高中数学排列组合教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《排列组合》教学设计
【教学目标】
1.知识目标
(1)能够熟练判断所研究问题是否是排列或组合问题;
(2)进一步熟悉排列数、组合数公式的计算技能;
(3)熟练应用排列组合问题常见解题方法;
(4)进一步增强分析、解决排列、组合应用题的能力。
2.能力目标
认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。
3.德育目标
(1)用联系的观点看问题;
(2)认识事物在一定条件下的相互转化;
(3)解决问题能抓住问题的本质。
【教学重点】:排列数与组合数公式的应用
【教学难点】:解题思路的分析
【教学策略】:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。
【媒体选用】:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究。
【教学过程】
一、知识要点精析
(一)基本原理
1.分类计数原理
2.分步计数原理
3.两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:
(1)对于加法原理有以下三点:
①“斥”——互斥独立事件;
②模式:“做事”——“分类”——“加法”
③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。
(2)对于乘法原理有以下三点:
①“联”——相依事件;
②模式:“做事”——“分步”——“乘法”
③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立。
(二)排列
1.排列定义
2.排列数定义
3.排列数公式
(三)组合
1.组合定义
2.组合数定义
3.组合数公式
4.组合数的两个性质
(四)排列与组合的应用
1.排列的应用问题
(1)无限制条件的简单排列应用问题,可直接用公式求解。
(2)有限制条件的排列问题,可根据具体的限制条件,用“直接法”或“间接法”求解。
2.组合的应用问题
(1)无限制条件的简单组合应用问题,可直接用公式求解。
(2)有限制条件的组合问题,可根据具体的限制条件,用“直接法”或“间接法”求解。
3.排列、组合的综合问题
排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。
在解决排列与组合的应用题时应注意以下几点:
(1)限制条件的排列问题常见命题形式:
“在”与“不在”
“相邻”与“不相邻”
在解决问题时要掌握基本的解题思想和方法:
①“相邻”问题在解题时常用“捆绑法”,可以把两个或两个以上的元素当做一个元素来看,
这是处理相邻最常用的方法。
②“不相邻”问题在解题时最常用的是“插空法”。
③“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位
置。
④元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后利用规定顺序的实情求出
结果。
(2)限制条件的组合问题常见命题形式:
“含”与“不含”
“至少”与“至多”
在解题时常用的方法有“直接法”或“间接法”。
(3)在处理排列组合综合题时,通过分析条件按元素的性质分类,做到不重复,不遗漏按
事件的发生过程分类、分步,正确地交替使用两个原理,这是解决排列问题的最基本,也是最重要的思想方法。
4、解题步骤:
(1)认真审题
(2)列式并计算
(3)作答
二、学习过程
题型一:排列应用题
9名同学站成一排:(分别用A,B,C等作代号)
(1)如果A必站在中间,有多少种排法?(答案:)
(2)如果A不能站在中间,有多少种排法?(答案:)
(3)如果A必须站在排头,B必须站在排尾,有多少种排法?(答案:)
(4)如果A不能在排头,B不能在排尾,有多少种排法?(答案:)
(5)如果A,B必须排在两端,有多少种排法?(答案:)
(6)如果A,B不能排在两端,有多少种排法?(答案:)
(7)如果A,B必须在一起,有多少种排法?(答案:)
(8)如果A,B必须不在一起,有多少种排法?(答案:)
(9)如果A,B,C顺序固定,有多少种排法?(答案:)
题型二:组合应用题
若从这9名同学中选出3名出席一会议
(10)若A,B两名必在其内,有多少种选法?(答案:)
(11)若A,B两名都不在内,有多少种选法?(答案:)
(12)若A,B两名有且只有一名在内,有多少种选法?(答案:)
(13)若A,B两名中至少有一名在内,有多少种选法?(答案:或)
(14)若A,B两名中至多有一名在内,有多少种选法?(答案:或)
题型三:排列与组合综合应用题
若9名同学中男生5名,女生4名
(15)若选3名男生,2名女生排成一排,有多少种排法?(答案:)
(16)若选3名男生2名女生排成一排且有一男生必须在排头,有多少种排法?
(答案:)
(17)若选3名男生2名女生排成一排且某一男生必须在排头,有多少种排法?
(答案:)
(18)若男女生相间,有多少种排法?(答案:)
题型四:分组问题
6本不同的书,按照以下要求处理,各有几种分法?
(19)一堆一本,一堆两本,一堆三本(答案:)
(20)甲得一本,乙得两本,丙得三本(答案:)
(21)一人得一本,一人得两本,一人得三本(答案:)
(22)平均分给甲、乙、丙三人(答案:)
(23)平均分成三堆(答案:)
(24)分成四堆,一堆三本,其余各一本(答案:)
(25)分给三人每人至少一本。(答案: + + )
题型五:全能与专项
车间有11名工人,其中5名男工是钳工,4名女工是车工,另外两名老师傅既能当车工又
能当钳工现在要在这11名工人里选派4名钳工,4名车工修理一台机床,有多少种选派方法?
题型六:染色问题
(26)梯形的两条对角线把梯形分成四部分,用五种不同颜色给这四部分涂不同颜色,且相邻的区域不同色,问有()种不同的涂色方法?
(答案:260)
(27)某城市在中心广场建造一个花圃,花圃分为6个部分
(如图)。现在栽种4种不同颜色的花,每部分栽种一种且相
邻部分不能栽种同样颜色的花,不同的栽种方法有种。
分析:先排1、2、3排法种排法;再排4,若4与2同色,
5有种排法,6有1种排法;若4与2不同色,4只有1种排法;
若5与2同色,6有种排法;若5与3同色,6有1种排法
所以共有( + +1)=120种
题型七:编号问题
(28)四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有
多少种?(答案:144)