等差数列及其性质典型例题及练习(学生)
小学等差数列练习题及答案

小学等差数列练习题及答案在小学数学中,等差数列是一个非常重要的概念。
等差数列是指数列中每个相邻元素之间的差值相等的数列。
在小学阶段,学生需要通过练习来巩固和拓展对等差数列的理解。
本文将为您提供几个小学等差数列的练习题及答案,帮助学生进一步巩固对等差数列的掌握。
练习题一:1. 下列数列是否是等差数列?如果是,请写出公差;如果不是,请说明理由。
a) 2, 5, 8, 11, 14b) 12, 8, 4, 0, -4c) 6, 12, 18, 24, 302. 给定等差数列的前两项和公差,请写出这个等差数列的通项公式。
a) 前两项是3和7,公差是2b) 前两项是10和20,公差是-5c) 前两项是-1和4,公差是3练习题二:1. 下列数列中缺失的数字是多少?a) 3, 5, __, 9, 11b) __, 14, 17, 20, 23c) 8, 10, __, 14, 162. 找出等差数列中的规律,填写下个缺失的数字。
a) 2, __, __, 8, 11, 12b) 1, 4, __, 10, __, __c) __, 7, 9, __, __, 16练习题三:1. 求下列等差数列的前n项和。
a) 2, 4, 6, 8, 10, ...,n = 5b) 1, 3, 5, 7, 9, ...,n = 7c) 4, 8, 12, 16, 20, ...,n = 62. 求下列等差数列的前n项和。
a) 3, 6, 9, 12, ...,n = 4b) 2, 5, 8, 11, ...,n = 6c) -1, -4, -7, -10, ...,n = 8答案解析:练习题一:1. a) 是等差数列,公差为3b) 是等差数列,公差为-4c) 是等差数列,公差为62. a) 通项公式为An = 3 + (n-1) * 2b) 通项公式为An = 10 + (n-1) * (-5)c) 通项公式为An = -1 + (n-1) * 3练习题二:1. a) 缺失的数字为7b) 缺失的数字为11c) 缺失的数字为122. a) 缺失的数字为5, 7b) 缺失的数字为7, 13, 16c) 缺失的数字为5, 11练习题三:1. a) 前n项和为Sn = n * (2 + An) / 2 = 5 * (2 + 2*4) / 2 = 30b) 前n项和为Sn = n * (2 + An) / 2 = 7 * (2 + 2*2) / 2 = 28c) 前n项和为Sn = n * (2 + An) / 2 = 6 * (4 + 2*5) / 2 = 662. a) 前n项和为Sn = n * (2 + An) / 2 = 4 * (2 + 3*4) / 2 = 42b) 前n项和为Sn = n * (2 + An) / 2 = 6 * (2 + 5*6) / 2 = 87c) 前n项和为Sn = n * (2 + An) / 2 = 8 * (-1 + 3*-1) / 2 = -36通过以上练习题及答案解析,学生可以进一步巩固和拓展对小学等差数列的理解。
等差数列题目100道

等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
等差数列的性质同步练习题(含答案)

等差数列的性质同步练习题二班级 姓名( )1.已知等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9等于 A .30 B .27 C .24 D .21 ( )2.已知在等差数列{a n }中,a 1<0,S 25=S 45,若S n 最小,则n 为 A .25 B .35 C .36 D .45( )3.设{a n }是等差数列,公差为d ,S n 是其前n 项和,且S 5<S 6, S 6=S 7>S 8.下列结论错误的是 A .d <0 B .a 7=0 C .S 9>S 5D .S 6和S 7为S n 最大值 ( )4.在等差数列{a n }中,已知a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于 A .-20B .-2021 C .-2121 D .-22( )5.已知数列{}n a 的通项公式350n a n =-,则其前n 项和n S 的最小值是 A .-784 B .-392 C .-389 D .-368 ( )6.公差不为0的等差数列{}n a 中,236,,a a a 依次成等比数列,则公比等于 A .12. B .13. C .2. D .3. ( ) 7.等差数列{}n a 中,共有21n +项,其中13218n a a a ++++=,2427n a a a +++=,则n 的值是A .3.B . 5.C . 7.D .9( )8.数列{}n a 的前n 项和是n S ,如果*32 ()n n S a n N =+∈,则这个数列一定是A .等比数列.B .等差数列.C .除去第一项后是等比数列.D .除去第一项后是等差数列. ( )9.设{a n }是公差为–2的等差数列,如果1479750a a a a +++=.那么36999a a a a +++=A .–182B .–78C .–148D .–82( )10.已知函数 22()()()n n f n n n ⎧⎪=⎨-⎪⎩当为奇数时当为偶数时 且 )1()(++=n f n f a n , 则=+⋯+++100321a a a aA .100 B.-100C.2100D.11012-( )11.数列{}n a 满足211=++n n a a (N n ∈且1≥n ),12=a ,n s 是{}n a 的前n 次和,则21S 为 A 、29 B 、211C 、6D 、10 ( )12.一个正整数数表如下(表中下一行中的数的个数是上一行中数的个数的2倍): 1 2 3 4 5 6 7…………… 则第8行中的第5个数是A 、68B 、132C 、133D 、260( ) 13.等差数列}{n a 的公差,0<d 且21121a a =,则数列}{n a 的前n 项和n S 取得最大值时的项数n 是( ) A .5B .6C .5或6D .6或714.等差数列{}n a 中,35710133()2()24a a a a a ++++=,则此数列前13项和是_____26_____.15.已知等差数列{a n }的公差d =21,且前100项和S 100 = 145,那么a 1 + a 3 + a 5 +…+a 99 = 60 . 16.等差数列{a n }中,若a 3+a 5=a 7-a 3=24,则a 2=___0___. 17.一个等差数列的前12项的和为354,前12项中,偶数项和与奇数项和之比为32∶27,则公差d 等于__5 _. 18.设等差数列{a n }共有3n 项,它的前2n 项和为100,后2n 项和是200,则该数列的中间n 项和等于 75 .19.已知f (x +1)=x 2-4,等差数列{a n }中,a 1=f (x -1), a 2=-23,a 3=f (x ).(1)求x 值;(2)求a 2+a 5+a 8+…+a 26的值. 【解】 (1)∵f (x -1)=(x -1-1)2-4=(x -2)2-4 ∴f (x )=(x -1)2-4,∴a 1=(x -2)2-4,a 3=(x -1)2-4 又a 1+a 3=2a 2,解得x =0或x =3.(2)∵a 1、a 2、a 3分别为0、-23、-3或-3、-23、0 ∴a n =-23(n -1)或a n =23(n -3)①当a n =-23(n -1)时,a 2+a 5+…+a 26=29(a 2+a 26)=3512-②当a n =23(n -3)时,a 2+a 5+…+a 26=29(a 2+a 26)=2297.20.已知函数f (x)=-x 3+ax 在(0,1)上是增函数.(1) 求实数a 的取值集合A ;(2) 当a 取A 中最小值时,定义数列{a n }满足:2a n +1=f (a n ),且a 1=b ∈(0,1)(b 为常数),试比较a n +1与a n的大小; (3) 在(2)的条件下,问是否存在正实数c .使0<a n +c a n -c<2对一切n ∈N *恒成立?(1)f'(x)=3x 2+a >0,对x ∈(0,1)恒成立,求出a ≥3.………………4分 (2)当a =3时,由题意:a n +1=-12a 3n +32a n ,且a 1=b ∈(0,1)以下用数学归纳法证明:a n ∈(0,1),对n ∈N *恒成立.①当n =1时,a 1=b ∈(0,1)成立;………………………………………………6分②假设n =k 时,a k ∈(0,1)成立,那么当n =k +1时, a k +1=12a k 3+32a k ,由①知g(x)=12(-x 3+3x)在(0,1)上单调递增,∴g(0)<g(a k )<g(1) 即0<a k +1<1, 由①②知对一切n ∈N *都有a n ∈(0,1) 而a n +1-a n =-12a n 3+32a n -a n =12a n (1-a n 2)>0 ∴a n +1>a n …………………………………10分(3)存在正实数c ,使0<a n +c a n -c <2恒成立,令y =x +c x -c =1+2cx -c ,在(c ,+∞)上是减数,∴a n +c a n -c 随着a n 增大,而小, 又{a n }为递增数列,所以要使0<a n +ca n -c<2恒成立, 只须⎩⎪⎨⎪⎧a 1-c >0 a 1+c a 1-c<2 ∴0<c <a 13,即0<c <b 3 ……… 14分21.已知数列{a n }中,a 1>0, 且a n +1=23na +, (Ⅰ)试求a 1的值,使得数列{a n }是一个常数数列; (Ⅱ)试求a 1的取值范围,使得a n +1>a n 对任何自然数n 都成立;(Ⅲ)若a 1 = 2,设b n = | a n +1-a n | (n = 1,2,3,…),并以S n 表示数列{b n }的前n 项的和,求证:S n <12. 【思路分析】:解:(Ⅰ)欲使数列{a n }是一个常数数列,则a n +1=23na += a n ……………………2’ 又依a 1>0,可得a n >0并解出:a n =23,即a 1 = a n =23……………………4’ (Ⅱ)研究a n +1-a n =23n a +-231-+n a =⎪⎪⎭⎫ ⎝⎛+++---2323211n n n n a a a a (n ≥2) 注意到⎪⎪⎭⎫ ⎝⎛+++-232321n n a a >0因此,可以得出:a n +1-a n ,a n -a n -1,a n -1-a n -2,…,a 2-a 1有相同的符号……………7’ 要使a n +1>a n 对任意自然数都成立,只须a 2-a 1>0即可.由1123a a -+>0,解得:0<a 1<23………………9’ (Ⅲ)用与(Ⅱ)中相同的方法,可得 当a 1>23时,a n +1<a n 对任何自然数n 都成立. 因此当a 1=2时,a n +1-a n <0 ……………………………………………10’∴ S n = b 1+b 2+…b n =|a 2-a 1| + |a 3-a 2| +…+ |a n +1-a n |=a 1-a 2+a 2-a 3+…+a n -a n +1 =a 1-a n +1=2-a n +1 ………………………………………………………13’又:a n +2=231++n a < a n +1,可解得a n +1>23, 故S n <2-23=21………………………………………14’。
等差数列的性质(完整版,配例题)

等差数列的性质等差数列通项公式:()d n a a n 11-+= 等差数列前n 项和公式:()()d n n na a a n S n n 21211-+=+=等差数列的性质:(1)等差中项:如果c b a ,,成等差数列,则称b 是a 与c 的等差中项。
即:c b a ,,成等差数列22ca b b c a +=⇔=+⇔ (2)等差数列{}n a 中,当n 为奇数时,21121+=-+=-n a d n a S S 偶奇(中间项); 21+⋅=n n a n S (项数与中间项的积);11-+=n n S S 偶奇; 当n 为偶数时,d nS S 2=-奇偶; 2122++⋅=nn n a a n S ;122+=nna a S S 偶奇。
【例1】在等差数列{}n a 中, ① 已知154533,153a a ==,求30a ;总结:已知(),且同奇偶+∈N n m a a n m ,,,可求2n m a +。
② 已知16,1086==a a ,求13S ;总结:已知()+∈N n m a a n m ,,,可求1-+n m S 。
③ 已知163a =,求31S ;总结:已知()+∈N n a n ,可求12-n S ()()n n a n S 1212-=-。
④ (2007湖北理)已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且3457++=n n B A n n ,则使得n n b a为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .5【练习1】等差数列{}n a 的前12项和为354,前12项中奇数项与偶数项的和之比为27:32,求公差d ;【练习2】在两个等差数列{}n a 和{}n b 满足327321321++=++++++++n n b b b b a a a a n n ,求55b a 。
(3)等差数列{}n a 中,()()+∈-=-N m n d m n a a m n ,;(4)如果c b a ,,成等差数列,则k mc k mb k ma +++,,也成等差数列()为常数k m ,; (5)等差数列{}n a 中,若q p n m +=+,则q p n m a a a a +=+;(6)等差数列{}n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,但剩下的项按照原来的顺序排列,构成的新数列不一定是等差数列。
(完整版)等差数列练习题有答案

数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。
11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。
{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。
n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。
1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。
n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。
n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。
高一等差数列及其前n项和知识点+例题+练习 含答案

1.等差数列的定义 一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .3.等差中项如果A =a +b 2,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ )(3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × )(5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________________________________________________________________________. 答案 6解析 设等差数列{a n }的公差为d ,∵a 1+a 9=a 4+a 6=-6,且a 1=-11,∴a 9=5,从而d =2.∴S n =-11n +n (n -1)=n 2-12n ,∴当n =6时,S n 取最小值.2.一个首项为23,公差为整数的等差数列,如果前6项均为正数,从第7项起为负数,则它的公差为________.答案 -4解析 a n =23+(n -1)d ,由题意知⎩⎪⎨⎪⎧ a 6>0,a 7<0, 即⎩⎪⎨⎪⎧23+5d >0,23+6d <0,解得-235<d <-236, 又d 为整数,所以d =-4.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.答案 88解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________.答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4,∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为________.(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10=________.答案 (1)52 (2)210 解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52. (2)因为a 2=7,a 4=15,所以d =4,a 1=3,故S 10=10×3+12×10×9×4=210. 思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)(2015·课标全国Ⅱ改编)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=________________________________________________________________________.(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是________. 答案 (1)5 (2)2解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3,得a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5. (2)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *), b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)解 由(1)知b n =n -72, 则a n =1+1b n =1+22n -7.设f (x )=1+22x -7, 则f (x )在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列, ∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是________.①公差为3的等差数列 ②公差为4的等差数列③公差为6的等差数列 ④公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为______________. 答案 (1)③ (2)a n =1n解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2)=(a 2n -1-a 2n -3)+2(a 2n -a 2n -2)=2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列.(2)由已知式2a n +1=1a n +1a n +2可得 1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n . 题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.(2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=10+2×10=30,∴S 30=60.命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53. 方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53 =-53n +653. 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53 =130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0,∴a 13=0.又a 1=-20,∴a 12<0,a 14>0,∴当n =12或13时,S n 取得最小值,最小值S 12=S 13=13(a 1+a 13)2=-130. 思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a n m -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n }中,S n 为其前n 项和,则a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ; b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m . (1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是________.(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为________.(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)6 (2)5或6 (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大.(3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________.(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________. 思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项.解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的公差为d ,首项为a 1,则⎩⎨⎧ 10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110. 方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110. (3)因为⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5.答案 (1)45 (2)-110 (3)S 5温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *;(2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定.[失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数.2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练(时间:40分钟)1.(2015·课标全国Ⅰ改编)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=________________________________________________________________________. 答案 192解析 ∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12, ∴a 10=a 1+9d =12+9=192. 2.(2015·北京改编)设{a n }是等差数列,下列结论中正确的是________.①若a 1+a 2>0,则a 2+a 3>0;②若a 1+a 3<0,则a 1+a 2<0;③若0<a 1<a 2,则a 2>a 1a 3;④若a 1<0,则(a 2-a 1)(a 2-a 3)>0.答案 ③解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故①错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故②错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故③正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故④错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________. 答案 5解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. ∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=________.答案 3解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2.∵b 3=-2,∴b 1=b 3-2d =-2-4=-6.∴b 1+b 2+…+b 7=7b 1+7×62d =7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为________.答案 7或8解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8.6.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 答案 2n -1解析 设等差数列的公差为d ,∵a 3=a 22-4,∴1+2d =(1+d )2-4,解得d 2=4,即d =±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.10.(2015·济南模拟)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1. 从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.要使S n 最大, 则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,即⎩⎨⎧ a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.方法四 由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升(时间:20分钟)11.已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为________. 答案 4解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,令x >0,y >0,由基本不等式可得x ·y ≤⎝ ⎛⎭⎪⎫x +y 22,当且仅当x =y 时“=”成立.又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.即a 6·a 7的最大值为4.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212,解得k =13. 13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________.答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧ a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7,即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 解 (1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧ a 1=1,d =4.所以通项a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c, 所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,所以2c2+c=0,所以c=-1或c=0(舍去),2时,{b n}是等差数列,经验证c=-12故c=-12.。
等差数列练习题及答案

等差数列练习题及答案等差数列练习题及答案数学作为一门基础学科,无论在学校还是在社会生活中都扮演着重要的角色。
其中,等差数列是数学中的一个重要概念,也是我们常见的数学问题之一。
本文将为大家提供一些等差数列的练习题及答案,以帮助大家更好地理解和掌握这个概念。
练习题一:已知等差数列的首项为3,公差为5,求第10项的值。
解答一:根据等差数列的性质,第n项的值可以通过公式an = a1 + (n-1)d来计算。
其中,an表示第n项的值,a1表示首项的值,d表示公差。
代入已知条件,可得第10项的值为a10 = 3 + (10-1)5 = 3 + 45 = 48。
练习题二:已知等差数列的前n项和为Sn = 2n^2 + n,求该等差数列的公差。
解答二:根据等差数列的性质,前n项和可以通过公式Sn = n/2(a1 + an)来计算。
代入已知条件,可得2n^2 + n = n/2(a1 + a1 + (n-1)d)。
化简后得到2n^2 + n = n/2(2a1 + (n-1)d)。
进一步化简可得4n^2 + 2n = n(2a1 + (n-1)d)。
由于等差数列的前n项和是一个关于n的二次函数,所以4n^2 + 2n = n(2a1 + (n-1)d)也是一个关于n的二次函数。
两个二次函数相等,意味着它们的系数相等。
根据系数相等的条件,可得4 = 2a1 + (n-1)d,即2a1 + (n-1)d = 4。
由此可得公差d = (4 - 2a1)/(n-1)。
练习题三:已知等差数列的前n项和为Sn = 3n^2 + 2n,求该等差数列的首项。
解答三:根据等差数列的性质,前n项和可以通过公式Sn = n/2(a1 + an)来计算。
代入已知条件,可得3n^2 + 2n = n/2(a1 + a1 + (n-1)d)。
化简后得到3n^2 + 2n = n/2(2a1 + (n-1)d)。
进一步化简可得6n^2 + 4n =n(2a1 + (n-1)d)。
三年级等差数列例题

三年级等差数列例题一、等差数列基础概念例题。
1. 例题:求等差数列3,7,11,15,…的第10项是多少?- 解析:- 我们要确定这个等差数列的首项a_1 = 3,公差d=7 - 3=4。
- 根据等差数列的通项公式a_n=a_1+(n - 1)d。
- 当n = 10时,a_10=3+(10 - 1)×4=3 + 9×4=3+36 = 39。
2. 例题:等差数列2,5,8,11,…,29,这个数列共有多少项?- 解析:- 已知首项a_1 = 2,公差d = 5-2 = 3,末项a_n=29。
- 根据通项公式a_n=a_1+(n - 1)d,可得到29 = 2+(n - 1)×3。
- 化简方程29=2 + 3n-3,即29=3n - 1。
- 移项可得3n=30,解得n = 10,所以这个数列共有10项。
3. 例题:在等差数列{a_n}中,a_1 = 5,d = 3,求前5项的和S_5。
- 解析:- 根据等差数列求和公式S_n=(n(a_1 + a_n))/(2),先求a_5。
- 由通项公式a_n=a_1+(n - 1)d,当n = 5时,a_5=5+(5 - 1)×3=5+12 = 17。
- 再代入求和公式S_5=(5×(5 + 17))/(2)=(5×22)/(2)=55。
4. 例题:已知等差数列1,4,7,10,…,求这个数列的第20项与前20项的和。
- 解析:- 首项a_1 = 1,公差d = 4 - 1=3。
- 第20项a_20=a_1+(20 - 1)d=1+(20 - 1)×3=1+19×3=1 + 57=58。
- 前20项和S_20=(20×(1 + 58))/(2)=10×59 = 590。
5. 例题:等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_1和d。
- 解析:- 根据等差数列通项公式a_n=a_1+(n - 1)d。
2023考点专题复习——等差数列及其性质(原卷版)

2023考点专题复习——等差数列及其性质考法一、 等差数列的基本运算⑴等差数列的通项公式:⑴等差数列的前和的求和公式:例1、在等差数列{}n a 中,若3930a a +=,411a =,则{}n a 的公差为( ) A .-2B .2C .-3D .3例2、已知等差数列{}n a 的前n 项和为n S ,8100S =,724a a =,则4a =( ). A .10B .11C .12D .13例3、记n S 为等差数列{}n a 的前n 项和.已知55S =,55a =,则( ) A .25n a n =-B .n a n =C .229n S n n =-D .21322n S n n =- 练习1、等差数列1、2a 、24a 、的第五项等于( )A .12B .1C .5D .16练习2、设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________. 练习3、在等差数列{a n }中,a 1+a 2+a 3=21,a 2a 3=70,若a n =61,则n =( ) A .18B .19C .20D .21练习4、已知等差数列{}n a 的前n 项和为n S ,若111152S S S =-,则611a a =( )A .65B .56C .1110D .1011练习5、设n S 是某个等差数列的前n 项和,若201920202020S S ==,则2021S =( ) A .220202019-B .220202019+C .120201010-D .120201010+练习6、已知n S 是数列{}n a 的前n 项和,则“2n S n n =-”是“数列{}n a 是公差为2的等差数列”的( )1(1)n a a n d=+-n 11()(1)22n n n a a n n S na d +-==+A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件练习7、已知数列{}n a 中各项为非负数,21a =,516a =,若数列为等差数列,则13a=( )A .169B .144C .12D .13练习8、已知公差不为0的等差数列{}n a 中,246a a a +=,296a a =,则10a =______.练习9、已知等差数列{}n a 的前n 项和为n S ,若171251,0S a ==,则{}n a 的通项公式为_____________ 练习10、已知等差数列{}n a 满足13248,14a a a a +=+=,则它的前8项的和8S =( ) A .70B .82C .92D .105练习11、已知等差数列{}n a 的前n 项和为n S ,若312S =,410a =,则{}n a 的公差为( ) A .4B .3C .2D .1练习12、等差数列{}n a 中,前n 项和为n S ,且131,9S S ==,则5S =( ) A .17 B .25C .5D .81考法二、 等差数列的性质⑴在等差数列中,对任意,,,;⑴在等差数列中,若,,,且,则,特殊地,时,则,是的等差中项.⑴等差数列被均匀分段求和后,得到的数列仍是等差数列,即成等差数列.⑴设数列是等差数列,且公差为,(⑴)若项数为偶数,设共有项,则①;② ;⑴若项数为奇数,设共有项,则①(中间项);②.⑴若与为等差数列,且前项和分别为与,则.{}n a m n N +∈()n m a a n m d =+-n ma a d n m-=-()m n ≠{}n a m n p q N +∈m n p q +=+m n p q a a a a +=+{}n a d 2n -S S nd =奇偶1n n S aS a +=奇偶21n -S S -偶奇n a a ==中1S n S n =-奇偶{}n a {}n b n nS 'n S 2121'm m m m a S b S --=例1、在等差数列{}n a 中,若34567750a a a a a ++++=,则28a a +=( ) A .360B .300C .240D .200例2、已知数列{a n }为等差数列,n S 为其前n 项和,4252a a a +=+,则5S =( ) A .2B .14C .50D .10例3、在等差数列{}n a 中,11826a a =+,则267a a a ++=( ) A .18-B .6-C .8D .12例4、已知数列{}n a 是等差数列,若1231a a a ++=,4563a a a ++=,则789a a a ++=( ) A .5B .4C .9D .7例5、设等差数列{}n a 的前n 项和为n S ,其中23S =,415S =,则6S =( ) A .9B .18C .27D .36例6、已知数列{}n a 、{}n b 都是等差数列,设{}n a 的前n 项和为n S ,{}n b 的前n 项和为n T .若2132n n S n T n +=+,则55a b =( ) A .1929B .1125C .1117D .23练习1、已知数列{}n a 为等差数列,且31a =,则12345a a a a a ++++=( ) A .3B .4C .5D .6练习2、n S 是等差数列{}n a 的前n 项和,1233a a a ,7910a a +=,则9S =( )A .9B .16C .20D .27练习3、已知公差不为0的等差数列{}n a 满足22225678a a a a +=+,则( ) A .60a =B .70a =C .120S =D .130S =练习4、已知等差数列{}n a 的前n 项和为n S ,等差数列{}n b 的前n 项和为n T .若211n n S n T n -=+,则55a b =( ) A .1911B .1710C .32D .75练习5、已知数列{}n a ,{}n b 为等差数列,其前n 项和分别为n S ,n T ,422n n S n T n +=+,则59a b =( ) A .3811B .109C .1110D .2练习6、等差数列{}n a 的前()m m N +∈项和为30,前2m 项和为100,则前3m 项和为( )A .130B .170C .210D .260练习7、等差数列{a n }的前n 项和为S n ,且S 10=20,S 20=15,则S 30=( )A .10B .30-C .15-D .25练习8、两等差数列{}n a 和{}n b 的前n 项和分别是n n S T 、,已知73n n S n T n =+,则55a b = A .7 B .23C .278D .214练习9、设等差数列{}n a 的前n 项和为n S ,若1254a a a +=+,则11S =( )A .28B .34C .40D .44练习10、已知等差数列{}n a 的前n 项和为n S ,若39S =,663S =,则789a a a ++等于( )A .63B .71C .99D .117练习11、已知等差数列{}n a 的前n 项和为n S ,若1122S =,则378a a a ++=( )A .18B .12C .9D .6练习12、已知等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的自然数n ,都有481n n S n T n -=+,则3153111572a a a b b b b ++=++( )A .3B .6C .327D .8013练习13、已知等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-,则76a b =( )A .67B .1211C .1825D .1621练习14、设等差数列{}n a 的前n 项和为n S ,若1020S =,2030S =,则30S =( )A .20B .30C .40D .50练习15、已知等差数列{}n a 的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为( )A .28B .29C .30D .31练习16、等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=12,则S 13=_____.练习17、已知等差数列{}n a 的前n 项和为n S ,若246820a a a a +++=,则9S =___________.练习18、已知数列{}n a 和{}n b 均为等差数列,前n 项和分别为n S ,n T ,且满足:*n ∀∈N ,321n n S n T n +=+,则161419581215a a a ab b b b +++=+++____________.练习19、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,且523n n S n T n +=+,则220715a a b b ++等于( )A .10724B .724C .14912D .1493考法三、 等差数列的最值问题⑴.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当,时,有最大值;,时,有最小值;若已知,则最值时的值()则当,,满足的项数使得取最大值,(2)当,时,满足的项数使得取最小值.⑴利用等差数列的前n 项和:(为常数, )为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(,递增;,递减);⑴. 利用数列中最大项和最小项的求法:求最大项的方法:设为最大项,则有;求最小项的方法:设为最小项,则有.只需将等差数列的前n 项和依次看成数列,利用数列中最大项和最小项的求法即可.10a >0d <n S 10a <0d >n S n a n S n n N +∈10a >0d <100n n a a +≥⎧⎨≤⎩n n S 10a <0d >10n n a a +≤⎧⎨≥⎩n n S 2n S An Bn =+,A B n N ∈*0d >0d <n a 11n n nn a a a a -+≥⎧⎨≥⎩n a 11n n nn a a a a -+≤⎧⎨≤⎩1,2,3,n ={}n S例1、等差数列{}n a 的前n 项和为n S ,73649,3S a a ==,则n S 取最大值时的n 为( ) A .7B .8C .14D .15例2、在等差数列{}n a 中,若981a a <-,且它的前n 项和n S 有最小值,则当0n S >时,n 的最小值为 A .B .C .D .例3、等差数列{}n a 中,3716,8,n a a S ==是数列{}n a 的前n 项和,则n S 最大时,n =( ) A .10B .11C .10或11D .11或12练习1、若公差为负的等差数列{}n a 中的两项39,a a 是方程21090x x -+=的两个根,设数列{}n a 的前n 项和为n S ,则当n S 最大时,n 的值为( ) A .5B .9或10C .10D .9练习2、已知等差数列{}n a 的前n 项和为n S ,且78S S >,8910S S S =<,则下面结论错误的是( ) A .90a = B .1514S S >C .0 d <D .8S 与9S 均为n S 的最小值练习3、等差数列{}n a 的前n 项和为n S ,若n N *∀∈,7n S S ≤,则数列{}n a 的通项公式可能是( )A .315n a n =-B .173n a n =-C .7n a n =-D .152n a n =-练习4、等差数列{}n a 的前n 项和记为n S ,若10a >,1020S S =,则不成立是( )A .0d <B .160a <C .15n S SD .当且仅当0nS <时32n练习5、已知等差数列{}n a 的前n 项和为n S ,且满足54a ≤,540S ≥,则该数列的公差d 可取的值是( )A .3B .1C .-1D .-3练习6、等差数列{}n a 的前n 项和为n S ,若7,n n S S *∀∈≤N ,则数列{}n a 的通项公式可能是( )A .163n a n =-B .152n a n =-C .214n a n =-D .215n a n =-练习7、等差数列{}n a 中,3716,8,n a a S ==是数列{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项和最大时,n =( )A .20B .21C .20或21D .21或22练习8、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则下列结论正确的是( ) A .当且仅当6n =时n S 取最小值 B .当且仅当6n =时n S 取最大值 C .当且仅当7n =时n S 取最小值 D .当且仅当7n =时n S 取最大值练习9、已知数列{}n a 的通项公式为3n a n =-,*n ∈N ,n S 为其前n 项和,则当0n n a S ≤时,正整数n 的最大值为( )A .3B .4C .5D .6练习10、若数列{a n }满足:a 1=19,a n +1=a n -3,则数列{a n }的前n 项和数值最大时,n 的值为A .6B .7C .8D .9练习11、设n S 为等差数列{}n a 的前n 项和,()()11n n n S nS n N *++<∈.若871a a <-,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S练习12、已知数列{}n a 是首项为a ,公差为1的等差数列,数列{}n b 满足1.nn na b a +=若对任意的*n ∈N ,都有6n b b ≥成立,则实数a 的取值范围是( )A .[]6,5--B .()6,5--C .[]5,4--D .()5,4--练习13、已知等差数列{}n a 的前n 项和记为1234,24n S a a a S ++=+,则“11a <”是“{}n S 为单调数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件练习14、已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a <. 其中正确命题的是___________.练习15、设1a ,d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足:30a <,且56160S S +=,则11S 的最小值为_________.练习16、已知n S 为等差数列{}n a 的前n 项和,且235S =,23439a a a ++=,则当n S 取最大值时,n 的值为___________.考法四、 等差数列的证明与判断例1、已知数列{}n a 满足12a =,121n n n a a a +-=,证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列;例2、已知数列{}12,13n a a a ==,,且满足11212n n n a a a +-+=+(2n ≥且*n N ∈),证明新数列{}1n n a a +-是等差数列,并求出n a 的通项公式.例3、已知数列{}n b 首项13b =,且满足()*1212123n n n b b n n n +-=+-∈-N ,令23n n b c n =-. (1)求证:数列{}n c 为等差数列; (2)求数列{}n b 中的最小项.练习1、已知在数列{}n a 中,112a =,12n n a a n ++=,求证:{}n a 为等差数列;练习2、在正项数列{}n a 中,11a =,0=,*N n ∈,求证:数列为等差数列;练习3、已知数列{}n a 满足12a =,1210n n n a a a +-+=,N n *∈,证明:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;练习4、已知数列{}n a 满足112a =,()()11110n n n n n n a a n a na --+++-=,2n ≥,n N ∈,求证:数列()11n n a ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭为等差数列;练习5、已知数列{}n a 满足()*143n n n a a n N a +-=∈-,且14a =,证明:数列12n a ⎧⎫⎨⎬-⎩⎭是等差数列;练习6、已知数列{}n a 中,13a =,且满足()2*122,n n n n a a n b a n n N +=++=-∈,证明:数列{}n b 是等差数列,并求{}n b 的通项公式;练习7、记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}na 是等差数列.练习8、在数列{}n a 中,12a =,n a 是1与1n n a a +的等差中项,求证:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求{}n a 的通项公式;练习9、已知正项数列{}n a 满足121,2a a ==,且对任意的正整数n ,211n a ++是2n a 和22n a +的等差中项,证明:{}221n n aa +-是等差数列,并求{}n a 的通项公式;练习10、已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.考法五、实际生活中的等差数列例1、在古印度的数学著作《丽拉沃蒂》中,有这样一个问题:某人给一个人布施,初日施3德拉玛(古印度货币单位),其后日增2德拉玛,共布施360德拉玛,请快告诉我,他布施了几日?这个问题的答案是( ) A .9B .18C .20D .24例2、《九章算术》是我国古代的数学名著,书中有如下题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种质量单位)在这个问题中,戊所得为( ) A .14钱 B .12钱 C .23钱 D .35钱练习1、《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问小满日影长为()(1丈=10 尺=100寸)A.四尺五寸B.三尺五寸C.二尺五寸D.一尺五寸练习2、《孙子算经》是中国古代重要的数学著作,据书中记载,中国古代诸侯的等级从低到高分为五级:男、子、伯、侯、公.现有每个级别的诸侯各一人,共5人,要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m个(m为正整数),若按这种方法分橘子,“子”恰好分得13个橘子的概率是()A.18B.17C.16D.15练习3、《张丘建算经》是我国古代的一部数学著作,现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算、各种等差数列问题的解决、某些不定方程问题求解等.书中记载如下问题:“今有女子善织,日增等尺,初日织五尺,三十日共织390尺,问日增几何?”那么此女子每日织布增长()A.47尺B.1631尺C.1629尺D.815尺练习4、我国明代数学家程大位的《算法统宗》中有这样一个问题:今有钞二百三十八贯,令五等人从上作互和减半分之,只云戊不及甲三十三贯六百文,问:各该钞若干?其意思是:现有钱238贯,采用等差数列的方法依次分给甲、乙、丙、丁、戊五个人,现在只知道戊所得钱比甲少33贯600文(1贯=1000文),问各人各得钱多少?在这个问题中,戊所得钱数为()A.30.8贯B.39.2贯C.47.6贯D.64.4贯练习5、中国古代数学著作《算法统宗》中有这样一个问题:“九百九十六斤棉,赠分八子作盘缠,次第每人多十七,要将第八数来言,务要分明依次弟,孝和休惹外人传.”其意思为:“996斤棉花,分别赠送给8个子女作旅费,从第一个开始,以后每人依次多17斤,使孝顺子女的美德外传,试求各人应分得多少斤.”则第3个子女分得棉花()A.65斤B.82斤C.99斤D.106斤练习6、《九章算术》卷七“盈不足”有这样一段话:“今有良马与弩马发长安至齐.齐去长安三千里,良马初日行一百九十三里.日增十三里,驽马初日行九十七里,日减半里.”意思是:今有良马与弩马从长安出发到齐国,齐国与长安相距3000里,良马第一日走193里,以后逐日增加13里,弩马第一日走97里,以后逐日减少0.5里.则8天后两马之间的距离为___________里.练习7、我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第1个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要按照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第8个孩子分到的棉花为()A.184斤B.176斤C.65斤D.60斤练习8、明朝程大位的《算法统宗》中有首依等算钞歌:“甲乙丙丁戊已庚,七人钱本不均分,甲乙念三七钱钞,念六一钱戊已庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”大意是:“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、已、庚三人共261钱,求各人钱数.”根据题目的已知条件,乙有()A.122钱B.115钱C.108钱D.107钱练习9、中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是A.174斤B.184斤C.191斤D.201斤练习10、2022北京冬奥会开幕式将我国二十四节气融入倒计时,尽显中国人之浪漫.倒计时依次为:大寒、小寒、冬至、大雪、小雪、立冬、霜降、寒露、秋分、白露、处暑、立秋、大暑、小暑、夏至、芒种、小满、立夏、谷雨、清明、春分、惊蛰、雨水、立春,已知从冬至到夏至的日影长等量减少,若冬至、立冬、秋分三个节气的日影长之和为31.5寸,冬至到处暑等九个节气的日影长之和为85.5寸,问大暑的日影长为()A.4.5寸B.3.5寸C.2.5寸D.1.5寸。
等差数列性质及练习习题.docx

等差数列1. 定 : a n 1 a n d ( d 为常数 )或 a n 1 a n a n a n 1 ( n 2)2. 等差数列的通 :a n a 1 ( n 1)d 或 a na m( n m) d 。
3. 等差中 : 若 a, A,b 成等差数列,A 叫做 a 与 b 的等差中 ,且a bAn(a 1a n ), S nn(n 1)24. 等差数列的前 n 和: S nna 1d225. 等差数列的性 :(1)当公差 d 0 ,等差数列的通 公式 a n a 1 (n 1)d dn a 1d 是关于 n 的一次函数,且斜率 公差 d ;S n na 1n(n1) dd n 2 (a 1d)n 是关于 n 的二次函数且常数0.222( 2)若公差若公差若公差d0 , 增等差数列, d 0 , 减等差数列,d 0 , 常数列。
(3)当 m np q 2w , 有 a ma na p a q2a w(4)若 { a n } 、 { b n } 是等差数列, { ka n } 、 { ka n pb n } ( k 、 p 是非零常数 ) 、 { a p nq }( p, qN *) 、S n , S 2 n S n , S 3n S 2n ,⋯也成等差数列 .(5)在等差数列 { a n } 中,当 数 偶数2n , S 偶- S 奇 nd , S 偶: S 奇 a n 1 : a n ; 数 奇数2n 1 ,S 奇 S 偶a n;S :S(n 1) : n 。
奇偶(6)若等差数列 { a n } 、 { b n } 的前 n 和分 A n 、 B n ,且A n f (n) ,B nan(2 n 1)a nA 2n1f (2 n 1).b n(2 n 1)b nB2n1(7) “首正” 的 减等差数列中, 前 n 和的最大 是所有非 之和; “首 ” 的 增等差数列中, 前 n 和的最小 是所有非正 之和。
等差数列性质练习题

等差数列性质练习题等差数列是数学中常见的数列形式,它的性质和应用广泛。
在这篇文章中,我们将通过一些练习题来探讨等差数列的性质和解题技巧。
题目一:已知等差数列的首项为a,公差为d,前n项和为Sn,求第n项的值。
解析:根据等差数列的性质,第n项的值可以通过首项a和公差d以及n来计算。
第n项的值可以表示为an = a + (n-1)d。
这个公式的推导可以通过观察等差数列的规律得出。
例如,当n=2时,第二项的值等于第一项的值加上公差,以此类推。
题目二:已知等差数列的首项为2,公差为3,求前10项的和。
解析:根据等差数列的性质,前n项的和可以通过首项a、公差d和n来计算。
前n项的和可以表示为Sn = n/2(2a + (n-1)d)。
将题目中的数值代入公式中,可以得到前10项的和为S10 = 10/2(2*2 + (10-1)*3) = 10/2(4 + 9*3) = 10/2(4 + 27) = 10/2*31 = 155。
题目三:已知等差数列的前3项分别为5、8、11,求公差和第10项的值。
解析:根据等差数列的性质,可以通过已知的前几项来确定公差d。
首先,我们可以观察到第二项与第一项之间的差为3,第三项与第二项之间的差也为3。
因此,公差d为3。
接下来,我们可以使用等差数列的通项公式an = a + (n-1)d来计算第10项的值。
第10项的值可以表示为a10 = 5 + (10-1)*3 = 5 + 27= 32。
通过这些练习题,我们可以发现等差数列有一些重要的性质。
首先,等差数列的公差决定了数列中相邻两项之间的差值。
其次,等差数列的前n项和可以通过公式Sn = n/2(2a + (n-1)d)来计算。
最后,等差数列的第n项可以通过公式an = a + (n-1)d来计算。
除了以上的性质和解题技巧,等差数列还有一些其他的应用。
例如,在数学和物理中,等差数列经常用于建模和求解问题。
在金融领域,等差数列可以用于计算贷款的利息和本金。
等差数列的性质和应用

文档仅供参考,如有不当之处,请联系改正。
例1。在等差数列an 中,已知a2 a3 a4 a5 34,
a2 a5 42,求公差d.
文档仅供参考,如有不当之处,请联系改正。
例3。已知等差数列5,8,11,与等差数列 1,5,9,均有300项,求同时在这两个数列 中出现的项数。
(2)在等差数列an 中, a15 10, a45 90,
则a60
文档仅供参考,如有不当之处,请联系改正。
例2 求一下各题中两数旳等差中项: (1)647与895 ; (2)(a+b)2与(a-b)2
文档仅供参考,如有不当之处,请联系改正。
例3(1) 等差数列{an},已知a4=10, a7=19,求数列旳通项公式
文档仅供参考,如有不当之处,请联系改正。
例4。已知函数f
(x)
3x x3
,
数列x
n
的通项由
xn f (xn1 )(n 2且n N )确定.
(1)求证: x1n
是等差数列;
(2)当x1
1 2
时,
求x100
文档仅供参考,如有不当之处,请联系改正。
文档仅供参考,如有不当之处,请联系改正。
文档仅供参考,如有不当之处,请联系改正。
练习题1: (1)在等差数列中a3 5, a5 9, 求a10的值 (2)在等差数列中,a15 33, a25 66, 求a35的值 (3)在等差数列中,a5 10, a1 a2 a3 3, 求:a1、d
(4.)在 1与7之间依次插入三个数,使这五个数 成等差数列,求此数列。
(5)设f (n 1) 1 f (n)(n N ),且f (1) 2求f (101)的值 2
1.2等差数列(讲义+典型例题+小练)(原卷版)

1.2等差数列(讲义+典型例题+小练)1、定义:(1)文字表示:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. (2)符号表示:11(2)(1)n n n n a a d n a a d n -+-=≥-=≥或2、通项公式:若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-. 通项公式的变形:①()n m a a n m d =+-;②n ma a d n m-=-.通项公式特点:1()na dn a d =+-),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。
例1:1.在等差数列{}n a 中,已知28a =-,44a =-,则12a =( ) A .10B .12C .14D .162.已知等差数列{n a },43n a n =-,则公差d 的值是( ) A .4 B .-6C .8D .-10举一反三1.已知等差数列{}n a 中,131,5a a ==,则2a =( ) A .3-B .5-C .5D .32.已知等差数列{}n a 中,12a =,2313a a +=,则456a a a ++等于( ) A .40B .42C .43D .453.已知数列{}n a 是等差数列,若12a =,342a a =,则公差d =_____. 3、等差中项若三个数a ,A ,b 组成等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.即a 、b 、c 成等差数列<=>2a cb +=例2:1.在等差数列{}n a 中,已知4816a a +=,则该数列第6项6a =( ) A .6 B .8C .12D .16举一反三1.已知等差数列{}n a ,且4610a a +=,则5a =( )A .3B .5C .7D .92.已知等差数列{}n a 的前n 项和为n S ,且34567150a a a a a ++++=,则9S =_________. 3.已知132a =+,132b =-,则a ,b 的等差中项为( )A .3B .2C .33D .24、等差数列{}n a 的基本性质),,,(*∈N q p n m 其中(1)q p n m a a a a q p n m +=++=+,则若。
等差数列小学数学练习题

等差数列小学数学练习题1. 某等差数列的首项是2,公差是3,求第10项。
解析:根据等差数列的通项公式 an = a1 + (n-1)d,其中 an 表示第n 项,a1 表示首项,d 表示公差。
代入已知值:a10 = 2 + (10-1)3 = 2 + 27 = 29。
所以第10项为29。
2. 某等差数列的公差是5,已知第6项是12,求首项。
解析:同样利用等差数列的通项公式,我们可以得到 a6 = a1 + (6-1)5 = a1 + 25。
已知 a6 = 12,代入可得 12 = a1 + 25,解方程可得 a1 = -13。
所以首项为-13。
3. 若某等差数列的首项是7,公差是4,求前5项的和。
解析:等差数列前n项和的公式为 Sn = (n/2)(a1 + an),其中 Sn 表示前n项的和,a1 表示首项,an 表示第n项。
代入已知值:S5 = (5/2)(7 + a5)。
利用等差数列的通项公式 a5 = a1 + (5-1)d = a1 + 4d,代入可得 S5 = (5/2)(7 + a1 + 4d)。
我们需要找出 a1 和 d 的值才能计算出 S5。
由于已知 a1 = 7,d = 4,代入可得 S5 = (5/2)(7 + 7 + 4*4) = (5/2)(7 + 7 + 16) = (5/2)(30) = 5*15 = 75。
所以前5项的和为75。
4. 若某等差数列的首项是10,公差是2,求前50项的和。
解析:同样利用等差数列前n项和的公式,我们可以得到 S50 = (50/2)(a1 + a50)。
由于已知 a1 = 10,a50 = a1 + (50-1)d = 10 + 49*2 = 108,代入可得S50 = (50/2)(10 + 108) = 25*118 = 2950。
所以前50项的和为2950。
5. 若某等差数列的首项是3,已知前n项的和为2550,公差是8,求n的值。
等差数列练习题及答案

等差数列练习题及答案等差数列练习题及答案数学中的等差数列是一种非常重要且常见的数列形式。
在我们的日常生活中,很多问题都可以用等差数列来解决。
掌握等差数列的性质和求解方法,对于我们的数学学习和解决实际问题都有很大的帮助。
下面,我将给大家介绍一些常见的等差数列练习题及其答案。
题目一:已知等差数列的首项为2,公差为3,求第10项的值。
解析:根据等差数列的通项公式an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
代入已知条件,可得第10项的值为2 + (10-1)×3 = 2 + 27 = 29。
题目二:已知等差数列的前三项分别为3、7、11,求该数列的公差和第10项的值。
解析:首先,我们可以通过前三项求出公差。
根据等差数列的性质,第二项减去第一项的值等于公差,第三项减去第二项的值也等于公差。
所以,公差d = 7 - 3 = 4。
接下来,我们可以利用公差和首项求出第10项的值。
根据等差数列的通项公式,第10项的值为a1 + (10-1)×d = 3 + 9×4 = 3 + 36 = 39。
题目三:已知等差数列的前五项之和为50,公差为2,求该数列的首项和第10项的值。
解析:首先,我们可以利用前五项之和求出首项。
根据等差数列的性质,前五项之和等于5/2(首项加上末项)乘以项数。
所以,50 = 5/2 × (a1 + a5) = 5/2 × (a1 + (a1 + 4d)) = 5/2 × (2a1 + 4d)。
化简得到2a1 + 4d = 20。
又已知公差d = 2,代入得到2a1 + 8 = 20,解得a1 = 6。
接下来,我们可以利用公差和首项求出第10项的值。
根据等差数列的通项公式,第10项的值为a1 + (10-1)×d = 6 + 9×2 = 6 + 18 = 24。
通过以上的练习题,我们可以看出,掌握等差数列的求解方法和性质是非常重要的。
(完整版)等差数列及其性质典型例题及练习(学生)

等差数列及其性质典型例题:热点考向一:等差数列的基本量 例1.在等差数列{n a }中,(1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S变式训练: 等差数列{}n a 的前n 项和记为n S ,已知102030,50a a ==.(1)求通项公式{}n a ; (2)若242n S =,求n .热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n na a +=-,221n n b a =-,其中*.n N ∈(1)求证:数列{}n b 是等差数列;(2)求证:在数列{}n a 中对于任意的*n N ∈,都有1n n a a +>.(3)设nb nc =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由.跟踪训练:已知数列{n a }中,135a =,数列112,(2,)n n a n n N a *-=-≥∈,数列{n b }满足1()1n n b n N a *=∈-(1)求证数列{n b }是等差数列;(2)求数列{n a }中的最大项与最小项.热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S .(1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值;(2)若10a <,912S S =,则该数列前多少项的和最小?跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知.0,0,1213123<>=S S a(I )求公差d 的取值范围;(II )指出12321,,,,S S S S Λ中哪一个最大,并说明理由。
热点考向四:等差数列的综合应用例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m . 变式训练:设各项均为正数的数列{}n a 的前n 项和为n S ,已知3122a a a +=,数列{}nS 是公差为d 的等差数列。
等差数列的性质练习-含答案

课时作业7 等差数列的性质时间:45分钟满分:100分课堂训练1.若一个数列的通项公式是a n=k·n+b(其中b,k为常数),则下列说法中正确的是( )A.数列{a n}一定不是等差数列B.数列{a n}是以k为公差的等差数列C.数列{a n}是以b为公差的等差数列D.数列{a n}不一定是等差数列【答案】 B【解析】a n+1-a n=k(n+1)+b-kn-b=k.2.等差数列中,若a3+a4+a5+a6+a7+a8+a9=420,则a2+a10等于( )A.100 B.120C.140 D.160【答案】 B【解析】∵a3+a4+a5+a6+a7+a8+a9=7a6=420,则a6=60,∴a2+a10=2a6=2×60=120.3.在等差数列{a n}中,a15=33,a25=66,则a35=________.【答案】99【解析】a15,a25,a35成等差数列,∴a35=2a25-a15=99.4.已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式.【分析】 关键是求出数列{a n }的首项和公差.【解析】 由于数列为等差数列,因此可设等差数列的前三项为a -d ,a ,a +d ,于是可得⎩⎪⎨⎪⎧a -d +a +a +d =21,a -d a a +d =231,即⎩⎪⎨⎪⎧3a =21,a a 2-d2=231,即⎩⎪⎨⎪⎧a =7,d 2=16,由于数列为单调递增数列,因此d =4,a 1=3,从而{a n }的通项公式为a n =4n -1.【规律方法】 此解法恰到好处地设定等差数列的项,为我们的解题带来了极大的方便,特别是大大降低了运算量.一般来说,已知三个数成等差数列时,可设成:a -d ,a ,a +d ,四个数成等差数列时,可设成:a -3d ,a -d ,a +d ,a +3d ,其余依此类推,如五个可设成:a -2d ,a -d ,a ,a +d ,a +2d .课后作业一、选择题(每小题5分,共40分)1.在等差数列{a n }中,a 5=3,a 9=5,则a 7=( ) A .4 B .-4 C .7 D .1【答案】 A【解析】 由题意知a 7为a 5,a 9的等差中项,故a 7=12(a 5+a 9)=12×(3+5)=4.2.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为( )A .20B .30C .40D .50【答案】 C【解析】 ∵a 3+a 11=a 5+a 9=2a 7, ∴a 3+a 5+a 7+a 9+a 11=5a 7=100, ∴a 7=20.∴3a 9-a 13=3(a 7+2d )-(a 7+6d )=2a 7=40.3.在等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为( )A .30B .27C .24D .21【答案】 B【解析】 方法一:由等差数列的性质知,a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,所以(a 1+a 4+a 7)+(a 3+a 6+a 9)=2(a 2+a 5+a 8),则a 3+a 6+a 9=2×33-39=27. 方法二:(a 2+a 5+a 8)-(a 1+a 4+a 7) =3d (d 为数列{a n }的公差),则d =-2,a 3+a 6+a 9=(a 2+a 5+a 8)+3d =33-6=27.4.把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的 17是较小的两份之和,问最小的1份是( )A.56B.103C.53D.116【答案】 C【解析】 设这5份为a -2d ,a -d ,a ,a +d ,a +2d ,由已知得a =20,且17(a +a +d +a +2d )=a -2d +a -d ,∴d =556,∴a -2d =53.5.等差数列{a n }的公差d <0,且a 2a 4=12,a 1+a 5=8,则其通项公式为( )A .a n =2n -2B .a n =2n +4C .a n =-2n +12D .a n =-2n +10【答案】 D【解析】 由等差数列的性质得a 2+a 4=a 1+a 5=8. 又a 2a 4=12,所以a 2,a 4为方程x 2-8x +12=0的两根,解得⎩⎪⎨⎪⎧a 2=2,a 4=6或⎩⎪⎨⎪⎧a 2=6,a 4=2.当a 2=2,a 4=6时,d =a 4-a 24-2=2>0(舍去), 当a 2=6,a 4=2时,d =a 4-a 24-2=-2.所以数列的通项公式为a n =a 2+(n -2)d =6+(n -2)×(-2)=-2n +10.即a n =-2n +10.6.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37【答案】 C【解析】 设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n+b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列. 又∵a 1+b 1=a 2+b 2=100, ∴a 37+b 37=100. 故正确答案为C.7.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A .-2B .-3C .-4D .-5【答案】 C【解析】 设该数列的公差为d ,则由题设条件知:a 6=a 1+5d >0,a 7=a 1+6d <0.又∵a 1=23,∴⎩⎪⎨⎪⎧d >-235,d <-236,即-235<d <-236.又∵d 是整数,∴d =-4,故选C.8.已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1,b 1∈N +.设c n =ab n (n ∈N +),则数列{c n }的前10项和等于( )A .55B .70C .85D .100【答案】 C【解析】 由题c n =ab n (n ∈N +),则数列{c n }的前10项和等于ab 1+ab 2+…+ab 10=ab 1+ab 1+1+…+ab1+9.∵ab1=a1+(b1-1)=4,∴ab1+ab1+1+…+ab1+9=4+5+…+13=85.二、填空题(每小题10分,共20分)9.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=________.【答案】 1【解析】∵a1+a3+a5=105,即3a3=105,∴a3=35,同理a4=33,∴d=a4-a3=-2,∴a20=a4+(20-4)d=1.10.等差数列{a n}中,a1+a4+a10+a16+a19=150,则a18-2a14=________.【答案】-30【解析】由a1+a4+a10+a16+a19=5a10=150,得a10=30,a18-2a14=(a10+8d)-2(a10+4d)=-a10=-30.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)已知数列{a n}为等差数列,若a1-a5+a9-a13+a17=117,求a3+a15.(2)在等差数列{a n}中,已知a2+a5+a8=9,a3a5a7=-21,求数列{a n}的通项公式.【解析】(1)方法一:∵数列{a n}是等差数列,∴设数列{a n}的首项为a1,公差为d,则由题意得a1-(a1+4d)+(a1+8d)-(a1+12d)+(a1+16d)=117,∴a1+8d=117.从而a3+a15=(a1+2d)+(a1+14d)=2(a1+8d)=234.方法二:由等差数列的性质知,a1+a17=a5+a13=a3+a15=2a9.∵a1-a5+a9-a13+a17=117,∴a9=117,∴a3+a15=2a9=234.(2)∵a2+a5+a8=9,a3a5a7=-21,a2+a8=a3+a7=2a5,∴a5=3,∴a3+a7=2a5=6,a3a7=-7,解得a3=-1,a7=7或a3=7,a7=-1.又a7=a3+4d,∴当a3=-1,a7=7时,可得d=2;当a3=7,a7=-1时,可得d=-2.根据a n=a3+(n-3)d,可得当a3=-1,d=2时,a n=2n-7;当a3=7,d=-2时,a n=-2n+13.12.已知无穷等差数列{a n}中,首项a1=3,公差d=-5,依次取出序号能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}的第几项?【解析】数列{b n}是数列{a n}的一个子数列,其序号构成以3为首项,4为公差的等差数列,由于{a n}是等差数列,则{b n}也是等差数列.(1)∵a1=3,d=-5,∴a n=3+(n-1)(-5)=8-5n.数列{a n}中序号能被4除余3的项是{a n}中的第3项,第7项,第11项,…,∴b1=a3=-7,b2=a7=-27.(2)设{a n}中的第m项是{b n}的第n项,即b n=a m,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5(4n-1)=13-20n.即{b n}的通项公式为b n=13-20n.(3)b503=13-20×503=-10 047,设它是{a n}中的第m项,则-10 047=8-5m,则m=2 011,即{b n}中的第503项是{a n}中的第2 011项.。
等差数列练习题

等差数列练习题等差数列是数学中的一个重要概念,通常用于描述一系列具有相同差值的数。
在解决数学问题时,我们经常遇到与等差数列相关的题目。
通过练习等差数列问题,我们可以加深对其性质和特点的理解,提高数学问题的解决能力。
本篇文档将提供一些常见的等差数列练习题,帮助读者巩固相关知识。
练习题1:求等差数列的通项公式已知等差数列的首项为a,公差为d,求该等差数列的通项公式。
解答:等差数列的通项公式可以表示为an = a + (n - 1) * d,其中an表示第n项,a表示首项,d表示公差。
练习题2:已知等差数列的首项为5,公差为3,求前10项的和。
解答:对于等差数列的前n项和Sn,有Sn = (2a + (n - 1)d) * n / 2。
代入题中数据,得Sn = (2 * 5 + (10 - 1) * 3) * 10 / 2 = 55 * 10 / 2 = 275。
练习题3:已知等差数列的前4项分别为2,5,8,11,求第10项。
解答:首先我们可以通过已知的前4项求得公差d。
根据等差数列的性质,第4项减去第3项的差值等于第3项减去第2项的差值,即11 - 8 = 8 - 5,计算得d = 3。
然后代入通项公式an = a + (n - 1) * d,计算得a10 = 2 + (10 - 1) * 3 = 2 + 27 = 29。
练习题4:已知等差数列的前6项之和为45,公差为2,求第10项。
解答:首先,根据等差数列的前n项和公式Sn = (2a + (n - 1)d) * n / 2,我们可以列出方程45 = (2a + (6 - 1) * 2) * 6 / 2,解得a = 3。
然后代入通项公式an = a + (n - 1) * d,计算得a10 = 3 + (10 - 1) * 2 = 3 + 18= 21。
练习题5:已知等差数列的第7项为15,前12项之和为108,求公差和首项。
解答:首先代入通项公式an = a + (n - 1) * d,得到a7 = a + 6d = 15,a12 = a + 11d = 108,两式相减解得5d = 93,得到d = 18.6。
等差数列的性质练习题

等差数列的性质练习题等差数列是数学中常见的一种数列形式,它具有一些独特的性质和规律。
在本文中,我们将通过练习题的形式来深入探讨等差数列的性质,并解答一些相关问题。
练习题一:已知等差数列的首项为a,公差为d,第n项为an。
若a=2,d=3,an=20,求n的值。
解答一:根据等差数列的通项公式an = a + (n-1)d,代入已知条件可以得到20 = 2 + (n-1)3。
简化方程可以得到18 = (n-1)3,进一步化简得到6 = n-1。
因此,n的值为7。
练习题二:已知等差数列的首项为a,公差为d,前n项和为Sn。
若a=1,d=4,Sn=45,求n的值。
解答二:根据等差数列的前n项和公式Sn = (n/2)(2a + (n-1)d),代入已知条件可以得到45 = (n/2)(2 + 4(n-1))。
简化方程可以得到45 = (n/2)(2 + 4n - 4)。
进一步化简得到45 = (n/2)(4n - 2)。
再次化简得到45 = 2n^2 - n。
将方程变为二次方程的标准形式,得到2n^2 - n - 45 = 0。
通过求解这个二次方程,可以得到n的值为5或-4。
由于数列的项数不能为负数,因此n的值为5。
练习题三:已知等差数列的首项为a,公差为d,第m项为am,第n项为an。
若a=3,d=2,am=11,an=23,求m和n的值。
解答三:根据等差数列的通项公式an = a + (n-1)d,代入已知条件可以得到23 = 3 + (n-1)2。
简化方程可以得到20 = (n-1)2,进一步化简得到10 = n-1。
因此,n的值为11。
同样地,代入已知条件可以得到11 = 3 + (m-1)2。
简化方程可以得到8 = (m-1)2,进一步化简得到4 = m-1。
因此,m的值为5。
通过解答以上练习题,我们可以看出等差数列的性质和规律。
首先,等差数列的通项公式an = a + (n-1)d可以用来求解数列的任意一项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列及其性质
典型例题:
热点考向一:等差数列的基本量 例1.
在等差数列{n a }中,
(1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S
变式训练: 等差数列{}n a 的前n 项和记为n S ,已知
102030,50a a ==.
(1)求通项公式{}n a ; (2)若242n S =,求n .
热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n
a a +=-
,221
n n b a =
-,其中*
.n N ∈
(1)求证:数列{}n b 是等差数列;
(2)求证:在数列{}n a 中对于任意的*
n N ∈,都有
1n n a a +>.
(3
)设n
b n
c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由.
跟踪训练:已知数列{n a }中,13
5
a =
,数列11
2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足
1()1
n n b n N a *=∈-
(1)求证数列{n b }是等差数列;
(2)求数列{n a }中的最大项与最小项.
热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S .
(1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值;
(2)若10a <,912S S =,则该数列前多少项的和最小?
跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知
.0,0,1213123<>=S S a
(I )求公差d 的取值范围;
(II )指出12321,,,,S S S S 中哪一个最大,并说明理由。
热点考向四:等差数列的综合应用
例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.
(1)求数列{a n }的通项公式;
(2)设b n =3
a n a n +1,T n
是数列{b n }的前n 项和,求使得
T n <m
20对所有n ∈N *都成立的最小正整数m . 变式训练:设各项均为正数的数列{}n a 的前n 项和为
n S ,已知3122a a a +=,数列
{}n
S 是公差为d 的等差
数列。
(1)求数列{}n a 的通项公式(用d n ,表示); (2)设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立。
求证:c 的最大值为
2
9。
等差数列及其性质作业
一.选择题:
1、等差数列{a n }中,a 1=60,a n+1=a n+3则a 10为 ( )
A 、-600
B 、-120
C 、60
D 、-60 2、若等差数列中,a 1=4,a 3=3,则此数列的第一个负数项是 ( )
A 、a
B 、a 10
C 、a 11
D 、a 12
3.若数列{}n a 的通项公式为25n a n =+,则此数列是 ( )
A.公差为2的等差数列
B. 公差为5的等差数列
C.首项为5的等差数列
D. 公差为n 的等差数列
4. 已知{a n }是等差数列,a 7+a 13=20,则a 9+a 10+a 11= ()
A 、36
B 、30
C 、24
D 、18 5.等差数列3,7,11,
,---的一个通项公式为 ( )
A. 47n -
B. 47n --
C. 41n +
D. 41n -+ 6.若{}n a 是等差数列,则123a a a ++,456a a a ++,
789a a a ++,,32313n n n a a a --++,
是 ( )
A.一定不是等差数列
B. 一定是递增数列
C.一定是等差数列
D. 一定是递减数列 二.填空题:
7.等差数列{}n a 中,350a =,530a =,则7a = .
8.等差数列{}n a 中,3524a a +=,23a =,则6a = . 9.已知等差数列{}n a 中,26a a 与的等差中项为5,
37a a 与的等差中项为7,则n a = .
10. 若{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,
则a 5+a 8= . 三.解答题 11.判断数52,27()k k N ++∈是否是等差数列
{}n a :5,3,1,1,
,---中的项,若是,是第几项?
答案:1.C 2.B 3.A 4.B 5.D 6.C 7.10 8.21
9.23n - 10. 3 11.由题意知27n
a n =-,由2752n -=,得
29.5n N *=∉,∴52不是该数列中的项.
又由2727n k -=+解得7n k N *
=+∈,∴27k +是数列
{}n a 中的第7k +项.
12. (1)d=-4;(2)a n =-4n+27。