人教版九年级数学上册《25章概率初步25.3用频率估计概率实验与探究π的估计》优质课课件_2
人教版九年级数学上册新第25章 25.3用频率估计概率
初中数学试卷新人教版数学九年级上册第25章25.3用频率估计概率课时作业一、选择题1、绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100 300 400 600 1000 2000 3000 发芽的粒数m96 282 382 570 948 1912 2850 发芽的频数nm0.960 0.940 0.955 0.950 0.948 0.956 0.950则绿豆发芽的概率估计值是()A.0.96 B.0.95 C.0.94 D.0.90答案:B知识点:利用频率估计概率解析:解答:x=(0.960+0.940+0.955+0.950+0.948+0.956+0.950)÷7≈0.95,当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,绿豆发芽的概率估计值是0.95.故选B.分析:考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.本题考查了绿豆种子发芽的概率的求法.对于不同批次的绿豆种子的发芽率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.2、某人在做掷硬币实验时,投掷m次,正面朝上有n次(即正面朝上的频率是p= nm).则下列说法中正确的是()A.P一定等于12, B.P一定不等于12, C.多投一次,P更接近12, D.投掷次数逐渐增加,P稳定在12附近答案:B知识点:利用频率估计概率解析:解答:∵硬币只有正反两面,∴投掷时正面朝上的概率为12,根据频率的概念可知投掷次数逐渐增加,P稳定在12附近.故选D.分析:考查利用频率估计概率.大量反复试验下频率稳定值即概率.利用频率估计概率时,只有做大量试验,才能用频率会计概率.3、小明在一只装有红色和白色球各一只的口袋中摸出一只球,然后放回搅匀再摸出一只球,反复多次实验后,发现某种“状况”出现的机会约为50%,则这种状况可能是()A.两次摸到红色球B.两次摸到白色球C.两次摸到不同颜色的球D.先摸到红色球,后摸到白色球答案:C知识点:利用频率估计概率解析:解答:∵摸到红色和白色球的概率均为12,∴反复多次实验后,发现某种“状况”出现的机会约为50%,这种状况可能是两次摸到不同颜色的球.故选C.分析:考查利用频率估计概率.大量反复试验下频率稳定值即概率.根据用频率估计概率的意义,从四个选项中选出出现的机会约为50%的情况.4、一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A.28个B.30个C.36个D.42个答案:A知识点:利用频率估计概率解析:解答:由题意得:白球有×8≈28个.故选A.分析:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.关键是根据白球和黑球的比得到相应的关系式.共摸球400次,其中88次摸到黑球,那么有312次摸到白球;由此可知:摸到黑球与摸到白球的次数之比为88:312;已知有8个黑球,那么按照比例,白球数量即可求出.5、为验证“掷一个质地均匀的骰子,向上的点数为偶数的概率是0.5”,下列模拟实验中,不科学的是( )A .袋中装有1个红球一个绿球,它们除颜色外都相同,计算随机摸出红球的概率B .用计算器随机地取不大于10的正整数,计算取得奇数的概率C .随机掷一枚质地均匀的硬币,计算正面朝上的概率D .如图,将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,计算指针指向甲的概率答案:D知识点:利用频率估计概率解析:解答: A 、袋中装有1个红球一个绿球,它们出颜色外都相同,随机摸出红球的概率是,故本选项正确;B 、用计算器随机地取不大于10的正整数,取得奇数的概率是12,故本选项正确; C 、随机掷一枚质地均匀的硬币,正面朝上的概率是12,故本选项正确; D 、将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,指针指向甲的概率是13,故本选项错误; 故选D .分析:此题考查了模拟实验,选择和掷一个质地均匀的骰子类似的条件的试验验证掷一个质地均匀的骰子的概率,是一种常用的模拟试验的方法.分析每个试验的概率后,与原来掷一个质地均匀的骰子的概率比较即可.6、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球( )A .10个B .20个C .30个D .无法确定 答案:B知识点:利用频率估计概率解析:解答:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是5011503,设口袋中大约有x 个白球,则101103x =+ 解得x=20.故选B .分析:考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.7、小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是( ) A .40只 B .25只 C .15只 D .3只 答案:D知识点:利用频率估计概率解析:解答:小鸡孵化场孵化出1000只小鸡,在60只上做记号,则做记号的小鸡概率为603100050=,再任意抓出50只,其中做有记号的大约是350350⨯=只.故选D . 分析:此题考查概率的应用.任意抓出50只中有记号的只数=50×做记号的小鸡概率. 先计算出做记号的小鸡概率为603100050=,再任意抓出50只,则其中做有记号的大约是350350⨯=只. 8、一个不透明的盒子里有n 个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n 大约是( ) A .6 B .10 C .18 D .20 答案:D知识点:利用频率估计概率解析:解答:由题意可得,60n×100%=30%, 解得,n=20(个). 故估计n 大约有20个. 故选:D .分析:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.9、一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( )A .红球比白球多B .白球比红球多C .红球,白球一样多D .无法估计 答案:A .知识点:利用频率估计概率解析:解答: ∵5位同学摸到红球的频率的平均数为8597675++++=,∴红球比白球多. 故选A .分析:考查利用频率估计概率.大量反复试验下频率稳定值即概率.易错点是得到红球可能的情况数.计算出摸出红球的平均数后分析,若得到的平均数大于5,则说明红球比白球多,反之则不是.10、关于频率和概率的关系,下列说法正确的是( ) A .频率等于概率;B .当实验次数很大时,频率稳定在概率附近;C .当实验次数很大时,概率稳定在频率附近;D .实验得到的频率与概率不可能相等 答案:B知识点:利用频率估计概率解析:解答: A 、频率只能估计概率; B 、正确; C 、概率是定值;D 、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同. 故选B .分析:考查利用频率估计概率,大量反复试验下频率稳定值即概率.大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.11、在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟实验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值;②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值;③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的实验中,不科学的有()A.0个B.1个C.2个D.3个答案:A知识点:利用频率估计概率解析:解答:①由于一枚质地均匀的硬币,只有正反两面,故正面朝上的概率是12;②由于把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,标奇数和偶数的转盘各占一半.指针落在奇数区域的次数与总次数的比值为12.③由于圆锥是均匀的,所以落在圆形纸板上的米粒的个数也是均匀的分布的,与纸板面积成正比,可验证其中一半纸板上的米粒数与纸板上总米粒数的比值为12.三个试验均科学,故选A.分析:选择和抛硬币类似的条件的试验验证抛硬币实验的概率,是一种常用的模拟试验的方法.分析每个试验的概率后,与原来的掷硬币的概率比较即可.12、抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在()A.25% B.50% C.75% D.100%答案:A知识点:利用频率估计概率解析:解答:抛掷两枚均匀的硬币,可能出现的情况为:正正,反反,正反,反正,∴出现两个反面的概率为14,∴抛掷多次以后,出现两个反面的成功率大约稳定在25%.故选A.分析:考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.抛掷两枚均匀的硬币,可能会出现四种情况,而出现两个反面的机会为四分之一.13、下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①②B.②③C.③④D.①③答案:B知识点:利用频率估计概率解析:解答:①错误,实验条件会极大影响某事件出现的频率;②正确;③正确;④错误,“两个正面”、“两个反面”的概率为,“一正一反”的机会较大,为12.故选B.分析:大量反复试验下频率稳定值即概率.易错点是得到抛掷两枚硬币得到所有的情况数.根据频率与概率的关系分析各个选项即可.14、小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是()A.38% B.60% C.约63% D.无法确定答案:C知识点:利用频率估计概率解析:解答:∵小明练习射击,共射击60次,其中有38次击中靶子,∴射中靶子的频率38196030=≈0.63,故小明射击一次击中靶子的概率是约63%.故选C.分析:本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.根据频率=频数÷数据总数计算.15、在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是()A.16 B.18 C.20 D.22答案:A知识点:利用频率估计概率解析:解答:∵通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,∴摸到盒子中黑色球的概率为1-45%-15%=40%,∴盒子中黑色球的个数为40×40%=16.故选A.分析:此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.由于通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,由此可以确定摸到盒子中黑色球的概率,然后就可以求出盒子中黑色球的个数.二、填空题1、有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红球的个数约为____.答案:600个知识点:利用频率估计概率解析:解答:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600(个).故答案为:600个.分析:本题考查用频率估计概率,因为摸到红球的频率约为0.6,红球所占的百分比是60%,从而可求出解.因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.2、在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是____答案:接近1 6知识点:利用频率估计概率解析:解答:如果试验的次数增多,出现数字“1”的频率的变化趋势是接近1 6分析:实验次数越多,出现某个数的变化趋势越接近于它所占总数的概率.随着试验次数的增多,变化趋势接近与理论上的概率.3、从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 种子粒数 100 400 800 1000 2000 5000 发芽种子粒数 85 298 652 793 1604 4005 发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为____(精确到0.1). 答案:0.8知识点:利用频率估计概率解析:解答:∵种子粒数5000粒时,种子发芽的频率趋近于0.801, ∴估计种子发芽的概率为0.801,精确到0.1,即为0.8. 故本题答案为:0.8.分析:本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.本题考查的是用频率估计概率,6批次种子粒数从100粒大量的增加到5000粒时,种子发芽的频率趋近于0.801,所以估计种子发芽的概率为0.801,精确到0.1,即为0.8. 4、晓刚用瓶盖设计了一个游戏:任意掷出一个瓶盖,如果盖面朝上则甲胜,如果盖面朝下则乙胜,你认为这个游戏____(是否公平);如果以硬币代替瓶盖,同样做上述游戏,你认为这个游戏____(是否公平). 答案:不公平,公平 知识点:利用频率估计概率解析:解答:因为瓶盖不是均匀的,故盖面朝上和盖面朝下的机会不是均等的;故这个游戏不公平.如果以硬币代替瓶盖,因为硬币是均匀的,故正面与反面向上机会相等;故这个游戏公平.分析:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.根据实际情况即可解答.瓶盖不是均匀的,而硬币均匀,所以两种情况不一样. 5、一个不透明的袋中装有2枚白色棋子和n 枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n 很可能是___枚.答案:8知识点:利用频率估计概率解析:解答:不透明的布袋中的棋子除颜色不同外,其余均相同,共有n+2个棋子,其中黑色棋子n 个,根据古典型概率公式知:P (黑色棋子)=2n n =80%,解得n=8.故答案为:8.分析:此题主要考查了概率公式的应用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 根据黑色棋子的概率公式2nn +=80%,列出方程求解即可. 三、解答题1、某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下: 奖券种类 紫气东来 花开富贵 吉星高照 谢谢惠顾 出现张数(张)500100020006500(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由. 知识点:利用频率估计概率 解析:解答:(1)50011000020=或5%;(2)平均每张奖券获得的购物券金额为100×50010000+50×100010000+20×200010000+0×650010000=14(元), ∵14>10,∴选择抽奖更合算.分析:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn,易错点是获得购物券得到金额的平均数.(1)根据概率的求法,找准两点: ①、符合条件的情况数目; ②、全部情况的总数. 二者的比值就是其发生的概率.(2)算出每张奖券获得的购物券金额的平均数,与10比较即可.2、研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:球的颜色无记号有记号红色黄色红色黄色摸到的次数18 28 2 2推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?知识点:利用频率估计概率解析:解答:(1)由题意可知,50次摸球实验活动中,出现红球20次,黄球30次,∴红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%,答:红球占40%,黄球占60%;(2)由题意可知,50次摸球实验活动中,出现有记号的球4次,∴总球数为504×8=100,∴红球数为100×40%=40,答:盒中红球有40个.分析:此题主要考查了利用频率估计概率的问题,首先利用模拟实验得到盒中红球、黄球各占总球数的百分比,然后利用百分比即可求出盒中红球个数.(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球.3、端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子.(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;(2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由.知识点:利用频率估计概率解析:解答:(1)∴P(两只都为红枣馅)==;(3分)(2)这样模拟不正确(4分)理由如下:连续两次掷骰子点数朝上的情况有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16种,而满足条件的情况有4种(5分)∴P(点数3,4向上)=416=14≠p(两只均为红枣馅)(6分)∴这样模拟不正确.(7分)分析:树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,(1)此题属于不放回实验;(2)此题模拟的为放回实验;所以模拟的不正确.4、如图,均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:朝下数字 1 2 3 4出现的次数16 20 14 10(1)计算上述试验中“4朝下”的频率是____;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是13.”的说法正确吗?为什么?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.答案:(1)16知识点:利用频率估计概率解析:解答:(1)“4朝下”的频率:101606=;… 故答案为:16. (2)这种说法是错误的.在60次试验中,“2朝下”的频率为13并不能说明“2朝下”这一事件发生的概率为13.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.(3)随机投掷正四面体两次,所有可能出现的结果如下: 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4)(2,4)(3,4)(4,4)总共有16种结果,每种结果出现的可能性相同,而两次朝下数字之和大于4的结果有10种.∴P (朝下数字之和大于4)=105168=.… 分析:本题主要考查列表法与树状图法求概率,以及频率的意义,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比. (1)先由频率=频数÷试验次数算出频率;(2)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率. (3)列表列举出所有的可能的结果,然后利用概率公式解答即可.5、一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是年平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表: 实验次数 20 40 60 80 100 120 140 160 “兵”字面朝上频数14384752667888相应频率0.7 0.45 0.63 0.59 0.52 0.56 0.55(1)请将数据补充完整;(2)画出“兵”字面朝上的频率分布折线图;(3)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?知识点:利用频率估计概率解析:解答:(1)所填数字为:40×0.45=18,66÷120=0.55;(2)折线图:(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,故估计概率的大小为0.55.分析:考查利用频率估计概率,大量反复试验下频率稳定值即概率.作图时应先描点,再连线.用到的知识点为:部分的具体数目=总体数目×相应频率.频率=所求情况数与总情况数之比.(1)(3)根据图中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率;(2)将频率作为纵坐标,试验次数作为横坐标,描点连线,可得折线图.。
人教版九年级数学上册《25章概率初步25.3用频率作为概率的估计值》优质课教案_7
25.3用频率估计概率一、基本目标【知识与技能】1.掌握用随机事件的频率估计事件发生的概率的方法.2.掌握设计试验来估计比较复杂的随机事件发生的概率,并灵活运用概率的有关知识解决实际问题.【过程与方法】经历“猜想——试验——收集数据——分析结果”的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型,理解频率与概率的关系.【情感态度与价值观】通过分组合作学习,积累数学活动经验,发展合作交流的意识与能力,逐步建立正确的随机观念,体验数学的价值与学习的乐趣,渗透辩证思想教育.二、重难点目标【教学重点】理解用频率估计概率的条件与方法.【教学难点】设计试验来估计比较复杂的随机事件发生的概率.环节1自学提纲,生成问题【5 min阅读】阅读教材P142~P146的内容,完成下面练习.【3 min反馈】1.抛掷一枚质地均匀的硬币时,“正面向上”和“反面向上”发生的可能性__相等__,这两个随机事件发生的概率都是__0.5__.通过试验可以发现,在重复抛掷一枚硬币时,“正面向上”的频率在__0.5__附近摆动.一般地,随着抛掷次数的增加,频率呈现一定的__稳定__性:在__0.5__附近摆动的幅度会越来越__小__.2.教材P143“思考”的答案是“正面向上”的频率呈现出稳定性,稳定于__0.5__.3.用频率估计概率时必须做足够的试验才能使频率__稳定于__概率,并且每项试验必须在__相同条件__下进行,试验次数越__多__,得到的频率值就越接近概率,规律就越明显,此时可以用频率的__稳定值__估计事件发生的概率.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.试验种子n(粒)1550100200500100020003000 发芽频数m 14459218847695119002850发芽频率mn10.800.900.920.940.9520.951 a b(1)计算表中a、b的值;(2)估计该麦种的发芽概率;(3)如果该麦种发芽后,只有87%的麦芽可以成活,现有100 kg麦种,则有多少千克的麦种可以成活为秧苗?【互动探索】(引发学生思考)计算出发芽频率,然后利用频率估计概率,用频率估计概率的条件是什么?【解答】(1)a=1900÷2000=0.95,b=2850÷3000=0.95.(2)观察发现,随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该麦种的发芽概率约为0.95.(3)100×0.95×87%=82.65(千克),故有82.65千克的麦种可以成活为秧苗.【互动总结】(学生总结,老师点评)在大量重复试验中,如果某个事件发生的频率呈现稳定性,此时可以用频率的稳定值估计事件发生的概率.【活动2】巩固练习(学生独学)1.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,则口袋中白色球的个数很可能是(B)A.12B.24C.36D.482.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球试验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:摸球的次数n 10020030050080010003000 摸到白球的次数m 651241783024815991803摸到白球的频率mn0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近__0.6__;(精确到0.1)(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为__0.6__.【活动3】拓展延伸(学生对学)【例2】均匀的正四面体的各面依次标有1、2、3、4四个数字.小明做了60次投掷试验,结果统计如下:朝下数字123 4出现的次数16201410(1)上述试验中“4朝下”的频率是__________;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是13”的说法正确吗?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.【互动探索】(引发学生思考)结合频率和概率的相关知识,频率和概率有什么区别?(2)问中的说法正确吗?【解答】(1)1 6(2)这种说法是错误的.在60次试验中,“2朝下”的频率为13并不能说明“2朝下”这一事件发生的概率为13.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.(3)列表如下:第一次第二次123 4 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4) 由表可知,总共有16种结果,每种结果出现的可能性相同.两次朝下数字之和大于4的结果有10种,故P(两次朝下数字之和大于4)=1016=58.【互动总结】(学生总结,老师点评)试验得出的频率只是概率的近似值,试验次数越多,频率越趋向于概率.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!。
人教版九年级数学上册《25章 概率初步 25.3 用频率估计概率 实验与探究 π的估计》优质课课件_2
各颜色区域面积与整个圆盘面积的比值
慧悟“几何概型”
一般地,如果在一次试验中,结果落在
区域D中的每一点都是等可能的,用A表
示“试验结果落在区域D中的一个小区
域M中”这个事件,那么事件A发生的
概率为
P(A)
M的面积 D的面积
D M
• 问题2:如图是一个正方形及其内切圆,随 机地往正方形内投一粒米落在圆内的概率 是多少?
引悟“π 的发展”
• 第三阶段:分析法时期
韦达给出:
沃利斯给出:
梅钦给出:
达塞利给出:
引悟“π 的发展”
• 第四阶段:计算机时期 • 圆周率小数点后第一兆位数是二,第一兆
二千四百一十一亿位数为五。如果一秒钟 读一位数,大约四万年后才能读完
人教版 九年级上册 第二十五章
的估计
感悟“几何概型”
• 问题1:如图:是一个七等分圆盘,随意向 其投掷一枚飞镖
引悟“π 的发展”
在我国,首先是由数学家刘徽得出较精确的圆周率。 刘徽提出著名的割圆术,即用圆内接正多边形的周长去无 限逼近圆周并以此求取圆周率的方法。他通过这种方法得 到4位有效数字的圆周率 π =3927/1250 =3.1416。
祖冲之,他算出了π 的8位可靠数字, 不但在当时是最精密的圆周率,而且保持 世界记录九百多年。
4P(A)
4m
n
领悟“实验探究”
实验操作:随机撒一把米到画有正方形及其内切
圆的白纸上,统计落在圆内的米粒数m与正方形内
的米粒数n并计算比值
m n
(要求:1、撒米要尽量均匀 2、压线米算压线图形的里面)
第一次
落在圆内米粒数m
落在正方形内米 粒数n
九年级数学上册 第二十五章 概率初步 25.3 用频率估计概率_1
随机事件 及其概 (shìjiàn) 率
1、某批乒乓球产品质量(chǎn pǐn zhì liànɡ)检查结果表:
优等品数 m
抽取球数 n
45 92 50 100
194 470 954 200 500 1000
优等品频率 m 0.9 0.92 0.97 0.94 0.954 n
当抽查的乒乓球数很多时,抽到优等品的频率 (jiējìn)于常数 0.95,在它附近摆动。
成活数(m) 8 47
235 369 662 1335 3203 6335 8073 12628
第八页,共十八页。
成活(chénghu(ó)m )
的频率0.8
n
0.94
0.870
0.923 0.883
0.890 0.915
0.905 0.897
0.902
估计移植成活率
由下表可以发现,幼树移植成活的频率在____左0右.9 摆动,
某射手(shèshǒu)进行射击,结果如下表所示:
射击次数n 20
100 200 500 800
击中靶心
次数m
11
48
104
245
404
击中靶心
频率m/n
0.55
0.48 0.52
0.49
0.505
(1)这个射手(shèshǒu)射击一次,击中靶心的概率是 多少?0.5 (2)这射手射击1600次,击中靶心(bǎ xīn)的次数是 80。0
350
35.32
0.101
400
39.24
0.098
450
44.57
0.099
500
51.54
0.103
根据频率稳定性定理,在要求精确度不是很高的情况下,不妨用表中 试验次数最多一次的频率近似(jìn sì)地作为事件发生概率的估计值.
人教版九年级数学RJ上册精品教案 第25章 概率初步 25.3 用频率估计概率
25.3 用频率估计概率教师备课素材示例●归纳导入(1)我们知道,任意抛一枚质地均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的试验,其中部分结果如下(2)两个同学一组多次抛硬币,计算出“正面向上”的频率;(3)归纳:试验次数越多,频率越接近概率.【教学与建议】教学:通过抛硬币试验的引入,体会频率与概率的关系.建议:让学生两个人合作抛硬币,记录并计算出频率.●复习导入通过前面知识的学习,请同学们回答下列问题:(1)用列举法求概率的条件和方法是什么?(2)列表法、画树状图法是不是列举法,它们在什么时候应用?(3)当列举法不能求出某事件的概率时,还有没有其他的方法?【教学与建议】教学:通过复习,使学生加深对列举法求概率的理解,同时产生探索其他方法求概率的兴趣.建议:问题3,教师可以直接点题.在做大量重复试验时,某事件发生的频率会稳定在概率值附近.【例1】(1)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算硬币正面朝上的概率,其试验次数分别为10,20,50,100次,其中试验相对科学的是(D)A.甲组B.乙组C.丙组D.丁组(2)做重复试验:抛掷一枚啤酒瓶盖1000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为(B)A.0.22B.0.42C.0.50D.0.58理解和巩固利用频率估计概率的方法,灵活解决问题.【例2】(1)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做了记号的,那么可以估计这个鱼塘鱼的数量为(A) A.1250条B.1750条C.2500条D.5000条(2)含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有__9__张.(3)为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积约是__4__m2.让学生用数学知识和数学的思维方法去看待、分析、解决实际生活问题,加强应用统计与概率的意识.【例3】某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种,为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分(1)(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1∶3,估计参与度在0.4以下的共有多少人?解:(1)“直播”教学方式学生的参与度更高.理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40×100%=30%.答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生人数为800×11+3=200(人),“直播”总学生人数为800×31+3=600(人),所以“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),所以参与度在0.4以下的学生共有20+30=50(人).高效课堂 教学设计1.学会根据问题的特点,用统计频率来估计事件发生的概率.2.理解用频率估计概率的方法,渗透转化和估算的数学方法.▲重点对利用频率估计概率的理解和应用.▲难点比较用列举法求概率与用频率求概率的条件与方法.◆活动1 新课导入1.举例说明什么是确定事件,什么是不确定事件.答:确定事件:太阳从东方升起.不确定事件:打开电视正在直播足球比赛.2.什么是概率?答:在一定条件下,重复做n 次试验,m 为n 次试验中事件A 发生的次数,如果随着n 逐渐增大,频率m n逐渐稳定在某一数值p 附近,那么数值p 称为事件A 在该条件下发生的概率,记作P(A)=p.3.抛掷一枚硬币,落定后,正面朝上的概率是多少?你是怎样求出来的?答:概率是0.5.4.当试验的所有结果不是有限个,或各种可能结果发生的可能性不相等时,该如何求事件发生的概率呢?答:在相同的条件下,通过大量的重复试验,可以用这个事件发生的稳定的频率值作为这个事件发生的概率的估计值.◆活动2 探究新知1.教材P 142~145.提出问题:(1)试验:把全班同学分成8组,每名同学掷一枚硬币10次,每组统__0.5__左右摆动;(3)随着抛掷次数的增加,一般地,频率呈现出一定的稳定性,在0.5左右摆动的幅度会越来越__小__.这时,我们称“正面向上”的频率稳定于__0.5__.学生完成并交流展示.◆活动3 知识归纳一般地,在大量重复试验中,如果事件A 发生的__频率m n__稳定于某个常数p ,那么事件A 发生的概率P(A)=__p__.(注意:用频率估计概率的条件是大量重复试验)◆活动4 例题与练习例1 一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下__0.6__(2)假如你去摸一次,你摸到白球的概率是__0.6__,摸到黑球的概率是__0.4__;(3)试估算口袋中黑、白两种颜色的球各有多少个?解:白球:20×0.6=12(个),黑球:20×0.4=8(个).练习1.教材P147习题25.3第1,2题.2.小华练习射击,共射击600次,其中380次击中靶子,由此估计小华射击一次击中靶子的概率是( C )A.38%B.60%C.63%D.无法确定3.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则布袋中红色球可能有( B )A.4个B.6个C.34个D.36个◆活动5 课堂小结频率与概率的关系:区别:①频率反映事件发生的频繁程度;概率反映事件发生的可能性大小;②频率是不能脱离具体的n次试验的结果,具有随机性;概率是具有确定性的不依赖于试验次数的理论值.联系:频率是概率的近似值,概率是频率的稳定值.1.作业布置(1)教材P147~148习题25.3第3,4,5题;(2)对应课时练习.2.教学反思[第(1)题图][第(2)题图]。
25.3用频率估计概率(教案)-2023-2024学年九年级上册数学(教案)人教版
最后,我认识到,作为一名教师,我还需要不断学习,提高自己的教学水平,尝试更多有效的教学方法,以帮助学生们更好地理解和掌握概率知识。在今后的教学中,我会更加注重启发学生思考,培养他们的数据分析能力和逻辑思维能力,使他们在面对不确定性问题时,能够运用所学的概率知识,做出合理的判断和决策。
2.实验操作:为了加深理解,我们将进行一个简单的抛硬币或掷骰子实验。这个操作将演示如何通过实验得到频率,进而估计概率的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“用频率估计概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-突破方法:提供多种实际情境,指导学生如何设计实验、收集数据、分析频率,并运用频率估计概率,逐步培养学生的应用能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《用频率估计概率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要估计某个事件发生可能性大小的情况?”比如,抛硬币正面朝上的概率是多少?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索用频率估计概率的奥秘。
在新课讲授环节,我注意到,当解释频率与概率的关系时,部分学生显得有些困惑。为了帮助他们理解,我采用了抛硬币和掷骰子的实验进行讲解。通过实际操作,学生们的理解明显加深,这也说明直观的实验对于数学概念的理解是非常有帮助的。
人教版九年级上册数学25.3:实验与探究π的估计值 教案
人教版九年级上册数学25.3.1利用频率估计概率 教学设计教学目标:知识与技能:1、当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
2、通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
过程与方法:通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。
情感态度与价值观:1、通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。
2、在活动中进一步发展合作交流的意识和能力。
教学重点:理解当试验次数较大时,试验频率稳定于理论概率。
教学难点:对概率的理解。
设计教学程序:一、问题情境:妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢?妈妈想用掷骰子的办法决定,你觉得这样公平吗?说说你的理由?但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替你觉得这样公平吗?选哪种颜色获得门票的概率更大?说说你的理由!二、合作游戏:1、实验: 把全班同学分成10组,每组同学抛掷一枚硬币50次,整理同学们获得的实验数据,并完成下表 表格一: 硬币正 反 频 数频 率概 率问题:(1)你认为哪种情况的概率最大?(2)当试验次数较小时,比较两种情况的频率,你能得出什么结论?2、累计收集数据:二人一组,汇总其中前两组(60次)、前三组(90次)、前四组(120次)、五组(150次)。
的试验数据,完成表格二的填写,并绘制出相应的折线统计图和有关结论的得出。
表格二:问题:当试验次数较大时,比较频率与其相应的概率,你能得到什么结论?4、得出试验结论。
人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律。
人教版九年级数学上册《25章 概率初步 25.3 实验与探究 π的估计》优质课教案_3
的面积的面积D )(M A P =25.3 实验与探究 π的估计一 内容和内容解析1. 内容利用“频率估计概率”知识估计π的近似值。
2. 内容解析《实验与探究:π的估计》是人教版新教材九年级上册第二十五章第三节后的课题学习,本节课在上一节用频率估计概率的基础上,以学生熟悉的圆盘扔飞镖问题,得出“试验结果落在区域D 中一个小区域M 中这个事件的概率为的面积的面积D )(M A P =”这个结论,并利用这一结论,设计一种方法来估计π的近似值。
二 目标和目标解析1.知识与技能理解试验结果落在区域D 中一个小区域M 中这个事件的概率为的面积的面积D )(M A P =这一结论,能用实验的方法估计一些复杂的随机事件发生的概率。
2.过程与方法通过活动,参与操作,培养学生动手能力和解决问题的能力,渗透转化和估算的思想方法.培养数学建模的核心素养。
3.情感态度与价值观经历将一些复杂数学问题,用实验的方法解决的过程。
让学生亲历从事一项具有探秘色彩的游戏活动,体会参与过程的乐趣,从而更加接近科学真理。
让数学教育真正走进学生的世界,为他们所关注、喜爱、认同和向往。
让所有学生都产生一种对数学探究的欲望,培养使用数学的良好意识,体验数学的应用价值。
达成目标的标志是:学生能将图1中飞镖问题中的概率问题归纳为面积比问题;学生能利用面积比知识和图2估计π的值;学生会自己设计图形来估计π的值;学生会根据大量数据进行准确估算。
三 教学重难点根据本节课的地位和作用以及教学目标的要求,确定本节课的教学重难点如下:教学重点:能理解试验结果落在区域D 中一个小区域M 中这个事件的概率为 这一结论,会设计方法估计π的值。
教学难点:大量重复试验得到数值的稳定值的分析,估算思想方法的渗透。
四 教学问题诊断分析通过以前的学习,学生已经认识到当试验次数较大时试验频率稳定于理论概率,并可据此估计某一事件发生的概率。
有了前面的学习作为基础,学生从思想上认同了在大量重复试验后,可以用频率的稳定值估计事件发生的概率,但还没有这方面的亲身体验。
人教版九年级数学上册第25章《 概率初步:25.3 用频率估计概率》
第二十五章 概率初步
柑橘总质量(n) /千克
损坏柑橘质量(m) /千克
柑橘损坏的频率
m n
50
5.50
100
10.5
0.110 0.105
150
15.15
频率与概率的关系
频率
概率
试验值或使用时的统计 值
理论值
区别
与试验次数的 变化有关
与试验次数的 变化无关
与试验人、试验时间、 与试验人、试验时间、
试验地点有关
试验地点无关
联系
试验次数越多,频率越趋向于概率
第二十五章 概率初步
完成下表,利用你得到的结论解答下列问题: 某水果公司以2元/千克的成本新进了10 000
因此,出售柑橘时每千克大约定价为2.8元可获利润 5 000元.
第二十五章 概率初步
根据频率稳定性定理,在要求精确度不是很高 的情况下,不妨用表中试验次数最多一次的频率近 似地作为事件发生概率的估计值.
10 000
4 979
0.497 9
12 000
6 019
0.501 6
24 000
12 012
0.500 5
第二十五章 概率初步
根据表中数据,描出对应的点,如图:
第二十五章 概率初步
思考: 随着抛掷次数的增加,“正面向上”的频率的
变化趋势是什么? 对一般的随机事件在做大量重复试验时,随着试
验次数的增加,一个事件出现的频率,总在一个固定 数的附近摆动,显示出一定的稳定性,因此,我们可 以通过大量的重复试验,用一个随机事件估计概率? 虽然之前我们学过用列举法确切地计算出随机事件的概 率,但由于列举法受各种结果出现的可能性相等的限制,有 些事件的概率并不能用列举法求出. 例如:抛掷一枚图钉,估计“钉尖朝上”的概率,这时 我们就可以通过大量重复试验估计它们的概率.
新听课记录2024秋季九年级人教版数学上册第二十五章概率初步《用频率估计概率:实验与探究π的估计》
教学设计:新2024秋季九年级人教版数学上册第二十五章概率初步《用频率估计概率:实验与探究π的估计》一、教学目标(核心素养)1.知识与技能:学生能够理解随机事件在大量重复试验中的稳定性,掌握用频率估计概率的方法,并能够将此方法应用于π的估计实验中。
2.数学思维:培养学生的实验设计能力、数据收集与分析能力,以及通过数学模型解决实际问题的能力。
同时,增强学生对概率与几何之间联系的认识。
3.情感态度:激发学生对数学实验的兴趣,培养严谨的科学态度和探索精神,以及团队合作与交流的能力。
4.问题解决:通过π的估计实验,让学生体验从实际问题到数学模型,再到解决方案的全过程,提高解决复杂问题的能力。
二、教学重点•掌握用频率估计概率的方法。
•理解并应用随机事件在大量重复试验中的稳定性来估计π的值。
三、教学难点•设计合理的实验方案,确保实验的准确性和有效性。
•分析实验数据,理解频率与π值之间的关系。
四、教学资源•多媒体课件(包含π的历史背景、实验演示、数据分析图表等)•实验器材(如计算机模拟软件、随机数生成器、统计表格等)•教材及配套习题册•实验记录表、数据分析表等教学辅助材料五、教学方法•实验探究法:通过实际操作或计算机模拟实验,让学生亲身体验用频率估计π值的过程。
•讲授法与讨论法结合:教师讲解理论知识,引导学生讨论实验设计、数据分析和结论得出等环节。
•合作学习法:学生分组进行实验,共同设计实验方案、收集数据、分析结果,并分享学习成果。
六、教学过程1. 导入新课•情境引入:通过介绍π的历史背景和应用领域(如圆的周长、面积计算等),激发学生对π的好奇心和探索欲。
•问题提出:提问学生:“我们能否通过某种实验方法来估计π的值呢?”引导学生思考并讨论可能的方案。
•引入课题:介绍本节课将要学习的内容——用频率估计概率的方法来估计π的值,并说明其意义和价值。
2. 新课教学•理论讲解:•回顾概率与频率的关系,强调在大量重复试验下,某一事件的频率会趋于稳定并接近其概率。
最新人教版九年级上册数学第25章概率初步第3节用频率估计概率
时间、试验地点等有关;概率是理论值,与其他外界因
素无关.
联系:试验次数越多,频率越趋向于概率.
感悟新知
知1-练
例 1 关于频率和概率的关系,下列说法正确的是( ) A. 频率等同于概率 B. 当试验次数很大时,频率稳定在概率附近 C. 当试验次数很大时,概率稳定在频率附近 D. 试验得到的频率与概率不可能相同
n
概率P(A)=p.
感悟新知
特别提醒
知1-讲
1. 试验得出的频率只是概率的估计值.
2. 对一个随机事件A,用频率估计的概率P(A)不可能
小于0,也不可能大于1.
3. 概率是针对大量重复试验而言的,大量重复试验
反映的规律并非在每一次试验中都发生.
感悟新知
2. 频率与概率的关系
知1-讲
区别:频率是试验值或使用时的统计值,与试验人、试验
“兵”字面朝 上的次数
14
18
38
47
52
66
78
88
“兵”字面朝 上的频率
0.70
0.45
0.63
0.59
0.52
0.55
0.56
0.55
感悟新知
知1-练
(2)在图25.3-1 中画出“兵”字面朝上的频率折线统计图; 解题秘方:紧扣概率等于所求事件包含的结果数 与所有等可能的结果数的比进行计算、比较.
感悟新知
知1-练
解题秘方:紧扣频率与概率的定义解答. 解:A. 只能用频率估计概率;B. 正确;C. 概率是 定值;D. 可以相同,如“抛硬币试验”,可得到正 面向上的频率为0.5,与概率相同. 答案:B
感悟新知
知1-练
1-1. 做重复试验:抛掷同一枚啤酒瓶盖1 000次,经过统计 得“凸面向上”的频率约为0.44,则可以估计抛掷这 枚啤酒瓶盖出现“凹面向上”的概率为( D ) A.0.22 B.0.44 C.0.50 D. 0.56
人教版九年级数学上册《25章 概率初步 25.3 用频率估计概率 实验与探究 π的估计》优质课课件_1
---用“频率估计概率”的实验方法
探探究究一一
问题1 .图1是一个七等分圆,随意向其投掷一枚飞镖,则 飞镖落在圆盘中任何一个点上的机会相等。飞镖落在红色 区域上的概率是_____;落在黄色区域的概率是______; 落在绿色区域的概率是____。
问题2. 图2是一个可以自由转动的转盘,转动转盘,指针落 在任何一处的机会是相等的,那么指针落在红色区域的概 率是______,落在白色区域的概率是_______.
探究二
m π m 和 π 之间有什么关系?
n4
n4
你能用它们之间的关系估计π的值吗?
探究三
1. 实验目的:估计π的值 2. 实验依据: m π 3.实验记录: n 4
表1
表2
实验注意事项:
(1)若米粒在图形边上,按半粒算。 (2)撒米粒时避风,尽量均匀,撒好后,白 纸一定不要动。
(3)分区域数米粒,为了避免数重复或漏数, 将数过的米粒轻轻推到一起,切记一定不要让 白纸动。
探究三
小组讨论:关于撒小米估计π的值实 (1)圆一定是内切圆吗?可不可以是外接圆?可不 可以是半圆或圆的一部分? (2)把正方形改成三角形,长方形,梯形,可以吗? (3)你还可以设计什么样的图形,通过撒小米实验 来估计 π的值?
课后小结 通过本节课的学习,你有哪些收获?
3
3
理由:
指针落在圆盘中的机会均等
圆的面积可以看做3份,红色, 白 色分别占1和2份
探究一
问题3 图3在3×3方格形地面上,阴影部分是草地, 其余部分是空地,现随意扔在方格地面上一枚硬 币,则硬币落在草地上的概率为____1__。
3
理由:
硬币落在地面上的机会均等
新人教版九年级数学上册《25章 概率初步 25.3 用频率估计概率 实验与探究 π的估计》公开课课件_0
活动五:实验收获,深化探究
为了提高π的估计值,你认为还可以怎么做?
问:能否将各组数据进行累加,估计该事件发生的概率? ﹙不同条件下的实验数据不能累加﹚
猜想: 概率与m、n有关,与圆周率是否有关?
活动六:随堂练习
1、如图,一个圆形转盘被等分为八个扇形区域,上面
分别标有数字1、2、3、4,转盘指针的位置固定,转动
活动一、小开场白,吸引学生
1.小学的时候,我想π 为什么等于3.14……呢? 中学的时候,我知道了π 是个无理数。今天我 想问一问同学们:π 是怎么计算出来的?
2.同学们要不要自己尝试呢?……,我们今天亲 身感受一下可以通过大量重复实验,用频率估 计事件发生的概率,来估计π 的值,让我们自 己也来当一回数学家。
活动步骤: (1)将学生分成6人一组,1人撒米粒,4人数数,剩
下1人统计。 (2)利用一张大白纸,在纸上画出正方形及其内切圆
(在正中央)图2; (3)正方形不能太小,也不能过大。四人可以分区域
数数,再合起来统计。图3、图4。 (4)撒米粒时高度适中,要避风。确保在相同条件下
进行,减小误差。
m n
活动三、操作感知、建立表象
活动二、通过图形的面积求随机事件发生的概率
红绿红
黄
黄
红绿
图1
由于各个小扇形大小一样,飞镖落在红、黄、绿
区域上的概率分别为
3 7
; 72
; 72
。
活动三、操作感知、建立表象 问题2. 随机撒一把米到画有正方形及其内切圆的白纸上, 统计落在圆内的米粒数 与正方形内的米粒数 ,并 计算 。
图2
活动三、操作感知、建立表象
人教2011课标版
第25章 概率初步
人教版九年级数学上册(RJ)第25章 概率初步 用频率估计概率
第二十五章概率初步25.3 用频率估计概率学习目标:1.理解试验次数较大时试验频率趋于稳定这一规律.2.结合具体情境掌握如何用频率估计概率.3.通过概率计算进一步比较概率与频率之间的关系.重点:1.理解试验次数较大时试验频率趋于稳定这一规律.2.结合具体情境掌握如何用频率估计概率.难点:结合具体情境掌握如何用频率估计概率.一、知识链接1.用列举法求概率有哪几种方法?2.学校组织学生开展志愿者服务活动,甲、乙两名学生从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,用字母A、B、C分别表示“图书馆”“博物馆”“科技馆”三个场馆,请用树状图或列表法求甲、乙两名学生恰好选择同一场馆的概率.3.小强连续投篮75次,共投进45个球,则小强进球的频率是多少?二、要点探究探究点1:用频率估计概率试验探究:掷硬币试验(1) 分组抛掷一枚均匀硬币400次,每隔50次记录“正面朝上”的次数,并算出“正面朝上”的频率,完成下表:(2)根据上表的数据,画出统计图表示“正面朝上”的频率.(3)在画出的图中,用红笔画出表示频率为0.5的直线,你发现了什么?(4)下表是历史上一些数学家所做的掷硬币的试验数据,这些数据支持你发现的规律吗?归纳总结:通过大量重复试验,可以用随机事件发生的频率来估计该事件发生的概率.人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.思考:抛掷硬币试验的特点:1.可能出现的结果数__________;2.每种可能结果的可能性__________.问题如果某一随机事件,可能出现的结果是无限个,或每种可能结果发生的可能性不一致,那么我们无法用列举法求其概率,这时我们能够用频率来估计概率吗?试验探究:图钉落地的试验从一定高度落下的图钉,着地时会有哪些可能的结果?其中顶帽着地的可能性大吗?(1) 选取20名同学,每位学生依次使图钉从高处落下20次,并根据试验结果填写下表.(2)根据上表的数据,画出统计图表示“钉帽着地”的频率.(3)这个试验说明了什么问题?(这里要点归纳:一般地,在大量重复试验中,随机事件A发生的频率mnn是试验总次数,它必须相当大,m是在这n次试验中随机事件A发生的次数)会稳定到某个常数 p.于是,我们用 p这个常数表示事件A发生的概率,即P(A)= p.练一练判断正误(1)连续掷一枚质地均匀硬币10次,结果10次全部是正面,则正面向上的概率是1;(2)小明掷硬币10000次,则正面向上的频率在0.5附近;(3)设一大批灯泡的次品率为0.01,那么从中抽取1000只灯泡,一定有10只次品.例1 某篮球队教练记录该队一名主力前锋练习罚篮的结果如下:(1)填表(精确到0.001);(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?例2 瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生哪种结果,在烧制前无法预知,所以这是一种随机现象.而烧制的结果是“合格品”是一个随机事件,这个事件的概率称为“合格率”.由于烧制结果不是等可能的,我们常用“合格品”的频率作为“合格率”的估计值.某瓷砖厂对最近出炉的一大批某型号瓷砖进行质量抽检,结果如下:(1) 计算上表中合格品率的各频率(精确到0.001);(2) 估计这种瓷砖的合格率(精确到0.01);(3) 若该厂本月生产该型号瓷砖500000块,试估计合格品数.要点归纳:频率与概率的联系:在实际问题中,若事件的概率未知,常用频率作为它的估计值.频率与概率的区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同,而概率是一个确定数,是客观存在的,与每次试验无关.三、课堂小结1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里约有鲤鱼尾,鲢鱼尾.2.抛掷硬币“正面向上”的概率是0.5.如果连续抛掷100次,而结果并不一定是出现“正面向上”和“反面向上”各50次,这是为什么?3.在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)= .由上表估计(精确到0.01):柑橘损坏率是,完好率是 .(2)某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?6.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重 2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的总质量.参考答案自主学习 知识链接1.直接列举法、列表法、画树状图法2.解:列表如下:由表格可知,一共有9种等可能的结果,其中甲乙两名学生恰好选择同一场馆的结果有3种,则P (甲乙两名学生恰好选择同一场馆)=31=.933.45÷75=0.6,即小强进球的频率是0.6. 课堂探究 二、要点探究探究点1:用频率估计概率 试验探究:掷硬币试验(2)如图所示:(3)试验次数越多频率越接近0. 5,即频率稳定于概率. 思考:1.有限 2.相等问题:能试验探究:图钉落地的试验(3)在图钉落地试验中,“顶帽着地”的频率随着试验次数的增加,稳定在常数56.5%附近.1)× (2)√ (3)×频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.(2) 观察上表,可以发现,当抽取的瓷砖数n ≥400时,合格品率m n稳定在0.962的附近,所以我们可取p=0.96作为该型号瓷砖的合格品率的估计.(3) 500000×96%=480000(块),可以估计该型号合格品数为480000块. 当堂检测1.310 2702.答:这是因为频数和频率的随机性以及一定的规律性.或者说概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.3.(1)0.6 (2)0.60.10 0.90(2)根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为21000020= 2.2290009⨯≈(元/千克).设每千克柑橘的销价为x 元,则应有(x-2.22)×9000=5000,解得 x ≈2.8.因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.5.解:先计算每条鱼的平均重量是:(2.5×40+2.2×25+2.8×35)÷(40+25+35)=2.53(千克);所以这池塘中鱼的重量是2.53×100000× 95%=240350(千克).。