctan1x3x?1?(4) y??. ?3 , x?1?x30得函数定义域为[?3,?1)?(?1,1)?(1,??); 21x03x20(2)解不等式组?得函数定义域为[?;x?0x?1??1??1?(3)解不等式组?得函数定义域为[?5,?2)?(3,6]; 52??x?x?6?0(4)解不等式x?1?0得函数定义域为[1,??).2.已知函数f(x)定义域为[0,1],求ff(cosx),f(x?c)?f(x?c) (c?0)义域.解:因为f(x)定义域为[0,1]220xc11当?时,得函数f(x?c)?f(x?c)定义域为:(1)若c?,x??c,1?c?;(2)0?x?c?12?若c?3.设f(x)?1?x?a?1,a?0,求函数值f(2a),f(1). x2?|x?a|?1?a?x?1,则 x2?|x?a|?的定111,x?;(3)若c?,x??. 222解:因为f(x)?f(2a)?1?a?1??0 ,a1,1??a?1f(1)?1??1??,2 ,0a1. 12?a?14a2?a?2a24. 证明下列不等式:(1) 对任何x?r有 |x?1|?|x?2|?1;1(2) 对任何n?z?有 (1?1)n?1?(1?1)n;n?1n(3) 对任何n?z?及实数a?1有 an?1?a?1.n证明:(1)由三角不等式得|x?1|?|x?2|?|x?1?(x?2)|?1 (2)要证(1?1)n?1?(1?1)n,即要证1?1?n?1n1n?1(1?得证。
111)?(??))11 ?1?n?1n?1(3)令h?a?1,则h?0,由bernouli不等式,有a?(1?h)?1?nh?1?n(a?1)n1n1n所以a?1。
ch10图的基本概念
10.2 图与图模型
例10.3 设G=<V; E>,|V|=n, |E|=m,证明: (G)≤2m/n≤(G)。 证明 由欧拉定理,deg(v)=2m。 对任意的vV,有(G)≤deg(v)≤(G),于是 n(G)≤deg(v)≤n(G) n(G)≤2m≤n(G) 即 (G)≤2m/n≤(G)。
10.2 图与图模型
上海 广州
海口
成都
这个问题的解答本身比较简单,如可以选择线路为北京 -成都-武汉-海口-广州-上海-北京。但对于更为复杂的 情况就很难直接找到好的解答。本问题与后文将研究的 Hamilton图有关,将在那里做详细讨论。
10.2 图与图模型
例10.7 优先图。通过并发地执行某些语句,计算机程序可以执
10.2 图与图模型
e1 v2 e2
v1
e1 v2 e2
v1
无向图
有向图
10.2 图与图模型
边e2(有向边<v1,v2>directed edge有向图)关联incident结点v1、v2
环loop--> (伪图:
结点vertex/vertices(顶点)
非简单图simple graph)
e1 v2 e2
练习1 设G=(V,E)是一无向图,V={v1,v2,…, v8}, E={(v1,v2),(v2,v3),(v3,v1),(v1,v5),(v5,v4), (v4,v3),(v7,v8)} (1)画出G的图解; (2)指出与V3邻接的结点,以及和V3关联的边; (3)指出与(v2,v3)邻接的边和与(v2,v3)关联的结点; (4)该图是否有孤立结点和孤立边? (5)求出各结点的度数,并判断是否是完全图和正 则图? (6)该(n,m)图中,n=?,m=?
高等数学(同济第七版)上册-知识点总结
高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nx x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用. 使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限 基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 7.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
高数第10章答案
高等数学(化地生类专业)(下册)姜作廉主编《习题解答》习题102222221.0x 0(3)arcsin ||||0(4)cot ()(n )14(6))x y y yz xy x x z x y x y n x y u r R y z r x y π+>->=≤≠=++≠≤+≤<<++=+2求定义域(1)z=lnxyxy>0,即x>0,y>0或x<0,y<0且且为正整数(5)定义域为介于x 和2222(,)(,)(,),0.()110,(,)(,),,(1,)(,)(,)(1,),(1,)(),f (,)k k k k k z R z f x y f tx ty t f x y t yF xy t f tx ty t f x y t f f x y x x xy y y f x y x f f F x y x x x x +===≠∀≠======k 之间的空间部分以及球面若函数满足关系式则称该函数为k 次齐次函数。
试证k 次齐次函数z=f(x,y)可以表示为z=x 的形式证:对均有不妨令则即令则222222222()3(,),(,)(,)()(72)4(,,),(,,)(,,)()()5(,)tan ,(,)(,)()()tan(tan vx y w u v xy x yF x f u v u f xy x y f xy x y xy P f u v w u w f x y x y xy f x y x y xy x y xy xf x y x y xy f tx ty yxf tx ty tx ty t xy yxt x y xy y ++=++==++-+-=++=+-=+-=+-得证已知求解:已知求解:已知求解:0000002)61)2cos (2)lim123cos 123lim cos cos lim 1123lim(123)sin (3)limx y x x y y x x y x x xy x o y x y x y e y x y y x y e ye y x y x y xy →→→→→→→→→→→→→→→→==++++==++++x 求下列极限(1)解:解:由e 与在(0,0)连续则原式=00222200sin lim1lim 2ln(1)(4)lim x x y y x y x xyy y xy x y x y →→→→→→===+++解:2222222200000000y 00ln(1)lim lim 17lim )0(0,0)1ii (0,0).2x x y y x y x x y x y x y x y x y x y i y →→→→→→→→→→+++===++=+==解:试问解:沿趋于原极限=0x )沿y=趋于原极限,由于沿不同的路径趋于x-1(0,0)极限值不等,故原极限不存在。
ch10平面解析几何2013解析
四、有向线段的定比分点
已知直线上两点A( x1, y1),B( x2, y2 ),对于直线上
的点P,若存在 R,使
AP PB
则称点P为有向线段AB的定比分点,设点P的 坐标为( x, y),则
x
x1 x2 ,y 1
y1 1
y2
。
(
1)
当 1时,P称为AB的中点,其坐标为
x x1 x2 ,y y1 y2 。
22
则 tan 1。所求直线的倾角为2,故其斜率为
2
tan 2
1
2
tan tan2
4, 3
由点斜式方程得所求直线方程为y (3) 4 ( x 2)
3
即 4x 3 y 17 0.
例10.2.3 过原点(0,0)且与直线3x 4 y 6 0
垂直的直线的方程是[ C ]。
(A) 4x 3 y 6 0; (B) 4x 3 y 6 0;
(D) 有两个交点,且两交点间的距离等于2 .
解:这是一道比较综合的题目,有多种解法.
显然,( x0 , y0 ) (0, 0), 将圆的方程与直线的方程联立,可以通过 一个一元二次方程的判别式进行讨论.
也可以通过求出圆心到直线的距离加以判断, d 1 1, 所以不相交(?).
x02 y02
( A) 2 3; (B) 8; (C ) 10;( D) 10 2 .
o
解:
A
AB为圆的弦,圆心在AB的垂直平
P
分线上,从而,
B
m 1 (4 12) 8,d 36 64 10, 2
答案为C.
例6
设F1, F2为
x2 4
y2
1的两个焦点,P在该曲线上,
高数(一)全公式
初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]co sα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2.特殊角的三角函数值θ)(θf0 )0(6π )30( 4π )45( 3π )60( 2π)90(θcos 1 2/32/2 2/10 θsin 0 2/12/22/3 1 θtan 0 3/1 1 3不存在 θcot不存在313/1只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。
高数公式大全
高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1—tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ—cosα·sinβ·sinγ—sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ—tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)—1=1—2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1—cosα)/(1+cosα))=sinα/(1+cosα)=(1—cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1—cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1—tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α—β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α—β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α—β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α—β)/2]cosα—cosβ=—2sin[(α+β)/2]sin[(α—β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=—2cot2α1+cos2α=2cos^2α1—cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n—1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-s inαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π—α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(—ix)]/[ie^(ix)+ie^(—ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高数第四章习题课
x 1
又 F ( x)须处处连续,有
lim ( x
x1
C2 )
lim (
x1
1 2
x2
C1 )
即
1
C2
1 2
C1
,
1 lim ( 2 x1
x2
C3 )
lim ( x
x1
C2 )
即
1 2
C3
1
C2
,
联立并令 C1 C,
可得C2
1 +C, 2
C3 1 C.
1 2
x2
C,
故
max{1,
x
}dx
x 1 C, 2
[
f ( x)
f 3( x) ]dx.
解 原式
f ( x) f 2( x) f 2( x) f ( f ( x) f 2( x) f ( x) f ( x)
f ( x)
f 2(x)
dx
f (x) d[ f ( x)
f (x) ] f ( x)
1 [ f ( x) ]2 C. 2 f ( x)
cot xdx ln | sin x | C
1
x
(23)
dx arcsin C
a2 x2
a
(18) secxdx ln | secx tan x | C (24)
(19) csc xdx ln | csc x cot x | C
1
dx x2 a2 ln | x x2 a2 | C
例9 求 max{1, x }dx.
解 设 f ( x) max{1, x },
x, x 1
则
f
(
x)
1, 1
x 1,
中国大学mooc《高等数学(二)(同济大学) 》满分章节测试答案
title高等数学(二)(同济大学) 中国大学mooc答案100分最新版content第一周第一讲测验1、答案:2、答案:3、答案:4、答案:5、答案:6、答案:7、答案:8、答案: 9、答案:10、答案:11、答案:12、答案:13、答案:14、答案:15、答案:16、答案:17、答案:18、答案:第一周第二讲测验1、答案:2、答案:3、答案:4、答案:5、答案: 6、答案: 7、答案: 8、答案: 9、答案: 10、答案: 11、答案: 12、答案: 13、答案:14、答案:15、答案:16、答案:17、答案:18、答案:第二周第三讲测验1、答案:2、答案: 3、答案: 4、答案: 5、答案: 6、答案: 7、答案: 8、答案: 9、答案: 10、答案:11、答案: 12、答案: 13、答案: 14、答案: 15、答案: 16、答案: 17、答案:18、答案:第二周第四讲测验1、答案:2、答案:3、答案:4、答案:5、答案:6、答案: 7、答案: 8、答案:9、答案:10、答案:11、答案:12、答案:13、答案:14、答案:15、答案:16、答案:17、答案:18、答案:第三周第五讲测验1、答案:2、答案:3、答案:4、答案:5、答案:6、答案:7、答案:8、答案:9、答案: 10、答案:11、答案: 12、答案:13、答案:14、答案:15、答案: 16、答案: 17、答案: 18、答案:。
高等代数(北大版)第10章习题参考答案
所以 + ∈W, ∈W,即证 W 是 V 的一个子空间。
2)设 W 1 是 V 的任一子空间,且 dim(W 1 )=m,则当 m=n 时,只要取 f 为 V 的零函数 ,就有
2
故
3
P1(x)=1+x-
x2
2
同理可得
p2(x)=-
11
+
x2
62
11
p3(x)= - +x-
x2
32
7.设 V 是个 n 维线性空间,它得内积为( , ),对 V 中确定得向量 ,定义 V 上的
一个函数 * :
* ( )=( , )
1) 证明 * 是 V 上的线性函数
2) 证明 V 到 V * 的映射是 V 到 V * 的一个同构映射(在这个同构下,欧氏空间可看成 自身的对偶空间。)
f m1 ( )= f m2 ( )=… =f n ( )=0
因而 ∈U1,即 W1 U1。
反之, =b 1 1+b 2
2 +…+b m
m +b m1
m1 +…b n
n ∈U1,
由 f m1 ( )= f m2 ( )= … =f n ( )=0 , 可 得 b m1 = b m2 = … =b n =0, 因 而 =
fi( )≠0 (i=1,2…,s)
证:对 s 采用数学归纳法。
当 s=1 时,f1≠0,所以 ∈V,使 fi( )≠0,即当 s=1 时命题成立。 假设当 s=k 时命题成立,即 ∈V,使 fi( )= i≠0 (i=1,2…,k)
ch10答案
第十章 常微分方程自测题参考答案一、填空题:22322212121. 2; 2. 3; 3. ; 4. ; 5. ()cos ;16. sin ; 7. (2)2; 8. 2cos sin ;29. (x x x x x x y x c y e y x c x y cx y c e c e x x e e y x c x c x x y e c --=+==+==+-++=-++=1210212cos sin 1) 10. () [()()] .x c x y c f x c f x f x ++=+-二、选择题:1. C;2. D;3. C;4. D;5.B;6. D;7. B;8. B;9. A; 10.B.三、计算题:2220(1)011ln ln(1)ln 2|11x dy x xydx x dy dx y x y x c y y c y =++==-+=-++====1.解:由有两边积分,即 将 代入,得故所求特解 2'22.2,sin 1cos 2)41sin 242u xy u u u du dxu u x c ==-=-=+解:令代入原方程,整理,得即 (两边积分,得221sin(2)4.2xy xy x c --=变量还原,得'''3.(1)11,,1110() .4.cos sin ,(sin )sin sin ,x xy yuuu u xy dy y e exdx x y y x dxduu x yu u y y dy dydu u u y dy e edydu y u e y u e cye x c y y x y y y x u y u u ---++==--===+-+=+++=++=+=⋅=-+==+=解:令则原方程变为 化简,得 积分,得 故解:原方程化为 即 令方程变为 [(1)]sin 1.x x x xu e x e c y x ce --=-+=-+解此一阶线性微分方程,得 变量还原得原方程通解***10(cos sin )cos sin (sin cos )2(sin cos )(cos sin )2(sin cos )(cos sin )cos iy x A x B x y A x B x x A x B x y A x B x x A x B x A x B x x A x B x x λλ+=∴=±=+=++-+=-+-+-+++=2’"5.解:特征方程, 方程特解可设为 则 () ()代入,有*12120,21,0,21sin 21cos sin sin .2A B A B y x x y c x c x x x ==∴====++解得 -故原方程的一个特解为 其通解为212'221212'00122206.4502(cos sin )2(cos sin )(sin cos )|1,|0,12(cos 2sin ).17.|x x x x x x Q i y e c x c x y e c x c x e c x c x y y c c y e x x P dQ Q dP Q P λλλ---==-=++=∴=-±=+=-++-+=====+=-2解:特征方程 , 原方程通解 则 代入 得 ,即所求特解为 解:由题意得 2212012100|100100100。
高等代数ch10
14 / 18
2 f α, β f V , V
f (α, β) = f (β, α), . V α, β
f (α, β) = f (β, α), f 1 (1) (2)
(
.
)
; .
March 14, 2008 15 / 18
2 f α, β f V , V
f (α, β) = f (β, α), . V α, β
( ) March 14, 2008 16 / 18
,
n i=1
y i ηi
f (α, β) =
n i=1
ai x i y i .
F = R, F = C,
A = diag(Ep , Erp , O); A = diag(Er , O).
3 V , V : diag F F n ,f η1 , , ηn , 0 1 1 0 A , , V f 0 1 1 0 ,O , .
i = 1, , n.
(
)
March 14, 2008
5 / 18
1,2 f V . (1) f (0) = 0, f (α) = f (α); (2) f (k1 α1 + + ks αs ) = k1 f (α1 ) + + ks f (αs ). 3 V F F n n a1 , , an , f (ξi ) = ai , , V V ξ1 , , ξn , f
)
March 14, 2008
7 / 18
V
ξ1 , , ξn ,
V
n
fi
:
fi (ξj ) = δij , f1 , , fn V ξ1 , , ξn , . V .
dim V = dim V.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x x2 + y2
) +(
2
y x2 + y2
) 2 dxdy
I z = ∫∫ zx ( x + y )dS =
2 2 Σ
D xy
∫∫ x( x
2
+y )
2
3 2
2dxdy
= = =
2 ∫ π dθ ∫
2
π
2 cos θ
−2
0
r cos θ r 3 rdr
26 2⋅ 6 26 2⋅ 3
∫ ∫
π
2
−2
π
2
cos 7 θ d θ π cos θ d θ
7
0
2 6 6 4 2 210 2 2 ⋅ ⋅ ⋅ = = 3 7 5 3 105
三、计算:∫∫
Σ
axdydz + ( z + a ) 2 dxdy (x + y + z )
2 2 2
2
1 2
(a > 0为常数 )
其中 Σ 为下半球面 z = − a 2 − x 2 − y 2 的上侧,
解
∫∫
Σ
axdydz + ( z + a ) dxdy (x + y + z )
2 2 2
1 2
z o y
1 = ∫∫ axdydz + ( z + a )2 dxdy a Σ
x 1 = [ ∫∫ − ∫∫ axdydz+ ( z + a)2 dxdy] 补充 Σ 1:z = 0(下侧) , a Σ + Σ 1 Σ1
∫∫
D xy
2 1 + z x + z 2 dxdy y
o
Dxy
y
x
流量(通量)的计算法 设有向量场
A( x , y , z ) = P ( x , y , z )i + Q ( x , y , z ) j + R( x , y , z )k
向量场 A( x , y , z ) 穿过曲面Σ指定侧的通量:
Σ
4π
∂P ∂ Q ∂ R ( + + )dv 3. ∫∫ Pdydz + Qdzdx + Rdxdy = ∫∫∫ ∂x ∂ y ∂ z Σ ( 外侧 ) Ω 成立的条件是 = P、Q、R、有连续的一阶偏导数
4 .Σ 为球面 x 2 + y 2 + z 2 = a 2 , 则 ∫∫ xdS = 0 Σ 4 πa 3 ∫∫ xdydz = 3
1 = ∫∫ ( x − y + z )dS 3 ∑ 1 1 = ∫∫ 1 ⋅ 3dxdy = 2 . 3 Dxy
例2
计算 I = ∫∫ ydydz − xdzdx + z 2dxdy , 其中 ∑ 为
∑
锥面 z =
x 2 + y 2 被平面 z = 1, z = 2 所截部分的外侧.
z
解 利用两类曲面积分之间的关系 x y ′ , f y′ = , ∵ fx = x2 + y2 x2 + y 2
x 2 + y 2 介于 z = 1, z = 2之间的部分 , 其
法向量与 oz 轴的正向夹角为钝角 .
解Φ=
Σ
∫∫ v ⋅ nds = ∫∫ dydz + zdzdx +
Σ Σ
Σ前 Σ后
e
z
∫∫ dydz = ∫∫ dydz+ ∫∫ dydz = 0,
x2 + y2
z
dxdy
∫∫ zdxdx = ∫∫ zdzdx + ∫∫ zdzdx = 0
( x, y) ∈ D : x 2 + y 2 ≤ a 2
π 3 1 1 2 = − ∫∫∫[a + 2( z + a)]dv − ∫∫ (0 + a) dxdy = − a a Ω a D 2
四 .求 v = i + z j + 其中 Σ 为 z =
ez x + y
2 2
k穿过曲面 Σ 指定侧的流量 ,
2
例3 计算曲面积分
I = ∫∫ (8 y + 1) xdydz + 2(1 − y )dzdx − 4 yzdxdy
2
Σ
⎧z = y − 1 ⎪ 其中Σ是曲线⎨ (1 ≤ y ≤ 3)绕y轴旋转一 ⎪x = 0 ⎩ 周所成的曲面,它的法 向量与 y轴正向的夹角恒 大于
π
2
.
解
⎧z = y − 1 绕 y 轴旋转面方程为 ⎨ ⎩x = 0 (如下图) 2 2 y−1= z + x
Φ = ∫∫ A⋅ dS = ∫∫ A⋅ ndS = ∫∫ Pdydz+ Qdzdx+ Rdxdy
Σ Σ Σ
五、场论初步
梯度
∂u ∂u ∂u i+ j+ k gradu = ∂y ∂z ∂x
Σ
通量 Φ = ∫∫ Pdydz + Qdzdx + Rdxdy 散度
∂P ∂Q ∂R divA = + + ∂x ∂y ∂z
Σ Σ左
∫∫
Σ
e
z
Σ右
x o 2π 2e 2 [Dxy : 1≤ x2 + y2 ≤ 4] = − ∫ dθ ∫ rdr = −2π (e − e ) 0 1 r
Dxy
x2 + y2
dxdy = − ∫∫
r
e
x2 + y2
x2 + y2
dxdy
Dxy
y
= ∫∫∫ ( 8 y + 1 − 4 y − 4 y )dv =
∫∫∫ dv
Ω
=
∫∫ dxdz ∫
D xz
3
2 2
1+ z + x
dy = ∫ dθ ∫ ρdρ ∫
0 0
2π
2
3
2
1+ ρ
dy
= 2π ∫ ( 2ρ − ρ )dρ = 2π,
3 0
2
∫∫ = 2∫∫ (1 − 3 Σ* Σ*
2
)dzdx = −32π,
cos γ > 0
Dxy
2 = ∫∫ f [ x, y, z( x, y)] 1 + zx + z2 dxdy = ± ∫∫ R[ x, y, z( x, y )]dxdy y
(与侧无关)
cos γ < 0
(与侧有关)
对坐标的曲面积分化为对面积的曲面积分
∫∫ Pdydz Σ
+ Qdzdx + Rdxdy = ∫∫ ( P cosα + Q cos β + R cosγ )dS
Σ
应用高斯(Guass)公式
∂P ∂Q ∂R Pdydz + Qdzdx + Rdxdy = ∫∫∫ ( )dv + + ∂x ∂y ∂z Ω
∫∫ ( A ⋅ n ) ds Σ
=
∫∫∫ div A dv Ω
∫∫
Σ
四、面积分的应用
曲面面积的计算法
S = ∫∫ dS
Σ
z
z = z( x , y )
S
=
1 + ( z x )2 + ( z y )2 = 2
Dxy x o
y
∴ ∑ 的法向量为 n = { f x ' , f y ' ,−1, } / 2 , = {cosα , cos β , cosγ }
[Dxy : 1≤ x2 + y2 ≤ 4]
I = ∫∫ ydydz − xdzdx + z 2 dxdy
故I = 2π − ( −32π ) = 34π.
一、填空题
1.Σ : x 2 + ( y − 1) 2 = 1( 0 ≤ z ≤ 3 ) ( x 2 + y 2 − 2 y + 5 )dS = ∫∫
Σ
30π
2.Σ : ( x − a ) 2 + ( y − b ) 2 + ( z − c ) 2 = 1的外侧 则 ∫∫ xdydz + ydzdx + zdxdy =
欲求 I = ∫∫ (8 y + 1) xdydz + 2(1 − y )dzdx − 4 yzdxdy
2 Σ
z
2
且有 I =
∫∫* − ∫∫ Σ+ Σ Σ*
x
∑
∑*
3
∂P ∂Q ∂R ∫∫ = ∫∫∫ ( ∂x + ∂y + ∂z )dv Σ + Σ* Ω
Ω
o
1
y
Σ * : y = 3 ( x 2 + z 2 ≤ 2)(右侧)
解 利用两类曲面积分之间的关系
∑
z
1
∵ ∑ 的法向量为 n = {1,−1,1},
−1 1 1 −1 ∴ cos α = , cos β = , cos γ = . 3 3 3
o x
1
y
1 I = ∫∫ { [ f ( x , y, z ) + x ] 3 ∑ 1 1 − [ 2 f ( x , y, z ) + y] + [ f ( x , y, z ) + z ]}dS 3 3
一、概念 曲面积分
对面积的曲面积分
定 义
对坐标的曲面积分
∫∫ f ( x, y, z)ds = lim∑ f (ξi ,ηi ,ζ i )Δsi
Σ
n
∫∫ R ( x , y , z )dxdy