2004全国各地高考题汇编——排列组合概率

合集下载

重庆高考试题排列组合与概率(理)

重庆高考试题排列组合与概率(理)

排列组合与概率(理)一、选择题 1、(2004理11)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( )A 110B 120C 140D 11202、(2005理8)若)12(x x -n 展开式中含21x 项的系数与含41x项的系数之比为-5,则n 等于( ) A .4 B .6 C .8 D .103、(2006理5)若nx x ⎪⎪⎭⎫⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为( )(A )-540 (B )-162 (C )162 (D )5404、(2006理6)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg ),得到频率分布直方图如下: 根据上图可得这100名学生中体重在[)5.64,5.56的学生人数是( )(A )20 (B )30 (C )40 (D )50 5、(2006理8)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )(A )30种 (B )90种 (C )180种 (D )270种6、(2007理4)若n xx )1(+展开式的二项式系数之和为64,则展开式的常数项为( )A 、10B 、20C 、30D 、120 7、(2007理6)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( )A 、41B 、12079C 、43D 、24238、(2008理5)已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=( )(A)15(B)14(C)13(D)129、(2009理3)282()x x+的展开式中4x 的系数是( )A .16B .70C .560D .112010、(2009理6)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。

2004至2009高考数学山东卷概率题汇总比较

2004至2009高考数学山东卷概率题汇总比较

2004至2009高考数学山东卷概率题汇总比较200420.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求:(I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.2005(18)(本小题满分12分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为1,7现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数. (I )求袋中所有的白球的个数;(II )求随机变量ξ的概率分布;(III )求甲取到白球的概率.2006(20) (本小题满分12分)袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用ε表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量ε的概率分布和数学期望;(3)计分介于20分到40分之间的概率.200718(本小题满分12分)设b c 和分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计).(I)求方程20x bx c ++= 有实根的概率;(II) 求ξ的分布列和数学期望;(III)求在先后两次出现的点数中有6的条件下,方程方程20x bx c ++= 有实根的概率. 2008(18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分, 答错得零分。

假设甲队中每人答对的概率均为32,乙队中3人答对的概率分别为21,32,32,且各人回答正确与否相互之间没有影响。

用ε表示甲队的总得分。

专题十 排列组合 2004-2018浙江高考真题分类汇编(学生版)

专题十  排列组合 2004-2018浙江高考真题分类汇编(学生版)

专题十排列组合近五年考查率:60% 考查要点:分类、分步计数原理;排列组合中的常用方法一、知识梳理1.分类加法计数原理完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么完成这件事共有N=________________种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么完成这件事共有N=____________种不同的方法.3.两个计数原理解决计数问题时的方法最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要分步.(1)分类要做到“______________”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“______________”,即完成了所有步骤,恰好完成任务,当然步与步之间要______________,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.4.排列(1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照____________排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的________________的个数叫做从n个不同元素中取出m个元素的排列数,用符号______表示.(3)排列数公式:A m n=________________________.这里n,m∈N*,并且________.(4)全排列:n个不同元素全部取出的一个____________,叫做n个元素的一个全排列.A n n =n×(n-1)×(n-2)×…×3×2×1=__________,因此,排列数公式写成阶乘的形式为A m n=,这里规定0!=________.5.组合(1)组合的定义:从n个不同元素中取出m(m≤n)个元素____________,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的____________的个数,叫做从n个不同元素中取出m个元素的组合数,用符号________表示.(3)组合数公式:C m n=A m nA m m=____________=____________.这里n∈N*,m∈N,并且m≤n.(4)组合数的两个性质:①C m n=____________;②C m n +1=____________+____________.知识梳理答案:1.m 1+m 2+…+m n2.m 1×m 2×…×m n3.(1)不重不漏 (2)步骤完整 相互独立4.(1)一定的顺序 (2)所有不同排列 A m n (3)n (n -1)(n -2)…(n -m +1) m ≤n(4)排列 n ! n !(n -m )!1 5.(1)合成一组 (2)所有不同组合 C m n(3)n (n -1)(n -2)…(n -m +1)m ! n !m !(n -m )!(4)①C n -m n ②C m n C m -1n二、历年真题1.(2005•浙江,14)从集合{O ,P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O ,Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).2.(2007•浙江,14)某书店有11种杂志,2元1本的8种,1元1本的3种,小张有10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是_____________(用数字作答)3.(2008•浙江,16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答)4.(2009•浙江,16)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).5.(2010•浙江,17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复,若上午不测“握力”项目,下午不测“台阶,其余项目上、下午都各测试一人,则不同的安排方式共有种 (用数字作答)。

2004年高考数学试题(全国4文)及答案

2004年高考数学试题(全国4文)及答案

2004年高考试题全国卷Ⅳ文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26B .6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( )A .03222=--+x y xB .0422=++x y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径C .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A= . 15.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)已知数列{n a }为等比数列,.162,652==a aC(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 是数列{n a }的前n 项和,证明.1212≤⋅++n n n S S S 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.2004年高考试题全国卷4文科数学(必修+选修Ⅰ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.23 15.21- 16.2 三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分. 解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4.依题意,得方程组⎩⎨⎧=1626411q a q a 解此方程组,得a 1=2, q=3.故数列{a n }的通项公式为a n =2·3n -1. (II ) .1331)31(2-=--=n n n S .1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b 所以直线l 2的方程为.92231--=x yy图1(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6=0.228. (Ⅱ)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3)=0.228+0.8×0.7×0.6=0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE.根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23,又知AD=43,AB=8,得.ABADAE EO =所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab a y b x 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。

11-2004年全国各省市高考模拟数学试题汇编——概率与统计解答题精选

11-2004年全国各省市高考模拟数学试题汇编——概率与统计解答题精选

概率与统计解答题精选1. 某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话.解:设A 1={第i 次拨号接通电话},i =1,2,3.(1)第3次才接通电话可表示为321A A A 于是所求概率为;1018198109)(321=⨯⨯=A A A P (2)拨号不超过3次而接通电话可表示为:A 1+32121A A A A A +于是所求概率为P (A 1+32121A A A A A +)=P(A 1)+P(21A A )+P(321A A A )=.103819810991109101=⨯⨯+⨯+ 2. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差。

解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以 P=.27431)311)(311(=⨯-- (2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD 3. (理科)摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9;当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12。

所以,157)6(31038===C C P ξ 157)9(3101228===C C C P ξ 151)12(3102218===C C C P ξ……9分 E ξ=6×539151121579157=⨯+⨯+(元)答:此次摇奖获得奖金数额的数字期望是539元 ……………………12分 4. 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为A 、B 、C ,则P (A )=0.9P (B )=0.8,P (C )=0.85 …………………………2分(Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅=[1-P (A )]·[1-P (B )]·[1-P (C )]=(1-0.9)×(1-0.8)×(1-0.85)=0.003答:三科成绩均未获得第一名的概率是0.003………………6分(Ⅱ)P (C B A C B A C B A ⋅⋅+⋅⋅+⋅⋅)= P ()()()C B A p C B A P C B A ⋅⋅+⋅⋅+⋅⋅=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ⋅⋅+⋅⋅+⋅⋅=[1-P (A )]·P (B )·P (C )+P (A )·[1-P (B )]·P (C )+P (A )·P (B )·[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329答:恰有一科成绩未获得第一名的概率是0.329……………………12分5. 如图,A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当x ≥6时,则保证信息畅通.求线路信息畅通的概率;(II )求选取的三条网线可通过信息总量的数学期望.解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P )6(431012034141)6()4(101202)9(,9432203)8(,842243141205)7(,7322421分分=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P (II ))8(203)5(,5221311,101)4(,4211分===++=++===++x P x P ∴线路通过信息量的数学期望5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯= (11分)答:(I )线路信息畅通的概率是43. (II )线路通过信息量的数学期望是6.5.(12分) 6. 三个元件T 1、T 2、T 3正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路.(Ⅰ)在如图的电路中,电路不发生故障的概率是多少?(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.解:记“三个元件T 1、T 2、T 3正常工作”分别为事件A 1、A 2、A 3,则.43)(,43)(,21)(321===A P A P A P (Ⅰ)不发生故障的事件为(A 2+A 3)A 1.(2分)∴不发生故障的概率为321521]41411[)()]()(1[)4)(()(])[(1321311321=⨯⨯-=⋅⋅-=⋅+=+=A P A P A P A P A A P A A A P P 分(Ⅱ)如图,此时不发生故障的概率最大.证明如下:图1中发生故障事件为(A 1+A 2)·A 3∴不发生故障概率为 3221)()]()(1[)()(])[(3213213212=⋅-=⋅+=+=A P A P A P A P A A P A A A P P )11(12分P P >∴ 图2不发生故障事件为(A 1+A 3)·A 2,同理不发生故障概率为P 3=P 2>P 1(12分) 说明:漏掉图1或图2中之一扣1分7. 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们 的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率.解:设事件A=“从甲机床抽得的一件是废品”;B=“从乙机床抽得的一件是废品”. 则P (A )=0.05, P(B)=0.1,(1)至少有一件废品的概率)7(145.090.095.01)()(1)2)((1)(分分=⨯-=⋅-=+-=+B P A P B A P B A P(2)至多有一件废品的概率)12(995.09.095.01.095.09.005.0)(分=⨯+⨯+⨯=⋅+⋅+⋅=B A B A B A P P8. (理科)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差 解:(1)记甲、乙分别解出此题的事件记为A 、B.设甲独立解出此题的概率为P 1,乙为P 2.(2分)则P (A )=P 1=0.6,P(B)=P 2:48.08.06.0)()()2(44.08.04.02.06.0)()()()()1(08.02.04.0)()()0()2()7(8.032.04.092.06.06.092.0)1)(1(1)(1)(2222212121的概率分布为分即则ξξξξ=⨯=⋅===⨯+⨯=+===⨯=⋅=====-+∴=-+=---=⋅-=+B P A P P B P A P B P A P P B P A P P P P P P P P P P P P B A P B A P)12(4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222分或利用=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξξE E D D E9. (理科考生做) 某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金?解:设保险公司要求顾客交x 元保险金,若以ξ表示公司每年的收益额,则ξ是一个随机变量,其分布列为:6分因此,公司每年收益的期望值为E ξ =x (1-p )+(x -a )·p =x -ap .8分 为使公司收益的期望值等于a 的百分之十,只需E ξ =0.1a ,即x -ap =0.1a , 故可得x =(0.1+p )a .10分 即顾客交的保险金为 (0.1+p )a 时,可使公司期望获益10%a . 12分10. 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2.(1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是: P =1-0.85-15C ×0.84×0.2≈0.263. 4分(2)五项指标全部检验完毕,这批食品可以出厂的概率是:P 1=14C ×0.2×0.83×0.8 8分五项指标全部检验完毕,这批食品不能出厂的概率是:P 2=14C ×0.2×0.83×0.2 10分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P =P 1+P 2=14C ×0.2×0.83=0.4096. 12分11. 高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛. 比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛.已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容? (Ⅱ)高三(1)班代表队连胜两盘的概率是多少?解:(I )参加单打的队员有23A 种方法. 参加双打的队员有12C 种方法.……………………………………………………2分所以,高三(1)班出场阵容共有121223=⋅C A (种)………………………5分 (II )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,………………………………………………………………………7分所以,连胜两盘的概率为.832121212121=⨯⨯+⨯………………………………10分 12. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球 (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=76 即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则 P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件 其概率为14131411=-………………12分 13. 一名学生骑自行车上学,从他的家到学校的途中有6个交通岗,假设他在各交通岗遇到红灯的事件是独立的,并且概率都是31. (I )求这名学生首次遇到红灯前,已经过了两个交通岗的概率;(II )求这名学生在途中遇到红灯数ξ的期望与方差.解:(I )27431)311)(311(=--=P …………………………………………4分 (II )依题意ξ~),31,6(B ……………………………………………………7分 2316=⋅=∴ξE ……………………………………………………………9分 34)311(316=-⋅⋅=ξD ……………………………………………………12分 14. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差。

2004年普通高等学校招生全国统一考试文科数学(必修+选修I)

2004年普通高等学校招生全国统一考试文科数学(必修+选修I)

2004年普通高等学校招生全国统一考试文科数学(必修+选修I )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩( U B )=( )A .{2}B .{2,3}C .{3}D . {1,3}2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若 ( )A .21B .-21 C .2D .-2 3.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11>+-=x x y 的反函数是( )A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设)2,0(πα∈若,53sin =α则)4cos(2πα+= ( )A .57B .51C .27D .47.椭圆122=+y x 的两个焦点为F 、F ,过F 作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线 l 的斜率的取值范围是( )A .]21,21[- B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH的表面积为T ,则ST等于 ( )A .91 B .94C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 ( )A .95B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式x +x 3≥0的解集是 .14.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = .15.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.18.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.19.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.21.(本小题满分12分)如图,已知四棱锥P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离;(II)求面APB与面CPB所成二面角的大小.22.(本小题满分14分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.2004年普通高等学校招生全国统一考试文科数学(必修+选修I )参考答案一、选择题DBCBABCCBACB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥0} 14.3·2n -3 15.422=+y x 16.①②④三、解答题17.本小题主要考查等差数列的通项公式、求和公式,考查运算能力.满分12分.解:(Ⅰ)由,50,30,)1(20101==-+=a a d n a a n 得方程组 ⎩⎨⎧=+=+.5019,30911d a d a ……4分 解得.2,121==d a 所以 .102+=n a n ……7分(Ⅱ)由242,2)1(1=-+=n n S d n n na S 得方程 .24222)1(12=⨯-+n n n ……10分 解得).(2211舍去或-==n n ………12分18.本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41…………12分 19.本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力.满分12分.解:函数f (x )的导数:.163)(2-+='x ax x f ………………3分 (Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;………………9分………………6分(II )当3-=a 时,133)(23+-+-=x x x x f =,98)31(33+--x 由函数3x y =在R 上的单调性,可知 当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a 时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a 时,函数))((R x x f ∈不是减函数. 综上,所求a 的取值范围是(].3,-∞-………………12分20.本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识 解决实际问题的能力,满分12分. 解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为1-6531036=C C ;………………6分(Ⅱ)甲、乙被选中且能通过测验的概率为.1254535431018=⨯⨯C C ;………………12分21.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD. 由此知∠PEB 为面PAD 与面ABCD所成二面角的平面角,………………4分 ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23.………………6分 (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到:,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥等于所求二面角的平面角,…………10分 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π.…………12分 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB ,∴∠AGF 是所求二面角的平面角.……9分 ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG=23, 又∠AGF=π-∠GAE. 所以所求二面角的大小为π-arctan23.…………12分 22.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分14分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① ……2分.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率第 11 页 共 11 页 分的取值范围为即离心率且且6).,2()2,26(226,120.11122ΛΛY Θ+∞≠>∴≠<<+=+=e e e a a a aa e (II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得Θ……8分 由于x 1,x 2都是方程①的根,且1-a 2≠0,分所以由得消去所以14.1317,06028912,,.12125,1212172222222222ΛΛΛ=>=----=--=a a a a x a a x a a x。

2004年高考数学有关概率问题的类型及方法解析

2004年高考数学有关概率问题的类型及方法解析

故甲、 乙两人至少有一人考试合格的概率为 解后思
44 。 45 如果在一次试验 中某事件发生的概率是
p , 那么 在 n 次独立 重复 试验中 这个 事件 恰好发 生 k k k 次的概率为 P n( k ) = Cn p ( 1- p ) n- k 。 5 等概率分层抽样事件 例 5 ( 2004 湖北文 科 15) 某校有老ቤተ መጻሕፍቲ ባይዱ师 200 人 ,
E =0 = (
3 +2 16
525 。 256 3) = 1- P( = 4) = 1-
81 175 = , 256 256 175 答 : 停车时最多已通过 3 个路口的概率为 。 256 解后思 ( 1) 正确分清互斥事 件与相互独 立事件 ) P( 是解决此类问题的关键 ; ( 2) 只有当事件 A 、 B 互斥时 , 才能够运用公式 P( A + B ) = P ( A ) + P( B ) ; 只有当事件 A 、 B 相互 独 立时 , 才 能 运用 公式 P ( A B) = P( A ) P( B ) 。 4 独立重复试验的概率 例 4 ( 2004 年湖北 、 福 建卷 理科 第 18 题 ) 甲、 乙两人参加一次英语口语考试 , 已知在备选的 10 道试 题中 , 甲能答对其中 的 6 题 , 乙能 答对 其中 的 8 题 , 规 定每次考试都从备选题 中随机 抽出 3 题进行 测试 , 至 少答对 2 题才算合格。 ( ) 求甲答对试题数 的概率分布及数学期望 ;
的概 率分布和 它的
期望。 解
0 6 = 0 09 , 0 62 + C 1 2
1 0 62 + C 1 2C2
P( = 1 ) = C1 2 0 6= 0 3, P( = 2) = C2 2 0 6+ C2 2 0 52

高考排列组合、概率知识点总结及典型例题(教师版)

高考排列组合、概率知识点总结及典型例题(教师版)

高考排列组合、概率知识点总结及典型例题排列组合知识点总结:一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式:()()()C A A n n n m m n m n m n m nm mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①m m n c -=n n c ;②111-m n c --+=m n n n c c ;③11-k n kc -=k n nc ;11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n nn C C ==则或 四、二项式定理.1. ⑴二项式定理:nn n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数.....最大. I. 当n是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C最大.③系数和:1314201022-=++=+++=+++n n n n n n nn n n n C C C C C C C C概率知识点总结:一、基本知识在一定的条件下必然要发生的事件,叫做必然事件; 在一定的条件下不可能发生的事件,叫做不可能事件;在一定的条件下可能发生也可能不发生的事件,叫做随即事件。

04-05《排列、组合、概率、统计》高考题解析(文科)

04-05《排列、组合、概率、统计》高考题解析(文科)

04-05《排列、组合、概率、统计》高考题解析(文科)一选择题1.从正方体的八个顶点中任取三个点作为三角形,直角三角形的个数为( 10.C ) A .56 B .52 C .48 D .40(04湖南10)2.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒内放一个球,恰好3个球的标号与其在盒子的标号不.一致的放入方法种数为( B )A .120B .240C .360D .720(04湖北11)3.已知8)(xa x -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 (C ) A .28 B .38C .1或38D .1或28 (04福建9)4 若nxx )2(3+展开式中存在常数项,则n 的值可以是( C )(A) 8 (B) 9 (C) 10 (D) 12(04浙江7)5.73)12(xx -的展开式中常数项是( A )A .14B .-14C .42D .-42(04河北5)(6) 61x ⎫⎪⎭展开式中的常数项为(A )A . 15B . 15-C . 20D . 20-(04广西6)7从长度分别为1,2,3,4的四条线段中,任取三条的不同取法有n 种.在这些取法中,以取出的三条线段为边可组成的三角形的个数为m,则nm等于5. B (A) 0 (B) 41 (C) 21 (D) 43(04北京5)8.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成这两项调查宜采用的抽样方法依次为( 6.B )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法(04湖南6)9.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下,则根据表中数据,就业形势一定是( B )A .计算机行业好于化工行业.B .建筑行业好于物流行业.C .机械行业最紧张.D .营销行业比贸易行业紧张. (04上海16) 10.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( D )A .2140B .1740C .310 D .7120(04重庆11 11.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任), 要求这3位班主任中男、女教师都要有,则不同的选派方案共有( B )A .210种B .420种C .630种D .840种(04甘肃9)(12) 4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有(C ) A . 12 种B . 24 种C 36 种D . 48 种 (04广西12)13.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( C )A .95 B .94 C .2111 D .2110(04河北11) 14.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有 ( C )A .56个B .57个C .58个D .60个(04四川12)15在8(1)(1)x x -+的展开式中5x 的系数是B(A )-14 (B )14 (C )-28 (D )28(05四川3)计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表: 例如,用十六进制表示:E+D=1B ,则A ×B= A(A )6E (B )72 (C )5F (D )B0(05四川12) 16五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(8)B(A )1444C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种(05北京8) 17若n x )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,则n 等于(8.A ) A .5 B .7 C .9 D .11(05重庆8) 18把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是( 9.D ) A .168 B .96 C .72 D .144(05湖北9) 19某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 (12.D ) A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样(05湖北12) 20如果(3n x 的展开式中各项系数之和为128,则展开式中31x 的系数是(C ) (A )7 (B) 7- (C) 21 (D)21- (05山东6) 21 10张奖券中只有3张有奖,5个人购买,每人1张,至少有1人中奖的概率是(D ) (A )310 (B) 112 (C) 12 (D)1112(05山东10) 22123)(x x +的展开式中,含x 的正整数次幂的项共有 3.B )A .4项B .3项C .2项D .1项(05江西3)23将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为(7.A ) A .70 B .140 C .280 D .840(05江西7)24为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b 的值分别为( 12.A )A .0,27,78B .0,27,83C .2.7,78D .2.7,83(05江西12)25从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:则取到号码为奇数的频率是(A )A .0.53B .0.5C .0.47D .0.37(05浙江6) 26在54(1)(1)x x +-+的展开式中,含3x 的项的系数是(C )(A)5- (B) 5 (C) -10 (D) 10 (05浙江5) 二填空题1.若在二项式(x +1)10的展开式中任取一项,则该项的系数为奇数的概率是 114. (结果用分数表示)(04上海9) 2.92)1(xx +的展开式中的常数项为___84 _______(用数字作答) (04湖南14) 3.8)1(xx -展开式中5x 的系数为 28 . (04甘肃13)4.已知n x x )(2121-+的展开式中各项系数的和是128,则展开式中x 5的系数是35 .(以数字作答)(04湖北14)5.已知a 为实数,10)(a x +展开式中7x 的系数是-15,则=a 21-. (04四川13) 6.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m+k 的个位数字相同,若m=6,则在第7组中抽取的号码是 63 .(04福建15)7.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从女学生中抽取的人数为80人,则n= 192 . (04湖北15)8. 某工厂生产A 、B 、C 三种不同型号的产品。

10-3-高考2004年归类(概率-排列组合篇)

10-3-高考2004年归类(概率-排列组合篇)

概率高考题型解答思路之排列组合基本方法篇由于概率与统计紧密联系生活实际,所以高考卷中出现的频率比较高,在复习中要引起重视. 在高考中,概率计算有哪些类型,解答思路有哪些?下面从概率题用排列组合基本方法解决的角度,以2004年的高考题进行分析.一、用组合计数法求概率:例1.(04年全国卷一.文20)从10位同学(其中6女,4男)中随机选出3位参加测验. 每位女同学能通过测验的概率均为45,每位男同学能通过测验的概率均为35.试求:(I)选出的3位同学中,至少有一位男同学的概率;(II)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.【解】点评:“至少”与“至多”问题,可用“排除法”或“分类加法”,特别注意不能用优先法. 有比较明确的选择条件时,才采用“优先法”,先考虑所提的选择条件. 这种概率题型,考查较多,它是有条件的挑选,且不需考虑顺序,解答时,关键是组合计数,概率计算用组合计数的比值来求,即符合条件的组合数与选出的组合总数之比.练1.(04年全国卷二.理18)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支,求:(Ⅰ)A、B两组中有一组恰有两支弱队的概率;(Ⅱ)A组中至少有两支弱队的概率.练2.(04年天津卷.文18)从4名男生和2名女生中任选3人参加演讲比赛. (Ⅰ)求所选3人都是男生的概率;(Ⅱ)求所选3人中恰有1名女生的概率;(Ⅲ)求所选3人中至少有1名女生的概率.练3.(04年广东卷.13)某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是(用分数作答)二、用排列计数法求概率:例2.(04年重庆卷.理11)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为() A.110B.120C.140D.1120【解】点评:关键是求出符合条件的排列数. 在排列计数时,相邻问题用“捆绑法”,不相邻问题用“插空法”.有序排列的概率计算就是符合条件的排列数与总排列数之比.练4.(04年重庆卷.文11)已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为()A. 2140B.1740C.310D.7120三、用“分类加”与“分步乘”两大基本原理求概率:例3.(04年全国卷一.理11)从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ) A. 13125 B. 16125 C. 18125 D. 19125【解】点评:此题与抛2~3枚筛子问题的研究思路相同,关键是将1~5的数字组成三位数的数字和问题,类比为抛筛子的点数和问题,按个位数字将前两位数字和分类,用“纵横轴图示法”分析前两位数字和的情况.分类加法原理求出符合条件的计数,分步乘法原理求出总计数,两个计数结果的比就是所求概率.练5.(04年全国卷一.文11)从1,2,…,9这九个数种,随机抽取3个不同的数,则这3个数的和为偶数的概率是( ). A.59 B. 49 C. 1121 D. 1021练6.(04年辽宁卷.5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( ).A. 21p pB. 1221(1)(1)p p p p -+-C. 211p p -D. 121(1)(1)p p ---练7.(04年全国卷四.文20)某同学参加科普知识竞赛,需回答三个问题. 竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分. 假设这名同学答对第一、二、三个问题的概率分别为0.8,0.7,0.6. 且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率;(Ⅱ)求这名同学至少得300分的概率.小结语:概率的计算,以分类加与分步乘两大基本原理为分析基础,以组合计数与排列计数为工具,以概率计算公式为依据. 关键是正确分析事件的情况、步骤和实施方法等,然后用我们的数学知识求解.(写于2005年2月1日)答案:例1~3. 56,4125;B;D;练1~7. 67,12;134,,555;57;D;C;B;0.228, 0.5642004年高考卷归类练习(概率之排列组合方法篇)一、用组合计数法求概率:例1.(04年全国卷一.文20)从10位同学(其中6女,4男)中随机选出3位参加测验. 每位女同学能通过测验的概率均为45,每位男同学能通过测验的概率均为35.试求:(I)选出的3位同学中,至少有一位男同学的概率;(II)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.练1.(04年全国卷二.理18)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支,求:(Ⅰ)A、B两组中有一组恰有两支弱队的概率;(Ⅱ)A组中至少有两支弱队的概率.练2.(04年天津卷.文18)从4名男生和2名女生中任选3人参加演讲比赛. (Ⅰ)求所选3人都是男生的概率;(Ⅱ)求所选3人中恰有1名女生的概率;(Ⅲ)求所选3人中至少有1名女生的概率.练3.(04年广东卷.13)某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是(用分数作答)二、用排列计数法求概率:例2.(04年重庆卷.理11)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为( ) A. 110 B. 120 C. 140 D. 1120练4.(04年重庆卷.文11)已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为( ) A. 2140 B. 1740 C. 310 D. 7120三、用“分类加”与“分步乘”两大基本原理求概率:例3.(04年全国卷一.理11)从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ) A. 13125 B. 16125 C. 18125 D. 19125练5.(04年全国卷一.文11)从1,2,…,9这九个数种,随机抽取3个不同的数,则这3个数的和为偶数的概率是( ). A.59 B. 49 C. 1121 D. 1021练6.(04年辽宁卷.5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( ).A. 21p pB. 1221(1)(1)p p p p -+-C. 211p p -D. 121(1)(1)p p ---练7.(04年全国卷四.文20)某同学参加科普知识竞赛,需回答三个问题. 竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分. 假设这名同学答对第一、二、三个问题的概率分别为0.8,0.7,0.6. 且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率;(Ⅱ)求这名同学至少得300分的概率.。

2004年高考数学试题分类汇编:概率统计

2004年高考数学试题分类汇编:概率统计

高考概率统计试题集[河南、河北、山东、山西、安徽、江西理科]11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( D )A .12513 B .12516 C .12518 D .12519 18.(本小题满分12分)18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.04ξ 0 1 2 3 4 P0.090.30.370.20.04所以E ξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.[河南、河北、山东、山西、安徽、江西文科]11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 (C )A .95B .94 C .2111 D .2110 20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.20.本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识 解决实际问题的能力,满分12分. 解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为1-6531036=C C ;………………6分(Ⅱ)甲、乙被选中且能通过测验的概率为.1254535431018=⨯⨯C C ;………………12分[四川、吉林、黑龙江、云南 理科]12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( C ) A .56个 B .57个 C .58个 D .60个13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为 答案:0.1,0.6,0.3 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率.18.本小题主要考查组合、概率等基本概念,相互独立事件和互斥事件等概率的计算,运用 数学知识解决问题的能力,满分12分.(Ⅰ)解法一:三支弱队在同一组的概率为 .7148154815=+C C C C故有一组恰有两支弱队的概率为.76711=-解法二:有一组恰有两支弱队的概率.76482523482523=+C C C C C C (Ⅱ)解法一:A 组中至少有两支弱队的概率 21481533482523=+C C C C C C 解法二:A 、B 两组有一组至少有两支弱队的概率为1,由于对A 组和B 组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为.21ξ 0 1 2 P[天津理科]13. 某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为5:3:2,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= .(答案: 80) 18.(本小题满分12分) 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列; (2)求ξ的数学期望;(3)求“所选3人中女生人数1≤ξ”的概率.18. 本小题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.满分12分. (1)解:ξ可能取的值为0,1,2。

一个高考组合问题的研究与推广(湖北04更列)

一个高考组合问题的研究与推广(湖北04更列)

《高中数学研究性学习案例》一个高考排列组合问题的研究与推广王跃进2004年全国高考数学试卷(湖北卷)中的一道填空题为:将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有种.(04年全国高考.湖北卷)答案为240.对该问题进行研究和推广,我们可提出以下三个一般性的问题:将标号为1,2,…,n的个球放入标号为1,2,…, n的n个盒子内,每个盒内放一个球,如果标号为k(1≤k≤n)的球恰好放入与其标号不一致(一致)的盒内,我们就称该球错位(相合),问:探究1恰好有r个球错位(简称r-错位)的放入方法有多少种(记为],[r nD)?⑴探究2 恰好有m个球相合(简称m-相合)的放入方法有多少种(记为]nC)?⑵,[m探究3 至少有m个球相合的放入方法有多少种(记为nE)?⑶,(m)下面的定理回答了上述三个问题并给出了其计数公式,从这些结果可以使我们更全面、更深入地了解中学数学有关问题的一般情形及其理论背景.引理 将标号为1,2,…,n 的n 个球放入标号为1,2,…, n 的n 个盒子内,每个盒内放一个球,则至少有一个球相合的放球方法种数)1,(n E 、n 个球均错位的放球方法种数n D 分别为)1,(n E =)!1)1(!31!211(!1n n n --+-+- (1)n D =)!1)1(!31!21!111(!n n n -++-+- (2) 引理的证明在一般组合数学著作中都可查到,这里略去.例1 同室四个人每人写一张贺年卡,将这四张卡片收回再分发给这四人,每人一张,则每人都分不到自已写的贺年卡的分卡方法共有 种.(1993年全国高考题) 解 在引理中令n =4,得所求的分卡方法有9]!41!31!21[!44=+-=D 种. 定理 r -错位种数],[r n D 、m-相合种数],[m n C 、至少有m 个球相合的放球方法种数)m ,n (E 分别为],[r n D =!1)1(!0k r C k r k r n -∑= =)!1)1(!21!111()!(!r r n n r -+++-- (3)],[m n C =∑-=-m n 0k k !k 1)1(!m !n =⎪⎪⎭⎫ ⎝⎛--+++--)!(1)1(!21!111!!m n m n m n (4) ),(m n E =∑-=⋅+--m n k k k k m m n 0!)(1)1()!1(! =⎪⎪⎭⎫ ⎝⎛-⋅-+-⋅++⋅+---)!m n (n 1)1(!2)2m (1!1)1m (1m 1)!1m (!n m n (5) 证明 先证(3)式:从n 个球中选取r 球,有rn C 种方法;对于取定的r 球,使这r 个球错位、其余n -r 个球相合的放球方法,由引理,有r D =)!r 1)1(!31!21(!r r -++- 种,由乘法原理得]r ,n [D =rn C ×r D ,代入即得(3)式.再证(4)式:因为恰好有m 个球相合等价于恰有m n -个球错位,故],[m n C =],[m n n D -,在(3)式中取r = n -m 即得(4)式.(5)式的证明:对m 用数学归纳法.m =1时,由引理中(1)式得)1(,n E =)!1)1(!31!211(!1n n n --+-+-=!n !11110)()(k k n k +-∑-==!)1(11!10k k n k n k ⋅+-∑-=)( 故当m =1时,(5)式成立.假设(5)式对1m -成立,即)1,(-m n E =∑+-=⋅+---10!)1(1)1()!2(!m n k k k k m m n (6) 则对m ,将(4)、(6)式代入显然成立的等式]1[)1()(---=m n C m n E m n E ,,,左端,得),(m n E =∑+-=⋅+---10!)1(1)1()!2(!m n k k k k m m n -∑+-=--1m n 0k k !k 1)1(!1m !n )(=∑+-=⋅+----10!)1(1()1()!1(!m n k k k k m m m n -)!1k =∑+-=--⋅+---111)!1()1(1)1()!1(!m n k k k k m m n =∑-=⋅+--m n k k k k m m n 0!)(1)1()!1(! 故(5)式对m =1,2,…,n 均成立.证毕.例2 将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,求:(1)恰好有3个球的标号与其所在盒子的标号不一致的放球方法种数;(2)恰好有4个球的标号与其所在盒子的标号一致的放球方法种数;(3)至少有5个球的标号与其所在盒子的标号一致的放球方法种数.解 限于篇幅仅给出直接用定理的解法.(1)在定理的(3)式中取n =10,r =3,即得所求的放球方法有]3,10[D =310C .=-)!31!21( !3240种.(2)在定理的(4)式中取n=10,m=4,即得所求的放球方法有]4,10[C =!4!10.=+-+-)!61!51!41!31!21( 55650种.(3)在定理的(5)式中取n =10,m =5,即得所求的放球方法有]5,10[E =13264种.例3 将1,2,…,9共9个整数作排列,求至少有6个数字与其排列位置一致的排列种数.解法一 所求排列可分为恰有6个、7个、8个、9个数字与其排列位置一致的4类,这4类分别有269C =168、1C 79⋅=36、0C 89⋅=0、1C 99⋅=1种,相加得所求排列共有168+36+1=205种.解法二 (5)式中取n =9,m =6,得所求结果为)69(,E =)!391!2817161(!5!9⋅-⋅+-=205.。

高中概率总结

高中概率总结

概率知识要点例1(2004 天津)从4名男生和2名女生中任3人参加演讲比赛.(I)求所选3人都是男生的概率;(II)求所选3人中恰有1名女生的概率;(III)求所选3人中至少有1名女生的概率.考点2 考查互斥事件至少有一个发生与相互独立事件同时发生概率计算。

不可能同时发生的两个事件A、B叫做互斥事件,它们至少有一个发生的事件为A+B,用概率的加法公式P(A+B)=P(A)+P(B)计算。

事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则A、B叫做相互独立事件,它们同时发生的事件为AB。

用概率的乘法公式P(AB)=P(A)P(B)计算。

高考常结合考试竞赛、上网工作等问题对这两个事件的识别及其概率的综合计算能力进行考查。

例2.(2005 全国卷Ⅲ)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。

已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率。

考点3 考查对立事件概率计算。

必有一个发生的两个互斥事件A、B叫做互为对立事件。

用概率的减法公式P(A)=1-P(A)计算其概率。

高考常结合射击、电路、交通等问题对对立事件的判断识别及其概率计算进行考查。

例3.(2005 福建卷文)甲、乙两人在罚球线投球命中的概率分别为122和5。

(Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;考点4 考查独立重复试验概率计算。

若n次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n次独立重复试验。

若在1次试验中事件A发生的概率为P,则在n次独立重复试验中,事件A恰好发生k次的概率为Pn(k)=n ()(1)k k n knP A C p p-=-。

10-2004全国各地高考题汇编——排列组合概率

10-2004全国各地高考题汇编——排列组合概率

04年全国各地高考题汇编------排列、组合、概率1.(04-重庆)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A110 B 120 C 140 D 1120 2.(04-重庆-文)已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为:( ) A2140 B 1740 C 310 D 71203.(04-四川-文、理)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有A.56个B.57个C.58个D.60个4.(04-全国-必修+选修1)61x ⎫⎪⎭展开式中的常数项为( )A. 15B. 15-C. 20D. 20-5.(04-全国-必修+选修1、2)4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A. 12 种B. 24 种 C 36 种 D. 48 种6.(04-江苏)从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )(A)140种 (B)120种 (C)35种 (D)34种7.(04-江苏)4)2(xx+的展开式中x3的系数是 ( )(A)6 (B)12 (C)24 (D)488.(04-江苏)将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )(A)5216(B)25216(C)31216(D)912169.(04-广东)一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( )A.0.1536B. 0.1808C. 0.5632D. 0.972810.(04-福建-文)已知8⎪⎭⎫⎝⎛-xax展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是()(A)82(B)83(C)1或83(D)1或8211.(04-福建-理)某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( )(A )2426C A (B )242621C A (C )2426A A (D )262A 12.(04-北京-文)从长度分别为1,2,3,4的四条线段中,任取三条的不同取法共有n 种,在这些取法中,以取出的三条线段为边可组成的三角形的个数为m ,则m n 等于 (A ) 0 (B ) 14 (C ) 12 (D ) 3413.(04-浙江)若n 展开式中存在常数项,则n 的值可以是(A)8 (B)9 (C)10 (D)1214.(04-重庆)若在5(1)ax +的展开式中3x 的系数为80-,则_______a =15.(04-天津-文)从0,1,2,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有 个。

2004年高考概率统计试题赏析

2004年高考概率统计试题赏析

2004年高考概率统计试题赏析
韩松桥
【期刊名称】《中学数学研究》
【年(卷),期】2005(000)003
【摘要】由于概率统计应用价值很大,04年的高考试题大多以实际应用题的形式出现,重点考查了高考要求中的三个要点(即等可能性事件的概率,互斥事件有一个发生的概率,独立重复试验的概率)以及离散型随机变量的概率分布和期望等.从各地试题来看,最大的亮点是背景丰富,素材广泛(如热线电话、交通红绿灯、考试、球队抽签、射击、摸球、产品加工、选班委、掷骰子等等),在具体的情境中考查考生的能力.本文列举几例,与大家共赏。

【总页数】3页(P19-21)
【作者】韩松桥
【作者单位】湖北省孝感高级中学,432100
【正文语种】中文
【中图分类】G633
【相关文献】
1.研究高考命题回归本原教学——2007年上海高考物理试题赏析 [J], 方梦非
2.借高考之力绽放核心素养之花--2020年高考全国Ⅰ卷物理试题赏析 [J], 魏力荣;聂震萍
3.高考数学中的创新型试题赏析——以2014年全国高考试题为引例 [J], 陈燕子
4.2021年普通高考(新高考Ⅰ,Ⅱ卷)数学试题赏析刘洪亮 [J], 刘洪亮
5.聚焦关键能力回归概统本原--2020年高考全国卷概率统计试题赏析 [J], 程生根
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

04年全国各地高考题汇编------排列、组合、概率1.(04-重庆)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A110B120C140D11202.(04-重庆-文)已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为:( ) A 2140B1740C310D71203.(04-四川-文、理)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有A.56个B.57个C.58个D.60个4.(04-全国-必修+选修1)61x ⎛⎫⎪⎝⎭展开式中的常数项为( )A. 15B. 15-C. 20 20- 5.(04-全国-必修+选修1、2)4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A. 12 种B. 24 种 C 36 种 D. 48 种 6.(04-江苏)从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )(A)140种 (B)120种 (C)35种 (D)34种 7.(04-江苏)4)2(x x +的展开式中x 3的系数是 ( )(A)6 (B)12 (C)24 (D)488.(04-江苏)将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( ) (A)5216 (B)25216 (C)31216 (D)912169.(04-广东)一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 ( ) A.0.1536 B. 0.1808 C. 0.5632 D. 0.972810.(04-福建-文)已知8⎪⎭⎫ ⎝⎛-x a x 展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )(A )82 (B )83 (C )1或83 (D )1或8211.(04-福建-理)某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( ) (A )2426C A (B )242621C A (C )2426A A (D )262A12.(04-北京-文)从长度分别为1,2,3,4的四条线段中,任取三条的不同取法共有n 种,在这些取法中,以取出的三条线段为边可组成的三角形的个数为m ,则m n等于(A ) 0 (B ) 14(C )12(D )3413.(04-浙江)若n展开式中存在常数项,则n 的值可以是(A)8 (B)9 (C)10 (D)1214.(04-重庆)若在5(1)a x +的展开式中3x 的系数为80-,则_______a =15.(04-天津-文)从0,1,2,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有 个。

(用数字作答) 16.(04-天津-理)从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有 个。

(用数字作答)17.(04-天津-理)若)(...)21(2004200422102004R x x a x a x a a x ∈++++=-,则 =++++++++)(...)()()(20040302010a a a a a a a a 。

(用数字作答)18.(04-四川-文)已知a 为实数,(x +a)10展开式中x 7的系数是-15,则a =____。

19.(04-上海-文、理)若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数表示) 20.(04-广东)某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是 (用分数作答)21.(04-福建-理)某射手射击1次,击中目标的概率是0.9.他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论: ①他第3次击中目标的概率是0.9; ②他恰好击中目标3次的概率是1.09.03⨯ ③他至少击中目标1次的概率是41.01-其中正确结论的序号是____________(写出所有正确结论的序号).设坐标平面内有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳1个单位,经22。

(04-浙江)过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有__________种(用数字作答).23.(04-重庆-文)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。

(1)三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标的概率;(2)若甲单独向目标射击三次,求他恰好命中两次的概率。

24.(04-天津-文)从4名男生和2名女生中任选3人参加演讲比赛。

(1)求所选3人都是男生的概率;(2)求所选3人中恰有1名女生的概率;(3)求所选3人中至少有1名女生的概率。

25.(04-四川-文)已知8支球队有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支。

求:(1)A、B两组中有一组恰有两支弱队的概率;(2)A组中至少有两支弱队的概率。

26.(04-福建-文)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试每人分别都从这10道备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)分别求甲、乙两人考试合格的概率;(Ⅱ)求甲、乙两人至少有一人考试合格的概率.04年全国各地高考数学卷概率统计题型集锦(全国卷13)从装有3个红球、2个白球的袋中随机取出2 个球,设其中有ξ个红球,则随机变量ξ(全国卷18)已知8支球队中有3支弱队,以抽签的方式将这8 支球队分为A、B两组,每组4支,(i)A、B两组中有一组恰有两支弱队的概率;(ii)A组中至少有两支弱队的概率。

(上海卷9)若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是.(结果用分数表示)(天津卷13)某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5。

现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件。

那么此样本的容量=n____________________(天津卷18)从4名男生和2名女生中任选3人参加演讲比赛。

设随机变量ξ表示所选3人中女生的人数。

(I) 求ξ的分布列;(II) 求ξ的数学期望;(III) 求“所选3人中女生人数1ξ”的概率。

≤(广东卷6)一台X型号的自动机床在一小时内不需要工人照看的概率为0.8000,有四台这种型号的自动机床各自独立工作,则一小时内至多有2台机床需要工人照看的概率是时间(小时)(A)0.1536 (B)0.1808 (C)0.5632 (D)0.9728(广东卷13)某班委由4名男生和3名女生组成,现从中选出2人担任正副班长。

其中至少有一名女生当选的概率是 。

(用分数作答)(江苏卷6).某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( ) (A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时 (江苏卷9).将一颗质地均匀的骰子(它是一种各面上分别标有点数1, 2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )(A)5216 (B)25216 (C)31216 (D)91216(湖南卷5)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180 个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①:在丙地区中有20个特大型销焦点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为,则完成①、②这两项调查宜采用的抽样方法依次是(A )分层抽样,系统抽样法 (B )分层抽样法,简单随机抽样法 (C )系统抽样法,分层抽样法 (D )简随机抽样法,分层抽样法(湖南卷14)同时抛掷两枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上, ξ=0表示结果中没有正面向上,则Eξ= . (浙江卷18)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个。

第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同),记第一次与第二次取到球的标号之和为ξ。

(1)求随机变量ξ的分布列;(2)求随机变量ξ的期望E ξ。

(福建卷15)某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 (写出所有正确结论的序号)(福建卷18)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题。

规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格。

(Ⅰ)求甲答对试题数ξ的概率分布及数学期望;(Ⅱ)求甲、乙两人至少有一人考试合格的概率。

(湖北卷13)设随机变量E 的概率分布为P (E=k )=ka 5,a 为常数,=k 1,2,…,则a =________(湖北卷21)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3;一旦发生,将造成400万元的损失。

现有甲、乙两种相互独立的预防措施可供采用。

单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率分别是0.9和0.85。

若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少。

(总费用...=采取预防措施的费用+发生突发事件损失的期望值。

)(重庆卷11).某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A 110B120C140D1120(重庆卷18)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为34,遇到红灯(禁止通行)的概率为14。

相关文档
最新文档