Confronting mass-varying neutrinos with MiniBooNE
新思维研究生英语第一单元课文参考译文
Unit 1 Schooling课文(参考)译文Reading 1马文•科林斯的方法在人群中,马文老师总是会显得很醒目:她有着高高的颧骨,瘦而强健,这都遗传自她那乔克托印第安人血统的曾祖母。
马文老师瘦削而不软弱,就算她没有那么高,在人群中时还是一眼就能识别出来——因为她有着特别的镇静及教养,这些都使她有了一种严谨的风格。
马文很少穿宽松衣服,也决不穿宽大的直筒连衣裙或不正式的短衫及裙子。
马文认为宽大的衣服是对自己、对学生、对教师这一职业的不敬。
从开学的第一天起,马文老师总会告诉设法让孩子们懂得:自尊是一个人最可宝贵的东西。
马文的着装总是无可挑剔,这既是为了自己,也是为了学生们:她爱穿开司米羊毛衫、套装以及人字形花呢服装。
她的衣服都剪裁得很合适,时髦而简单,但她常常会加上一个装饰品:在羊毛衫上配上一条雕有花纹的腰带,或一条有圆形浮雕的锁链,或玻璃纱襟花,抑或是一块用狮头胸针别在口袋上的花边手巾。
在马文老师看来,给人留下独特的印象是很重要的。
她欣然于自己的与众不同,但这有时也会引起一些误解,认为这是自大的表现。
开学的第一天,马文老师对学生们说:“我是一名教师,是一个领路人。
这里没有魔法。
科林斯夫人不是奇迹缔造者。
我不能在水上走路。
我只是爱孩子,并且工作得比很多人都要努力,希望你们也能如此。
”马文•科林斯从不让任何孩子有机会使自己成为一个坏老师。
“一些老师坐在大大的桌子后面,就像一座城堡里的国王,而学生们则像是贫困的佃农——这桌子使老师和同学们分离开来。
而我不会坐在教室前那张大大的桌子后面。
我每天都会在教室里来回走动,我每天都会拥抱你们。
”“以前你们害怕走到老师的办公桌前吗?你们是否觉得如果犯了错,有人会嘲笑你们?”马文并没有留给孩子们回答的时间,她明白,大家此刻都在紧跟着她的思路。
“如果我犯了错,请你们告诉我。
如果老师错了,你们不要不敢告诉她。
我不是神,我的嘴也不是祈祷书。
我们将会一起努力。
你们中有多少人原来害怕向老师提问的?”孩子们立刻举起了手。
哲味谚语
哲味谚语●The belief in a supernatural source of evil is not necessary.Men alone are quite capable of every wickedness.——Joseph Conrad【约瑟夫•康拉德(波兰出生的英国作家):将邪恶的产生归结于超自然的因素是没有必要的,人类自身就足以实施每一种恶行。
】●Try again.Fail again.Fail better.——Samuel Beckett【Samuel Beckett(当代最著名的荒诞剧作家):再试,再失败,更好地失败。
】●Try not.Do or do not.——Yoda【尤达大师(『星球大战』中的主角):别试。
做或者不做。
】●All is riddle,and the key to a riddle...is another riddle.——Emerson【爱默生(美国诗人、散文家、哲学家):所有的事物都是谜团,而解开一个谜的钥匙……是另一个谜。
】●The farther backward you can look,the farther forward you will see.——Winston Churchill【温斯顿•邱吉尔:你回首看得越远,你向前也会看得越远。
】●When you look long into an abyss,the abyss looks into you.——Nietzsc he【尼采:当你凝视深渊时,深渊也在凝视你。
】●There are certain clues at a crime scene which,by their very natu re, d o not lend themselves to being collected or examined.How does one collect love, rage, hatred, fear?——Dr. James T. Reese【詹姆斯•瑞斯博士(美国精神创伤压力处理方面的专家):犯罪现场中的某些线索根据它们自己本身的性质,是不容易收集起来检测的。
TASI 2002 lectures on neutrinos
1
I.
INTRODUCTION
The success of the Standard Model (SM) can be seen as a proof that it is an effective low energy description of Nature. We are therefore interested in probing the more fundamental theory. One way to go is to search for new particles that can be produced in yet unreached energies. Another way to look for new physics is to search for indirect effects of heavy unknown particles. In this set of lectures we explain how neutrino physics is used to probe such indirect signals of physics beyond the SM. In the SM the neutrinos are exactly massless. This prediction, however, is rather specific to the SM. In almost all of the SM extensions the neutrinos are massive and they mix. The search for neutrino flavor oscillation, a phenomenon which is possible only for massive neutrinos, is a search for new physics beyond the SM. The recent experimental indications for neutrino oscillations are indirect evidences for new physics, most likely, at distances much shorter than the weak scale. In the first lecture the basic mechanisms for generating neutrino masses are described and the ingredients of the SM that ensure massless neutrinos are explained. Then, the neutrino oscillation formalism is developed. In the second lecture the current experimental situation is summarized. In particular, we describe the oscillation signals observed by solar neutrino experiments, atmospheric neutrino experiments and long baseline terrestrial neutrino experiments. Each of these results separately can be accounted for by a rather simple modification to the SM. Trying to accommodate all of them simultaneously, however, is not trivial. In the third lecture we explain what are the theoretical challenges in trying to combine all the experimental indications for neutrino masses, and give several examples of models that cope with some of these challenges. These lecture notes are aimed to provide an introduction to the topic of neutrino physics. They are not meant to be a review. Therefore, many details are not given and many references are omitted. There are many textbooks [1] and reviews [2–4] about neutrinos. There is also a lot of information about neutrinos on the web [5, 6]. All these sources provide more detailed discussions with complete set of references on the topics covered in these lectures. Moreover, they also cover many subjects that are not mentioned here. In preparing the lectures I used mainly the recent review by Gonzalez-Garcia and Nir [4]. This review is a very good starting point to anyone who wants to learn more about neutrino physics.
neural mass model方程
一、导言神经质量模型是一种用来描述神经元裙体整体行为的模型,它可以很好地描述大脑的大规模神经活动。
神经质量模型方程是描述神经元裙体动力学行为的数学方程,它的推导和应用对于理解大脑活动、神经网络的行为具有重要意义。
二、神经质量模型方程的基本原理神经质量模型方程描述了神经元裙体中神经元的整体电活动。
在生物神经系统中,大量的神经元通过突触连接形成神经网络,神经质量模型方程的基本原理是基于神经元之间的突触传递和耦合。
神经元之间的突触传递会引起电活动的传播和同步,通过建立神经元裙体的动力学模型,可以描述神经网络的整体行为。
三、神经质量模型方程的数学描述神经质量模型方程的数学描述基于大量神经元的集体行为和动力学特性。
它通常采用偏微分方程来描述神经元裙体的电活动,并包括了神经元的发放率、突触传递和耦合强度等因素。
常见的神经质量模型方程包括了Wilson-Cowan模型、Amari模型、Jansen-Rit模型等,它们都是描述神经元裙体整体行为的数学模型,具有不同的适用范围和假设条件。
四、神经质量模型方程的应用神经质量模型方程在神经科学和计算神经科学领域具有广泛的应用。
通过将神经质量模型方程与实际神经活动数据相结合,可以对大脑的功能和机制进行建模和分析,从而揭示大脑的信息处理、感知和认知等基本原理。
神经质量模型方程也被应用于人工智能领域,用于构建神经网络和深度学习模型,以模拟和理解大脑的智能和学习机制。
五、神经质量模型方程的挑战和未来发展尽管神经质量模型方程在神经科学和计算神经科学领域取得了许多重要进展,但也面临着许多挑战和未解决的问题。
神经质量模型方程的精确性和可靠性仍然有待进一步验证和改进,而且对于大规模神经网络的建模和仿真也需要更加精细和有效的算法和数值方法。
未来,我们可以期待神经质量模型方程在神经科学、计算神经科学和人工智能领域的更加广泛和深入的应用,为我们揭示大脑和智能的奥秘。
六、进一步完善神经质量模型方程为了解决神经质量模型方程的精确性和可靠性问题,研究人员们不断努力着。
英语二词汇表
organizational ,ɔ:ɡənai'zeiʃənəl, -ni'z-a.组织〔上〕的goal ɡəul n.1.目的,目标;2.得分进球,球门objective əb'dʒektiv, ɔb-] n.目标,目的;a.1.客观的,真实的;2如实的,无偏见的accomplish ə'kʌmpliʃ, ə'kɔm-] vt.完成〔任务等〕predict pri'dikt] vt./vi.预言;预示accompany ə'kʌmpəni] vt.1.伴随,陪同; 2.为……伴奏implement 'implimənt, 'impliment] vt.完成;完成〔任务等〕;履行〔协定、诺言等〕constraint kən'streint] n.1.强制;2强制因素,制约条件precedent pri'si:dənt, 'presi- n.先例,前例simplify 'simplifai] vt.简化tendency 'tendənsi] n.趋势,倾向managerial ,mæni'dʒiəriəl a.1.经理的,治理人的;2治理上的,经营上的maker 'meikə] n.制造者;制造商achievement ə'tʃi:vmənt n.1.完成,到达;2成绩,成绩attain ə'tein] vt.到达;完成optimal 'ɔptiməl] a.最适宜的;最理想的suboptimization sʌb,ɔptimai-'zeiʃən, -mi'z- n.局部最优化〔指使整体目标中的某个选定目标圆满完成〕trade-off n.1.〔对不能同时兼顾的因素〕权衡;2物物交换argue 'ɑɡju: vt./vi.争辨,争论,论辩;vt.1.说服;2用论辩证明budget 'bʌdʒit] n.预算;vt.1.把……编入预算;2安排,预定scheme ski:m n.方案;方案;vt./vi.方案,筹划define di'fain vt.1.解释,给……下定义;2限定,规定multiple 'mʌltipl a.多样的,复合的;n.倍数profitability ,prɑfɪtə'bɪlətɪn.赚钱,获利correctness kə'rektnis n.正确,正确性unintended ,ʌnin'tendid a.非方案中的,非成心的ongoing 'ɔn,ɡəuiŋ, 'ɔ:n- a.进行中的,前进的entity 'entəti n.1.存在,实体;2统一性skilled skild] a.熟练的;有技能的in the way 挡路;碍事make a guess at 猜想and the like 等等,诸如此类seek to 追求,争取inpart 局部地,在某种程度上point of view 观点interview 'intəvju:] vt./n.1.面谈,采访;2面试,口试criticism 'kriti,sizəm] n.批判;评论candidate 'kændideit, -dət n.1.候选人,候补者;2应试者vague veiɡ] a.模糊的;不明确的notion 'nəuʃən] 1. 概念;2.想法,看法prospect 'prɔspekt] n.1.展望,景象;2常pl.]前景,前程community kə'mju:niti] n.社区;共同体unattractive ,ʌnə'træktiv a.无吸引力的;不引人注意的indifference in'difərəns n.冷漠;不感兴趣〔to〕interviewer 'intəvju:ə] n.接见者;面谈者personality ,pə:sə'næləti] n. 个性;人格;品行prospective prəu'spektiv a.预期的;未来的speechless 'spi:tʃlis a.1.不会说话的2不说话的clarification 'klærifi'keiʃən n.澄清,说明correspondence ,kɔ:ris'pɔndəns n.1.符合,一致;2通信photocopy 'fəutə,kɔpi] vt./n.1.复印,影印;2照相复制本resume ri'zju:m, -'zu:m] n.1.摘要,梗概;2个人简历inefficiency ,ini'fiʃənsi] n.无效;效能差neat ni:t a.整洁的;简洁的;齐整的conservative kən'sə:vətiv] a.1.保存的,防腐的;2守的,守旧的punk pʌŋk] n.1.〔俚〕阿飞;2.朋克〔60年代以来英国、美国的年轻人中的颓废派〕;a.颓废派的miniskirt 'miniskə:t] n.超短裙panel 'pænl] n.特意小组intimidate in'timideit vt.恐吓,恫吓clutch klʌtʃ] vt./vi.抓住,握紧grip ɡrip vt./n.1.紧握,紧夹2掌握,操作painful 'peinfl a.1.痛苦的;2费力的rephrase ri:'freiz] vt.重新措辞,改用别的话表示apply for 申请day to day〔=day-to-day〕work 一般工作take the trouble to 不辞劳累,费力put oneself in somebody's place 设身处地to one's advantage 对某人有利ask for 1.请求,向……要;2寻觅in hand 手头上有make sure 1.查明,弄实在;2确信at a disadvantage 处于不利地位turn down 1.拒绝;2调小或调低;3.翻下astronomer ə'strɔnəmən.天文学家escape i'skeipvi./vt.逃跑;防止;n.1.逃跑;2逃路,出口exert iɡ'zə:t vt.尽〔力〕;发挥〔威力等〕;施加〔压力等〕;产生〔影响等〕;行使〔职权等〕explode ik'spləud vt.使爆炸;vi.爆炸,突发density 'densəti] n.1.密集度稠密度2物]化]密度collapse kə'læps vt./vi./n〔使〕倒塌,〔使〕崩溃;〔使〕瓦解supernova ,sju:pə'nəuvə] n.天]超新星daytime 'deitaim] n.白天,日间dwarf dwɔ:f] n.1.矮子;2天]矮星〔= ~star,如太阳〕shrink ʃriŋk] vt./vi./n.收缩;缩小;vi./n.退缩,畏缩gravity 'ɡræviti] n.1.严肃,认真;2严峻性,重要性;3物]重力,地球引力marble 'mɑ:bl] n.1. 〔游戏用的玻璃、石头等做的〕弹子;2大理石;3大理石的,大理石般的boundary 'baundəri] n.分界线,边界observer əb'zə:və, ɔb- n.1.遵守者,奉行者;2观察者,监视者interchangeable ,intə'tʃeindʒəbl a.可交换的;可互换的constant 'kɔnstənt] a.1.永恒的,经久不变的;2经常的,不断的;n.数常数measurement 'meʒəmənt n.衡量,测量implication ,impli'keiʃənn.1.含意,暗示;2.牵连,涉及,卷入basis 'beisis] n.1.根底,依据;2.主要成份;3.军事基地launch lɔ:ntʃ, lɑ:ntʃ] vt.1.发射,投射;2.使〔船〕下水;3.发动,发起〔运动等〕;n.发射〔船〕下水galaxy 'ɡæləksin.1.天]星系,G-]银河系,银河;2一群出色〔或著名〕的人物observatory əb'zə:vitəri, ɔb-] n.1.天文台;2了望台convincing kən'vinsiŋ] a.有说服力的,使人信服的binary 'bainəri a.1.二,双,复;2数]二进制的;n.1.二,双〔体〕,复〔体〕;twin twina.1.双胞胎的;2个相似局部组成的;n.1.双胞胎之一,pl.双胞胎;2两个相象的人或物;3Twins]天]双子座companion kəm'pænjən] n.1.同伴同事2天]伴星speculation ,spekju'leiʃən] n.1.推测,猜想2投机swallow 'swɔləu] vt.吞咽mankind ,mæn'kaind] n.人类operate 'ɔpəreit] vi.1.运转,起作用;2.动手术〔on,upon〕;vt.1.操作,操作,经营;2.对……动手术research into 研究speculation about 关于……猜想swallow up 吞没,耗尽make use of 利用planet 'plænit] n.行星revolve ri'vɔlv, -'vɔ:lv] vi.旋转;绕转solar 'səulə] a.太阳的,日光的;利用太阳光的largely 'lɑ:dʒli ad.1.大量地;2.主要地glitter 'ɡlitə] vi.闪闪发光,闪烁;n.闪光cloudless 'klaudlis] a.无云的,晴朗的astronaut 'æstrənɔ:t] n.宇航员thrilling 'θriliŋ a.1.令人冲动的2.颤抖的,震颤的outer 'autə] a.外部的whereas hwεə'æz] conj.而,却;反之lesser 'lesəa.较小的;更少的;次要的concerned kən'sə:nd a.1.有关的;2.关切的,担忧的microscopic ,maikrə'skɔpik] 1.显微镜的;2.微观的;3.微小的,细微的whilst hwailst] conj.1.当……时;2.然而;3.虽然,尽管plateau 'plætəu, plæ't-] n.高原tropical 'trɔpikəl] a.1.热带的;2.炎热的coloured 'kʌləd] a.有色的religion ri'lidʒən n.ZJ;ZJ信仰circumstance 'sə:kəmstəns] n.pl.]情况,环境;境遇a great many 很多above all 首先,首要as a rule 通常;一般说来euthanasia ,ju:θə'neizjə] n.1.无痛楚的死亡;2.安乐死weaken 'wi:kənvt.削弱,减弱;vi.变弱Dutchman 'dʌtʃmən] n.荷兰人deteriorate di'tiəriəreitvt./vi.〔使〕恶化lethal 'li:θəl] a.致死的injection in'dʒekʃən] n.1.注射;2注射剂,针剂nationwide 'neiʃənwaid] a.全国性;ad.在全国范围内debate di'beit] vt./n.争论,论辩;vi.对……进行争论,论辩〔about,on〕legal 'li:ɡəl] a.1.法律上的;2.合法的Dutch dʌtʃ] a.荷兰人的;荷兰语的;n.1.the Dutch]总称]荷兰人;2.荷兰语Parliament 'pɑ:ləmənt] n.1.议会,国会;2.P-]〔英国或加拿大等的〕议会,国会Prosecute 'prɔsikju:tvt.对……起诉,揭发Request ri'kwest] vt./n.请求,要求criterion krai'tiəriənn.〔批判,推断的〕标准,准则crowd kraudn.群,人群;vi.聚集,群集ensure in'ʃuə] vt.保证,担保healthcare 'helθkεə] n.保健oppose ə'pəuz] vt.1.反对,对抗;2.使相对,使对抗〔to〕tradition trə'diʃən] n.传统;惯例hospice 'hɔspisn.〔晚期病人〕收容所council 'kaunsəl] n.理事会,委员会founder 'faundən.创始者;缔造者consideration kən,sidə'reiʃənn.1.考虑;2.体谅,照顾elderly 'eldəli a较老的,人过中年的;n.近老年人,到了晚年的人disabled dis'eibld] a.伤残的;使失去战斗力的burden 'bə:dən n.1.担子,负担;2.责任,义务;vt.使负重担;麻烦,劳累opt ɔpt] vi.抉择,选择〔for〕,在……之间选择〔between〕shorten 'ʃɔ:tənvt./vi.缩短,缩小;减少vulnerable 'vʌlnərəbl] a.1.易受伤的,微小的;2.易受……攻击的,易受……损害的〔to〕prohibition ,prəuhi'biʃən n.禁止;禁令individual ,indi'vidjuəl, -dʒəl n.个人,个体,独立单位;a.1.个人的;2.个别的paternalistic pə,tə:nəl'istik] a.家长式总揽的;家长作风的moving 'mu:viŋa.1.活动的,移动的;2.动人的,令人感激的sensitive 'sensitiv a.1.敏感的;2.灵敏的,感光的be affected with 患有……疾病debate on 关于……进行论辩make request for 要求……be opposed to 反对open up1.翻开;2.开办,开发,开发;3坦诚地或无拘束地谈话take……into account 考虑到need for 对……的需要opt out of 决定不参加……,决定〔从……〕中退出have……at heart 对某事十分关怀conspiracy kən'spirəsi] n.1.阴谋,密谋;2.阴谋集团,阴谋帮派old-boy 'əuld'bɔi] n.1.老同学;2.〔招呼用〕老朋友,老弟,老兄network 'netwə:k] 1.纺]网眼织物;2.网状物,网络escalator 'eskəleitə] n.自动扶梯privilege 'privilidʒn.特权;vt.给予……特权profession prəu'feʃən] n. 〔尤指脑力劳动或受过专业训练的〕职业graduate 'ɡrædʒuət, -eit, 'ɡrædjueit, -dʒu-vi.大学毕业,美]毕业;vt.主美]准予……毕业;a.1.毕业的;2.研究生的;n.大学毕业生,美]毕业生unfair ,ʌn'fεəa.不公平的,不公正的employment im'plɔimənt n.1.使用;2.雇佣;3.职业,工作publish 'pʌbliʃ] vt.1.出版,刊印;2.公布,发表senior 'si:njə] a.1.年长的,年纪较大的;2.地位较高的,资历较深的;3.英]〔大学〕高年级的,美]大学四年级的;n.1.年长者;2资历深者,上级appoint ə'pɔint vt.1.任命,委任〔as〕;2.私营的,私立的;3秘密的,私下的headmaster 'hed'mɑ:stə, -mæstən.〔中学或小学的〕校长leading 'li:diŋa.1.领导的,指引的;2.最重要的,主要的bias 'baiəs] n.偏见;v.常用被动语态]有偏见〔常与against,towards连用〕entry 'entri n.1.进入,入场〔权〕,入会权;2.入口;3.登记,条目,账目merit 'meritn.1.优点,长处;2.功绩,功绩fiercely 'fiəsli ad.1.凶狠地,凶残地;2.猛烈地competitive kəm'petitiv a.竞争的;比赛的entrance 'entrəns n.1.进入;2.入口,门口;3.入场,入会,入学additional ə'diʃənəl] a.附加的,追加的;其它的abolish ə'bɔliʃvt.废除〔法律,习惯等〕;取消applicant 'æplikənt n.申请人,请求者performance pə'fɔ:məns n.1.执行,完成;2.表现,工作性能;3.演出,演奏accessible ək'sesəbl a.1.易接近的,能进去的;2.易受影响的〔to〕;3可理解的〔to〕elite ei'li:t, i'li:t n.集合名词]精英,杰出人物;a.杰出的,精英的academic ,ækə'demik] a.1.〔高等〕专科院校的,研究院的,学会的;2.学术的excellence 'eksələns] n.优秀,杰出recruit ri'kru:t] vt./vi.1.征募〔新兵〕,汲取〔新成员〕;2.聘用,补充;n.新兵;新成员equivalent i'kwivələnt a.1.相等的,相同的〔to〕;2.等价的,等量的,等效的;n.1.等价〔物〕,等量〔物〕;2.对应词〔或对应语〕ivy 'aivi] n.常青replicate 'replikit, 'replikeit vt.重复;复制elitist ei'li:tist, i'- n.1.杰出人物;2.杰出人物总揽论者;adj.1.杰出人物的;2.杰出人物总揽论的remedial ri'mi:diəl, -djəl] a.1.医治的,医治上用的;2.补救的prime praim] a.1.最初的,根本的;2.首要的,主要的;3.第一流的,最好的vision 'viʒən] n.1.想象力,幻觉;2.视力,视觉;3.眼光classless /'klɑ:slis/a.1.无阶级的;2.不属于任何阶级的amount to 1.到达总计;2.相当于,等于on average 平均blame……for 为……责备某人by nature 生来,天生,就其本性而言be worth doing 值得做……slavery 'sleivəri] n.1.奴隶制度,奴役;2.奴隶身份domestic dəu'mestik] adj.1.家庭的,家务的;2.国内的,本国的;n.家仆,佣人Briton 'britən n.大不列颠人;英国人statistics stə'tistiks] n.1.统计数字,统计资料;2.用作单]统计学diplomat 'dipləmæt a.外交家;外交官abroad ə'brɔ:d] ad.到国外;在国外exploit 'eksplɔit, ik's- vt.1.开发,开采;2.利用;3.剥削abuse ə'bju:z, ə'bju:s] vt./n.1.滥用,妄用;2.虐待,凌辱campaign kæm'pein] n.1.战役;2.运动,参选活动;v.参加运动,参加竞选活动sexually 'sekʃuəli] ad.在性方面passport 'pɑ:spɔ:t, 'pæs-] n.护照Filipino fili'pi:nəu n.1.菲律宾人;2菲律宾语;a.菲律宾人的;菲律宾的maid meid] n.1.少女;2侍女,女仆execute 'eksikju:t vt.1.实行,执行,完成,贯彻;2.将……处死convict kən'vikt] vt.1.证明……有罪〔of〕;2.宣判;n.罪犯despite di'spait] prep.尽管,任凭guilt ɡilt] n.1.有罪;2.内疚deserving di'zə:viŋ a.应得的,值得的〔of〕Saudi 'sɔ:di; sɑ:'u:di; 'saudi] n.沙特阿拉伯人;a.沙特阿拉伯的,沙特阿拉伯人的,沙特阿拉伯语的Breadwinner 'bred,winən.养家糊口的人shelf ʃelfn.〔壁橱,书柜内〕搁板;架子minimum 'miniməm n.最小量;最低限度;a.最小的;最低的;最少的employee ,emplɔi'i:, em'plɔii:] n.雇员,雇工leaflet 'li:flit] n.1.小叶,嫩叶;2.传单,活页incidence 'insidəns] n.1.影响程度,影响范围;2. 发生率immigrant 'imiɡrənt a.〔从国外〕移民的,侨民的;n.移民,侨民status 'steitəs, 'stæ- n.1.情形,状况;2.地位,身份kingdom 'kiŋdəm] n.1.王国;2.领域concession kən'seʃən] n.1.让步;2.特许权;3.租界,租界地immigration ,imi'ɡreiʃən] n.移居;外来的移民foreigner 'fɔrinə] n.外国人deport di'pɔ:t] vt.驱逐出境bring over 把……带来;使转变convict…of 证明……有罪,宣判……有罪be deserving of 值得;应得be supposed to 应该gang ɡæŋn.1.一队,一族;2.〔囚犯,歹徒等〕一群,一帮eyewitness 'ai,witnis n.目击者;见证人unison 'ju:nizən] n.一致;协调interstate 'intəsteit, intə's-a.主美]州际的BBC 英国播送公司Correspondent ,kɔ:ri'spɔndənt n .1.对应物;2.新闻通讯员,,通信者shackle 'ʃækl] n.1.常pl.]镣铐;2.pl.]束缚,枷锁ditch ditʃn.沟,沟渠,vt./vi.开渠,筑渠weed wi:d] n.1.杂草,野草;2.水生植物;vt.除草,拔草deny di'nai] vt.1.否认,否认;2.拒绝接受,拒绝给予re-introduction ,riɪntrə'dʌkʃən n.重新采纳,重新引入gap ɡæp] n.裂口,裂缝toilet 'tɔilit] n.盥洗室;厕所circus 'sə:kəs n.1.马戏团,杂技团;2.马戏场,杂技场degrade 'di'ɡreid] vt.1.降级,贬低;2.堕落;3.退化plantation plæn'teiʃən n.1.种植园,大农场;2.植树造林spokesman 'spəuksmən n.致辞人;代言人racist 'reisist] n.种族主义者;a.种族主义的;种族卑视的racial 'reiʃəl] a.种族的inhumane ,imhju:'mein] a.不人道的,残忍的ineffective ,ini'fektiva .无效的,不起作用的civil 'sivəl] n.1.国民的,民用的;2.国内的,民间的union 'ju:niən] n.1.工会,协会;2结合,联合liberty 'libəti n.1.自由,自由权;2.冒昧,失礼;3.常pl.]特许权,特权punishment 'pʌniʃməntn.1.处分,罚,刑罚;2.折磨,损害disaffection ,disə'fekʃən n.不满argument 'ɑ:ɡjumənt] n.1.争论,论辩;2.论据,理由watch over 看守,照管,监视in unison 完全一致地call up 1.打;2使想起,使忆起blues blu:z] n.1.用作单或复]布鲁斯〔源于美国南部黑人之中抑郁伤感的曲调〕;2.慢四步舞rock'n'roll 'rɔkən'rəul] n.摇滚乐,摇滚舞folk fəuk] n.1.人们;2.口]家属,亲属;a.民间的musician mju:'ziʃən n.音乐家;作曲家transformation ,trænsfə'meiʃən, ,trænz-, trɑ:n- n.1.变化,转化;2改造,改革rhythmic 'riðmik, 'riθ- a.有韵律的;有节奏的musically 'mju:zikəli ad.在音乐方面;好听地;悦耳地distinct dis'tiŋkt] a.1.与其他不同的,独特的;2.明显的consciousness 'kɔnʃəsnis] n.意识,知觉;觉悟youthful 'ju:θful a.1.年轻的;2.朝气蓬勃的anti-war 'ænti'wɔ:] a.反战的sentiment 'sentimənt n.1.感情,情绪;2.感伤spontaneous spɔn'teiniəs] a.1.自发的,本能的,自动的;2.出自自然的originate ə'ridʒəneit vi./vt.发源;发生,发起imitator 'imiteitə〔r〕] n.模仿者Negro 'ni:grəu n.黑人;a.黑人的Eclecticism e'klektisizəm n.折衷主义synthesis 'sinθisisn.结合,合成jazz dʒæz] n.爵士乐readily 'redili] ad.1.乐意地;2很快地,简单地limitless 'limitlis a.无限制的,无限的instrument 'instrumənt, 'instrə-, -ment n.1.仪器;2.乐器electronic ,ilek'trɔnik] a.电子的amplifier 'æmplifaiə] n.放大器guitar ɡi'tɑ:] n.六弦琴,吉他electronics ,ilek'trɔniks 复]n.用作单]电子学studio 'stju:diəu, 'stu:-] n.1.〔艺术家的〕工作室;2.〔无线电,电视〕播音室,演播室;3.电影制片厂penetrating 'penitreitiŋ1.穿透的,贯穿的;2.深刻的,透彻的thereby ,ðεə'bai, 'ðεəbai] ad.由此,从而passive 'pæsiv a.1.被动的;2.消极的participant pɑ:'tisipənt n.参加者;a.参与的multimedia ,mʌlti'mi:diəa.1.多种手段的;2.多媒体的;同时使用形、光、声效果的;n.多媒体,多媒体的使用ballroom 'bɔ:lru:m n.舞厅lighting 'laitiŋ] n.照明,照明设备take place 发生take over 1.接管,接任;2.把……从一处运到另一处take on 1.具有;2.担任〔工作等〕;3.雇佣composer kəm'pəuzə] n.作曲家inspire in'spaiə] vt.1.鼓舞;2.使产生灵感fruitful 'fru:tful] a.有成果的,有收获的output 'autput, ,aut'put] n.1.产量;2.输出theme θi:m n.1.题目,主题;2.主旋律invariably in'vɛəriəbli ad.不变地improvise 'imprəvaiz] vt.1.即兴创作;2.临时打算,临时凑成symphony 'simfəni] n.1.交响曲,交响乐;2.交响乐队,交响音乐会handle 'hændl n.柄,把手;vt.1.拿,弄;2.运用,操作3.经营,治理constructive kən'strʌktiv a.建设的,建设性的creative kri'eitiv a.制造性的notebook 'nəutbuk] n.笔记本preliminary pri'liminəri] a.预备的;初步的;n.初试;预赛painstaking 'peinz,teikiŋ]] a.苦干的;费力的traditionalist trə'diʃənəlist] n.传统主义者;因循守旧者thematic θi'mætik, θi:-] a.1.题目的,主题的;2.主旋律的conception kən'sepʃən n.概念,观念well-established 'weli'stæbliʃt]a.1.固定下来的;2.得到确认的temper 'tempəvt.1.冶]使回火,锻炼;2.调合well〔-〕tempered 'wel'tempəd] 1.脾气好的;2.〔键盘乐器〕调到平均律的clavichord 'klævikɔ:d n.音]击弦古钢琴mold məuld n.模型;模型;vt.用模型做,浇铸sake seik] n.原因completeness kəm'pli:tnisn.1.完整,圆满;2.完成,结束summarize 'sʌməraiz vt./vi.概述,总结diversified dai'və:sifaid, di- a.多样化的conventional kən'venʃənəl] a.1.惯例的,常规的;2.〔艺术等〕因袭的experimental ek,speri'mentəl, ek's- a.实验的;经验的harmony 'hɑ:məni] n.1.协调,和谐;2.融洽,一致sonority 'səu'nɔ:rəti, -'nɔ-n.响亮,洪亮evident 'evidənt] a.明显的,明白的in other words 换句话说in a sense 在某种意义上at a stretch 连续不断地serve as 适宜belong in 应归入〔类别、范畴等〕in advance 1.在前面;2.预先It goes without saying 不言而喻,理所当然for the sake of 为了……之好处;为了……的目的efficiency i'fiʃənsi n.1.效率;2.成效,效能,实力robotics rəu'bɔtiks] n.用作单]机器人学,机器人技术robot 'rəubɔt, -bət, 'rɔbət n.机器人;自动操作装置increasingly in'kri:siŋli] ad.不断增加地prevalent 'prevələnt] a.流行的,一般的automotive ,ɔ:təu'məutiv a.1.自动的,机动的;2.汽车的weld weld] vt./n.焊接spray sprei] n.1.浪花,水花;2.喷雾,喷雾状物;vt.喷;向……喷射;喷涂;vi.喷;溅散cast kɑ:s, kæst] vt.1.投,扔,抛,掷;2.投射〔光、影,视线等〕〔on,at〕;3.浇铸,铸造;n.1.投,掷;2.模具;3.演员〔阵容〕frame freim] n.构架,框架install in'stɔ:l] vt.安装appliance ə'plaiəns n.1.应用,适用;2.用具,器械calculator 'kælkjuleitə n.1.计算者;2.计算器radioactive ,reidiəu'æktiv a.原]放射性的;放射引起的personnel ,pə:sə'nel n.1.集合名词]全体人员,全体职员;2.人事〔部门〕expose ik'spəuz vt.1.使暴露,使面临;2.揭露,揭发radiation ,reidi'eiʃən] n.1.放射,发光;2.放射物,辐射线,辐射能reduction ri'dʌkʃən] n.1.减少,减小;2.降级,降职;3.归纳,归并automatic ,ɔ:tə'mætik a.1.自动的;2.无意识的,机械的reprogramme 'ri:'prəugræmv.再次〔重新〕设定程序completion kəm'pli:ʃən n.完成,结束;完满specific spi'sifik a.1.特有的,特定的;2.具体的,明确的switch switʃ] n.1.开关,转换器;2.〔思路、话题等的〕转换;vt.1.转换,改变〔思路、话题等〕;2.接通……电流〔on〕,切断……电流〔off〕;vi.转换,变换critical 'kritikəl a.1.批判〔性〕的,批判〔性〕的;2.对……表示责备的,对……感到不满的〔of〕;3.紧要的,关键性的,危险的digital 'didʒitəla.1.手指的,指状的;2.数字的,计数的camera 'kæmərə] n.照相机,摄影机light-sensitive ,lait'sensitiv a.光敏的intensity in'tensətin.强烈,剧烈grayscale 'grei,skeil 灰度〔使不同黑白比例混合而得从黑到白的一系列色差灰色色调〕brightness 'braitnis n.1.明亮,晴朗;2.聪敏,灵巧scale skeil] n.1.刻度,表度;2.规模;3.比例〔尺〕;4.pl.]天平,磅秤shade ʃeid] n.1.荫,阴影;2.遮光物,罩;vt.遮蔽,遮光calculation ,kælkju:leiʃənn.1.计算,计算结果;2.认真考虑defective di'fektiv a.有缺点的;有缺陷的assemble ə'sembl vt.1.集合;2.装配;vi.集合attendant ə'tendənt n.1.侍者,效劳员;2.出席者fireman 'faiəmən] n.消防队员housekeeper 'haus,ki:pə] n.治理家务的主妇;女管家expose to 暴露;面临;曝露in that 在于,原因是in between 在中间;每间隔;在……期间in question 正被谈论的plenty of 大量的;丰富的earthquake 'ə:θkweik] n.地震warning 'wɔ:niŋn.警告;警报;a.警告的forecast 'fɔ:kɑ:st] vt.1.预测,预报;2.预示giant 'dʒaiənt] n.1.庞大;2.巨物,庞大的动物;a.庞大的shift ʃift] vt./vi.1.替换;转移;2.轮班;n.1.转换,转移;2.轮班fault fɔ:lt] n.1.缺点,毛病;2.错误,过失;3.地]断层seismic 'saizmik, 'sais-] a.地震的precede pri:'si:d, pri-vt.先于……,比……优先;vi.在前面,居前,领先radon 'reidɔn n.氡decay di'kei] vi.1.腐朽,腐烂;2.衰败;3.原]衰变;vt.使腐朽,使腐烂;n.1.腐朽,腐烂;2.衰败radium 'reidiəm] n.镭underground 'ʌndəɡraunda.1.地下的;2.秘密的,隐蔽的;ad.1.在地下;2秘密地,隐蔽地speculate 'spekjuleit vi.思索;推测〔on/upon,about〕;vt.1.投机;2.思索,推测subsidesəb'saidvi.1.沉淀;2.沉降,下沉;3.平静下来,平息,减退datum 'deitəm1.资料,材料,2.数据reliability ri,laiə'biləti n.可靠性partial 'pɑ:ʃəl] a.1.偏袒的,偏心的,对……偏袒〔to〕;2.局部的,不完全的up-to-date 'ʌptə'deit] a.1.最新的,现代化的;2.直至目前的analyze 'ænəlaiz] vt.分析eastern 'i:stən] a.1.X的,东部的;2.向X的,来自X的work on 1.从事……;2.对……有影响set up 1.设立,建立;2.建立,提出on the alert 警戒,处于戒备状态leadership 'li:dəʃipn.1.领导;2.总称]领导人员research ri'sə:tʃ, 'ri:s- n.研究,调查;vi.调查,研究attach ə'tætʃvt.〔to〕1.固定住,系;2.附加,隶属;3.把〔重点等〕放在;4.使喜欢,使依恋possession pə'zeʃən n.1.有,拥有;2.常pl.]占有物;财产satisfaction ,sætis'fækʃən n.中意,满足relaxation ,ri:læk'seiʃən n.1.松弛,放松;2.缓和,减轻;3.休养desirable di'zaiərəbl] a.中意的,合意的,理想的occupation ,ɔkju'peiʃən n.1.占据;2.占有;ɔ.职业portray pɔ:'trei, pəu- vt.描绘;描写;描述urban 'ə:bən] a.城市的,都市的stressful 'stresful a.紧张的;压力重的loom lu:m] vi.隐隐呈现;逼近renewal ri'nju:əl n.1.更新;2重新开始underlie ,ʌndə'lai] vt.支撑;构成〔理论,政策,行为等〕的根底acquire ə'kwaiə] vt.获得,得到recognition ,rekəg'niʃən n.1.认出;2.成认,公认impart im'pɑ:t vt.把……分给;给予〔to〕positive 'pɔzətiv, -zi-] a.1.明确的,实在的;2.积极的,肯定的;3.正的,阳性的motivate 'məutiveit vt.作为…的动机,激发relevant 'reləvənt] a.1.贴切的,中肯的;2.与……有关的〔to〕communicator kə'mju:nikeitən.传播者,传播工作者participation pɑ:tisi'peiʃən] n.参加,参与attainment ə'teinməntn.1.到达,到达;2.常pl.]成绩,造诣be concerned with 1.关于,涉及;2.忙于……;3.关怀,关切attach importance to 认为……很重要take to 1.开始从事;2.养成……的习惯3.培养对……的爱好put……to use 使用;利用be relevant to 与……有关on the part of 就……而言set……as objective 把……作为目标elusive i'lju:siv,-səri] a.1.躲避的;2.难以捉摸的,难以理解的tricky 'triki] a.1.圆滑的,耍花招的;2.难以处理的slip slip] vi.1.滑动,滑过;2.溜,溜走;vt.使滑动;使滑过quicksand 'kwiksænd] n.流沙oversupply ,əuvəsə'plai, 'əuvəsə,plai] vt./n.过多供给wayside 'weisaid] n.路边;2.路边的flexible 'fleksibl] a.1.柔韧的,柔顺的;2.可变通的,灵敏的readjustment ,ri:ə'dʒʌstmənt n.再整理,再调整project 'prɔdʒekt, 'prəu, prə'dʒekt n.1.设计,规划;2.工程;vt.1.方案,方案;2.投射,映射3.使突出appointment ə'pɔintmənt n.1.任命;2.约会weekly 'wi:kli] a.每周的;一周一次的;ad.每周;每周一次;n.周刊,周报adjustment ə'dʒʌstmənt] n.调整realistic ,riə'listik, ,ri:-a.1.现实的,实际的;2.逼真的;3.现实主义的,现实主义者的underestimate ,ʌndə'estimeit] vt.低估;看轻overestimate ,əuvər'estimeit, -'estimət] vt.过高估量;过高评价emergency i'mə:dʒənsi n.紧急情况;突发事件routine ru:'ti:n n.一般工作;例行手续,常规;2.一般的;例行的;常规的crash kræʃ] a.紧急的,速成的inflexible in'fleksəbla.1.不可弯曲的,僵硬的;2.不可改变的,固执的adjust ə'dʒʌst] vt.1.调整,调节;2.校准deem di:m] vt.认为,信任assignment ə'sainmənt] n.1.分配,委派;2.任务,〔课外〕作业freshman 'freʃmən n.1新手,生手;2.大学一年级学生kid kid] vt./vi./n.1.戏弄,开玩笑;2.欺骗,哄骗faithfully 'feiθfuli adv忠诚地;如实地temptation temp'teiʃən] n.引诱,诱惑look ahead to 向前看;展望未来allocate……for 分配给……;配给fall by the wayside 半途而废,中途退出hang up 1.把……挂起来;2.挂断〔〕;3.延迟,拖延throw off 扔掉;摆脱work out 做出;制定出up to date 1.最新的,新式的;2.切合目前情况的〔on〕kid……into doing 欺骗……去做……stick with 坚持;继续jet dʒet] n.1.喷射;2.喷嘴;3.喷气式飞机,喷气式发动机lag læɡ] vi.走得慢,落后;n.落后,滞后flight flait] n.1.飞行,飞翔;2.航班,班机3.逃跑,溃退physiological ,fiziə'lɔdʒikəl] a.生理的,生理学的regulatory 'reɡjulətəri a.1.规章的;2.调节的mechanism 'mekənizəm n.1.机]机构,机制;2.〔自然现象等〕作用过程hormonal hɔ:'məunəl] a.荷尔蒙的,激素的secretary'sekrətəri]n.1.秘书;2.书记;3〔英,美等国的〕部长,大臣negotiation ni,ɡəuʃi'eiʃən, -si- n.谈判,协商proceeding prəu'si:diŋ] n.1.程序,进程;2.pl.]工程,活动,会议文集instantaneously ,instən'teinjəsli ad.瞬间地;即刻地transport træns'pɔ:t; trænz-træns'pɔ:t,vt.运输;n.运输overcome ,əuvə'kʌm vt.战胜;克服regulate 'reɡjuleit vt./n.1.治理;2.调节timing 'taimiŋ] n.1.时间的选择;2.计时,定时periodicity ,piəriə'disiti n.周期性,间发性internal in'tə:nəl] a.1.内部的,内在的;2.国内的suprachiasmatic 'sju:prəkaiəz'm1tik a.超〔染色体〕交叉的rhythm 'riðəm, 'riθəm n.1.韵律,格律;2.节奏timer 'taimə] n.计时员,定时器external ik'stə:nəl a.外在的,在外的alarm ə'lɑ:m] n.1.警报;2.惊恐;vt.1.向……报警,使警觉;2.使……惊恐,打搅reset ,ri:'set, 'ri:set vt./n.重新安排,重调palm pɑ:m] n.手掌sweat swet n.汗;vi.出汗;vt.使出汗discrepancy dis'krepənsi] n.差异;不一致bodily 'bɔdili] a.身体的,肉体的cortisol 'kɔ:ti,sɔ:l n.生]皮质〔甾〕醇excretion ek'skri:ʃən n.排泄;分泌destination ,desti'neiʃən n.目的地,终点feasible 'fi:zəbl a.可行的,可能的pharmacological ,fɑ:məkə'lɔdʒikəl a.药物学的,药理学的assumption ə'sʌmpʃən n.1.假定,设想;2.承当,采取mid-afternoon mid 'aftə'nu:n a.下午三点左右的neutral 'nju:trəl a.1.中立的;2.中性的wakefulness 'weikfulnis n.觉醒,不眠promote prəu'məut vt.1.促进,发扬;2.提升,升级;3.发起,创办synchronize 'siŋkrənaiz vi.同时发生,同步;vt.使在时间上一致;使同步effect on 对……的作用blame……on 把……归咎于to advantage 有利地,有效地as fresh as paint 精神饱满now that 〔连词〕既然,由于leave……alone 1.不管,不理;2.听其自然out of step 步伐不一致;不协调in time 1.及时;2.总算span /spæn/ n.1.指距,一柞宽;2.跨距;3.一段时间fluctuate 'flʌktjueit vi.1.波动,起伏;2.动摇,不定;vt.使波动,使起伏fluctuation ,flʌktju'eiʃən n.波动,起伏tick tik] n.〔钟表的〕滴答声;vi.〔钟表的〕滴答响fade feid, fad] vi.1.凋谢,枯萎;2.〔颜色〕褪去;3.〔声音等〕衰弱下去;vt.使褪色illusion i'lju:ʒən] n.错觉;幻觉duration djuə'reiʃən n.延续;延续时间infrequent in'fri:kwənt a.很少发生的illustration ,ilə'streiʃən n.1.说明;2.例证,插图moderate 'mɔdərət, 'mɔdəreit] a.1.中等的,适度的;2.和气的,有克制的distraction dis'trækʃən n.1.精神松散,精神不集中;2.消遣,娱乐distractor dis'træktən.分散注意力的东西focal 'fəukəl] a.焦点的;vt.1.医治;2.补救〔法〕;vt.1.医治;2.补救,改正fearful 'fiəful a.1.恐怖的,吓人的;2畏惧的,畏惧的productivity ,prɔdʌk'tivəti, ,prəu-] n.1.生产率;2.富饶,多产finance fai'næns n.1.财政,金融;2.经费,资金retention ri'tenʃən] n.保持;保存distract dis'trækt] vt.分散〔注意,心思等〕;使人分心adversely æd'və:sli ad.1.相反地;2.不利地,有害地appreciate ə'pri:ʃieit vt.1.观赏,鉴赏;2.正确评价,鉴别;3感激,感激contrary 'kɔntrəri a.相反的,相对的,与……相反〔to〕mislead ,mis'li:d vt.把……带错路,使……错或做错motivation ,məuti'veiʃən n.动机;动力inefficient ,ini'fiʃənt a.无效的;效率低的exceptional ik'sepʃənəl a.1.例外的;2.异常的,特别的hinder 'hindəvt.阻挡;阻碍typical 'tipikəl a.典型的,代表性的to date 到目前为止attend to 专心;注意;照顾make the grade 取得成功,到达理想标准fall apart 四分五裂;崩溃be true of 符合于……,对……适用classify /'klæsifai/ vt.1.把……分类,把……分等级;2.把……列为〔as〕aged 'eidʒid] a.年老的,老的northwestern ,nɔ:θ'westən] a.1.在西北的,向西北的;2.来自西北的approximate ə'prɔksimit,ə'prɔksimeit a.近似的,大约的;vt.1.近似,接近;2.使接近;vi.接近〔to〕paradox 'pærədɔks 1.似非而可能是的论点;2.自相矛盾的话proportion prəu'pɔ:ʃən n.比率,比例;vt.使成比例,使相称dependency di'pendənsi n.附属;依赖〔on〕advantageous ,ædvən'teidʒəs a.有利的,有助的liability ,laiə'biləti n.1.责任,义务;2.pl.]债务,负债;3.不利条件,阻碍的人〔或物〕inactive in'æktiv a.不活动的;不活泼的appreciation ə,pri:ʃi'eiʃənn.1.观赏,鉴赏;2.正确评价;3.感激,感激salient 'seiljənt, -liənt a.1.突出的,凸起的;2.显著的resettlement ri'setlmənt;] n.重新定居,重新安置acknowledge ək'nɔlidʒvt.1.成认;2.表示感激fore fɔ: ad.在前面;a.1.先时的,先前的;2.在前部的;n.前部gathering 'ɡæðəriŋn.1.聚集;2.集会birthrate 'bə:θreit] n.出生率elsewhere ,els'hwεəad.在别处;向别处demography di:'mɔɡrəfi n.人口统计学alter 'ɔ:ltəvt./vi.改变,改动experiential ik,spiəri'enʃəl] a.经验的;凭经验的continued kən'tinju:d a.继续的,连续的lengthen 'leŋθən] vt.使延长;vi.变长,延伸wealthy 'welθi a.富裕的;丰富的neglect ni'ɡlekt] vt.1.无视,忽略;2.疏忽;n.忽略;疏忽expectation ,ekspek'teiʃən] n.1.期待;2.估量寿命slippery 'slipəri] a.1.滑的;2.圆滑的demographer di:'mɔɡrəfən.人口学家revision ri'viʒən] n.修订,修改upwards 'ʌpwədz ad.向上;趋向上升approximate to 与……接近to the fore 1.在前面,到前面;2.在显著地位resistance to 对……的阻力esteem i'sti:m] vt./n.尊敬,尊重cope kəup] vi.应付,妥善处理〔with〕parenting 'pεərəntiŋn.父母对孩子的养育tone təun] n.1.音调,音色;2.腔调,语气;3.语]声调,语调infant 'infənt] n.婴儿,幼儿;a.婴儿的,幼儿的lovable 'lʌvəbl a.可爱的,讨人喜欢的manageable 'mænidʒəbl] a.易治理的unlovable ,ʌn'lʌvəbl] a.不可爱的;不讨人喜欢的worthless 'wə:θlis a.1.无价值的,无用的;2.缺少道的,不可取的ultimately 'ʌltimətli ad.最后,最终地self-defeating ,selfdi'fi:tiŋ a.1.自我挫败的;2.有违被衰的crisis 'kraisis n.1危机;2.决定性时刻withdraw wið'drɔ:, wiθ-] vt.1.收回,提取;2.撤退,撤销;vi.1.撤退,退出;2.退缩,躲避现实inconsiderate ,inkən'sidərət] a.不替别人考虑的;不体谅人outcome 'autkʌm] n.1.结果,结局;2.出路,出口reinforcement ,ri:in'fɔ:smənt n.增强,加固;加强tangible 'tændʒəbl a.1.可触摸的,可感知的;2.实在的,真实的attribute ə'tribju:t, 'ætribju:t] n.1.属性,特征;2.语]定语;vt.把……归因于〔to〕fold fəuld vt./vi.折叠;对折;n.褶〔痕〕appropriate ə'prəuprieit, ə'prəupriət] a.适宜的,恰当的,相宜的cope with 应付;处理no other……than 1.除……外没有,只有;2.正是,就是take advantage of 1.利用;2.占……廉价act out 1.将……表演出来;2.〔用行动〕表示出来election i'lekʃən] n.选举;选举权presidential ,prezi'denʃəl a.总统〔或校长〕的,总统〔或校长等〕职务的winner 'winən.获胜者,优胜者;成功者republican ri'pʌblikən] a.1.共和国的;2.R-]〔美国〕共和党的;n.1.共和主义者;2.R-]共和党党员democratic ,demə'krætik,-kəl] a.民主的,民主主义的nominee ,nɔmi'ni:] n.被提名者;被任命者vote vəut] n.1.选举,投票;2.票,选票;vi.投票,选举certainty 'sə:tənti] n.肯定;必定nomination ,nɔmi'neiʃən] n.提名;任命loyalty 'lɔiəlti] n.忠诚;忠心decline di'klain] vi.1.下倾,下降;2.衰退,衰落;3.谢绝,拒绝;vt.拒绝,谢绝;n.1.下倾,下降;2.衰退,衰落democrat 'deməkræt n.1.民主主义者,民主人士;2.D-]民主党党员voter 'vəutə] n.选举人,投票人strategically strə'ti:dʒikəli ad.战略上地,颇具策略地pursue pə'sju:, -'su: vt.1.追赶;2.追求,寻求;3.进行,从事impact 'impækt, im'pækt n.1.冲击,碰拦;2.效果,影响;vt.装紧,压紧headquarters ,hed'kwɔ:təz] 复]n.1.司令部,指挥部; 2.〔机构,企业〕总部,总店economy i'kɔnəmi] n.1.经济;2.节约strategist 'strætidʒist n.战略家rating 'reitiŋ] n.1.等级,规格;2.评定结果,〔电视〕收视率poll pəul] n.1.选举,投票;2.民意测验;vt1.得到选票;2.对……进行民事测验;vi.投票。
Neutrinos from Protoneutron Stars A Probe of Hot and Dense matter
arXiv:nucl-th/9508009v1 3 Aug 1995
1. Introduction The general nature of the neutrino signature expected from a newly formed neutron star (hereafter referred to as a protoneutron star) has been theoretically predicted1 and confirmed by the observations2 from supernova SN1987A. Although neutrinos interact weakly with matter, the high baryon densities and neutrino energies achieved after the gravitational collapse of a massive star (≥ 8 solar masses) cause the neutrinos to become trapped on the dynamical timescales of collapse3,4 . Trapped neutrinos at the star’s core have Fermi energies Eν ∼ 200 − 300 MeV and are primarily of the νe type. They escape after diffusing through the star exchanging energy with the ambient matter, which has an entropy per baryon of order unity in units of Boltzmann’s
人教部编版九年级历史下册第7课《近代科学与文化》课件共27张PPT
科学家---牛顿
《牛顿像》(1702)现藏 英国国家肖像馆
第一单元
艾萨克·牛顿(1643年—1727年): 英国著名数学家、物理学家,百科全书式 的“全才”,世界自然科学奠基人之一, 著有《自然哲学的数学原理》、《光学》。
1661年他进入英国剑桥大学三一学院学习。 1669年被授予卢卡斯数学教授席位。 1689年他单选为国会议员。 1703年--1727年任英国皇家学会会长。 1705年被安妮女王封为爵士。
拿破仑
称谓:荷兰杰出画家 作品: 《夜间的咖啡馆》《向日葵》
评价:“用生命作画的人” 特色:《向日__葵__》____表达了画
家对生命的赞美和对美好生活的 向往。
梵高 (1853——1890)
梵高
梵高是荷兰后印象派画家。他是表现
主义的先驱,并深深影响了二十世纪
艺术。
他力图用色彩来揭示人类精神世 界的绚丽,用线条来勾画人内类心情 感的冲动。
1727年牛顿去世,他被安葬在威斯敏斯特大教堂,这里是英国君主以及达尔文、狄更斯等著名 非王室成员的长眠之地。亚历山大·波普为牛爵爷写下墓志铭:Nature and Nature' law lay hid in night ; God said,"Let Newton be," and all was light。(自然和自然的法则 隐藏在黑暗中,上帝说:让牛顿出生吧!于是一切被光照亮。)
《英雄交响曲》 《命运交响曲》 《合唱交响曲》
《英雄交响曲》献给谁的?反映了哪一个重大的社会题材?
献给拿破仑的。这首交响曲以法国大革命 为题材,表现出贝多芬对法国资产阶级革命 的敬仰和对革命英雄的崇拜感情。
应法国大使的邀请,1804年,贝 多芬为拿破仑谱写了《英雄交响 曲》。当他得知拿破仑称帝时, 愤然改写成“为纪念一个伟大的 人物而作的英雄交响曲” 古典乐派的终结者和 浪漫乐派的开拓者
专业术语的奇思妙想作文
专业术语的奇思妙想作文英文回答:When it comes to terminology, creativity plays acrucial role in shaping the way we perceive and articulate our thoughts. Specialized jargon, often laden withtechnical complexities, can sometimes become a hindrance to effective communication. To overcome this obstacle, imaginative approaches in terminology can render abstract concepts more accessible, paving the path for wider understanding.One such technique involves the use of metaphors and analogies. By drawing parallels with familiar concepts or experiences, we can infuse specialized terms with a sense of familiarity, making them more relatable. For instance, the term "neural network" in artificial intelligence might be visualized as a web of interconnected neurons, akin to those found in our brains. This analogy helps us grasp the concept of artificial intelligence as a system that learnsand processes information in a manner similar to human cognition.Another creative approach lies in the use of acronyms and abbreviations. By stringing together the initialletters of key terms, we can create concise and easily recognizable terminology. The acronym "HTML" (Hypertext Markup Language) is a prime example. It encapsulates the complex idea of a language used to define the structure and content of web pages into a concise and memorable term.Storytelling can also be a powerful tool for conveying specialized knowledge. By crafting narratives that weave complex concepts into relatable scenarios, we can make terminology more engaging and memorable. For example, the concept of "entropy" in thermodynamics might be explained through the tale of a disorganized room. Just as the level of disorder in a room increases over time, so too does entropy in a system, leading to the irreversible degradation of energy.Humor can also inject a touch of levity into the often-serious realm of terminology. By employing playful language, puns, and lighthearted analogies, we can make specialized terms more approachable and memorable. The term "quantum entanglement" in quantum physics, for instance, might be described as a cosmic dance between particles, playfully invoking the image of two dancers whose movements are mysteriously intertwined.In addition to these creative approaches, it isessential to foster a collaborative environment in terminology development. By involving experts from various fields and encouraging cross-disciplinary dialogue, we can ensure that terminology is accurate, widely applicable, and reflective of the evolving knowledge landscape.中文回答:在专业术语领域,奇思妙想发挥着至关重要的作用,它塑造着我们感知和表达思想的方式。
学术英语_社科Unit5五单元原文及翻译
UNIT 5 Sociology Matters1.Culture is the totality of learned,socially transmitted customs,knowledge,material objects,and behavior.It includes the ideas,values,customs,and artifacts of groups of people.Though culture differ in their customs,artifacts,and languages,they all share certain basic characteristics.Furthermore,cultural characteristics change as cultures develop ,and cultures infuence one another through their technological ,commercial, and artistic achievements.文化是指社会传播学,海关,知识,材料的对象,和行为。
它包括思想,价值观,习俗,和人群的文物。
尽管文化在他们的习俗,文物,和语言不同,但是他们都有一些共同的基本特性。
此外,当文化发展时文化特征也在变化,并且文化通过他们的技术,商业,艺术成就相互影响。
Cultural universals文化共性2.All societies,despite their differences,have developed certain general practices known as cultural universals.Many cultural universals are ,in fact,adaptations to meet essential human needs ,such as people’s need for food ,shelter,and clothing. Anthropologist George murdock compiled a list of cultural that included athletic sports, cooking ,funeral ceremonies,medicine,and sexual restrictions.所有的社会,尽管他们的差别,已经形成了一定的一般做法被称为文化的共性。
On the physics of massive neutrinos
The eigenvalues of γ5 (chirality) agree with those of helicity in the massless case. Here the Dirac equation decouples into two seperate equations for ψL,R 2
respectively. An alternative 2-component description was developed by Majorana [6] to describe a particle identical to its antiparticle. If neutrinos acquire a mass, in general both helicity states for neutrinos and antineutrinos can exist, making a 4-component description necessary. Here a 4-component Dirac-spinor can be treated as a sum of two 2-component Weyl-spinors or as composed out of two degenerated Majorana neutrinos. However it is still an open question whether neutrinos are Dirac or Majorana particles. The Majorana condition, for a particle to be its own antiparticle, can be written as
2.1 Weyl-, Majorana- and Dirac-neutrinos The neutrino states observed in weak interactions are neutrinos with helicity -1 and antineutrinos with helicity +1. For massless neutrinos and the absence of right-handed currents there is no chance to distinguish between Dirac- and Majorana neutrinos . Because V-A theory is maximal parity violating the other two states (neutrinos with helicity +1 and antineutrinos with helicity -1), if they exist, are unobservable. If neutrinos are massless a 2-component spinor (Weyl-spinor) is sufficient for description, first discussed for the general case of massless spin 1/2 particles by Weyl [5], which are the helicity -1(+1) projections for particles (antiparticles) out of a 4-component spinor Ψ. They are given by 1 ΨL,R = (1 ± γ5 )Ψ 2 (1)
Confronting Heavy Tau Neutrinos with Neutrino Oscillations
P.O. Box 2735, Beijing 100080, China
Abstract
If the tau neutrino is as heavy as 10 MeV which may have certain astrophysical implications, the neutrino mass pattern is studied so as to accommodate the new oscillation observations. It predicts that the electron neutrino has Marjorana mass around 0.05 eV. A supersymmetric model is described to realize the above scenario.
Two neutrinos are degenerate and one massless. Their mixing matrix is then
1 √ 2 1 2 1 2 1 −√ 2 1 2 1 2
U=
1 √ 2
0
.
(3)
1 −√ 2
The charged lepton mass matrix has been taken to be diagonal at the leading order. Therefore both νµ − νs and νe − νµ mixing have been fixed to be maximal already, for the ANP and SNP, respectively. The value of m is determined by the ANP, m ≃ 0.05 eV . (4)
想要了解的事物英语作文
想要了解的事物英语作文Things I Yearn to Understand The world is an intricate tapestry woven with threads of knowledge, both known and unknown. While I find myself fascinated by the vast amount of information we’ve accumulated as a species, I am acutely aware of the vast, uncharted territories of understanding that lie before me. There are several key areas that spark a deep curiosity within me, areas I yearn to explore and grasp with greater clarity. Firstly, I am captivated by the complex workings of the human mind. The brain, a three-pound universe contained within our skulls, is a marvel of intricate networks and electrochemical signals that give rise to consciousness, emotion, and behavior. How do neurons fire in symphony to create our perceptions of the world? What are the mechanisms behind memory formation and retrieval? How does our unique blend of genetics and environment shape our personalities and predispositions? Unraveling the mysteries of the mind holds the key to understanding the very essence of what makes us human. The vast universe, with its swirling galaxies, enigmatic black holes, and the tantalizing possibility of life beyond Earth, also ignites my imagination. I long to understand the fundamental laws that govern the cosmos, from the delicate dance of subatomic particles to the majestic movements of celestial bodies. What is the true natureof dark matter and dark energy, the unseen forces shaping the universe's evolution? Are we alone in this vast cosmic expanse, or does life, in all its wondrous forms, exist elsewhere? The pursuit of answers to these questions is a quest to understand our place in the grand scheme of existence. Closer to home, the interconnected web of life on our planet fascinates me. The intricate ecosystems teeming with biodiversity, the delicate balance of predator and prey, theintricate cycles of energy and nutrients - these are all testament to the awe-inspiring power of evolution and adaptation. I yearn to understand the complex interactions within these ecosystems, the delicate balance that sustains them, and the impact of human activities on this delicate web. Understanding these complexities is crucial for our responsible stewardship of the planet and the preservation of its irreplaceable biodiversity. Furthermore, I am drawn to the intricacies of human history and its impact on our present reality. From the rise and fall of civilizations to the struggles for freedom and equality, historyoffers a lens through which we can examine the triumphs and failures of humankind.I crave a deeper understanding of the forces that have shaped our social,political, and economic systems, the ideologies that have fueled conflicts and cooperation, and the enduring legacies of past events. By studying history, wecan learn from our ancestors' mistakes and successes, equipping ourselves to navigate the challenges of the present and build a better future. The ever-evolving world of technology, with its rapid advancements in artificial intelligence, biotechnology, and space exploration, also holds a powerful allure.I am driven to understand the principles behind these innovations, their potential to address global challenges, and the ethical implications that accompany them. How can we harness the power of artificial intelligence for the betterment of society while mitigating potential risks? What are the ethical considerations surrounding genetic engineering and its impact on future generations? How can space exploration contribute to scientific advancements and inspire future generations? Exploring these frontiers of technology is essential for shaping a future where innovation serves humanity and the planet. Finally, I yearn to understand the very essence of creativity and its power to inspire, challenge, and transform. From the evocative brushstrokes of a painter to the soaring melodiesof a composer, creativity speaks a universal language that transcends cultural boundaries. What are the cognitive processes that underpin artistic expression? How does creativity foster innovation and problem-solving across disciplines? How can we nurture and cultivate our own creative potential to contribute to the world in meaningful ways? Understanding the nature of creativity is key to unlockingour own potential and enriching the human experience. In conclusion, the pursuit of knowledge is a lifelong journey, an insatiable thirst for understanding that fuels my curiosity and motivates my exploration. From the inner workings of the human mind to the vast expanses of the cosmos, from the intricate web of life on Earth to the enduring legacies of human history, from the frontiers of technology to the power of creative expression - these are the areas I yearn to understand with greater depth and clarity. This quest for knowledge is not merely an academic pursuit but a fundamental aspect of what makes us human - the desire to learn, grow, and contribute to the betterment of ourselves and the world around us.。
Cosmology with High-redshift Galaxy Survey Neutrino Mass and Inflation
a r X i v :a s t r o -p h /0512374v 3 5 J u n 2006Cosmology with High-redshift Galaxy Survey:Neutrino Mass and InflationMasahiro Takada 1,Eiichiro Komatsu 2and Toshifumi Futamase 11Astronomical Institute,Tohoku University,Sendai 980-8578,Japan and 2Department of Astronomy,The University of Texas at Austin,Austin,TX 78712High-z galaxy redshift surveys open up exciting possibilities for precision determinations of neu-trino masses and inflationary models.The high-z surveys are more useful for cosmology than low-z ones owing to much weaker non-linearities in matter clustering,redshift-space distortion and galaxy bias,which allows us to use the galaxy power spectrum down to the smaller spatial scales that are inaccessible by low-z surveys.We can then utilize the two-dimensional information of the linear power spectrum in angular and redshift space to measure the scale-dependent suppression of matter clustering due to neutrino free-streaming as well as the shape of the primordial power spectrum.To illustrate capabilities of high-z surveys for constraining neutrino masses and the primordial power spectrum,we compare three future redshift surveys covering 300square degrees at 0.5<z <2,2<z <4,and 3.5<z <6.5.We find that,combined with the cosmic microwave background data expected from the Planck satellite,these surveys allow precision determination of the total neutrino mass with the projected errors of σ(m ν,tot )=0.059,0.043,and 0.025eV,respectively,thus yielding a positive detection of the neutrino mass rather than an upper limit,as σ(m ν,tot )is smaller than the lower limits to the neutrino masses implied from the neutrino oscillation experiments,by up to a factor of 4for the highest redshift survey.The accuracies of constraining the tilt and running index of the primordial power spectrum,σ(n s )=(3.8,3.7,3.0)×10−3and σ(αs )=(5.9,5.7,2.4)×10−3at k 0=0.05Mpc −1,respectively,are smaller than the current uncertainties by more than an or-der of magnitude,which will allow us to discriminate between candidate inflationary models.In particular,the error on αs from the future highest redshift survey is not very far away from the prediction of a class of simple inflationary models driven by a massive scalar field with self-coupling,αs =−(0.8−1.2)×10−3.PACS numbers:95.55.Vj,98.65.Dx,98.80.Cq,98.70.Vc,98.80.EsI.INTRODUCTIONWe are living in the golden age of cosmology.Vari-ous data sets from precision measurements of tempera-ture and polarization anisotropy in the cosmic microwave background (CMB)radiation as well as those of matter density fluctuations in the large-scale structure of the universe mapped by galaxy redshift surveys,Lyman-αforests and weak gravitational lensing observations are in a spectacular agreement with the concordance ΛCDM model [1,2,3,4].These results assure that theory of cos-mological linear perturbations is basically correct,and can accurately describe the evolution of photons,neu-trinos,baryons,and collisionless dark matter particles [5,6,7],for given initial perturbations generated during inflation [8,9].The predictions from linear perturbation theory can be compared with the precision cosmological measurements,in order to derive stringent constraints on the various basic cosmological parameters.Future obser-vations with better sensitivity and higher precision will continue to further improve our understanding of the uni-verse.Fluctuations in different cosmic fluids (dark matter,photons,baryons,and neutrinos)imprint characteristic features in their power spectra,owing to their interac-tion properties,thermal history,equation of state,and speed of sound.A remarkable example is the acoustic oscillation in the photon-baryon fluid that was generated before the decoupling epoch of photons,z ≃1088,which has been observed in the power spectrum of CMB tem-perature anisotropy [10],temperature–polarization cross correlation [11],and distribution of galaxies [12,13].Yet,the latest observations have shown convincingly that we still do not understand much of the universe.The standard model of cosmology tells us that the universe has been dominated by four components.In chronolog-ical order the four components are:early dark energy (also known as “inflaton”fields),radiation,dark mat-ter,and late-time dark energy.The striking fact is that we do not understand the precise nature of three (dark matter,and early and late-time dark energy)out of the four components;thus,understanding the nature of these three dark components has been and will continue to be one of the most important topics in cosmology in next decades.Of which,one might be hopeful that the next generation particle accelerators such as the Large Hadron Collider (coming on-line in 2007)would find some hints for the nature of dark matter particles.On the other hand,the nature of late-time dark energy,which was dis-covered by measurements of luminosity distance out to distant Type Ia supernovae [14,15],is a complete mys-tery,and many people have been trying to find a way to constrain properties of dark energy (see,e.g.,[16]for a review).How about the early dark energy,inflaton fields,which caused the expansion of the universe to accelerate in the very early universe?We know little about the nature of inflaton,just like we know little about the nature of late-time dark energy.The required property of infla-ton fields is basically the same as that of the late-time2dark energy component:both must have a large negativepressure which is less than−1/3of their energy density. To proceed further,however,one needs more informationfrom observations.Different inflation models make spe-cific predictions for the shape of the power spectrum[8](see also Appendix B)as well as for other statistical prop-erties[17]of primordial perturbations.Therefore,one ofthe most promising ways to constrain the physics of in-flation,hence the nature of early dark energy in the uni-verse,is to determine the shape of the primordial power spectrum accurately from observations.For example,theCMB data from the Wilkinson Microwave Anisotropy Probe[1],combined with the large-scale structure datafrom the Two-Degree Field Galaxy Redshift Survey[18], have already ruled out one of the popular inflationarymodels driven by a self-interacting massless scalarfield [19].Understanding the physics of inflation better willlikely provide an important implication for late-time dark energy.“Radiation”in the universe at around the matter-radiation equality mainly consists of photons and neu-trinos;however,neutrinos actually stop being radiationwhen their mean energy per particle roughly equals the temperature of the universe.The physics of neutrinoshas been revolutionized over the last decade by solar, atmospheric,reactor,and accelerator neutrino experi-ments having provided strong evidence forfinite neutrino masses via mixing between different neutrinoflavors,theso-called neutrino oscillations[20,21,22,23,24].These experiments are,however,only sensitive to mass squaredifferences between neutrino mass eigenstates,implying ∆m221≃7×10−5eV2and∆m232≃3×10−3eV2;thus, the most fundamental quantity of neutrinos,the abso-lute mass,has not been determined yet.Cosmologicalneutrinos that are the relic of the cosmic thermal his-tory have distinct influences on the structure formation.Their large energy density,comparable to the energy den-sity of photons before the matter-radiation equality,de-termines the expansion history of the universe.Even after the matter-radiation equality,neutrinos having be-come non-relativistic affect the structure formation by suppressing the growth of matter densityfluctuations at small spatial scales owing to their large velocity disper-sion[25,26,27,28,29,30](see Sec.II and Appendix A for more details).Therefore,the galaxy redshift surveys, combined with the CMB data,provide a powerful,albeit indirect,means to constraining the neutrino properties [31,32,33,34,35].This approach also complements the theoretical and direct experimental efforts for under-standing the neutrino physics.In fact,the cosmological constraints have placed the most stringent upper bound on the total neutrino mass,mν,tot<∼0.6eV(2σ)[36], stronger than the direct experiment limit<∼2eV[37].In addition,the result obtained from the Liquid Scintillator Neutrino Detector(LSND)experiment,which implies¯νµto¯νe oscillations with∆m2>∼0.2eV2[38]in an apparent contradiction with the other neutrino oscillation experi-ments mentioned above,potentially suggests the need for new physics:the cosmological observations will provide independent tests of this hypothesis.In this paper we shall study the capability of future galaxy surveys at high redshifts,combined with the CMB data,for constraining(1)the neutrino properties,more specifically the total neutrino mass,mν,tot,and the num-ber of non-relativistic neutrino species,N nrν,and(2)the shape of the primordial power spectrum that is parame-terized in terms of the spectral tilt,n s,and the running index,αs,motivated by inflationary predictions(see Ap-pendix B).For the former,we shall pay particular at-tention to our ability to simultaneously constrain mν,tot and N nrν,as they will provide important clues to resolv-ing the absolute mass scale as well as the neutrino mass hierarchy.The accuracy of determining the neutrino pa-rameters and the power spectrum shape parameters will be derived using the Fisher information matrix formal-ism,including marginalization over the other cosmologi-cal parameters as well as the galaxy bias.Our analysis differs from the previous work on the neutrino parameters in that we fully take into account the two-dimensional nature of the galaxy power spec-trum in the line-of-sight and transverse directions,while the previous work used only spherically averaged,one-dimensional power spectra.The geometrical distortion due to cosmology and the redshift space distortion due to the peculiar velocityfield will cause anisotropic features in the galaxy power spectrum.These features help to lift degeneracies between cosmological parameters,sub-stantially reducing the uncertainties in the parameter de-terminations.This is especially true when variations in parameters of interest cause modifications in the power spectrum shape,which is indeed the case for the neutrino parameters,tilt and running index.The usefulness of the two-dimensional power spectrum,especially for high-redshift galaxy surveys,has been carefully investigated in the context of the prospected constraints on late-time dark energy properties[39,40,41,42,43,44,45].We shall show the parameter forecasts for future wide-field galaxy surveys that are already being planned or seriously under consideration:the Fiber Multiple Object Spectrograph(FMOS)on Subaru telescope[46],its sig-nificantly expanded version,WFMOS[47],the Hobby–Ebery Telescope Dark Energy eXperiment(HETDEX) [48],and the Cosmic Inflation Probe(CIP)mission[49]. To model these surveys,we consider three hypothetical galaxy surveys which probe the universe over different ranges of redshift,(1)0.5≤z≤2,(2)2≤z≤4and (3)3.5≤z≤6.5.Wefix the sky coverage of each sur-vey atΩs=300deg2in order to make a fair compari-son between different survey designs.As we shall show below,high-redshift surveys are extremely powerful for precision cosmology because they allow us to probe the linear power spectrum down to smaller length scales than surveys at low redshifts,protecting the cosmological in-formation against systematics due to non-linear pertur-bations.We shall also study how the parameter uncertainties3 are affected by changes in the number density of sam-pled galaxies and the survey volume.The results wouldgive us a good guidance to defining the optimal surveydesign to achieve the desired accuracies in parameter de-terminations.The structure of this paper is as follows.In Sec.II,wereview the physical pictures as to how the non-relativistic(massive)neutrinos lead to scale-dependent modifica-tions in the growth of mass clustering relative to thepure CDM model.Sec.III defines the parameterization of the primordial power spectrum motivated by inflation-ary predictions.In Sec.IV we describe a methodology to model the galaxy power spectrum observable from aredshift survey that includes the two-dimensional nature in the line-of-sight and transverse directions.We thenpresent the Fisher information matrix formalism that is used to estimate the projected uncertainties in the cos-mological parameter determination from statistical errors on the galaxy power spectrum measurement for a givensurvey.After survey parameters are defined in Sec.V, we show the parameter forecasts in Sec.VI.Finally,wepresent conclusions and some discussions in Sec.VII.We review the basic properties of cosmological neutrinos inAppendix A,the basic predictions from inflationary mod-els for the shape of the primordial power spectrum in Ap-pendix B,and the relation between the primordial powerspectrum and the observed power spectrum of matter densityfluctuations in Appendix C.In the following,we assume an adiabatic,cold dark matter(CDM)dominated cosmological model withflatgeometry,which is supported by the WMAP results [1,36],and employ the the notation used in[51,52]:the present-day density of CDM,baryons,and non-relativistic neutrinos,in units of the critical density,aredenoted asΩc,Ωb,andΩν,respectively.The total mat-ter density is thenΩm=Ωc+Ωb+Ων,and fνis theratio of the massive neutrino density contribution toΩm: fν=Ων/Ωm.II.NEUTRINO EFFECT ON STRUCTUREFORMATIONThroughout this paper we assume the standard ther-mal history in the early universe:there are three neutrinospecies with temperature equal to(4/11)1/3of the photon temperature.We then assume that0≤N nrν≤3species are massive and could become non-relativistic by thepresent epoch,and those non-relativistic neutrinos have equal masses,mν.As we show in Appendix A,the den-sity parameter of the non-relativistic neutrinos is given byΩνh2=N nrνmν/(94.1eV),where we have assumed 2.725K for the CMB temperature today[50],and h is the Hubble parameter defined as H0=100h km s−1Mpc−1. The neutrino mass fraction is thus given byfν≡Ων0.658eV 0.141eVΩm h21+z 1/2.(2)Therefore,non-relativistic neutrinos with lighter masses suppress the growth of structure formation on larger spa-tial scales at a given redshift,and the free-streaming length becomes shorter at a lower redshift as neutrino velocity decreases with redshift.The most important property of the free-streaming scale is that it depends on the mass of each species,mν,rather than the total mass,N nrνmν;thus,measurements of k fs allow us to dis-tinguish different neutrino mass hierarchy models.For-tunately,k fs appears on the scales that are accessible by galaxy surveys:k fs=0.096−0.179Mpc−1at z=6−1 for mν=1eV.On the spatial scales larger than the free-streaming length,k<k fs,neutrinos can cluster and fall into gravi-tational potential well together with CDM and baryonic matter.In this case,perturbations in all matter com-ponents(CDM,baryon and neutrinos,denoted as‘cbν’hereafter)grow at the same rate given byD cbν(k,z)∝D(z)k≪k fs(z),(3) where D(z)is the usual linear growth factor(see,e.g., Eq.(4)in[53]).On the other hand,on the scales smaller than the free-streaming length,k>k fs,perturbations in non-relativistic neutrinos are absent due to the large ve-locity dispersion.In this case,the gravitational potential well is supported only by CDM and baryonic matter,and the growth of matter perturbations is slowed down rela-tive to that on the larger scales.As a result,the matter power spectrum for k>k fs is suppressed relative to that for k<k fs.In this limit the total matter perturbations grow at the slower rate given byD cbν(k,z)∝(1−fν)[D(z)]1−p k≫k fs(z),(4) where p≡(5−√4FIG.1:Suppression in the growth rate of total matter per-turbations(CDM,baryons and non-relativistic neutrinos), D cbν(a),due to neutrino free-streaming.(a=(1+z)−1is the scale factor.)Upper panel:D cbν(a)/Dν=0(a)for the neutrino mass fraction of fν=Ων/Ωm=0.05.The number of non-relativistic neutrino species is varied from N nrν=1,2,and3 (from thick to thin lines),respectively.The solid,dashed,and dotted lines represent k=0.01,0.1,and1h Mpc−1,respec-tively.Lower panel:D cbν(a)/Dν=0(a)for a smaller neutrino mass fraction,fν=0.01.Note that the total mass of non-relativistic neutrinos isfixed to mν,tot=N nrνmν=0.66eV and0.13eV in the upper and lower panels,respectively. Eq.(2).It is thus expected that a galaxy survey with different redshift slices can be used to efficiently extract the neutrino parameters,N nrνand mν.The upper and middle panels of Figure2illustrate how free-streaming of non-relativistic neutrinos suppresses the amplitude of linear matter power spectrum,P(k), at z=4.Note that we have normalized the primordial power spectrum such that all the power spectra match at k→0(see§III).To illuminate the dependence of P(k) on mν,wefix the total mass of non-relativistic neutri-nos,N nrνmν,by fν=0.05and0.01in the upper and middle panels,respectively,and vary the number of non-relativistic neutrino species as N nrν=1,2and3.The suppression of power is clearly seen as one goes from k<k fs(z)to k>k fs(z)(see Eq.[2]for the value of k fs).The way the power is suppressed may be easily un-derstood by the dependence of k fs(z)on mν;for example,linear power spectrum at z=4due to free-streaming of non-relativistic neutrinos.Wefix the total mass of non-relativistic neutrinos by fν=Ων/Ωm=0.05,and vary the number of non-relativistic neutrino species(which have equal masses, mν)as N nrν=1(solid),2(dashed),and3(dot-dashed). The mass of individual neutrino species therefore varies as mν=0.66,0.33,and0.22eV,respectively(see Eq.[1]).The shaded regions represent the1-σmeasurement errors on P(k) in each k-bin,expected from a galaxy redshift survey observ-ing galaxies at3.5≤z≤4.5(see Table I for definition of the survey).Note that the errors are for the spherically averaged power spectrum over the shell of k in each bin.Different N nrνcould be discriminated in this case.Middle panel:Same as in the upper panel,but for a smaller neutrino mass fraction, fν=0.01.While it is not possible to discriminate between different N nrν,the overall suppression on small scales is clearly seen.Lower panel:Dependences of the shape of P(k)on the other cosmological parameters.P(k)at smaller k is more suppressed for a smaller mν,as lighter neutrinos have longer free-streaming lengths.Onvery small scales,k≫k fs(z)(k>∼1and0.1Mpc−1for fν=0.05and0.01,respectively),however,the amountof suppression becomes nearly independent of k,and de-pends only on fν(or the total neutrino mass,N nrνmν) as∆P5 ≈8fν.(5)We therefore conclude that one can extract fνand N nrνseparately from the shape of P(k),if the suppression “pattern”in different regimes of k is accurately measured from observations.5Are observations good enough?The shaded boxes in the upper and middle panels in Figure2represent the1-σmeasurement errors on P(k)expected from one of the fiducial galaxy surveys outlined in Sec.V.Wefind thatP(k)will be measured with∼1%accuracy in each k bin. If other cosmological parameters were perfectly known,the total mass of non-relativistic neutrinos as small as mν,tot=N nrνmν>∼0.001eV would be detected at more than2-σ.This limit is much smaller than the lower mass limit implied from the neutrino oscillation exper-iments,0.06eV.This estimate is,of course,unrealistic because a combination of other cosmological parameters could mimic the N nrνor fνdependence of P(k).The lower panel in Figure2illustrates how other cosmolog-ical parameters change the shape of P(k).In the fol-lowing,we shall extensively study how well future high-redshift galaxy surveys,combined with the cosmic mi-crowave background data,can determine the mass of non-relativistic neutrinos and discriminate between different N nrν,fully taking into account degeneracies between cos-mological parameters.III.SHAPE OF PRIMORDIAL POWER SPECTRUM AND INFLATIONARY MODELSInflation generally predicts that the primordial power spectrum of curvature perturbations is nearly scale-invariant.Different inflationary models make specific predictions for deviations of the primordial spectrum from a scale-invariant spectrum,and the deviation is of-ten parameterized by the“tilt”,n s,and the“running index”,αs,of the primordial power spectrum.As the pri-mordial power spectrum is nearly scale-invariant,|n s−1| and|αs|are predicted to be much less than unity. This,however,does not mean that the observed mat-ter power spectrum is also nearly scale-invariant.In Ap-pendix C,we derive the power spectrum of total matter perturbations that is normalized by the primordial cur-vature perturbation(see Eq.[C6])k3P(k,z)5H20Ωm 2×D2cbν(k,z)T2(k) k2αs ln(k/k0),(6)where k0=0.05Mpc−1,δ2R=2.95×10−9A,and A is the normalization parameter given by the WMAP collaboration[1].We adopt A=0.871,which gives δR=5.07×10−5.(In the notation of[63,64]δR=δζ.) The linear transfer function,T(k),describes the evolu-tion of the matter power spectrum during radiation era and the interaction between photons and baryons be-fore the decoupling of photons.Note that T(k)depends only on non-inflationary parameters such asΩm h2and Ωb/Ωm,and is independent of n s andαs.Also,the effects of non-relativistic neutrinos are captured in D cbν(k,z); thus,T(k)is independent of time after the decoupling epoch.We use thefitting function found in[51,52]for T(k).Note that the transfer function and the growth rate are normalized such that T(k)→1and D cbν/a→1 as k→0during the matter era.In Appendix B we describe generic predictions on n s andαs from inflationary models.For example,inflation driven by a massive,self-interacting scalarfield predicts n s=0.94−0.96andαs=(0.8−1.2)×10−3for the num-ber of e-foldings of expansion factor before the end of inflation of50.This example shows that precision deter-mination of n s andαs allows us to discriminate between candidate inflationary models(see[8]for more details). IV.MODELING GALAXY POWER SPECTRUMA.Geometrical and Redshift-Space DistortionSuppose now that we have a redshift survey of galax-ies at some redshift.Galaxies are biased tracers of the underlying gravitationalfield,and the galaxy power spec-trum measures how clustering strength of galaxies varies as a function of3-dimensional wavenumbers,k(or the inverse of3-dimensional length scales).We do not measure the length scale directly in real space;rather,we measure(1)angular positions of galax-ies on the sky,and(2)radial positions of galaxies in redshift space.To convert(1)and(2)to positions in 3-dimensional space,however,one needs to assume a ref-erence cosmological model,which might be different from the true cosmology.An incorrect mapping of observed angular and redshift positions to3-dimensional positions produces a distortion in the measured power spectrum, known as the“geometrical distortion”[54,55,56].The geometrical distortion can be described as follows.The comoving size of an object at redshift z in radial,r ,and transverse,r⊥,directions are computed from the exten-sion in redshift,∆z,and the angular size,∆θ,respec-tively,asr =∆zH(z′),(8) where H(z)is the Hubble parameter given byH2(z)=H20 Ωm(1+z)3+ΩΛ .(9)6 HereΩm+ΩΛ=1,andΩΛ≡Λ/(3H20)is the present-daydensity parameter of a cosmological constant,Λ.A trickypart is that H(z)and D A(z)in Eq.(7)depend on cosmo-logical models.It is therefore necessary to assume somefiducial cosmological model to compute the conversionfactors.In the following,quantities in thefiducial cos-mological model are distinguished by the subscript‘fid’.Then,the length scales in Fourier space in radial,kfid ,and transverse,kfid⊥,directions are estimated from theinverse of rfid and rfid⊥.Thesefiducial wavenumbers arerelated to the true wavenumbers byk⊥=D A(z)fidH(z)fidkfid .(10)Therefore,any difference between thefiducial cosmolog-ical model and the true model would cause anisotropicdistortions in the estimated power spectrum in(kfid⊥,kfid )space.In addition,shifts in z due to peculiar velocities ofgalaxies distort the shape of the power spectrum alongthe line-of-sight direction,which is known as the“redshiftspace distortion”[57].From azimuthal symmetry aroundthe line-of-sight direction,which is valid when a distant-observer approximation holds,the linear power spectrumestimated in redshift space,P s(kfid⊥,kfid ),is modeled in[39]asP s(kfid⊥,kfid )=D A(z)2fid H(z)k2⊥+k22×b21P(k,z),(11)where k=(k2⊥+k2)1/2andβ(k,z)≡−1d ln(1+z),(12)is a function characterizing the linear redshift space distortion,and b1is a scale-independent,linear biasparameter.Note thatβ(k,z)depends on both red-shift and wavenumber via the linear growth rate.Inthe infall regime,k≪k fs(z),we have b1β(k,z)≈−d ln D(z)/d ln(1+z),while in the free-streaming regime, k≫k fs(z),we have b1β(k,z)≈−(1−p)d ln D(z)/d ln(1+ z),where p is defined below Eq.(4).One might think that the geometrical and redshift-space distortion effects are somewhat degenerate in the measured power spectrum.This would be true only if the power spectrum was a simple power law.For-tunately,characteristic,non-power-law features in P(k) such as the broad peak from the matter-radiation equal-ity,scale-dependent suppression of power due to baryons and non-relativistic neutrinos,the tilt and running of the primordial power spectrum,the baryonic acoustic os-cillations,etc.,help break degeneracies quite efficiently [39,40,41,42,43,44,47,55,56].ments on Baryonic OscillationsIn this paper,we employ the linear transfer function with baryonic oscillations smoothed out(but includes non-relativistic neutrinos)[51,52].As extensively in-vestigated in[39,44,47],the baryonic oscillations can be used as a standard ruler,thereby allowing one to precisely constrain H(z)and D A(z)separately through the geo-metrical distortion effects(especially for a high-redshift survey).Therefore,our ignoring the baryonic oscillations might underestimate the true capability of redshift sur-veys for constraining cosmological parameters.We have found that the constraints on n s andαs from galaxy surveys improve by a factor of2–3when baryonic oscillations are included.This is because the baryonic os-cillations basicallyfix the values ofΩm,Ωm h2andΩb h2, lifting parameter degeneracies betweenΩm h2,Ωb h2,n s, andαs.However,we suspect that this is a rather opti-mistic forecast,as we are assuming aflat universe dom-inated by a cosmological constant.This might be a too strong prior,and relaxing our assumptions about geom-etry of the universe or the properties of dark energy will likely result in different forecasts for n s andαs.In this paper we try to separate the issues of non-flat universe and/or equation of state of dark energy from the physics of neutrinos and inflation.We do not include the bary-onic oscillations in our analysis,in order to avoid too optimistic conclusions about the constraints on the neu-trino parameters,n s,andαs.Eventually,the full analysis including non-flat uni-verse,arbitrary dark energy equation of state and its time dependence,non-relativistic neutrinos,n s,andαs, using all the information we have at hand including the baryonic oscillations,will be necessary.We leave it for a future publication(Takada and Komatsu,in prepara-tion).C.Parameter Forecast:Fisher Matrix Analysis In order to investigate how well one can constrain the cosmological parameters for a given redshift survey de-sign,one needs to specify measurement uncertainties of the galaxy power spectrum.When non-linearity is weak, it is reasonable to assume that observed density perturba-tions obey Gaussian statistics.In this case,there are two sources of statistical errors on a power spectrum measure-ment:the sampling variance(due to the limited number of independent wavenumbers sampled from afinite sur-vey volume)and the shot noise(due to the imperfect sampling offluctuations by thefinite number of galax-ies).To be more specific,the statistical error is given in [58,59]by∆P s(k i)N k 1+1。
Mass Spectrum and the Nature of Neutrinos
a r X i v :h e p -p h /0010077v 1 9 O c t 2000Mass Spectrum and the Nature of Neutrinos.M.Czakon,J.Gluza,J.Studnik and M.Zra l ek Department of Field Theory and Particle Physics,Institute of Physics,University of Silesia,Uniwersytecka 4,PL-40-007Katowice,Poland Taking as input the best fit solar neutrino anomaly description,MSW LMA,and the tritium beta decay results we estimate the allowed range of neutrino masses independently of their nature.Adding the present bound on the effective neutrino mass coming from neutrinoless double beta decay,we narrow this range for Majorana neutrinos.We complete the discussion by considering future perspectives on determining the neutrino masses,when the oscillation data will be improved and the next experiments on (ββ)0νand 3H decay give new bounds or obtain concrete life-times or distortions in the energy distribution.We know much more about neutrino masses than yet a few years ago.The observed anoma-lies in atmospheric,solar and possibly the LSND neutrino experiments,which we believe are explained by neutrino oscillations,supplied with the tritium beta decay data give hints on neutrino masses independently of whether they are Dirac or Majorana particles.Additional constraints on Majorana neutrino masses come from the fact that no neutrinoless double beta decay has been observed to this day.In this work we present an up to date analysis and future perspectives of finding the neutrino mass spectrum without any constraints from theoretical models.We consider only the three neutrino case (i.e.without considering the LSND anomaly),and the latest best fit solar neutrino problem solution,the MSW LMA 1.The oscillation param-eters inferred from atmospheric and solar data are given in Table 1.The four neutrino case and other currently acceptable solutions of the solar anomaly are considered elsewhere 3.As there are definitely two scales of δm 2,δm 2atm ≫δm 2sol ,two possible neutrino mass spectra must be con-sidered.The first,known as normal mass hierarchy (A 3)where δm 2sol =δm 221≪δm 232≈δm 2atm and the second,inverse mass hierarchy spectrum (A inv 3)with δm 2sol =δm 221≪δm 2atm ≈−δm 231.Both schemes are not distinguishable by present experiments.There is hope that future neutrino factories will do that 4.Two elements of the first row of the mixing matrix |U e 1|and |U e 2|can be expressed by theTable1:The allowed range(95%of CL)and the bestfit values of sin22θandδm2for the atmospheric neutrino oscillation and the bestfit MSW LMA solution of the solar neutrino problem.Allowed range Bestfitδm2[eV2]sin22θsolar(1.5−6)×10−30.84−1Solar neutrinos(MSW LMA)18×10−50.66third element|U e3|and the sin22θsolar|U e1|2=(1−|U e3|2)11−sin22θsolar),(1)and|U e2|2=(1−|U e3|2)11−sin22θsolar).(2)The value of the third element|U e3|is notfixed yet and only different bounds exist for it.We will take the bound directly inferred from the CHOOZ and SK experiments5|U e3|2<0.04(with95%of CL).(3) Since in both schemes there is(mν)2max=(mν)2min+δm2solar+δm2atm,(4) the oscillation experiments alone give(mν)max≥δm2solar+δm2atm.(6) Translating the above into numbers(again at95%CL)2we end up with(mν)max≥0.04eV,|m i−m j|<0.08eV.(7) The next important data comes from the tritium beta decay experiments.The following bound has been lately obtained63i=1|U ei|2m2i 1/2≡mβ<κ′=2.2eV(8) this obviously leads only to the double inequality(mν)min≤mβ≤(mν)max.(9) Therefore0≤(mν)min≤2.2eV.(10) (mν)max remains unfortunately unlimited from above.Supplying the tritium decay with oscil-lations wefind that7m2β=(mν)2min+Ωscheme,(11) and(mν)2max=m2β+Λscheme,(12)whereΩandΛare scheme dependent.For example,in the A3schemeΩ(A3)=(1−|U e1|2)δm2solar+|U e3|2δm2atm,(13) andΛ(A3)=|U e1|2δm2solar+(1−|U e3|2)δm2atm.(14) This provides limits for both(mν)min and(mν)max0≤(mν)min≤+δm2atm≤(mν)max≤δm2solarFigure2:of(mν)min in the case of the A3shaded and hashed regions represent the are taken into account.The present and band is an example of a0.05)eV.The observed10(19) There are future plans to go down to| mν |≃0.02eV or even to| mν |≃0.006eV11.Do we have a chance offinding the Majorana mass spectrum if a value of| mν |is found within such a small range12?This answer as we will see is not very promising.We shall neglect the difficulties connected with the determination of| mν |from the half life time of germanium13.As the phases of U ei remain unknown,we are not in position to predict the value of| mν |.However, the lower| mν |min and upper| mν |max ranges as function of(mν)min can be inferred14.They are shown in Fig.2for the A3scheme and for the MSW LMA solar neutrino problem solution. The shaded and hashed regions give the uncertainties connected with the allowed ranges of the input parameters(sin22θsolar,δm2atm(Table1)and|U e3|2(Eq.3).Future better knowledge of these parameters will reduce the uncertainty regions shown in Fig.2,but the min-max range caused by the unknown CP phases will remain.The present experimental bound on| mν |(Eq.19)gives the following limit on the possible (mν)min for Majorana neutrinos(mν)min<0.86eV.(20) This bound strongly depends on the unknown oscillation parameters,most notably on sin22θsolar. In Fig.3we plot this dependence for two different sets ofδm2atm and|U e3|2values.The limit given in Eq.20is valid for sin22θsolar=0.92,|U e3|2=0.04andδm2atm=6×10−3eV2.If in future,the(ββ)0νexperiments observe no decay,and a new bound is only found,the next better limit that can be derived from Fig.3(with the present oscillation results),is(mν)min<0.092eV GENIUS I,(21) and(mν)min<0.037eV GENIUS II.(22)Figure3:ofδm2atm and|U e3|2. In the we can try to predict the value of| mν | and on the of| mν |values is given of values allowed by oscillations(mν)min(ββ)0νmin ≤(mν)min≤(mν)max(ββ)0νmin.(23)With the present day uncertainties on the oscillation parameters,the range of possible values determined by Eq.23is not satisfactorily small.For example,with| mν |≃0.05eV(mν)min∈(0.03−0.6)eV.(24)For smaller values of| mν |we can only say that(mν)min<0.2eV.A better knowledge of the oscillation parameters changes the situation slightly.For example,if the oscillation parameters are known with negligible error bars for| mν |≃0.05eV,then the range Eq.24changes to(mν)min∈(0.04−0.1)eV.(25)The ignorance of the CP breaking phases in the mixing matrix is fully responsible for this smearing.The bounds on the effective neutrino mass| mν |in the inverse hierarchy mass scheme A inv3 and the MSW LMA solution of the solar neutrino problem are depicted in Fig.4.We see that the present bound on| mν |(Eq.19),gives a similar limit on the possible range of(mν)min of Majorana neutrino masses(mν)min<0.86eV.(26) Thefirst stage of GENIUS can yield(mν)min<0.077eV,(27)while the second would exclude the A inv3scheme.In conclusion,the present data allow for the following statementsFigure4:of(mν)min in the case ofthe A inv3and hashed regions represent the taken into account.The•we•the but the latter depends strongly on the oscillation parameters.•the oscillation and tritium beta decay experiments are able to determine the spectrum ofneutrino masses for values of mβwhich differ in the A3(mβ≥0.04eV)and the A inv3 (mβ≥0.2eV)schemes.•the oscillation and(ββ)0νexperiments are able tofind the range of possible(mν)min values.However,this range is not small even with oscillation parameters of negligible error bars. AcknowledgmentsOne of us(MZ)would like to thank all the organizers and especially Prof.Tran Tanh Van for invitation and a very good atmosphere at the perfectly prepared conference.This work was supported by the Polish Committee for Scientific Research under Grant No.2P03B05418and 2P03B04919.References1.N.Hata,ngacker,Phys.Rev.D56,6107(1997);J.N.Bahcall,P.Krastev,A.Yu.Smirnov,Phys.Rev.D58,096016(1998);V.Banger,K.Whisnant,Phys.Rev.D59,093007(1999);M.C.Gonzalez-Garcia,P.C.de Holanda, C.Pena-Garay,J.W.J.Valle,hep-ph/9906469;A.de Gouvea,A.Friedland,A.Murayama,hep-ph/0002064;M.G.Gonzalez-Garcia,C.Pena-Garay,hep-ph/0002186;G.L.Fogli,E.Lisi,D.Montanino andA.Palazzo,hep-ph/9912231;M.C.Gonzalez-Garcia,C.Pena-Garay,hep-ph/00099041.2.Y.Fukuda et al.,Phys.Lett.B433,9(1998);Phys.Lett.B436,33(1998);Phys.Rev.Lett.81,1562(1998);Phys.Rev.Lett.82,2644(1999);W.A.Mann,hep-ex/9912007;A.De Rujula,M.B.Gavela,P.Hernandez,hep-ph/0001124;N.Fornengo,M.C.Gonzalez-Garcia,J.W.F.Valle,hep-ph/0002147;S.Fukuda et al.(Superkamiokande Coll.),hep-ex/00090001;G.L.Fogli,E.Lisi,A.Marrone,D.Nontanino,hep-ph/0009269.3.M.Czakon,J.Studnik,M.Zra l ek,hep-ph/0006339;M.Czakon,J.Gluza,M.Zra l ek,hep-ph/0003161.4.SuperKamiokande homepage,http://www-sk.icrr.u-tokyo.ac.jp/doc/sk;SNO homepage,http://snodaq.phy.queensu.ca/SNO/sno.html;BOREX-INO homepage,http://almime.mi.infn.it;HERON homepage, /research/heron;HELLAZ homepage, /hellaz;K.Nishikawa,Nucl.Phys.(Proc.Supp.)77,198(1999);B.C.Barish,Nucl.Phys.(Proc.Supp.)70,227(1999);A.Cervera et al.,hep-ph/0002108;V.Barger,S.Geer,R.Raja,K.Whisnant,hep-ph/0007181;S.Geer,hep-ph/0008155;R.Burton,hep-ph/008222.5.G.L.Fogli,E.Lisi,A.Marrone,G.Scioscia,Phys.Rev.D59,033001(1999);CHOOZcoll.,Phys.Lett.B466,415.(1999)6.C.Weinheimer et al.,Phys.Lett.B460,219(1999);V.M.Lobashev et al.,Phys.Lett.B460,227(1999);Mainz Collaboration,Neutrino2000,Canada.pare V.Barger and K.Whisnant,Phys.Lett.B456,54.,(1999)S.Goswami,D.Ma-jumdar and A.Raychaudhuri,hep-ph/9909453.8.K.Zuber,hep-ph/9911362.9.see e.g.M.Doi,T.Kotani,E.Takasugi,Prog.Theor.Phys.(supplement)83,1.(1985)10.L.Baudis et al.,Phys.Rev.Lett.83,41.(1999)11.H.V.Klapdor-Kleigrothaus,hep-ex/9907040;L.Baudis et al.,GENIUS(Collaboration),hep-ph/9910205.12.S.T.Petcov,A.Y.Smirnov,Phys.Lett.B322,109(1994);S.M.Bilenky,A.Bottino,C.Giunti,C.Kim,Phys.Rev.D54,1881(1996);S.M.Bilenky,C.Giunti,C.Kim,S.Petcov,Phys.Rev.D54,4444(1996);J.Hellmig,H.V.Klapdor-Kleingrothaus,Z.Phys.A359,351(1997);H.V.Klapdor-Kleingrothaus,J.Hellmig,M.Hirsch,J.Phys.G24, 483(1998);H.Minataka,O.Yasuda,Phys.Rev.D56,1692,(1997)Nucl.Phys.B523, 597(1998);S.M.Bilenky,C.Giunti,C.W.Kim,M.Monteno,Phys.Rev.D54,6981, (1998)hep-ph/9904328;F.Vissani,hep-ph/9708482,hep-ph/9904349,hep-ph/9906525;T.Fukuyama,K.Matsuda,H.Nishiura,hep-ph/9708397;Mod.Phys.Lett.A13,2279 (1998);S.M.Bilenky,C.Giunti,W.Grimus,hep-ph/9809368;S.Bilenky,C.Giunti,hep-ph/9904328;S.Bilenky,C.Giunti,W.Grimus,B.Kayser,S.T.Petcov,hep-ph/9907234, Phys.Lett.B465,193(1999);H.Georgi,S.L.Glashow,hep-ph/9808293;V.Barger,K.Whisnant,Phys.Lett.B456,194(1999);J.Ellis,S.Lola,hep-ph/9904279,Phys.Lett.B458,310(1999);G.C.Branco,M.N.Rebelo,J.I.Silva-Marcos,Phys.Rev.Lett.82, 683(1999);C.Giunti,Phys.Rev.D61,036002(2000);R.Adhikari,G.Rajasekaran, hep-ph/9812361;Phys.Rev.D61,031301(2000);K.Matsuda,N.Takeda,T.Fukuyama,H.Nishiura,hep-ph/0003055;M.Czakon,M.Zralek and J.Gluza,Acta Phys.Polon.B30,3121(1999)M.Czakon,J.Gluza and M.Zralek,Phys.Lett.B465,211.(1999)13.H.V.Klapdor-Kleingrothaus,H.Paes,A.Yu.Smirnov,hep-ph/0003219;14.M.Czakon,J.Studnik,M.Zralek and J.Gluza,Acta Phys.Polon.B31,1365(2000);。
深思审势绽新光的英语作文
Contemplation and strategic assessment are crucial for unveiling new opportunities and perspectives.In the realm of personal growth,professional development,and societal progress,a deep and thoughtful approach to evaluating situations can lead to innovative solutions and breakthroughs.In personal growth,taking the time to reflect on ones experiences,emotions,and aspirations can lead to selfdiscovery and a better understanding of ones strengths and weaknesses.This introspection allows individuals to set more meaningful goals and develop strategies to achieve them effectively.For instance,a student who carefully assesses their study habits may identify areas for improvement,leading to better academic performance.In the professional sphere,strategic assessment is vital for organizations to stay competitive and innovative.By analyzing market trends,consumer behavior,and technological advancements,companies can adapt their business models and offerings to meet evolving needs and preferences.For example,a tech company that closely monitors emerging technologies in artificial intelligence can integrate these advancements into their products,thus staying ahead of the competition.Societal progress also benefits from deep thought and strategic evaluation.Policymakers and community leaders who carefully consider the implications of their decisions can create more inclusive,sustainable,and equitable societies.By examining historical patterns,current challenges,and potential future scenarios,they can develop policies that address the root causes of issues and promote longterm wellbeing for all citizens.Moreover,the process of contemplation and strategic assessment fosters creativity and innovation.When individuals or groups take the time to explore different perspectives and possibilities,they are more likely to come up with novel ideas and approaches.This creative thinking can lead to groundbreaking discoveries in science,technology,and the arts,enriching our collective knowledge and culture.In conclusion,the practice of deep thought and strategic assessment is essential for personal growth,professional success,and societal advancement.By taking the time to carefully evaluate situations and consider various outcomes,we can unlock new insights, opportunities,and potential for a brighter future.。
学术英语综合Unit1 译文
第一单元经济学Text A感谢“看不见的手"杰夫·雅各比英国清教徒建立普利茅斯殖民地后经历了他们的第一次大丰收,从那以后,感恩全能的上帝就一直是感恩节的主题……今天,全美数百万的家庭,都在感激上帝所赠与的众多礼物--桌上的盛宴、所爱之人的陪伴、过去一年的健康和好运、战争时期国内的和平、作为一个美国人或成为一个美国人所拥有的不可估量的优越感.但我们中的大多数人不太可能感恩当地超市在本周出售了很多降价火鸡.即使是虔诚的信徒们,也不太可能感恩那些让他们所爱之人得以回家共度佳节的航班时刻表,或者是感恩当地的影院在周末及时上映了《怒海争锋:极地远征》,又或者是感恩报纸的食物版块刊登了美味的蔓越莓苹果派的食谱。
或多或少我们都会觉得这些事情是理所当然的。
百货商店会在感恩节前储备火鸡,或者好莱坞在长假期时及时上映大片这些都不需要用奇迹来解释.这一切都是自然而言的。
可上帝在其中扮演了什么角色呢?然而在你因无数陌生人奉献了技能和劳动而得以度过的感恩节周末里,难道就没有什么事让你感到奇妙—-甚至几乎无法解释吗?例如,把火鸡端到餐桌上,需要成千上万人的努力——当然,有养鸟的禽类农场主,也有给它们提供营养的饲料批发商和把它们带到农场的卡车司机,更不用说还有设计孵化场的建筑师,建造它的工人,以及维持它运行的技术人员。
这只火鸡不得不经历宰杀、拔毛、检查、运输、卸载、包装、定价和展示。
完成这些任务的人又依次由完成其他任务的人配合支持-—从提炼货车燃料汽油到制造包装肉类的塑料。
这些遍布各行各业的男男女女在过去的几个月里精准设计和安排时间,以便当你去买新鲜的感恩节火鸡时,就会买到一只或者多只——甚至还有几十只在等着你选购。
实现这一过程所需的合作水平之高令人难以置信.但更令人难以置信的是:这整个过程都没有一个人去统筹协调。
并没有什么火鸡独裁者坐在某个指挥所,商议总体规划并发号施令。
没有人会监督那些人,迫使他们为你的利益而合作。
学术英语综合Unit4译文
学术英语综合Unit4译文第四单元环境Text A”绿色环保风”吹了五十年,下一步何去何从?现代社会的环保主义已经推行了近五十载。
在那期间,人们的环保意识不断增长,对所面临的挑战也有了更多认识。
同时也在不少方面已取得了很多实质性的进展,例如,减少污染,建立保护区等等。
然而,我们距离目标还有很长的路要走,那就是如何平衡人类的需求和地球的可持续资源之间的关系。
人类与自然关系的失衡已经导致了不少后果——地球气候不断变化,动植物大规模灭绝的趋势不断加剧,重要资源例如野生鱼类的数量,淡水和土壤资源不断消耗殆尽。
不仅如此,环境的变化给人类所带来的压力并非是静态的,随着地球人口的持续膨胀,各国急于追求经济的发展,随着环境变化得愈演愈烈,人类肩上的担子也愈发沉重。
毫无疑问,要想避免由此导致的最严重的后果,与其满足于迄今为止所获得的成就,不如未雨绸缪,取得更多积极的进展。
但是问题是,人类应该朝着哪个方向努力呢?下一个五十年应该将行动重点放在哪些方面呢?我突然意识到,当前所面临的最主要的挑战不只是掌握有益的信息,发展更先进的科技或者提出更健全的政策。
这几点固然重要,但是这些东西已经存在。
人类已经知晓如何生产清洁能源,如何保护资源,维护生物多样性;我们还知道如何控制污染,如果更用心,还可以找到防止破坏生态系统的方法。
然而,仅仅拥有这些知识是远远不够的。
如果我们想要深入探讨这个问题的关键,就要改变思路。
我们必须将重点从“做正确的事情”转变到“谈论如何规避风险与增强适应力”上来。
如果将保护地球的自然系统视作某种道德选择的话,就完全误解了人们所面临的危机。
当前的挑战是关乎于人类社会的未来,而不是交给某些博爱慷慨的善心人士,来做一些随意的慈善。
并不是要保护自然免受人类的侵害,而是为了人类而保护自然——能让这样的观念深入人心才是改变思路的核心内容。
要知道,我们正承受着自身所作所为带来的一系列后果。
全世界都需要知道,一个健康的自然世界并不是某些偶然善举带来的,而是一系列重要物质资产的集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
especially if there is CP violation [23]. Another possible solution is to have CP T violation in a four-neutrino model [24]. Neutrino decay has also been proposed [25] as a means of explaining the LSND data. Mass-varying neutrinos [26] (MaVaNs) have been discussed as a means for generating dark energy [27], explaining the LSND results [28] and have been shown to improve the neutrino oscillation fit to solar neutrino data [29]. It is a relevant fact that for all positive oscillation signals (solar, atmospheric, K2K, KamLAND, and LSND) the detected neutrino travels through matter for some or all of its path length. In all but solar neutrino oscillations the path lengths are nearly all through Earth matter, while in the solar case the important matter effects occur in the sun. Therefore if MaVaNs exist, it is possible (although not required) that the masses and mixing angles indicated by the data could differ substantially from their vacuum values. There are three positive oscillation signals in which the neutrino path is primarily in the Earth’s crust: KamLAND, K2K and LSND. The latest data from K2K [13] now yield an allowed region for the mass-squared difference which is roughly similar to that obtained for the oscillations of atmospheric neutrinos and is inconsistent with the mass scales indicated by KamLAND and LSND neutrino oscillations. The usual argument used to exclude three-neutrino models from solar, atmospheric and LSND data [15] is that there are only two independent mass-squared differences for three neutrinos. This argument applies in the MaVaN scenario to the combination of KamLAND, K2K and LSND experiments, all of which were conducted in Earth matter with similar density (and which therefore should be subject to similar mixings and mass scales). Thus a three-MaVaN model is insufficient to explain all of the data. In this paper we explore the possibility that oscillations of three active and one sterile MaVaN can explain all neutrino data including LSND and MiniBooNE. Since neutrinos in the KamLAND,
positive signals for underground reactor experiments and for νµ → νe oscillations in long-baseline
1
1
Introduction
The LSND experiment has found evidence for ν ¯µ → ν ¯e oscillations at the 3.3σ level [1, 2], with
Abstract We study the proposal that mass-varying neutrinos could provide an explanation for the LSND signal for ν ¯µ → ν ¯e oscillations. We first point out that all positive oscillation signals occur in matter and that three active mass-varying neutrinos are insufficient to describe all existing neutrino data including LSND. We then examine the possibility that a model with four mass-varying neutrinos (three active and one sterile) can explain the LSND effect and remain consistent with all other neutrino data. We find that such models with a 3 + 1 mass structure in the neutrino sector may explain the LSND data and a null MiniBooNE result for 2 0.10 < ∼ 0.30. Predictions of the model include a null result at Double-CHOOZ, but ∼ sin 2θx < experiments.
1
It has been suggested [21] that certain approximations in some of these analyses have ignored small terms that
may allow a better fit to the data, but a full study has not yet been made.
Confronting mass-varying neutrinos with MiniBooNE
V. Barger1 , D. Marfatia2 and K. Whisnant3
1 2
Department of Physics, University of Wisconsin, Madison, WI 53706
2
K2K and LSND experiments all pass primarily through Earth matter of approximately the same density (Earth crust), they should be consistent with the same set of mixing angles and masssquared differences. If a set of oscillation parameters cannot be found that is consistent with these three experiments, then a four-MaVaN model is not possible. If such a set can be found, consistency with the solar, atmospheric and vacuum neutrino data must also be realized for the model to be viable. We study only 3 + 1 models, in which there is one mass eigenstate well-separated from the other three, since the constraints on 2 + 2 models are much stronger [19, 30]. For simplicity we examine a minimal 3 + 1 MaVaN scenario in which substantial MaVaN effects occur only for the ν3 and ν4 states and there is no vacuum mixing between active and sterile neutrinos, so that MaVaN effects are solely responsible for active-sterile mixing. We study the feasibility of such a model in describing current data. The MiniBooNE experiment [31] is now consequences of this 3 + 1 MaVaN model for both positive and negative MiniBooNE results. We taking data that will test the LSND oscillation parameters in the νµ → νe channel; we examine the