高中数学排列组合教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《排列组合》教学设计

【教学目标】

1.知识目标

(1)能够熟练判断所研究问题是否是排列或组合问题;

(2)进一步熟悉排列数、组合数公式的计算技能;

(3)熟练应用排列组合问题常见解题方法;

(4)进一步增强分析、解决排列、组合应用题的能力。

2.能力目标

认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。

3.德育目标

(1)用联系的观点看问题;

(2)认识事物在一定条件下的相互转化;

(3)解决问题能抓住问题的本质。

【教学重点】:排列数与组合数公式的应用

【教学难点】:解题思路的分析

【教学策略】:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。

【媒体选用】:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究。

【教学过程】

一、知识要点精析

(一)基本原理

1.分类计数原理

2.分步计数原理

3.两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:

(1)对于加法原理有以下三点:

①“斥”——互斥独立事件;

②模式:“做事”——“分类”——“加法”

③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。

(2)对于乘法原理有以下三点:

①“联”——相依事件;

②模式:“做事”——“分步”——“乘法”

③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立。

(二)排列

1.排列定义

2.排列数定义

3.排列数公式

(三)组合

1.组合定义

2.组合数定义

3.组合数公式

4.组合数的两个性质

(四)排列与组合的应用

1.排列的应用问题

(1)无限制条件的简单排列应用问题,可直接用公式求解。

(2)有限制条件的排列问题,可根据具体的限制条件,用“直接法”或“间接法”求解。

2.组合的应用问题

(1)无限制条件的简单组合应用问题,可直接用公式求解。

(2)有限制条件的组合问题,可根据具体的限制条件,用“直接法”或“间接法”求解。

3.排列、组合的综合问题

排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。

在解决排列与组合的应用题时应注意以下几点:

(1)限制条件的排列问题常见命题形式:

“在”与“不在”

“相邻”与“不相邻”

在解决问题时要掌握基本的解题思想和方法:

①“相邻”问题在解题时常用“捆绑法”,可以把两个或两个以上的元素当做一个元素来看,

这是处理相邻最常用的方法。

②“不相邻”问题在解题时最常用的是“插空法”。

③“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位

置。

④元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后利用规定顺序的实情求出

结果。

(2)限制条件的组合问题常见命题形式:

“含”与“不含”

“至少”与“至多”

在解题时常用的方法有“直接法”或“间接法”。

(3)在处理排列组合综合题时,通过分析条件按元素的性质分类,做到不重复,不遗漏按

事件的发生过程分类、分步,正确地交替使用两个原理,这是解决排列问题的最基本,也是最重要的思想方法。

4、解题步骤:

(1)认真审题

(2)列式并计算

(3)作答

二、学习过程

题型一:排列应用题

9名同学站成一排:(分别用A,B,C等作代号)

(1)如果A必站在中间,有多少种排法?(答案:)

(2)如果A不能站在中间,有多少种排法?(答案:)

(3)如果A必须站在排头,B必须站在排尾,有多少种排法?(答案:)

(4)如果A不能在排头,B不能在排尾,有多少种排法?(答案:)

(5)如果A,B必须排在两端,有多少种排法?(答案:)

(6)如果A,B不能排在两端,有多少种排法?(答案:)

(7)如果A,B必须在一起,有多少种排法?(答案:)

(8)如果A,B必须不在一起,有多少种排法?(答案:)

(9)如果A,B,C顺序固定,有多少种排法?(答案:)

题型二:组合应用题

若从这9名同学中选出3名出席一会议

(10)若A,B两名必在其内,有多少种选法?(答案:)

(11)若A,B两名都不在内,有多少种选法?(答案:)

(12)若A,B两名有且只有一名在内,有多少种选法?(答案:)

(13)若A,B两名中至少有一名在内,有多少种选法?(答案:或)

(14)若A,B两名中至多有一名在内,有多少种选法?(答案:或)

题型三:排列与组合综合应用题

若9名同学中男生5名,女生4名

(15)若选3名男生,2名女生排成一排,有多少种排法?(答案:)

(16)若选3名男生2名女生排成一排且有一男生必须在排头,有多少种排法?

(答案:)

(17)若选3名男生2名女生排成一排且某一男生必须在排头,有多少种排法?

(答案:)

(18)若男女生相间,有多少种排法?(答案:)

题型四:分组问题

6本不同的书,按照以下要求处理,各有几种分法?

(19)一堆一本,一堆两本,一堆三本(答案:)

(20)甲得一本,乙得两本,丙得三本(答案:)

(21)一人得一本,一人得两本,一人得三本(答案:)

(22)平均分给甲、乙、丙三人(答案:)

(23)平均分成三堆(答案:)

(24)分成四堆,一堆三本,其余各一本(答案:)

(25)分给三人每人至少一本。(答案: + + )

题型五:全能与专项

车间有11名工人,其中5名男工是钳工,4名女工是车工,另外两名老师傅既能当车工又

能当钳工现在要在这11名工人里选派4名钳工,4名车工修理一台机床,有多少种选派方法?

题型六:染色问题

(26)梯形的两条对角线把梯形分成四部分,用五种不同颜色给这四部分涂不同颜色,且相邻的区域不同色,问有()种不同的涂色方法?

(答案:260)

(27)某城市在中心广场建造一个花圃,花圃分为6个部分

(如图)。现在栽种4种不同颜色的花,每部分栽种一种且相

邻部分不能栽种同样颜色的花,不同的栽种方法有种。

分析:先排1、2、3排法种排法;再排4,若4与2同色,

5有种排法,6有1种排法;若4与2不同色,4只有1种排法;

若5与2同色,6有种排法;若5与3同色,6有1种排法

所以共有( + +1)=120种

题型七:编号问题

(28)四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有

多少种?(答案:144)

相关文档
最新文档